]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
writeback: fix inode cgroup switching comment
[thirdparty/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
5042db43 52#include <linux/memremap.h>
9a840895 53#include <linux/ksm.h>
1da177e4 54#include <linux/rmap.h>
b95f1b31 55#include <linux/export.h>
0ff92245 56#include <linux/delayacct.h>
1da177e4 57#include <linux/init.h>
01c8f1c4 58#include <linux/pfn_t.h>
edc79b2a 59#include <linux/writeback.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
3dc14741
HD
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
1da177e4 73
6952b61d 74#include <asm/io.h>
33a709b2 75#include <asm/mmu_context.h>
1da177e4 76#include <asm/pgalloc.h>
7c0f6ba6 77#include <linux/uaccess.h>
1da177e4
LT
78#include <asm/tlb.h>
79#include <asm/tlbflush.h>
80#include <asm/pgtable.h>
81
42b77728
JB
82#include "internal.h"
83
af27d940 84#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 85#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
86#endif
87
d41dee36 88#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
89/* use the per-pgdat data instead for discontigmem - mbligh */
90unsigned long max_mapnr;
1da177e4 91EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
92
93struct page *mem_map;
1da177e4
LT
94EXPORT_SYMBOL(mem_map);
95#endif
96
1da177e4
LT
97/*
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
103 */
166f61b9 104void *high_memory;
1da177e4 105EXPORT_SYMBOL(high_memory);
1da177e4 106
32a93233
IM
107/*
108 * Randomize the address space (stacks, mmaps, brk, etc.).
109 *
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
112 */
113int randomize_va_space __read_mostly =
114#ifdef CONFIG_COMPAT_BRK
115 1;
116#else
117 2;
118#endif
a62eaf15
AK
119
120static int __init disable_randmaps(char *s)
121{
122 randomize_va_space = 0;
9b41046c 123 return 1;
a62eaf15
AK
124}
125__setup("norandmaps", disable_randmaps);
126
62eede62 127unsigned long zero_pfn __read_mostly;
0b70068e
AB
128EXPORT_SYMBOL(zero_pfn);
129
166f61b9
TH
130unsigned long highest_memmap_pfn __read_mostly;
131
a13ea5b7
HD
132/*
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 */
135static int __init init_zero_pfn(void)
136{
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
139}
140core_initcall(init_zero_pfn);
a62eaf15 141
d559db08 142
34e55232
KH
143#if defined(SPLIT_RSS_COUNTING)
144
ea48cf78 145void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
146{
147 int i;
148
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
34e55232
KH
153 }
154 }
05af2e10 155 current->rss_stat.events = 0;
34e55232
KH
156}
157
158static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159{
160 struct task_struct *task = current;
161
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
166}
167#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170/* sync counter once per 64 page faults */
171#define TASK_RSS_EVENTS_THRESH (64)
172static void check_sync_rss_stat(struct task_struct *task)
173{
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 177 sync_mm_rss(task->mm);
34e55232 178}
9547d01b 179#else /* SPLIT_RSS_COUNTING */
34e55232
KH
180
181#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184static void check_sync_rss_stat(struct task_struct *task)
185{
186}
187
9547d01b
PZ
188#endif /* SPLIT_RSS_COUNTING */
189
1da177e4
LT
190/*
191 * Note: this doesn't free the actual pages themselves. That
192 * has been handled earlier when unmapping all the memory regions.
193 */
9e1b32ca
BH
194static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
195 unsigned long addr)
1da177e4 196{
2f569afd 197 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 198 pmd_clear(pmd);
9e1b32ca 199 pte_free_tlb(tlb, token, addr);
c4812909 200 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
201}
202
e0da382c
HD
203static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
204 unsigned long addr, unsigned long end,
205 unsigned long floor, unsigned long ceiling)
1da177e4
LT
206{
207 pmd_t *pmd;
208 unsigned long next;
e0da382c 209 unsigned long start;
1da177e4 210
e0da382c 211 start = addr;
1da177e4 212 pmd = pmd_offset(pud, addr);
1da177e4
LT
213 do {
214 next = pmd_addr_end(addr, end);
215 if (pmd_none_or_clear_bad(pmd))
216 continue;
9e1b32ca 217 free_pte_range(tlb, pmd, addr);
1da177e4
LT
218 } while (pmd++, addr = next, addr != end);
219
e0da382c
HD
220 start &= PUD_MASK;
221 if (start < floor)
222 return;
223 if (ceiling) {
224 ceiling &= PUD_MASK;
225 if (!ceiling)
226 return;
1da177e4 227 }
e0da382c
HD
228 if (end - 1 > ceiling - 1)
229 return;
230
231 pmd = pmd_offset(pud, start);
232 pud_clear(pud);
9e1b32ca 233 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 234 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
235}
236
c2febafc 237static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
238 unsigned long addr, unsigned long end,
239 unsigned long floor, unsigned long ceiling)
1da177e4
LT
240{
241 pud_t *pud;
242 unsigned long next;
e0da382c 243 unsigned long start;
1da177e4 244
e0da382c 245 start = addr;
c2febafc 246 pud = pud_offset(p4d, addr);
1da177e4
LT
247 do {
248 next = pud_addr_end(addr, end);
249 if (pud_none_or_clear_bad(pud))
250 continue;
e0da382c 251 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
252 } while (pud++, addr = next, addr != end);
253
c2febafc
KS
254 start &= P4D_MASK;
255 if (start < floor)
256 return;
257 if (ceiling) {
258 ceiling &= P4D_MASK;
259 if (!ceiling)
260 return;
261 }
262 if (end - 1 > ceiling - 1)
263 return;
264
265 pud = pud_offset(p4d, start);
266 p4d_clear(p4d);
267 pud_free_tlb(tlb, pud, start);
b4e98d9a 268 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
269}
270
271static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
272 unsigned long addr, unsigned long end,
273 unsigned long floor, unsigned long ceiling)
274{
275 p4d_t *p4d;
276 unsigned long next;
277 unsigned long start;
278
279 start = addr;
280 p4d = p4d_offset(pgd, addr);
281 do {
282 next = p4d_addr_end(addr, end);
283 if (p4d_none_or_clear_bad(p4d))
284 continue;
285 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
286 } while (p4d++, addr = next, addr != end);
287
e0da382c
HD
288 start &= PGDIR_MASK;
289 if (start < floor)
290 return;
291 if (ceiling) {
292 ceiling &= PGDIR_MASK;
293 if (!ceiling)
294 return;
1da177e4 295 }
e0da382c
HD
296 if (end - 1 > ceiling - 1)
297 return;
298
c2febafc 299 p4d = p4d_offset(pgd, start);
e0da382c 300 pgd_clear(pgd);
c2febafc 301 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
302}
303
304/*
e0da382c 305 * This function frees user-level page tables of a process.
1da177e4 306 */
42b77728 307void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
308 unsigned long addr, unsigned long end,
309 unsigned long floor, unsigned long ceiling)
1da177e4
LT
310{
311 pgd_t *pgd;
312 unsigned long next;
e0da382c
HD
313
314 /*
315 * The next few lines have given us lots of grief...
316 *
317 * Why are we testing PMD* at this top level? Because often
318 * there will be no work to do at all, and we'd prefer not to
319 * go all the way down to the bottom just to discover that.
320 *
321 * Why all these "- 1"s? Because 0 represents both the bottom
322 * of the address space and the top of it (using -1 for the
323 * top wouldn't help much: the masks would do the wrong thing).
324 * The rule is that addr 0 and floor 0 refer to the bottom of
325 * the address space, but end 0 and ceiling 0 refer to the top
326 * Comparisons need to use "end - 1" and "ceiling - 1" (though
327 * that end 0 case should be mythical).
328 *
329 * Wherever addr is brought up or ceiling brought down, we must
330 * be careful to reject "the opposite 0" before it confuses the
331 * subsequent tests. But what about where end is brought down
332 * by PMD_SIZE below? no, end can't go down to 0 there.
333 *
334 * Whereas we round start (addr) and ceiling down, by different
335 * masks at different levels, in order to test whether a table
336 * now has no other vmas using it, so can be freed, we don't
337 * bother to round floor or end up - the tests don't need that.
338 */
1da177e4 339
e0da382c
HD
340 addr &= PMD_MASK;
341 if (addr < floor) {
342 addr += PMD_SIZE;
343 if (!addr)
344 return;
345 }
346 if (ceiling) {
347 ceiling &= PMD_MASK;
348 if (!ceiling)
349 return;
350 }
351 if (end - 1 > ceiling - 1)
352 end -= PMD_SIZE;
353 if (addr > end - 1)
354 return;
07e32661
AK
355 /*
356 * We add page table cache pages with PAGE_SIZE,
357 * (see pte_free_tlb()), flush the tlb if we need
358 */
359 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 360 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
361 do {
362 next = pgd_addr_end(addr, end);
363 if (pgd_none_or_clear_bad(pgd))
364 continue;
c2febafc 365 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 366 } while (pgd++, addr = next, addr != end);
e0da382c
HD
367}
368
42b77728 369void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 370 unsigned long floor, unsigned long ceiling)
e0da382c
HD
371{
372 while (vma) {
373 struct vm_area_struct *next = vma->vm_next;
374 unsigned long addr = vma->vm_start;
375
8f4f8c16 376 /*
25d9e2d1
NP
377 * Hide vma from rmap and truncate_pagecache before freeing
378 * pgtables
8f4f8c16 379 */
5beb4930 380 unlink_anon_vmas(vma);
8f4f8c16
HD
381 unlink_file_vma(vma);
382
9da61aef 383 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 384 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 385 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
386 } else {
387 /*
388 * Optimization: gather nearby vmas into one call down
389 */
390 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 391 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
392 vma = next;
393 next = vma->vm_next;
5beb4930 394 unlink_anon_vmas(vma);
8f4f8c16 395 unlink_file_vma(vma);
3bf5ee95
HD
396 }
397 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 398 floor, next ? next->vm_start : ceiling);
3bf5ee95 399 }
e0da382c
HD
400 vma = next;
401 }
1da177e4
LT
402}
403
4cf58924 404int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 405{
c4088ebd 406 spinlock_t *ptl;
4cf58924 407 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
408 if (!new)
409 return -ENOMEM;
410
362a61ad
NP
411 /*
412 * Ensure all pte setup (eg. pte page lock and page clearing) are
413 * visible before the pte is made visible to other CPUs by being
414 * put into page tables.
415 *
416 * The other side of the story is the pointer chasing in the page
417 * table walking code (when walking the page table without locking;
418 * ie. most of the time). Fortunately, these data accesses consist
419 * of a chain of data-dependent loads, meaning most CPUs (alpha
420 * being the notable exception) will already guarantee loads are
421 * seen in-order. See the alpha page table accessors for the
422 * smp_read_barrier_depends() barriers in page table walking code.
423 */
424 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425
c4088ebd 426 ptl = pmd_lock(mm, pmd);
8ac1f832 427 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 428 mm_inc_nr_ptes(mm);
1da177e4 429 pmd_populate(mm, pmd, new);
2f569afd 430 new = NULL;
4b471e88 431 }
c4088ebd 432 spin_unlock(ptl);
2f569afd
MS
433 if (new)
434 pte_free(mm, new);
1bb3630e 435 return 0;
1da177e4
LT
436}
437
4cf58924 438int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 439{
4cf58924 440 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
441 if (!new)
442 return -ENOMEM;
443
362a61ad
NP
444 smp_wmb(); /* See comment in __pte_alloc */
445
1bb3630e 446 spin_lock(&init_mm.page_table_lock);
8ac1f832 447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 448 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 449 new = NULL;
4b471e88 450 }
1bb3630e 451 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
452 if (new)
453 pte_free_kernel(&init_mm, new);
1bb3630e 454 return 0;
1da177e4
LT
455}
456
d559db08
KH
457static inline void init_rss_vec(int *rss)
458{
459 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
460}
461
462static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 463{
d559db08
KH
464 int i;
465
34e55232 466 if (current->mm == mm)
05af2e10 467 sync_mm_rss(mm);
d559db08
KH
468 for (i = 0; i < NR_MM_COUNTERS; i++)
469 if (rss[i])
470 add_mm_counter(mm, i, rss[i]);
ae859762
HD
471}
472
b5810039 473/*
6aab341e
LT
474 * This function is called to print an error when a bad pte
475 * is found. For example, we might have a PFN-mapped pte in
476 * a region that doesn't allow it.
b5810039
NP
477 *
478 * The calling function must still handle the error.
479 */
3dc14741
HD
480static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
481 pte_t pte, struct page *page)
b5810039 482{
3dc14741 483 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
484 p4d_t *p4d = p4d_offset(pgd, addr);
485 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
486 pmd_t *pmd = pmd_offset(pud, addr);
487 struct address_space *mapping;
488 pgoff_t index;
d936cf9b
HD
489 static unsigned long resume;
490 static unsigned long nr_shown;
491 static unsigned long nr_unshown;
492
493 /*
494 * Allow a burst of 60 reports, then keep quiet for that minute;
495 * or allow a steady drip of one report per second.
496 */
497 if (nr_shown == 60) {
498 if (time_before(jiffies, resume)) {
499 nr_unshown++;
500 return;
501 }
502 if (nr_unshown) {
1170532b
JP
503 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
504 nr_unshown);
d936cf9b
HD
505 nr_unshown = 0;
506 }
507 nr_shown = 0;
508 }
509 if (nr_shown++ == 0)
510 resume = jiffies + 60 * HZ;
3dc14741
HD
511
512 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
513 index = linear_page_index(vma, addr);
514
1170532b
JP
515 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
516 current->comm,
517 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 518 if (page)
f0b791a3 519 dump_page(page, "bad pte");
1170532b
JP
520 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
521 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
2682582a
KK
522 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
523 vma->vm_file,
524 vma->vm_ops ? vma->vm_ops->fault : NULL,
525 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
526 mapping ? mapping->a_ops->readpage : NULL);
b5810039 527 dump_stack();
373d4d09 528 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
529}
530
ee498ed7 531/*
7e675137 532 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 533 *
7e675137
NP
534 * "Special" mappings do not wish to be associated with a "struct page" (either
535 * it doesn't exist, or it exists but they don't want to touch it). In this
536 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 537 *
7e675137
NP
538 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
539 * pte bit, in which case this function is trivial. Secondly, an architecture
540 * may not have a spare pte bit, which requires a more complicated scheme,
541 * described below.
542 *
543 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
544 * special mapping (even if there are underlying and valid "struct pages").
545 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 546 *
b379d790
JH
547 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
548 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
549 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
550 * mapping will always honor the rule
6aab341e
LT
551 *
552 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553 *
7e675137
NP
554 * And for normal mappings this is false.
555 *
556 * This restricts such mappings to be a linear translation from virtual address
557 * to pfn. To get around this restriction, we allow arbitrary mappings so long
558 * as the vma is not a COW mapping; in that case, we know that all ptes are
559 * special (because none can have been COWed).
b379d790 560 *
b379d790 561 *
7e675137 562 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
563 *
564 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
565 * page" backing, however the difference is that _all_ pages with a struct
566 * page (that is, those where pfn_valid is true) are refcounted and considered
567 * normal pages by the VM. The disadvantage is that pages are refcounted
568 * (which can be slower and simply not an option for some PFNMAP users). The
569 * advantage is that we don't have to follow the strict linearity rule of
570 * PFNMAP mappings in order to support COWable mappings.
571 *
ee498ed7 572 */
df6ad698
JG
573struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
574 pte_t pte, bool with_public_device)
ee498ed7 575{
22b31eec 576 unsigned long pfn = pte_pfn(pte);
7e675137 577
00b3a331 578 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 579 if (likely(!pte_special(pte)))
22b31eec 580 goto check_pfn;
667a0a06
DV
581 if (vma->vm_ops && vma->vm_ops->find_special_page)
582 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
583 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
584 return NULL;
df6ad698
JG
585 if (is_zero_pfn(pfn))
586 return NULL;
587
588 /*
589 * Device public pages are special pages (they are ZONE_DEVICE
590 * pages but different from persistent memory). They behave
591 * allmost like normal pages. The difference is that they are
592 * not on the lru and thus should never be involve with any-
593 * thing that involve lru manipulation (mlock, numa balancing,
594 * ...).
595 *
596 * This is why we still want to return NULL for such page from
597 * vm_normal_page() so that we do not have to special case all
598 * call site of vm_normal_page().
599 */
7d790d2d 600 if (likely(pfn <= highest_memmap_pfn)) {
df6ad698
JG
601 struct page *page = pfn_to_page(pfn);
602
603 if (is_device_public_page(page)) {
604 if (with_public_device)
605 return page;
606 return NULL;
607 }
608 }
e1fb4a08
DJ
609
610 if (pte_devmap(pte))
611 return NULL;
612
df6ad698 613 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
614 return NULL;
615 }
616
00b3a331 617 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 618
b379d790
JH
619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 if (vma->vm_flags & VM_MIXEDMAP) {
621 if (!pfn_valid(pfn))
622 return NULL;
623 goto out;
624 } else {
7e675137
NP
625 unsigned long off;
626 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
627 if (pfn == vma->vm_pgoff + off)
628 return NULL;
629 if (!is_cow_mapping(vma->vm_flags))
630 return NULL;
631 }
6aab341e
LT
632 }
633
b38af472
HD
634 if (is_zero_pfn(pfn))
635 return NULL;
00b3a331 636
22b31eec
HD
637check_pfn:
638 if (unlikely(pfn > highest_memmap_pfn)) {
639 print_bad_pte(vma, addr, pte, NULL);
640 return NULL;
641 }
6aab341e
LT
642
643 /*
7e675137 644 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 645 * eg. VDSO mappings can cause them to exist.
6aab341e 646 */
b379d790 647out:
6aab341e 648 return pfn_to_page(pfn);
ee498ed7
HD
649}
650
28093f9f
GS
651#ifdef CONFIG_TRANSPARENT_HUGEPAGE
652struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
653 pmd_t pmd)
654{
655 unsigned long pfn = pmd_pfn(pmd);
656
657 /*
658 * There is no pmd_special() but there may be special pmds, e.g.
