]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/memory.c
mm: introduce fault_env
[people/arne_f/kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
01c8f1c4 53#include <linux/pfn_t.h>
edc79b2a 54#include <linux/writeback.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
3dc14741
HD
57#include <linux/kallsyms.h>
58#include <linux/swapops.h>
59#include <linux/elf.h>
5a0e3ad6 60#include <linux/gfp.h>
4daae3b4 61#include <linux/migrate.h>
2fbc57c5 62#include <linux/string.h>
0abdd7a8 63#include <linux/dma-debug.h>
1592eef0 64#include <linux/debugfs.h>
6b251fc9 65#include <linux/userfaultfd_k.h>
bc2466e4 66#include <linux/dax.h>
1da177e4 67
6952b61d 68#include <asm/io.h>
33a709b2 69#include <asm/mmu_context.h>
1da177e4
LT
70#include <asm/pgalloc.h>
71#include <asm/uaccess.h>
72#include <asm/tlb.h>
73#include <asm/tlbflush.h>
74#include <asm/pgtable.h>
75
42b77728
JB
76#include "internal.h"
77
90572890
PZ
78#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
80#endif
81
d41dee36 82#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
83/* use the per-pgdat data instead for discontigmem - mbligh */
84unsigned long max_mapnr;
85struct page *mem_map;
86
87EXPORT_SYMBOL(max_mapnr);
88EXPORT_SYMBOL(mem_map);
89#endif
90
1da177e4
LT
91/*
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 * and ZONE_HIGHMEM.
97 */
98void * high_memory;
1da177e4 99
1da177e4 100EXPORT_SYMBOL(high_memory);
1da177e4 101
32a93233
IM
102/*
103 * Randomize the address space (stacks, mmaps, brk, etc.).
104 *
105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106 * as ancient (libc5 based) binaries can segfault. )
107 */
108int randomize_va_space __read_mostly =
109#ifdef CONFIG_COMPAT_BRK
110 1;
111#else
112 2;
113#endif
a62eaf15
AK
114
115static int __init disable_randmaps(char *s)
116{
117 randomize_va_space = 0;
9b41046c 118 return 1;
a62eaf15
AK
119}
120__setup("norandmaps", disable_randmaps);
121
62eede62 122unsigned long zero_pfn __read_mostly;
03f6462a 123unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 124
0b70068e
AB
125EXPORT_SYMBOL(zero_pfn);
126
a13ea5b7
HD
127/*
128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129 */
130static int __init init_zero_pfn(void)
131{
132 zero_pfn = page_to_pfn(ZERO_PAGE(0));
133 return 0;
134}
135core_initcall(init_zero_pfn);
a62eaf15 136
d559db08 137
34e55232
KH
138#if defined(SPLIT_RSS_COUNTING)
139
ea48cf78 140void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
141{
142 int i;
143
144 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
145 if (current->rss_stat.count[i]) {
146 add_mm_counter(mm, i, current->rss_stat.count[i]);
147 current->rss_stat.count[i] = 0;
34e55232
KH
148 }
149 }
05af2e10 150 current->rss_stat.events = 0;
34e55232
KH
151}
152
153static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154{
155 struct task_struct *task = current;
156
157 if (likely(task->mm == mm))
158 task->rss_stat.count[member] += val;
159 else
160 add_mm_counter(mm, member, val);
161}
162#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164
165/* sync counter once per 64 page faults */
166#define TASK_RSS_EVENTS_THRESH (64)
167static void check_sync_rss_stat(struct task_struct *task)
168{
169 if (unlikely(task != current))
170 return;
171 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 172 sync_mm_rss(task->mm);
34e55232 173}
9547d01b 174#else /* SPLIT_RSS_COUNTING */
34e55232
KH
175
176#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178
179static void check_sync_rss_stat(struct task_struct *task)
180{
181}
182
9547d01b
PZ
183#endif /* SPLIT_RSS_COUNTING */
184
185#ifdef HAVE_GENERIC_MMU_GATHER
186
ca1d6c7d 187static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
188{
189 struct mmu_gather_batch *batch;
190
191 batch = tlb->active;
192 if (batch->next) {
193 tlb->active = batch->next;
ca1d6c7d 194 return true;
9547d01b
PZ
195 }
196
53a59fc6 197 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 198 return false;
53a59fc6 199
9547d01b
PZ
200 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201 if (!batch)
ca1d6c7d 202 return false;
9547d01b 203
53a59fc6 204 tlb->batch_count++;
9547d01b
PZ
205 batch->next = NULL;
206 batch->nr = 0;
207 batch->max = MAX_GATHER_BATCH;
208
209 tlb->active->next = batch;
210 tlb->active = batch;
211
ca1d6c7d 212 return true;
9547d01b
PZ
213}
214
215/* tlb_gather_mmu
216 * Called to initialize an (on-stack) mmu_gather structure for page-table
217 * tear-down from @mm. The @fullmm argument is used when @mm is without
218 * users and we're going to destroy the full address space (exit/execve).
219 */
2b047252 220void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
221{
222 tlb->mm = mm;
223
2b047252
LT
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
1de14c3c 226 tlb->need_flush_all = 0;
9547d01b
PZ
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
53a59fc6 231 tlb->batch_count = 0;
9547d01b
PZ
232
233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235#endif
e77b0852 236 tlb->page_size = 0;
fb7332a9
WD
237
238 __tlb_reset_range(tlb);
9547d01b
PZ
239}
240
1cf35d47 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 242{
721c21c1
WD
243 if (!tlb->end)
244 return;
245
9547d01b 246 tlb_flush(tlb);
34ee645e 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
34e55232 250#endif
fb7332a9 251 __tlb_reset_range(tlb);
1cf35d47
LT
252}
253
254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255{
256 struct mmu_gather_batch *batch;
34e55232 257
721c21c1 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263}
264
1cf35d47
LT
265void tlb_flush_mmu(struct mmu_gather *tlb)
266{
1cf35d47
LT
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269}
270
9547d01b
PZ
271/* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
275void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
276{
277 struct mmu_gather_batch *batch, *next;
278
279 tlb_flush_mmu(tlb);
280
281 /* keep the page table cache within bounds */
282 check_pgt_cache();
283
284 for (batch = tlb->local.next; batch; batch = next) {
285 next = batch->next;
286 free_pages((unsigned long)batch, 0);
287 }
288 tlb->local.next = NULL;
289}
290
291/* __tlb_remove_page
292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293 * handling the additional races in SMP caused by other CPUs caching valid
294 * mappings in their TLBs. Returns the number of free page slots left.
295 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 296 *returns true if the caller should flush.
9547d01b 297 */
e77b0852 298bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
299{
300 struct mmu_gather_batch *batch;
301
fb7332a9 302 VM_BUG_ON(!tlb->end);
9547d01b 303
e77b0852
AK
304 if (!tlb->page_size)
305 tlb->page_size = page_size;
306 else {
307 if (page_size != tlb->page_size)
308 return true;
309 }
310
9547d01b 311 batch = tlb->active;
9547d01b
PZ
312 if (batch->nr == batch->max) {
313 if (!tlb_next_batch(tlb))
e9d55e15 314 return true;
0b43c3aa 315 batch = tlb->active;
9547d01b 316 }
309381fe 317 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 318
e9d55e15
AK
319 batch->pages[batch->nr++] = page;
320 return false;
9547d01b
PZ
321}
322
323#endif /* HAVE_GENERIC_MMU_GATHER */
324
26723911
PZ
325#ifdef CONFIG_HAVE_RCU_TABLE_FREE
326
327/*
328 * See the comment near struct mmu_table_batch.
329 */
330
331static void tlb_remove_table_smp_sync(void *arg)
332{
333 /* Simply deliver the interrupt */
334}
335
336static void tlb_remove_table_one(void *table)
337{
338 /*
339 * This isn't an RCU grace period and hence the page-tables cannot be
340 * assumed to be actually RCU-freed.
341 *
342 * It is however sufficient for software page-table walkers that rely on
343 * IRQ disabling. See the comment near struct mmu_table_batch.
344 */
345 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
346 __tlb_remove_table(table);
347}
348
349static void tlb_remove_table_rcu(struct rcu_head *head)
350{
351 struct mmu_table_batch *batch;
352 int i;
353
354 batch = container_of(head, struct mmu_table_batch, rcu);
355
356 for (i = 0; i < batch->nr; i++)
357 __tlb_remove_table(batch->tables[i]);
358
359 free_page((unsigned long)batch);
360}
361
362void tlb_table_flush(struct mmu_gather *tlb)
363{
364 struct mmu_table_batch **batch = &tlb->batch;
365
366 if (*batch) {
367 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
368 *batch = NULL;
369 }
370}
371
372void tlb_remove_table(struct mmu_gather *tlb, void *table)
373{
374 struct mmu_table_batch **batch = &tlb->batch;
375
26723911
PZ
376 /*
377 * When there's less then two users of this mm there cannot be a
378 * concurrent page-table walk.
379 */
380 if (atomic_read(&tlb->mm->mm_users) < 2) {
381 __tlb_remove_table(table);
382 return;
383 }
384
385 if (*batch == NULL) {
386 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
387 if (*batch == NULL) {
388 tlb_remove_table_one(table);
389 return;
390 }
391 (*batch)->nr = 0;
392 }
393 (*batch)->tables[(*batch)->nr++] = table;
394 if ((*batch)->nr == MAX_TABLE_BATCH)
395 tlb_table_flush(tlb);
396}
397
9547d01b 398#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 399
1da177e4
LT
400/*
401 * Note: this doesn't free the actual pages themselves. That
402 * has been handled earlier when unmapping all the memory regions.
403 */
9e1b32ca
BH
404static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405 unsigned long addr)
1da177e4 406{
2f569afd 407 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 408 pmd_clear(pmd);
9e1b32ca 409 pte_free_tlb(tlb, token, addr);
e1f56c89 410 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
411}
412
e0da382c
HD
413static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414 unsigned long addr, unsigned long end,
415 unsigned long floor, unsigned long ceiling)
1da177e4
LT
416{
417 pmd_t *pmd;
418 unsigned long next;
e0da382c 419 unsigned long start;
1da177e4 420
e0da382c 421 start = addr;
1da177e4 422 pmd = pmd_offset(pud, addr);
1da177e4
LT
423 do {
424 next = pmd_addr_end(addr, end);
425 if (pmd_none_or_clear_bad(pmd))
426 continue;
9e1b32ca 427 free_pte_range(tlb, pmd, addr);
1da177e4
LT
428 } while (pmd++, addr = next, addr != end);
429
e0da382c
HD
430 start &= PUD_MASK;
431 if (start < floor)
432 return;
433 if (ceiling) {
434 ceiling &= PUD_MASK;
435 if (!ceiling)
436 return;
1da177e4 437 }
e0da382c
HD
438 if (end - 1 > ceiling - 1)
439 return;
440
441 pmd = pmd_offset(pud, start);
442 pud_clear(pud);
9e1b32ca 443 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 444 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
445}
446
e0da382c
HD
447static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
448 unsigned long addr, unsigned long end,
449 unsigned long floor, unsigned long ceiling)
1da177e4
LT
450{
451 pud_t *pud;
452 unsigned long next;
e0da382c 453 unsigned long start;
1da177e4 454
e0da382c 455 start = addr;
1da177e4 456 pud = pud_offset(pgd, addr);
1da177e4
LT
457 do {
458 next = pud_addr_end(addr, end);
459 if (pud_none_or_clear_bad(pud))
460 continue;
e0da382c 461 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
462 } while (pud++, addr = next, addr != end);
463
e0da382c
HD
464 start &= PGDIR_MASK;
465 if (start < floor)
466 return;
467 if (ceiling) {
468 ceiling &= PGDIR_MASK;
469 if (!ceiling)
470 return;
1da177e4 471 }
e0da382c
HD
472 if (end - 1 > ceiling - 1)
473 return;
474
475 pud = pud_offset(pgd, start);
476 pgd_clear(pgd);
9e1b32ca 477 pud_free_tlb(tlb, pud, start);
1da177e4
LT
478}
479
480/*
e0da382c 481 * This function frees user-level page tables of a process.
1da177e4 482 */
42b77728 483void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
484 unsigned long addr, unsigned long end,
485 unsigned long floor, unsigned long ceiling)
1da177e4
LT
486{
487 pgd_t *pgd;
488 unsigned long next;
e0da382c
HD
489
490 /*
491 * The next few lines have given us lots of grief...
492 *
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
496 *
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
504 *
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
509 *
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
514 */
1da177e4 515
e0da382c
HD
516 addr &= PMD_MASK;
517 if (addr < floor) {
518 addr += PMD_SIZE;
519 if (!addr)
520 return;
521 }
522 if (ceiling) {
523 ceiling &= PMD_MASK;
524 if (!ceiling)
525 return;
526 }
527 if (end - 1 > ceiling - 1)
528 end -= PMD_SIZE;
529 if (addr > end - 1)
530 return;
531
42b77728 532 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
533 do {
534 next = pgd_addr_end(addr, end);
535 if (pgd_none_or_clear_bad(pgd))
536 continue;
42b77728 537 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 538 } while (pgd++, addr = next, addr != end);
e0da382c
HD
539}
540
42b77728 541void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 542 unsigned long floor, unsigned long ceiling)
e0da382c
HD
543{
544 while (vma) {
545 struct vm_area_struct *next = vma->vm_next;
546 unsigned long addr = vma->vm_start;
547
8f4f8c16 548 /*
25d9e2d1 549 * Hide vma from rmap and truncate_pagecache before freeing
550 * pgtables
8f4f8c16 551 */
5beb4930 552 unlink_anon_vmas(vma);
8f4f8c16
HD
553 unlink_file_vma(vma);
554
9da61aef 555 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 557 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
558 } else {
559 /*
560 * Optimization: gather nearby vmas into one call down
561 */
562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 563 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
564 vma = next;
565 next = vma->vm_next;
5beb4930 566 unlink_anon_vmas(vma);
8f4f8c16 567 unlink_file_vma(vma);
3bf5ee95
HD
568 }
569 free_pgd_range(tlb, addr, vma->vm_end,
570 floor, next? next->vm_start: ceiling);
571 }
e0da382c
HD
572 vma = next;
573 }
1da177e4
LT
574}
575
3ed3a4f0 576int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 577{
c4088ebd 578 spinlock_t *ptl;
2f569afd 579 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
580 if (!new)
581 return -ENOMEM;
582
362a61ad
NP
583 /*
584 * Ensure all pte setup (eg. pte page lock and page clearing) are
585 * visible before the pte is made visible to other CPUs by being
586 * put into page tables.
587 *
588 * The other side of the story is the pointer chasing in the page
589 * table walking code (when walking the page table without locking;
590 * ie. most of the time). Fortunately, these data accesses consist
591 * of a chain of data-dependent loads, meaning most CPUs (alpha
592 * being the notable exception) will already guarantee loads are
593 * seen in-order. See the alpha page table accessors for the
594 * smp_read_barrier_depends() barriers in page table walking code.
595 */
596 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
597
c4088ebd 598 ptl = pmd_lock(mm, pmd);
8ac1f832 599 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 600 atomic_long_inc(&mm->nr_ptes);
1da177e4 601 pmd_populate(mm, pmd, new);
2f569afd 602 new = NULL;
4b471e88 603 }
c4088ebd 604 spin_unlock(ptl);
2f569afd
MS
605 if (new)
606 pte_free(mm, new);
1bb3630e 607 return 0;
1da177e4
LT
608}
609
1bb3630e 610int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 611{
1bb3630e
HD
612 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
613 if (!new)
614 return -ENOMEM;
615
362a61ad
NP
616 smp_wmb(); /* See comment in __pte_alloc */
617
1bb3630e 618 spin_lock(&init_mm.page_table_lock);
8ac1f832 619 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 620 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 621 new = NULL;
4b471e88 622 }
1bb3630e 623 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
624 if (new)
625 pte_free_kernel(&init_mm, new);
1bb3630e 626 return 0;
1da177e4
LT
627}
628
d559db08
KH
629static inline void init_rss_vec(int *rss)
630{
631 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
632}
633
634static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 635{
d559db08
KH
636 int i;
637
34e55232 638 if (current->mm == mm)
05af2e10 639 sync_mm_rss(mm);
d559db08
KH
640 for (i = 0; i < NR_MM_COUNTERS; i++)
641 if (rss[i])
642 add_mm_counter(mm, i, rss[i]);
ae859762
HD
643}
644
b5810039 645/*
6aab341e
LT
646 * This function is called to print an error when a bad pte
647 * is found. For example, we might have a PFN-mapped pte in
648 * a region that doesn't allow it.
b5810039
NP
649 *
650 * The calling function must still handle the error.
651 */
3dc14741
HD
652static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
653 pte_t pte, struct page *page)
b5810039 654{
3dc14741
HD
655 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
656 pud_t *pud = pud_offset(pgd, addr);
657 pmd_t *pmd = pmd_offset(pud, addr);
658 struct address_space *mapping;
659 pgoff_t index;
d936cf9b
HD
660 static unsigned long resume;
661 static unsigned long nr_shown;
662 static unsigned long nr_unshown;
663
664 /*
665 * Allow a burst of 60 reports, then keep quiet for that minute;
666 * or allow a steady drip of one report per second.
