]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
mm: remove redundant assignment of entry
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
1da177e4 74
6952b61d 75#include <asm/io.h>
33a709b2 76#include <asm/mmu_context.h>
1da177e4 77#include <asm/pgalloc.h>
7c0f6ba6 78#include <linux/uaccess.h>
1da177e4
LT
79#include <asm/tlb.h>
80#include <asm/tlbflush.h>
81#include <asm/pgtable.h>
82
42b77728
JB
83#include "internal.h"
84
af27d940 85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
87#endif
88
d41dee36 89#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
90/* use the per-pgdat data instead for discontigmem - mbligh */
91unsigned long max_mapnr;
1da177e4 92EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
93
94struct page *mem_map;
1da177e4
LT
95EXPORT_SYMBOL(mem_map);
96#endif
97
1da177e4
LT
98/*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
166f61b9 105void *high_memory;
1da177e4 106EXPORT_SYMBOL(high_memory);
1da177e4 107
32a93233
IM
108/*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114int randomize_va_space __read_mostly =
115#ifdef CONFIG_COMPAT_BRK
116 1;
117#else
118 2;
119#endif
a62eaf15
AK
120
121static int __init disable_randmaps(char *s)
122{
123 randomize_va_space = 0;
9b41046c 124 return 1;
a62eaf15
AK
125}
126__setup("norandmaps", disable_randmaps);
127
62eede62 128unsigned long zero_pfn __read_mostly;
0b70068e
AB
129EXPORT_SYMBOL(zero_pfn);
130
166f61b9
TH
131unsigned long highest_memmap_pfn __read_mostly;
132
a13ea5b7
HD
133/*
134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 */
136static int __init init_zero_pfn(void)
137{
138 zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 return 0;
140}
141core_initcall(init_zero_pfn);
a62eaf15 142
d559db08 143
34e55232
KH
144#if defined(SPLIT_RSS_COUNTING)
145
ea48cf78 146void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
147{
148 int i;
149
150 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
151 if (current->rss_stat.count[i]) {
152 add_mm_counter(mm, i, current->rss_stat.count[i]);
153 current->rss_stat.count[i] = 0;
34e55232
KH
154 }
155 }
05af2e10 156 current->rss_stat.events = 0;
34e55232
KH
157}
158
159static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160{
161 struct task_struct *task = current;
162
163 if (likely(task->mm == mm))
164 task->rss_stat.count[member] += val;
165 else
166 add_mm_counter(mm, member, val);
167}
168#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170
171/* sync counter once per 64 page faults */
172#define TASK_RSS_EVENTS_THRESH (64)
173static void check_sync_rss_stat(struct task_struct *task)
174{
175 if (unlikely(task != current))
176 return;
177 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 178 sync_mm_rss(task->mm);
34e55232 179}
9547d01b 180#else /* SPLIT_RSS_COUNTING */
34e55232
KH
181
182#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184
185static void check_sync_rss_stat(struct task_struct *task)
186{
187}
188
9547d01b
PZ
189#endif /* SPLIT_RSS_COUNTING */
190
1da177e4
LT
191/*
192 * Note: this doesn't free the actual pages themselves. That
193 * has been handled earlier when unmapping all the memory regions.
194 */
9e1b32ca
BH
195static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 unsigned long addr)
1da177e4 197{
2f569afd 198 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 199 pmd_clear(pmd);
9e1b32ca 200 pte_free_tlb(tlb, token, addr);
c4812909 201 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
202}
203
e0da382c
HD
204static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
1da177e4
LT
207{
208 pmd_t *pmd;
209 unsigned long next;
e0da382c 210 unsigned long start;
1da177e4 211
e0da382c 212 start = addr;
1da177e4 213 pmd = pmd_offset(pud, addr);
1da177e4
LT
214 do {
215 next = pmd_addr_end(addr, end);
216 if (pmd_none_or_clear_bad(pmd))
217 continue;
9e1b32ca 218 free_pte_range(tlb, pmd, addr);
1da177e4
LT
219 } while (pmd++, addr = next, addr != end);
220
e0da382c
HD
221 start &= PUD_MASK;
222 if (start < floor)
223 return;
224 if (ceiling) {
225 ceiling &= PUD_MASK;
226 if (!ceiling)
227 return;
1da177e4 228 }
e0da382c
HD
229 if (end - 1 > ceiling - 1)
230 return;
231
232 pmd = pmd_offset(pud, start);
233 pud_clear(pud);
9e1b32ca 234 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 235 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
236}
237
c2febafc 238static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
239 unsigned long addr, unsigned long end,
240 unsigned long floor, unsigned long ceiling)
1da177e4
LT
241{
242 pud_t *pud;
243 unsigned long next;
e0da382c 244 unsigned long start;
1da177e4 245
e0da382c 246 start = addr;
c2febafc 247 pud = pud_offset(p4d, addr);
1da177e4
LT
248 do {
249 next = pud_addr_end(addr, end);
250 if (pud_none_or_clear_bad(pud))
251 continue;
e0da382c 252 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
253 } while (pud++, addr = next, addr != end);
254
c2febafc
KS
255 start &= P4D_MASK;
256 if (start < floor)
257 return;
258 if (ceiling) {
259 ceiling &= P4D_MASK;
260 if (!ceiling)
261 return;
262 }
263 if (end - 1 > ceiling - 1)
264 return;
265
266 pud = pud_offset(p4d, start);
267 p4d_clear(p4d);
268 pud_free_tlb(tlb, pud, start);
b4e98d9a 269 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
270}
271
272static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 unsigned long floor, unsigned long ceiling)
275{
276 p4d_t *p4d;
277 unsigned long next;
278 unsigned long start;
279
280 start = addr;
281 p4d = p4d_offset(pgd, addr);
282 do {
283 next = p4d_addr_end(addr, end);
284 if (p4d_none_or_clear_bad(p4d))
285 continue;
286 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 } while (p4d++, addr = next, addr != end);
288
e0da382c
HD
289 start &= PGDIR_MASK;
290 if (start < floor)
291 return;
292 if (ceiling) {
293 ceiling &= PGDIR_MASK;
294 if (!ceiling)
295 return;
1da177e4 296 }
e0da382c
HD
297 if (end - 1 > ceiling - 1)
298 return;
299
c2febafc 300 p4d = p4d_offset(pgd, start);
e0da382c 301 pgd_clear(pgd);
c2febafc 302 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
303}
304
305/*
e0da382c 306 * This function frees user-level page tables of a process.
1da177e4 307 */
42b77728 308void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
309 unsigned long addr, unsigned long end,
310 unsigned long floor, unsigned long ceiling)
1da177e4
LT
311{
312 pgd_t *pgd;
313 unsigned long next;
e0da382c
HD
314
315 /*
316 * The next few lines have given us lots of grief...
317 *
318 * Why are we testing PMD* at this top level? Because often
319 * there will be no work to do at all, and we'd prefer not to
320 * go all the way down to the bottom just to discover that.
321 *
322 * Why all these "- 1"s? Because 0 represents both the bottom
323 * of the address space and the top of it (using -1 for the
324 * top wouldn't help much: the masks would do the wrong thing).
325 * The rule is that addr 0 and floor 0 refer to the bottom of
326 * the address space, but end 0 and ceiling 0 refer to the top
327 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 * that end 0 case should be mythical).
329 *
330 * Wherever addr is brought up or ceiling brought down, we must
331 * be careful to reject "the opposite 0" before it confuses the
332 * subsequent tests. But what about where end is brought down
333 * by PMD_SIZE below? no, end can't go down to 0 there.
334 *
335 * Whereas we round start (addr) and ceiling down, by different
336 * masks at different levels, in order to test whether a table
337 * now has no other vmas using it, so can be freed, we don't
338 * bother to round floor or end up - the tests don't need that.
339 */
1da177e4 340
e0da382c
HD
341 addr &= PMD_MASK;
342 if (addr < floor) {
343 addr += PMD_SIZE;
344 if (!addr)
345 return;
346 }
347 if (ceiling) {
348 ceiling &= PMD_MASK;
349 if (!ceiling)
350 return;
351 }
352 if (end - 1 > ceiling - 1)
353 end -= PMD_SIZE;
354 if (addr > end - 1)
355 return;
07e32661
AK
356 /*
357 * We add page table cache pages with PAGE_SIZE,
358 * (see pte_free_tlb()), flush the tlb if we need
359 */
ed6a7935 360 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 361 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
362 do {
363 next = pgd_addr_end(addr, end);
364 if (pgd_none_or_clear_bad(pgd))
365 continue;
c2febafc 366 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 367 } while (pgd++, addr = next, addr != end);
e0da382c
HD
368}
369
42b77728 370void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 371 unsigned long floor, unsigned long ceiling)
e0da382c
HD
372{
373 while (vma) {
374 struct vm_area_struct *next = vma->vm_next;
375 unsigned long addr = vma->vm_start;
376
8f4f8c16 377 /*
25d9e2d1
NP
378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
8f4f8c16 380 */
5beb4930 381 unlink_anon_vmas(vma);
8f4f8c16
HD
382 unlink_file_vma(vma);
383
9da61aef 384 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 386 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
387 } else {
388 /*
389 * Optimization: gather nearby vmas into one call down
390 */
391 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 392 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
393 vma = next;
394 next = vma->vm_next;
5beb4930 395 unlink_anon_vmas(vma);
8f4f8c16 396 unlink_file_vma(vma);
3bf5ee95
HD
397 }
398 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 399 floor, next ? next->vm_start : ceiling);
3bf5ee95 400 }
e0da382c
HD
401 vma = next;
402 }
1da177e4
LT
403}
404
4cf58924 405int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 406{
c4088ebd 407 spinlock_t *ptl;
4cf58924 408 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
409 if (!new)
410 return -ENOMEM;
411
362a61ad
NP
412 /*
413 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 * visible before the pte is made visible to other CPUs by being
415 * put into page tables.
416 *
417 * The other side of the story is the pointer chasing in the page
418 * table walking code (when walking the page table without locking;
419 * ie. most of the time). Fortunately, these data accesses consist
420 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 * being the notable exception) will already guarantee loads are
422 * seen in-order. See the alpha page table accessors for the
423 * smp_read_barrier_depends() barriers in page table walking code.
424 */
425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426
c4088ebd 427 ptl = pmd_lock(mm, pmd);
8ac1f832 428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 429 mm_inc_nr_ptes(mm);
1da177e4 430 pmd_populate(mm, pmd, new);
2f569afd 431 new = NULL;
4b471e88 432 }
c4088ebd 433 spin_unlock(ptl);
2f569afd
MS
434 if (new)
435 pte_free(mm, new);
1bb3630e 436 return 0;
1da177e4
LT
437}
438
4cf58924 439int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 440{
4cf58924 441 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
442 if (!new)
443 return -ENOMEM;
444
362a61ad
NP
445 smp_wmb(); /* See comment in __pte_alloc */
446
1bb3630e 447 spin_lock(&init_mm.page_table_lock);
8ac1f832 448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 449 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 450 new = NULL;
4b471e88 451 }
1bb3630e 452 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
453 if (new)
454 pte_free_kernel(&init_mm, new);
1bb3630e 455 return 0;
1da177e4
LT
456}
457
d559db08
KH
458static inline void init_rss_vec(int *rss)
459{
460 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461}
462
463static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 464{
d559db08
KH
465 int i;
466
34e55232 467 if (current->mm == mm)
05af2e10 468 sync_mm_rss(mm);
d559db08
KH
469 for (i = 0; i < NR_MM_COUNTERS; i++)
470 if (rss[i])
471 add_mm_counter(mm, i, rss[i]);
ae859762
HD
472}
473
b5810039 474/*
6aab341e
LT
475 * This function is called to print an error when a bad pte
476 * is found. For example, we might have a PFN-mapped pte in
477 * a region that doesn't allow it.
b5810039
NP
478 *
479 * The calling function must still handle the error.
480 */
3dc14741
HD
481static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 pte_t pte, struct page *page)
b5810039 483{
3dc14741 484 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
485 p4d_t *p4d = p4d_offset(pgd, addr);
486 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
487 pmd_t *pmd = pmd_offset(pud, addr);
488 struct address_space *mapping;
489 pgoff_t index;
d936cf9b
HD
490 static unsigned long resume;
491 static unsigned long nr_shown;
492 static unsigned long nr_unshown;
493
494 /*
495 * Allow a burst of 60 reports, then keep quiet for that minute;
496 * or allow a steady drip of one report per second.
497 */
498 if (nr_shown == 60) {
499 if (time_before(jiffies, resume)) {
500 nr_unshown++;
501 return;
502 }
503 if (nr_unshown) {
1170532b
JP
504 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 nr_unshown);
d936cf9b
HD
506 nr_unshown = 0;
507 }
508 nr_shown = 0;
509 }
510 if (nr_shown++ == 0)
511 resume = jiffies + 60 * HZ;
3dc14741
HD
512
513 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 index = linear_page_index(vma, addr);
515
1170532b
JP
516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
517 current->comm,
518 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 519 if (page)
f0b791a3 520 dump_page(page, "bad pte");
1170532b
JP
521 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
524 vma->vm_file,
525 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 mapping ? mapping->a_ops->readpage : NULL);
b5810039 528 dump_stack();
373d4d09 529 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
530}
531
ee498ed7 532/*
7e675137 533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 534 *
7e675137
NP
535 * "Special" mappings do not wish to be associated with a "struct page" (either
536 * it doesn't exist, or it exists but they don't want to touch it). In this
537 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 538 *
7e675137
NP
539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540 * pte bit, in which case this function is trivial. Secondly, an architecture
541 * may not have a spare pte bit, which requires a more complicated scheme,
542 * described below.
543 *
544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545 * special mapping (even if there are underlying and valid "struct pages").
546 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 547 *
b379d790
JH
548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551 * mapping will always honor the rule
6aab341e
LT
552 *
553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554 *
7e675137
NP
555 * And for normal mappings this is false.
556 *
557 * This restricts such mappings to be a linear translation from virtual address
558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
559 * as the vma is not a COW mapping; in that case, we know that all ptes are
560 * special (because none can have been COWed).
b379d790 561 *
b379d790 562 *
7e675137 563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
564 *
565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566 * page" backing, however the difference is that _all_ pages with a struct
567 * page (that is, those where pfn_valid is true) are refcounted and considered
568 * normal pages by the VM. The disadvantage is that pages are refcounted
569 * (which can be slower and simply not an option for some PFNMAP users). The
570 * advantage is that we don't have to follow the strict linearity rule of
571 * PFNMAP mappings in order to support COWable mappings.
572 *
ee498ed7 573 */
25b2995a
CH
574struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 pte_t pte)
ee498ed7 576{
22b31eec 577 unsigned long pfn = pte_pfn(pte);
7e675137 578
00b3a331 579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 580 if (likely(!pte_special(pte)))
22b31eec 581 goto check_pfn;
667a0a06
DV
582 if (vma->vm_ops && vma->vm_ops->find_special_page)
583 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
584 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 return NULL;
df6ad698
JG
586 if (is_zero_pfn(pfn))
587 return NULL;
e1fb4a08
DJ
588 if (pte_devmap(pte))
589 return NULL;
590
df6ad698 591 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
592 return NULL;
593 }
594
00b3a331 595 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 596
b379d790
JH
597 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
598 if (vma->vm_flags & VM_MIXEDMAP) {
599 if (!pfn_valid(pfn))
600 return NULL;
601 goto out;
602 } else {
7e675137
NP
603 unsigned long off;
604 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
605 if (pfn == vma->vm_pgoff + off)
606 return NULL;
607 if (!is_cow_mapping(vma->vm_flags))
608 return NULL;
609 }
6aab341e
LT
610 }
611
b38af472
HD
612 if (is_zero_pfn(pfn))
613 return NULL;
00b3a331 614
22b31eec
HD
615check_pfn:
616 if (unlikely(pfn > highest_memmap_pfn)) {
617 print_bad_pte(vma, addr, pte, NULL);
618 return NULL;
619 }
6aab341e
LT
620
621 /*
7e675137 622 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 623 * eg. VDSO mappings can cause them to exist.
6aab341e 624 */
b379d790 625out:
6aab341e 626 return pfn_to_page(pfn);
ee498ed7
HD
627}
628
28093f9f
GS
629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
630struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
631 pmd_t pmd)
632{
633 unsigned long pfn = pmd_pfn(pmd);
634
635 /*
636 * There is no pmd_special() but there may be special pmds, e.g.
637 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 638 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
639 */
640 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
641 if (vma->vm_flags & VM_MIXEDMAP) {
642 if (!pfn_valid(pfn))
643 return NULL;
644 goto out;
645 } else {
646 unsigned long off;
647 off = (addr - vma->vm_start) >> PAGE_SHIFT;
648 if (pfn == vma->vm_pgoff + off)
649 return NULL;
650 if (!is_cow_mapping(vma->vm_flags))
651 return NULL;
652 }
653 }
654
e1fb4a08
DJ
655 if (pmd_devmap(pmd))
656 return NULL;
28093f9f
GS
657 if (is_zero_pfn(pfn))
658 return NULL;
659 if (unlikely(pfn > highest_memmap_pfn))
660 return NULL;
661
662 /*
663 * NOTE! We still have PageReserved() pages in the page tables.
664 * eg. VDSO mappings can cause them to exist.
665 */
666out:
667 return pfn_to_page(pfn);
668}
669#endif
670
1da177e4
LT
671/*
672 * copy one vm_area from one task to the other. Assumes the page tables
673 * already present in the new task to be cleared in the whole range
674 * covered by this vma.
1da177e4
LT
675 */
676
570a335b 677static inline unsigned long
1da177e4 678copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 679 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 680 unsigned long addr, int *rss)
1da177e4 681{
b5810039 682 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
683 pte_t pte = *src_pte;
684 struct page *page;
1da177e4
LT
685
686 /* pte contains position in swap or file, so copy. */
687 if (unlikely(!pte_present(pte))) {
0661a336
KS
688 swp_entry_t entry = pte_to_swp_entry(pte);
689
690 if (likely(!non_swap_entry(entry))) {
691 if (swap_duplicate(entry) < 0)
692 return entry.val;
693
694 /* make sure dst_mm is on swapoff's mmlist. */
695 if (unlikely(list_empty(&dst_mm->mmlist))) {
696 spin_lock(&mmlist_lock);
697 if (list_empty(&dst_mm->mmlist))
698 list_add(&dst_mm->mmlist,
699 &src_mm->mmlist);
700 spin_unlock(&mmlist_lock);
701 }
702 rss[MM_SWAPENTS]++;
703 } else if (is_migration_entry(entry)) {
704 page = migration_entry_to_page(entry);
705
eca56ff9 706 rss[mm_counter(page)]++;
0661a336
KS
707
708 if (is_write_migration_entry(entry) &&
709 is_cow_mapping(vm_flags)) {
710 /*
711 * COW mappings require pages in both
712 * parent and child to be set to read.