659 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 660 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
661 */
662 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
663 if (vma->vm_flags & VM_MIXEDMAP) {
664 if (!pfn_valid(pfn))
665 return NULL;
666 goto out;
667 } else {
668 unsigned long off;
669 off = (addr - vma->vm_start) >> PAGE_SHIFT;
670 if (pfn == vma->vm_pgoff + off)
671 return NULL;
672 if (!is_cow_mapping(vma->vm_flags))
673 return NULL;
674 }
675 }
676
e1fb4a08
DJ
677 if (pmd_devmap(pmd))
678 return NULL;
28093f9f
GS
679 if (is_zero_pfn(pfn))
680 return NULL;
681 if (unlikely(pfn > highest_memmap_pfn))
682 return NULL;
683
684 /*
685 * NOTE! We still have PageReserved() pages in the page tables.
686 * eg. VDSO mappings can cause them to exist.
687 */
688out:
689 return pfn_to_page(pfn);
690}
691#endif
692
1da177e4
LT
693/*
694 * copy one vm_area from one task to the other. Assumes the page tables
695 * already present in the new task to be cleared in the whole range
696 * covered by this vma.
1da177e4
LT
697 */
698
570a335b 699static inline unsigned long
1da177e4 700copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 701 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 702 unsigned long addr, int *rss)
1da177e4 703{
b5810039 704 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
705 pte_t pte = *src_pte;
706 struct page *page;
1da177e4
LT
707
708 /* pte contains position in swap or file, so copy. */
709 if (unlikely(!pte_present(pte))) {
0661a336
KS
710 swp_entry_t entry = pte_to_swp_entry(pte);
711
712 if (likely(!non_swap_entry(entry))) {
713 if (swap_duplicate(entry) < 0)
714 return entry.val;
715
716 /* make sure dst_mm is on swapoff's mmlist. */
717 if (unlikely(list_empty(&dst_mm->mmlist))) {
718 spin_lock(&mmlist_lock);
719 if (list_empty(&dst_mm->mmlist))
720 list_add(&dst_mm->mmlist,
721 &src_mm->mmlist);
722 spin_unlock(&mmlist_lock);
723 }
724 rss[MM_SWAPENTS]++;
725 } else if (is_migration_entry(entry)) {
726 page = migration_entry_to_page(entry);
727
eca56ff9 728 rss[mm_counter(page)]++;
0661a336
KS
729
730 if (is_write_migration_entry(entry) &&
731 is_cow_mapping(vm_flags)) {
732 /*
733 * COW mappings require pages in both
734 * parent and child to be set to read.
735 */
736 make_migration_entry_read(&entry);
737 pte = swp_entry_to_pte(entry);
738 if (pte_swp_soft_dirty(*src_pte))
739 pte = pte_swp_mksoft_dirty(pte);
740 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 741 }
5042db43
JG
742 } else if (is_device_private_entry(entry)) {
743 page = device_private_entry_to_page(entry);
744
745 /*
746 * Update rss count even for unaddressable pages, as
747 * they should treated just like normal pages in this
748 * respect.
749 *
750 * We will likely want to have some new rss counters
751 * for unaddressable pages, at some point. But for now
752 * keep things as they are.
753 */
754 get_page(page);
755 rss[mm_counter(page)]++;
756 page_dup_rmap(page, false);
757
758 /*
759 * We do not preserve soft-dirty information, because so
760 * far, checkpoint/restore is the only feature that
761 * requires that. And checkpoint/restore does not work
762 * when a device driver is involved (you cannot easily
763 * save and restore device driver state).
764 */
765 if (is_write_device_private_entry(entry) &&
766 is_cow_mapping(vm_flags)) {
767 make_device_private_entry_read(&entry);
768 pte = swp_entry_to_pte(entry);
769 set_pte_at(src_mm, addr, src_pte, pte);
770 }
1da177e4 771 }
ae859762 772 goto out_set_pte;
1da177e4
LT
773 }
774
1da177e4
LT
775 /*
776 * If it's a COW mapping, write protect it both
777 * in the parent and the child
778 */
1b2de5d0 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 780 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 781 pte = pte_wrprotect(pte);
1da177e4
LT
782 }
783
784 /*
785 * If it's a shared mapping, mark it clean in
786 * the child
787 */
788 if (vm_flags & VM_SHARED)
789 pte = pte_mkclean(pte);
790 pte = pte_mkold(pte);
6aab341e
LT
791
792 page = vm_normal_page(vma, addr, pte);
793 if (page) {
794 get_page(page);
53f9263b 795 page_dup_rmap(page, false);
eca56ff9 796 rss[mm_counter(page)]++;
df6ad698
JG
797 } else if (pte_devmap(pte)) {
798 page = pte_page(pte);
799
800 /*
801 * Cache coherent device memory behave like regular page and
802 * not like persistent memory page. For more informations see
803 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804 */
805 if (is_device_public_page(page)) {
806 get_page(page);
807 page_dup_rmap(page, false);
808 rss[mm_counter(page)]++;
809 }
6aab341e 810 }
ae859762
HD
811
812out_set_pte:
813 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 814 return 0;
1da177e4
LT
815}
816
21bda264 817static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
818 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
819 unsigned long addr, unsigned long end)
1da177e4 820{
c36987e2 821 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 822 pte_t *src_pte, *dst_pte;
c74df32c 823 spinlock_t *src_ptl, *dst_ptl;
e040f218 824 int progress = 0;
d559db08 825 int rss[NR_MM_COUNTERS];
570a335b 826 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
827
828again:
d559db08
KH
829 init_rss_vec(rss);
830
c74df32c 831 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
832 if (!dst_pte)
833 return -ENOMEM;
ece0e2b6 834 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 835 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 836 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
837 orig_src_pte = src_pte;
838 orig_dst_pte = dst_pte;
6606c3e0 839 arch_enter_lazy_mmu_mode();
1da177e4 840
1da177e4
LT
841 do {
842 /*
843 * We are holding two locks at this point - either of them
844 * could generate latencies in another task on another CPU.
845 */
e040f218
HD
846 if (progress >= 32) {
847 progress = 0;
848 if (need_resched() ||
95c354fe 849 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
850 break;
851 }
1da177e4
LT
852 if (pte_none(*src_pte)) {
853 progress++;
854 continue;
855 }
570a335b
HD
856 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
857 vma, addr, rss);
858 if (entry.val)
859 break;
1da177e4
LT
860 progress += 8;
861 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 862
6606c3e0 863 arch_leave_lazy_mmu_mode();
c74df32c 864 spin_unlock(src_ptl);
ece0e2b6 865 pte_unmap(orig_src_pte);
d559db08 866 add_mm_rss_vec(dst_mm, rss);
c36987e2 867 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 868 cond_resched();
570a335b
HD
869
870 if (entry.val) {
871 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
872 return -ENOMEM;
873 progress = 0;
874 }
1da177e4
LT
875 if (addr != end)
876 goto again;
877 return 0;
878}
879
880static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
881 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
882 unsigned long addr, unsigned long end)
883{
884 pmd_t *src_pmd, *dst_pmd;
885 unsigned long next;
886
887 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
888 if (!dst_pmd)
889 return -ENOMEM;
890 src_pmd = pmd_offset(src_pud, addr);
891 do {
892 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
893 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
894 || pmd_devmap(*src_pmd)) {
71e3aac0 895 int err;
a00cc7d9 896 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
897 err = copy_huge_pmd(dst_mm, src_mm,
898 dst_pmd, src_pmd, addr, vma);
899 if (err == -ENOMEM)
900 return -ENOMEM;
901 if (!err)
902 continue;
903 /* fall through */
904 }
1da177e4
LT
905 if (pmd_none_or_clear_bad(src_pmd))
906 continue;
907 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
908 vma, addr, next))
909 return -ENOMEM;
910 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
911 return 0;
912}
913
914static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 915 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
916 unsigned long addr, unsigned long end)
917{
918 pud_t *src_pud, *dst_pud;
919 unsigned long next;
920
c2febafc 921 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
922 if (!dst_pud)
923 return -ENOMEM;
c2febafc 924 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
925 do {
926 next = pud_addr_end(addr, end);
a00cc7d9
MW
927 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
928 int err;
929
930 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
931 err = copy_huge_pud(dst_mm, src_mm,
932 dst_pud, src_pud, addr, vma);
933 if (err == -ENOMEM)
934 return -ENOMEM;
935 if (!err)
936 continue;
937 /* fall through */
938 }
1da177e4
LT
939 if (pud_none_or_clear_bad(src_pud))
940 continue;
941 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
942 vma, addr, next))
943 return -ENOMEM;
944 } while (dst_pud++, src_pud++, addr = next, addr != end);
945 return 0;
946}
947
c2febafc
KS
948static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
949 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
950 unsigned long addr, unsigned long end)
951{
952 p4d_t *src_p4d, *dst_p4d;
953 unsigned long next;
954
955 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
956 if (!dst_p4d)
957 return -ENOMEM;
958 src_p4d = p4d_offset(src_pgd, addr);
959 do {
960 next = p4d_addr_end(addr, end);
961 if (p4d_none_or_clear_bad(src_p4d))
962 continue;
963 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
964 vma, addr, next))
965 return -ENOMEM;
966 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
967 return 0;
968}
969
1da177e4
LT
970int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971 struct vm_area_struct *vma)
972{
973 pgd_t *src_pgd, *dst_pgd;
974 unsigned long next;
975 unsigned long addr = vma->vm_start;
976 unsigned long end = vma->vm_end;
ac46d4f3 977 struct mmu_notifier_range range;
2ec74c3e 978 bool is_cow;
cddb8a5c 979 int ret;
1da177e4 980
d992895b
NP
981 /*
982 * Don't copy ptes where a page fault will fill them correctly.
983 * Fork becomes much lighter when there are big shared or private
984 * readonly mappings. The tradeoff is that copy_page_range is more
985 * efficient than faulting.
986 */
0661a336
KS
987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988 !vma->anon_vma)
989 return 0;
d992895b 990
1da177e4
LT
991 if (is_vm_hugetlb_page(vma))
992 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993
b3b9c293 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 995 /*
996 * We do not free on error cases below as remove_vma
997 * gets called on error from higher level routine
998 */
5180da41 999 ret = track_pfn_copy(vma);
2ab64037 1000 if (ret)
1001 return ret;
1002 }
1003
cddb8a5c
AA
1004 /*
1005 * We need to invalidate the secondary MMU mappings only when
1006 * there could be a permission downgrade on the ptes of the
1007 * parent mm. And a permission downgrade will only happen if
1008 * is_cow_mapping() returns true.
1009 */
2ec74c3e 1010 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1011
1012 if (is_cow) {
1013 mmu_notifier_range_init(&range, src_mm, addr, end);
1014 mmu_notifier_invalidate_range_start(&range);
1015 }
cddb8a5c
AA
1016
1017 ret = 0;
1da177e4
LT
1018 dst_pgd = pgd_offset(dst_mm, addr);
1019 src_pgd = pgd_offset(src_mm, addr);
1020 do {
1021 next = pgd_addr_end(addr, end);
1022 if (pgd_none_or_clear_bad(src_pgd))
1023 continue;
c2febafc 1024 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1025 vma, addr, next))) {
1026 ret = -ENOMEM;
1027 break;
1028 }
1da177e4 1029 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1030
2ec74c3e 1031 if (is_cow)
ac46d4f3 1032 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1033 return ret;
1da177e4
LT
1034}
1035
51c6f666 1036static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1037 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1038 unsigned long addr, unsigned long end,
97a89413 1039 struct zap_details *details)
1da177e4 1040{
b5810039 1041 struct mm_struct *mm = tlb->mm;
d16dfc55 1042 int force_flush = 0;
d559db08 1043 int rss[NR_MM_COUNTERS];
97a89413 1044 spinlock_t *ptl;
5f1a1907 1045 pte_t *start_pte;
97a89413 1046 pte_t *pte;
8a5f14a2 1047 swp_entry_t entry;
d559db08 1048
07e32661 1049 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1050again:
e303297e 1051 init_rss_vec(rss);
5f1a1907
SR
1052 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1053 pte = start_pte;
3ea27719 1054 flush_tlb_batched_pending(mm);
6606c3e0 1055 arch_enter_lazy_mmu_mode();
1da177e4
LT
1056 do {
1057 pte_t ptent = *pte;
166f61b9 1058 if (pte_none(ptent))
1da177e4 1059 continue;
6f5e6b9e 1060
1da177e4 1061 if (pte_present(ptent)) {
ee498ed7 1062 struct page *page;
51c6f666 1063
df6ad698 1064 page = _vm_normal_page(vma, addr, ptent, true);
1da177e4
LT
1065 if (unlikely(details) && page) {
1066 /*
1067 * unmap_shared_mapping_pages() wants to
1068 * invalidate cache without truncating:
1069 * unmap shared but keep private pages.
1070 */
1071 if (details->check_mapping &&
800d8c63 1072 details->check_mapping != page_rmapping(page))
1da177e4 1073 continue;
1da177e4 1074 }
b5810039 1075 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1076 tlb->fullmm);
1da177e4
LT
1077 tlb_remove_tlb_entry(tlb, pte, addr);
1078 if (unlikely(!page))
1079 continue;
eca56ff9
JM
1080
1081 if (!PageAnon(page)) {
1cf35d47
LT
1082 if (pte_dirty(ptent)) {
1083 force_flush = 1;
6237bcd9 1084 set_page_dirty(page);
1cf35d47 1085 }
4917e5d0 1086 if (pte_young(ptent) &&
64363aad 1087 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1088 mark_page_accessed(page);
6237bcd9 1089 }
eca56ff9 1090 rss[mm_counter(page)]--;
d281ee61 1091 page_remove_rmap(page, false);
3dc14741
HD
1092 if (unlikely(page_mapcount(page) < 0))
1093 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1094 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1095 force_flush = 1;
ce9ec37b 1096 addr += PAGE_SIZE;
d16dfc55 1097 break;
1cf35d47 1098 }
1da177e4
LT
1099 continue;
1100 }
5042db43
JG
1101
1102 entry = pte_to_swp_entry(ptent);
1103 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1104 struct page *page = device_private_entry_to_page(entry);
1105
1106 if (unlikely(details && details->check_mapping)) {
1107 /*
1108 * unmap_shared_mapping_pages() wants to
1109 * invalidate cache without truncating:
1110 * unmap shared but keep private pages.
1111 */
1112 if (details->check_mapping !=
1113 page_rmapping(page))
1114 continue;
1115 }
1116
1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 rss[mm_counter(page)]--;
1119 page_remove_rmap(page, false);
1120 put_page(page);
1121 continue;
1122 }
1123
3e8715fd
KS
1124 /* If details->check_mapping, we leave swap entries. */
1125 if (unlikely(details))
1da177e4 1126 continue;
b084d435 1127
8a5f14a2
KS
1128 entry = pte_to_swp_entry(ptent);
1129 if (!non_swap_entry(entry))
1130 rss[MM_SWAPENTS]--;
1131 else if (is_migration_entry(entry)) {
1132 struct page *page;
9f9f1acd 1133
8a5f14a2 1134 page = migration_entry_to_page(entry);
eca56ff9 1135 rss[mm_counter(page)]--;
b084d435 1136 }
8a5f14a2
KS
1137 if (unlikely(!free_swap_and_cache(entry)))
1138 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1140 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1141
d559db08 1142 add_mm_rss_vec(mm, rss);
6606c3e0 1143 arch_leave_lazy_mmu_mode();
51c6f666 1144
1cf35d47 1145 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1146 if (force_flush)
1cf35d47 1147 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1148 pte_unmap_unlock(start_pte, ptl);
1149
1150 /*
1151 * If we forced a TLB flush (either due to running out of
1152 * batch buffers or because we needed to flush dirty TLB
1153 * entries before releasing the ptl), free the batched
1154 * memory too. Restart if we didn't do everything.
1155 */
1156 if (force_flush) {
1157 force_flush = 0;
1158 tlb_flush_mmu_free(tlb);
2b047252 1159 if (addr != end)
d16dfc55
PZ
1160 goto again;
1161 }
1162
51c6f666 1163 return addr;
1da177e4
LT
1164}
1165
51c6f666 1166static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1167 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1168 unsigned long addr, unsigned long end,
97a89413 1169 struct zap_details *details)
1da177e4
LT
1170{
1171 pmd_t *pmd;
1172 unsigned long next;
1173
1174 pmd = pmd_offset(pud, addr);
1175 do {
1176 next = pmd_addr_end(addr, end);
84c3fc4e 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1178 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1179 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1181 goto next;
71e3aac0
AA
1182 /* fall through */
1183 }
1a5a9906
AA
1184 /*
1185 * Here there can be other concurrent MADV_DONTNEED or
1186 * trans huge page faults running, and if the pmd is
1187 * none or trans huge it can change under us. This is
1188 * because MADV_DONTNEED holds the mmap_sem in read
1189 * mode.