667 */
668 if (nr_shown == 60) {
669 if (time_before(jiffies, resume)) {
670 nr_unshown++;
671 return;
672 }
673 if (nr_unshown) {
1170532b
JP
674 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
675 nr_unshown);
d936cf9b
HD
676 nr_unshown = 0;
677 }
678 nr_shown = 0;
679 }
680 if (nr_shown++ == 0)
681 resume = jiffies + 60 * HZ;
3dc14741
HD
682
683 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
684 index = linear_page_index(vma, addr);
685
1170532b
JP
686 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
687 current->comm,
688 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 689 if (page)
f0b791a3 690 dump_page(page, "bad pte");
1170532b
JP
691 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
692 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
693 /*
694 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
695 */
2682582a
KK
696 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
697 vma->vm_file,
698 vma->vm_ops ? vma->vm_ops->fault : NULL,
699 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
700 mapping ? mapping->a_ops->readpage : NULL);
b5810039 701 dump_stack();
373d4d09 702 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
703}
704
ee498ed7 705/*
7e675137 706 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 707 *
7e675137
NP
708 * "Special" mappings do not wish to be associated with a "struct page" (either
709 * it doesn't exist, or it exists but they don't want to touch it). In this
710 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 711 *
7e675137
NP
712 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
713 * pte bit, in which case this function is trivial. Secondly, an architecture
714 * may not have a spare pte bit, which requires a more complicated scheme,
715 * described below.
716 *
717 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
718 * special mapping (even if there are underlying and valid "struct pages").
719 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 720 *
b379d790
JH
721 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
722 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
723 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
724 * mapping will always honor the rule
6aab341e
LT
725 *
726 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
727 *
7e675137
NP
728 * And for normal mappings this is false.
729 *
730 * This restricts such mappings to be a linear translation from virtual address
731 * to pfn. To get around this restriction, we allow arbitrary mappings so long
732 * as the vma is not a COW mapping; in that case, we know that all ptes are
733 * special (because none can have been COWed).
b379d790 734 *
b379d790 735 *
7e675137 736 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
737 *
738 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
739 * page" backing, however the difference is that _all_ pages with a struct
740 * page (that is, those where pfn_valid is true) are refcounted and considered
741 * normal pages by the VM. The disadvantage is that pages are refcounted
742 * (which can be slower and simply not an option for some PFNMAP users). The
743 * advantage is that we don't have to follow the strict linearity rule of
744 * PFNMAP mappings in order to support COWable mappings.
745 *
ee498ed7 746 */
7e675137
NP
747#ifdef __HAVE_ARCH_PTE_SPECIAL
748# define HAVE_PTE_SPECIAL 1
749#else
750# define HAVE_PTE_SPECIAL 0
751#endif
752struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
753 pte_t pte)
ee498ed7 754{
22b31eec 755 unsigned long pfn = pte_pfn(pte);
7e675137
NP
756
757 if (HAVE_PTE_SPECIAL) {
b38af472 758 if (likely(!pte_special(pte)))
22b31eec 759 goto check_pfn;
667a0a06
DV
760 if (vma->vm_ops && vma->vm_ops->find_special_page)
761 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
762 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
763 return NULL;
62eede62 764 if (!is_zero_pfn(pfn))
22b31eec 765 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
766 return NULL;
767 }
768
769 /* !HAVE_PTE_SPECIAL case follows: */
770
b379d790
JH
771 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
772 if (vma->vm_flags & VM_MIXEDMAP) {
773 if (!pfn_valid(pfn))
774 return NULL;
775 goto out;
776 } else {
7e675137
NP
777 unsigned long off;
778 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
779 if (pfn == vma->vm_pgoff + off)
780 return NULL;
781 if (!is_cow_mapping(vma->vm_flags))
782 return NULL;
783 }
6aab341e
LT
784 }
785
b38af472
HD
786 if (is_zero_pfn(pfn))
787 return NULL;
22b31eec
HD
788check_pfn:
789 if (unlikely(pfn > highest_memmap_pfn)) {
790 print_bad_pte(vma, addr, pte, NULL);
791 return NULL;
792 }
6aab341e
LT
793
794 /*
7e675137 795 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 796 * eg. VDSO mappings can cause them to exist.
6aab341e 797 */
b379d790 798out:
6aab341e 799 return pfn_to_page(pfn);
ee498ed7
HD
800}
801
28093f9f
GS
802#ifdef CONFIG_TRANSPARENT_HUGEPAGE
803struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
804 pmd_t pmd)
805{
806 unsigned long pfn = pmd_pfn(pmd);
807
808 /*
809 * There is no pmd_special() but there may be special pmds, e.g.
810 * in a direct-access (dax) mapping, so let's just replicate the
811 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
812 */
813 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
814 if (vma->vm_flags & VM_MIXEDMAP) {
815 if (!pfn_valid(pfn))
816 return NULL;
817 goto out;
818 } else {
819 unsigned long off;
820 off = (addr - vma->vm_start) >> PAGE_SHIFT;
821 if (pfn == vma->vm_pgoff + off)
822 return NULL;
823 if (!is_cow_mapping(vma->vm_flags))
824 return NULL;
825 }
826 }
827
828 if (is_zero_pfn(pfn))
829 return NULL;
830 if (unlikely(pfn > highest_memmap_pfn))
831 return NULL;
832
833 /*
834 * NOTE! We still have PageReserved() pages in the page tables.
835 * eg. VDSO mappings can cause them to exist.
836 */
837out:
838 return pfn_to_page(pfn);
839}
840#endif
841
1da177e4
LT
842/*
843 * copy one vm_area from one task to the other. Assumes the page tables
844 * already present in the new task to be cleared in the whole range
845 * covered by this vma.
1da177e4
LT
846 */
847
570a335b 848static inline unsigned long
1da177e4 849copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 850 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 851 unsigned long addr, int *rss)
1da177e4 852{
b5810039 853 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
854 pte_t pte = *src_pte;
855 struct page *page;
1da177e4
LT
856
857 /* pte contains position in swap or file, so copy. */
858 if (unlikely(!pte_present(pte))) {
0661a336
KS
859 swp_entry_t entry = pte_to_swp_entry(pte);
860
861 if (likely(!non_swap_entry(entry))) {
862 if (swap_duplicate(entry) < 0)
863 return entry.val;
864
865 /* make sure dst_mm is on swapoff's mmlist. */
866 if (unlikely(list_empty(&dst_mm->mmlist))) {
867 spin_lock(&mmlist_lock);
868 if (list_empty(&dst_mm->mmlist))
869 list_add(&dst_mm->mmlist,
870 &src_mm->mmlist);
871 spin_unlock(&mmlist_lock);
872 }
873 rss[MM_SWAPENTS]++;
874 } else if (is_migration_entry(entry)) {
875 page = migration_entry_to_page(entry);
876
eca56ff9 877 rss[mm_counter(page)]++;
0661a336
KS
878
879 if (is_write_migration_entry(entry) &&
880 is_cow_mapping(vm_flags)) {
881 /*
882 * COW mappings require pages in both
883 * parent and child to be set to read.
884 */
885 make_migration_entry_read(&entry);
886 pte = swp_entry_to_pte(entry);
887 if (pte_swp_soft_dirty(*src_pte))
888 pte = pte_swp_mksoft_dirty(pte);
889 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 890 }
1da177e4 891 }
ae859762 892 goto out_set_pte;
1da177e4
LT
893 }
894
1da177e4
LT
895 /*
896 * If it's a COW mapping, write protect it both
897 * in the parent and the child
898 */
67121172 899 if (is_cow_mapping(vm_flags)) {
1da177e4 900 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 901 pte = pte_wrprotect(pte);
1da177e4
LT
902 }
903
904 /*
905 * If it's a shared mapping, mark it clean in
906 * the child
907 */
908 if (vm_flags & VM_SHARED)
909 pte = pte_mkclean(pte);
910 pte = pte_mkold(pte);
6aab341e
LT
911
912 page = vm_normal_page(vma, addr, pte);
913 if (page) {
914 get_page(page);
53f9263b 915 page_dup_rmap(page, false);
eca56ff9 916 rss[mm_counter(page)]++;
6aab341e 917 }
ae859762
HD
918
919out_set_pte:
920 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 921 return 0;
1da177e4
LT
922}
923
21bda264 924static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
925 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
926 unsigned long addr, unsigned long end)
1da177e4 927{
c36987e2 928 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 929 pte_t *src_pte, *dst_pte;
c74df32c 930 spinlock_t *src_ptl, *dst_ptl;
e040f218 931 int progress = 0;
d559db08 932 int rss[NR_MM_COUNTERS];
570a335b 933 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
934
935again:
d559db08
KH
936 init_rss_vec(rss);
937
c74df32c 938 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
939 if (!dst_pte)
940 return -ENOMEM;
ece0e2b6 941 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 942 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 943 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
944 orig_src_pte = src_pte;
945 orig_dst_pte = dst_pte;
6606c3e0 946 arch_enter_lazy_mmu_mode();
1da177e4 947
1da177e4
LT
948 do {
949 /*
950 * We are holding two locks at this point - either of them
951 * could generate latencies in another task on another CPU.
952 */
e040f218
HD
953 if (progress >= 32) {
954 progress = 0;
955 if (need_resched() ||
95c354fe 956 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
957 break;
958 }
1da177e4
LT
959 if (pte_none(*src_pte)) {
960 progress++;
961 continue;
962 }
570a335b
HD
963 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
964 vma, addr, rss);
965 if (entry.val)
966 break;
1da177e4
LT
967 progress += 8;
968 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 969
6606c3e0 970 arch_leave_lazy_mmu_mode();
c74df32c 971 spin_unlock(src_ptl);
ece0e2b6 972 pte_unmap(orig_src_pte);
d559db08 973 add_mm_rss_vec(dst_mm, rss);
c36987e2 974 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 975 cond_resched();
570a335b
HD
976
977 if (entry.val) {
978 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
979 return -ENOMEM;
980 progress = 0;
981 }
1da177e4
LT
982 if (addr != end)
983 goto again;
984 return 0;
985}
986
987static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
988 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
989 unsigned long addr, unsigned long end)
990{
991 pmd_t *src_pmd, *dst_pmd;
992 unsigned long next;
993
994 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
995 if (!dst_pmd)
996 return -ENOMEM;
997 src_pmd = pmd_offset(src_pud, addr);
998 do {
999 next = pmd_addr_end(addr, end);
5c7fb56e 1000 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 1001 int err;
14d1a55c 1002 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
1003 err = copy_huge_pmd(dst_mm, src_mm,
1004 dst_pmd, src_pmd, addr, vma);
1005 if (err == -ENOMEM)
1006 return -ENOMEM;
1007 if (!err)
1008 continue;
1009 /* fall through */
1010 }
1da177e4
LT
1011 if (pmd_none_or_clear_bad(src_pmd))
1012 continue;
1013 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1014 vma, addr, next))
1015 return -ENOMEM;
1016 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1017 return 0;
1018}
1019
1020static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1021 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1022 unsigned long addr, unsigned long end)
1023{
1024 pud_t *src_pud, *dst_pud;
1025 unsigned long next;
1026
1027 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1028 if (!dst_pud)
1029 return -ENOMEM;
1030 src_pud = pud_offset(src_pgd, addr);
1031 do {
1032 next = pud_addr_end(addr, end);
1033 if (pud_none_or_clear_bad(src_pud))
1034 continue;
1035 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1036 vma, addr, next))
1037 return -ENOMEM;
1038 } while (dst_pud++, src_pud++, addr = next, addr != end);
1039 return 0;
1040}
1041
1042int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1043 struct vm_area_struct *vma)
1044{
1045 pgd_t *src_pgd, *dst_pgd;
1046 unsigned long next;
1047 unsigned long addr = vma->vm_start;
1048 unsigned long end = vma->vm_end;
2ec74c3e
SG
1049 unsigned long mmun_start; /* For mmu_notifiers */
1050 unsigned long mmun_end; /* For mmu_notifiers */
1051 bool is_cow;
cddb8a5c 1052 int ret;
1da177e4 1053
d992895b
NP
1054 /*
1055 * Don't copy ptes where a page fault will fill them correctly.
1056 * Fork becomes much lighter when there are big shared or private
1057 * readonly mappings. The tradeoff is that copy_page_range is more
1058 * efficient than faulting.
1059 */
0661a336
KS
1060 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1061 !vma->anon_vma)
1062 return 0;
d992895b 1063
1da177e4
LT
1064 if (is_vm_hugetlb_page(vma))
1065 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1066
b3b9c293 1067 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1068 /*
1069 * We do not free on error cases below as remove_vma
1070 * gets called on error from higher level routine
1071 */
5180da41 1072 ret = track_pfn_copy(vma);
2ab64037 1073 if (ret)
1074 return ret;
1075 }
1076
cddb8a5c
AA
1077 /*
1078 * We need to invalidate the secondary MMU mappings only when
1079 * there could be a permission downgrade on the ptes of the
1080 * parent mm. And a permission downgrade will only happen if
1081 * is_cow_mapping() returns true.
1082 */
2ec74c3e
SG
1083 is_cow = is_cow_mapping(vma->vm_flags);
1084 mmun_start = addr;
1085 mmun_end = end;
1086 if (is_cow)
1087 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1088 mmun_end);
cddb8a5c
AA
1089
1090 ret = 0;
1da177e4
LT
1091 dst_pgd = pgd_offset(dst_mm, addr);
1092 src_pgd = pgd_offset(src_mm, addr);
1093 do {
1094 next = pgd_addr_end(addr, end);
1095 if (pgd_none_or_clear_bad(src_pgd))
1096 continue;
cddb8a5c
AA
1097 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1098 vma, addr, next))) {
1099 ret = -ENOMEM;
1100 break;
1101 }
1da177e4 1102 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1103
2ec74c3e
SG
1104 if (is_cow)
1105 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1106 return ret;
1da177e4
LT
1107}
1108
51c6f666 1109static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1110 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1111 unsigned long addr, unsigned long end,
97a89413 1112 struct zap_details *details)
1da177e4 1113{
b5810039 1114 struct mm_struct *mm = tlb->mm;
d16dfc55 1115 int force_flush = 0;
d559db08 1116 int rss[NR_MM_COUNTERS];
97a89413 1117 spinlock_t *ptl;
5f1a1907 1118 pte_t *start_pte;
97a89413 1119 pte_t *pte;
8a5f14a2 1120 swp_entry_t entry;
e9d55e15 1121 struct page *pending_page = NULL;
d559db08 1122
d16dfc55 1123again:
e303297e 1124 init_rss_vec(rss);
5f1a1907
SR
1125 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1126 pte = start_pte;
6606c3e0 1127 arch_enter_lazy_mmu_mode();
1da177e4
LT
1128 do {
1129 pte_t ptent = *pte;
51c6f666 1130 if (pte_none(ptent)) {
1da177e4 1131 continue;
51c6f666 1132 }
6f5e6b9e 1133
1da177e4 1134 if (pte_present(ptent)) {
ee498ed7 1135 struct page *page;
51c6f666 1136
6aab341e 1137 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1138 if (unlikely(details) && page) {
1139 /*
1140 * unmap_shared_mapping_pages() wants to
1141 * invalidate cache without truncating:
1142 * unmap shared but keep private pages.
1143 */
1144 if (details->check_mapping &&
1145 details->check_mapping != page->mapping)
1146 continue;
1da177e4 1147 }
b5810039 1148 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1149 tlb->fullmm);
1da177e4
LT
1150 tlb_remove_tlb_entry(tlb, pte, addr);
1151 if (unlikely(!page))
1152 continue;
eca56ff9
JM
1153
1154 if (!PageAnon(page)) {
1cf35d47 1155 if (pte_dirty(ptent)) {
aac45363
MH
1156 /*
1157 * oom_reaper cannot tear down dirty
1158 * pages
1159 */
1160 if (unlikely(details && details->ignore_dirty))
1161 continue;
1cf35d47 1162 force_flush = 1;
6237bcd9 1163 set_page_dirty(page);
1cf35d47 1164 }
4917e5d0 1165 if (pte_young(ptent) &&
64363aad 1166 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1167 mark_page_accessed(page);
6237bcd9 1168 }
eca56ff9 1169 rss[mm_counter(page)]--;
d281ee61 1170 page_remove_rmap(page, false);
3dc14741
HD
1171 if (unlikely(page_mapcount(page) < 0))
1172 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1173 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1174 force_flush = 1;
e9d55e15 1175 pending_page = page;
ce9ec37b 1176 addr += PAGE_SIZE;
d16dfc55 1177 break;
1cf35d47 1178 }
1da177e4
LT
1179 continue;
1180 }
aac45363
MH
1181 /* only check swap_entries if explicitly asked for in details */
1182 if (unlikely(details && !details->check_swap_entries))
1da177e4 1183 continue;
b084d435 1184
8a5f14a2
KS
1185 entry = pte_to_swp_entry(ptent);
1186 if (!non_swap_entry(entry))
1187 rss[MM_SWAPENTS]--;
1188 else if (is_migration_entry(entry)) {
1189 struct page *page;
9f9f1acd 1190
8a5f14a2 1191 page = migration_entry_to_page(entry);
eca56ff9 1192 rss[mm_counter(page)]--;
b084d435 1193 }
8a5f14a2
KS
1194 if (unlikely(!free_swap_and_cache(entry)))
1195 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1196 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1197 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1198
d559db08 1199 add_mm_rss_vec(mm, rss);
6606c3e0 1200 arch_leave_lazy_mmu_mode();
51c6f666 1201
1cf35d47 1202 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1203 if (force_flush)
1cf35d47 1204 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1205 pte_unmap_unlock(start_pte, ptl);
1206
1207 /*
1208 * If we forced a TLB flush (either due to running out of
1209 * batch buffers or because we needed to flush dirty TLB
1210 * entries before releasing the ptl), free the batched
1211 * memory too. Restart if we didn't do everything.