713 */
714 make_migration_entry_read(&entry);
715 pte = swp_entry_to_pte(entry);
716 if (pte_swp_soft_dirty(*src_pte))
717 pte = pte_swp_mksoft_dirty(pte);
718 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 719 }
5042db43
JG
720 } else if (is_device_private_entry(entry)) {
721 page = device_private_entry_to_page(entry);
722
723 /*
724 * Update rss count even for unaddressable pages, as
725 * they should treated just like normal pages in this
726 * respect.
727 *
728 * We will likely want to have some new rss counters
729 * for unaddressable pages, at some point. But for now
730 * keep things as they are.
731 */
732 get_page(page);
733 rss[mm_counter(page)]++;
734 page_dup_rmap(page, false);
735
736 /*
737 * We do not preserve soft-dirty information, because so
738 * far, checkpoint/restore is the only feature that
739 * requires that. And checkpoint/restore does not work
740 * when a device driver is involved (you cannot easily
741 * save and restore device driver state).
742 */
743 if (is_write_device_private_entry(entry) &&
744 is_cow_mapping(vm_flags)) {
745 make_device_private_entry_read(&entry);
746 pte = swp_entry_to_pte(entry);
747 set_pte_at(src_mm, addr, src_pte, pte);
748 }
1da177e4 749 }
ae859762 750 goto out_set_pte;
1da177e4
LT
751 }
752
1da177e4
LT
753 /*
754 * If it's a COW mapping, write protect it both
755 * in the parent and the child
756 */
1b2de5d0 757 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 758 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 759 pte = pte_wrprotect(pte);
1da177e4
LT
760 }
761
762 /*
763 * If it's a shared mapping, mark it clean in
764 * the child
765 */
766 if (vm_flags & VM_SHARED)
767 pte = pte_mkclean(pte);
768 pte = pte_mkold(pte);
6aab341e
LT
769
770 page = vm_normal_page(vma, addr, pte);
771 if (page) {
772 get_page(page);
53f9263b 773 page_dup_rmap(page, false);
eca56ff9 774 rss[mm_counter(page)]++;
df6ad698
JG
775 } else if (pte_devmap(pte)) {
776 page = pte_page(pte);
6aab341e 777 }
ae859762
HD
778
779out_set_pte:
780 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 781 return 0;
1da177e4
LT
782}
783
21bda264 784static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
785 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
786 unsigned long addr, unsigned long end)
1da177e4 787{
c36987e2 788 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 789 pte_t *src_pte, *dst_pte;
c74df32c 790 spinlock_t *src_ptl, *dst_ptl;
e040f218 791 int progress = 0;
d559db08 792 int rss[NR_MM_COUNTERS];
570a335b 793 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
794
795again:
d559db08
KH
796 init_rss_vec(rss);
797
c74df32c 798 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
799 if (!dst_pte)
800 return -ENOMEM;
ece0e2b6 801 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 802 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 803 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
804 orig_src_pte = src_pte;
805 orig_dst_pte = dst_pte;
6606c3e0 806 arch_enter_lazy_mmu_mode();
1da177e4 807
1da177e4
LT
808 do {
809 /*
810 * We are holding two locks at this point - either of them
811 * could generate latencies in another task on another CPU.
812 */
e040f218
HD
813 if (progress >= 32) {
814 progress = 0;
815 if (need_resched() ||
95c354fe 816 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
817 break;
818 }
1da177e4
LT
819 if (pte_none(*src_pte)) {
820 progress++;
821 continue;
822 }
570a335b
HD
823 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
824 vma, addr, rss);
825 if (entry.val)
826 break;
1da177e4
LT
827 progress += 8;
828 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 829
6606c3e0 830 arch_leave_lazy_mmu_mode();
c74df32c 831 spin_unlock(src_ptl);
ece0e2b6 832 pte_unmap(orig_src_pte);
d559db08 833 add_mm_rss_vec(dst_mm, rss);
c36987e2 834 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 835 cond_resched();
570a335b
HD
836
837 if (entry.val) {
838 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
839 return -ENOMEM;
840 progress = 0;
841 }
1da177e4
LT
842 if (addr != end)
843 goto again;
844 return 0;
845}
846
847static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
849 unsigned long addr, unsigned long end)
850{
851 pmd_t *src_pmd, *dst_pmd;
852 unsigned long next;
853
854 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
855 if (!dst_pmd)
856 return -ENOMEM;
857 src_pmd = pmd_offset(src_pud, addr);
858 do {
859 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
860 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
861 || pmd_devmap(*src_pmd)) {
71e3aac0 862 int err;
a00cc7d9 863 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
864 err = copy_huge_pmd(dst_mm, src_mm,
865 dst_pmd, src_pmd, addr, vma);
866 if (err == -ENOMEM)
867 return -ENOMEM;
868 if (!err)
869 continue;
870 /* fall through */
871 }
1da177e4
LT
872 if (pmd_none_or_clear_bad(src_pmd))
873 continue;
874 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
875 vma, addr, next))
876 return -ENOMEM;
877 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
878 return 0;
879}
880
881static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 882 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
883 unsigned long addr, unsigned long end)
884{
885 pud_t *src_pud, *dst_pud;
886 unsigned long next;
887
c2febafc 888 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
889 if (!dst_pud)
890 return -ENOMEM;
c2febafc 891 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
892 do {
893 next = pud_addr_end(addr, end);
a00cc7d9
MW
894 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
895 int err;
896
897 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
898 err = copy_huge_pud(dst_mm, src_mm,
899 dst_pud, src_pud, addr, vma);
900 if (err == -ENOMEM)
901 return -ENOMEM;
902 if (!err)
903 continue;
904 /* fall through */
905 }
1da177e4
LT
906 if (pud_none_or_clear_bad(src_pud))
907 continue;
908 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
909 vma, addr, next))
910 return -ENOMEM;
911 } while (dst_pud++, src_pud++, addr = next, addr != end);
912 return 0;
913}
914
c2febafc
KS
915static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
918{
919 p4d_t *src_p4d, *dst_p4d;
920 unsigned long next;
921
922 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
923 if (!dst_p4d)
924 return -ENOMEM;
925 src_p4d = p4d_offset(src_pgd, addr);
926 do {
927 next = p4d_addr_end(addr, end);
928 if (p4d_none_or_clear_bad(src_p4d))
929 continue;
930 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
931 vma, addr, next))
932 return -ENOMEM;
933 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
934 return 0;
935}
936
1da177e4
LT
937int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938 struct vm_area_struct *vma)
939{
940 pgd_t *src_pgd, *dst_pgd;
941 unsigned long next;
942 unsigned long addr = vma->vm_start;
943 unsigned long end = vma->vm_end;
ac46d4f3 944 struct mmu_notifier_range range;
2ec74c3e 945 bool is_cow;
cddb8a5c 946 int ret;
1da177e4 947
d992895b
NP
948 /*
949 * Don't copy ptes where a page fault will fill them correctly.
950 * Fork becomes much lighter when there are big shared or private
951 * readonly mappings. The tradeoff is that copy_page_range is more
952 * efficient than faulting.
953 */
0661a336
KS
954 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
955 !vma->anon_vma)
956 return 0;
d992895b 957
1da177e4
LT
958 if (is_vm_hugetlb_page(vma))
959 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
960
b3b9c293 961 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 962 /*
963 * We do not free on error cases below as remove_vma
964 * gets called on error from higher level routine
965 */
5180da41 966 ret = track_pfn_copy(vma);
2ab64037 967 if (ret)
968 return ret;
969 }
970
cddb8a5c
AA
971 /*
972 * We need to invalidate the secondary MMU mappings only when
973 * there could be a permission downgrade on the ptes of the
974 * parent mm. And a permission downgrade will only happen if
975 * is_cow_mapping() returns true.
976 */
2ec74c3e 977 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
978
979 if (is_cow) {
7269f999
JG
980 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
981 0, vma, src_mm, addr, end);
ac46d4f3
JG
982 mmu_notifier_invalidate_range_start(&range);
983 }
cddb8a5c
AA
984
985 ret = 0;
1da177e4
LT
986 dst_pgd = pgd_offset(dst_mm, addr);
987 src_pgd = pgd_offset(src_mm, addr);
988 do {
989 next = pgd_addr_end(addr, end);
990 if (pgd_none_or_clear_bad(src_pgd))
991 continue;
c2febafc 992 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
993 vma, addr, next))) {
994 ret = -ENOMEM;
995 break;
996 }
1da177e4 997 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 998
2ec74c3e 999 if (is_cow)
ac46d4f3 1000 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1001 return ret;
1da177e4
LT
1002}
1003
51c6f666 1004static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1005 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1006 unsigned long addr, unsigned long end,
97a89413 1007 struct zap_details *details)
1da177e4 1008{
b5810039 1009 struct mm_struct *mm = tlb->mm;
d16dfc55 1010 int force_flush = 0;
d559db08 1011 int rss[NR_MM_COUNTERS];
97a89413 1012 spinlock_t *ptl;
5f1a1907 1013 pte_t *start_pte;
97a89413 1014 pte_t *pte;
8a5f14a2 1015 swp_entry_t entry;
d559db08 1016
ed6a7935 1017 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1018again:
e303297e 1019 init_rss_vec(rss);
5f1a1907
SR
1020 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021 pte = start_pte;
3ea27719 1022 flush_tlb_batched_pending(mm);
6606c3e0 1023 arch_enter_lazy_mmu_mode();
1da177e4
LT
1024 do {
1025 pte_t ptent = *pte;
166f61b9 1026 if (pte_none(ptent))
1da177e4 1027 continue;
6f5e6b9e 1028
1da177e4 1029 if (pte_present(ptent)) {
ee498ed7 1030 struct page *page;
51c6f666 1031
25b2995a 1032 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1033 if (unlikely(details) && page) {
1034 /*
1035 * unmap_shared_mapping_pages() wants to
1036 * invalidate cache without truncating:
1037 * unmap shared but keep private pages.
1038 */
1039 if (details->check_mapping &&
800d8c63 1040 details->check_mapping != page_rmapping(page))
1da177e4 1041 continue;
1da177e4 1042 }
b5810039 1043 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1044 tlb->fullmm);
1da177e4
LT
1045 tlb_remove_tlb_entry(tlb, pte, addr);
1046 if (unlikely(!page))
1047 continue;
eca56ff9
JM
1048
1049 if (!PageAnon(page)) {
1cf35d47
LT
1050 if (pte_dirty(ptent)) {
1051 force_flush = 1;
6237bcd9 1052 set_page_dirty(page);
1cf35d47 1053 }
4917e5d0 1054 if (pte_young(ptent) &&
64363aad 1055 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1056 mark_page_accessed(page);
6237bcd9 1057 }
eca56ff9 1058 rss[mm_counter(page)]--;
d281ee61 1059 page_remove_rmap(page, false);
3dc14741
HD
1060 if (unlikely(page_mapcount(page) < 0))
1061 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1062 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1063 force_flush = 1;
ce9ec37b 1064 addr += PAGE_SIZE;
d16dfc55 1065 break;
1cf35d47 1066 }
1da177e4
LT
1067 continue;
1068 }
5042db43
JG
1069
1070 entry = pte_to_swp_entry(ptent);
1071 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1072 struct page *page = device_private_entry_to_page(entry);
1073
1074 if (unlikely(details && details->check_mapping)) {
1075 /*
1076 * unmap_shared_mapping_pages() wants to
1077 * invalidate cache without truncating:
1078 * unmap shared but keep private pages.
1079 */
1080 if (details->check_mapping !=
1081 page_rmapping(page))
1082 continue;
1083 }
1084
1085 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1086 rss[mm_counter(page)]--;
1087 page_remove_rmap(page, false);
1088 put_page(page);
1089 continue;
1090 }
1091
3e8715fd
KS
1092 /* If details->check_mapping, we leave swap entries. */
1093 if (unlikely(details))
1da177e4 1094 continue;
b084d435 1095
8a5f14a2
KS
1096 if (!non_swap_entry(entry))
1097 rss[MM_SWAPENTS]--;
1098 else if (is_migration_entry(entry)) {
1099 struct page *page;
9f9f1acd 1100
8a5f14a2 1101 page = migration_entry_to_page(entry);
eca56ff9 1102 rss[mm_counter(page)]--;
b084d435 1103 }
8a5f14a2
KS
1104 if (unlikely(!free_swap_and_cache(entry)))
1105 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1106 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1107 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1108
d559db08 1109 add_mm_rss_vec(mm, rss);
6606c3e0 1110 arch_leave_lazy_mmu_mode();
51c6f666 1111
1cf35d47 1112 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1113 if (force_flush)
1cf35d47 1114 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1115 pte_unmap_unlock(start_pte, ptl);
1116
1117 /*
1118 * If we forced a TLB flush (either due to running out of
1119 * batch buffers or because we needed to flush dirty TLB
1120 * entries before releasing the ptl), free the batched
1121 * memory too. Restart if we didn't do everything.
1122 */
1123 if (force_flush) {
1124 force_flush = 0;
fa0aafb8 1125 tlb_flush_mmu(tlb);
2b047252 1126 if (addr != end)
d16dfc55
PZ
1127 goto again;
1128 }
1129
51c6f666 1130 return addr;
1da177e4
LT
1131}
1132
51c6f666 1133static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1134 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1135 unsigned long addr, unsigned long end,
97a89413 1136 struct zap_details *details)
1da177e4
LT
1137{
1138 pmd_t *pmd;
1139 unsigned long next;
1140
1141 pmd = pmd_offset(pud, addr);
1142 do {
1143 next = pmd_addr_end(addr, end);
84c3fc4e 1144 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1145 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1146 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1147 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1148 goto next;
71e3aac0
AA
1149 /* fall through */
1150 }
1a5a9906
AA
1151 /*
1152 * Here there can be other concurrent MADV_DONTNEED or
1153 * trans huge page faults running, and if the pmd is
1154 * none or trans huge it can change under us. This is
1155 * because MADV_DONTNEED holds the mmap_sem in read
1156 * mode.
1157 */
1158 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1159 goto next;
97a89413 1160 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1161next:
97a89413
PZ
1162 cond_resched();
1163 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1164
1165 return addr;
1da177e4
LT
1166}
1167
51c6f666 1168static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1169 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1170 unsigned long addr, unsigned long end,
97a89413 1171 struct zap_details *details)
1da177e4
LT
1172{
1173 pud_t *pud;
1174 unsigned long next;
1175
c2febafc 1176 pud = pud_offset(p4d, addr);
1da177e4
LT
1177 do {
1178 next = pud_addr_end(addr, end);
a00cc7d9
MW
1179 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1180 if (next - addr != HPAGE_PUD_SIZE) {
1181 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1182 split_huge_pud(vma, pud, addr);
1183 } else if (zap_huge_pud(tlb, vma, pud, addr))
1184 goto next;
1185 /* fall through */
1186 }
97a89413 1187 if (pud_none_or_clear_bad(pud))
1da177e4 1188 continue;
97a89413 1189 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1190next:
1191 cond_resched();
97a89413 1192 } while (pud++, addr = next, addr != end);
51c6f666
RH
1193
1194 return addr;
1da177e4
LT
1195}
1196
c2febafc
KS
1197static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1198 struct vm_area_struct *vma, pgd_t *pgd,
1199 unsigned long addr, unsigned long end,
1200 struct zap_details *details)
1201{
1202 p4d_t *p4d;
1203 unsigned long next;
1204
1205 p4d = p4d_offset(pgd, addr);
1206 do {
1207 next = p4d_addr_end(addr, end);
1208 if (p4d_none_or_clear_bad(p4d))
1209 continue;
1210 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1211 } while (p4d++, addr = next, addr != end);
1212
1213 return addr;
1214}
1215
aac45363 1216void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1217 struct vm_area_struct *vma,
1218 unsigned long addr, unsigned long end,
1219 struct zap_details *details)
1da177e4
LT
1220{
1221 pgd_t *pgd;
1222 unsigned long next;
1223
1da177e4
LT
1224 BUG_ON(addr >= end);
1225 tlb_start_vma(tlb, vma);
1226 pgd = pgd_offset(vma->vm_mm, addr);
1227 do {
1228 next = pgd_addr_end(addr, end);
97a89413 1229 if (pgd_none_or_clear_bad(pgd))
1da177e4 1230 continue;
c2febafc 1231 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1232 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1233 tlb_end_vma(tlb, vma);
1234}
51c6f666 1235
f5cc4eef
AV
1236
1237static void unmap_single_vma(struct mmu_gather *tlb,
1238 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1239 unsigned long end_addr,
f5cc4eef
AV
1240 struct zap_details *details)
1241{
1242 unsigned long start = max(vma->vm_start, start_addr);
1243 unsigned long end;
1244
1245 if (start >= vma->vm_end)
1246 return;
1247 end = min(vma->vm_end, end_addr);
1248 if (end <= vma->vm_start)
1249 return;
1250
cbc91f71
SD
1251 if (vma->vm_file)
1252 uprobe_munmap(vma, start, end);
1253
b3b9c293 1254 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1255 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1256
1257 if (start != end) {
1258 if (unlikely(is_vm_hugetlb_page(vma))) {
1259 /*
1260 * It is undesirable to test vma->vm_file as it
1261 * should be non-null for valid hugetlb area.
1262 * However, vm_file will be NULL in the error
7aa6b4ad 1263 * cleanup path of mmap_region. When
f5cc4eef 1264 * hugetlbfs ->mmap method fails,
7aa6b4ad 1265 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1266 * before calling this function to clean up.
1267 * Since no pte has actually been setup, it is
1268 * safe to do nothing in this case.