1190 */
1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 goto next;
97a89413 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1194next:
97a89413
PZ
1195 cond_resched();
1196 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1197
1198 return addr;
1da177e4
LT
1199}
1200
51c6f666 1201static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1202 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1203 unsigned long addr, unsigned long end,
97a89413 1204 struct zap_details *details)
1da177e4
LT
1205{
1206 pud_t *pud;
1207 unsigned long next;
1208
c2febafc 1209 pud = pud_offset(p4d, addr);
1da177e4
LT
1210 do {
1211 next = pud_addr_end(addr, end);
a00cc7d9
MW
1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 if (next - addr != HPAGE_PUD_SIZE) {
1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215 split_huge_pud(vma, pud, addr);
1216 } else if (zap_huge_pud(tlb, vma, pud, addr))
1217 goto next;
1218 /* fall through */
1219 }
97a89413 1220 if (pud_none_or_clear_bad(pud))
1da177e4 1221 continue;
97a89413 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1223next:
1224 cond_resched();
97a89413 1225 } while (pud++, addr = next, addr != end);
51c6f666
RH
1226
1227 return addr;
1da177e4
LT
1228}
1229
c2febafc
KS
1230static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 struct vm_area_struct *vma, pgd_t *pgd,
1232 unsigned long addr, unsigned long end,
1233 struct zap_details *details)
1234{
1235 p4d_t *p4d;
1236 unsigned long next;
1237
1238 p4d = p4d_offset(pgd, addr);
1239 do {
1240 next = p4d_addr_end(addr, end);
1241 if (p4d_none_or_clear_bad(p4d))
1242 continue;
1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 } while (p4d++, addr = next, addr != end);
1245
1246 return addr;
1247}
1248
aac45363 1249void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1250 struct vm_area_struct *vma,
1251 unsigned long addr, unsigned long end,
1252 struct zap_details *details)
1da177e4
LT
1253{
1254 pgd_t *pgd;
1255 unsigned long next;
1256
1da177e4
LT
1257 BUG_ON(addr >= end);
1258 tlb_start_vma(tlb, vma);
1259 pgd = pgd_offset(vma->vm_mm, addr);
1260 do {
1261 next = pgd_addr_end(addr, end);
97a89413 1262 if (pgd_none_or_clear_bad(pgd))
1da177e4 1263 continue;
c2febafc 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1265 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1266 tlb_end_vma(tlb, vma);
1267}
51c6f666 1268
f5cc4eef
AV
1269
1270static void unmap_single_vma(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1272 unsigned long end_addr,
f5cc4eef
AV
1273 struct zap_details *details)
1274{
1275 unsigned long start = max(vma->vm_start, start_addr);
1276 unsigned long end;
1277
1278 if (start >= vma->vm_end)
1279 return;
1280 end = min(vma->vm_end, end_addr);
1281 if (end <= vma->vm_start)
1282 return;
1283
cbc91f71
SD
1284 if (vma->vm_file)
1285 uprobe_munmap(vma, start, end);
1286
b3b9c293 1287 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1288 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1289
1290 if (start != end) {
1291 if (unlikely(is_vm_hugetlb_page(vma))) {
1292 /*
1293 * It is undesirable to test vma->vm_file as it
1294 * should be non-null for valid hugetlb area.
1295 * However, vm_file will be NULL in the error
7aa6b4ad 1296 * cleanup path of mmap_region. When
f5cc4eef 1297 * hugetlbfs ->mmap method fails,
7aa6b4ad 1298 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1299 * before calling this function to clean up.
1300 * Since no pte has actually been setup, it is
1301 * safe to do nothing in this case.
1302 */
24669e58 1303 if (vma->vm_file) {
83cde9e8 1304 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1306 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1307 }
f5cc4eef
AV
1308 } else
1309 unmap_page_range(tlb, vma, start, end, details);
1310 }
1da177e4
LT
1311}
1312
1da177e4
LT
1313/**
1314 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1315 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1316 * @vma: the starting vma
1317 * @start_addr: virtual address at which to start unmapping
1318 * @end_addr: virtual address at which to end unmapping
1da177e4 1319 *
508034a3 1320 * Unmap all pages in the vma list.
1da177e4 1321 *
1da177e4
LT
1322 * Only addresses between `start' and `end' will be unmapped.
1323 *
1324 * The VMA list must be sorted in ascending virtual address order.
1325 *
1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327 * range after unmap_vmas() returns. So the only responsibility here is to
1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329 * drops the lock and schedules.
1330 */
6e8bb019 1331void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1332 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1333 unsigned long end_addr)
1da177e4 1334{
ac46d4f3 1335 struct mmu_notifier_range range;
1da177e4 1336
ac46d4f3
JG
1337 mmu_notifier_range_init(&range, vma->vm_mm, start_addr, end_addr);
1338 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1339 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1340 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1341 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1342}
1343
1344/**
1345 * zap_page_range - remove user pages in a given range
1346 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1347 * @start: starting address of pages to zap
1da177e4 1348 * @size: number of bytes to zap
f5cc4eef
AV
1349 *
1350 * Caller must protect the VMA list
1da177e4 1351 */
7e027b14 1352void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1353 unsigned long size)
1da177e4 1354{
ac46d4f3 1355 struct mmu_notifier_range range;
d16dfc55 1356 struct mmu_gather tlb;
1da177e4 1357
1da177e4 1358 lru_add_drain();
ac46d4f3
JG
1359 mmu_notifier_range_init(&range, vma->vm_mm, start, start + size);
1360 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1361 update_hiwater_rss(vma->vm_mm);
1362 mmu_notifier_invalidate_range_start(&range);
1363 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1364 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1365 mmu_notifier_invalidate_range_end(&range);
1366 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1367}
1368
f5cc4eef
AV
1369/**
1370 * zap_page_range_single - remove user pages in a given range
1371 * @vma: vm_area_struct holding the applicable pages
1372 * @address: starting address of pages to zap
1373 * @size: number of bytes to zap
8a5f14a2 1374 * @details: details of shared cache invalidation
f5cc4eef
AV
1375 *
1376 * The range must fit into one VMA.
1da177e4 1377 */
f5cc4eef 1378static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1379 unsigned long size, struct zap_details *details)
1380{
ac46d4f3 1381 struct mmu_notifier_range range;
d16dfc55 1382 struct mmu_gather tlb;
1da177e4 1383
1da177e4 1384 lru_add_drain();
ac46d4f3
JG
1385 mmu_notifier_range_init(&range, vma->vm_mm, address, address + size);
1386 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1387 update_hiwater_rss(vma->vm_mm);
1388 mmu_notifier_invalidate_range_start(&range);
1389 unmap_single_vma(&tlb, vma, address, range.end, details);
1390 mmu_notifier_invalidate_range_end(&range);
1391 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1392}
1393
c627f9cc
JS
1394/**
1395 * zap_vma_ptes - remove ptes mapping the vma
1396 * @vma: vm_area_struct holding ptes to be zapped
1397 * @address: starting address of pages to zap
1398 * @size: number of bytes to zap
1399 *
1400 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1401 *
1402 * The entire address range must be fully contained within the vma.
1403 *
c627f9cc 1404 */
27d036e3 1405void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1406 unsigned long size)
1407{
1408 if (address < vma->vm_start || address + size > vma->vm_end ||
1409 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1410 return;
1411
f5cc4eef 1412 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1413}
1414EXPORT_SYMBOL_GPL(zap_vma_ptes);
1415
25ca1d6c 1416pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1417 spinlock_t **ptl)
c9cfcddf 1418{
c2febafc
KS
1419 pgd_t *pgd;
1420 p4d_t *p4d;
1421 pud_t *pud;
1422 pmd_t *pmd;
1423
1424 pgd = pgd_offset(mm, addr);
1425 p4d = p4d_alloc(mm, pgd, addr);
1426 if (!p4d)
1427 return NULL;
1428 pud = pud_alloc(mm, p4d, addr);
1429 if (!pud)
1430 return NULL;
1431 pmd = pmd_alloc(mm, pud, addr);
1432 if (!pmd)
1433 return NULL;
1434
1435 VM_BUG_ON(pmd_trans_huge(*pmd));
1436 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1437}
1438
238f58d8
LT
1439/*
1440 * This is the old fallback for page remapping.
1441 *
1442 * For historical reasons, it only allows reserved pages. Only
1443 * old drivers should use this, and they needed to mark their
1444 * pages reserved for the old functions anyway.
1445 */
423bad60
NP
1446static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1447 struct page *page, pgprot_t prot)
238f58d8 1448{
423bad60 1449 struct mm_struct *mm = vma->vm_mm;
238f58d8 1450 int retval;
c9cfcddf 1451 pte_t *pte;
8a9f3ccd
BS
1452 spinlock_t *ptl;
1453
238f58d8 1454 retval = -EINVAL;
0ee930e6 1455 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
5b4e655e 1456 goto out;
238f58d8
LT
1457 retval = -ENOMEM;
1458 flush_dcache_page(page);
c9cfcddf 1459 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1460 if (!pte)
5b4e655e 1461 goto out;
238f58d8
LT
1462 retval = -EBUSY;
1463 if (!pte_none(*pte))
1464 goto out_unlock;
1465
1466 /* Ok, finally just insert the thing.. */
1467 get_page(page);
eca56ff9 1468 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1469 page_add_file_rmap(page, false);
238f58d8
LT
1470 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471
1472 retval = 0;
8a9f3ccd
BS
1473 pte_unmap_unlock(pte, ptl);
1474 return retval;
238f58d8
LT
1475out_unlock:
1476 pte_unmap_unlock(pte, ptl);
1477out:
1478 return retval;
1479}
1480
bfa5bf6d
REB
1481/**
1482 * vm_insert_page - insert single page into user vma
1483 * @vma: user vma to map to
1484 * @addr: target user address of this page
1485 * @page: source kernel page
1486 *
a145dd41
LT
1487 * This allows drivers to insert individual pages they've allocated
1488 * into a user vma.
1489 *
1490 * The page has to be a nice clean _individual_ kernel allocation.
1491 * If you allocate a compound page, you need to have marked it as
1492 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1493 * (see split_page()).
a145dd41
LT
1494 *
1495 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1496 * took an arbitrary page protection parameter. This doesn't allow
1497 * that. Your vma protection will have to be set up correctly, which
1498 * means that if you want a shared writable mapping, you'd better
1499 * ask for a shared writable mapping!
1500 *
1501 * The page does not need to be reserved.
4b6e1e37
KK
1502 *
1503 * Usually this function is called from f_op->mmap() handler
1504 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1505 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1506 * function from other places, for example from page-fault handler.
a862f68a
MR
1507 *
1508 * Return: %0 on success, negative error code otherwise.
a145dd41 1509 */
423bad60
NP
1510int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1511 struct page *page)
a145dd41
LT
1512{
1513 if (addr < vma->vm_start || addr >= vma->vm_end)
1514 return -EFAULT;
1515 if (!page_count(page))
1516 return -EINVAL;
4b6e1e37
KK
1517 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1518 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1519 BUG_ON(vma->vm_flags & VM_PFNMAP);
1520 vma->vm_flags |= VM_MIXEDMAP;
1521 }
423bad60 1522 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1523}
e3c3374f 1524EXPORT_SYMBOL(vm_insert_page);
a145dd41 1525
9b5a8e00 1526static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1527 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1528{
1529 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1530 pte_t *pte, entry;
1531 spinlock_t *ptl;
1532
423bad60
NP
1533 pte = get_locked_pte(mm, addr, &ptl);
1534 if (!pte)
9b5a8e00 1535 return VM_FAULT_OOM;
b2770da6
RZ
1536 if (!pte_none(*pte)) {
1537 if (mkwrite) {
1538 /*
1539 * For read faults on private mappings the PFN passed
1540 * in may not match the PFN we have mapped if the
1541 * mapped PFN is a writeable COW page. In the mkwrite
1542 * case we are creating a writable PTE for a shared
f2c57d91
JK
1543 * mapping and we expect the PFNs to match. If they
1544 * don't match, we are likely racing with block
1545 * allocation and mapping invalidation so just skip the
1546 * update.
b2770da6 1547 */
f2c57d91
JK
1548 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1549 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1550 goto out_unlock;
f2c57d91 1551 }
b2770da6
RZ
1552 entry = *pte;
1553 goto out_mkwrite;
1554 } else
1555 goto out_unlock;
1556 }
423bad60
NP
1557
1558 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1559 if (pfn_t_devmap(pfn))
1560 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1561 else
1562 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6
RZ
1563
1564out_mkwrite:
1565 if (mkwrite) {
1566 entry = pte_mkyoung(entry);
1567 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1568 }
1569
423bad60 1570 set_pte_at(mm, addr, pte, entry);
4b3073e1 1571 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1572
423bad60
NP
1573out_unlock:
1574 pte_unmap_unlock(pte, ptl);
9b5a8e00 1575 return VM_FAULT_NOPAGE;
423bad60
NP
1576}
1577
f5e6d1d5
MW
1578/**
1579 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1580 * @vma: user vma to map to
1581 * @addr: target user address of this page
1582 * @pfn: source kernel pfn
1583 * @pgprot: pgprot flags for the inserted page
1584 *
1585 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1586 * to override pgprot on a per-page basis.
1587 *
1588 * This only makes sense for IO mappings, and it makes no sense for
1589 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1590 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1591 * impractical.
1592 *
ae2b01f3 1593 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1594 * Return: vm_fault_t value.
1595 */
1596vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1597 unsigned long pfn, pgprot_t pgprot)
1598{
6d958546
MW
1599 /*
1600 * Technically, architectures with pte_special can avoid all these
1601 * restrictions (same for remap_pfn_range). However we would like
1602 * consistency in testing and feature parity among all, so we should
1603 * try to keep these invariants in place for everybody.
1604 */
1605 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1606 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1607 (VM_PFNMAP|VM_MIXEDMAP));
1608 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1609 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1610
1611 if (addr < vma->vm_start || addr >= vma->vm_end)
1612 return VM_FAULT_SIGBUS;
1613
1614 if (!pfn_modify_allowed(pfn, pgprot))
1615 return VM_FAULT_SIGBUS;
1616
1617 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1618
9b5a8e00 1619 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1620 false);
f5e6d1d5
MW
1621}
1622EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1623
ae2b01f3
MW
1624/**
1625 * vmf_insert_pfn - insert single pfn into user vma
1626 * @vma: user vma to map to
1627 * @addr: target user address of this page
1628 * @pfn: source kernel pfn
1629 *
1630 * Similar to vm_insert_page, this allows drivers to insert individual pages
1631 * they've allocated into a user vma. Same comments apply.
1632 *
1633 * This function should only be called from a vm_ops->fault handler, and
1634 * in that case the handler should return the result of this function.
1635 *
1636 * vma cannot be a COW mapping.
1637 *
1638 * As this is called only for pages that do not currently exist, we
1639 * do not need to flush old virtual caches or the TLB.
1640 *
1641 * Context: Process context. May allocate using %GFP_KERNEL.
1642 * Return: vm_fault_t value.
1643 */
1644vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1645 unsigned long pfn)
1646{
1647 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1648}
1649EXPORT_SYMBOL(vmf_insert_pfn);
1650
785a3fab
DW
1651static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1652{
1653 /* these checks mirror the abort conditions in vm_normal_page */
1654 if (vma->vm_flags & VM_MIXEDMAP)
1655 return true;
1656 if (pfn_t_devmap(pfn))
1657 return true;
1658 if (pfn_t_special(pfn))
1659 return true;
1660 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1661 return true;
1662 return false;
1663}
1664
79f3aa5b
MW
1665static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1666 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 1667{
87744ab3 1668 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 1669 int err;
87744ab3 1670
785a3fab 1671 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1672
423bad60 1673 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1674 return VM_FAULT_SIGBUS;
308a047c
BP
1675
1676 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1677
42e4089c 1678 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1679 return VM_FAULT_SIGBUS;
42e4089c 1680
423bad60
NP
1681 /*
1682 * If we don't have pte special, then we have to use the pfn_valid()
1683 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1684 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1685 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1686 * without pte special, it would there be refcounted as a normal page.
423bad60 1687 */
00b3a331
LD
1688 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1689 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1690 struct page *page;
1691
03fc2da6
DW
1692 /*
1693 * At this point we are committed to insert_page()
1694 * regardless of whether the caller specified flags that
1695 * result in pfn_t_has_page() == false.
1696 */
1697 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1698 err = insert_page(vma, addr, page, pgprot);
1699 } else {
9b5a8e00 1700 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1701 }
b2770da6 1702
5d747637
MW
1703 if (err == -ENOMEM)
1704 return VM_FAULT_OOM;
1705 if (err < 0 && err != -EBUSY)
1706 return VM_FAULT_SIGBUS;
1707
1708 return VM_FAULT_NOPAGE;
e0dc0d8f 1709}
79f3aa5b
MW
1710
1711vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1712 pfn_t pfn)
1713{
1714 return __vm_insert_mixed(vma, addr, pfn, false);
1715}
5d747637 1716EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1717
ab77dab4
SJ
1718/*
1719 * If the insertion of PTE failed because someone else already added a
1720 * different entry in the mean time, we treat that as success as we assume
1721 * the same entry was actually inserted.
1722 */
ab77dab4
SJ
1723vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1724 unsigned long addr, pfn_t pfn)
b2770da6 1725{
79f3aa5b 1726 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 1727}
ab77dab4 1728EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1729
1da177e4
LT
1730/*
1731 * maps a range of physical memory into the requested pages. the old
1732 * mappings are removed. any references to nonexistent pages results
1733 * in null mappings (currently treated as "copy-on-access")
1734 */
1735static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1736 unsigned long addr, unsigned long end,
1737 unsigned long pfn, pgprot_t prot)
1738{
1739 pte_t *pte;
c74df32c 1740 spinlock_t *ptl;
42e4089c 1741 int err = 0;
1da177e4 1742
c74df32c 1743 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1744 if (!pte)
1745 return -ENOMEM;
6606c3e0 1746 arch_enter_lazy_mmu_mode();
1da177e4
LT
1747 do {
1748 BUG_ON(!pte_none(*pte));
42e4089c
AK
1749 if (!pfn_modify_allowed(pfn, prot)) {
1750 err = -EACCES;
1751 break;
1752 }
7e675137 1753 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1754 pfn++;
1755 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1756 arch_leave_lazy_mmu_mode();
c74df32c 1757 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1758 return err;
1da177e4
LT
1759}
1760
1761static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1762 unsigned long addr, unsigned long end,
1763 unsigned long pfn, pgprot_t prot)
1764{
1765 pmd_t *pmd;
1766 unsigned long next;
42e4089c 1767 int err;
1da177e4
LT
1768
1769 pfn -= addr >> PAGE_SHIFT;
1770 pmd = pmd_alloc(mm, pud, addr);
1771 if (!pmd)
1772 return -ENOMEM;
f66055ab 1773 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1774 do {
1775 next = pmd_addr_end(addr, end);
42e4089c
AK
1776 err = remap_pte_range(mm, pmd, addr, next,
1777 pfn + (addr >> PAGE_SHIFT), prot);
1778 if (err)
1779 return err;
1da177e4
LT
1780 } while (pmd++, addr = next, addr != end);
1781 return 0;
1782}
1783
c2febafc 1784static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1785 unsigned long addr, unsigned long end,
1786 unsigned long pfn, pgprot_t prot)
1787{
1788 pud_t *pud;
1789 unsigned long next;
42e4089c 1790 int err;
1da177e4
LT
1791
1792 pfn -= addr >> PAGE_SHIFT;
c2febafc 1793 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1794 if (!pud)
1795 return -ENOMEM;
1796 do {
1797 next = pud_addr_end(addr, end);
42e4089c
AK
1798 err = remap_pmd_range(mm, pud, addr, next,
1799 pfn + (addr >> PAGE_SHIFT), prot);
1800 if (err)
1801 return err;
1da177e4
LT
1802 } while (pud++, addr = next, addr != end);
1803 return 0;
1804}
1805
c2febafc
KS
1806static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1807 unsigned long addr, unsigned long end,
1808 unsigned long pfn, pgprot_t prot)
1809{
1810 p4d_t *p4d;
1811 unsigned long next;
42e4089c 1812 int err;
c2febafc
KS
1813
1814 pfn -= addr >> PAGE_SHIFT;
1815 p4d = p4d_alloc(mm, pgd, addr);
1816 if (!p4d)
1817 return -ENOMEM;
1818 do {
1819 next = p4d_addr_end(addr, end);
42e4089c
AK
1820 err = remap_pud_range(mm, p4d, addr, next,
1821 pfn + (addr >> PAGE_SHIFT), prot);
1822 if (err)
1823 return err;
c2febafc
KS
1824 } while (p4d++, addr = next, addr != end);
1825 return 0;
1826}
1827
bfa5bf6d
REB
1828/**
1829 * remap_pfn_range - remap kernel memory to userspace
1830 * @vma: user vma to map to
1831 * @addr: target user address to start at
1832 * @pfn: physical address of kernel memory
1833 * @size: size of map area
1834 * @prot: page protection flags for this mapping
1835 *
a862f68a
MR
1836 * Note: this is only safe if the mm semaphore is held when called.