1212 */
1213 if (force_flush) {
1214 force_flush = 0;
1215 tlb_flush_mmu_free(tlb);
e9d55e15
AK
1216 if (pending_page) {
1217 /* remove the page with new size */
1218 __tlb_remove_pte_page(tlb, pending_page);
1219 pending_page = NULL;
1220 }
2b047252 1221 if (addr != end)
d16dfc55
PZ
1222 goto again;
1223 }
1224
51c6f666 1225 return addr;
1da177e4
LT
1226}
1227
51c6f666 1228static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1229 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1230 unsigned long addr, unsigned long end,
97a89413 1231 struct zap_details *details)
1da177e4
LT
1232{
1233 pmd_t *pmd;
1234 unsigned long next;
1235
1236 pmd = pmd_offset(pud, addr);
1237 do {
1238 next = pmd_addr_end(addr, end);
5c7fb56e 1239 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1240 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1241 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1242 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
78ddc534 1243 split_huge_pmd(vma, pmd, addr);
f21760b1 1244 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1245 goto next;
71e3aac0
AA
1246 /* fall through */
1247 }
1a5a9906
AA
1248 /*
1249 * Here there can be other concurrent MADV_DONTNEED or
1250 * trans huge page faults running, and if the pmd is
1251 * none or trans huge it can change under us. This is
1252 * because MADV_DONTNEED holds the mmap_sem in read
1253 * mode.
1254 */
1255 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1256 goto next;
97a89413 1257 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1258next:
97a89413
PZ
1259 cond_resched();
1260 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1261
1262 return addr;
1da177e4
LT
1263}
1264
51c6f666 1265static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1266 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1267 unsigned long addr, unsigned long end,
97a89413 1268 struct zap_details *details)
1da177e4
LT
1269{
1270 pud_t *pud;
1271 unsigned long next;
1272
1273 pud = pud_offset(pgd, addr);
1274 do {
1275 next = pud_addr_end(addr, end);
97a89413 1276 if (pud_none_or_clear_bad(pud))
1da177e4 1277 continue;
97a89413
PZ
1278 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1279 } while (pud++, addr = next, addr != end);
51c6f666
RH
1280
1281 return addr;
1da177e4
LT
1282}
1283
aac45363 1284void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1285 struct vm_area_struct *vma,
1286 unsigned long addr, unsigned long end,
1287 struct zap_details *details)
1da177e4
LT
1288{
1289 pgd_t *pgd;
1290 unsigned long next;
1291
1da177e4
LT
1292 BUG_ON(addr >= end);
1293 tlb_start_vma(tlb, vma);
1294 pgd = pgd_offset(vma->vm_mm, addr);
1295 do {
1296 next = pgd_addr_end(addr, end);
97a89413 1297 if (pgd_none_or_clear_bad(pgd))
1da177e4 1298 continue;
97a89413
PZ
1299 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1300 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1301 tlb_end_vma(tlb, vma);
1302}
51c6f666 1303
f5cc4eef
AV
1304
1305static void unmap_single_vma(struct mmu_gather *tlb,
1306 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1307 unsigned long end_addr,
f5cc4eef
AV
1308 struct zap_details *details)
1309{
1310 unsigned long start = max(vma->vm_start, start_addr);
1311 unsigned long end;
1312
1313 if (start >= vma->vm_end)
1314 return;
1315 end = min(vma->vm_end, end_addr);
1316 if (end <= vma->vm_start)
1317 return;
1318
cbc91f71
SD
1319 if (vma->vm_file)
1320 uprobe_munmap(vma, start, end);
1321
b3b9c293 1322 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1323 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1324
1325 if (start != end) {
1326 if (unlikely(is_vm_hugetlb_page(vma))) {
1327 /*
1328 * It is undesirable to test vma->vm_file as it
1329 * should be non-null for valid hugetlb area.
1330 * However, vm_file will be NULL in the error
7aa6b4ad 1331 * cleanup path of mmap_region. When
f5cc4eef 1332 * hugetlbfs ->mmap method fails,
7aa6b4ad 1333 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1334 * before calling this function to clean up.
1335 * Since no pte has actually been setup, it is
1336 * safe to do nothing in this case.
1337 */
24669e58 1338 if (vma->vm_file) {
83cde9e8 1339 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1340 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1341 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1342 }
f5cc4eef
AV
1343 } else
1344 unmap_page_range(tlb, vma, start, end, details);
1345 }
1da177e4
LT
1346}
1347
1da177e4
LT
1348/**
1349 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1350 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1351 * @vma: the starting vma
1352 * @start_addr: virtual address at which to start unmapping
1353 * @end_addr: virtual address at which to end unmapping
1da177e4 1354 *
508034a3 1355 * Unmap all pages in the vma list.
1da177e4 1356 *
1da177e4
LT
1357 * Only addresses between `start' and `end' will be unmapped.
1358 *
1359 * The VMA list must be sorted in ascending virtual address order.
1360 *
1361 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1362 * range after unmap_vmas() returns. So the only responsibility here is to
1363 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1364 * drops the lock and schedules.
1365 */
6e8bb019 1366void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1367 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1368 unsigned long end_addr)
1da177e4 1369{
cddb8a5c 1370 struct mm_struct *mm = vma->vm_mm;
1da177e4 1371
cddb8a5c 1372 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1373 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1374 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1375 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1376}
1377
1378/**
1379 * zap_page_range - remove user pages in a given range
1380 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1381 * @start: starting address of pages to zap
1da177e4 1382 * @size: number of bytes to zap
8a5f14a2 1383 * @details: details of shared cache invalidation
f5cc4eef
AV
1384 *
1385 * Caller must protect the VMA list
1da177e4 1386 */
7e027b14 1387void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1388 unsigned long size, struct zap_details *details)
1389{
1390 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1391 struct mmu_gather tlb;
7e027b14 1392 unsigned long end = start + size;
1da177e4 1393
1da177e4 1394 lru_add_drain();
2b047252 1395 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1396 update_hiwater_rss(mm);
7e027b14
LT
1397 mmu_notifier_invalidate_range_start(mm, start, end);
1398 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1399 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1400 mmu_notifier_invalidate_range_end(mm, start, end);
1401 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1402}
1403
f5cc4eef
AV
1404/**
1405 * zap_page_range_single - remove user pages in a given range
1406 * @vma: vm_area_struct holding the applicable pages
1407 * @address: starting address of pages to zap
1408 * @size: number of bytes to zap
8a5f14a2 1409 * @details: details of shared cache invalidation
f5cc4eef
AV
1410 *
1411 * The range must fit into one VMA.
1da177e4 1412 */
f5cc4eef 1413static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1414 unsigned long size, struct zap_details *details)
1415{
1416 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1417 struct mmu_gather tlb;
1da177e4 1418 unsigned long end = address + size;
1da177e4 1419
1da177e4 1420 lru_add_drain();
2b047252 1421 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1422 update_hiwater_rss(mm);
f5cc4eef 1423 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1424 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1425 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1426 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1427}
1428
c627f9cc
JS
1429/**
1430 * zap_vma_ptes - remove ptes mapping the vma
1431 * @vma: vm_area_struct holding ptes to be zapped
1432 * @address: starting address of pages to zap
1433 * @size: number of bytes to zap
1434 *
1435 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1436 *
1437 * The entire address range must be fully contained within the vma.
1438 *
1439 * Returns 0 if successful.
1440 */
1441int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1442 unsigned long size)
1443{
1444 if (address < vma->vm_start || address + size > vma->vm_end ||
1445 !(vma->vm_flags & VM_PFNMAP))
1446 return -1;
f5cc4eef 1447 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1448 return 0;
1449}
1450EXPORT_SYMBOL_GPL(zap_vma_ptes);
1451
25ca1d6c 1452pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1453 spinlock_t **ptl)
c9cfcddf
LT
1454{
1455 pgd_t * pgd = pgd_offset(mm, addr);
1456 pud_t * pud = pud_alloc(mm, pgd, addr);
1457 if (pud) {
49c91fb0 1458 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1459 if (pmd) {
1460 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1461 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1462 }
c9cfcddf
LT
1463 }
1464 return NULL;
1465}
1466
238f58d8
LT
1467/*
1468 * This is the old fallback for page remapping.
1469 *
1470 * For historical reasons, it only allows reserved pages. Only
1471 * old drivers should use this, and they needed to mark their
1472 * pages reserved for the old functions anyway.
1473 */
423bad60
NP
1474static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1475 struct page *page, pgprot_t prot)
238f58d8 1476{
423bad60 1477 struct mm_struct *mm = vma->vm_mm;
238f58d8 1478 int retval;
c9cfcddf 1479 pte_t *pte;
8a9f3ccd
BS
1480 spinlock_t *ptl;
1481
238f58d8 1482 retval = -EINVAL;
a145dd41 1483 if (PageAnon(page))
5b4e655e 1484 goto out;
238f58d8
LT
1485 retval = -ENOMEM;
1486 flush_dcache_page(page);
c9cfcddf 1487 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1488 if (!pte)
5b4e655e 1489 goto out;
238f58d8
LT
1490 retval = -EBUSY;
1491 if (!pte_none(*pte))
1492 goto out_unlock;
1493
1494 /* Ok, finally just insert the thing.. */
1495 get_page(page);
eca56ff9 1496 inc_mm_counter_fast(mm, mm_counter_file(page));
238f58d8
LT
1497 page_add_file_rmap(page);
1498 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1499
1500 retval = 0;
8a9f3ccd
BS
1501 pte_unmap_unlock(pte, ptl);
1502 return retval;
238f58d8
LT
1503out_unlock:
1504 pte_unmap_unlock(pte, ptl);
1505out:
1506 return retval;
1507}
1508
bfa5bf6d
REB
1509/**
1510 * vm_insert_page - insert single page into user vma
1511 * @vma: user vma to map to
1512 * @addr: target user address of this page
1513 * @page: source kernel page
1514 *
a145dd41
LT
1515 * This allows drivers to insert individual pages they've allocated
1516 * into a user vma.
1517 *
1518 * The page has to be a nice clean _individual_ kernel allocation.
1519 * If you allocate a compound page, you need to have marked it as
1520 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1521 * (see split_page()).
a145dd41
LT
1522 *
1523 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1524 * took an arbitrary page protection parameter. This doesn't allow
1525 * that. Your vma protection will have to be set up correctly, which
1526 * means that if you want a shared writable mapping, you'd better
1527 * ask for a shared writable mapping!
1528 *
1529 * The page does not need to be reserved.
4b6e1e37
KK
1530 *
1531 * Usually this function is called from f_op->mmap() handler
1532 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1533 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1534 * function from other places, for example from page-fault handler.
a145dd41 1535 */
423bad60
NP
1536int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1537 struct page *page)
a145dd41
LT
1538{
1539 if (addr < vma->vm_start || addr >= vma->vm_end)
1540 return -EFAULT;
1541 if (!page_count(page))
1542 return -EINVAL;
4b6e1e37
KK
1543 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1544 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1545 BUG_ON(vma->vm_flags & VM_PFNMAP);
1546 vma->vm_flags |= VM_MIXEDMAP;
1547 }
423bad60 1548 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1549}
e3c3374f 1550EXPORT_SYMBOL(vm_insert_page);
a145dd41 1551
423bad60 1552static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1553 pfn_t pfn, pgprot_t prot)
423bad60
NP
1554{
1555 struct mm_struct *mm = vma->vm_mm;
1556 int retval;
1557 pte_t *pte, entry;
1558 spinlock_t *ptl;
1559
1560 retval = -ENOMEM;
1561 pte = get_locked_pte(mm, addr, &ptl);
1562 if (!pte)
1563 goto out;
1564 retval = -EBUSY;
1565 if (!pte_none(*pte))
1566 goto out_unlock;
1567
1568 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1569 if (pfn_t_devmap(pfn))
1570 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1571 else
1572 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
423bad60 1573 set_pte_at(mm, addr, pte, entry);
4b3073e1 1574 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1575
1576 retval = 0;
1577out_unlock:
1578 pte_unmap_unlock(pte, ptl);
1579out:
1580 return retval;
1581}
1582
e0dc0d8f
NP
1583/**
1584 * vm_insert_pfn - insert single pfn into user vma
1585 * @vma: user vma to map to
1586 * @addr: target user address of this page
1587 * @pfn: source kernel pfn
1588 *
c462f179 1589 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1590 * they've allocated into a user vma. Same comments apply.
1591 *
1592 * This function should only be called from a vm_ops->fault handler, and
1593 * in that case the handler should return NULL.
0d71d10a
NP
1594 *
1595 * vma cannot be a COW mapping.
1596 *
1597 * As this is called only for pages that do not currently exist, we
1598 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1599 */
1600int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1601 unsigned long pfn)
1745cbc5
AL
1602{
1603 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1604}
1605EXPORT_SYMBOL(vm_insert_pfn);
1606
1607/**
1608 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1609 * @vma: user vma to map to
1610 * @addr: target user address of this page
1611 * @pfn: source kernel pfn
1612 * @pgprot: pgprot flags for the inserted page
1613 *
1614 * This is exactly like vm_insert_pfn, except that it allows drivers to
1615 * to override pgprot on a per-page basis.
1616 *
1617 * This only makes sense for IO mappings, and it makes no sense for
1618 * cow mappings. In general, using multiple vmas is preferable;
1619 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1620 * impractical.
1621 */
1622int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1623 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1624{
2ab64037 1625 int ret;
7e675137
NP
1626 /*
1627 * Technically, architectures with pte_special can avoid all these
1628 * restrictions (same for remap_pfn_range). However we would like
1629 * consistency in testing and feature parity among all, so we should
1630 * try to keep these invariants in place for everybody.
1631 */
b379d790
JH
1632 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1633 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1634 (VM_PFNMAP|VM_MIXEDMAP));
1635 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1636 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1637
423bad60
NP
1638 if (addr < vma->vm_start || addr >= vma->vm_end)
1639 return -EFAULT;
f25748e3 1640 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
2ab64037 1641 return -EINVAL;
1642
01c8f1c4 1643 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
2ab64037 1644
2ab64037 1645 return ret;
423bad60 1646}
1745cbc5 1647EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1648
423bad60 1649int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1650 pfn_t pfn)
423bad60
NP
1651{
1652 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1653
423bad60
NP
1654 if (addr < vma->vm_start || addr >= vma->vm_end)
1655 return -EFAULT;
e0dc0d8f 1656
423bad60
NP
1657 /*
1658 * If we don't have pte special, then we have to use the pfn_valid()
1659 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1660 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1661 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1662 * without pte special, it would there be refcounted as a normal page.
423bad60 1663 */
03fc2da6 1664 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1665 struct page *page;
1666
03fc2da6
DW
1667 /*
1668 * At this point we are committed to insert_page()
1669 * regardless of whether the caller specified flags that
1670 * result in pfn_t_has_page() == false.