1269 */
24669e58 1270 if (vma->vm_file) {
83cde9e8 1271 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1272 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1273 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1274 }
f5cc4eef
AV
1275 } else
1276 unmap_page_range(tlb, vma, start, end, details);
1277 }
1da177e4
LT
1278}
1279
1da177e4
LT
1280/**
1281 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1282 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1283 * @vma: the starting vma
1284 * @start_addr: virtual address at which to start unmapping
1285 * @end_addr: virtual address at which to end unmapping
1da177e4 1286 *
508034a3 1287 * Unmap all pages in the vma list.
1da177e4 1288 *
1da177e4
LT
1289 * Only addresses between `start' and `end' will be unmapped.
1290 *
1291 * The VMA list must be sorted in ascending virtual address order.
1292 *
1293 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1294 * range after unmap_vmas() returns. So the only responsibility here is to
1295 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1296 * drops the lock and schedules.
1297 */
6e8bb019 1298void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1299 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1300 unsigned long end_addr)
1da177e4 1301{
ac46d4f3 1302 struct mmu_notifier_range range;
1da177e4 1303
6f4f13e8
JG
1304 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1305 start_addr, end_addr);
ac46d4f3 1306 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1307 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1308 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1309 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1310}
1311
1312/**
1313 * zap_page_range - remove user pages in a given range
1314 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1315 * @start: starting address of pages to zap
1da177e4 1316 * @size: number of bytes to zap
f5cc4eef
AV
1317 *
1318 * Caller must protect the VMA list
1da177e4 1319 */
7e027b14 1320void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1321 unsigned long size)
1da177e4 1322{
ac46d4f3 1323 struct mmu_notifier_range range;
d16dfc55 1324 struct mmu_gather tlb;
1da177e4 1325
1da177e4 1326 lru_add_drain();
7269f999 1327 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1328 start, start + size);
ac46d4f3
JG
1329 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1330 update_hiwater_rss(vma->vm_mm);
1331 mmu_notifier_invalidate_range_start(&range);
1332 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1333 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1334 mmu_notifier_invalidate_range_end(&range);
1335 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1336}
1337
f5cc4eef
AV
1338/**
1339 * zap_page_range_single - remove user pages in a given range
1340 * @vma: vm_area_struct holding the applicable pages
1341 * @address: starting address of pages to zap
1342 * @size: number of bytes to zap
8a5f14a2 1343 * @details: details of shared cache invalidation
f5cc4eef
AV
1344 *
1345 * The range must fit into one VMA.
1da177e4 1346 */
f5cc4eef 1347static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1348 unsigned long size, struct zap_details *details)
1349{
ac46d4f3 1350 struct mmu_notifier_range range;
d16dfc55 1351 struct mmu_gather tlb;
1da177e4 1352
1da177e4 1353 lru_add_drain();
7269f999 1354 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1355 address, address + size);
ac46d4f3
JG
1356 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1357 update_hiwater_rss(vma->vm_mm);
1358 mmu_notifier_invalidate_range_start(&range);
1359 unmap_single_vma(&tlb, vma, address, range.end, details);
1360 mmu_notifier_invalidate_range_end(&range);
1361 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1362}
1363
c627f9cc
JS
1364/**
1365 * zap_vma_ptes - remove ptes mapping the vma
1366 * @vma: vm_area_struct holding ptes to be zapped
1367 * @address: starting address of pages to zap
1368 * @size: number of bytes to zap
1369 *
1370 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1371 *
1372 * The entire address range must be fully contained within the vma.
1373 *
c627f9cc 1374 */
27d036e3 1375void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1376 unsigned long size)
1377{
1378 if (address < vma->vm_start || address + size > vma->vm_end ||
1379 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1380 return;
1381
f5cc4eef 1382 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1383}
1384EXPORT_SYMBOL_GPL(zap_vma_ptes);
1385
25ca1d6c 1386pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1387 spinlock_t **ptl)
c9cfcddf 1388{
c2febafc
KS
1389 pgd_t *pgd;
1390 p4d_t *p4d;
1391 pud_t *pud;
1392 pmd_t *pmd;
1393
1394 pgd = pgd_offset(mm, addr);
1395 p4d = p4d_alloc(mm, pgd, addr);
1396 if (!p4d)
1397 return NULL;
1398 pud = pud_alloc(mm, p4d, addr);
1399 if (!pud)
1400 return NULL;
1401 pmd = pmd_alloc(mm, pud, addr);
1402 if (!pmd)
1403 return NULL;
1404
1405 VM_BUG_ON(pmd_trans_huge(*pmd));
1406 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1407}
1408
238f58d8
LT
1409/*
1410 * This is the old fallback for page remapping.
1411 *
1412 * For historical reasons, it only allows reserved pages. Only
1413 * old drivers should use this, and they needed to mark their
1414 * pages reserved for the old functions anyway.
1415 */
423bad60
NP
1416static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1417 struct page *page, pgprot_t prot)
238f58d8 1418{
423bad60 1419 struct mm_struct *mm = vma->vm_mm;
238f58d8 1420 int retval;
c9cfcddf 1421 pte_t *pte;
8a9f3ccd
BS
1422 spinlock_t *ptl;
1423
238f58d8 1424 retval = -EINVAL;
0ee930e6 1425 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
5b4e655e 1426 goto out;
238f58d8
LT
1427 retval = -ENOMEM;
1428 flush_dcache_page(page);
c9cfcddf 1429 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1430 if (!pte)
5b4e655e 1431 goto out;
238f58d8
LT
1432 retval = -EBUSY;
1433 if (!pte_none(*pte))
1434 goto out_unlock;
1435
1436 /* Ok, finally just insert the thing.. */
1437 get_page(page);
eca56ff9 1438 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1439 page_add_file_rmap(page, false);
238f58d8
LT
1440 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1441
1442 retval = 0;
1443out_unlock:
1444 pte_unmap_unlock(pte, ptl);
1445out:
1446 return retval;
1447}
1448
bfa5bf6d
REB
1449/**
1450 * vm_insert_page - insert single page into user vma
1451 * @vma: user vma to map to
1452 * @addr: target user address of this page
1453 * @page: source kernel page
1454 *
a145dd41
LT
1455 * This allows drivers to insert individual pages they've allocated
1456 * into a user vma.
1457 *
1458 * The page has to be a nice clean _individual_ kernel allocation.
1459 * If you allocate a compound page, you need to have marked it as
1460 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1461 * (see split_page()).
a145dd41
LT
1462 *
1463 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1464 * took an arbitrary page protection parameter. This doesn't allow
1465 * that. Your vma protection will have to be set up correctly, which
1466 * means that if you want a shared writable mapping, you'd better
1467 * ask for a shared writable mapping!
1468 *
1469 * The page does not need to be reserved.
4b6e1e37
KK
1470 *
1471 * Usually this function is called from f_op->mmap() handler
1472 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1473 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1474 * function from other places, for example from page-fault handler.
a862f68a
MR
1475 *
1476 * Return: %0 on success, negative error code otherwise.
a145dd41 1477 */
423bad60
NP
1478int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1479 struct page *page)
a145dd41
LT
1480{
1481 if (addr < vma->vm_start || addr >= vma->vm_end)
1482 return -EFAULT;
1483 if (!page_count(page))
1484 return -EINVAL;
4b6e1e37
KK
1485 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1486 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1487 BUG_ON(vma->vm_flags & VM_PFNMAP);
1488 vma->vm_flags |= VM_MIXEDMAP;
1489 }
423bad60 1490 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1491}
e3c3374f 1492EXPORT_SYMBOL(vm_insert_page);
a145dd41 1493
a667d745
SJ
1494/*
1495 * __vm_map_pages - maps range of kernel pages into user vma
1496 * @vma: user vma to map to
1497 * @pages: pointer to array of source kernel pages
1498 * @num: number of pages in page array
1499 * @offset: user's requested vm_pgoff
1500 *
1501 * This allows drivers to map range of kernel pages into a user vma.
1502 *
1503 * Return: 0 on success and error code otherwise.
1504 */
1505static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1506 unsigned long num, unsigned long offset)
1507{
1508 unsigned long count = vma_pages(vma);
1509 unsigned long uaddr = vma->vm_start;
1510 int ret, i;
1511
1512 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1513 if (offset >= num)
a667d745
SJ
1514 return -ENXIO;
1515
1516 /* Fail if the user requested size exceeds available object size */
1517 if (count > num - offset)
1518 return -ENXIO;
1519
1520 for (i = 0; i < count; i++) {
1521 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1522 if (ret < 0)
1523 return ret;
1524 uaddr += PAGE_SIZE;
1525 }
1526
1527 return 0;
1528}
1529
1530/**
1531 * vm_map_pages - maps range of kernel pages starts with non zero offset
1532 * @vma: user vma to map to
1533 * @pages: pointer to array of source kernel pages
1534 * @num: number of pages in page array
1535 *
1536 * Maps an object consisting of @num pages, catering for the user's
1537 * requested vm_pgoff
1538 *
1539 * If we fail to insert any page into the vma, the function will return
1540 * immediately leaving any previously inserted pages present. Callers
1541 * from the mmap handler may immediately return the error as their caller
1542 * will destroy the vma, removing any successfully inserted pages. Other
1543 * callers should make their own arrangements for calling unmap_region().
1544 *
1545 * Context: Process context. Called by mmap handlers.
1546 * Return: 0 on success and error code otherwise.
1547 */
1548int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1549 unsigned long num)
1550{
1551 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1552}
1553EXPORT_SYMBOL(vm_map_pages);
1554
1555/**
1556 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1557 * @vma: user vma to map to
1558 * @pages: pointer to array of source kernel pages
1559 * @num: number of pages in page array
1560 *
1561 * Similar to vm_map_pages(), except that it explicitly sets the offset
1562 * to 0. This function is intended for the drivers that did not consider
1563 * vm_pgoff.
1564 *
1565 * Context: Process context. Called by mmap handlers.
1566 * Return: 0 on success and error code otherwise.
1567 */
1568int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1569 unsigned long num)
1570{
1571 return __vm_map_pages(vma, pages, num, 0);
1572}
1573EXPORT_SYMBOL(vm_map_pages_zero);
1574
9b5a8e00 1575static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1576 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1577{
1578 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1579 pte_t *pte, entry;
1580 spinlock_t *ptl;
1581
423bad60
NP
1582 pte = get_locked_pte(mm, addr, &ptl);
1583 if (!pte)
9b5a8e00 1584 return VM_FAULT_OOM;
b2770da6
RZ
1585 if (!pte_none(*pte)) {
1586 if (mkwrite) {
1587 /*
1588 * For read faults on private mappings the PFN passed
1589 * in may not match the PFN we have mapped if the
1590 * mapped PFN is a writeable COW page. In the mkwrite
1591 * case we are creating a writable PTE for a shared
f2c57d91
JK
1592 * mapping and we expect the PFNs to match. If they
1593 * don't match, we are likely racing with block
1594 * allocation and mapping invalidation so just skip the
1595 * update.
b2770da6 1596 */
f2c57d91
JK
1597 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1598 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1599 goto out_unlock;
f2c57d91 1600 }
cae85cb8
JK
1601 entry = pte_mkyoung(*pte);
1602 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1603 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1604 update_mmu_cache(vma, addr, pte);
1605 }
1606 goto out_unlock;
b2770da6 1607 }
423bad60
NP
1608
1609 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1610 if (pfn_t_devmap(pfn))
1611 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1612 else
1613 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1614
b2770da6
RZ
1615 if (mkwrite) {
1616 entry = pte_mkyoung(entry);
1617 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1618 }
1619
423bad60 1620 set_pte_at(mm, addr, pte, entry);
4b3073e1 1621 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1622
423bad60
NP
1623out_unlock:
1624 pte_unmap_unlock(pte, ptl);
9b5a8e00 1625 return VM_FAULT_NOPAGE;
423bad60
NP
1626}
1627
f5e6d1d5
MW
1628/**
1629 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1630 * @vma: user vma to map to
1631 * @addr: target user address of this page
1632 * @pfn: source kernel pfn
1633 * @pgprot: pgprot flags for the inserted page
1634 *
1635 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1636 * to override pgprot on a per-page basis.
1637 *
1638 * This only makes sense for IO mappings, and it makes no sense for
1639 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1640 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1641 * impractical.
1642 *
ae2b01f3 1643 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1644 * Return: vm_fault_t value.
1645 */
1646vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1647 unsigned long pfn, pgprot_t pgprot)
1648{
6d958546
MW
1649 /*
1650 * Technically, architectures with pte_special can avoid all these
1651 * restrictions (same for remap_pfn_range). However we would like
1652 * consistency in testing and feature parity among all, so we should
1653 * try to keep these invariants in place for everybody.
1654 */
1655 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1656 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1657 (VM_PFNMAP|VM_MIXEDMAP));
1658 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1659 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1660
1661 if (addr < vma->vm_start || addr >= vma->vm_end)
1662 return VM_FAULT_SIGBUS;
1663
1664 if (!pfn_modify_allowed(pfn, pgprot))
1665 return VM_FAULT_SIGBUS;
1666
1667 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1668
9b5a8e00 1669 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1670 false);
f5e6d1d5
MW
1671}
1672EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1673
ae2b01f3
MW
1674/**
1675 * vmf_insert_pfn - insert single pfn into user vma
1676 * @vma: user vma to map to
1677 * @addr: target user address of this page
1678 * @pfn: source kernel pfn
1679 *
1680 * Similar to vm_insert_page, this allows drivers to insert individual pages
1681 * they've allocated into a user vma. Same comments apply.
1682 *
1683 * This function should only be called from a vm_ops->fault handler, and
1684 * in that case the handler should return the result of this function.
1685 *
1686 * vma cannot be a COW mapping.
1687 *
1688 * As this is called only for pages that do not currently exist, we
1689 * do not need to flush old virtual caches or the TLB.
1690 *
1691 * Context: Process context. May allocate using %GFP_KERNEL.
1692 * Return: vm_fault_t value.
1693 */
1694vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1695 unsigned long pfn)
1696{
1697 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1698}
1699EXPORT_SYMBOL(vmf_insert_pfn);
1700
785a3fab
DW
1701static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1702{
1703 /* these checks mirror the abort conditions in vm_normal_page */
1704 if (vma->vm_flags & VM_MIXEDMAP)
1705 return true;
1706 if (pfn_t_devmap(pfn))
1707 return true;
1708 if (pfn_t_special(pfn))
1709 return true;
1710 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1711 return true;
1712 return false;
1713}
1714
79f3aa5b
MW
1715static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1716 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 1717{
87744ab3 1718 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 1719 int err;
87744ab3 1720
785a3fab 1721 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1722
423bad60 1723 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1724 return VM_FAULT_SIGBUS;
308a047c
BP
1725
1726 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1727
42e4089c 1728 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1729 return VM_FAULT_SIGBUS;
42e4089c 1730
423bad60
NP
1731 /*
1732 * If we don't have pte special, then we have to use the pfn_valid()
1733 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1734 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1735 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1736 * without pte special, it would there be refcounted as a normal page.
423bad60 1737 */
00b3a331
LD
1738 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1739 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1740 struct page *page;
1741
03fc2da6
DW
1742 /*
1743 * At this point we are committed to insert_page()
1744 * regardless of whether the caller specified flags that
1745 * result in pfn_t_has_page() == false.
1746 */
1747 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1748 err = insert_page(vma, addr, page, pgprot);
1749 } else {
9b5a8e00 1750 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1751 }
b2770da6 1752
5d747637
MW
1753 if (err == -ENOMEM)
1754 return VM_FAULT_OOM;
1755 if (err < 0 && err != -EBUSY)
1756 return VM_FAULT_SIGBUS;
1757
1758 return VM_FAULT_NOPAGE;
e0dc0d8f 1759}
79f3aa5b
MW
1760
1761vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1762 pfn_t pfn)
1763{
1764 return __vm_insert_mixed(vma, addr, pfn, false);
1765}
5d747637 1766EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1767
ab77dab4
SJ
1768/*
1769 * If the insertion of PTE failed because someone else already added a
1770 * different entry in the mean time, we treat that as success as we assume
1771 * the same entry was actually inserted.
1772 */
ab77dab4
SJ
1773vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1774 unsigned long addr, pfn_t pfn)
b2770da6 1775{
79f3aa5b 1776 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 1777}
ab77dab4 1778EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1779
1da177e4
LT
1780/*
1781 * maps a range of physical memory into the requested pages. the old
1782 * mappings are removed. any references to nonexistent pages results
1783 * in null mappings (currently treated as "copy-on-access")
1784 */
1785static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1786 unsigned long addr, unsigned long end,
1787 unsigned long pfn, pgprot_t prot)
1788{
1789 pte_t *pte;
c74df32c 1790 spinlock_t *ptl;
42e4089c 1791 int err = 0;
1da177e4 1792
c74df32c 1793 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1794 if (!pte)
1795 return -ENOMEM;
6606c3e0 1796 arch_enter_lazy_mmu_mode();
1da177e4
LT
1797 do {
1798 BUG_ON(!pte_none(*pte));
42e4089c
AK
1799 if (!pfn_modify_allowed(pfn, prot)) {
1800 err = -EACCES;
1801 break;
1802 }
7e675137 1803 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1804 pfn++;
1805 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1806 arch_leave_lazy_mmu_mode();
c74df32c 1807 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1808 return err;
1da177e4
LT
1809}
1810
1811static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1812 unsigned long addr, unsigned long end,
1813 unsigned long pfn, pgprot_t prot)
1814{
1815 pmd_t *pmd;
1816 unsigned long next;
42e4089c 1817 int err;
1da177e4
LT
1818
1819 pfn -= addr >> PAGE_SHIFT;
1820 pmd = pmd_alloc(mm, pud, addr);
1821 if (!pmd)
1822 return -ENOMEM;
f66055ab 1823 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1824 do {
1825 next = pmd_addr_end(addr, end);
42e4089c
AK
1826 err = remap_pte_range(mm, pmd, addr, next,
1827 pfn + (addr >> PAGE_SHIFT), prot);
1828 if (err)
1829 return err;
1da177e4
LT
1830 } while (pmd++, addr = next, addr != end);
1831 return 0;
1832}
1833
c2febafc 1834static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1835 unsigned long addr, unsigned long end,
1836 unsigned long pfn, pgprot_t prot)
1837{
1838 pud_t *pud;
1839 unsigned long next;
42e4089c 1840 int err;
1da177e4
LT
1841
1842 pfn -= addr >> PAGE_SHIFT;
c2febafc 1843 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1844 if (!pud)
1845 return -ENOMEM;
1846 do {
1847 next = pud_addr_end(addr, end);
42e4089c
AK
1848 err = remap_pmd_range(mm, pud, addr, next,
1849 pfn + (addr >> PAGE_SHIFT), prot);
1850 if (err)
1851 return err;
1da177e4
LT
1852 } while (pud++, addr = next, addr != end);
1853 return 0;
1854}
1855
c2febafc
KS
1856static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1857 unsigned long addr, unsigned long end,
1858 unsigned long pfn, pgprot_t prot)
1859{
1860 p4d_t *p4d;
1861 unsigned long next;
42e4089c 1862 int err;
c2febafc
KS
1863
1864 pfn -= addr >> PAGE_SHIFT;
1865 p4d = p4d_alloc(mm, pgd, addr);
1866 if (!p4d)
1867 return -ENOMEM;
1868 do {
1869 next = p4d_addr_end(addr, end);
42e4089c
AK
1870 err = remap_pud_range(mm, p4d, addr, next,
1871 pfn + (addr >> PAGE_SHIFT), prot);
1872 if (err)
1873 return err;
c2febafc
KS
1874 } while (p4d++, addr = next, addr != end);
1875 return 0;
1876}
1877
bfa5bf6d
REB
1878/**
1879 * remap_pfn_range - remap kernel memory to userspace
1880 * @vma: user vma to map to
1881 * @addr: target user address to start at
1882 * @pfn: physical address of kernel memory
1883 * @size: size of map area
1884 * @prot: page protection flags for this mapping
1885 *
a862f68a
MR
1886 * Note: this is only safe if the mm semaphore is held when called.