1837 *
1838 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 1839 */
1da177e4
LT
1840int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1841 unsigned long pfn, unsigned long size, pgprot_t prot)
1842{
1843 pgd_t *pgd;
1844 unsigned long next;
2d15cab8 1845 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1846 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1847 unsigned long remap_pfn = pfn;
1da177e4
LT
1848 int err;
1849
1850 /*
1851 * Physically remapped pages are special. Tell the
1852 * rest of the world about it:
1853 * VM_IO tells people not to look at these pages
1854 * (accesses can have side effects).
6aab341e
LT
1855 * VM_PFNMAP tells the core MM that the base pages are just
1856 * raw PFN mappings, and do not have a "struct page" associated
1857 * with them.
314e51b9
KK
1858 * VM_DONTEXPAND
1859 * Disable vma merging and expanding with mremap().
1860 * VM_DONTDUMP
1861 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1862 *
1863 * There's a horrible special case to handle copy-on-write
1864 * behaviour that some programs depend on. We mark the "original"
1865 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1866 * See vm_normal_page() for details.
1da177e4 1867 */
b3b9c293
KK
1868 if (is_cow_mapping(vma->vm_flags)) {
1869 if (addr != vma->vm_start || end != vma->vm_end)
1870 return -EINVAL;
fb155c16 1871 vma->vm_pgoff = pfn;
b3b9c293
KK
1872 }
1873
d5957d2f 1874 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1875 if (err)
3c8bb73a 1876 return -EINVAL;
fb155c16 1877
314e51b9 1878 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1879
1880 BUG_ON(addr >= end);
1881 pfn -= addr >> PAGE_SHIFT;
1882 pgd = pgd_offset(mm, addr);
1883 flush_cache_range(vma, addr, end);
1da177e4
LT
1884 do {
1885 next = pgd_addr_end(addr, end);
c2febafc 1886 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1887 pfn + (addr >> PAGE_SHIFT), prot);
1888 if (err)
1889 break;
1890 } while (pgd++, addr = next, addr != end);
2ab64037 1891
1892 if (err)
d5957d2f 1893 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1894
1da177e4
LT
1895 return err;
1896}
1897EXPORT_SYMBOL(remap_pfn_range);
1898
b4cbb197
LT
1899/**
1900 * vm_iomap_memory - remap memory to userspace
1901 * @vma: user vma to map to
1902 * @start: start of area
1903 * @len: size of area
1904 *
1905 * This is a simplified io_remap_pfn_range() for common driver use. The
1906 * driver just needs to give us the physical memory range to be mapped,
1907 * we'll figure out the rest from the vma information.
1908 *
1909 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1910 * whatever write-combining details or similar.
a862f68a
MR
1911 *
1912 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
1913 */
1914int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1915{
1916 unsigned long vm_len, pfn, pages;
1917
1918 /* Check that the physical memory area passed in looks valid */
1919 if (start + len < start)
1920 return -EINVAL;
1921 /*
1922 * You *really* shouldn't map things that aren't page-aligned,
1923 * but we've historically allowed it because IO memory might
1924 * just have smaller alignment.
1925 */
1926 len += start & ~PAGE_MASK;
1927 pfn = start >> PAGE_SHIFT;
1928 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1929 if (pfn + pages < pfn)
1930 return -EINVAL;
1931
1932 /* We start the mapping 'vm_pgoff' pages into the area */
1933 if (vma->vm_pgoff > pages)
1934 return -EINVAL;
1935 pfn += vma->vm_pgoff;
1936 pages -= vma->vm_pgoff;
1937
1938 /* Can we fit all of the mapping? */
1939 vm_len = vma->vm_end - vma->vm_start;
1940 if (vm_len >> PAGE_SHIFT > pages)
1941 return -EINVAL;
1942
1943 /* Ok, let it rip */
1944 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1945}
1946EXPORT_SYMBOL(vm_iomap_memory);
1947
aee16b3c
JF
1948static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1949 unsigned long addr, unsigned long end,
1950 pte_fn_t fn, void *data)
1951{
1952 pte_t *pte;
1953 int err;
2f569afd 1954 pgtable_t token;
94909914 1955 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1956
1957 pte = (mm == &init_mm) ?
1958 pte_alloc_kernel(pmd, addr) :
1959 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1960 if (!pte)
1961 return -ENOMEM;
1962
1963 BUG_ON(pmd_huge(*pmd));
1964
38e0edb1
JF
1965 arch_enter_lazy_mmu_mode();
1966
2f569afd 1967 token = pmd_pgtable(*pmd);
aee16b3c
JF
1968
1969 do {
c36987e2 1970 err = fn(pte++, token, addr, data);
aee16b3c
JF
1971 if (err)
1972 break;
c36987e2 1973 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1974
38e0edb1
JF
1975 arch_leave_lazy_mmu_mode();
1976
aee16b3c
JF
1977 if (mm != &init_mm)
1978 pte_unmap_unlock(pte-1, ptl);
1979 return err;
1980}
1981
1982static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1983 unsigned long addr, unsigned long end,
1984 pte_fn_t fn, void *data)
1985{
1986 pmd_t *pmd;
1987 unsigned long next;
1988 int err;
1989
ceb86879
AK
1990 BUG_ON(pud_huge(*pud));
1991
aee16b3c
JF
1992 pmd = pmd_alloc(mm, pud, addr);
1993 if (!pmd)
1994 return -ENOMEM;
1995 do {
1996 next = pmd_addr_end(addr, end);
1997 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1998 if (err)
1999 break;
2000 } while (pmd++, addr = next, addr != end);
2001 return err;
2002}
2003
c2febafc 2004static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2005 unsigned long addr, unsigned long end,
2006 pte_fn_t fn, void *data)
2007{
2008 pud_t *pud;
2009 unsigned long next;
2010 int err;
2011
c2febafc 2012 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2013 if (!pud)
2014 return -ENOMEM;
2015 do {
2016 next = pud_addr_end(addr, end);
2017 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2018 if (err)
2019 break;
2020 } while (pud++, addr = next, addr != end);
2021 return err;
2022}
2023
c2febafc
KS
2024static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2025 unsigned long addr, unsigned long end,
2026 pte_fn_t fn, void *data)
2027{
2028 p4d_t *p4d;
2029 unsigned long next;
2030 int err;
2031
2032 p4d = p4d_alloc(mm, pgd, addr);
2033 if (!p4d)
2034 return -ENOMEM;
2035 do {
2036 next = p4d_addr_end(addr, end);
2037 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2038 if (err)
2039 break;
2040 } while (p4d++, addr = next, addr != end);
2041 return err;
2042}
2043
aee16b3c
JF
2044/*
2045 * Scan a region of virtual memory, filling in page tables as necessary
2046 * and calling a provided function on each leaf page table.
2047 */
2048int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2049 unsigned long size, pte_fn_t fn, void *data)
2050{
2051 pgd_t *pgd;
2052 unsigned long next;
57250a5b 2053 unsigned long end = addr + size;
aee16b3c
JF
2054 int err;
2055
9cb65bc3
MP
2056 if (WARN_ON(addr >= end))
2057 return -EINVAL;
2058
aee16b3c
JF
2059 pgd = pgd_offset(mm, addr);
2060 do {
2061 next = pgd_addr_end(addr, end);
c2febafc 2062 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2063 if (err)
2064 break;
2065 } while (pgd++, addr = next, addr != end);
57250a5b 2066
aee16b3c
JF
2067 return err;
2068}
2069EXPORT_SYMBOL_GPL(apply_to_page_range);
2070
8f4e2101 2071/*
9b4bdd2f
KS
2072 * handle_pte_fault chooses page fault handler according to an entry which was
2073 * read non-atomically. Before making any commitment, on those architectures
2074 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2075 * parts, do_swap_page must check under lock before unmapping the pte and
2076 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2077 * and do_anonymous_page can safely check later on).
8f4e2101 2078 */
4c21e2f2 2079static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2080 pte_t *page_table, pte_t orig_pte)
2081{
2082 int same = 1;
2083#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2084 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2085 spinlock_t *ptl = pte_lockptr(mm, pmd);
2086 spin_lock(ptl);
8f4e2101 2087 same = pte_same(*page_table, orig_pte);
4c21e2f2 2088 spin_unlock(ptl);
8f4e2101
HD
2089 }
2090#endif
2091 pte_unmap(page_table);
2092 return same;
2093}
2094
9de455b2 2095static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2096{
0abdd7a8
DW
2097 debug_dma_assert_idle(src);
2098
6aab341e
LT
2099 /*
2100 * If the source page was a PFN mapping, we don't have
2101 * a "struct page" for it. We do a best-effort copy by
2102 * just copying from the original user address. If that
2103 * fails, we just zero-fill it. Live with it.
2104 */
2105 if (unlikely(!src)) {
9b04c5fe 2106 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2107 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2108
2109 /*
2110 * This really shouldn't fail, because the page is there
2111 * in the page tables. But it might just be unreadable,
2112 * in which case we just give up and fill the result with
2113 * zeroes.
2114 */
2115 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2116 clear_page(kaddr);
9b04c5fe 2117 kunmap_atomic(kaddr);
c4ec7b0d 2118 flush_dcache_page(dst);
0ed361de
NP
2119 } else
2120 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2121}
2122
c20cd45e
MH
2123static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2124{
2125 struct file *vm_file = vma->vm_file;
2126
2127 if (vm_file)
2128 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2129
2130 /*
2131 * Special mappings (e.g. VDSO) do not have any file so fake
2132 * a default GFP_KERNEL for them.
2133 */
2134 return GFP_KERNEL;
2135}
2136
fb09a464
KS
2137/*
2138 * Notify the address space that the page is about to become writable so that
2139 * it can prohibit this or wait for the page to get into an appropriate state.
2140 *
2141 * We do this without the lock held, so that it can sleep if it needs to.
2142 */
2b740303 2143static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2144{
2b740303 2145 vm_fault_t ret;
38b8cb7f
JK
2146 struct page *page = vmf->page;
2147 unsigned int old_flags = vmf->flags;
fb09a464 2148
38b8cb7f 2149 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2150
11bac800 2151 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2152 /* Restore original flags so that caller is not surprised */
2153 vmf->flags = old_flags;
fb09a464
KS
2154 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2155 return ret;
2156 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2157 lock_page(page);
2158 if (!page->mapping) {
2159 unlock_page(page);
2160 return 0; /* retry */
2161 }
2162 ret |= VM_FAULT_LOCKED;
2163 } else
2164 VM_BUG_ON_PAGE(!PageLocked(page), page);
2165 return ret;
2166}
2167
97ba0c2b
JK
2168/*
2169 * Handle dirtying of a page in shared file mapping on a write fault.
2170 *
2171 * The function expects the page to be locked and unlocks it.
2172 */
2173static void fault_dirty_shared_page(struct vm_area_struct *vma,
2174 struct page *page)
2175{
2176 struct address_space *mapping;
2177 bool dirtied;
2178 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2179
2180 dirtied = set_page_dirty(page);
2181 VM_BUG_ON_PAGE(PageAnon(page), page);
2182 /*
2183 * Take a local copy of the address_space - page.mapping may be zeroed
2184 * by truncate after unlock_page(). The address_space itself remains
2185 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2186 * release semantics to prevent the compiler from undoing this copying.
2187 */
2188 mapping = page_rmapping(page);
2189 unlock_page(page);
2190
2191 if ((dirtied || page_mkwrite) && mapping) {
2192 /*
2193 * Some device drivers do not set page.mapping
2194 * but still dirty their pages
2195 */
2196 balance_dirty_pages_ratelimited(mapping);
2197 }
2198
2199 if (!page_mkwrite)
2200 file_update_time(vma->vm_file);
2201}
2202
4e047f89
SR
2203/*
2204 * Handle write page faults for pages that can be reused in the current vma
2205 *
2206 * This can happen either due to the mapping being with the VM_SHARED flag,
2207 * or due to us being the last reference standing to the page. In either
2208 * case, all we need to do here is to mark the page as writable and update
2209 * any related book-keeping.
2210 */
997dd98d 2211static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2212 __releases(vmf->ptl)
4e047f89 2213{
82b0f8c3 2214 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2215 struct page *page = vmf->page;
4e047f89
SR
2216 pte_t entry;
2217 /*
2218 * Clear the pages cpupid information as the existing
2219 * information potentially belongs to a now completely
2220 * unrelated process.
2221 */
2222 if (page)
2223 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2224
2994302b
JK
2225 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2226 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2227 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2228 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2229 update_mmu_cache(vma, vmf->address, vmf->pte);
2230 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2231}
2232
2f38ab2c
SR
2233/*
2234 * Handle the case of a page which we actually need to copy to a new page.
2235 *
2236 * Called with mmap_sem locked and the old page referenced, but
2237 * without the ptl held.
2238 *
2239 * High level logic flow:
2240 *
2241 * - Allocate a page, copy the content of the old page to the new one.
2242 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2243 * - Take the PTL. If the pte changed, bail out and release the allocated page
2244 * - If the pte is still the way we remember it, update the page table and all
2245 * relevant references. This includes dropping the reference the page-table
2246 * held to the old page, as well as updating the rmap.
2247 * - In any case, unlock the PTL and drop the reference we took to the old page.
2248 */
2b740303 2249static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2250{
82b0f8c3 2251 struct vm_area_struct *vma = vmf->vma;
bae473a4 2252 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2253 struct page *old_page = vmf->page;
2f38ab2c 2254 struct page *new_page = NULL;
2f38ab2c
SR
2255 pte_t entry;
2256 int page_copied = 0;
2f38ab2c 2257 struct mem_cgroup *memcg;
ac46d4f3 2258 struct mmu_notifier_range range;
2f38ab2c
SR
2259
2260 if (unlikely(anon_vma_prepare(vma)))
2261 goto oom;
2262
2994302b 2263 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2264 new_page = alloc_zeroed_user_highpage_movable(vma,
2265 vmf->address);
2f38ab2c
SR
2266 if (!new_page)
2267 goto oom;
2268 } else {
bae473a4 2269 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2270 vmf->address);
2f38ab2c
SR
2271 if (!new_page)
2272 goto oom;
82b0f8c3 2273 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2274 }
2f38ab2c 2275
2cf85583 2276 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2277 goto oom_free_new;
2278
eb3c24f3
MG
2279 __SetPageUptodate(new_page);
2280
ac46d4f3
JG
2281 mmu_notifier_range_init(&range, mm, vmf->address & PAGE_MASK,
2282 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2283 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2284
2285 /*
2286 * Re-check the pte - we dropped the lock
2287 */
82b0f8c3 2288 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2289 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2290 if (old_page) {
2291 if (!PageAnon(old_page)) {
eca56ff9
JM
2292 dec_mm_counter_fast(mm,
2293 mm_counter_file(old_page));
2f38ab2c
SR
2294 inc_mm_counter_fast(mm, MM_ANONPAGES);
2295 }
2296 } else {
2297 inc_mm_counter_fast(mm, MM_ANONPAGES);
2298 }
2994302b 2299 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2300 entry = mk_pte(new_page, vma->vm_page_prot);
2301 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2302 /*
2303 * Clear the pte entry and flush it first, before updating the
2304 * pte with the new entry. This will avoid a race condition
2305 * seen in the presence of one thread doing SMC and another
2306 * thread doing COW.
2307 */
82b0f8c3
JK
2308 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2309 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2310 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2311 lru_cache_add_active_or_unevictable(new_page, vma);
2312 /*
2313 * We call the notify macro here because, when using secondary
2314 * mmu page tables (such as kvm shadow page tables), we want the
2315 * new page to be mapped directly into the secondary page table.
2316 */
82b0f8c3
JK
2317 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2318 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2319 if (old_page) {
2320 /*
2321 * Only after switching the pte to the new page may
2322 * we remove the mapcount here. Otherwise another
2323 * process may come and find the rmap count decremented
2324 * before the pte is switched to the new page, and
2325 * "reuse" the old page writing into it while our pte
2326 * here still points into it and can be read by other
2327 * threads.
2328 *
2329 * The critical issue is to order this
2330 * page_remove_rmap with the ptp_clear_flush above.
2331 * Those stores are ordered by (if nothing else,)
2332 * the barrier present in the atomic_add_negative
2333 * in page_remove_rmap.
2334 *
2335 * Then the TLB flush in ptep_clear_flush ensures that
2336 * no process can access the old page before the
2337 * decremented mapcount is visible. And the old page
2338 * cannot be reused until after the decremented
2339 * mapcount is visible. So transitively, TLBs to
2340 * old page will be flushed before it can be reused.
2341 */
d281ee61 2342 page_remove_rmap(old_page, false);
2f38ab2c
SR
2343 }
2344
2345 /* Free the old page.. */
2346 new_page = old_page;
2347 page_copied = 1;
2348 } else {
f627c2f5 2349 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2350 }
2351
2352 if (new_page)
09cbfeaf 2353 put_page(new_page);
2f38ab2c 2354
82b0f8c3 2355 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2356 /*
2357 * No need to double call mmu_notifier->invalidate_range() callback as
2358 * the above ptep_clear_flush_notify() did already call it.