1671 */
1672 page = pfn_to_page(pfn_t_to_pfn(pfn));
423bad60
NP
1673 return insert_page(vma, addr, page, vma->vm_page_prot);
1674 }
1675 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1676}
423bad60 1677EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1678
1da177e4
LT
1679/*
1680 * maps a range of physical memory into the requested pages. the old
1681 * mappings are removed. any references to nonexistent pages results
1682 * in null mappings (currently treated as "copy-on-access")
1683 */
1684static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1685 unsigned long addr, unsigned long end,
1686 unsigned long pfn, pgprot_t prot)
1687{
1688 pte_t *pte;
c74df32c 1689 spinlock_t *ptl;
1da177e4 1690
c74df32c 1691 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1692 if (!pte)
1693 return -ENOMEM;
6606c3e0 1694 arch_enter_lazy_mmu_mode();
1da177e4
LT
1695 do {
1696 BUG_ON(!pte_none(*pte));
7e675137 1697 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1698 pfn++;
1699 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1700 arch_leave_lazy_mmu_mode();
c74df32c 1701 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1702 return 0;
1703}
1704
1705static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1706 unsigned long addr, unsigned long end,
1707 unsigned long pfn, pgprot_t prot)
1708{
1709 pmd_t *pmd;
1710 unsigned long next;
1711
1712 pfn -= addr >> PAGE_SHIFT;
1713 pmd = pmd_alloc(mm, pud, addr);
1714 if (!pmd)
1715 return -ENOMEM;
f66055ab 1716 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1717 do {
1718 next = pmd_addr_end(addr, end);
1719 if (remap_pte_range(mm, pmd, addr, next,
1720 pfn + (addr >> PAGE_SHIFT), prot))
1721 return -ENOMEM;
1722 } while (pmd++, addr = next, addr != end);
1723 return 0;
1724}
1725
1726static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1727 unsigned long addr, unsigned long end,
1728 unsigned long pfn, pgprot_t prot)
1729{
1730 pud_t *pud;
1731 unsigned long next;
1732
1733 pfn -= addr >> PAGE_SHIFT;
1734 pud = pud_alloc(mm, pgd, addr);
1735 if (!pud)
1736 return -ENOMEM;
1737 do {
1738 next = pud_addr_end(addr, end);
1739 if (remap_pmd_range(mm, pud, addr, next,
1740 pfn + (addr >> PAGE_SHIFT), prot))
1741 return -ENOMEM;
1742 } while (pud++, addr = next, addr != end);
1743 return 0;
1744}
1745
bfa5bf6d
REB
1746/**
1747 * remap_pfn_range - remap kernel memory to userspace
1748 * @vma: user vma to map to
1749 * @addr: target user address to start at
1750 * @pfn: physical address of kernel memory
1751 * @size: size of map area
1752 * @prot: page protection flags for this mapping
1753 *
1754 * Note: this is only safe if the mm semaphore is held when called.
1755 */
1da177e4
LT
1756int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1757 unsigned long pfn, unsigned long size, pgprot_t prot)
1758{
1759 pgd_t *pgd;
1760 unsigned long next;
2d15cab8 1761 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1762 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1763 unsigned long remap_pfn = pfn;
1da177e4
LT
1764 int err;
1765
1766 /*
1767 * Physically remapped pages are special. Tell the
1768 * rest of the world about it:
1769 * VM_IO tells people not to look at these pages
1770 * (accesses can have side effects).
6aab341e
LT
1771 * VM_PFNMAP tells the core MM that the base pages are just
1772 * raw PFN mappings, and do not have a "struct page" associated
1773 * with them.
314e51b9
KK
1774 * VM_DONTEXPAND
1775 * Disable vma merging and expanding with mremap().
1776 * VM_DONTDUMP
1777 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1778 *
1779 * There's a horrible special case to handle copy-on-write
1780 * behaviour that some programs depend on. We mark the "original"
1781 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1782 * See vm_normal_page() for details.
1da177e4 1783 */
b3b9c293
KK
1784 if (is_cow_mapping(vma->vm_flags)) {
1785 if (addr != vma->vm_start || end != vma->vm_end)
1786 return -EINVAL;
fb155c16 1787 vma->vm_pgoff = pfn;
b3b9c293
KK
1788 }
1789
d5957d2f 1790 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1791 if (err)
3c8bb73a 1792 return -EINVAL;
fb155c16 1793
314e51b9 1794 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1795
1796 BUG_ON(addr >= end);
1797 pfn -= addr >> PAGE_SHIFT;
1798 pgd = pgd_offset(mm, addr);
1799 flush_cache_range(vma, addr, end);
1da177e4
LT
1800 do {
1801 next = pgd_addr_end(addr, end);
1802 err = remap_pud_range(mm, pgd, addr, next,
1803 pfn + (addr >> PAGE_SHIFT), prot);
1804 if (err)
1805 break;
1806 } while (pgd++, addr = next, addr != end);
2ab64037 1807
1808 if (err)
d5957d2f 1809 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1810
1da177e4
LT
1811 return err;
1812}
1813EXPORT_SYMBOL(remap_pfn_range);
1814
b4cbb197
LT
1815/**
1816 * vm_iomap_memory - remap memory to userspace
1817 * @vma: user vma to map to
1818 * @start: start of area
1819 * @len: size of area
1820 *
1821 * This is a simplified io_remap_pfn_range() for common driver use. The
1822 * driver just needs to give us the physical memory range to be mapped,
1823 * we'll figure out the rest from the vma information.
1824 *
1825 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1826 * whatever write-combining details or similar.
1827 */
1828int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1829{
1830 unsigned long vm_len, pfn, pages;
1831
1832 /* Check that the physical memory area passed in looks valid */
1833 if (start + len < start)
1834 return -EINVAL;
1835 /*
1836 * You *really* shouldn't map things that aren't page-aligned,
1837 * but we've historically allowed it because IO memory might
1838 * just have smaller alignment.
1839 */
1840 len += start & ~PAGE_MASK;
1841 pfn = start >> PAGE_SHIFT;
1842 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1843 if (pfn + pages < pfn)
1844 return -EINVAL;
1845
1846 /* We start the mapping 'vm_pgoff' pages into the area */
1847 if (vma->vm_pgoff > pages)
1848 return -EINVAL;
1849 pfn += vma->vm_pgoff;
1850 pages -= vma->vm_pgoff;
1851
1852 /* Can we fit all of the mapping? */
1853 vm_len = vma->vm_end - vma->vm_start;
1854 if (vm_len >> PAGE_SHIFT > pages)
1855 return -EINVAL;
1856
1857 /* Ok, let it rip */
1858 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1859}
1860EXPORT_SYMBOL(vm_iomap_memory);
1861
aee16b3c
JF
1862static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1863 unsigned long addr, unsigned long end,
1864 pte_fn_t fn, void *data)
1865{
1866 pte_t *pte;
1867 int err;
2f569afd 1868 pgtable_t token;
94909914 1869 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1870
1871 pte = (mm == &init_mm) ?
1872 pte_alloc_kernel(pmd, addr) :
1873 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1874 if (!pte)
1875 return -ENOMEM;
1876
1877 BUG_ON(pmd_huge(*pmd));
1878
38e0edb1
JF
1879 arch_enter_lazy_mmu_mode();
1880
2f569afd 1881 token = pmd_pgtable(*pmd);
aee16b3c
JF
1882
1883 do {
c36987e2 1884 err = fn(pte++, token, addr, data);
aee16b3c
JF
1885 if (err)
1886 break;
c36987e2 1887 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1888
38e0edb1
JF
1889 arch_leave_lazy_mmu_mode();
1890
aee16b3c
JF
1891 if (mm != &init_mm)
1892 pte_unmap_unlock(pte-1, ptl);
1893 return err;
1894}
1895
1896static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1897 unsigned long addr, unsigned long end,
1898 pte_fn_t fn, void *data)
1899{
1900 pmd_t *pmd;
1901 unsigned long next;
1902 int err;
1903
ceb86879
AK
1904 BUG_ON(pud_huge(*pud));
1905
aee16b3c
JF
1906 pmd = pmd_alloc(mm, pud, addr);
1907 if (!pmd)
1908 return -ENOMEM;
1909 do {
1910 next = pmd_addr_end(addr, end);
1911 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1912 if (err)
1913 break;
1914 } while (pmd++, addr = next, addr != end);
1915 return err;
1916}
1917
1918static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1919 unsigned long addr, unsigned long end,
1920 pte_fn_t fn, void *data)
1921{
1922 pud_t *pud;
1923 unsigned long next;
1924 int err;
1925
1926 pud = pud_alloc(mm, pgd, addr);
1927 if (!pud)
1928 return -ENOMEM;
1929 do {
1930 next = pud_addr_end(addr, end);
1931 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1932 if (err)
1933 break;
1934 } while (pud++, addr = next, addr != end);
1935 return err;
1936}
1937
1938/*
1939 * Scan a region of virtual memory, filling in page tables as necessary
1940 * and calling a provided function on each leaf page table.
1941 */
1942int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1943 unsigned long size, pte_fn_t fn, void *data)
1944{
1945 pgd_t *pgd;
1946 unsigned long next;
57250a5b 1947 unsigned long end = addr + size;
aee16b3c
JF
1948 int err;
1949
9cb65bc3
MP
1950 if (WARN_ON(addr >= end))
1951 return -EINVAL;
1952
aee16b3c
JF
1953 pgd = pgd_offset(mm, addr);
1954 do {
1955 next = pgd_addr_end(addr, end);
1956 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1957 if (err)
1958 break;
1959 } while (pgd++, addr = next, addr != end);
57250a5b 1960
aee16b3c
JF
1961 return err;
1962}
1963EXPORT_SYMBOL_GPL(apply_to_page_range);
1964
8f4e2101 1965/*
9b4bdd2f
KS
1966 * handle_pte_fault chooses page fault handler according to an entry which was
1967 * read non-atomically. Before making any commitment, on those architectures
1968 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1969 * parts, do_swap_page must check under lock before unmapping the pte and
1970 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1971 * and do_anonymous_page can safely check later on).
8f4e2101 1972 */
4c21e2f2 1973static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1974 pte_t *page_table, pte_t orig_pte)
1975{
1976 int same = 1;
1977#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1978 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1979 spinlock_t *ptl = pte_lockptr(mm, pmd);
1980 spin_lock(ptl);
8f4e2101 1981 same = pte_same(*page_table, orig_pte);
4c21e2f2 1982 spin_unlock(ptl);
8f4e2101
HD
1983 }
1984#endif
1985 pte_unmap(page_table);
1986 return same;
1987}
1988
9de455b2 1989static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1990{
0abdd7a8
DW
1991 debug_dma_assert_idle(src);
1992
6aab341e
LT
1993 /*
1994 * If the source page was a PFN mapping, we don't have
1995 * a "struct page" for it. We do a best-effort copy by
1996 * just copying from the original user address. If that
1997 * fails, we just zero-fill it. Live with it.
1998 */
1999 if (unlikely(!src)) {
9b04c5fe 2000 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2001 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2002
2003 /*
2004 * This really shouldn't fail, because the page is there
2005 * in the page tables. But it might just be unreadable,
2006 * in which case we just give up and fill the result with
2007 * zeroes.
2008 */
2009 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2010 clear_page(kaddr);
9b04c5fe 2011 kunmap_atomic(kaddr);
c4ec7b0d 2012 flush_dcache_page(dst);
0ed361de
NP
2013 } else
2014 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2015}
2016
c20cd45e
MH
2017static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2018{
2019 struct file *vm_file = vma->vm_file;
2020
2021 if (vm_file)
2022 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2023
2024 /*
2025 * Special mappings (e.g. VDSO) do not have any file so fake
2026 * a default GFP_KERNEL for them.
2027 */
2028 return GFP_KERNEL;
2029}
2030
fb09a464
KS
2031/*
2032 * Notify the address space that the page is about to become writable so that
2033 * it can prohibit this or wait for the page to get into an appropriate state.
2034 *
2035 * We do this without the lock held, so that it can sleep if it needs to.
2036 */
2037static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2038 unsigned long address)
2039{
2040 struct vm_fault vmf;
2041 int ret;
2042
2043 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2044 vmf.pgoff = page->index;
2045 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c20cd45e 2046 vmf.gfp_mask = __get_fault_gfp_mask(vma);
fb09a464 2047 vmf.page = page;
2e4cdab0 2048 vmf.cow_page = NULL;
fb09a464
KS
2049
2050 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2051 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2052 return ret;
2053 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2054 lock_page(page);
2055 if (!page->mapping) {
2056 unlock_page(page);
2057 return 0; /* retry */
2058 }
2059 ret |= VM_FAULT_LOCKED;
2060 } else
2061 VM_BUG_ON_PAGE(!PageLocked(page), page);
2062 return ret;
2063}
2064
4e047f89
SR
2065/*
2066 * Handle write page faults for pages that can be reused in the current vma
2067 *
2068 * This can happen either due to the mapping being with the VM_SHARED flag,
2069 * or due to us being the last reference standing to the page. In either
2070 * case, all we need to do here is to mark the page as writable and update
2071 * any related book-keeping.
2072 */
bae473a4
KS
2073static inline int wp_page_reuse(struct fault_env *fe, pte_t orig_pte,
2074 struct page *page, int page_mkwrite, int dirty_shared)
2075 __releases(fe->ptl)
4e047f89 2076{
bae473a4 2077 struct vm_area_struct *vma = fe->vma;
4e047f89
SR
2078 pte_t entry;
2079 /*
2080 * Clear the pages cpupid information as the existing
2081 * information potentially belongs to a now completely
2082 * unrelated process.
2083 */
2084 if (page)
2085 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2086
bae473a4 2087 flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
4e047f89
SR
2088 entry = pte_mkyoung(orig_pte);
2089 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
2090 if (ptep_set_access_flags(vma, fe->address, fe->pte, entry, 1))
2091 update_mmu_cache(vma, fe->address, fe->pte);
2092 pte_unmap_unlock(fe->pte, fe->ptl);
4e047f89
SR
2093
2094 if (dirty_shared) {
2095 struct address_space *mapping;
2096 int dirtied;
2097
2098 if (!page_mkwrite)
2099 lock_page(page);
2100
2101 dirtied = set_page_dirty(page);
2102 VM_BUG_ON_PAGE(PageAnon(page), page);
2103 mapping = page->mapping;
2104 unlock_page(page);
09cbfeaf 2105 put_page(page);
4e047f89
SR
2106
2107 if ((dirtied || page_mkwrite) && mapping) {
2108 /*
2109 * Some device drivers do not set page.mapping
2110 * but still dirty their pages
2111 */
2112 balance_dirty_pages_ratelimited(mapping);
2113 }
2114
2115 if (!page_mkwrite)
2116 file_update_time(vma->vm_file);
2117 }
2118
2119 return VM_FAULT_WRITE;
2120}
2121
2f38ab2c
SR
2122/*
2123 * Handle the case of a page which we actually need to copy to a new page.
2124 *
2125 * Called with mmap_sem locked and the old page referenced, but
2126 * without the ptl held.
2127 *
2128 * High level logic flow:
2129 *
2130 * - Allocate a page, copy the content of the old page to the new one.
2131 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2132 * - Take the PTL. If the pte changed, bail out and release the allocated page
2133 * - If the pte is still the way we remember it, update the page table and all
2134 * relevant references. This includes dropping the reference the page-table
2135 * held to the old page, as well as updating the rmap.
2136 * - In any case, unlock the PTL and drop the reference we took to the old page.
2137 */
bae473a4
KS
2138static int wp_page_copy(struct fault_env *fe, pte_t orig_pte,
2139 struct page *old_page)
2f38ab2c 2140{
bae473a4
KS
2141 struct vm_area_struct *vma = fe->vma;
2142 struct mm_struct *mm = vma->vm_mm;
2f38ab2c 2143 struct page *new_page = NULL;
2f38ab2c
SR
2144 pte_t entry;
2145 int page_copied = 0;
bae473a4
KS
2146 const unsigned long mmun_start = fe->address & PAGE_MASK;
2147 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2148 struct mem_cgroup *memcg;
2149
2150 if (unlikely(anon_vma_prepare(vma)))
2151 goto oom;
2152
2153 if (is_zero_pfn(pte_pfn(orig_pte))) {
bae473a4 2154 new_page = alloc_zeroed_user_highpage_movable(vma, fe->address);
2f38ab2c
SR
2155 if (!new_page)
2156 goto oom;
2157 } else {
bae473a4
KS
2158 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2159 fe->address);
2f38ab2c
SR
2160 if (!new_page)
2161 goto oom;
bae473a4 2162 cow_user_page(new_page, old_page, fe->address, vma);
2f38ab2c 2163 }
2f38ab2c 2164
f627c2f5 2165 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2166 goto oom_free_new;
2167
eb3c24f3
MG
2168 __SetPageUptodate(new_page);
2169
2f38ab2c
SR
2170 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2171
2172 /*
2173 * Re-check the pte - we dropped the lock
2174 */
bae473a4
KS
2175 fe->pte = pte_offset_map_lock(mm, fe->pmd, fe->address, &fe->ptl);
2176 if (likely(pte_same(*fe->pte, orig_pte))) {
2f38ab2c
SR
2177 if (old_page) {
2178 if (!PageAnon(old_page)) {
eca56ff9
JM
2179 dec_mm_counter_fast(mm,
2180 mm_counter_file(old_page));
2f38ab2c
SR
2181 inc_mm_counter_fast(mm, MM_ANONPAGES);
2182 }
2183 } else {
2184 inc_mm_counter_fast(mm, MM_ANONPAGES);
2185 }
bae473a4 2186 flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
2f38ab2c
SR
2187 entry = mk_pte(new_page, vma->vm_page_prot);
2188 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2189 /*
2190 * Clear the pte entry and flush it first, before updating the
2191 * pte with the new entry. This will avoid a race condition
2192 * seen in the presence of one thread doing SMC and another
2193 * thread doing COW.
2194 */
bae473a4
KS
2195 ptep_clear_flush_notify(vma, fe->address, fe->pte);
2196 page_add_new_anon_rmap(new_page, vma, fe->address, false);
f627c2f5 2197 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2198 lru_cache_add_active_or_unevictable(new_page, vma);
2199 /*
2200 * We call the notify macro here because, when using secondary
2201 * mmu page tables (such as kvm shadow page tables), we want the
2202 * new page to be mapped directly into the secondary page table.