1887 *
1888 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 1889 */
1da177e4
LT
1890int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1891 unsigned long pfn, unsigned long size, pgprot_t prot)
1892{
1893 pgd_t *pgd;
1894 unsigned long next;
2d15cab8 1895 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1896 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1897 unsigned long remap_pfn = pfn;
1da177e4
LT
1898 int err;
1899
1900 /*
1901 * Physically remapped pages are special. Tell the
1902 * rest of the world about it:
1903 * VM_IO tells people not to look at these pages
1904 * (accesses can have side effects).
6aab341e
LT
1905 * VM_PFNMAP tells the core MM that the base pages are just
1906 * raw PFN mappings, and do not have a "struct page" associated
1907 * with them.
314e51b9
KK
1908 * VM_DONTEXPAND
1909 * Disable vma merging and expanding with mremap().
1910 * VM_DONTDUMP
1911 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1912 *
1913 * There's a horrible special case to handle copy-on-write
1914 * behaviour that some programs depend on. We mark the "original"
1915 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1916 * See vm_normal_page() for details.
1da177e4 1917 */
b3b9c293
KK
1918 if (is_cow_mapping(vma->vm_flags)) {
1919 if (addr != vma->vm_start || end != vma->vm_end)
1920 return -EINVAL;
fb155c16 1921 vma->vm_pgoff = pfn;
b3b9c293
KK
1922 }
1923
d5957d2f 1924 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1925 if (err)
3c8bb73a 1926 return -EINVAL;
fb155c16 1927
314e51b9 1928 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1929
1930 BUG_ON(addr >= end);
1931 pfn -= addr >> PAGE_SHIFT;
1932 pgd = pgd_offset(mm, addr);
1933 flush_cache_range(vma, addr, end);
1da177e4
LT
1934 do {
1935 next = pgd_addr_end(addr, end);
c2febafc 1936 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1937 pfn + (addr >> PAGE_SHIFT), prot);
1938 if (err)
1939 break;
1940 } while (pgd++, addr = next, addr != end);
2ab64037 1941
1942 if (err)
d5957d2f 1943 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1944
1da177e4
LT
1945 return err;
1946}
1947EXPORT_SYMBOL(remap_pfn_range);
1948
b4cbb197
LT
1949/**
1950 * vm_iomap_memory - remap memory to userspace
1951 * @vma: user vma to map to
1952 * @start: start of area
1953 * @len: size of area
1954 *
1955 * This is a simplified io_remap_pfn_range() for common driver use. The
1956 * driver just needs to give us the physical memory range to be mapped,
1957 * we'll figure out the rest from the vma information.
1958 *
1959 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1960 * whatever write-combining details or similar.
a862f68a
MR
1961 *
1962 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
1963 */
1964int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1965{
1966 unsigned long vm_len, pfn, pages;
1967
1968 /* Check that the physical memory area passed in looks valid */
1969 if (start + len < start)
1970 return -EINVAL;
1971 /*
1972 * You *really* shouldn't map things that aren't page-aligned,
1973 * but we've historically allowed it because IO memory might
1974 * just have smaller alignment.
1975 */
1976 len += start & ~PAGE_MASK;
1977 pfn = start >> PAGE_SHIFT;
1978 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1979 if (pfn + pages < pfn)
1980 return -EINVAL;
1981
1982 /* We start the mapping 'vm_pgoff' pages into the area */
1983 if (vma->vm_pgoff > pages)
1984 return -EINVAL;
1985 pfn += vma->vm_pgoff;
1986 pages -= vma->vm_pgoff;
1987
1988 /* Can we fit all of the mapping? */
1989 vm_len = vma->vm_end - vma->vm_start;
1990 if (vm_len >> PAGE_SHIFT > pages)
1991 return -EINVAL;
1992
1993 /* Ok, let it rip */
1994 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1995}
1996EXPORT_SYMBOL(vm_iomap_memory);
1997
aee16b3c
JF
1998static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1999 unsigned long addr, unsigned long end,
2000 pte_fn_t fn, void *data)
2001{
2002 pte_t *pte;
2003 int err;
94909914 2004 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2005
2006 pte = (mm == &init_mm) ?
2007 pte_alloc_kernel(pmd, addr) :
2008 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2009 if (!pte)
2010 return -ENOMEM;
2011
2012 BUG_ON(pmd_huge(*pmd));
2013
38e0edb1
JF
2014 arch_enter_lazy_mmu_mode();
2015
aee16b3c 2016 do {
8b1e0f81 2017 err = fn(pte++, addr, data);
aee16b3c
JF
2018 if (err)
2019 break;
c36987e2 2020 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2021
38e0edb1
JF
2022 arch_leave_lazy_mmu_mode();
2023
aee16b3c
JF
2024 if (mm != &init_mm)
2025 pte_unmap_unlock(pte-1, ptl);
2026 return err;
2027}
2028
2029static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2030 unsigned long addr, unsigned long end,
2031 pte_fn_t fn, void *data)
2032{
2033 pmd_t *pmd;
2034 unsigned long next;
2035 int err;
2036
ceb86879
AK
2037 BUG_ON(pud_huge(*pud));
2038
aee16b3c
JF
2039 pmd = pmd_alloc(mm, pud, addr);
2040 if (!pmd)
2041 return -ENOMEM;
2042 do {
2043 next = pmd_addr_end(addr, end);
2044 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2045 if (err)
2046 break;
2047 } while (pmd++, addr = next, addr != end);
2048 return err;
2049}
2050
c2febafc 2051static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2052 unsigned long addr, unsigned long end,
2053 pte_fn_t fn, void *data)
2054{
2055 pud_t *pud;
2056 unsigned long next;
2057 int err;
2058
c2febafc 2059 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2060 if (!pud)
2061 return -ENOMEM;
2062 do {
2063 next = pud_addr_end(addr, end);
2064 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2065 if (err)
2066 break;
2067 } while (pud++, addr = next, addr != end);
2068 return err;
2069}
2070
c2febafc
KS
2071static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2072 unsigned long addr, unsigned long end,
2073 pte_fn_t fn, void *data)
2074{
2075 p4d_t *p4d;
2076 unsigned long next;
2077 int err;
2078
2079 p4d = p4d_alloc(mm, pgd, addr);
2080 if (!p4d)
2081 return -ENOMEM;
2082 do {
2083 next = p4d_addr_end(addr, end);
2084 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2085 if (err)
2086 break;
2087 } while (p4d++, addr = next, addr != end);
2088 return err;
2089}
2090
aee16b3c
JF
2091/*
2092 * Scan a region of virtual memory, filling in page tables as necessary
2093 * and calling a provided function on each leaf page table.
2094 */
2095int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2096 unsigned long size, pte_fn_t fn, void *data)
2097{
2098 pgd_t *pgd;
2099 unsigned long next;
57250a5b 2100 unsigned long end = addr + size;
aee16b3c
JF
2101 int err;
2102
9cb65bc3
MP
2103 if (WARN_ON(addr >= end))
2104 return -EINVAL;
2105
aee16b3c
JF
2106 pgd = pgd_offset(mm, addr);
2107 do {
2108 next = pgd_addr_end(addr, end);
c2febafc 2109 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2110 if (err)
2111 break;
2112 } while (pgd++, addr = next, addr != end);
57250a5b 2113
aee16b3c
JF
2114 return err;
2115}
2116EXPORT_SYMBOL_GPL(apply_to_page_range);
2117
8f4e2101 2118/*
9b4bdd2f
KS
2119 * handle_pte_fault chooses page fault handler according to an entry which was
2120 * read non-atomically. Before making any commitment, on those architectures
2121 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2122 * parts, do_swap_page must check under lock before unmapping the pte and
2123 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2124 * and do_anonymous_page can safely check later on).
8f4e2101 2125 */
4c21e2f2 2126static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2127 pte_t *page_table, pte_t orig_pte)
2128{
2129 int same = 1;
2130#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2131 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2132 spinlock_t *ptl = pte_lockptr(mm, pmd);
2133 spin_lock(ptl);
8f4e2101 2134 same = pte_same(*page_table, orig_pte);
4c21e2f2 2135 spin_unlock(ptl);
8f4e2101
HD
2136 }
2137#endif
2138 pte_unmap(page_table);
2139 return same;
2140}
2141
9de455b2 2142static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2143{
0abdd7a8
DW
2144 debug_dma_assert_idle(src);
2145
6aab341e
LT
2146 /*
2147 * If the source page was a PFN mapping, we don't have
2148 * a "struct page" for it. We do a best-effort copy by
2149 * just copying from the original user address. If that
2150 * fails, we just zero-fill it. Live with it.
2151 */
2152 if (unlikely(!src)) {
9b04c5fe 2153 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2154 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2155
2156 /*
2157 * This really shouldn't fail, because the page is there
2158 * in the page tables. But it might just be unreadable,
2159 * in which case we just give up and fill the result with
2160 * zeroes.
2161 */
2162 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2163 clear_page(kaddr);
9b04c5fe 2164 kunmap_atomic(kaddr);
c4ec7b0d 2165 flush_dcache_page(dst);
0ed361de
NP
2166 } else
2167 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2168}
2169
c20cd45e
MH
2170static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2171{
2172 struct file *vm_file = vma->vm_file;
2173
2174 if (vm_file)
2175 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2176
2177 /*
2178 * Special mappings (e.g. VDSO) do not have any file so fake
2179 * a default GFP_KERNEL for them.
2180 */
2181 return GFP_KERNEL;
2182}
2183
fb09a464
KS
2184/*
2185 * Notify the address space that the page is about to become writable so that
2186 * it can prohibit this or wait for the page to get into an appropriate state.
2187 *
2188 * We do this without the lock held, so that it can sleep if it needs to.
2189 */
2b740303 2190static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2191{
2b740303 2192 vm_fault_t ret;
38b8cb7f
JK
2193 struct page *page = vmf->page;
2194 unsigned int old_flags = vmf->flags;
fb09a464 2195
38b8cb7f 2196 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2197
dc617f29
DW
2198 if (vmf->vma->vm_file &&
2199 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2200 return VM_FAULT_SIGBUS;
2201
11bac800 2202 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2203 /* Restore original flags so that caller is not surprised */
2204 vmf->flags = old_flags;
fb09a464
KS
2205 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2206 return ret;
2207 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2208 lock_page(page);
2209 if (!page->mapping) {
2210 unlock_page(page);
2211 return 0; /* retry */
2212 }
2213 ret |= VM_FAULT_LOCKED;
2214 } else
2215 VM_BUG_ON_PAGE(!PageLocked(page), page);
2216 return ret;
2217}
2218
97ba0c2b
JK
2219/*
2220 * Handle dirtying of a page in shared file mapping on a write fault.
2221 *
2222 * The function expects the page to be locked and unlocks it.
2223 */
2224static void fault_dirty_shared_page(struct vm_area_struct *vma,
2225 struct page *page)
2226{
2227 struct address_space *mapping;
2228 bool dirtied;
2229 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2230
2231 dirtied = set_page_dirty(page);
2232 VM_BUG_ON_PAGE(PageAnon(page), page);
2233 /*
2234 * Take a local copy of the address_space - page.mapping may be zeroed
2235 * by truncate after unlock_page(). The address_space itself remains
2236 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2237 * release semantics to prevent the compiler from undoing this copying.
2238 */
2239 mapping = page_rmapping(page);
2240 unlock_page(page);
2241
2242 if ((dirtied || page_mkwrite) && mapping) {
2243 /*
2244 * Some device drivers do not set page.mapping
2245 * but still dirty their pages
2246 */
2247 balance_dirty_pages_ratelimited(mapping);
2248 }
2249
2250 if (!page_mkwrite)
2251 file_update_time(vma->vm_file);
2252}
2253
4e047f89
SR
2254/*
2255 * Handle write page faults for pages that can be reused in the current vma
2256 *
2257 * This can happen either due to the mapping being with the VM_SHARED flag,
2258 * or due to us being the last reference standing to the page. In either
2259 * case, all we need to do here is to mark the page as writable and update
2260 * any related book-keeping.
2261 */
997dd98d 2262static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2263 __releases(vmf->ptl)
4e047f89 2264{
82b0f8c3 2265 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2266 struct page *page = vmf->page;
4e047f89
SR
2267 pte_t entry;
2268 /*
2269 * Clear the pages cpupid information as the existing
2270 * information potentially belongs to a now completely
2271 * unrelated process.
2272 */
2273 if (page)
2274 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2275
2994302b
JK
2276 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2277 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2278 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2279 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2280 update_mmu_cache(vma, vmf->address, vmf->pte);
2281 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2282}
2283
2f38ab2c
SR
2284/*
2285 * Handle the case of a page which we actually need to copy to a new page.
2286 *
2287 * Called with mmap_sem locked and the old page referenced, but
2288 * without the ptl held.
2289 *
2290 * High level logic flow:
2291 *
2292 * - Allocate a page, copy the content of the old page to the new one.
2293 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2294 * - Take the PTL. If the pte changed, bail out and release the allocated page
2295 * - If the pte is still the way we remember it, update the page table and all
2296 * relevant references. This includes dropping the reference the page-table
2297 * held to the old page, as well as updating the rmap.
2298 * - In any case, unlock the PTL and drop the reference we took to the old page.
2299 */
2b740303 2300static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2301{
82b0f8c3 2302 struct vm_area_struct *vma = vmf->vma;
bae473a4 2303 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2304 struct page *old_page = vmf->page;
2f38ab2c 2305 struct page *new_page = NULL;
2f38ab2c
SR
2306 pte_t entry;
2307 int page_copied = 0;
2f38ab2c 2308 struct mem_cgroup *memcg;
ac46d4f3 2309 struct mmu_notifier_range range;
2f38ab2c
SR
2310
2311 if (unlikely(anon_vma_prepare(vma)))
2312 goto oom;
2313
2994302b 2314 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2315 new_page = alloc_zeroed_user_highpage_movable(vma,
2316 vmf->address);
2f38ab2c
SR
2317 if (!new_page)
2318 goto oom;
2319 } else {
bae473a4 2320 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2321 vmf->address);
2f38ab2c
SR
2322 if (!new_page)
2323 goto oom;
82b0f8c3 2324 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2325 }
2f38ab2c 2326
2cf85583 2327 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2328 goto oom_free_new;
2329
eb3c24f3
MG
2330 __SetPageUptodate(new_page);
2331
7269f999 2332 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2333 vmf->address & PAGE_MASK,
ac46d4f3
JG
2334 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2335 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2336
2337 /*
2338 * Re-check the pte - we dropped the lock
2339 */
82b0f8c3 2340 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2341 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2342 if (old_page) {
2343 if (!PageAnon(old_page)) {
eca56ff9
JM
2344 dec_mm_counter_fast(mm,
2345 mm_counter_file(old_page));
2f38ab2c
SR
2346 inc_mm_counter_fast(mm, MM_ANONPAGES);
2347 }
2348 } else {
2349 inc_mm_counter_fast(mm, MM_ANONPAGES);
2350 }
2994302b 2351 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2352 entry = mk_pte(new_page, vma->vm_page_prot);
2353 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2354 /*
2355 * Clear the pte entry and flush it first, before updating the
2356 * pte with the new entry. This will avoid a race condition
2357 * seen in the presence of one thread doing SMC and another
2358 * thread doing COW.
2359 */
82b0f8c3
JK
2360 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2361 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2362 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2363 lru_cache_add_active_or_unevictable(new_page, vma);
2364 /*
2365 * We call the notify macro here because, when using secondary
2366 * mmu page tables (such as kvm shadow page tables), we want the
2367 * new page to be mapped directly into the secondary page table.
2368 */
82b0f8c3
JK
2369 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2370 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2371 if (old_page) {
2372 /*
2373 * Only after switching the pte to the new page may
2374 * we remove the mapcount here. Otherwise another
2375 * process may come and find the rmap count decremented
2376 * before the pte is switched to the new page, and
2377 * "reuse" the old page writing into it while our pte
2378 * here still points into it and can be read by other
2379 * threads.
2380 *
2381 * The critical issue is to order this
2382 * page_remove_rmap with the ptp_clear_flush above.
2383 * Those stores are ordered by (if nothing else,)
2384 * the barrier present in the atomic_add_negative
2385 * in page_remove_rmap.
2386 *
2387 * Then the TLB flush in ptep_clear_flush ensures that
2388 * no process can access the old page before the
2389 * decremented mapcount is visible. And the old page
2390 * cannot be reused until after the decremented
2391 * mapcount is visible. So transitively, TLBs to
2392 * old page will be flushed before it can be reused.