2359 */
ac46d4f3 2360 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2361 if (old_page) {
2362 /*
2363 * Don't let another task, with possibly unlocked vma,
2364 * keep the mlocked page.
2365 */
2366 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2367 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2368 if (PageMlocked(old_page))
2369 munlock_vma_page(old_page);
2f38ab2c
SR
2370 unlock_page(old_page);
2371 }
09cbfeaf 2372 put_page(old_page);
2f38ab2c
SR
2373 }
2374 return page_copied ? VM_FAULT_WRITE : 0;
2375oom_free_new:
09cbfeaf 2376 put_page(new_page);
2f38ab2c
SR
2377oom:
2378 if (old_page)
09cbfeaf 2379 put_page(old_page);
2f38ab2c
SR
2380 return VM_FAULT_OOM;
2381}
2382
66a6197c
JK
2383/**
2384 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2385 * writeable once the page is prepared
2386 *
2387 * @vmf: structure describing the fault
2388 *
2389 * This function handles all that is needed to finish a write page fault in a
2390 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2391 * It handles locking of PTE and modifying it.
66a6197c
JK
2392 *
2393 * The function expects the page to be locked or other protection against
2394 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2395 *
2396 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2397 * we acquired PTE lock.
66a6197c 2398 */
2b740303 2399vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2400{
2401 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2402 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2403 &vmf->ptl);
2404 /*
2405 * We might have raced with another page fault while we released the
2406 * pte_offset_map_lock.
2407 */
2408 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2409 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2410 return VM_FAULT_NOPAGE;
66a6197c
JK
2411 }
2412 wp_page_reuse(vmf);
a19e2553 2413 return 0;
66a6197c
JK
2414}
2415
dd906184
BH
2416/*
2417 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2418 * mapping
2419 */
2b740303 2420static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2421{
82b0f8c3 2422 struct vm_area_struct *vma = vmf->vma;
bae473a4 2423
dd906184 2424 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2425 vm_fault_t ret;
dd906184 2426
82b0f8c3 2427 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2428 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2429 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2430 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2431 return ret;
66a6197c 2432 return finish_mkwrite_fault(vmf);
dd906184 2433 }
997dd98d
JK
2434 wp_page_reuse(vmf);
2435 return VM_FAULT_WRITE;
dd906184
BH
2436}
2437
2b740303 2438static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2439 __releases(vmf->ptl)
93e478d4 2440{
82b0f8c3 2441 struct vm_area_struct *vma = vmf->vma;
93e478d4 2442
a41b70d6 2443 get_page(vmf->page);
93e478d4 2444
93e478d4 2445 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2446 vm_fault_t tmp;
93e478d4 2447
82b0f8c3 2448 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2449 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2450 if (unlikely(!tmp || (tmp &
2451 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2452 put_page(vmf->page);
93e478d4
SR
2453 return tmp;
2454 }
66a6197c 2455 tmp = finish_mkwrite_fault(vmf);
a19e2553 2456 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2457 unlock_page(vmf->page);
a41b70d6 2458 put_page(vmf->page);
66a6197c 2459 return tmp;
93e478d4 2460 }
66a6197c
JK
2461 } else {
2462 wp_page_reuse(vmf);
997dd98d 2463 lock_page(vmf->page);
93e478d4 2464 }
997dd98d
JK
2465 fault_dirty_shared_page(vma, vmf->page);
2466 put_page(vmf->page);
93e478d4 2467
997dd98d 2468 return VM_FAULT_WRITE;
93e478d4
SR
2469}
2470
1da177e4
LT
2471/*
2472 * This routine handles present pages, when users try to write
2473 * to a shared page. It is done by copying the page to a new address
2474 * and decrementing the shared-page counter for the old page.
2475 *
1da177e4
LT
2476 * Note that this routine assumes that the protection checks have been
2477 * done by the caller (the low-level page fault routine in most cases).
2478 * Thus we can safely just mark it writable once we've done any necessary
2479 * COW.
2480 *
2481 * We also mark the page dirty at this point even though the page will
2482 * change only once the write actually happens. This avoids a few races,
2483 * and potentially makes it more efficient.
2484 *
8f4e2101
HD
2485 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2486 * but allow concurrent faults), with pte both mapped and locked.
2487 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2488 */
2b740303 2489static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2490 __releases(vmf->ptl)
1da177e4 2491{
82b0f8c3 2492 struct vm_area_struct *vma = vmf->vma;
1da177e4 2493
a41b70d6
JK
2494 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2495 if (!vmf->page) {
251b97f5 2496 /*
64e45507
PF
2497 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2498 * VM_PFNMAP VMA.
251b97f5
PZ
2499 *
2500 * We should not cow pages in a shared writeable mapping.
dd906184 2501 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2502 */
2503 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2504 (VM_WRITE|VM_SHARED))
2994302b 2505 return wp_pfn_shared(vmf);
2f38ab2c 2506
82b0f8c3 2507 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2508 return wp_page_copy(vmf);
251b97f5 2509 }
1da177e4 2510
d08b3851 2511 /*
ee6a6457
PZ
2512 * Take out anonymous pages first, anonymous shared vmas are
2513 * not dirty accountable.
d08b3851 2514 */
52d1e606 2515 if (PageAnon(vmf->page)) {
ba3c4ce6 2516 int total_map_swapcount;
52d1e606
KT
2517 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2518 page_count(vmf->page) != 1))
2519 goto copy;
a41b70d6
JK
2520 if (!trylock_page(vmf->page)) {
2521 get_page(vmf->page);
82b0f8c3 2522 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2523 lock_page(vmf->page);
82b0f8c3
JK
2524 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2525 vmf->address, &vmf->ptl);
2994302b 2526 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2527 unlock_page(vmf->page);
82b0f8c3 2528 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2529 put_page(vmf->page);
28766805 2530 return 0;
ab967d86 2531 }
a41b70d6 2532 put_page(vmf->page);
ee6a6457 2533 }
52d1e606
KT
2534 if (PageKsm(vmf->page)) {
2535 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2536 vmf->address);
2537 unlock_page(vmf->page);
2538 if (!reused)
2539 goto copy;
2540 wp_page_reuse(vmf);
2541 return VM_FAULT_WRITE;
2542 }
ba3c4ce6
HY
2543 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2544 if (total_map_swapcount == 1) {
6d0a07ed
AA
2545 /*
2546 * The page is all ours. Move it to
2547 * our anon_vma so the rmap code will
2548 * not search our parent or siblings.
2549 * Protected against the rmap code by
2550 * the page lock.
2551 */
a41b70d6 2552 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2553 }
a41b70d6 2554 unlock_page(vmf->page);
997dd98d
JK
2555 wp_page_reuse(vmf);
2556 return VM_FAULT_WRITE;
b009c024 2557 }
a41b70d6 2558 unlock_page(vmf->page);
ee6a6457 2559 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2560 (VM_WRITE|VM_SHARED))) {
a41b70d6 2561 return wp_page_shared(vmf);
1da177e4 2562 }
52d1e606 2563copy:
1da177e4
LT
2564 /*
2565 * Ok, we need to copy. Oh, well..
2566 */
a41b70d6 2567 get_page(vmf->page);
28766805 2568
82b0f8c3 2569 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2570 return wp_page_copy(vmf);
1da177e4
LT
2571}
2572
97a89413 2573static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2574 unsigned long start_addr, unsigned long end_addr,
2575 struct zap_details *details)
2576{
f5cc4eef 2577 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2578}
2579
f808c13f 2580static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2581 struct zap_details *details)
2582{
2583 struct vm_area_struct *vma;
1da177e4
LT
2584 pgoff_t vba, vea, zba, zea;
2585
6b2dbba8 2586 vma_interval_tree_foreach(vma, root,
1da177e4 2587 details->first_index, details->last_index) {
1da177e4
LT
2588
2589 vba = vma->vm_pgoff;
d6e93217 2590 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2591 zba = details->first_index;
2592 if (zba < vba)
2593 zba = vba;
2594 zea = details->last_index;
2595 if (zea > vea)
2596 zea = vea;
2597
97a89413 2598 unmap_mapping_range_vma(vma,
1da177e4
LT
2599 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2600 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2601 details);
1da177e4
LT
2602 }
2603}
2604
977fbdcd
MW
2605/**
2606 * unmap_mapping_pages() - Unmap pages from processes.
2607 * @mapping: The address space containing pages to be unmapped.
2608 * @start: Index of first page to be unmapped.
2609 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2610 * @even_cows: Whether to unmap even private COWed pages.
2611 *
2612 * Unmap the pages in this address space from any userspace process which
2613 * has them mmaped. Generally, you want to remove COWed pages as well when
2614 * a file is being truncated, but not when invalidating pages from the page
2615 * cache.
2616 */
2617void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2618 pgoff_t nr, bool even_cows)
2619{
2620 struct zap_details details = { };
2621
2622 details.check_mapping = even_cows ? NULL : mapping;
2623 details.first_index = start;
2624 details.last_index = start + nr - 1;
2625 if (details.last_index < details.first_index)
2626 details.last_index = ULONG_MAX;
2627
2628 i_mmap_lock_write(mapping);
2629 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2630 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2631 i_mmap_unlock_write(mapping);
2632}
2633
1da177e4 2634/**
8a5f14a2 2635 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2636 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2637 * file.
2638 *
3d41088f 2639 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2640 * @holebegin: byte in first page to unmap, relative to the start of
2641 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2642 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2643 * must keep the partial page. In contrast, we must get rid of
2644 * partial pages.
2645 * @holelen: size of prospective hole in bytes. This will be rounded
2646 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2647 * end of the file.
2648 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2649 * but 0 when invalidating pagecache, don't throw away private data.
2650 */
2651void unmap_mapping_range(struct address_space *mapping,
2652 loff_t const holebegin, loff_t const holelen, int even_cows)
2653{
1da177e4
LT
2654 pgoff_t hba = holebegin >> PAGE_SHIFT;
2655 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2656
2657 /* Check for overflow. */
2658 if (sizeof(holelen) > sizeof(hlen)) {
2659 long long holeend =
2660 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2661 if (holeend & ~(long long)ULONG_MAX)
2662 hlen = ULONG_MAX - hba + 1;
2663 }
2664
977fbdcd 2665 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2666}
2667EXPORT_SYMBOL(unmap_mapping_range);
2668
1da177e4 2669/*
8f4e2101
HD
2670 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2671 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2672 * We return with pte unmapped and unlocked.
2673 *
2674 * We return with the mmap_sem locked or unlocked in the same cases
2675 * as does filemap_fault().
1da177e4 2676 */
2b740303 2677vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2678{
82b0f8c3 2679 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2680 struct page *page = NULL, *swapcache;
00501b53 2681 struct mem_cgroup *memcg;
65500d23 2682 swp_entry_t entry;
1da177e4 2683 pte_t pte;
d065bd81 2684 int locked;
ad8c2ee8 2685 int exclusive = 0;
2b740303 2686 vm_fault_t ret = 0;
1da177e4 2687
eaf649eb 2688 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2689 goto out;
65500d23 2690
2994302b 2691 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2692 if (unlikely(non_swap_entry(entry))) {
2693 if (is_migration_entry(entry)) {
82b0f8c3
JK
2694 migration_entry_wait(vma->vm_mm, vmf->pmd,
2695 vmf->address);
5042db43
JG
2696 } else if (is_device_private_entry(entry)) {
2697 /*
2698 * For un-addressable device memory we call the pgmap
2699 * fault handler callback. The callback must migrate
2700 * the page back to some CPU accessible page.
2701 */
2702 ret = device_private_entry_fault(vma, vmf->address, entry,
2703 vmf->flags, vmf->pmd);
d1737fdb
AK
2704 } else if (is_hwpoison_entry(entry)) {
2705 ret = VM_FAULT_HWPOISON;
2706 } else {
2994302b 2707 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2708 ret = VM_FAULT_SIGBUS;
d1737fdb 2709 }
0697212a
CL
2710 goto out;
2711 }
0bcac06f
MK
2712
2713
0ff92245 2714 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2715 page = lookup_swap_cache(entry, vma, vmf->address);
2716 swapcache = page;
f8020772 2717
1da177e4 2718 if (!page) {
0bcac06f
MK
2719 struct swap_info_struct *si = swp_swap_info(entry);
2720
aa8d22a1
MK
2721 if (si->flags & SWP_SYNCHRONOUS_IO &&
2722 __swap_count(si, entry) == 1) {
0bcac06f 2723 /* skip swapcache */
e9e9b7ec
MK
2724 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2725 vmf->address);
0bcac06f
MK
2726 if (page) {
2727 __SetPageLocked(page);
2728 __SetPageSwapBacked(page);
2729 set_page_private(page, entry.val);
2730 lru_cache_add_anon(page);
2731 swap_readpage(page, true);
2732 }
aa8d22a1 2733 } else {
e9e9b7ec
MK
2734 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2735 vmf);
aa8d22a1 2736 swapcache = page;
0bcac06f
MK
2737 }
2738
1da177e4
LT
2739 if (!page) {
2740 /*
8f4e2101
HD
2741 * Back out if somebody else faulted in this pte
2742 * while we released the pte lock.
1da177e4 2743 */
82b0f8c3
JK
2744 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2745 vmf->address, &vmf->ptl);
2994302b 2746 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2747 ret = VM_FAULT_OOM;
0ff92245 2748 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2749 goto unlock;
1da177e4
LT
2750 }
2751
2752 /* Had to read the page from swap area: Major fault */
2753 ret = VM_FAULT_MAJOR;
f8891e5e 2754 count_vm_event(PGMAJFAULT);
2262185c 2755 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2756 } else if (PageHWPoison(page)) {
71f72525
WF
2757 /*
2758 * hwpoisoned dirty swapcache pages are kept for killing
2759 * owner processes (which may be unknown at hwpoison time)
2760 */
d1737fdb
AK
2761 ret = VM_FAULT_HWPOISON;
2762 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2763 goto out_release;
1da177e4
LT
2764 }
2765
82b0f8c3 2766 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2767
073e587e 2768 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2769 if (!locked) {
2770 ret |= VM_FAULT_RETRY;
2771 goto out_release;
2772 }
073e587e 2773
4969c119 2774 /*
31c4a3d3
HD
2775 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2776 * release the swapcache from under us. The page pin, and pte_same
2777 * test below, are not enough to exclude that. Even if it is still
2778 * swapcache, we need to check that the page's swap has not changed.
4969c119 2779 */
0bcac06f
MK
2780 if (unlikely((!PageSwapCache(page) ||
2781 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2782 goto out_page;
2783
82b0f8c3 2784 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2785 if (unlikely(!page)) {
2786 ret = VM_FAULT_OOM;
2787 page = swapcache;
cbf86cfe 2788 goto out_page;
5ad64688
HD
2789 }
2790
2cf85583
TH
2791 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2792 &memcg, false)) {
8a9f3ccd 2793 ret = VM_FAULT_OOM;
bc43f75c 2794 goto out_page;
8a9f3ccd
BS
2795 }
2796
1da177e4 2797 /*
8f4e2101 2798 * Back out if somebody else already faulted in this pte.
1da177e4 2799 */
82b0f8c3
JK
2800 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2801 &vmf->ptl);
2994302b 2802 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2803 goto out_nomap;
b8107480
KK
2804
2805 if (unlikely(!PageUptodate(page))) {
2806 ret = VM_FAULT_SIGBUS;
2807 goto out_nomap;
1da177e4
LT
2808 }
2809
8c7c6e34
KH
2810 /*
2811 * The page isn't present yet, go ahead with the fault.
2812 *
2813 * Be careful about the sequence of operations here.
2814 * To get its accounting right, reuse_swap_page() must be called
2815 * while the page is counted on swap but not yet in mapcount i.e.
2816 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2817 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2818 */
1da177e4 2819
bae473a4
KS
2820 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2821 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2822 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2823 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2824 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2825 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2826 ret |= VM_FAULT_WRITE;
d281ee61 2827 exclusive = RMAP_EXCLUSIVE;
1da177e4 2828 }
1da177e4 2829 flush_icache_page(vma, page);
2994302b 2830 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2831 pte = pte_mksoft_dirty(pte);
82b0f8c3 2832 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 2833 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 2834 vmf->orig_pte = pte;
0bcac06f
MK
2835
2836 /* ksm created a completely new copy */
2837 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 2838 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2839 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2840 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
2841 } else {
2842 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2843 mem_cgroup_commit_charge(page, memcg, true, false);
2844 activate_page(page);
00501b53 2845 }
1da177e4 2846
c475a8ab 2847 swap_free(entry);
5ccc5aba
VD
2848 if (mem_cgroup_swap_full(page) ||
2849 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2850 try_to_free_swap(page);
c475a8ab 2851 unlock_page(page);
0bcac06f 2852 if (page != swapcache && swapcache) {
4969c119
AA
2853 /*
2854 * Hold the lock to avoid the swap entry to be reused
2855 * until we take the PT lock for the pte_same() check
2856 * (to avoid false positives from pte_same). For
2857 * further safety release the lock after the swap_free
2858 * so that the swap count won't change under a
2859 * parallel locked swapcache.
2860 */
2861 unlock_page(swapcache);
09cbfeaf 2862 put_page(swapcache);
4969c119 2863 }
c475a8ab 2864
82b0f8c3 2865 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2866 ret |= do_wp_page(vmf);
61469f1d
HD
2867 if (ret & VM_FAULT_ERROR)
2868 ret &= VM_FAULT_ERROR;
1da177e4
LT
2869 goto out;
2870 }
2871
2872 /* No need to invalidate - it was non-present before */
82b0f8c3 2873 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2874unlock:
82b0f8c3 2875 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2876out:
2877 return ret;
b8107480 2878out_nomap:
f627c2f5 2879 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2880 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2881out_page:
b8107480 2882 unlock_page(page);
4779cb31 2883out_release:
09cbfeaf 2884 put_page(page);
0bcac06f 2885 if (page != swapcache && swapcache) {
4969c119 2886 unlock_page(swapcache);
09cbfeaf 2887 put_page(swapcache);
4969c119 2888 }
65500d23 2889 return ret;
1da177e4
LT
2890}
2891
2892/*
8f4e2101
HD
2893 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2894 * but allow concurrent faults), and pte mapped but not yet locked.