2203 */
bae473a4
KS
2204 set_pte_at_notify(mm, fe->address, fe->pte, entry);
2205 update_mmu_cache(vma, fe->address, fe->pte);
2f38ab2c
SR
2206 if (old_page) {
2207 /*
2208 * Only after switching the pte to the new page may
2209 * we remove the mapcount here. Otherwise another
2210 * process may come and find the rmap count decremented
2211 * before the pte is switched to the new page, and
2212 * "reuse" the old page writing into it while our pte
2213 * here still points into it and can be read by other
2214 * threads.
2215 *
2216 * The critical issue is to order this
2217 * page_remove_rmap with the ptp_clear_flush above.
2218 * Those stores are ordered by (if nothing else,)
2219 * the barrier present in the atomic_add_negative
2220 * in page_remove_rmap.
2221 *
2222 * Then the TLB flush in ptep_clear_flush ensures that
2223 * no process can access the old page before the
2224 * decremented mapcount is visible. And the old page
2225 * cannot be reused until after the decremented
2226 * mapcount is visible. So transitively, TLBs to
2227 * old page will be flushed before it can be reused.
2228 */
d281ee61 2229 page_remove_rmap(old_page, false);
2f38ab2c
SR
2230 }
2231
2232 /* Free the old page.. */
2233 new_page = old_page;
2234 page_copied = 1;
2235 } else {
f627c2f5 2236 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2237 }
2238
2239 if (new_page)
09cbfeaf 2240 put_page(new_page);
2f38ab2c 2241
bae473a4 2242 pte_unmap_unlock(fe->pte, fe->ptl);
2f38ab2c
SR
2243 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2244 if (old_page) {
2245 /*
2246 * Don't let another task, with possibly unlocked vma,
2247 * keep the mlocked page.
2248 */
2249 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2250 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2251 if (PageMlocked(old_page))
2252 munlock_vma_page(old_page);
2f38ab2c
SR
2253 unlock_page(old_page);
2254 }
09cbfeaf 2255 put_page(old_page);
2f38ab2c
SR
2256 }
2257 return page_copied ? VM_FAULT_WRITE : 0;
2258oom_free_new:
09cbfeaf 2259 put_page(new_page);
2f38ab2c
SR
2260oom:
2261 if (old_page)
09cbfeaf 2262 put_page(old_page);
2f38ab2c
SR
2263 return VM_FAULT_OOM;
2264}
2265
dd906184
BH
2266/*
2267 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2268 * mapping
2269 */
bae473a4 2270static int wp_pfn_shared(struct fault_env *fe, pte_t orig_pte)
dd906184 2271{
bae473a4
KS
2272 struct vm_area_struct *vma = fe->vma;
2273
dd906184
BH
2274 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2275 struct vm_fault vmf = {
2276 .page = NULL,
bae473a4
KS
2277 .pgoff = linear_page_index(vma, fe->address),
2278 .virtual_address =
2279 (void __user *)(fe->address & PAGE_MASK),
dd906184
BH
2280 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2281 };
2282 int ret;
2283
bae473a4 2284 pte_unmap_unlock(fe->pte, fe->ptl);
dd906184
BH
2285 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2286 if (ret & VM_FAULT_ERROR)
2287 return ret;
bae473a4
KS
2288 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2289 &fe->ptl);
dd906184
BH
2290 /*
2291 * We might have raced with another page fault while we
2292 * released the pte_offset_map_lock.
2293 */
bae473a4
KS
2294 if (!pte_same(*fe->pte, orig_pte)) {
2295 pte_unmap_unlock(fe->pte, fe->ptl);
dd906184
BH
2296 return 0;
2297 }
2298 }
bae473a4 2299 return wp_page_reuse(fe, orig_pte, NULL, 0, 0);
dd906184
BH
2300}
2301
bae473a4
KS
2302static int wp_page_shared(struct fault_env *fe, pte_t orig_pte,
2303 struct page *old_page)
2304 __releases(fe->ptl)
93e478d4 2305{
bae473a4 2306 struct vm_area_struct *vma = fe->vma;
93e478d4
SR
2307 int page_mkwrite = 0;
2308
09cbfeaf 2309 get_page(old_page);
93e478d4 2310
93e478d4
SR
2311 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2312 int tmp;
2313
bae473a4
KS
2314 pte_unmap_unlock(fe->pte, fe->ptl);
2315 tmp = do_page_mkwrite(vma, old_page, fe->address);
93e478d4
SR
2316 if (unlikely(!tmp || (tmp &
2317 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
09cbfeaf 2318 put_page(old_page);
93e478d4
SR
2319 return tmp;
2320 }
2321 /*
2322 * Since we dropped the lock we need to revalidate
2323 * the PTE as someone else may have changed it. If
2324 * they did, we just return, as we can count on the
2325 * MMU to tell us if they didn't also make it writable.
2326 */
bae473a4
KS
2327 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2328 &fe->ptl);
2329 if (!pte_same(*fe->pte, orig_pte)) {
93e478d4 2330 unlock_page(old_page);
bae473a4 2331 pte_unmap_unlock(fe->pte, fe->ptl);
09cbfeaf 2332 put_page(old_page);
93e478d4
SR
2333 return 0;
2334 }
2335 page_mkwrite = 1;
2336 }
2337
bae473a4 2338 return wp_page_reuse(fe, orig_pte, old_page, page_mkwrite, 1);
93e478d4
SR
2339}
2340
1da177e4
LT
2341/*
2342 * This routine handles present pages, when users try to write
2343 * to a shared page. It is done by copying the page to a new address
2344 * and decrementing the shared-page counter for the old page.
2345 *
1da177e4
LT
2346 * Note that this routine assumes that the protection checks have been
2347 * done by the caller (the low-level page fault routine in most cases).
2348 * Thus we can safely just mark it writable once we've done any necessary
2349 * COW.
2350 *
2351 * We also mark the page dirty at this point even though the page will
2352 * change only once the write actually happens. This avoids a few races,
2353 * and potentially makes it more efficient.
2354 *
8f4e2101
HD
2355 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2356 * but allow concurrent faults), with pte both mapped and locked.
2357 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2358 */
bae473a4
KS
2359static int do_wp_page(struct fault_env *fe, pte_t orig_pte)
2360 __releases(fe->ptl)
1da177e4 2361{
bae473a4 2362 struct vm_area_struct *vma = fe->vma;
2f38ab2c 2363 struct page *old_page;
1da177e4 2364
bae473a4 2365 old_page = vm_normal_page(vma, fe->address, orig_pte);
251b97f5
PZ
2366 if (!old_page) {
2367 /*
64e45507
PF
2368 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2369 * VM_PFNMAP VMA.
251b97f5
PZ
2370 *
2371 * We should not cow pages in a shared writeable mapping.
dd906184 2372 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2373 */
2374 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2375 (VM_WRITE|VM_SHARED))
bae473a4 2376 return wp_pfn_shared(fe, orig_pte);
2f38ab2c 2377
bae473a4
KS
2378 pte_unmap_unlock(fe->pte, fe->ptl);
2379 return wp_page_copy(fe, orig_pte, old_page);
251b97f5 2380 }
1da177e4 2381
d08b3851 2382 /*
ee6a6457
PZ
2383 * Take out anonymous pages first, anonymous shared vmas are
2384 * not dirty accountable.
d08b3851 2385 */
9a840895 2386 if (PageAnon(old_page) && !PageKsm(old_page)) {
6d0a07ed 2387 int total_mapcount;
ab967d86 2388 if (!trylock_page(old_page)) {
09cbfeaf 2389 get_page(old_page);
bae473a4 2390 pte_unmap_unlock(fe->pte, fe->ptl);
ab967d86 2391 lock_page(old_page);
bae473a4
KS
2392 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
2393 fe->address, &fe->ptl);
2394 if (!pte_same(*fe->pte, orig_pte)) {
ab967d86 2395 unlock_page(old_page);
bae473a4 2396 pte_unmap_unlock(fe->pte, fe->ptl);
09cbfeaf 2397 put_page(old_page);
28766805 2398 return 0;
ab967d86 2399 }
09cbfeaf 2400 put_page(old_page);
ee6a6457 2401 }
6d0a07ed
AA
2402 if (reuse_swap_page(old_page, &total_mapcount)) {
2403 if (total_mapcount == 1) {
2404 /*
2405 * The page is all ours. Move it to
2406 * our anon_vma so the rmap code will
2407 * not search our parent or siblings.
2408 * Protected against the rmap code by
2409 * the page lock.
2410 */
5a49973d 2411 page_move_anon_rmap(old_page, vma);
6d0a07ed 2412 }
b009c024 2413 unlock_page(old_page);
bae473a4 2414 return wp_page_reuse(fe, orig_pte, old_page, 0, 0);
b009c024 2415 }
ab967d86 2416 unlock_page(old_page);
ee6a6457 2417 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2418 (VM_WRITE|VM_SHARED))) {
bae473a4 2419 return wp_page_shared(fe, orig_pte, old_page);
1da177e4 2420 }
1da177e4
LT
2421
2422 /*
2423 * Ok, we need to copy. Oh, well..
2424 */
09cbfeaf 2425 get_page(old_page);
28766805 2426
bae473a4
KS
2427 pte_unmap_unlock(fe->pte, fe->ptl);
2428 return wp_page_copy(fe, orig_pte, old_page);
1da177e4
LT
2429}
2430
97a89413 2431static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2432 unsigned long start_addr, unsigned long end_addr,
2433 struct zap_details *details)
2434{
f5cc4eef 2435 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2436}
2437
6b2dbba8 2438static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2439 struct zap_details *details)
2440{
2441 struct vm_area_struct *vma;
1da177e4
LT
2442 pgoff_t vba, vea, zba, zea;
2443
6b2dbba8 2444 vma_interval_tree_foreach(vma, root,
1da177e4 2445 details->first_index, details->last_index) {
1da177e4
LT
2446
2447 vba = vma->vm_pgoff;
d6e93217 2448 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2449 zba = details->first_index;
2450 if (zba < vba)
2451 zba = vba;
2452 zea = details->last_index;
2453 if (zea > vea)
2454 zea = vea;
2455
97a89413 2456 unmap_mapping_range_vma(vma,
1da177e4
LT
2457 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2458 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2459 details);
1da177e4
LT
2460 }
2461}
2462
1da177e4 2463/**
8a5f14a2
KS
2464 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2465 * address_space corresponding to the specified page range in the underlying
2466 * file.
2467 *
3d41088f 2468 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2469 * @holebegin: byte in first page to unmap, relative to the start of
2470 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2471 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2472 * must keep the partial page. In contrast, we must get rid of
2473 * partial pages.
2474 * @holelen: size of prospective hole in bytes. This will be rounded
2475 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2476 * end of the file.
2477 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2478 * but 0 when invalidating pagecache, don't throw away private data.
2479 */
2480void unmap_mapping_range(struct address_space *mapping,
2481 loff_t const holebegin, loff_t const holelen, int even_cows)
2482{
aac45363 2483 struct zap_details details = { };
1da177e4
LT
2484 pgoff_t hba = holebegin >> PAGE_SHIFT;
2485 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2486
2487 /* Check for overflow. */
2488 if (sizeof(holelen) > sizeof(hlen)) {
2489 long long holeend =
2490 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2491 if (holeend & ~(long long)ULONG_MAX)
2492 hlen = ULONG_MAX - hba + 1;
2493 }
2494
2495 details.check_mapping = even_cows? NULL: mapping;
1da177e4
LT
2496 details.first_index = hba;
2497 details.last_index = hba + hlen - 1;
2498 if (details.last_index < details.first_index)
2499 details.last_index = ULONG_MAX;
1da177e4 2500
46c043ed 2501 i_mmap_lock_write(mapping);
6b2dbba8 2502 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2503 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2504 i_mmap_unlock_write(mapping);
1da177e4
LT
2505}
2506EXPORT_SYMBOL(unmap_mapping_range);
2507
1da177e4 2508/*
8f4e2101
HD
2509 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2510 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2511 * We return with pte unmapped and unlocked.
2512 *
2513 * We return with the mmap_sem locked or unlocked in the same cases
2514 * as does filemap_fault().
1da177e4 2515 */
bae473a4 2516int do_swap_page(struct fault_env *fe, pte_t orig_pte)
1da177e4 2517{
bae473a4 2518 struct vm_area_struct *vma = fe->vma;
56f31801 2519 struct page *page, *swapcache;
00501b53 2520 struct mem_cgroup *memcg;
65500d23 2521 swp_entry_t entry;
1da177e4 2522 pte_t pte;
d065bd81 2523 int locked;
ad8c2ee8 2524 int exclusive = 0;
83c54070 2525 int ret = 0;
1da177e4 2526
bae473a4 2527 if (!pte_unmap_same(vma->vm_mm, fe->pmd, fe->pte, orig_pte))
8f4e2101 2528 goto out;
65500d23
HD
2529
2530 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2531 if (unlikely(non_swap_entry(entry))) {
2532 if (is_migration_entry(entry)) {
bae473a4 2533 migration_entry_wait(vma->vm_mm, fe->pmd, fe->address);
d1737fdb
AK
2534 } else if (is_hwpoison_entry(entry)) {
2535 ret = VM_FAULT_HWPOISON;
2536 } else {
bae473a4 2537 print_bad_pte(vma, fe->address, orig_pte, NULL);
d99be1a8 2538 ret = VM_FAULT_SIGBUS;
d1737fdb 2539 }
0697212a
CL
2540 goto out;
2541 }
0ff92245 2542 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2543 page = lookup_swap_cache(entry);
2544 if (!page) {
02098fea 2545 page = swapin_readahead(entry,
bae473a4 2546 GFP_HIGHUSER_MOVABLE, vma, fe->address);
1da177e4
LT
2547 if (!page) {
2548 /*
8f4e2101
HD
2549 * Back out if somebody else faulted in this pte
2550 * while we released the pte lock.
1da177e4 2551 */
bae473a4
KS
2552 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
2553 fe->address, &fe->ptl);
2554 if (likely(pte_same(*fe->pte, orig_pte)))
1da177e4 2555 ret = VM_FAULT_OOM;
0ff92245 2556 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2557 goto unlock;
1da177e4
LT
2558 }
2559
2560 /* Had to read the page from swap area: Major fault */
2561 ret = VM_FAULT_MAJOR;
f8891e5e 2562 count_vm_event(PGMAJFAULT);
bae473a4 2563 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
d1737fdb 2564 } else if (PageHWPoison(page)) {
71f72525
WF
2565 /*
2566 * hwpoisoned dirty swapcache pages are kept for killing
2567 * owner processes (which may be unknown at hwpoison time)
2568 */
d1737fdb
AK
2569 ret = VM_FAULT_HWPOISON;
2570 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2571 swapcache = page;
4779cb31 2572 goto out_release;
1da177e4
LT
2573 }
2574
56f31801 2575 swapcache = page;
bae473a4 2576 locked = lock_page_or_retry(page, vma->vm_mm, fe->flags);
e709ffd6 2577
073e587e 2578 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2579 if (!locked) {
2580 ret |= VM_FAULT_RETRY;
2581 goto out_release;
2582 }
073e587e 2583
4969c119 2584 /*
31c4a3d3
HD
2585 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2586 * release the swapcache from under us. The page pin, and pte_same
2587 * test below, are not enough to exclude that. Even if it is still
2588 * swapcache, we need to check that the page's swap has not changed.
4969c119 2589 */
31c4a3d3 2590 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2591 goto out_page;
2592
bae473a4 2593 page = ksm_might_need_to_copy(page, vma, fe->address);
cbf86cfe
HD
2594 if (unlikely(!page)) {
2595 ret = VM_FAULT_OOM;
2596 page = swapcache;
cbf86cfe 2597 goto out_page;
5ad64688
HD
2598 }
2599
bae473a4
KS
2600 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2601 &memcg, false)) {
8a9f3ccd 2602 ret = VM_FAULT_OOM;
bc43f75c 2603 goto out_page;
8a9f3ccd
BS
2604 }
2605
1da177e4 2606 /*
8f4e2101 2607 * Back out if somebody else already faulted in this pte.
1da177e4 2608 */
bae473a4
KS
2609 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2610 &fe->ptl);
2611 if (unlikely(!pte_same(*fe->pte, orig_pte)))
b8107480 2612 goto out_nomap;
b8107480
KK
2613
2614 if (unlikely(!PageUptodate(page))) {
2615 ret = VM_FAULT_SIGBUS;
2616 goto out_nomap;
1da177e4
LT
2617 }
2618
8c7c6e34
KH
2619 /*
2620 * The page isn't present yet, go ahead with the fault.
2621 *
2622 * Be careful about the sequence of operations here.
2623 * To get its accounting right, reuse_swap_page() must be called
2624 * while the page is counted on swap but not yet in mapcount i.e.