2393 */
d281ee61 2394 page_remove_rmap(old_page, false);
2f38ab2c
SR
2395 }
2396
2397 /* Free the old page.. */
2398 new_page = old_page;
2399 page_copied = 1;
2400 } else {
f627c2f5 2401 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2402 }
2403
2404 if (new_page)
09cbfeaf 2405 put_page(new_page);
2f38ab2c 2406
82b0f8c3 2407 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2408 /*
2409 * No need to double call mmu_notifier->invalidate_range() callback as
2410 * the above ptep_clear_flush_notify() did already call it.
2411 */
ac46d4f3 2412 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2413 if (old_page) {
2414 /*
2415 * Don't let another task, with possibly unlocked vma,
2416 * keep the mlocked page.
2417 */
2418 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2419 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2420 if (PageMlocked(old_page))
2421 munlock_vma_page(old_page);
2f38ab2c
SR
2422 unlock_page(old_page);
2423 }
09cbfeaf 2424 put_page(old_page);
2f38ab2c
SR
2425 }
2426 return page_copied ? VM_FAULT_WRITE : 0;
2427oom_free_new:
09cbfeaf 2428 put_page(new_page);
2f38ab2c
SR
2429oom:
2430 if (old_page)
09cbfeaf 2431 put_page(old_page);
2f38ab2c
SR
2432 return VM_FAULT_OOM;
2433}
2434
66a6197c
JK
2435/**
2436 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2437 * writeable once the page is prepared
2438 *
2439 * @vmf: structure describing the fault
2440 *
2441 * This function handles all that is needed to finish a write page fault in a
2442 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2443 * It handles locking of PTE and modifying it.
66a6197c
JK
2444 *
2445 * The function expects the page to be locked or other protection against
2446 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2447 *
2448 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2449 * we acquired PTE lock.
66a6197c 2450 */
2b740303 2451vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2452{
2453 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2454 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2455 &vmf->ptl);
2456 /*
2457 * We might have raced with another page fault while we released the
2458 * pte_offset_map_lock.
2459 */
2460 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2461 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2462 return VM_FAULT_NOPAGE;
66a6197c
JK
2463 }
2464 wp_page_reuse(vmf);
a19e2553 2465 return 0;
66a6197c
JK
2466}
2467
dd906184
BH
2468/*
2469 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2470 * mapping
2471 */
2b740303 2472static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2473{
82b0f8c3 2474 struct vm_area_struct *vma = vmf->vma;
bae473a4 2475
dd906184 2476 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2477 vm_fault_t ret;
dd906184 2478
82b0f8c3 2479 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2480 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2481 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2482 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2483 return ret;
66a6197c 2484 return finish_mkwrite_fault(vmf);
dd906184 2485 }
997dd98d
JK
2486 wp_page_reuse(vmf);
2487 return VM_FAULT_WRITE;
dd906184
BH
2488}
2489
2b740303 2490static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2491 __releases(vmf->ptl)
93e478d4 2492{
82b0f8c3 2493 struct vm_area_struct *vma = vmf->vma;
93e478d4 2494
a41b70d6 2495 get_page(vmf->page);
93e478d4 2496
93e478d4 2497 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2498 vm_fault_t tmp;
93e478d4 2499
82b0f8c3 2500 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2501 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2502 if (unlikely(!tmp || (tmp &
2503 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2504 put_page(vmf->page);
93e478d4
SR
2505 return tmp;
2506 }
66a6197c 2507 tmp = finish_mkwrite_fault(vmf);
a19e2553 2508 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2509 unlock_page(vmf->page);
a41b70d6 2510 put_page(vmf->page);
66a6197c 2511 return tmp;
93e478d4 2512 }
66a6197c
JK
2513 } else {
2514 wp_page_reuse(vmf);
997dd98d 2515 lock_page(vmf->page);
93e478d4 2516 }
997dd98d
JK
2517 fault_dirty_shared_page(vma, vmf->page);
2518 put_page(vmf->page);
93e478d4 2519
997dd98d 2520 return VM_FAULT_WRITE;
93e478d4
SR
2521}
2522
1da177e4
LT
2523/*
2524 * This routine handles present pages, when users try to write
2525 * to a shared page. It is done by copying the page to a new address
2526 * and decrementing the shared-page counter for the old page.
2527 *
1da177e4
LT
2528 * Note that this routine assumes that the protection checks have been
2529 * done by the caller (the low-level page fault routine in most cases).
2530 * Thus we can safely just mark it writable once we've done any necessary
2531 * COW.
2532 *
2533 * We also mark the page dirty at this point even though the page will
2534 * change only once the write actually happens. This avoids a few races,
2535 * and potentially makes it more efficient.
2536 *
8f4e2101
HD
2537 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2538 * but allow concurrent faults), with pte both mapped and locked.
2539 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2540 */
2b740303 2541static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2542 __releases(vmf->ptl)
1da177e4 2543{
82b0f8c3 2544 struct vm_area_struct *vma = vmf->vma;
1da177e4 2545
a41b70d6
JK
2546 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2547 if (!vmf->page) {
251b97f5 2548 /*
64e45507
PF
2549 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2550 * VM_PFNMAP VMA.
251b97f5
PZ
2551 *
2552 * We should not cow pages in a shared writeable mapping.
dd906184 2553 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2554 */
2555 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2556 (VM_WRITE|VM_SHARED))
2994302b 2557 return wp_pfn_shared(vmf);
2f38ab2c 2558
82b0f8c3 2559 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2560 return wp_page_copy(vmf);
251b97f5 2561 }
1da177e4 2562
d08b3851 2563 /*
ee6a6457
PZ
2564 * Take out anonymous pages first, anonymous shared vmas are
2565 * not dirty accountable.
d08b3851 2566 */
52d1e606 2567 if (PageAnon(vmf->page)) {
ba3c4ce6 2568 int total_map_swapcount;
52d1e606
KT
2569 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2570 page_count(vmf->page) != 1))
2571 goto copy;
a41b70d6
JK
2572 if (!trylock_page(vmf->page)) {
2573 get_page(vmf->page);
82b0f8c3 2574 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2575 lock_page(vmf->page);
82b0f8c3
JK
2576 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2577 vmf->address, &vmf->ptl);
2994302b 2578 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2579 unlock_page(vmf->page);
82b0f8c3 2580 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2581 put_page(vmf->page);
28766805 2582 return 0;
ab967d86 2583 }
a41b70d6 2584 put_page(vmf->page);
ee6a6457 2585 }
52d1e606
KT
2586 if (PageKsm(vmf->page)) {
2587 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2588 vmf->address);
2589 unlock_page(vmf->page);
2590 if (!reused)
2591 goto copy;
2592 wp_page_reuse(vmf);
2593 return VM_FAULT_WRITE;
2594 }
ba3c4ce6
HY
2595 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2596 if (total_map_swapcount == 1) {
6d0a07ed
AA
2597 /*
2598 * The page is all ours. Move it to
2599 * our anon_vma so the rmap code will
2600 * not search our parent or siblings.
2601 * Protected against the rmap code by
2602 * the page lock.
2603 */
a41b70d6 2604 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2605 }
a41b70d6 2606 unlock_page(vmf->page);
997dd98d
JK
2607 wp_page_reuse(vmf);
2608 return VM_FAULT_WRITE;
b009c024 2609 }
a41b70d6 2610 unlock_page(vmf->page);
ee6a6457 2611 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2612 (VM_WRITE|VM_SHARED))) {
a41b70d6 2613 return wp_page_shared(vmf);
1da177e4 2614 }
52d1e606 2615copy:
1da177e4
LT
2616 /*
2617 * Ok, we need to copy. Oh, well..
2618 */
a41b70d6 2619 get_page(vmf->page);
28766805 2620
82b0f8c3 2621 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2622 return wp_page_copy(vmf);
1da177e4
LT
2623}
2624
97a89413 2625static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2626 unsigned long start_addr, unsigned long end_addr,
2627 struct zap_details *details)
2628{
f5cc4eef 2629 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2630}
2631
f808c13f 2632static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2633 struct zap_details *details)
2634{
2635 struct vm_area_struct *vma;
1da177e4
LT
2636 pgoff_t vba, vea, zba, zea;
2637
6b2dbba8 2638 vma_interval_tree_foreach(vma, root,
1da177e4 2639 details->first_index, details->last_index) {
1da177e4
LT
2640
2641 vba = vma->vm_pgoff;
d6e93217 2642 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2643 zba = details->first_index;
2644 if (zba < vba)
2645 zba = vba;
2646 zea = details->last_index;
2647 if (zea > vea)
2648 zea = vea;
2649
97a89413 2650 unmap_mapping_range_vma(vma,
1da177e4
LT
2651 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2652 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2653 details);
1da177e4
LT
2654 }
2655}
2656
977fbdcd
MW
2657/**
2658 * unmap_mapping_pages() - Unmap pages from processes.
2659 * @mapping: The address space containing pages to be unmapped.
2660 * @start: Index of first page to be unmapped.
2661 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2662 * @even_cows: Whether to unmap even private COWed pages.
2663 *
2664 * Unmap the pages in this address space from any userspace process which
2665 * has them mmaped. Generally, you want to remove COWed pages as well when
2666 * a file is being truncated, but not when invalidating pages from the page
2667 * cache.
2668 */
2669void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2670 pgoff_t nr, bool even_cows)
2671{
2672 struct zap_details details = { };
2673
2674 details.check_mapping = even_cows ? NULL : mapping;
2675 details.first_index = start;
2676 details.last_index = start + nr - 1;
2677 if (details.last_index < details.first_index)
2678 details.last_index = ULONG_MAX;
2679
2680 i_mmap_lock_write(mapping);
2681 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2682 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2683 i_mmap_unlock_write(mapping);
2684}
2685
1da177e4 2686/**
8a5f14a2 2687 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2688 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2689 * file.
2690 *
3d41088f 2691 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2692 * @holebegin: byte in first page to unmap, relative to the start of
2693 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2694 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2695 * must keep the partial page. In contrast, we must get rid of
2696 * partial pages.
2697 * @holelen: size of prospective hole in bytes. This will be rounded
2698 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2699 * end of the file.
2700 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2701 * but 0 when invalidating pagecache, don't throw away private data.
2702 */
2703void unmap_mapping_range(struct address_space *mapping,
2704 loff_t const holebegin, loff_t const holelen, int even_cows)
2705{
1da177e4
LT
2706 pgoff_t hba = holebegin >> PAGE_SHIFT;
2707 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2708
2709 /* Check for overflow. */
2710 if (sizeof(holelen) > sizeof(hlen)) {
2711 long long holeend =
2712 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2713 if (holeend & ~(long long)ULONG_MAX)
2714 hlen = ULONG_MAX - hba + 1;
2715 }
2716
977fbdcd 2717 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2718}
2719EXPORT_SYMBOL(unmap_mapping_range);
2720
1da177e4 2721/*
8f4e2101
HD
2722 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2723 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2724 * We return with pte unmapped and unlocked.
2725 *
2726 * We return with the mmap_sem locked or unlocked in the same cases
2727 * as does filemap_fault().
1da177e4 2728 */
2b740303 2729vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2730{
82b0f8c3 2731 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2732 struct page *page = NULL, *swapcache;
00501b53 2733 struct mem_cgroup *memcg;
65500d23 2734 swp_entry_t entry;
1da177e4 2735 pte_t pte;
d065bd81 2736 int locked;
ad8c2ee8 2737 int exclusive = 0;
2b740303 2738 vm_fault_t ret = 0;
1da177e4 2739
eaf649eb 2740 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2741 goto out;
65500d23 2742
2994302b 2743 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2744 if (unlikely(non_swap_entry(entry))) {
2745 if (is_migration_entry(entry)) {
82b0f8c3
JK
2746 migration_entry_wait(vma->vm_mm, vmf->pmd,
2747 vmf->address);
5042db43 2748 } else if (is_device_private_entry(entry)) {
897e6365
CH
2749 vmf->page = device_private_entry_to_page(entry);
2750 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
2751 } else if (is_hwpoison_entry(entry)) {
2752 ret = VM_FAULT_HWPOISON;
2753 } else {
2994302b 2754 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2755 ret = VM_FAULT_SIGBUS;
d1737fdb 2756 }
0697212a
CL
2757 goto out;
2758 }
0bcac06f
MK
2759
2760
0ff92245 2761 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2762 page = lookup_swap_cache(entry, vma, vmf->address);
2763 swapcache = page;
f8020772 2764
1da177e4 2765 if (!page) {
0bcac06f
MK
2766 struct swap_info_struct *si = swp_swap_info(entry);
2767
aa8d22a1 2768 if (si->flags & SWP_SYNCHRONOUS_IO &&
eb085574 2769 __swap_count(entry) == 1) {
0bcac06f 2770 /* skip swapcache */
e9e9b7ec
MK
2771 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2772 vmf->address);
0bcac06f
MK
2773 if (page) {
2774 __SetPageLocked(page);
2775 __SetPageSwapBacked(page);
2776 set_page_private(page, entry.val);
2777 lru_cache_add_anon(page);
2778 swap_readpage(page, true);
2779 }
aa8d22a1 2780 } else {
e9e9b7ec
MK
2781 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2782 vmf);
aa8d22a1 2783 swapcache = page;
0bcac06f
MK
2784 }
2785
1da177e4
LT
2786 if (!page) {
2787 /*
8f4e2101
HD
2788 * Back out if somebody else faulted in this pte
2789 * while we released the pte lock.
1da177e4 2790 */
82b0f8c3
JK
2791 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2792 vmf->address, &vmf->ptl);
2994302b 2793 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2794 ret = VM_FAULT_OOM;
0ff92245 2795 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2796 goto unlock;
1da177e4
LT
2797 }
2798
2799 /* Had to read the page from swap area: Major fault */
2800 ret = VM_FAULT_MAJOR;
f8891e5e 2801 count_vm_event(PGMAJFAULT);
2262185c 2802 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2803 } else if (PageHWPoison(page)) {
71f72525
WF
2804 /*
2805 * hwpoisoned dirty swapcache pages are kept for killing
2806 * owner processes (which may be unknown at hwpoison time)
2807 */
d1737fdb
AK
2808 ret = VM_FAULT_HWPOISON;
2809 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2810 goto out_release;
1da177e4
LT
2811 }
2812
82b0f8c3 2813 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2814
073e587e 2815 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2816 if (!locked) {
2817 ret |= VM_FAULT_RETRY;
2818 goto out_release;
2819 }
073e587e 2820
4969c119 2821 /*
31c4a3d3
HD
2822 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2823 * release the swapcache from under us. The page pin, and pte_same
2824 * test below, are not enough to exclude that. Even if it is still
2825 * swapcache, we need to check that the page's swap has not changed.
4969c119 2826 */
0bcac06f
MK
2827 if (unlikely((!PageSwapCache(page) ||
2828 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2829 goto out_page;
2830
82b0f8c3 2831 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2832 if (unlikely(!page)) {
2833 ret = VM_FAULT_OOM;
2834 page = swapcache;
cbf86cfe 2835 goto out_page;
5ad64688
HD
2836 }
2837
2cf85583
TH
2838 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2839 &memcg, false)) {
8a9f3ccd 2840 ret = VM_FAULT_OOM;
bc43f75c 2841 goto out_page;
8a9f3ccd
BS
2842 }
2843
1da177e4 2844 /*
8f4e2101 2845 * Back out if somebody else already faulted in this pte.
1da177e4 2846 */
82b0f8c3
JK
2847 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2848 &vmf->ptl);
2994302b 2849 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2850 goto out_nomap;
b8107480
KK
2851
2852 if (unlikely(!PageUptodate(page))) {
2853 ret = VM_FAULT_SIGBUS;
2854 goto out_nomap;
1da177e4
LT
2855 }
2856
8c7c6e34
KH
2857 /*
2858 * The page isn't present yet, go ahead with the fault.
2859 *
2860 * Be careful about the sequence of operations here.
2861 * To get its accounting right, reuse_swap_page() must be called
2862 * while the page is counted on swap but not yet in mapcount i.e.
2863 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2864 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2865 */
1da177e4 2866
bae473a4
KS
2867 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2868 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2869 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2870 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2871 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2872 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2873 ret |= VM_FAULT_WRITE;
d281ee61 2874 exclusive = RMAP_EXCLUSIVE;
1da177e4 2875 }
1da177e4 2876 flush_icache_page(vma, page);
2994302b 2877 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2878 pte = pte_mksoft_dirty(pte);
82b0f8c3 2879 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 2880 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 2881 vmf->orig_pte = pte;
0bcac06f
MK
2882
2883 /* ksm created a completely new copy */
2884 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 2885 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2886 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2887 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
2888 } else {
2889 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2890 mem_cgroup_commit_charge(page, memcg, true, false);
2891 activate_page(page);
00501b53 2892 }
1da177e4 2893
c475a8ab 2894 swap_free(entry);
5ccc5aba
VD
2895 if (mem_cgroup_swap_full(page) ||
2896 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2897 try_to_free_swap(page);
c475a8ab 2898 unlock_page(page);
0bcac06f 2899 if (page != swapcache && swapcache) {
4969c119
AA
2900 /*
2901 * Hold the lock to avoid the swap entry to be reused
2902 * until we take the PT lock for the pte_same() check
2903 * (to avoid false positives from pte_same). For
2904 * further safety release the lock after the swap_free
2905 * so that the swap count won't change under a
2906 * parallel locked swapcache.
2907 */
2908 unlock_page(swapcache);
09cbfeaf 2909 put_page(swapcache);
4969c119 2910 }
c475a8ab 2911
82b0f8c3 2912 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2913 ret |= do_wp_page(vmf);
61469f1d
HD
2914 if (ret & VM_FAULT_ERROR)
2915 ret &= VM_FAULT_ERROR;
1da177e4
LT
2916 goto out;
2917 }
2918
2919 /* No need to invalidate - it was non-present before */
82b0f8c3 2920 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2921unlock:
82b0f8c3 2922 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2923out:
2924 return ret;
b8107480 2925out_nomap:
f627c2f5 2926 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2927 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2928out_page:
b8107480 2929 unlock_page(page);
4779cb31 2930out_release:
09cbfeaf 2931 put_page(page);
0bcac06f 2932 if (page != swapcache && swapcache) {
4969c119 2933 unlock_page(swapcache);
09cbfeaf 2934 put_page(swapcache);
4969c119 2935 }
65500d23 2936 return ret;
1da177e4
LT
2937}
2938
2939/*
8f4e2101
HD
2940 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2941 * but allow concurrent faults), and pte mapped but not yet locked.