2895 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2896 */
2b740303 2897static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 2898{
82b0f8c3 2899 struct vm_area_struct *vma = vmf->vma;
00501b53 2900 struct mem_cgroup *memcg;
8f4e2101 2901 struct page *page;
2b740303 2902 vm_fault_t ret = 0;
1da177e4 2903 pte_t entry;
1da177e4 2904
6b7339f4
KS
2905 /* File mapping without ->vm_ops ? */
2906 if (vma->vm_flags & VM_SHARED)
2907 return VM_FAULT_SIGBUS;
2908
7267ec00
KS
2909 /*
2910 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2911 * pte_offset_map() on pmds where a huge pmd might be created
2912 * from a different thread.
2913 *
2914 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2915 * parallel threads are excluded by other means.
2916 *
2917 * Here we only have down_read(mmap_sem).
2918 */
4cf58924 2919 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
2920 return VM_FAULT_OOM;
2921
2922 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2923 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2924 return 0;
2925
11ac5524 2926 /* Use the zero-page for reads */
82b0f8c3 2927 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2928 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2929 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2930 vma->vm_page_prot));
82b0f8c3
JK
2931 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2932 vmf->address, &vmf->ptl);
2933 if (!pte_none(*vmf->pte))
a13ea5b7 2934 goto unlock;
6b31d595
MH
2935 ret = check_stable_address_space(vma->vm_mm);
2936 if (ret)
2937 goto unlock;
6b251fc9
AA
2938 /* Deliver the page fault to userland, check inside PT lock */
2939 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2940 pte_unmap_unlock(vmf->pte, vmf->ptl);
2941 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2942 }
a13ea5b7
HD
2943 goto setpte;
2944 }
2945
557ed1fa 2946 /* Allocate our own private page. */
557ed1fa
NP
2947 if (unlikely(anon_vma_prepare(vma)))
2948 goto oom;
82b0f8c3 2949 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2950 if (!page)
2951 goto oom;
eb3c24f3 2952
2cf85583
TH
2953 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2954 false))
eb3c24f3
MG
2955 goto oom_free_page;
2956
52f37629
MK
2957 /*
2958 * The memory barrier inside __SetPageUptodate makes sure that
2959 * preceeding stores to the page contents become visible before
2960 * the set_pte_at() write.
2961 */
0ed361de 2962 __SetPageUptodate(page);
8f4e2101 2963
557ed1fa 2964 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2965 if (vma->vm_flags & VM_WRITE)
2966 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2967
82b0f8c3
JK
2968 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2969 &vmf->ptl);
2970 if (!pte_none(*vmf->pte))
557ed1fa 2971 goto release;
9ba69294 2972
6b31d595
MH
2973 ret = check_stable_address_space(vma->vm_mm);
2974 if (ret)
2975 goto release;
2976
6b251fc9
AA
2977 /* Deliver the page fault to userland, check inside PT lock */
2978 if (userfaultfd_missing(vma)) {
82b0f8c3 2979 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 2980 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2981 put_page(page);
82b0f8c3 2982 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
2983 }
2984
bae473a4 2985 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 2986 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2987 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2988 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2989setpte:
82b0f8c3 2990 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
2991
2992 /* No need to invalidate - it was non-present before */
82b0f8c3 2993 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2994unlock:
82b0f8c3 2995 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 2996 return ret;
8f4e2101 2997release:
f627c2f5 2998 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2999 put_page(page);
8f4e2101 3000 goto unlock;
8a9f3ccd 3001oom_free_page:
09cbfeaf 3002 put_page(page);
65500d23 3003oom:
1da177e4
LT
3004 return VM_FAULT_OOM;
3005}
3006
9a95f3cf
PC
3007/*
3008 * The mmap_sem must have been held on entry, and may have been
3009 * released depending on flags and vma->vm_ops->fault() return value.
3010 * See filemap_fault() and __lock_page_retry().
3011 */
2b740303 3012static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3013{
82b0f8c3 3014 struct vm_area_struct *vma = vmf->vma;
2b740303 3015 vm_fault_t ret;
7eae74af 3016
63f3655f
MH
3017 /*
3018 * Preallocate pte before we take page_lock because this might lead to
3019 * deadlocks for memcg reclaim which waits for pages under writeback:
3020 * lock_page(A)
3021 * SetPageWriteback(A)
3022 * unlock_page(A)
3023 * lock_page(B)
3024 * lock_page(B)
3025 * pte_alloc_pne
3026 * shrink_page_list
3027 * wait_on_page_writeback(A)
3028 * SetPageWriteback(B)
3029 * unlock_page(B)
3030 * # flush A, B to clear the writeback
3031 */
3032 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3033 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3034 if (!vmf->prealloc_pte)
3035 return VM_FAULT_OOM;
3036 smp_wmb(); /* See comment in __pte_alloc() */
3037 }
3038
11bac800 3039 ret = vma->vm_ops->fault(vmf);
3917048d 3040 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3041 VM_FAULT_DONE_COW)))
bc2466e4 3042 return ret;
7eae74af 3043
667240e0 3044 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3045 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3046 unlock_page(vmf->page);
3047 put_page(vmf->page);
936ca80d 3048 vmf->page = NULL;
7eae74af
KS
3049 return VM_FAULT_HWPOISON;
3050 }
3051
3052 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3053 lock_page(vmf->page);
7eae74af 3054 else
667240e0 3055 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3056
7eae74af
KS
3057 return ret;
3058}
3059
d0f0931d
RZ
3060/*
3061 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3062 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3063 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3064 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3065 */
3066static int pmd_devmap_trans_unstable(pmd_t *pmd)
3067{
3068 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3069}
3070
2b740303 3071static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3072{
82b0f8c3 3073 struct vm_area_struct *vma = vmf->vma;
7267ec00 3074
82b0f8c3 3075 if (!pmd_none(*vmf->pmd))
7267ec00 3076 goto map_pte;
82b0f8c3
JK
3077 if (vmf->prealloc_pte) {
3078 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3079 if (unlikely(!pmd_none(*vmf->pmd))) {
3080 spin_unlock(vmf->ptl);
7267ec00
KS
3081 goto map_pte;
3082 }
3083
c4812909 3084 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3085 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3086 spin_unlock(vmf->ptl);
7f2b6ce8 3087 vmf->prealloc_pte = NULL;
4cf58924 3088 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3089 return VM_FAULT_OOM;
3090 }
3091map_pte:
3092 /*
3093 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3094 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3095 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3096 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3097 * running immediately after a huge pmd fault in a different thread of
3098 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3099 * All we have to ensure is that it is a regular pmd that we can walk
3100 * with pte_offset_map() and we can do that through an atomic read in
3101 * C, which is what pmd_trans_unstable() provides.
7267ec00 3102 */
d0f0931d 3103 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3104 return VM_FAULT_NOPAGE;
3105
d0f0931d
RZ
3106 /*
3107 * At this point we know that our vmf->pmd points to a page of ptes
3108 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3109 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3110 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3111 * be valid and we will re-check to make sure the vmf->pte isn't
3112 * pte_none() under vmf->ptl protection when we return to
3113 * alloc_set_pte().
3114 */
82b0f8c3
JK
3115 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3116 &vmf->ptl);
7267ec00
KS
3117 return 0;
3118}
3119
e496cf3d 3120#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3121
3122#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3123static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3124 unsigned long haddr)
3125{
3126 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3127 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3128 return false;
3129 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3130 return false;
3131 return true;
3132}
3133
82b0f8c3 3134static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3135{
82b0f8c3 3136 struct vm_area_struct *vma = vmf->vma;
953c66c2 3137
82b0f8c3 3138 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3139 /*
3140 * We are going to consume the prealloc table,
3141 * count that as nr_ptes.
3142 */
c4812909 3143 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3144 vmf->prealloc_pte = NULL;
953c66c2
AK
3145}
3146
2b740303 3147static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3148{
82b0f8c3
JK
3149 struct vm_area_struct *vma = vmf->vma;
3150 bool write = vmf->flags & FAULT_FLAG_WRITE;
3151 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3152 pmd_t entry;
2b740303
SJ
3153 int i;
3154 vm_fault_t ret;
10102459
KS
3155
3156 if (!transhuge_vma_suitable(vma, haddr))
3157 return VM_FAULT_FALLBACK;
3158
3159 ret = VM_FAULT_FALLBACK;
3160 page = compound_head(page);
3161
953c66c2
AK
3162 /*
3163 * Archs like ppc64 need additonal space to store information
3164 * related to pte entry. Use the preallocated table for that.
3165 */
82b0f8c3 3166 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3167 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3168 if (!vmf->prealloc_pte)
953c66c2
AK
3169 return VM_FAULT_OOM;
3170 smp_wmb(); /* See comment in __pte_alloc() */
3171 }
3172
82b0f8c3
JK
3173 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3174 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3175 goto out;
3176
3177 for (i = 0; i < HPAGE_PMD_NR; i++)
3178 flush_icache_page(vma, page + i);
3179
3180 entry = mk_huge_pmd(page, vma->vm_page_prot);
3181 if (write)
f55e1014 3182 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3183
fadae295 3184 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3185 page_add_file_rmap(page, true);
953c66c2
AK
3186 /*
3187 * deposit and withdraw with pmd lock held
3188 */
3189 if (arch_needs_pgtable_deposit())
82b0f8c3 3190 deposit_prealloc_pte(vmf);
10102459 3191
82b0f8c3 3192 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3193
82b0f8c3 3194 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3195
3196 /* fault is handled */
3197 ret = 0;
95ecedcd 3198 count_vm_event(THP_FILE_MAPPED);
10102459 3199out:
82b0f8c3 3200 spin_unlock(vmf->ptl);
10102459
KS
3201 return ret;
3202}
3203#else
2b740303 3204static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3205{
3206 BUILD_BUG();
3207 return 0;
3208}
3209#endif
3210
8c6e50b0 3211/**
7267ec00
KS
3212 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3213 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3214 *
82b0f8c3 3215 * @vmf: fault environment
7267ec00 3216 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3217 * @page: page to map
8c6e50b0 3218 *
82b0f8c3
JK
3219 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3220 * return.
8c6e50b0
KS
3221 *
3222 * Target users are page handler itself and implementations of
3223 * vm_ops->map_pages.
a862f68a
MR
3224 *
3225 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3226 */
2b740303 3227vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3228 struct page *page)
3bb97794 3229{
82b0f8c3
JK
3230 struct vm_area_struct *vma = vmf->vma;
3231 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3232 pte_t entry;
2b740303 3233 vm_fault_t ret;
10102459 3234
82b0f8c3 3235 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3236 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3237 /* THP on COW? */
3238 VM_BUG_ON_PAGE(memcg, page);
3239
82b0f8c3 3240 ret = do_set_pmd(vmf, page);
10102459 3241 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3242 return ret;
10102459 3243 }
3bb97794 3244
82b0f8c3
JK
3245 if (!vmf->pte) {
3246 ret = pte_alloc_one_map(vmf);
7267ec00 3247 if (ret)
b0b9b3df 3248 return ret;
7267ec00
KS
3249 }
3250
3251 /* Re-check under ptl */
b0b9b3df
HD
3252 if (unlikely(!pte_none(*vmf->pte)))
3253 return VM_FAULT_NOPAGE;
7267ec00 3254
3bb97794
KS
3255 flush_icache_page(vma, page);
3256 entry = mk_pte(page, vma->vm_page_prot);
3257 if (write)
3258 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3259 /* copy-on-write page */
3260 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3261 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3262 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3263 mem_cgroup_commit_charge(page, memcg, false, false);
3264 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3265 } else {
eca56ff9 3266 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3267 page_add_file_rmap(page, false);
3bb97794 3268 }
82b0f8c3 3269 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3270
3271 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3272 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3273
b0b9b3df 3274 return 0;
3bb97794
KS
3275}
3276
9118c0cb
JK
3277
3278/**
3279 * finish_fault - finish page fault once we have prepared the page to fault
3280 *
3281 * @vmf: structure describing the fault
3282 *
3283 * This function handles all that is needed to finish a page fault once the
3284 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3285 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3286 * addition.
9118c0cb
JK
3287 *
3288 * The function expects the page to be locked and on success it consumes a
3289 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3290 *
3291 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3292 */
2b740303 3293vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3294{
3295 struct page *page;
2b740303 3296 vm_fault_t ret = 0;
9118c0cb
JK
3297
3298 /* Did we COW the page? */
3299 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3300 !(vmf->vma->vm_flags & VM_SHARED))
3301 page = vmf->cow_page;
3302 else
3303 page = vmf->page;
6b31d595
MH
3304
3305 /*
3306 * check even for read faults because we might have lost our CoWed
3307 * page
3308 */
3309 if (!(vmf->vma->vm_flags & VM_SHARED))
3310 ret = check_stable_address_space(vmf->vma->vm_mm);
3311 if (!ret)
3312 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3313 if (vmf->pte)
3314 pte_unmap_unlock(vmf->pte, vmf->ptl);
3315 return ret;
3316}
3317
3a91053a
KS
3318static unsigned long fault_around_bytes __read_mostly =
3319 rounddown_pow_of_two(65536);
a9b0f861 3320
a9b0f861
KS
3321#ifdef CONFIG_DEBUG_FS
3322static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3323{
a9b0f861 3324 *val = fault_around_bytes;
1592eef0
KS
3325 return 0;
3326}
3327
b4903d6e 3328/*
da391d64
WK
3329 * fault_around_bytes must be rounded down to the nearest page order as it's
3330 * what do_fault_around() expects to see.
b4903d6e 3331 */
a9b0f861 3332static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3333{
a9b0f861 3334 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3335 return -EINVAL;
b4903d6e
AR
3336 if (val > PAGE_SIZE)
3337 fault_around_bytes = rounddown_pow_of_two(val);
3338 else
3339 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3340 return 0;
3341}
0a1345f8 3342DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3343 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3344
3345static int __init fault_around_debugfs(void)
3346{
d9f7979c
GKH
3347 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3348 &fault_around_bytes_fops);
1592eef0
KS
3349 return 0;
3350}
3351late_initcall(fault_around_debugfs);
1592eef0 3352#endif
8c6e50b0 3353
1fdb412b
KS
3354/*
3355 * do_fault_around() tries to map few pages around the fault address. The hope
3356 * is that the pages will be needed soon and this will lower the number of
3357 * faults to handle.
3358 *
3359 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3360 * not ready to be mapped: not up-to-date, locked, etc.
3361 *
3362 * This function is called with the page table lock taken. In the split ptlock
3363 * case the page table lock only protects only those entries which belong to
3364 * the page table corresponding to the fault address.
3365 *
3366 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3367 * only once.
3368 *
da391d64
WK
3369 * fault_around_bytes defines how many bytes we'll try to map.
3370 * do_fault_around() expects it to be set to a power of two less than or equal
3371 * to PTRS_PER_PTE.
1fdb412b 3372 *
da391d64
WK
3373 * The virtual address of the area that we map is naturally aligned to
3374 * fault_around_bytes rounded down to the machine page size
3375 * (and therefore to page order). This way it's easier to guarantee
3376 * that we don't cross page table boundaries.
1fdb412b 3377 */
2b740303 3378static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3379{
82b0f8c3 3380 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3381 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3382 pgoff_t end_pgoff;
2b740303
SJ
3383 int off;
3384 vm_fault_t ret = 0;
8c6e50b0 3385
4db0c3c2 3386 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3387 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3388
82b0f8c3
JK
3389 vmf->address = max(address & mask, vmf->vma->vm_start);
3390 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3391 start_pgoff -= off;
8c6e50b0
KS
3392
3393 /*
da391d64
WK
3394 * end_pgoff is either the end of the page table, the end of
3395 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3396 */
bae473a4 3397 end_pgoff = start_pgoff -
82b0f8c3 3398 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3399 PTRS_PER_PTE - 1;
82b0f8c3 3400 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3401 start_pgoff + nr_pages - 1);
8c6e50b0 3402
82b0f8c3 3403 if (pmd_none(*vmf->pmd)) {
4cf58924 3404 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3405 if (!vmf->prealloc_pte)
c5f88bd2 3406 goto out;
7267ec00 3407 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3408 }
3409
82b0f8c3 3410 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3411
7267ec00 3412 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3413 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3414 ret = VM_FAULT_NOPAGE;
3415 goto out;
3416 }
3417
3418 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3419 if (!vmf->pte)
7267ec00
KS
3420 goto out;
3421
3422 /* check if the page fault is solved */
82b0f8c3
JK
3423 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3424 if (!pte_none(*vmf->pte))
7267ec00 3425 ret = VM_FAULT_NOPAGE;
82b0f8c3 3426 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3427out:
82b0f8c3
JK
3428 vmf->address = address;
3429 vmf->pte = NULL;
7267ec00 3430 return ret;
8c6e50b0
KS
3431}
3432
2b740303 3433static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3434{
82b0f8c3 3435 struct vm_area_struct *vma = vmf->vma;
2b740303 3436 vm_fault_t ret = 0;
8c6e50b0
KS
3437
3438 /*
3439 * Let's call ->map_pages() first and use ->fault() as fallback
3440 * if page by the offset is not ready to be mapped (cold cache or
3441 * something).