2625 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2626 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2627 */
1da177e4 2628
bae473a4
KS
2629 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2630 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2631 pte = mk_pte(page, vma->vm_page_prot);
bae473a4 2632 if ((fe->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2633 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
bae473a4 2634 fe->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2635 ret |= VM_FAULT_WRITE;
d281ee61 2636 exclusive = RMAP_EXCLUSIVE;
1da177e4 2637 }
1da177e4 2638 flush_icache_page(vma, page);
179ef71c
CG
2639 if (pte_swp_soft_dirty(orig_pte))
2640 pte = pte_mksoft_dirty(pte);
bae473a4 2641 set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
00501b53 2642 if (page == swapcache) {
bae473a4 2643 do_page_add_anon_rmap(page, vma, fe->address, exclusive);
f627c2f5 2644 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 2645 } else { /* ksm created a completely new copy */
bae473a4 2646 page_add_new_anon_rmap(page, vma, fe->address, false);
f627c2f5 2647 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2648 lru_cache_add_active_or_unevictable(page, vma);
2649 }
1da177e4 2650
c475a8ab 2651 swap_free(entry);
5ccc5aba
VD
2652 if (mem_cgroup_swap_full(page) ||
2653 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2654 try_to_free_swap(page);
c475a8ab 2655 unlock_page(page);
56f31801 2656 if (page != swapcache) {
4969c119
AA
2657 /*
2658 * Hold the lock to avoid the swap entry to be reused
2659 * until we take the PT lock for the pte_same() check
2660 * (to avoid false positives from pte_same). For
2661 * further safety release the lock after the swap_free
2662 * so that the swap count won't change under a
2663 * parallel locked swapcache.
2664 */
2665 unlock_page(swapcache);
09cbfeaf 2666 put_page(swapcache);
4969c119 2667 }
c475a8ab 2668
bae473a4
KS
2669 if (fe->flags & FAULT_FLAG_WRITE) {
2670 ret |= do_wp_page(fe, pte);
61469f1d
HD
2671 if (ret & VM_FAULT_ERROR)
2672 ret &= VM_FAULT_ERROR;
1da177e4
LT
2673 goto out;
2674 }
2675
2676 /* No need to invalidate - it was non-present before */
bae473a4 2677 update_mmu_cache(vma, fe->address, fe->pte);
65500d23 2678unlock:
bae473a4 2679 pte_unmap_unlock(fe->pte, fe->ptl);
1da177e4
LT
2680out:
2681 return ret;
b8107480 2682out_nomap:
f627c2f5 2683 mem_cgroup_cancel_charge(page, memcg, false);
bae473a4 2684 pte_unmap_unlock(fe->pte, fe->ptl);
bc43f75c 2685out_page:
b8107480 2686 unlock_page(page);
4779cb31 2687out_release:
09cbfeaf 2688 put_page(page);
56f31801 2689 if (page != swapcache) {
4969c119 2690 unlock_page(swapcache);
09cbfeaf 2691 put_page(swapcache);
4969c119 2692 }
65500d23 2693 return ret;
1da177e4
LT
2694}
2695
320b2b8d 2696/*
8ca3eb08
LT
2697 * This is like a special single-page "expand_{down|up}wards()",
2698 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2699 * doesn't hit another vma.
320b2b8d
LT
2700 */
2701static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2702{
2703 address &= PAGE_MASK;
2704 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2705 struct vm_area_struct *prev = vma->vm_prev;
2706
2707 /*
2708 * Is there a mapping abutting this one below?
2709 *
2710 * That's only ok if it's the same stack mapping
2711 * that has gotten split..
2712 */
2713 if (prev && prev->vm_end == address)
2714 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2715
fee7e49d 2716 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2717 }
8ca3eb08
LT
2718 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2719 struct vm_area_struct *next = vma->vm_next;
2720
2721 /* As VM_GROWSDOWN but s/below/above/ */
2722 if (next && next->vm_start == address + PAGE_SIZE)
2723 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2724
fee7e49d 2725 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 2726 }
320b2b8d
LT
2727 return 0;
2728}
2729
1da177e4 2730/*
8f4e2101
HD
2731 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2732 * but allow concurrent faults), and pte mapped but not yet locked.
2733 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2734 */
bae473a4 2735static int do_anonymous_page(struct fault_env *fe)
1da177e4 2736{
bae473a4 2737 struct vm_area_struct *vma = fe->vma;
00501b53 2738 struct mem_cgroup *memcg;
8f4e2101 2739 struct page *page;
1da177e4 2740 pte_t entry;
1da177e4 2741
bae473a4 2742 pte_unmap(fe->pte);
11ac5524 2743
6b7339f4
KS
2744 /* File mapping without ->vm_ops ? */
2745 if (vma->vm_flags & VM_SHARED)
2746 return VM_FAULT_SIGBUS;
2747
11ac5524 2748 /* Check if we need to add a guard page to the stack */
bae473a4 2749 if (check_stack_guard_page(vma, fe->address) < 0)
9c145c56 2750 return VM_FAULT_SIGSEGV;
320b2b8d 2751
11ac5524 2752 /* Use the zero-page for reads */
bae473a4
KS
2753 if (!(fe->flags & FAULT_FLAG_WRITE) &&
2754 !mm_forbids_zeropage(vma->vm_mm)) {
2755 entry = pte_mkspecial(pfn_pte(my_zero_pfn(fe->address),
62eede62 2756 vma->vm_page_prot));
bae473a4
KS
2757 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2758 &fe->ptl);
2759 if (!pte_none(*fe->pte))
a13ea5b7 2760 goto unlock;
6b251fc9
AA
2761 /* Deliver the page fault to userland, check inside PT lock */
2762 if (userfaultfd_missing(vma)) {
bae473a4
KS
2763 pte_unmap_unlock(fe->pte, fe->ptl);
2764 return handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9 2765 }
a13ea5b7
HD
2766 goto setpte;
2767 }
2768
557ed1fa 2769 /* Allocate our own private page. */
557ed1fa
NP
2770 if (unlikely(anon_vma_prepare(vma)))
2771 goto oom;
bae473a4 2772 page = alloc_zeroed_user_highpage_movable(vma, fe->address);
557ed1fa
NP
2773 if (!page)
2774 goto oom;
eb3c24f3 2775
bae473a4 2776 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2777 goto oom_free_page;
2778
52f37629
MK
2779 /*
2780 * The memory barrier inside __SetPageUptodate makes sure that
2781 * preceeding stores to the page contents become visible before
2782 * the set_pte_at() write.
2783 */
0ed361de 2784 __SetPageUptodate(page);
8f4e2101 2785
557ed1fa 2786 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2787 if (vma->vm_flags & VM_WRITE)
2788 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2789
bae473a4
KS
2790 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2791 &fe->ptl);
2792 if (!pte_none(*fe->pte))
557ed1fa 2793 goto release;
9ba69294 2794
6b251fc9
AA
2795 /* Deliver the page fault to userland, check inside PT lock */
2796 if (userfaultfd_missing(vma)) {
bae473a4 2797 pte_unmap_unlock(fe->pte, fe->ptl);
f627c2f5 2798 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2799 put_page(page);
bae473a4 2800 return handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
2801 }
2802
bae473a4
KS
2803 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2804 page_add_new_anon_rmap(page, vma, fe->address, false);
f627c2f5 2805 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2806 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2807setpte:
bae473a4 2808 set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
1da177e4
LT
2809
2810 /* No need to invalidate - it was non-present before */
bae473a4 2811 update_mmu_cache(vma, fe->address, fe->pte);
65500d23 2812unlock:
bae473a4 2813 pte_unmap_unlock(fe->pte, fe->ptl);
83c54070 2814 return 0;
8f4e2101 2815release:
f627c2f5 2816 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2817 put_page(page);
8f4e2101 2818 goto unlock;
8a9f3ccd 2819oom_free_page:
09cbfeaf 2820 put_page(page);
65500d23 2821oom:
1da177e4
LT
2822 return VM_FAULT_OOM;
2823}
2824
9a95f3cf
PC
2825/*
2826 * The mmap_sem must have been held on entry, and may have been
2827 * released depending on flags and vma->vm_ops->fault() return value.
2828 * See filemap_fault() and __lock_page_retry().
2829 */
bae473a4
KS
2830static int __do_fault(struct fault_env *fe, pgoff_t pgoff,
2831 struct page *cow_page, struct page **page, void **entry)
7eae74af 2832{
bae473a4 2833 struct vm_area_struct *vma = fe->vma;
7eae74af
KS
2834 struct vm_fault vmf;
2835 int ret;
2836
bae473a4 2837 vmf.virtual_address = (void __user *)(fe->address & PAGE_MASK);
7eae74af 2838 vmf.pgoff = pgoff;
bae473a4 2839 vmf.flags = fe->flags;
7eae74af 2840 vmf.page = NULL;
c20cd45e 2841 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2e4cdab0 2842 vmf.cow_page = cow_page;
7eae74af
KS
2843
2844 ret = vma->vm_ops->fault(vma, &vmf);
2845 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2846 return ret;
bc2466e4
JK
2847 if (ret & VM_FAULT_DAX_LOCKED) {
2848 *entry = vmf.entry;
2849 return ret;
2850 }
7eae74af
KS
2851
2852 if (unlikely(PageHWPoison(vmf.page))) {
2853 if (ret & VM_FAULT_LOCKED)
2854 unlock_page(vmf.page);
09cbfeaf 2855 put_page(vmf.page);
7eae74af
KS
2856 return VM_FAULT_HWPOISON;
2857 }
2858
2859 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2860 lock_page(vmf.page);
2861 else
2862 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2863
2864 *page = vmf.page;
2865 return ret;
2866}
2867
8c6e50b0
KS
2868/**
2869 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2870 *
bae473a4 2871 * @fe: fault environment
8c6e50b0 2872 * @page: page to map
8c6e50b0 2873 *
bae473a4 2874 * Caller must hold page table lock relevant for @fe->pte.
8c6e50b0
KS
2875 *
2876 * Target users are page handler itself and implementations of
2877 * vm_ops->map_pages.
2878 */
bae473a4 2879void do_set_pte(struct fault_env *fe, struct page *page)
3bb97794 2880{
bae473a4
KS
2881 struct vm_area_struct *vma = fe->vma;
2882 bool write = fe->flags & FAULT_FLAG_WRITE;
3bb97794
KS
2883 pte_t entry;
2884
2885 flush_icache_page(vma, page);
2886 entry = mk_pte(page, vma->vm_page_prot);
2887 if (write)
2888 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
2889 /* copy-on-write page */
2890 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 2891 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
bae473a4 2892 page_add_new_anon_rmap(page, vma, fe->address, false);
3bb97794 2893 } else {
eca56ff9 2894 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3bb97794
KS
2895 page_add_file_rmap(page);
2896 }
bae473a4 2897 set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
3bb97794
KS
2898
2899 /* no need to invalidate: a not-present page won't be cached */
bae473a4 2900 update_mmu_cache(vma, fe->address, fe->pte);
3bb97794
KS
2901}
2902
3a91053a
KS
2903static unsigned long fault_around_bytes __read_mostly =
2904 rounddown_pow_of_two(65536);
a9b0f861 2905
a9b0f861
KS
2906#ifdef CONFIG_DEBUG_FS
2907static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2908{
a9b0f861 2909 *val = fault_around_bytes;
1592eef0
KS
2910 return 0;
2911}
2912
b4903d6e
AR
2913/*
2914 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2915 * rounded down to nearest page order. It's what do_fault_around() expects to
2916 * see.
2917 */
a9b0f861 2918static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2919{
a9b0f861 2920 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2921 return -EINVAL;
b4903d6e
AR
2922 if (val > PAGE_SIZE)
2923 fault_around_bytes = rounddown_pow_of_two(val);
2924 else
2925 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2926 return 0;
2927}
a9b0f861
KS
2928DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2929 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2930
2931static int __init fault_around_debugfs(void)
2932{
2933 void *ret;
2934
a9b0f861
KS
2935 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2936 &fault_around_bytes_fops);
1592eef0 2937 if (!ret)
a9b0f861 2938 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2939 return 0;
2940}
2941late_initcall(fault_around_debugfs);
1592eef0 2942#endif
8c6e50b0 2943
1fdb412b
KS
2944/*
2945 * do_fault_around() tries to map few pages around the fault address. The hope
2946 * is that the pages will be needed soon and this will lower the number of
2947 * faults to handle.
2948 *
2949 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2950 * not ready to be mapped: not up-to-date, locked, etc.
2951 *
2952 * This function is called with the page table lock taken. In the split ptlock
2953 * case the page table lock only protects only those entries which belong to
2954 * the page table corresponding to the fault address.
2955 *
2956 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2957 * only once.
2958 *
2959 * fault_around_pages() defines how many pages we'll try to map.
2960 * do_fault_around() expects it to return a power of two less than or equal to
2961 * PTRS_PER_PTE.
2962 *
2963 * The virtual address of the area that we map is naturally aligned to the
2964 * fault_around_pages() value (and therefore to page order). This way it's
2965 * easier to guarantee that we don't cross page table boundaries.
2966 */
bae473a4 2967static void do_fault_around(struct fault_env *fe, pgoff_t start_pgoff)
8c6e50b0 2968{
bae473a4
KS
2969 unsigned long address = fe->address, start_addr, nr_pages, mask;
2970 pte_t *pte = fe->pte;
2971 pgoff_t end_pgoff;
8c6e50b0
KS
2972 int off;
2973
4db0c3c2 2974 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
2975 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2976
bae473a4
KS
2977 start_addr = max(fe->address & mask, fe->vma->vm_start);
2978 off = ((fe->address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2979 fe->pte -= off;
2980 start_pgoff -= off;
8c6e50b0
KS
2981
2982 /*
bae473a4
KS
2983 * end_pgoff is either end of page table or end of vma
2984 * or fault_around_pages() from start_pgoff, depending what is nearest.
8c6e50b0 2985 */
bae473a4
KS
2986 end_pgoff = start_pgoff -
2987 ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 2988 PTRS_PER_PTE - 1;
bae473a4
KS
2989 end_pgoff = min3(end_pgoff, vma_pages(fe->vma) + fe->vma->vm_pgoff - 1,
2990 start_pgoff + nr_pages - 1);
8c6e50b0
KS
2991
2992 /* Check if it makes any sense to call ->map_pages */
bae473a4
KS
2993 fe->address = start_addr;
2994 while (!pte_none(*fe->pte)) {
2995 if (++start_pgoff > end_pgoff)
2996 goto out;
2997 fe->address += PAGE_SIZE;
2998 if (fe->address >= fe->vma->vm_end)
2999 goto out;
3000 fe->pte++;
8c6e50b0
KS
3001 }
3002
bae473a4
KS
3003 fe->vma->vm_ops->map_pages(fe, start_pgoff, end_pgoff);
3004out:
3005 /* restore fault_env */
3006 fe->pte = pte;
3007 fe->address = address;
8c6e50b0
KS
3008}
3009
bae473a4 3010static int do_read_fault(struct fault_env *fe, pgoff_t pgoff, pte_t orig_pte)
e655fb29 3011{
bae473a4 3012 struct vm_area_struct *vma = fe->vma;
e655fb29 3013 struct page *fault_page;
8c6e50b0
KS
3014 int ret = 0;
3015
3016 /*
3017 * Let's call ->map_pages() first and use ->fault() as fallback
3018 * if page by the offset is not ready to be mapped (cold cache or
3019 * something).