2942 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2943 */
2b740303 2944static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 2945{
82b0f8c3 2946 struct vm_area_struct *vma = vmf->vma;
00501b53 2947 struct mem_cgroup *memcg;
8f4e2101 2948 struct page *page;
2b740303 2949 vm_fault_t ret = 0;
1da177e4 2950 pte_t entry;
1da177e4 2951
6b7339f4
KS
2952 /* File mapping without ->vm_ops ? */
2953 if (vma->vm_flags & VM_SHARED)
2954 return VM_FAULT_SIGBUS;
2955
7267ec00
KS
2956 /*
2957 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2958 * pte_offset_map() on pmds where a huge pmd might be created
2959 * from a different thread.
2960 *
2961 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2962 * parallel threads are excluded by other means.
2963 *
2964 * Here we only have down_read(mmap_sem).
2965 */
4cf58924 2966 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
2967 return VM_FAULT_OOM;
2968
2969 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2970 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2971 return 0;
2972
11ac5524 2973 /* Use the zero-page for reads */
82b0f8c3 2974 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2975 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2976 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2977 vma->vm_page_prot));
82b0f8c3
JK
2978 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2979 vmf->address, &vmf->ptl);
2980 if (!pte_none(*vmf->pte))
a13ea5b7 2981 goto unlock;
6b31d595
MH
2982 ret = check_stable_address_space(vma->vm_mm);
2983 if (ret)
2984 goto unlock;
6b251fc9
AA
2985 /* Deliver the page fault to userland, check inside PT lock */
2986 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2987 pte_unmap_unlock(vmf->pte, vmf->ptl);
2988 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2989 }
a13ea5b7
HD
2990 goto setpte;
2991 }
2992
557ed1fa 2993 /* Allocate our own private page. */
557ed1fa
NP
2994 if (unlikely(anon_vma_prepare(vma)))
2995 goto oom;
82b0f8c3 2996 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2997 if (!page)
2998 goto oom;
eb3c24f3 2999
2cf85583
TH
3000 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3001 false))
eb3c24f3
MG
3002 goto oom_free_page;
3003
52f37629
MK
3004 /*
3005 * The memory barrier inside __SetPageUptodate makes sure that
3006 * preceeding stores to the page contents become visible before
3007 * the set_pte_at() write.
3008 */
0ed361de 3009 __SetPageUptodate(page);
8f4e2101 3010
557ed1fa 3011 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3012 if (vma->vm_flags & VM_WRITE)
3013 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3014
82b0f8c3
JK
3015 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3016 &vmf->ptl);
3017 if (!pte_none(*vmf->pte))
557ed1fa 3018 goto release;
9ba69294 3019
6b31d595
MH
3020 ret = check_stable_address_space(vma->vm_mm);
3021 if (ret)
3022 goto release;
3023
6b251fc9
AA
3024 /* Deliver the page fault to userland, check inside PT lock */
3025 if (userfaultfd_missing(vma)) {
82b0f8c3 3026 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3027 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3028 put_page(page);
82b0f8c3 3029 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3030 }
3031
bae473a4 3032 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3033 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3034 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3035 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3036setpte:
82b0f8c3 3037 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3038
3039 /* No need to invalidate - it was non-present before */
82b0f8c3 3040 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3041unlock:
82b0f8c3 3042 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3043 return ret;
8f4e2101 3044release:
f627c2f5 3045 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3046 put_page(page);
8f4e2101 3047 goto unlock;
8a9f3ccd 3048oom_free_page:
09cbfeaf 3049 put_page(page);
65500d23 3050oom:
1da177e4
LT
3051 return VM_FAULT_OOM;
3052}
3053
9a95f3cf
PC
3054/*
3055 * The mmap_sem must have been held on entry, and may have been
3056 * released depending on flags and vma->vm_ops->fault() return value.
3057 * See filemap_fault() and __lock_page_retry().
3058 */
2b740303 3059static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3060{
82b0f8c3 3061 struct vm_area_struct *vma = vmf->vma;
2b740303 3062 vm_fault_t ret;
7eae74af 3063
63f3655f
MH
3064 /*
3065 * Preallocate pte before we take page_lock because this might lead to
3066 * deadlocks for memcg reclaim which waits for pages under writeback:
3067 * lock_page(A)
3068 * SetPageWriteback(A)
3069 * unlock_page(A)
3070 * lock_page(B)
3071 * lock_page(B)
3072 * pte_alloc_pne
3073 * shrink_page_list
3074 * wait_on_page_writeback(A)
3075 * SetPageWriteback(B)
3076 * unlock_page(B)
3077 * # flush A, B to clear the writeback
3078 */
3079 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3080 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3081 if (!vmf->prealloc_pte)
3082 return VM_FAULT_OOM;
3083 smp_wmb(); /* See comment in __pte_alloc() */
3084 }
3085
11bac800 3086 ret = vma->vm_ops->fault(vmf);
3917048d 3087 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3088 VM_FAULT_DONE_COW)))
bc2466e4 3089 return ret;
7eae74af 3090
667240e0 3091 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3092 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3093 unlock_page(vmf->page);
3094 put_page(vmf->page);
936ca80d 3095 vmf->page = NULL;
7eae74af
KS
3096 return VM_FAULT_HWPOISON;
3097 }
3098
3099 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3100 lock_page(vmf->page);
7eae74af 3101 else
667240e0 3102 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3103
7eae74af
KS
3104 return ret;
3105}
3106
d0f0931d
RZ
3107/*
3108 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3109 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3110 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3111 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3112 */
3113static int pmd_devmap_trans_unstable(pmd_t *pmd)
3114{
3115 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3116}
3117
2b740303 3118static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3119{
82b0f8c3 3120 struct vm_area_struct *vma = vmf->vma;
7267ec00 3121
82b0f8c3 3122 if (!pmd_none(*vmf->pmd))
7267ec00 3123 goto map_pte;
82b0f8c3
JK
3124 if (vmf->prealloc_pte) {
3125 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3126 if (unlikely(!pmd_none(*vmf->pmd))) {
3127 spin_unlock(vmf->ptl);
7267ec00
KS
3128 goto map_pte;
3129 }
3130
c4812909 3131 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3132 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3133 spin_unlock(vmf->ptl);
7f2b6ce8 3134 vmf->prealloc_pte = NULL;
4cf58924 3135 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3136 return VM_FAULT_OOM;
3137 }
3138map_pte:
3139 /*
3140 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3141 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3142 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3143 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3144 * running immediately after a huge pmd fault in a different thread of
3145 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3146 * All we have to ensure is that it is a regular pmd that we can walk
3147 * with pte_offset_map() and we can do that through an atomic read in
3148 * C, which is what pmd_trans_unstable() provides.
7267ec00 3149 */
d0f0931d 3150 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3151 return VM_FAULT_NOPAGE;
3152
d0f0931d
RZ
3153 /*
3154 * At this point we know that our vmf->pmd points to a page of ptes
3155 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3156 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3157 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3158 * be valid and we will re-check to make sure the vmf->pte isn't
3159 * pte_none() under vmf->ptl protection when we return to
3160 * alloc_set_pte().
3161 */
82b0f8c3
JK
3162 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3163 &vmf->ptl);
7267ec00
KS
3164 return 0;
3165}
3166
e496cf3d 3167#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
82b0f8c3 3168static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3169{
82b0f8c3 3170 struct vm_area_struct *vma = vmf->vma;
953c66c2 3171
82b0f8c3 3172 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3173 /*
3174 * We are going to consume the prealloc table,
3175 * count that as nr_ptes.
3176 */
c4812909 3177 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3178 vmf->prealloc_pte = NULL;
953c66c2
AK
3179}
3180
2b740303 3181static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3182{
82b0f8c3
JK
3183 struct vm_area_struct *vma = vmf->vma;
3184 bool write = vmf->flags & FAULT_FLAG_WRITE;
3185 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3186 pmd_t entry;
2b740303
SJ
3187 int i;
3188 vm_fault_t ret;
10102459
KS
3189
3190 if (!transhuge_vma_suitable(vma, haddr))
3191 return VM_FAULT_FALLBACK;
3192
3193 ret = VM_FAULT_FALLBACK;
3194 page = compound_head(page);
3195
953c66c2
AK
3196 /*
3197 * Archs like ppc64 need additonal space to store information
3198 * related to pte entry. Use the preallocated table for that.
3199 */
82b0f8c3 3200 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3201 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3202 if (!vmf->prealloc_pte)
953c66c2
AK
3203 return VM_FAULT_OOM;
3204 smp_wmb(); /* See comment in __pte_alloc() */
3205 }
3206
82b0f8c3
JK
3207 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3208 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3209 goto out;
3210
3211 for (i = 0; i < HPAGE_PMD_NR; i++)
3212 flush_icache_page(vma, page + i);
3213
3214 entry = mk_huge_pmd(page, vma->vm_page_prot);
3215 if (write)
f55e1014 3216 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3217
fadae295 3218 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3219 page_add_file_rmap(page, true);
953c66c2
AK
3220 /*
3221 * deposit and withdraw with pmd lock held
3222 */
3223 if (arch_needs_pgtable_deposit())
82b0f8c3 3224 deposit_prealloc_pte(vmf);
10102459 3225
82b0f8c3 3226 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3227
82b0f8c3 3228 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3229
3230 /* fault is handled */
3231 ret = 0;
95ecedcd 3232 count_vm_event(THP_FILE_MAPPED);
10102459 3233out:
82b0f8c3 3234 spin_unlock(vmf->ptl);
10102459
KS
3235 return ret;
3236}
3237#else
2b740303 3238static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3239{
3240 BUILD_BUG();
3241 return 0;
3242}
3243#endif
3244
8c6e50b0 3245/**
7267ec00
KS
3246 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3247 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3248 *
82b0f8c3 3249 * @vmf: fault environment
7267ec00 3250 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3251 * @page: page to map
8c6e50b0 3252 *
82b0f8c3
JK
3253 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3254 * return.
8c6e50b0
KS
3255 *
3256 * Target users are page handler itself and implementations of
3257 * vm_ops->map_pages.
a862f68a
MR
3258 *
3259 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3260 */
2b740303 3261vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3262 struct page *page)
3bb97794 3263{
82b0f8c3
JK
3264 struct vm_area_struct *vma = vmf->vma;
3265 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3266 pte_t entry;
2b740303 3267 vm_fault_t ret;
10102459 3268
82b0f8c3 3269 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3270 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3271 /* THP on COW? */
3272 VM_BUG_ON_PAGE(memcg, page);
3273
82b0f8c3 3274 ret = do_set_pmd(vmf, page);
10102459 3275 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3276 return ret;
10102459 3277 }
3bb97794 3278
82b0f8c3
JK
3279 if (!vmf->pte) {
3280 ret = pte_alloc_one_map(vmf);
7267ec00 3281 if (ret)
b0b9b3df 3282 return ret;
7267ec00
KS
3283 }
3284
3285 /* Re-check under ptl */
b0b9b3df
HD
3286 if (unlikely(!pte_none(*vmf->pte)))
3287 return VM_FAULT_NOPAGE;
7267ec00 3288
3bb97794
KS
3289 flush_icache_page(vma, page);
3290 entry = mk_pte(page, vma->vm_page_prot);
3291 if (write)
3292 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3293 /* copy-on-write page */
3294 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3295 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3296 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3297 mem_cgroup_commit_charge(page, memcg, false, false);
3298 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3299 } else {
eca56ff9 3300 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3301 page_add_file_rmap(page, false);
3bb97794 3302 }
82b0f8c3 3303 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3304
3305 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3306 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3307
b0b9b3df 3308 return 0;
3bb97794
KS
3309}
3310
9118c0cb
JK
3311
3312/**
3313 * finish_fault - finish page fault once we have prepared the page to fault
3314 *
3315 * @vmf: structure describing the fault
3316 *
3317 * This function handles all that is needed to finish a page fault once the
3318 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3319 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3320 * addition.
9118c0cb
JK
3321 *
3322 * The function expects the page to be locked and on success it consumes a
3323 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3324 *
3325 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3326 */
2b740303 3327vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3328{
3329 struct page *page;
2b740303 3330 vm_fault_t ret = 0;
9118c0cb
JK
3331
3332 /* Did we COW the page? */
3333 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3334 !(vmf->vma->vm_flags & VM_SHARED))
3335 page = vmf->cow_page;
3336 else
3337 page = vmf->page;
6b31d595
MH
3338
3339 /*
3340 * check even for read faults because we might have lost our CoWed
3341 * page
3342 */
3343 if (!(vmf->vma->vm_flags & VM_SHARED))
3344 ret = check_stable_address_space(vmf->vma->vm_mm);
3345 if (!ret)
3346 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3347 if (vmf->pte)
3348 pte_unmap_unlock(vmf->pte, vmf->ptl);
3349 return ret;
3350}
3351
3a91053a
KS
3352static unsigned long fault_around_bytes __read_mostly =
3353 rounddown_pow_of_two(65536);
a9b0f861 3354
a9b0f861
KS
3355#ifdef CONFIG_DEBUG_FS
3356static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3357{
a9b0f861 3358 *val = fault_around_bytes;
1592eef0
KS
3359 return 0;
3360}
3361
b4903d6e 3362/*
da391d64
WK
3363 * fault_around_bytes must be rounded down to the nearest page order as it's
3364 * what do_fault_around() expects to see.
b4903d6e 3365 */
a9b0f861 3366static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3367{
a9b0f861 3368 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3369 return -EINVAL;
b4903d6e
AR
3370 if (val > PAGE_SIZE)
3371 fault_around_bytes = rounddown_pow_of_two(val);
3372 else
3373 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3374 return 0;
3375}
0a1345f8 3376DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3377 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3378
3379static int __init fault_around_debugfs(void)
3380{
d9f7979c
GKH
3381 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3382 &fault_around_bytes_fops);
1592eef0
KS
3383 return 0;
3384}
3385late_initcall(fault_around_debugfs);
1592eef0 3386#endif
8c6e50b0 3387
1fdb412b
KS
3388/*
3389 * do_fault_around() tries to map few pages around the fault address. The hope
3390 * is that the pages will be needed soon and this will lower the number of
3391 * faults to handle.
3392 *
3393 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3394 * not ready to be mapped: not up-to-date, locked, etc.
3395 *
3396 * This function is called with the page table lock taken. In the split ptlock
3397 * case the page table lock only protects only those entries which belong to
3398 * the page table corresponding to the fault address.
3399 *
3400 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3401 * only once.
3402 *
da391d64
WK
3403 * fault_around_bytes defines how many bytes we'll try to map.
3404 * do_fault_around() expects it to be set to a power of two less than or equal
3405 * to PTRS_PER_PTE.
1fdb412b 3406 *
da391d64
WK
3407 * The virtual address of the area that we map is naturally aligned to
3408 * fault_around_bytes rounded down to the machine page size
3409 * (and therefore to page order). This way it's easier to guarantee
3410 * that we don't cross page table boundaries.
1fdb412b 3411 */
2b740303 3412static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3413{
82b0f8c3 3414 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3415 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3416 pgoff_t end_pgoff;
2b740303
SJ
3417 int off;
3418 vm_fault_t ret = 0;
8c6e50b0 3419
4db0c3c2 3420 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3421 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3422
82b0f8c3
JK
3423 vmf->address = max(address & mask, vmf->vma->vm_start);
3424 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3425 start_pgoff -= off;
8c6e50b0
KS
3426
3427 /*
da391d64
WK
3428 * end_pgoff is either the end of the page table, the end of
3429 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3430 */
bae473a4 3431 end_pgoff = start_pgoff -
82b0f8c3 3432 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3433 PTRS_PER_PTE - 1;
82b0f8c3 3434 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3435 start_pgoff + nr_pages - 1);
8c6e50b0 3436
82b0f8c3 3437 if (pmd_none(*vmf->pmd)) {
4cf58924 3438 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3439 if (!vmf->prealloc_pte)
c5f88bd2 3440 goto out;
7267ec00 3441 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3442 }
3443
82b0f8c3 3444 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3445
7267ec00 3446 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3447 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3448 ret = VM_FAULT_NOPAGE;
3449 goto out;
3450 }
3451
3452 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3453 if (!vmf->pte)
7267ec00
KS
3454 goto out;
3455
3456 /* check if the page fault is solved */
82b0f8c3
JK
3457 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3458 if (!pte_none(*vmf->pte))
7267ec00 3459 ret = VM_FAULT_NOPAGE;
82b0f8c3 3460 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3461out:
82b0f8c3
JK
3462 vmf->address = address;
3463 vmf->pte = NULL;
7267ec00 3464 return ret;
8c6e50b0
KS
3465}
3466
2b740303 3467static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3468{
82b0f8c3 3469 struct vm_area_struct *vma = vmf->vma;
2b740303 3470 vm_fault_t ret = 0;
8c6e50b0
KS
3471
3472 /*
3473 * Let's call ->map_pages() first and use ->fault() as fallback
3474 * if page by the offset is not ready to be mapped (cold cache or
3475 * something).