3442 */
9b4bdd2f 3443 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3444 ret = do_fault_around(vmf);
7267ec00
KS
3445 if (ret)
3446 return ret;
8c6e50b0 3447 }
e655fb29 3448
936ca80d 3449 ret = __do_fault(vmf);
e655fb29
KS
3450 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3451 return ret;
3452
9118c0cb 3453 ret |= finish_fault(vmf);
936ca80d 3454 unlock_page(vmf->page);
7267ec00 3455 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3456 put_page(vmf->page);
e655fb29
KS
3457 return ret;
3458}
3459
2b740303 3460static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3461{
82b0f8c3 3462 struct vm_area_struct *vma = vmf->vma;
2b740303 3463 vm_fault_t ret;
ec47c3b9
KS
3464
3465 if (unlikely(anon_vma_prepare(vma)))
3466 return VM_FAULT_OOM;
3467
936ca80d
JK
3468 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3469 if (!vmf->cow_page)
ec47c3b9
KS
3470 return VM_FAULT_OOM;
3471
2cf85583 3472 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3473 &vmf->memcg, false)) {
936ca80d 3474 put_page(vmf->cow_page);
ec47c3b9
KS
3475 return VM_FAULT_OOM;
3476 }
3477
936ca80d 3478 ret = __do_fault(vmf);
ec47c3b9
KS
3479 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3480 goto uncharge_out;
3917048d
JK
3481 if (ret & VM_FAULT_DONE_COW)
3482 return ret;
ec47c3b9 3483
b1aa812b 3484 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3485 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3486
9118c0cb 3487 ret |= finish_fault(vmf);
b1aa812b
JK
3488 unlock_page(vmf->page);
3489 put_page(vmf->page);
7267ec00
KS
3490 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3491 goto uncharge_out;
ec47c3b9
KS
3492 return ret;
3493uncharge_out:
3917048d 3494 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3495 put_page(vmf->cow_page);
ec47c3b9
KS
3496 return ret;
3497}
3498
2b740303 3499static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3500{
82b0f8c3 3501 struct vm_area_struct *vma = vmf->vma;
2b740303 3502 vm_fault_t ret, tmp;
1d65f86d 3503
936ca80d 3504 ret = __do_fault(vmf);
7eae74af 3505 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3506 return ret;
1da177e4
LT
3507
3508 /*
f0c6d4d2
KS
3509 * Check if the backing address space wants to know that the page is
3510 * about to become writable
1da177e4 3511 */
fb09a464 3512 if (vma->vm_ops->page_mkwrite) {
936ca80d 3513 unlock_page(vmf->page);
38b8cb7f 3514 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3515 if (unlikely(!tmp ||
3516 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3517 put_page(vmf->page);
fb09a464 3518 return tmp;
4294621f 3519 }
fb09a464
KS
3520 }
3521
9118c0cb 3522 ret |= finish_fault(vmf);
7267ec00
KS
3523 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3524 VM_FAULT_RETRY))) {
936ca80d
JK
3525 unlock_page(vmf->page);
3526 put_page(vmf->page);
f0c6d4d2 3527 return ret;
1da177e4 3528 }
b827e496 3529
97ba0c2b 3530 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3531 return ret;
54cb8821 3532}
d00806b1 3533
9a95f3cf
PC
3534/*
3535 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3536 * but allow concurrent faults).
3537 * The mmap_sem may have been released depending on flags and our
3538 * return value. See filemap_fault() and __lock_page_or_retry().
3539 */
2b740303 3540static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3541{
82b0f8c3 3542 struct vm_area_struct *vma = vmf->vma;
2b740303 3543 vm_fault_t ret;
54cb8821 3544
ff09d7ec
AK
3545 /*
3546 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3547 */
3548 if (!vma->vm_ops->fault) {
3549 /*
3550 * If we find a migration pmd entry or a none pmd entry, which
3551 * should never happen, return SIGBUS
3552 */
3553 if (unlikely(!pmd_present(*vmf->pmd)))
3554 ret = VM_FAULT_SIGBUS;
3555 else {
3556 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3557 vmf->pmd,
3558 vmf->address,
3559 &vmf->ptl);
3560 /*
3561 * Make sure this is not a temporary clearing of pte
3562 * by holding ptl and checking again. A R/M/W update
3563 * of pte involves: take ptl, clearing the pte so that
3564 * we don't have concurrent modification by hardware
3565 * followed by an update.
3566 */
3567 if (unlikely(pte_none(*vmf->pte)))
3568 ret = VM_FAULT_SIGBUS;
3569 else
3570 ret = VM_FAULT_NOPAGE;
3571
3572 pte_unmap_unlock(vmf->pte, vmf->ptl);
3573 }
3574 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3575 ret = do_read_fault(vmf);
3576 else if (!(vma->vm_flags & VM_SHARED))
3577 ret = do_cow_fault(vmf);
3578 else
3579 ret = do_shared_fault(vmf);
3580
3581 /* preallocated pagetable is unused: free it */
3582 if (vmf->prealloc_pte) {
3583 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3584 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3585 }
3586 return ret;
54cb8821
NP
3587}
3588
b19a9939 3589static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3590 unsigned long addr, int page_nid,
3591 int *flags)
9532fec1
MG
3592{
3593 get_page(page);
3594
3595 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3596 if (page_nid == numa_node_id()) {
9532fec1 3597 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3598 *flags |= TNF_FAULT_LOCAL;
3599 }
9532fec1
MG
3600
3601 return mpol_misplaced(page, vma, addr);
3602}
3603
2b740303 3604static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3605{
82b0f8c3 3606 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3607 struct page *page = NULL;
98fa15f3 3608 int page_nid = NUMA_NO_NODE;
90572890 3609 int last_cpupid;
cbee9f88 3610 int target_nid;
b8593bfd 3611 bool migrated = false;
04a86453 3612 pte_t pte, old_pte;
288bc549 3613 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3614 int flags = 0;
d10e63f2
MG
3615
3616 /*
166f61b9
TH
3617 * The "pte" at this point cannot be used safely without
3618 * validation through pte_unmap_same(). It's of NUMA type but
3619 * the pfn may be screwed if the read is non atomic.
166f61b9 3620 */
82b0f8c3
JK
3621 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3622 spin_lock(vmf->ptl);
cee216a6 3623 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3624 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3625 goto out;
3626 }
3627
cee216a6
AK
3628 /*
3629 * Make it present again, Depending on how arch implementes non
3630 * accessible ptes, some can allow access by kernel mode.
3631 */
04a86453
AK
3632 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3633 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3634 pte = pte_mkyoung(pte);
b191f9b1
MG
3635 if (was_writable)
3636 pte = pte_mkwrite(pte);
04a86453 3637 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3638 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3639
82b0f8c3 3640 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3641 if (!page) {
82b0f8c3 3642 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3643 return 0;
3644 }
3645
e81c4802
KS
3646 /* TODO: handle PTE-mapped THP */
3647 if (PageCompound(page)) {
82b0f8c3 3648 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3649 return 0;
3650 }
3651
6688cc05 3652 /*
bea66fbd
MG
3653 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3654 * much anyway since they can be in shared cache state. This misses
3655 * the case where a mapping is writable but the process never writes
3656 * to it but pte_write gets cleared during protection updates and
3657 * pte_dirty has unpredictable behaviour between PTE scan updates,
3658 * background writeback, dirty balancing and application behaviour.
6688cc05 3659 */
d59dc7bc 3660 if (!pte_write(pte))
6688cc05
PZ
3661 flags |= TNF_NO_GROUP;
3662
dabe1d99
RR
3663 /*
3664 * Flag if the page is shared between multiple address spaces. This
3665 * is later used when determining whether to group tasks together
3666 */
3667 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3668 flags |= TNF_SHARED;
3669
90572890 3670 last_cpupid = page_cpupid_last(page);
8191acbd 3671 page_nid = page_to_nid(page);
82b0f8c3 3672 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3673 &flags);
82b0f8c3 3674 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3675 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3676 put_page(page);
3677 goto out;
3678 }
3679
3680 /* Migrate to the requested node */
1bc115d8 3681 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3682 if (migrated) {
8191acbd 3683 page_nid = target_nid;
6688cc05 3684 flags |= TNF_MIGRATED;
074c2381
MG
3685 } else
3686 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3687
3688out:
98fa15f3 3689 if (page_nid != NUMA_NO_NODE)
6688cc05 3690 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3691 return 0;
3692}
3693
2b740303 3694static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3695{
f4200391 3696 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3697 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3698 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3699 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3700 return VM_FAULT_FALLBACK;
3701}
3702
183f24aa 3703/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3704static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3705{
82b0f8c3
JK
3706 if (vma_is_anonymous(vmf->vma))
3707 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3708 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3709 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3710
3711 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3712 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3713 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3714
b96375f7
MW
3715 return VM_FAULT_FALLBACK;
3716}
3717
38e08854
LS
3718static inline bool vma_is_accessible(struct vm_area_struct *vma)
3719{
3720 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3721}
3722
2b740303 3723static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3724{
3725#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3726 /* No support for anonymous transparent PUD pages yet */
3727 if (vma_is_anonymous(vmf->vma))
3728 return VM_FAULT_FALLBACK;
3729 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3730 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3731#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3732 return VM_FAULT_FALLBACK;
3733}
3734
2b740303 3735static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3736{
3737#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3738 /* No support for anonymous transparent PUD pages yet */
3739 if (vma_is_anonymous(vmf->vma))
3740 return VM_FAULT_FALLBACK;
3741 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3742 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3743#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3744 return VM_FAULT_FALLBACK;
3745}
3746
1da177e4
LT
3747/*
3748 * These routines also need to handle stuff like marking pages dirty
3749 * and/or accessed for architectures that don't do it in hardware (most
3750 * RISC architectures). The early dirtying is also good on the i386.
3751 *
3752 * There is also a hook called "update_mmu_cache()" that architectures
3753 * with external mmu caches can use to update those (ie the Sparc or
3754 * PowerPC hashed page tables that act as extended TLBs).
3755 *
7267ec00
KS
3756 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3757 * concurrent faults).
9a95f3cf 3758 *
7267ec00
KS
3759 * The mmap_sem may have been released depending on flags and our return value.
3760 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3761 */
2b740303 3762static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3763{
3764 pte_t entry;
3765
82b0f8c3 3766 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3767 /*
3768 * Leave __pte_alloc() until later: because vm_ops->fault may
3769 * want to allocate huge page, and if we expose page table
3770 * for an instant, it will be difficult to retract from
3771 * concurrent faults and from rmap lookups.
3772 */
82b0f8c3 3773 vmf->pte = NULL;
7267ec00
KS
3774 } else {
3775 /* See comment in pte_alloc_one_map() */
d0f0931d 3776 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3777 return 0;
3778 /*
3779 * A regular pmd is established and it can't morph into a huge
3780 * pmd from under us anymore at this point because we hold the
3781 * mmap_sem read mode and khugepaged takes it in write mode.
3782 * So now it's safe to run pte_offset_map().
3783 */
82b0f8c3 3784 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3785 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3786
3787 /*
3788 * some architectures can have larger ptes than wordsize,
3789 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3790 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3791 * accesses. The code below just needs a consistent view
3792 * for the ifs and we later double check anyway with the
7267ec00
KS
3793 * ptl lock held. So here a barrier will do.
3794 */
3795 barrier();
2994302b 3796 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3797 pte_unmap(vmf->pte);
3798 vmf->pte = NULL;
65500d23 3799 }
1da177e4
LT
3800 }
3801
82b0f8c3
JK
3802 if (!vmf->pte) {
3803 if (vma_is_anonymous(vmf->vma))
3804 return do_anonymous_page(vmf);
7267ec00 3805 else
82b0f8c3 3806 return do_fault(vmf);
7267ec00
KS
3807 }
3808
2994302b
JK
3809 if (!pte_present(vmf->orig_pte))
3810 return do_swap_page(vmf);
7267ec00 3811
2994302b
JK
3812 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3813 return do_numa_page(vmf);
d10e63f2 3814
82b0f8c3
JK
3815 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3816 spin_lock(vmf->ptl);
2994302b 3817 entry = vmf->orig_pte;
82b0f8c3 3818 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3819 goto unlock;
82b0f8c3 3820 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3821 if (!pte_write(entry))
2994302b 3822 return do_wp_page(vmf);
1da177e4
LT
3823 entry = pte_mkdirty(entry);
3824 }
3825 entry = pte_mkyoung(entry);
82b0f8c3
JK
3826 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3827 vmf->flags & FAULT_FLAG_WRITE)) {
3828 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3829 } else {
3830 /*
3831 * This is needed only for protection faults but the arch code
3832 * is not yet telling us if this is a protection fault or not.
3833 * This still avoids useless tlb flushes for .text page faults
3834 * with threads.
3835 */
82b0f8c3
JK
3836 if (vmf->flags & FAULT_FLAG_WRITE)
3837 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3838 }
8f4e2101 3839unlock:
82b0f8c3 3840 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3841 return 0;
1da177e4
LT
3842}
3843
3844/*
3845 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3846 *
3847 * The mmap_sem may have been released depending on flags and our
3848 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3849 */
2b740303
SJ
3850static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3851 unsigned long address, unsigned int flags)
1da177e4 3852{
82b0f8c3 3853 struct vm_fault vmf = {
bae473a4 3854 .vma = vma,
1a29d85e 3855 .address = address & PAGE_MASK,
bae473a4 3856 .flags = flags,
0721ec8b 3857 .pgoff = linear_page_index(vma, address),
667240e0 3858 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3859 };
fde26bed 3860 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 3861 struct mm_struct *mm = vma->vm_mm;
1da177e4 3862 pgd_t *pgd;
c2febafc 3863 p4d_t *p4d;
2b740303 3864 vm_fault_t ret;
1da177e4 3865
1da177e4 3866 pgd = pgd_offset(mm, address);
c2febafc
KS
3867 p4d = p4d_alloc(mm, pgd, address);
3868 if (!p4d)
3869 return VM_FAULT_OOM;
a00cc7d9 3870
c2febafc 3871 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3872 if (!vmf.pud)
c74df32c 3873 return VM_FAULT_OOM;
7635d9cb 3874 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3875 ret = create_huge_pud(&vmf);
3876 if (!(ret & VM_FAULT_FALLBACK))
3877 return ret;
3878 } else {
3879 pud_t orig_pud = *vmf.pud;
3880
3881 barrier();
3882 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 3883
a00cc7d9
MW
3884 /* NUMA case for anonymous PUDs would go here */
3885
f6f37321 3886 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
3887 ret = wp_huge_pud(&vmf, orig_pud);
3888 if (!(ret & VM_FAULT_FALLBACK))
3889 return ret;
3890 } else {
3891 huge_pud_set_accessed(&vmf, orig_pud);
3892 return 0;
3893 }
3894 }
3895 }
3896
3897 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3898 if (!vmf.pmd)
c74df32c 3899 return VM_FAULT_OOM;
7635d9cb 3900 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 3901 ret = create_huge_pmd(&vmf);
c0292554
KS
3902 if (!(ret & VM_FAULT_FALLBACK))
3903 return ret;
71e3aac0 3904 } else {
82b0f8c3 3905 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3906
71e3aac0 3907 barrier();
84c3fc4e
ZY
3908 if (unlikely(is_swap_pmd(orig_pmd))) {
3909 VM_BUG_ON(thp_migration_supported() &&
3910 !is_pmd_migration_entry(orig_pmd));
3911 if (is_pmd_migration_entry(orig_pmd))
3912 pmd_migration_entry_wait(mm, vmf.pmd);
3913 return 0;
3914 }
5c7fb56e 3915 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3916 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3917 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3918
f6f37321 3919 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 3920 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3921 if (!(ret & VM_FAULT_FALLBACK))
3922 return ret;
a1dd450b 3923 } else {
82b0f8c3 3924 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3925 return 0;
1f1d06c3 3926 }
71e3aac0
AA
3927 }
3928 }
3929
82b0f8c3 3930 return handle_pte_fault(&vmf);
1da177e4
LT
3931}
3932
9a95f3cf
PC
3933/*
3934 * By the time we get here, we already hold the mm semaphore
3935 *
3936 * The mmap_sem may have been released depending on flags and our
3937 * return value. See filemap_fault() and __lock_page_or_retry().
3938 */
2b740303 3939vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 3940 unsigned int flags)
519e5247 3941{
2b740303 3942 vm_fault_t ret;
519e5247
JW
3943
3944 __set_current_state(TASK_RUNNING);
3945
3946 count_vm_event(PGFAULT);
2262185c 3947 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3948
3949 /* do counter updates before entering really critical section. */
3950 check_sync_rss_stat(current);
3951
de0c799b
LD
3952 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3953 flags & FAULT_FLAG_INSTRUCTION,
3954 flags & FAULT_FLAG_REMOTE))
3955 return VM_FAULT_SIGSEGV;
3956
519e5247
JW
3957 /*
3958 * Enable the memcg OOM handling for faults triggered in user
3959 * space. Kernel faults are handled more gracefully.
3960 */
3961 if (flags & FAULT_FLAG_USER)
29ef680a 3962 mem_cgroup_enter_user_fault();
519e5247 3963
bae473a4
KS
3964 if (unlikely(is_vm_hugetlb_page(vma)))
3965 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3966 else
3967 ret = __handle_mm_fault(vma, address, flags);
519e5247 3968
49426420 3969 if (flags & FAULT_FLAG_USER) {
29ef680a 3970 mem_cgroup_exit_user_fault();
166f61b9
TH
3971 /*
3972 * The task may have entered a memcg OOM situation but
3973 * if the allocation error was handled gracefully (no
3974 * VM_FAULT_OOM), there is no need to kill anything.
3975 * Just clean up the OOM state peacefully.
3976 */
3977 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3978 mem_cgroup_oom_synchronize(false);
49426420 3979 }
3812c8c8 3980
519e5247
JW
3981 return ret;
3982}
e1d6d01a 3983EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3984
90eceff1
KS
3985#ifndef __PAGETABLE_P4D_FOLDED
3986/*
3987 * Allocate p4d page table.
3988 * We've already handled the fast-path in-line.
3989 */
3990int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3991{
3992 p4d_t *new = p4d_alloc_one(mm, address);
3993 if (!new)
3994 return -ENOMEM;
3995
3996 smp_wmb(); /* See comment in __pte_alloc */
3997
3998 spin_lock(&mm->page_table_lock);
3999 if (pgd_present(*pgd)) /* Another has populated it */
4000 p4d_free(mm, new);
4001 else
4002 pgd_populate(mm, pgd, new);
4003 spin_unlock(&mm->page_table_lock);
4004 return 0;
4005}
4006#endif /* __PAGETABLE_P4D_FOLDED */
4007
1da177e4
LT
4008#ifndef __PAGETABLE_PUD_FOLDED
4009/*
4010 * Allocate page upper directory.
872fec16 4011 * We've already handled the fast-path in-line.