3020 */
9b4bdd2f 3021 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
bae473a4
KS
3022 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
3023 &fe->ptl);
3024 if (!pte_same(*fe->pte, orig_pte))
3025 goto unlock_out;
3026 do_fault_around(fe, pgoff);
3027 /* Check if the fault is handled by faultaround */
3028 if (!pte_same(*fe->pte, orig_pte))
5c0a85fa 3029 goto unlock_out;
bae473a4 3030 pte_unmap_unlock(fe->pte, fe->ptl);
8c6e50b0 3031 }
e655fb29 3032
bae473a4 3033 ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
e655fb29
KS
3034 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3035 return ret;
3036
bae473a4
KS
3037 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, &fe->ptl);
3038 if (unlikely(!pte_same(*fe->pte, orig_pte))) {
3039 pte_unmap_unlock(fe->pte, fe->ptl);
e655fb29 3040 unlock_page(fault_page);
09cbfeaf 3041 put_page(fault_page);
e655fb29
KS
3042 return ret;
3043 }
bae473a4 3044 do_set_pte(fe, fault_page);
e655fb29 3045 unlock_page(fault_page);
8c6e50b0 3046unlock_out:
bae473a4 3047 pte_unmap_unlock(fe->pte, fe->ptl);
e655fb29
KS
3048 return ret;
3049}
3050
bae473a4 3051static int do_cow_fault(struct fault_env *fe, pgoff_t pgoff, pte_t orig_pte)
ec47c3b9 3052{
bae473a4 3053 struct vm_area_struct *vma = fe->vma;
ec47c3b9 3054 struct page *fault_page, *new_page;
bc2466e4 3055 void *fault_entry;
00501b53 3056 struct mem_cgroup *memcg;
ec47c3b9
KS
3057 int ret;
3058
3059 if (unlikely(anon_vma_prepare(vma)))
3060 return VM_FAULT_OOM;
3061
bae473a4 3062 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, fe->address);
ec47c3b9
KS
3063 if (!new_page)
3064 return VM_FAULT_OOM;
3065
bae473a4
KS
3066 if (mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
3067 &memcg, false)) {
09cbfeaf 3068 put_page(new_page);
ec47c3b9
KS
3069 return VM_FAULT_OOM;
3070 }
3071
bae473a4 3072 ret = __do_fault(fe, pgoff, new_page, &fault_page, &fault_entry);
ec47c3b9
KS
3073 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3074 goto uncharge_out;
3075
bc2466e4 3076 if (!(ret & VM_FAULT_DAX_LOCKED))
bae473a4 3077 copy_user_highpage(new_page, fault_page, fe->address, vma);
ec47c3b9
KS
3078 __SetPageUptodate(new_page);
3079
bae473a4
KS
3080 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
3081 &fe->ptl);
3082 if (unlikely(!pte_same(*fe->pte, orig_pte))) {
3083 pte_unmap_unlock(fe->pte, fe->ptl);
bc2466e4 3084 if (!(ret & VM_FAULT_DAX_LOCKED)) {
2e4cdab0 3085 unlock_page(fault_page);
09cbfeaf 3086 put_page(fault_page);
2e4cdab0 3087 } else {
bc2466e4
JK
3088 dax_unlock_mapping_entry(vma->vm_file->f_mapping,
3089 pgoff);
2e4cdab0 3090 }
ec47c3b9
KS
3091 goto uncharge_out;
3092 }
bae473a4 3093 do_set_pte(fe, new_page);
f627c2f5 3094 mem_cgroup_commit_charge(new_page, memcg, false, false);
00501b53 3095 lru_cache_add_active_or_unevictable(new_page, vma);
bae473a4 3096 pte_unmap_unlock(fe->pte, fe->ptl);
bc2466e4 3097 if (!(ret & VM_FAULT_DAX_LOCKED)) {
2e4cdab0 3098 unlock_page(fault_page);
09cbfeaf 3099 put_page(fault_page);
2e4cdab0 3100 } else {
bc2466e4 3101 dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff);
2e4cdab0 3102 }
ec47c3b9
KS
3103 return ret;
3104uncharge_out:
f627c2f5 3105 mem_cgroup_cancel_charge(new_page, memcg, false);
09cbfeaf 3106 put_page(new_page);
ec47c3b9
KS
3107 return ret;
3108}
3109
bae473a4 3110static int do_shared_fault(struct fault_env *fe, pgoff_t pgoff, pte_t orig_pte)
1da177e4 3111{
bae473a4 3112 struct vm_area_struct *vma = fe->vma;
f0c6d4d2
KS
3113 struct page *fault_page;
3114 struct address_space *mapping;
f0c6d4d2 3115 int dirtied = 0;
f0c6d4d2 3116 int ret, tmp;
1d65f86d 3117
bae473a4 3118 ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
7eae74af 3119 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3120 return ret;
1da177e4
LT
3121
3122 /*
f0c6d4d2
KS
3123 * Check if the backing address space wants to know that the page is
3124 * about to become writable
1da177e4 3125 */
fb09a464
KS
3126 if (vma->vm_ops->page_mkwrite) {
3127 unlock_page(fault_page);
bae473a4 3128 tmp = do_page_mkwrite(vma, fault_page, fe->address);
fb09a464
KS
3129 if (unlikely(!tmp ||
3130 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
09cbfeaf 3131 put_page(fault_page);
fb09a464 3132 return tmp;
4294621f 3133 }
fb09a464
KS
3134 }
3135
bae473a4
KS
3136 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
3137 &fe->ptl);
3138 if (unlikely(!pte_same(*fe->pte, orig_pte))) {
3139 pte_unmap_unlock(fe->pte, fe->ptl);
f0c6d4d2 3140 unlock_page(fault_page);
09cbfeaf 3141 put_page(fault_page);
f0c6d4d2 3142 return ret;
1da177e4 3143 }
bae473a4
KS
3144 do_set_pte(fe, fault_page);
3145 pte_unmap_unlock(fe->pte, fe->ptl);
b827e496 3146
f0c6d4d2
KS
3147 if (set_page_dirty(fault_page))
3148 dirtied = 1;
d82fa87d
AM
3149 /*
3150 * Take a local copy of the address_space - page.mapping may be zeroed
3151 * by truncate after unlock_page(). The address_space itself remains
3152 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3153 * release semantics to prevent the compiler from undoing this copying.
3154 */
1c290f64 3155 mapping = page_rmapping(fault_page);
f0c6d4d2
KS
3156 unlock_page(fault_page);
3157 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3158 /*
3159 * Some device drivers do not set page.mapping but still
3160 * dirty their pages
3161 */
3162 balance_dirty_pages_ratelimited(mapping);
d08b3851 3163 }
d00806b1 3164
74ec6751 3165 if (!vma->vm_ops->page_mkwrite)
f0c6d4d2 3166 file_update_time(vma->vm_file);
b827e496 3167
1d65f86d 3168 return ret;
54cb8821 3169}
d00806b1 3170
9a95f3cf
PC
3171/*
3172 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3173 * but allow concurrent faults).
3174 * The mmap_sem may have been released depending on flags and our
3175 * return value. See filemap_fault() and __lock_page_or_retry().
3176 */
bae473a4 3177static int do_fault(struct fault_env *fe, pte_t orig_pte)
54cb8821 3178{
bae473a4
KS
3179 struct vm_area_struct *vma = fe->vma;
3180 pgoff_t pgoff = linear_page_index(vma, fe->address);
54cb8821 3181
bae473a4 3182 pte_unmap(fe->pte);
6b7339f4
KS
3183 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3184 if (!vma->vm_ops->fault)
3185 return VM_FAULT_SIGBUS;
bae473a4
KS
3186 if (!(fe->flags & FAULT_FLAG_WRITE))
3187 return do_read_fault(fe, pgoff, orig_pte);
ec47c3b9 3188 if (!(vma->vm_flags & VM_SHARED))
bae473a4
KS
3189 return do_cow_fault(fe, pgoff, orig_pte);
3190 return do_shared_fault(fe, pgoff, orig_pte);
54cb8821
NP
3191}
3192
b19a9939 3193static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3194 unsigned long addr, int page_nid,
3195 int *flags)
9532fec1
MG
3196{
3197 get_page(page);
3198
3199 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3200 if (page_nid == numa_node_id()) {
9532fec1 3201 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3202 *flags |= TNF_FAULT_LOCAL;
3203 }
9532fec1
MG
3204
3205 return mpol_misplaced(page, vma, addr);
3206}
3207
bae473a4 3208static int do_numa_page(struct fault_env *fe, pte_t pte)
d10e63f2 3209{
bae473a4 3210 struct vm_area_struct *vma = fe->vma;
4daae3b4 3211 struct page *page = NULL;
8191acbd 3212 int page_nid = -1;
90572890 3213 int last_cpupid;
cbee9f88 3214 int target_nid;
b8593bfd 3215 bool migrated = false;
b191f9b1 3216 bool was_writable = pte_write(pte);
6688cc05 3217 int flags = 0;
d10e63f2 3218
c0e7cad9
MG
3219 /* A PROT_NONE fault should not end up here */
3220 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3221
d10e63f2
MG
3222 /*
3223 * The "pte" at this point cannot be used safely without
3224 * validation through pte_unmap_same(). It's of NUMA type but
3225 * the pfn may be screwed if the read is non atomic.
3226 *
4d942466
MG
3227 * We can safely just do a "set_pte_at()", because the old
3228 * page table entry is not accessible, so there would be no
3229 * concurrent hardware modifications to the PTE.
d10e63f2 3230 */
bae473a4
KS
3231 fe->ptl = pte_lockptr(vma->vm_mm, fe->pmd);
3232 spin_lock(fe->ptl);
3233 if (unlikely(!pte_same(*fe->pte, pte))) {
3234 pte_unmap_unlock(fe->pte, fe->ptl);
4daae3b4
MG
3235 goto out;
3236 }
3237
4d942466
MG
3238 /* Make it present again */
3239 pte = pte_modify(pte, vma->vm_page_prot);
3240 pte = pte_mkyoung(pte);
b191f9b1
MG
3241 if (was_writable)
3242 pte = pte_mkwrite(pte);
bae473a4
KS
3243 set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
3244 update_mmu_cache(vma, fe->address, fe->pte);
d10e63f2 3245
bae473a4 3246 page = vm_normal_page(vma, fe->address, pte);
d10e63f2 3247 if (!page) {
bae473a4 3248 pte_unmap_unlock(fe->pte, fe->ptl);
d10e63f2
MG
3249 return 0;
3250 }
3251
e81c4802
KS
3252 /* TODO: handle PTE-mapped THP */
3253 if (PageCompound(page)) {
bae473a4 3254 pte_unmap_unlock(fe->pte, fe->ptl);
e81c4802
KS
3255 return 0;
3256 }
3257
6688cc05 3258 /*
bea66fbd
MG
3259 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3260 * much anyway since they can be in shared cache state. This misses
3261 * the case where a mapping is writable but the process never writes
3262 * to it but pte_write gets cleared during protection updates and
3263 * pte_dirty has unpredictable behaviour between PTE scan updates,
3264 * background writeback, dirty balancing and application behaviour.
6688cc05 3265 */
bea66fbd 3266 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
3267 flags |= TNF_NO_GROUP;
3268
dabe1d99
RR
3269 /*
3270 * Flag if the page is shared between multiple address spaces. This
3271 * is later used when determining whether to group tasks together
3272 */
3273 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3274 flags |= TNF_SHARED;
3275
90572890 3276 last_cpupid = page_cpupid_last(page);
8191acbd 3277 page_nid = page_to_nid(page);
bae473a4
KS
3278 target_nid = numa_migrate_prep(page, vma, fe->address, page_nid,
3279 &flags);
3280 pte_unmap_unlock(fe->pte, fe->ptl);
4daae3b4 3281 if (target_nid == -1) {
4daae3b4
MG
3282 put_page(page);
3283 goto out;
3284 }
3285
3286 /* Migrate to the requested node */
1bc115d8 3287 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3288 if (migrated) {
8191acbd 3289 page_nid = target_nid;
6688cc05 3290 flags |= TNF_MIGRATED;
074c2381
MG
3291 } else
3292 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3293
3294out:
8191acbd 3295 if (page_nid != -1)
6688cc05 3296 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3297 return 0;
3298}
3299
bae473a4 3300static int create_huge_pmd(struct fault_env *fe)
b96375f7 3301{
bae473a4 3302 struct vm_area_struct *vma = fe->vma;
fb6dd5fa 3303 if (vma_is_anonymous(vma))
bae473a4 3304 return do_huge_pmd_anonymous_page(fe);
b96375f7 3305 if (vma->vm_ops->pmd_fault)
bae473a4
KS
3306 return vma->vm_ops->pmd_fault(vma, fe->address, fe->pmd,
3307 fe->flags);
b96375f7
MW
3308 return VM_FAULT_FALLBACK;
3309}
3310
bae473a4 3311static int wp_huge_pmd(struct fault_env *fe, pmd_t orig_pmd)
b96375f7 3312{
bae473a4
KS
3313 if (vma_is_anonymous(fe->vma))
3314 return do_huge_pmd_wp_page(fe, orig_pmd);
3315 if (fe->vma->vm_ops->pmd_fault)
3316 return fe->vma->vm_ops->pmd_fault(fe->vma, fe->address, fe->pmd,
3317 fe->flags);
b96375f7
MW
3318 return VM_FAULT_FALLBACK;
3319}
3320
1da177e4
LT
3321/*
3322 * These routines also need to handle stuff like marking pages dirty
3323 * and/or accessed for architectures that don't do it in hardware (most
3324 * RISC architectures). The early dirtying is also good on the i386.
3325 *
3326 * There is also a hook called "update_mmu_cache()" that architectures
3327 * with external mmu caches can use to update those (ie the Sparc or
3328 * PowerPC hashed page tables that act as extended TLBs).
3329 *
c74df32c
HD
3330 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3331 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3332 * We return with pte unmapped and unlocked.
3333 *
3334 * The mmap_sem may have been released depending on flags and our
3335 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3336 */
bae473a4 3337static int handle_pte_fault(struct fault_env *fe)
1da177e4
LT
3338{
3339 pte_t entry;
3340
e37c6982
CB
3341 /*
3342 * some architectures can have larger ptes than wordsize,
3343 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3344 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3345 * The code below just needs a consistent view for the ifs and
3346 * we later double check anyway with the ptl lock held. So here
3347 * a barrier will do.
3348 */
bae473a4 3349 entry = *fe->pte;
e37c6982 3350 barrier();
1da177e4 3351 if (!pte_present(entry)) {
65500d23 3352 if (pte_none(entry)) {
bae473a4
KS
3353 if (vma_is_anonymous(fe->vma))
3354 return do_anonymous_page(fe);
b5330628 3355 else
bae473a4 3356 return do_fault(fe, entry);
65500d23 3357 }
bae473a4 3358 return do_swap_page(fe, entry);
1da177e4
LT
3359 }
3360
8a0516ed 3361 if (pte_protnone(entry))
bae473a4 3362 return do_numa_page(fe, entry);
d10e63f2 3363
bae473a4
KS
3364 fe->ptl = pte_lockptr(fe->vma->vm_mm, fe->pmd);
3365 spin_lock(fe->ptl);
3366 if (unlikely(!pte_same(*fe->pte, entry)))
8f4e2101 3367 goto unlock;
bae473a4 3368 if (fe->flags & FAULT_FLAG_WRITE) {
1da177e4 3369 if (!pte_write(entry))
bae473a4 3370 return do_wp_page(fe, entry);
1da177e4
LT
3371 entry = pte_mkdirty(entry);
3372 }
3373 entry = pte_mkyoung(entry);
bae473a4
KS
3374 if (ptep_set_access_flags(fe->vma, fe->address, fe->pte, entry,
3375 fe->flags & FAULT_FLAG_WRITE)) {
3376 update_mmu_cache(fe->vma, fe->address, fe->pte);
1a44e149
AA
3377 } else {
3378 /*
3379 * This is needed only for protection faults but the arch code
3380 * is not yet telling us if this is a protection fault or not.
3381 * This still avoids useless tlb flushes for .text page faults
3382 * with threads.
3383 */
bae473a4
KS
3384 if (fe->flags & FAULT_FLAG_WRITE)
3385 flush_tlb_fix_spurious_fault(fe->vma, fe->address);
1a44e149 3386 }
8f4e2101 3387unlock:
bae473a4 3388 pte_unmap_unlock(fe->pte, fe->ptl);
83c54070 3389 return 0;
1da177e4
LT
3390}
3391
3392/*
3393 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3394 *
3395 * The mmap_sem may have been released depending on flags and our
3396 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3397 */
dcddffd4
KS
3398static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3399 unsigned int flags)
1da177e4 3400{
bae473a4
KS
3401 struct fault_env fe = {
3402 .vma = vma,
3403 .address = address,
3404 .flags = flags,
3405 };
dcddffd4 3406 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
3407 pgd_t *pgd;
3408 pud_t *pud;
1da177e4 3409
1da177e4 3410 pgd = pgd_offset(mm, address);
1da177e4
LT
3411 pud = pud_alloc(mm, pgd, address);
3412 if (!pud)
c74df32c 3413 return VM_FAULT_OOM;
bae473a4
KS
3414 fe.pmd = pmd_alloc(mm, pud, address);
3415 if (!fe.pmd)
c74df32c 3416 return VM_FAULT_OOM;
bae473a4
KS
3417 if (pmd_none(*fe.pmd) && transparent_hugepage_enabled(vma)) {
3418 int ret = create_huge_pmd(&fe);
c0292554
KS
3419 if (!(ret & VM_FAULT_FALLBACK))
3420 return ret;
71e3aac0 3421 } else {
bae473a4 3422 pmd_t orig_pmd = *fe.pmd;
1f1d06c3
DR
3423 int ret;
3424
71e3aac0 3425 barrier();
5c7fb56e 3426 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
8a0516ed 3427 if (pmd_protnone(orig_pmd))
bae473a4 3428 return do_huge_pmd_numa_page(&fe, orig_pmd);
d10e63f2 3429
bae473a4
KS
3430 if ((fe.flags & FAULT_FLAG_WRITE) &&
3431 !pmd_write(orig_pmd)) {
3432 ret = wp_huge_pmd(&fe, orig_pmd);
9845cbbd
KS
3433 if (!(ret & VM_FAULT_FALLBACK))
3434 return ret;
a1dd450b 3435 } else {
bae473a4 3436 huge_pmd_set_accessed(&fe, orig_pmd);
9845cbbd 3437 return 0;
1f1d06c3 3438 }
71e3aac0
AA
3439 }
3440 }
3441
3442 /*
3ed3a4f0 3443 * Use pte_alloc() instead of pte_alloc_map, because we can't
71e3aac0
AA
3444 * run pte_offset_map on the pmd, if an huge pmd could
3445 * materialize from under us from a different thread.