3476 */
9b4bdd2f 3477 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3478 ret = do_fault_around(vmf);
7267ec00
KS
3479 if (ret)
3480 return ret;
8c6e50b0 3481 }
e655fb29 3482
936ca80d 3483 ret = __do_fault(vmf);
e655fb29
KS
3484 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3485 return ret;
3486
9118c0cb 3487 ret |= finish_fault(vmf);
936ca80d 3488 unlock_page(vmf->page);
7267ec00 3489 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3490 put_page(vmf->page);
e655fb29
KS
3491 return ret;
3492}
3493
2b740303 3494static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3495{
82b0f8c3 3496 struct vm_area_struct *vma = vmf->vma;
2b740303 3497 vm_fault_t ret;
ec47c3b9
KS
3498
3499 if (unlikely(anon_vma_prepare(vma)))
3500 return VM_FAULT_OOM;
3501
936ca80d
JK
3502 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3503 if (!vmf->cow_page)
ec47c3b9
KS
3504 return VM_FAULT_OOM;
3505
2cf85583 3506 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3507 &vmf->memcg, false)) {
936ca80d 3508 put_page(vmf->cow_page);
ec47c3b9
KS
3509 return VM_FAULT_OOM;
3510 }
3511
936ca80d 3512 ret = __do_fault(vmf);
ec47c3b9
KS
3513 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3514 goto uncharge_out;
3917048d
JK
3515 if (ret & VM_FAULT_DONE_COW)
3516 return ret;
ec47c3b9 3517
b1aa812b 3518 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3519 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3520
9118c0cb 3521 ret |= finish_fault(vmf);
b1aa812b
JK
3522 unlock_page(vmf->page);
3523 put_page(vmf->page);
7267ec00
KS
3524 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3525 goto uncharge_out;
ec47c3b9
KS
3526 return ret;
3527uncharge_out:
3917048d 3528 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3529 put_page(vmf->cow_page);
ec47c3b9
KS
3530 return ret;
3531}
3532
2b740303 3533static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3534{
82b0f8c3 3535 struct vm_area_struct *vma = vmf->vma;
2b740303 3536 vm_fault_t ret, tmp;
1d65f86d 3537
936ca80d 3538 ret = __do_fault(vmf);
7eae74af 3539 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3540 return ret;
1da177e4
LT
3541
3542 /*
f0c6d4d2
KS
3543 * Check if the backing address space wants to know that the page is
3544 * about to become writable
1da177e4 3545 */
fb09a464 3546 if (vma->vm_ops->page_mkwrite) {
936ca80d 3547 unlock_page(vmf->page);
38b8cb7f 3548 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3549 if (unlikely(!tmp ||
3550 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3551 put_page(vmf->page);
fb09a464 3552 return tmp;
4294621f 3553 }
fb09a464
KS
3554 }
3555
9118c0cb 3556 ret |= finish_fault(vmf);
7267ec00
KS
3557 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3558 VM_FAULT_RETRY))) {
936ca80d
JK
3559 unlock_page(vmf->page);
3560 put_page(vmf->page);
f0c6d4d2 3561 return ret;
1da177e4 3562 }
b827e496 3563
97ba0c2b 3564 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3565 return ret;
54cb8821 3566}
d00806b1 3567
9a95f3cf
PC
3568/*
3569 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3570 * but allow concurrent faults).
3571 * The mmap_sem may have been released depending on flags and our
3572 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3573 * If mmap_sem is released, vma may become invalid (for example
3574 * by other thread calling munmap()).
9a95f3cf 3575 */
2b740303 3576static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3577{
82b0f8c3 3578 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3579 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3580 vm_fault_t ret;
54cb8821 3581
ff09d7ec
AK
3582 /*
3583 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3584 */
3585 if (!vma->vm_ops->fault) {
3586 /*
3587 * If we find a migration pmd entry or a none pmd entry, which
3588 * should never happen, return SIGBUS
3589 */
3590 if (unlikely(!pmd_present(*vmf->pmd)))
3591 ret = VM_FAULT_SIGBUS;
3592 else {
3593 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3594 vmf->pmd,
3595 vmf->address,
3596 &vmf->ptl);
3597 /*
3598 * Make sure this is not a temporary clearing of pte
3599 * by holding ptl and checking again. A R/M/W update
3600 * of pte involves: take ptl, clearing the pte so that
3601 * we don't have concurrent modification by hardware
3602 * followed by an update.
3603 */
3604 if (unlikely(pte_none(*vmf->pte)))
3605 ret = VM_FAULT_SIGBUS;
3606 else
3607 ret = VM_FAULT_NOPAGE;
3608
3609 pte_unmap_unlock(vmf->pte, vmf->ptl);
3610 }
3611 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3612 ret = do_read_fault(vmf);
3613 else if (!(vma->vm_flags & VM_SHARED))
3614 ret = do_cow_fault(vmf);
3615 else
3616 ret = do_shared_fault(vmf);
3617
3618 /* preallocated pagetable is unused: free it */
3619 if (vmf->prealloc_pte) {
fc8efd2d 3620 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3621 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3622 }
3623 return ret;
54cb8821
NP
3624}
3625
b19a9939 3626static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3627 unsigned long addr, int page_nid,
3628 int *flags)
9532fec1
MG
3629{
3630 get_page(page);
3631
3632 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3633 if (page_nid == numa_node_id()) {
9532fec1 3634 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3635 *flags |= TNF_FAULT_LOCAL;
3636 }
9532fec1
MG
3637
3638 return mpol_misplaced(page, vma, addr);
3639}
3640
2b740303 3641static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3642{
82b0f8c3 3643 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3644 struct page *page = NULL;
98fa15f3 3645 int page_nid = NUMA_NO_NODE;
90572890 3646 int last_cpupid;
cbee9f88 3647 int target_nid;
b8593bfd 3648 bool migrated = false;
04a86453 3649 pte_t pte, old_pte;
288bc549 3650 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3651 int flags = 0;
d10e63f2
MG
3652
3653 /*
166f61b9
TH
3654 * The "pte" at this point cannot be used safely without
3655 * validation through pte_unmap_same(). It's of NUMA type but
3656 * the pfn may be screwed if the read is non atomic.
166f61b9 3657 */
82b0f8c3
JK
3658 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3659 spin_lock(vmf->ptl);
cee216a6 3660 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3661 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3662 goto out;
3663 }
3664
cee216a6
AK
3665 /*
3666 * Make it present again, Depending on how arch implementes non
3667 * accessible ptes, some can allow access by kernel mode.
3668 */
04a86453
AK
3669 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3670 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3671 pte = pte_mkyoung(pte);
b191f9b1
MG
3672 if (was_writable)
3673 pte = pte_mkwrite(pte);
04a86453 3674 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3675 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3676
82b0f8c3 3677 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3678 if (!page) {
82b0f8c3 3679 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3680 return 0;
3681 }
3682
e81c4802
KS
3683 /* TODO: handle PTE-mapped THP */
3684 if (PageCompound(page)) {
82b0f8c3 3685 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3686 return 0;
3687 }
3688
6688cc05 3689 /*
bea66fbd
MG
3690 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3691 * much anyway since they can be in shared cache state. This misses
3692 * the case where a mapping is writable but the process never writes
3693 * to it but pte_write gets cleared during protection updates and
3694 * pte_dirty has unpredictable behaviour between PTE scan updates,
3695 * background writeback, dirty balancing and application behaviour.
6688cc05 3696 */
d59dc7bc 3697 if (!pte_write(pte))
6688cc05
PZ
3698 flags |= TNF_NO_GROUP;
3699
dabe1d99
RR
3700 /*
3701 * Flag if the page is shared between multiple address spaces. This
3702 * is later used when determining whether to group tasks together
3703 */
3704 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3705 flags |= TNF_SHARED;
3706
90572890 3707 last_cpupid = page_cpupid_last(page);
8191acbd 3708 page_nid = page_to_nid(page);
82b0f8c3 3709 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3710 &flags);
82b0f8c3 3711 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3712 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3713 put_page(page);
3714 goto out;
3715 }
3716
3717 /* Migrate to the requested node */
1bc115d8 3718 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3719 if (migrated) {
8191acbd 3720 page_nid = target_nid;
6688cc05 3721 flags |= TNF_MIGRATED;
074c2381
MG
3722 } else
3723 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3724
3725out:
98fa15f3 3726 if (page_nid != NUMA_NO_NODE)
6688cc05 3727 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3728 return 0;
3729}
3730
2b740303 3731static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3732{
f4200391 3733 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3734 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3735 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3736 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3737 return VM_FAULT_FALLBACK;
3738}
3739
183f24aa 3740/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3741static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3742{
82b0f8c3
JK
3743 if (vma_is_anonymous(vmf->vma))
3744 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3745 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3746 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3747
3748 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3749 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3750 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3751
b96375f7
MW
3752 return VM_FAULT_FALLBACK;
3753}
3754
38e08854
LS
3755static inline bool vma_is_accessible(struct vm_area_struct *vma)
3756{
3757 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3758}
3759
2b740303 3760static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3761{
3762#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3763 /* No support for anonymous transparent PUD pages yet */
3764 if (vma_is_anonymous(vmf->vma))
3765 return VM_FAULT_FALLBACK;
3766 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3767 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3768#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3769 return VM_FAULT_FALLBACK;
3770}
3771
2b740303 3772static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3773{
3774#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3775 /* No support for anonymous transparent PUD pages yet */
3776 if (vma_is_anonymous(vmf->vma))
3777 return VM_FAULT_FALLBACK;
3778 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3779 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3780#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3781 return VM_FAULT_FALLBACK;
3782}
3783
1da177e4
LT
3784/*
3785 * These routines also need to handle stuff like marking pages dirty
3786 * and/or accessed for architectures that don't do it in hardware (most
3787 * RISC architectures). The early dirtying is also good on the i386.
3788 *
3789 * There is also a hook called "update_mmu_cache()" that architectures
3790 * with external mmu caches can use to update those (ie the Sparc or
3791 * PowerPC hashed page tables that act as extended TLBs).
3792 *
7267ec00
KS
3793 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3794 * concurrent faults).
9a95f3cf 3795 *
7267ec00
KS
3796 * The mmap_sem may have been released depending on flags and our return value.
3797 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3798 */
2b740303 3799static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3800{
3801 pte_t entry;
3802
82b0f8c3 3803 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3804 /*
3805 * Leave __pte_alloc() until later: because vm_ops->fault may
3806 * want to allocate huge page, and if we expose page table
3807 * for an instant, it will be difficult to retract from
3808 * concurrent faults and from rmap lookups.
3809 */
82b0f8c3 3810 vmf->pte = NULL;
7267ec00
KS
3811 } else {
3812 /* See comment in pte_alloc_one_map() */
d0f0931d 3813 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3814 return 0;
3815 /*
3816 * A regular pmd is established and it can't morph into a huge
3817 * pmd from under us anymore at this point because we hold the
3818 * mmap_sem read mode and khugepaged takes it in write mode.
3819 * So now it's safe to run pte_offset_map().
3820 */
82b0f8c3 3821 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3822 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3823
3824 /*
3825 * some architectures can have larger ptes than wordsize,
3826 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3827 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3828 * accesses. The code below just needs a consistent view
3829 * for the ifs and we later double check anyway with the
7267ec00
KS
3830 * ptl lock held. So here a barrier will do.
3831 */
3832 barrier();
2994302b 3833 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3834 pte_unmap(vmf->pte);
3835 vmf->pte = NULL;
65500d23 3836 }
1da177e4
LT
3837 }
3838
82b0f8c3
JK
3839 if (!vmf->pte) {
3840 if (vma_is_anonymous(vmf->vma))
3841 return do_anonymous_page(vmf);
7267ec00 3842 else
82b0f8c3 3843 return do_fault(vmf);
7267ec00
KS
3844 }
3845
2994302b
JK
3846 if (!pte_present(vmf->orig_pte))
3847 return do_swap_page(vmf);
7267ec00 3848
2994302b
JK
3849 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3850 return do_numa_page(vmf);
d10e63f2 3851
82b0f8c3
JK
3852 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3853 spin_lock(vmf->ptl);
2994302b 3854 entry = vmf->orig_pte;
82b0f8c3 3855 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3856 goto unlock;
82b0f8c3 3857 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3858 if (!pte_write(entry))
2994302b 3859 return do_wp_page(vmf);
1da177e4
LT
3860 entry = pte_mkdirty(entry);
3861 }
3862 entry = pte_mkyoung(entry);
82b0f8c3
JK
3863 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3864 vmf->flags & FAULT_FLAG_WRITE)) {
3865 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3866 } else {
3867 /*
3868 * This is needed only for protection faults but the arch code
3869 * is not yet telling us if this is a protection fault or not.
3870 * This still avoids useless tlb flushes for .text page faults
3871 * with threads.
3872 */
82b0f8c3
JK
3873 if (vmf->flags & FAULT_FLAG_WRITE)
3874 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3875 }
8f4e2101 3876unlock:
82b0f8c3 3877 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3878 return 0;
1da177e4
LT
3879}
3880
3881/*
3882 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3883 *
3884 * The mmap_sem may have been released depending on flags and our
3885 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3886 */
2b740303
SJ
3887static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3888 unsigned long address, unsigned int flags)
1da177e4 3889{
82b0f8c3 3890 struct vm_fault vmf = {
bae473a4 3891 .vma = vma,
1a29d85e 3892 .address = address & PAGE_MASK,
bae473a4 3893 .flags = flags,
0721ec8b 3894 .pgoff = linear_page_index(vma, address),
667240e0 3895 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3896 };
fde26bed 3897 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 3898 struct mm_struct *mm = vma->vm_mm;
1da177e4 3899 pgd_t *pgd;
c2febafc 3900 p4d_t *p4d;
2b740303 3901 vm_fault_t ret;
1da177e4 3902
1da177e4 3903 pgd = pgd_offset(mm, address);
c2febafc
KS
3904 p4d = p4d_alloc(mm, pgd, address);
3905 if (!p4d)
3906 return VM_FAULT_OOM;
a00cc7d9 3907
c2febafc 3908 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3909 if (!vmf.pud)
c74df32c 3910 return VM_FAULT_OOM;
7635d9cb 3911 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3912 ret = create_huge_pud(&vmf);
3913 if (!(ret & VM_FAULT_FALLBACK))
3914 return ret;
3915 } else {
3916 pud_t orig_pud = *vmf.pud;
3917
3918 barrier();
3919 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 3920
a00cc7d9
MW
3921 /* NUMA case for anonymous PUDs would go here */
3922
f6f37321 3923 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
3924 ret = wp_huge_pud(&vmf, orig_pud);
3925 if (!(ret & VM_FAULT_FALLBACK))
3926 return ret;
3927 } else {
3928 huge_pud_set_accessed(&vmf, orig_pud);
3929 return 0;
3930 }
3931 }
3932 }
3933
3934 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3935 if (!vmf.pmd)
c74df32c 3936 return VM_FAULT_OOM;
7635d9cb 3937 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 3938 ret = create_huge_pmd(&vmf);
c0292554
KS
3939 if (!(ret & VM_FAULT_FALLBACK))
3940 return ret;
71e3aac0 3941 } else {
82b0f8c3 3942 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3943
71e3aac0 3944 barrier();
84c3fc4e
ZY
3945 if (unlikely(is_swap_pmd(orig_pmd))) {
3946 VM_BUG_ON(thp_migration_supported() &&
3947 !is_pmd_migration_entry(orig_pmd));
3948 if (is_pmd_migration_entry(orig_pmd))
3949 pmd_migration_entry_wait(mm, vmf.pmd);
3950 return 0;
3951 }
5c7fb56e 3952 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3953 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3954 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3955
f6f37321 3956 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 3957 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3958 if (!(ret & VM_FAULT_FALLBACK))
3959 return ret;
a1dd450b 3960 } else {
82b0f8c3 3961 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3962 return 0;
1f1d06c3 3963 }
71e3aac0
AA
3964 }
3965 }
3966
82b0f8c3 3967 return handle_pte_fault(&vmf);
1da177e4
LT
3968}
3969
9a95f3cf
PC
3970/*
3971 * By the time we get here, we already hold the mm semaphore
3972 *
3973 * The mmap_sem may have been released depending on flags and our
3974 * return value. See filemap_fault() and __lock_page_or_retry().
3975 */
2b740303 3976vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 3977 unsigned int flags)
519e5247 3978{
2b740303 3979 vm_fault_t ret;
519e5247
JW
3980
3981 __set_current_state(TASK_RUNNING);
3982
3983 count_vm_event(PGFAULT);
2262185c 3984 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3985
3986 /* do counter updates before entering really critical section. */
3987 check_sync_rss_stat(current);
3988
de0c799b
LD
3989 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3990 flags & FAULT_FLAG_INSTRUCTION,
3991 flags & FAULT_FLAG_REMOTE))
3992 return VM_FAULT_SIGSEGV;
3993
519e5247
JW
3994 /*
3995 * Enable the memcg OOM handling for faults triggered in user
3996 * space. Kernel faults are handled more gracefully.
3997 */
3998 if (flags & FAULT_FLAG_USER)
29ef680a 3999 mem_cgroup_enter_user_fault();
519e5247 4000
bae473a4
KS
4001 if (unlikely(is_vm_hugetlb_page(vma)))
4002 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4003 else
4004 ret = __handle_mm_fault(vma, address, flags);
519e5247 4005
49426420 4006 if (flags & FAULT_FLAG_USER) {
29ef680a 4007 mem_cgroup_exit_user_fault();
166f61b9
TH
4008 /*
4009 * The task may have entered a memcg OOM situation but
4010 * if the allocation error was handled gracefully (no
4011 * VM_FAULT_OOM), there is no need to kill anything.
4012 * Just clean up the OOM state peacefully.
4013 */
4014 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4015 mem_cgroup_oom_synchronize(false);
49426420 4016 }
3812c8c8 4017
519e5247
JW
4018 return ret;
4019}
e1d6d01a 4020EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4021
90eceff1
KS
4022#ifndef __PAGETABLE_P4D_FOLDED
4023/*
4024 * Allocate p4d page table.
4025 * We've already handled the fast-path in-line.
4026 */
4027int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4028{
4029 p4d_t *new = p4d_alloc_one(mm, address);
4030 if (!new)
4031 return -ENOMEM;
4032
4033 smp_wmb(); /* See comment in __pte_alloc */
4034
4035 spin_lock(&mm->page_table_lock);
4036 if (pgd_present(*pgd)) /* Another has populated it */
4037 p4d_free(mm, new);
4038 else
4039 pgd_populate(mm, pgd, new);
4040 spin_unlock(&mm->page_table_lock);
4041 return 0;
4042}
4043#endif /* __PAGETABLE_P4D_FOLDED */
4044
1da177e4
LT
4045#ifndef __PAGETABLE_PUD_FOLDED
4046/*
4047 * Allocate page upper directory.
872fec16 4048 * We've already handled the fast-path in-line.