1da177e4 4012 */
c2febafc 4013int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4014{
c74df32c
HD
4015 pud_t *new = pud_alloc_one(mm, address);
4016 if (!new)
1bb3630e 4017 return -ENOMEM;
1da177e4 4018
362a61ad
NP
4019 smp_wmb(); /* See comment in __pte_alloc */
4020
872fec16 4021 spin_lock(&mm->page_table_lock);
c2febafc 4022#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4023 if (!p4d_present(*p4d)) {
4024 mm_inc_nr_puds(mm);
c2febafc 4025 p4d_populate(mm, p4d, new);
b4e98d9a 4026 } else /* Another has populated it */
5e541973 4027 pud_free(mm, new);
b4e98d9a
KS
4028#else
4029 if (!pgd_present(*p4d)) {
4030 mm_inc_nr_puds(mm);
c2febafc 4031 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4032 } else /* Another has populated it */
4033 pud_free(mm, new);
c2febafc 4034#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4035 spin_unlock(&mm->page_table_lock);
1bb3630e 4036 return 0;
1da177e4
LT
4037}
4038#endif /* __PAGETABLE_PUD_FOLDED */
4039
4040#ifndef __PAGETABLE_PMD_FOLDED
4041/*
4042 * Allocate page middle directory.
872fec16 4043 * We've already handled the fast-path in-line.
1da177e4 4044 */
1bb3630e 4045int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4046{
a00cc7d9 4047 spinlock_t *ptl;
c74df32c
HD
4048 pmd_t *new = pmd_alloc_one(mm, address);
4049 if (!new)
1bb3630e 4050 return -ENOMEM;
1da177e4 4051
362a61ad
NP
4052 smp_wmb(); /* See comment in __pte_alloc */
4053
a00cc7d9 4054 ptl = pud_lock(mm, pud);
1da177e4 4055#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4056 if (!pud_present(*pud)) {
4057 mm_inc_nr_pmds(mm);
1bb3630e 4058 pud_populate(mm, pud, new);
dc6c9a35 4059 } else /* Another has populated it */
5e541973 4060 pmd_free(mm, new);
dc6c9a35
KS
4061#else
4062 if (!pgd_present(*pud)) {
4063 mm_inc_nr_pmds(mm);
1bb3630e 4064 pgd_populate(mm, pud, new);
dc6c9a35
KS
4065 } else /* Another has populated it */
4066 pmd_free(mm, new);
1da177e4 4067#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4068 spin_unlock(ptl);
1bb3630e 4069 return 0;
e0f39591 4070}
1da177e4
LT
4071#endif /* __PAGETABLE_PMD_FOLDED */
4072
09796395 4073static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4074 struct mmu_notifier_range *range,
a4d1a885 4075 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4076{
4077 pgd_t *pgd;
c2febafc 4078 p4d_t *p4d;
f8ad0f49
JW
4079 pud_t *pud;
4080 pmd_t *pmd;
4081 pte_t *ptep;
4082
4083 pgd = pgd_offset(mm, address);
4084 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4085 goto out;
4086
c2febafc
KS
4087 p4d = p4d_offset(pgd, address);
4088 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4089 goto out;
4090
4091 pud = pud_offset(p4d, address);
f8ad0f49
JW
4092 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4093 goto out;
4094
4095 pmd = pmd_offset(pud, address);
f66055ab 4096 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4097
09796395
RZ
4098 if (pmd_huge(*pmd)) {
4099 if (!pmdpp)
4100 goto out;
4101
ac46d4f3
JG
4102 if (range) {
4103 mmu_notifier_range_init(range, mm, address & PMD_MASK,
4104 (address & PMD_MASK) + PMD_SIZE);
4105 mmu_notifier_invalidate_range_start(range);
a4d1a885 4106 }
09796395
RZ
4107 *ptlp = pmd_lock(mm, pmd);
4108 if (pmd_huge(*pmd)) {
4109 *pmdpp = pmd;
4110 return 0;
4111 }
4112 spin_unlock(*ptlp);
ac46d4f3
JG
4113 if (range)
4114 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4115 }
4116
4117 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4118 goto out;
4119
ac46d4f3 4120 if (range) {
1ed7293a
MW
4121 mmu_notifier_range_init(range, mm, address & PAGE_MASK,
4122 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4123 mmu_notifier_invalidate_range_start(range);
a4d1a885 4124 }
f8ad0f49 4125 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4126 if (!pte_present(*ptep))
4127 goto unlock;
4128 *ptepp = ptep;
4129 return 0;
4130unlock:
4131 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4132 if (range)
4133 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4134out:
4135 return -EINVAL;
4136}
4137
f729c8c9
RZ
4138static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4139 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4140{
4141 int res;
4142
4143 /* (void) is needed to make gcc happy */
4144 (void) __cond_lock(*ptlp,
ac46d4f3 4145 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4146 ptepp, NULL, ptlp)));
09796395
RZ
4147 return res;
4148}
4149
4150int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4151 struct mmu_notifier_range *range,
4152 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4153{
4154 int res;
4155
4156 /* (void) is needed to make gcc happy */
4157 (void) __cond_lock(*ptlp,
ac46d4f3 4158 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4159 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4160 return res;
4161}
09796395 4162EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4163
3b6748e2
JW
4164/**
4165 * follow_pfn - look up PFN at a user virtual address
4166 * @vma: memory mapping
4167 * @address: user virtual address
4168 * @pfn: location to store found PFN
4169 *
4170 * Only IO mappings and raw PFN mappings are allowed.
4171 *
a862f68a 4172 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4173 */
4174int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4175 unsigned long *pfn)
4176{
4177 int ret = -EINVAL;
4178 spinlock_t *ptl;
4179 pte_t *ptep;
4180
4181 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4182 return ret;
4183
4184 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4185 if (ret)
4186 return ret;
4187 *pfn = pte_pfn(*ptep);
4188 pte_unmap_unlock(ptep, ptl);
4189 return 0;
4190}
4191EXPORT_SYMBOL(follow_pfn);
4192
28b2ee20 4193#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4194int follow_phys(struct vm_area_struct *vma,
4195 unsigned long address, unsigned int flags,
4196 unsigned long *prot, resource_size_t *phys)
28b2ee20 4197{
03668a4d 4198 int ret = -EINVAL;
28b2ee20
RR
4199 pte_t *ptep, pte;
4200 spinlock_t *ptl;
28b2ee20 4201
d87fe660 4202 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4203 goto out;
28b2ee20 4204
03668a4d 4205 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4206 goto out;
28b2ee20 4207 pte = *ptep;
03668a4d 4208
f6f37321 4209 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4210 goto unlock;
28b2ee20
RR
4211
4212 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4213 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4214
03668a4d 4215 ret = 0;
28b2ee20
RR
4216unlock:
4217 pte_unmap_unlock(ptep, ptl);
4218out:
d87fe660 4219 return ret;
28b2ee20
RR
4220}
4221
4222int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4223 void *buf, int len, int write)
4224{
4225 resource_size_t phys_addr;
4226 unsigned long prot = 0;
2bc7273b 4227 void __iomem *maddr;
28b2ee20
RR
4228 int offset = addr & (PAGE_SIZE-1);
4229
d87fe660 4230 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4231 return -EINVAL;
4232
9cb12d7b 4233 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4234 if (!maddr)
4235 return -ENOMEM;
4236
28b2ee20
RR
4237 if (write)
4238 memcpy_toio(maddr + offset, buf, len);
4239 else
4240 memcpy_fromio(buf, maddr + offset, len);
4241 iounmap(maddr);
4242
4243 return len;
4244}
5a73633e 4245EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4246#endif
4247
0ec76a11 4248/*
206cb636
SW
4249 * Access another process' address space as given in mm. If non-NULL, use the
4250 * given task for page fault accounting.
0ec76a11 4251 */
84d77d3f 4252int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4253 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4254{
0ec76a11 4255 struct vm_area_struct *vma;
0ec76a11 4256 void *old_buf = buf;
442486ec 4257 int write = gup_flags & FOLL_WRITE;
0ec76a11 4258
0ec76a11 4259 down_read(&mm->mmap_sem);
183ff22b 4260 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4261 while (len) {
4262 int bytes, ret, offset;
4263 void *maddr;
28b2ee20 4264 struct page *page = NULL;
0ec76a11 4265
1e987790 4266 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4267 gup_flags, &page, &vma, NULL);
28b2ee20 4268 if (ret <= 0) {
dbffcd03
RR
4269#ifndef CONFIG_HAVE_IOREMAP_PROT
4270 break;
4271#else
28b2ee20
RR
4272 /*
4273 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4274 * we can access using slightly different code.
4275 */
28b2ee20 4276 vma = find_vma(mm, addr);
fe936dfc 4277 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4278 break;
4279 if (vma->vm_ops && vma->vm_ops->access)
4280 ret = vma->vm_ops->access(vma, addr, buf,
4281 len, write);
4282 if (ret <= 0)
28b2ee20
RR
4283 break;
4284 bytes = ret;
dbffcd03 4285#endif
0ec76a11 4286 } else {
28b2ee20
RR
4287 bytes = len;
4288 offset = addr & (PAGE_SIZE-1);
4289 if (bytes > PAGE_SIZE-offset)
4290 bytes = PAGE_SIZE-offset;
4291
4292 maddr = kmap(page);
4293 if (write) {
4294 copy_to_user_page(vma, page, addr,
4295 maddr + offset, buf, bytes);
4296 set_page_dirty_lock(page);
4297 } else {
4298 copy_from_user_page(vma, page, addr,
4299 buf, maddr + offset, bytes);
4300 }
4301 kunmap(page);
09cbfeaf 4302 put_page(page);
0ec76a11 4303 }
0ec76a11
DH
4304 len -= bytes;
4305 buf += bytes;
4306 addr += bytes;
4307 }
4308 up_read(&mm->mmap_sem);
0ec76a11
DH
4309
4310 return buf - old_buf;
4311}
03252919 4312
5ddd36b9 4313/**
ae91dbfc 4314 * access_remote_vm - access another process' address space
5ddd36b9
SW
4315 * @mm: the mm_struct of the target address space
4316 * @addr: start address to access
4317 * @buf: source or destination buffer
4318 * @len: number of bytes to transfer
6347e8d5 4319 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4320 *
4321 * The caller must hold a reference on @mm.
a862f68a
MR
4322 *
4323 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4324 */
4325int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4326 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4327{
6347e8d5 4328 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4329}
4330
206cb636
SW
4331/*
4332 * Access another process' address space.
4333 * Source/target buffer must be kernel space,
4334 * Do not walk the page table directly, use get_user_pages
4335 */
4336int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4337 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4338{
4339 struct mm_struct *mm;
4340 int ret;
4341
4342 mm = get_task_mm(tsk);
4343 if (!mm)
4344 return 0;
4345
f307ab6d 4346 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4347
206cb636
SW
4348 mmput(mm);
4349
4350 return ret;
4351}
fcd35857 4352EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4353
03252919
AK
4354/*
4355 * Print the name of a VMA.
4356 */
4357void print_vma_addr(char *prefix, unsigned long ip)
4358{
4359 struct mm_struct *mm = current->mm;
4360 struct vm_area_struct *vma;
4361
e8bff74a 4362 /*
0a7f682d 4363 * we might be running from an atomic context so we cannot sleep
e8bff74a 4364 */
0a7f682d 4365 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4366 return;
4367
03252919
AK
4368 vma = find_vma(mm, ip);
4369 if (vma && vma->vm_file) {
4370 struct file *f = vma->vm_file;
0a7f682d 4371 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4372 if (buf) {
2fbc57c5 4373 char *p;
03252919 4374
9bf39ab2 4375 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4376 if (IS_ERR(p))
4377 p = "?";
2fbc57c5 4378 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4379 vma->vm_start,
4380 vma->vm_end - vma->vm_start);
4381 free_page((unsigned long)buf);
4382 }
4383 }
51a07e50 4384 up_read(&mm->mmap_sem);
03252919 4385}
3ee1afa3 4386
662bbcb2 4387#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4388void __might_fault(const char *file, int line)
3ee1afa3 4389{
95156f00
PZ
4390 /*
4391 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4392 * holding the mmap_sem, this is safe because kernel memory doesn't
4393 * get paged out, therefore we'll never actually fault, and the
4394 * below annotations will generate false positives.
4395 */
db68ce10 4396 if (uaccess_kernel())
95156f00 4397 return;
9ec23531 4398 if (pagefault_disabled())
662bbcb2 4399 return;
9ec23531
DH
4400 __might_sleep(file, line, 0);
4401#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4402 if (current->mm)
3ee1afa3 4403 might_lock_read(&current->mm->mmap_sem);
9ec23531 4404#endif
3ee1afa3 4405}
9ec23531 4406EXPORT_SYMBOL(__might_fault);
3ee1afa3 4407#endif
47ad8475
AA
4408
4409#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4410/*
4411 * Process all subpages of the specified huge page with the specified
4412 * operation. The target subpage will be processed last to keep its
4413 * cache lines hot.
4414 */
4415static inline void process_huge_page(
4416 unsigned long addr_hint, unsigned int pages_per_huge_page,
4417 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4418 void *arg)
47ad8475 4419{
c79b57e4
HY
4420 int i, n, base, l;
4421 unsigned long addr = addr_hint &
4422 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4423
c6ddfb6c 4424 /* Process target subpage last to keep its cache lines hot */
47ad8475 4425 might_sleep();
c79b57e4
HY
4426 n = (addr_hint - addr) / PAGE_SIZE;
4427 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4428 /* If target subpage in first half of huge page */
c79b57e4
HY
4429 base = 0;
4430 l = n;
c6ddfb6c 4431 /* Process subpages at the end of huge page */
c79b57e4
HY
4432 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4433 cond_resched();
c6ddfb6c 4434 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4435 }
4436 } else {
c6ddfb6c 4437 /* If target subpage in second half of huge page */
c79b57e4
HY
4438 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4439 l = pages_per_huge_page - n;
c6ddfb6c 4440 /* Process subpages at the begin of huge page */
c79b57e4
HY
4441 for (i = 0; i < base; i++) {
4442 cond_resched();
c6ddfb6c 4443 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4444 }
4445 }
4446 /*
c6ddfb6c
HY
4447 * Process remaining subpages in left-right-left-right pattern
4448 * towards the target subpage
c79b57e4
HY
4449 */
4450 for (i = 0; i < l; i++) {
4451 int left_idx = base + i;
4452 int right_idx = base + 2 * l - 1 - i;
4453
4454 cond_resched();
c6ddfb6c 4455 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4456 cond_resched();
c6ddfb6c 4457 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4458 }
4459}
4460
c6ddfb6c
HY
4461static void clear_gigantic_page(struct page *page,
4462 unsigned long addr,
4463 unsigned int pages_per_huge_page)
4464{
4465 int i;
4466 struct page *p = page;
4467
4468 might_sleep();
4469 for (i = 0; i < pages_per_huge_page;
4470 i++, p = mem_map_next(p, page, i)) {
4471 cond_resched();
4472 clear_user_highpage(p, addr + i * PAGE_SIZE);
4473 }
4474}
4475
4476static void clear_subpage(unsigned long addr, int idx, void *arg)
4477{
4478 struct page *page = arg;
4479
4480 clear_user_highpage(page + idx, addr);
4481}
4482
4483void clear_huge_page(struct page *page,
4484 unsigned long addr_hint, unsigned int pages_per_huge_page)
4485{
4486 unsigned long addr = addr_hint &
4487 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4488
4489 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4490 clear_gigantic_page(page, addr, pages_per_huge_page);
4491 return;
4492 }
4493
4494 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4495}
4496
47ad8475
AA
4497static void copy_user_gigantic_page(struct page *dst, struct page *src,
4498 unsigned long addr,
4499 struct vm_area_struct *vma,
4500 unsigned int pages_per_huge_page)
4501{
4502 int i;
4503 struct page *dst_base = dst;
4504 struct page *src_base = src;
4505
4506 for (i = 0; i < pages_per_huge_page; ) {
4507 cond_resched();
4508 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4509
4510 i++;
4511 dst = mem_map_next(dst, dst_base, i);
4512 src = mem_map_next(src, src_base, i);
4513 }
4514}
4515
c9f4cd71
HY
4516struct copy_subpage_arg {
4517 struct page *dst;
4518 struct page *src;
4519 struct vm_area_struct *vma;
4520};
4521
4522static void copy_subpage(unsigned long addr, int idx, void *arg)
4523{
4524 struct copy_subpage_arg *copy_arg = arg;
4525
4526 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4527 addr, copy_arg->vma);
4528}
4529
47ad8475 4530void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4531 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4532 unsigned int pages_per_huge_page)
4533{
c9f4cd71
HY
4534 unsigned long addr = addr_hint &
4535 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4536 struct copy_subpage_arg arg = {
4537 .dst = dst,
4538 .src = src,
4539 .vma = vma,
4540 };
47ad8475
AA
4541
4542 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4543 copy_user_gigantic_page(dst, src, addr, vma,
4544 pages_per_huge_page);
4545 return;
4546 }
4547
c9f4cd71 4548 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4549}
fa4d75c1
MK
4550
4551long copy_huge_page_from_user(struct page *dst_page,
4552 const void __user *usr_src,
810a56b9
MK
4553 unsigned int pages_per_huge_page,
4554 bool allow_pagefault)
fa4d75c1
MK
4555{
4556 void *src = (void *)usr_src;
4557 void *page_kaddr;
4558 unsigned long i, rc = 0;
4559 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4560
4561 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4562 if (allow_pagefault)
4563 page_kaddr = kmap(dst_page + i);
4564 else
4565 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4566 rc = copy_from_user(page_kaddr,
4567 (const void __user *)(src + i * PAGE_SIZE),
4568 PAGE_SIZE);
810a56b9
MK
4569 if (allow_pagefault)
4570 kunmap(dst_page + i);
4571 else
4572 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4573
4574 ret_val -= (PAGE_SIZE - rc);
4575 if (rc)
4576 break;
4577
4578 cond_resched();
4579 }
4580 return ret_val;
4581}
47ad8475 4582#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4583
40b64acd 4584#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4585
4586static struct kmem_cache *page_ptl_cachep;
4587
4588void __init ptlock_cache_init(void)
4589{
4590 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4591 SLAB_PANIC, NULL);
4592}
4593
539edb58 4594bool ptlock_alloc(struct page *page)
49076ec2
KS
4595{
4596 spinlock_t *ptl;
4597
b35f1819 4598 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4599 if (!ptl)
4600 return false;
539edb58 4601 page->ptl = ptl;
49076ec2
KS
4602 return true;
4603}
4604
539edb58 4605void ptlock_free(struct page *page)
49076ec2 4606{
b35f1819 4607 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4608}
4609#endif