3446 */
bae473a4 3447 if (unlikely(pte_alloc(fe.vma->vm_mm, fe.pmd, fe.address)))
c74df32c 3448 return VM_FAULT_OOM;
ad33bb04
AA
3449 /*
3450 * If a huge pmd materialized under us just retry later. Use
3451 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3452 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3453 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3454 * in a different thread of this mm, in turn leading to a misleading
3455 * pmd_trans_huge() retval. All we have to ensure is that it is a
3456 * regular pmd that we can walk with pte_offset_map() and we can do that
3457 * through an atomic read in C, which is what pmd_trans_unstable()
3458 * provides.
3459 */
bae473a4 3460 if (unlikely(pmd_trans_unstable(fe.pmd) || pmd_devmap(*fe.pmd)))
71e3aac0
AA
3461 return 0;
3462 /*
3463 * A regular pmd is established and it can't morph into a huge pmd
3464 * from under us anymore at this point because we hold the mmap_sem
3465 * read mode and khugepaged takes it in write mode. So now it's
3466 * safe to run pte_offset_map().
3467 */
bae473a4 3468 fe.pte = pte_offset_map(fe.pmd, fe.address);
1da177e4 3469
bae473a4 3470 return handle_pte_fault(&fe);
1da177e4
LT
3471}
3472
9a95f3cf
PC
3473/*
3474 * By the time we get here, we already hold the mm semaphore
3475 *
3476 * The mmap_sem may have been released depending on flags and our
3477 * return value. See filemap_fault() and __lock_page_or_retry().
3478 */
dcddffd4
KS
3479int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3480 unsigned int flags)
519e5247
JW
3481{
3482 int ret;
3483
3484 __set_current_state(TASK_RUNNING);
3485
3486 count_vm_event(PGFAULT);
dcddffd4 3487 mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
519e5247
JW
3488
3489 /* do counter updates before entering really critical section. */
3490 check_sync_rss_stat(current);
3491
3492 /*
3493 * Enable the memcg OOM handling for faults triggered in user
3494 * space. Kernel faults are handled more gracefully.
3495 */
3496 if (flags & FAULT_FLAG_USER)
49426420 3497 mem_cgroup_oom_enable();
519e5247 3498
bae473a4
KS
3499 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3500 flags & FAULT_FLAG_INSTRUCTION,
3501 flags & FAULT_FLAG_REMOTE))
3502 return VM_FAULT_SIGSEGV;
3503
3504 if (unlikely(is_vm_hugetlb_page(vma)))
3505 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3506 else
3507 ret = __handle_mm_fault(vma, address, flags);
519e5247 3508
49426420
JW
3509 if (flags & FAULT_FLAG_USER) {
3510 mem_cgroup_oom_disable();
3511 /*
3512 * The task may have entered a memcg OOM situation but
3513 * if the allocation error was handled gracefully (no
3514 * VM_FAULT_OOM), there is no need to kill anything.
3515 * Just clean up the OOM state peacefully.
3516 */
3517 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3518 mem_cgroup_oom_synchronize(false);
3519 }
3812c8c8 3520
519e5247
JW
3521 return ret;
3522}
e1d6d01a 3523EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3524
1da177e4
LT
3525#ifndef __PAGETABLE_PUD_FOLDED
3526/*
3527 * Allocate page upper directory.
872fec16 3528 * We've already handled the fast-path in-line.
1da177e4 3529 */
1bb3630e 3530int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3531{
c74df32c
HD
3532 pud_t *new = pud_alloc_one(mm, address);
3533 if (!new)
1bb3630e 3534 return -ENOMEM;
1da177e4 3535
362a61ad
NP
3536 smp_wmb(); /* See comment in __pte_alloc */
3537
872fec16 3538 spin_lock(&mm->page_table_lock);
1bb3630e 3539 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3540 pud_free(mm, new);
1bb3630e
HD
3541 else
3542 pgd_populate(mm, pgd, new);
c74df32c 3543 spin_unlock(&mm->page_table_lock);
1bb3630e 3544 return 0;
1da177e4
LT
3545}
3546#endif /* __PAGETABLE_PUD_FOLDED */
3547
3548#ifndef __PAGETABLE_PMD_FOLDED
3549/*
3550 * Allocate page middle directory.
872fec16 3551 * We've already handled the fast-path in-line.
1da177e4 3552 */
1bb3630e 3553int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3554{
c74df32c
HD
3555 pmd_t *new = pmd_alloc_one(mm, address);
3556 if (!new)
1bb3630e 3557 return -ENOMEM;
1da177e4 3558
362a61ad
NP
3559 smp_wmb(); /* See comment in __pte_alloc */
3560
872fec16 3561 spin_lock(&mm->page_table_lock);
1da177e4 3562#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3563 if (!pud_present(*pud)) {
3564 mm_inc_nr_pmds(mm);
1bb3630e 3565 pud_populate(mm, pud, new);
dc6c9a35 3566 } else /* Another has populated it */
5e541973 3567 pmd_free(mm, new);
dc6c9a35
KS
3568#else
3569 if (!pgd_present(*pud)) {
3570 mm_inc_nr_pmds(mm);
1bb3630e 3571 pgd_populate(mm, pud, new);
dc6c9a35
KS
3572 } else /* Another has populated it */
3573 pmd_free(mm, new);
1da177e4 3574#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3575 spin_unlock(&mm->page_table_lock);
1bb3630e 3576 return 0;
e0f39591 3577}
1da177e4
LT
3578#endif /* __PAGETABLE_PMD_FOLDED */
3579
1b36ba81 3580static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3581 pte_t **ptepp, spinlock_t **ptlp)
3582{
3583 pgd_t *pgd;
3584 pud_t *pud;
3585 pmd_t *pmd;
3586 pte_t *ptep;
3587
3588 pgd = pgd_offset(mm, address);
3589 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3590 goto out;
3591
3592 pud = pud_offset(pgd, address);
3593 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3594 goto out;
3595
3596 pmd = pmd_offset(pud, address);
f66055ab 3597 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3598 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3599 goto out;
3600
3601 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3602 if (pmd_huge(*pmd))
3603 goto out;
3604
3605 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3606 if (!ptep)
3607 goto out;
3608 if (!pte_present(*ptep))
3609 goto unlock;
3610 *ptepp = ptep;
3611 return 0;
3612unlock:
3613 pte_unmap_unlock(ptep, *ptlp);
3614out:
3615 return -EINVAL;
3616}
3617
1b36ba81
NK
3618static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3619 pte_t **ptepp, spinlock_t **ptlp)
3620{
3621 int res;
3622
3623 /* (void) is needed to make gcc happy */
3624 (void) __cond_lock(*ptlp,
3625 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3626 return res;
3627}
3628
3b6748e2
JW
3629/**
3630 * follow_pfn - look up PFN at a user virtual address
3631 * @vma: memory mapping
3632 * @address: user virtual address
3633 * @pfn: location to store found PFN
3634 *
3635 * Only IO mappings and raw PFN mappings are allowed.
3636 *
3637 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3638 */
3639int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3640 unsigned long *pfn)
3641{
3642 int ret = -EINVAL;
3643 spinlock_t *ptl;
3644 pte_t *ptep;
3645
3646 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3647 return ret;
3648
3649 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3650 if (ret)
3651 return ret;
3652 *pfn = pte_pfn(*ptep);
3653 pte_unmap_unlock(ptep, ptl);
3654 return 0;
3655}
3656EXPORT_SYMBOL(follow_pfn);
3657
28b2ee20 3658#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3659int follow_phys(struct vm_area_struct *vma,
3660 unsigned long address, unsigned int flags,
3661 unsigned long *prot, resource_size_t *phys)
28b2ee20 3662{
03668a4d 3663 int ret = -EINVAL;
28b2ee20
RR
3664 pte_t *ptep, pte;
3665 spinlock_t *ptl;
28b2ee20 3666
d87fe660 3667 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3668 goto out;
28b2ee20 3669
03668a4d 3670 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3671 goto out;
28b2ee20 3672 pte = *ptep;
03668a4d 3673
28b2ee20
RR
3674 if ((flags & FOLL_WRITE) && !pte_write(pte))
3675 goto unlock;
28b2ee20
RR
3676
3677 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3678 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3679
03668a4d 3680 ret = 0;
28b2ee20
RR
3681unlock:
3682 pte_unmap_unlock(ptep, ptl);
3683out:
d87fe660 3684 return ret;
28b2ee20
RR
3685}
3686
3687int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3688 void *buf, int len, int write)
3689{
3690 resource_size_t phys_addr;
3691 unsigned long prot = 0;
2bc7273b 3692 void __iomem *maddr;
28b2ee20
RR
3693 int offset = addr & (PAGE_SIZE-1);
3694
d87fe660 3695 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3696 return -EINVAL;
3697
9cb12d7b 3698 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3699 if (write)
3700 memcpy_toio(maddr + offset, buf, len);
3701 else
3702 memcpy_fromio(buf, maddr + offset, len);
3703 iounmap(maddr);
3704
3705 return len;
3706}
5a73633e 3707EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3708#endif
3709
0ec76a11 3710/*
206cb636
SW
3711 * Access another process' address space as given in mm. If non-NULL, use the
3712 * given task for page fault accounting.
0ec76a11 3713 */
206cb636
SW
3714static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3715 unsigned long addr, void *buf, int len, int write)
0ec76a11 3716{
0ec76a11 3717 struct vm_area_struct *vma;
0ec76a11
DH
3718 void *old_buf = buf;
3719
0ec76a11 3720 down_read(&mm->mmap_sem);
183ff22b 3721 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3722 while (len) {
3723 int bytes, ret, offset;
3724 void *maddr;
28b2ee20 3725 struct page *page = NULL;
0ec76a11 3726
1e987790 3727 ret = get_user_pages_remote(tsk, mm, addr, 1,
0ec76a11 3728 write, 1, &page, &vma);
28b2ee20 3729 if (ret <= 0) {
dbffcd03
RR
3730#ifndef CONFIG_HAVE_IOREMAP_PROT
3731 break;
3732#else
28b2ee20
RR
3733 /*
3734 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3735 * we can access using slightly different code.
3736 */
28b2ee20 3737 vma = find_vma(mm, addr);
fe936dfc 3738 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3739 break;
3740 if (vma->vm_ops && vma->vm_ops->access)
3741 ret = vma->vm_ops->access(vma, addr, buf,
3742 len, write);
3743 if (ret <= 0)
28b2ee20
RR
3744 break;
3745 bytes = ret;
dbffcd03 3746#endif
0ec76a11 3747 } else {
28b2ee20
RR
3748 bytes = len;
3749 offset = addr & (PAGE_SIZE-1);
3750 if (bytes > PAGE_SIZE-offset)
3751 bytes = PAGE_SIZE-offset;
3752
3753 maddr = kmap(page);
3754 if (write) {
3755 copy_to_user_page(vma, page, addr,
3756 maddr + offset, buf, bytes);
3757 set_page_dirty_lock(page);
3758 } else {
3759 copy_from_user_page(vma, page, addr,
3760 buf, maddr + offset, bytes);
3761 }
3762 kunmap(page);
09cbfeaf 3763 put_page(page);
0ec76a11 3764 }
0ec76a11
DH
3765 len -= bytes;
3766 buf += bytes;
3767 addr += bytes;
3768 }
3769 up_read(&mm->mmap_sem);
0ec76a11
DH
3770
3771 return buf - old_buf;
3772}
03252919 3773
5ddd36b9 3774/**
ae91dbfc 3775 * access_remote_vm - access another process' address space
5ddd36b9
SW
3776 * @mm: the mm_struct of the target address space
3777 * @addr: start address to access
3778 * @buf: source or destination buffer
3779 * @len: number of bytes to transfer
3780 * @write: whether the access is a write
3781 *
3782 * The caller must hold a reference on @mm.
3783 */
3784int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3785 void *buf, int len, int write)
3786{
3787 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3788}
3789
206cb636
SW
3790/*
3791 * Access another process' address space.
3792 * Source/target buffer must be kernel space,
3793 * Do not walk the page table directly, use get_user_pages
3794 */
3795int access_process_vm(struct task_struct *tsk, unsigned long addr,
3796 void *buf, int len, int write)
3797{
3798 struct mm_struct *mm;
3799 int ret;
3800
3801 mm = get_task_mm(tsk);
3802 if (!mm)
3803 return 0;
3804
3805 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3806 mmput(mm);
3807
3808 return ret;
3809}
3810
03252919
AK
3811/*
3812 * Print the name of a VMA.
3813 */
3814void print_vma_addr(char *prefix, unsigned long ip)
3815{
3816 struct mm_struct *mm = current->mm;
3817 struct vm_area_struct *vma;
3818
e8bff74a
IM
3819 /*
3820 * Do not print if we are in atomic
3821 * contexts (in exception stacks, etc.):
3822 */
3823 if (preempt_count())
3824 return;
3825
03252919
AK
3826 down_read(&mm->mmap_sem);
3827 vma = find_vma(mm, ip);
3828 if (vma && vma->vm_file) {
3829 struct file *f = vma->vm_file;
3830 char *buf = (char *)__get_free_page(GFP_KERNEL);
3831 if (buf) {
2fbc57c5 3832 char *p;
03252919 3833
9bf39ab2 3834 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
3835 if (IS_ERR(p))
3836 p = "?";
2fbc57c5 3837 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3838 vma->vm_start,
3839 vma->vm_end - vma->vm_start);
3840 free_page((unsigned long)buf);
3841 }
3842 }
51a07e50 3843 up_read(&mm->mmap_sem);
03252919 3844}
3ee1afa3 3845
662bbcb2 3846#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 3847void __might_fault(const char *file, int line)
3ee1afa3 3848{
95156f00
PZ
3849 /*
3850 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3851 * holding the mmap_sem, this is safe because kernel memory doesn't
3852 * get paged out, therefore we'll never actually fault, and the
3853 * below annotations will generate false positives.
3854 */
3855 if (segment_eq(get_fs(), KERNEL_DS))
3856 return;
9ec23531 3857 if (pagefault_disabled())
662bbcb2 3858 return;
9ec23531
DH
3859 __might_sleep(file, line, 0);
3860#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 3861 if (current->mm)
3ee1afa3 3862 might_lock_read(&current->mm->mmap_sem);
9ec23531 3863#endif
3ee1afa3 3864}
9ec23531 3865EXPORT_SYMBOL(__might_fault);
3ee1afa3 3866#endif
47ad8475
AA
3867
3868#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3869static void clear_gigantic_page(struct page *page,
3870 unsigned long addr,
3871 unsigned int pages_per_huge_page)
3872{
3873 int i;
3874 struct page *p = page;
3875
3876 might_sleep();
3877 for (i = 0; i < pages_per_huge_page;
3878 i++, p = mem_map_next(p, page, i)) {
3879 cond_resched();
3880 clear_user_highpage(p, addr + i * PAGE_SIZE);
3881 }
3882}
3883void clear_huge_page(struct page *page,
3884 unsigned long addr, unsigned int pages_per_huge_page)
3885{
3886 int i;
3887
3888 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3889 clear_gigantic_page(page, addr, pages_per_huge_page);
3890 return;
3891 }
3892
3893 might_sleep();
3894 for (i = 0; i < pages_per_huge_page; i++) {
3895 cond_resched();
3896 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3897 }
3898}
3899
3900static void copy_user_gigantic_page(struct page *dst, struct page *src,
3901 unsigned long addr,
3902 struct vm_area_struct *vma,
3903 unsigned int pages_per_huge_page)
3904{
3905 int i;
3906 struct page *dst_base = dst;
3907 struct page *src_base = src;
3908
3909 for (i = 0; i < pages_per_huge_page; ) {
3910 cond_resched();
3911 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3912
3913 i++;
3914 dst = mem_map_next(dst, dst_base, i);
3915 src = mem_map_next(src, src_base, i);
3916 }
3917}
3918
3919void copy_user_huge_page(struct page *dst, struct page *src,
3920 unsigned long addr, struct vm_area_struct *vma,
3921 unsigned int pages_per_huge_page)
3922{
3923 int i;
3924
3925 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3926 copy_user_gigantic_page(dst, src, addr, vma,
3927 pages_per_huge_page);
3928 return;
3929 }
3930
3931 might_sleep();
3932 for (i = 0; i < pages_per_huge_page; i++) {
3933 cond_resched();
3934 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3935 }
3936}
3937#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3938
40b64acd 3939#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3940
3941static struct kmem_cache *page_ptl_cachep;
3942
3943void __init ptlock_cache_init(void)
3944{
3945 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3946 SLAB_PANIC, NULL);
3947}
3948
539edb58 3949bool ptlock_alloc(struct page *page)
49076ec2
KS
3950{
3951 spinlock_t *ptl;
3952
b35f1819 3953 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3954 if (!ptl)
3955 return false;
539edb58 3956 page->ptl = ptl;
49076ec2
KS
3957 return true;
3958}
3959
539edb58 3960void ptlock_free(struct page *page)
49076ec2 3961{
b35f1819 3962 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3963}
3964#endif