1da177e4 4049 */
c2febafc 4050int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4051{
c74df32c
HD
4052 pud_t *new = pud_alloc_one(mm, address);
4053 if (!new)
1bb3630e 4054 return -ENOMEM;
1da177e4 4055
362a61ad
NP
4056 smp_wmb(); /* See comment in __pte_alloc */
4057
872fec16 4058 spin_lock(&mm->page_table_lock);
c2febafc 4059#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4060 if (!p4d_present(*p4d)) {
4061 mm_inc_nr_puds(mm);
c2febafc 4062 p4d_populate(mm, p4d, new);
b4e98d9a 4063 } else /* Another has populated it */
5e541973 4064 pud_free(mm, new);
b4e98d9a
KS
4065#else
4066 if (!pgd_present(*p4d)) {
4067 mm_inc_nr_puds(mm);
c2febafc 4068 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4069 } else /* Another has populated it */
4070 pud_free(mm, new);
c2febafc 4071#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4072 spin_unlock(&mm->page_table_lock);
1bb3630e 4073 return 0;
1da177e4
LT
4074}
4075#endif /* __PAGETABLE_PUD_FOLDED */
4076
4077#ifndef __PAGETABLE_PMD_FOLDED
4078/*
4079 * Allocate page middle directory.
872fec16 4080 * We've already handled the fast-path in-line.
1da177e4 4081 */
1bb3630e 4082int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4083{
a00cc7d9 4084 spinlock_t *ptl;
c74df32c
HD
4085 pmd_t *new = pmd_alloc_one(mm, address);
4086 if (!new)
1bb3630e 4087 return -ENOMEM;
1da177e4 4088
362a61ad
NP
4089 smp_wmb(); /* See comment in __pte_alloc */
4090
a00cc7d9 4091 ptl = pud_lock(mm, pud);
1da177e4 4092#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4093 if (!pud_present(*pud)) {
4094 mm_inc_nr_pmds(mm);
1bb3630e 4095 pud_populate(mm, pud, new);
dc6c9a35 4096 } else /* Another has populated it */
5e541973 4097 pmd_free(mm, new);
dc6c9a35
KS
4098#else
4099 if (!pgd_present(*pud)) {
4100 mm_inc_nr_pmds(mm);
1bb3630e 4101 pgd_populate(mm, pud, new);
dc6c9a35
KS
4102 } else /* Another has populated it */
4103 pmd_free(mm, new);
1da177e4 4104#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4105 spin_unlock(ptl);
1bb3630e 4106 return 0;
e0f39591 4107}
1da177e4
LT
4108#endif /* __PAGETABLE_PMD_FOLDED */
4109
09796395 4110static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4111 struct mmu_notifier_range *range,
a4d1a885 4112 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4113{
4114 pgd_t *pgd;
c2febafc 4115 p4d_t *p4d;
f8ad0f49
JW
4116 pud_t *pud;
4117 pmd_t *pmd;
4118 pte_t *ptep;
4119
4120 pgd = pgd_offset(mm, address);
4121 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4122 goto out;
4123
c2febafc
KS
4124 p4d = p4d_offset(pgd, address);
4125 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4126 goto out;
4127
4128 pud = pud_offset(p4d, address);
f8ad0f49
JW
4129 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4130 goto out;
4131
4132 pmd = pmd_offset(pud, address);
f66055ab 4133 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4134
09796395
RZ
4135 if (pmd_huge(*pmd)) {
4136 if (!pmdpp)
4137 goto out;
4138
ac46d4f3 4139 if (range) {
7269f999 4140 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4141 NULL, mm, address & PMD_MASK,
4142 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4143 mmu_notifier_invalidate_range_start(range);
a4d1a885 4144 }
09796395
RZ
4145 *ptlp = pmd_lock(mm, pmd);
4146 if (pmd_huge(*pmd)) {
4147 *pmdpp = pmd;
4148 return 0;
4149 }
4150 spin_unlock(*ptlp);
ac46d4f3
JG
4151 if (range)
4152 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4153 }
4154
4155 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4156 goto out;
4157
ac46d4f3 4158 if (range) {
7269f999 4159 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4160 address & PAGE_MASK,
4161 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4162 mmu_notifier_invalidate_range_start(range);
a4d1a885 4163 }
f8ad0f49 4164 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4165 if (!pte_present(*ptep))
4166 goto unlock;
4167 *ptepp = ptep;
4168 return 0;
4169unlock:
4170 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4171 if (range)
4172 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4173out:
4174 return -EINVAL;
4175}
4176
f729c8c9
RZ
4177static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4178 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4179{
4180 int res;
4181
4182 /* (void) is needed to make gcc happy */
4183 (void) __cond_lock(*ptlp,
ac46d4f3 4184 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4185 ptepp, NULL, ptlp)));
09796395
RZ
4186 return res;
4187}
4188
4189int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4190 struct mmu_notifier_range *range,
4191 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4192{
4193 int res;
4194
4195 /* (void) is needed to make gcc happy */
4196 (void) __cond_lock(*ptlp,
ac46d4f3 4197 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4198 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4199 return res;
4200}
09796395 4201EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4202
3b6748e2
JW
4203/**
4204 * follow_pfn - look up PFN at a user virtual address
4205 * @vma: memory mapping
4206 * @address: user virtual address
4207 * @pfn: location to store found PFN
4208 *
4209 * Only IO mappings and raw PFN mappings are allowed.
4210 *
a862f68a 4211 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4212 */
4213int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4214 unsigned long *pfn)
4215{
4216 int ret = -EINVAL;
4217 spinlock_t *ptl;
4218 pte_t *ptep;
4219
4220 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4221 return ret;
4222
4223 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4224 if (ret)
4225 return ret;
4226 *pfn = pte_pfn(*ptep);
4227 pte_unmap_unlock(ptep, ptl);
4228 return 0;
4229}
4230EXPORT_SYMBOL(follow_pfn);
4231
28b2ee20 4232#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4233int follow_phys(struct vm_area_struct *vma,
4234 unsigned long address, unsigned int flags,
4235 unsigned long *prot, resource_size_t *phys)
28b2ee20 4236{
03668a4d 4237 int ret = -EINVAL;
28b2ee20
RR
4238 pte_t *ptep, pte;
4239 spinlock_t *ptl;
28b2ee20 4240
d87fe660 4241 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4242 goto out;
28b2ee20 4243
03668a4d 4244 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4245 goto out;
28b2ee20 4246 pte = *ptep;
03668a4d 4247
f6f37321 4248 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4249 goto unlock;
28b2ee20
RR
4250
4251 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4252 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4253
03668a4d 4254 ret = 0;
28b2ee20
RR
4255unlock:
4256 pte_unmap_unlock(ptep, ptl);
4257out:
d87fe660 4258 return ret;
28b2ee20
RR
4259}
4260
4261int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4262 void *buf, int len, int write)
4263{
4264 resource_size_t phys_addr;
4265 unsigned long prot = 0;
2bc7273b 4266 void __iomem *maddr;
28b2ee20
RR
4267 int offset = addr & (PAGE_SIZE-1);
4268
d87fe660 4269 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4270 return -EINVAL;
4271
9cb12d7b 4272 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4273 if (!maddr)
4274 return -ENOMEM;
4275
28b2ee20
RR
4276 if (write)
4277 memcpy_toio(maddr + offset, buf, len);
4278 else
4279 memcpy_fromio(buf, maddr + offset, len);
4280 iounmap(maddr);
4281
4282 return len;
4283}
5a73633e 4284EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4285#endif
4286
0ec76a11 4287/*
206cb636
SW
4288 * Access another process' address space as given in mm. If non-NULL, use the
4289 * given task for page fault accounting.
0ec76a11 4290 */
84d77d3f 4291int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4292 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4293{
0ec76a11 4294 struct vm_area_struct *vma;
0ec76a11 4295 void *old_buf = buf;
442486ec 4296 int write = gup_flags & FOLL_WRITE;
0ec76a11 4297
1e426fe2
KK
4298 if (down_read_killable(&mm->mmap_sem))
4299 return 0;
4300
183ff22b 4301 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4302 while (len) {
4303 int bytes, ret, offset;
4304 void *maddr;
28b2ee20 4305 struct page *page = NULL;
0ec76a11 4306
1e987790 4307 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4308 gup_flags, &page, &vma, NULL);
28b2ee20 4309 if (ret <= 0) {
dbffcd03
RR
4310#ifndef CONFIG_HAVE_IOREMAP_PROT
4311 break;
4312#else
28b2ee20
RR
4313 /*
4314 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4315 * we can access using slightly different code.
4316 */
28b2ee20 4317 vma = find_vma(mm, addr);
fe936dfc 4318 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4319 break;
4320 if (vma->vm_ops && vma->vm_ops->access)
4321 ret = vma->vm_ops->access(vma, addr, buf,
4322 len, write);
4323 if (ret <= 0)
28b2ee20
RR
4324 break;
4325 bytes = ret;
dbffcd03 4326#endif
0ec76a11 4327 } else {
28b2ee20
RR
4328 bytes = len;
4329 offset = addr & (PAGE_SIZE-1);
4330 if (bytes > PAGE_SIZE-offset)
4331 bytes = PAGE_SIZE-offset;
4332
4333 maddr = kmap(page);
4334 if (write) {
4335 copy_to_user_page(vma, page, addr,
4336 maddr + offset, buf, bytes);
4337 set_page_dirty_lock(page);
4338 } else {
4339 copy_from_user_page(vma, page, addr,
4340 buf, maddr + offset, bytes);
4341 }
4342 kunmap(page);
09cbfeaf 4343 put_page(page);
0ec76a11 4344 }
0ec76a11
DH
4345 len -= bytes;
4346 buf += bytes;
4347 addr += bytes;
4348 }
4349 up_read(&mm->mmap_sem);
0ec76a11
DH
4350
4351 return buf - old_buf;
4352}
03252919 4353
5ddd36b9 4354/**
ae91dbfc 4355 * access_remote_vm - access another process' address space
5ddd36b9
SW
4356 * @mm: the mm_struct of the target address space
4357 * @addr: start address to access
4358 * @buf: source or destination buffer
4359 * @len: number of bytes to transfer
6347e8d5 4360 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4361 *
4362 * The caller must hold a reference on @mm.
a862f68a
MR
4363 *
4364 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4365 */
4366int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4367 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4368{
6347e8d5 4369 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4370}
4371
206cb636
SW
4372/*
4373 * Access another process' address space.
4374 * Source/target buffer must be kernel space,
4375 * Do not walk the page table directly, use get_user_pages
4376 */
4377int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4378 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4379{
4380 struct mm_struct *mm;
4381 int ret;
4382
4383 mm = get_task_mm(tsk);
4384 if (!mm)
4385 return 0;
4386
f307ab6d 4387 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4388
206cb636
SW
4389 mmput(mm);
4390
4391 return ret;
4392}
fcd35857 4393EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4394
03252919
AK
4395/*
4396 * Print the name of a VMA.
4397 */
4398void print_vma_addr(char *prefix, unsigned long ip)
4399{
4400 struct mm_struct *mm = current->mm;
4401 struct vm_area_struct *vma;
4402
e8bff74a 4403 /*
0a7f682d 4404 * we might be running from an atomic context so we cannot sleep
e8bff74a 4405 */
0a7f682d 4406 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4407 return;
4408
03252919
AK
4409 vma = find_vma(mm, ip);
4410 if (vma && vma->vm_file) {
4411 struct file *f = vma->vm_file;
0a7f682d 4412 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4413 if (buf) {
2fbc57c5 4414 char *p;
03252919 4415
9bf39ab2 4416 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4417 if (IS_ERR(p))
4418 p = "?";
2fbc57c5 4419 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4420 vma->vm_start,
4421 vma->vm_end - vma->vm_start);
4422 free_page((unsigned long)buf);
4423 }
4424 }
51a07e50 4425 up_read(&mm->mmap_sem);
03252919 4426}
3ee1afa3 4427
662bbcb2 4428#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4429void __might_fault(const char *file, int line)
3ee1afa3 4430{
95156f00
PZ
4431 /*
4432 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4433 * holding the mmap_sem, this is safe because kernel memory doesn't
4434 * get paged out, therefore we'll never actually fault, and the
4435 * below annotations will generate false positives.
4436 */
db68ce10 4437 if (uaccess_kernel())
95156f00 4438 return;
9ec23531 4439 if (pagefault_disabled())
662bbcb2 4440 return;
9ec23531
DH
4441 __might_sleep(file, line, 0);
4442#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4443 if (current->mm)
3ee1afa3 4444 might_lock_read(&current->mm->mmap_sem);
9ec23531 4445#endif
3ee1afa3 4446}
9ec23531 4447EXPORT_SYMBOL(__might_fault);
3ee1afa3 4448#endif
47ad8475
AA
4449
4450#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4451/*
4452 * Process all subpages of the specified huge page with the specified
4453 * operation. The target subpage will be processed last to keep its
4454 * cache lines hot.
4455 */
4456static inline void process_huge_page(
4457 unsigned long addr_hint, unsigned int pages_per_huge_page,
4458 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4459 void *arg)
47ad8475 4460{
c79b57e4
HY
4461 int i, n, base, l;
4462 unsigned long addr = addr_hint &
4463 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4464
c6ddfb6c 4465 /* Process target subpage last to keep its cache lines hot */
47ad8475 4466 might_sleep();
c79b57e4
HY
4467 n = (addr_hint - addr) / PAGE_SIZE;
4468 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4469 /* If target subpage in first half of huge page */
c79b57e4
HY
4470 base = 0;
4471 l = n;
c6ddfb6c 4472 /* Process subpages at the end of huge page */
c79b57e4
HY
4473 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4474 cond_resched();
c6ddfb6c 4475 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4476 }
4477 } else {
c6ddfb6c 4478 /* If target subpage in second half of huge page */
c79b57e4
HY
4479 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4480 l = pages_per_huge_page - n;
c6ddfb6c 4481 /* Process subpages at the begin of huge page */
c79b57e4
HY
4482 for (i = 0; i < base; i++) {
4483 cond_resched();
c6ddfb6c 4484 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4485 }
4486 }
4487 /*
c6ddfb6c
HY
4488 * Process remaining subpages in left-right-left-right pattern
4489 * towards the target subpage
c79b57e4
HY
4490 */
4491 for (i = 0; i < l; i++) {
4492 int left_idx = base + i;
4493 int right_idx = base + 2 * l - 1 - i;
4494
4495 cond_resched();
c6ddfb6c 4496 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4497 cond_resched();
c6ddfb6c 4498 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4499 }
4500}
4501
c6ddfb6c
HY
4502static void clear_gigantic_page(struct page *page,
4503 unsigned long addr,
4504 unsigned int pages_per_huge_page)
4505{
4506 int i;
4507 struct page *p = page;
4508
4509 might_sleep();
4510 for (i = 0; i < pages_per_huge_page;
4511 i++, p = mem_map_next(p, page, i)) {
4512 cond_resched();
4513 clear_user_highpage(p, addr + i * PAGE_SIZE);
4514 }
4515}
4516
4517static void clear_subpage(unsigned long addr, int idx, void *arg)
4518{
4519 struct page *page = arg;
4520
4521 clear_user_highpage(page + idx, addr);
4522}
4523
4524void clear_huge_page(struct page *page,
4525 unsigned long addr_hint, unsigned int pages_per_huge_page)
4526{
4527 unsigned long addr = addr_hint &
4528 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4529
4530 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4531 clear_gigantic_page(page, addr, pages_per_huge_page);
4532 return;
4533 }
4534
4535 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4536}
4537
47ad8475
AA
4538static void copy_user_gigantic_page(struct page *dst, struct page *src,
4539 unsigned long addr,
4540 struct vm_area_struct *vma,
4541 unsigned int pages_per_huge_page)
4542{
4543 int i;
4544 struct page *dst_base = dst;
4545 struct page *src_base = src;
4546
4547 for (i = 0; i < pages_per_huge_page; ) {
4548 cond_resched();
4549 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4550
4551 i++;
4552 dst = mem_map_next(dst, dst_base, i);
4553 src = mem_map_next(src, src_base, i);
4554 }
4555}
4556
c9f4cd71
HY
4557struct copy_subpage_arg {
4558 struct page *dst;
4559 struct page *src;
4560 struct vm_area_struct *vma;
4561};
4562
4563static void copy_subpage(unsigned long addr, int idx, void *arg)
4564{
4565 struct copy_subpage_arg *copy_arg = arg;
4566
4567 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4568 addr, copy_arg->vma);
4569}
4570
47ad8475 4571void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4572 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4573 unsigned int pages_per_huge_page)
4574{
c9f4cd71
HY
4575 unsigned long addr = addr_hint &
4576 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4577 struct copy_subpage_arg arg = {
4578 .dst = dst,
4579 .src = src,
4580 .vma = vma,
4581 };
47ad8475
AA
4582
4583 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4584 copy_user_gigantic_page(dst, src, addr, vma,
4585 pages_per_huge_page);
4586 return;
4587 }
4588
c9f4cd71 4589 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4590}
fa4d75c1
MK
4591
4592long copy_huge_page_from_user(struct page *dst_page,
4593 const void __user *usr_src,
810a56b9
MK
4594 unsigned int pages_per_huge_page,
4595 bool allow_pagefault)
fa4d75c1
MK
4596{
4597 void *src = (void *)usr_src;
4598 void *page_kaddr;
4599 unsigned long i, rc = 0;
4600 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4601
4602 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4603 if (allow_pagefault)
4604 page_kaddr = kmap(dst_page + i);
4605 else
4606 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4607 rc = copy_from_user(page_kaddr,
4608 (const void __user *)(src + i * PAGE_SIZE),
4609 PAGE_SIZE);
810a56b9
MK
4610 if (allow_pagefault)
4611 kunmap(dst_page + i);
4612 else
4613 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4614
4615 ret_val -= (PAGE_SIZE - rc);
4616 if (rc)
4617 break;
4618
4619 cond_resched();
4620 }
4621 return ret_val;
4622}
47ad8475 4623#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4624
40b64acd 4625#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4626
4627static struct kmem_cache *page_ptl_cachep;
4628
4629void __init ptlock_cache_init(void)
4630{
4631 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4632 SLAB_PANIC, NULL);
4633}
4634
539edb58 4635bool ptlock_alloc(struct page *page)
49076ec2
KS
4636{
4637 spinlock_t *ptl;
4638
b35f1819 4639 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4640 if (!ptl)
4641 return false;
539edb58 4642 page->ptl = ptl;
49076ec2
KS
4643 return true;
4644}
4645
539edb58 4646void ptlock_free(struct page *page)
49076ec2 4647{
b35f1819 4648 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4649}
4650#endif