]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
mm: hwpoison: remove the unnecessary THP check
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
bce617ed
PX
73#include <linux/perf_event.h>
74#include <linux/ptrace.h>
e80d3909 75#include <linux/vmalloc.h>
1da177e4 76
b3d1411b
JFG
77#include <trace/events/kmem.h>
78
6952b61d 79#include <asm/io.h>
33a709b2 80#include <asm/mmu_context.h>
1da177e4 81#include <asm/pgalloc.h>
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/tlb.h>
84#include <asm/tlbflush.h>
1da177e4 85
e80d3909 86#include "pgalloc-track.h"
42b77728
JB
87#include "internal.h"
88
af27d940 89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
91#endif
92
a9ee6cf5 93#ifndef CONFIG_NUMA
1da177e4 94unsigned long max_mapnr;
1da177e4 95EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
96
97struct page *mem_map;
1da177e4
LT
98EXPORT_SYMBOL(mem_map);
99#endif
100
1da177e4
LT
101/*
102 * A number of key systems in x86 including ioremap() rely on the assumption
103 * that high_memory defines the upper bound on direct map memory, then end
104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106 * and ZONE_HIGHMEM.
107 */
166f61b9 108void *high_memory;
1da177e4 109EXPORT_SYMBOL(high_memory);
1da177e4 110
32a93233
IM
111/*
112 * Randomize the address space (stacks, mmaps, brk, etc.).
113 *
114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115 * as ancient (libc5 based) binaries can segfault. )
116 */
117int randomize_va_space __read_mostly =
118#ifdef CONFIG_COMPAT_BRK
119 1;
120#else
121 2;
122#endif
a62eaf15 123
83d116c5
JH
124#ifndef arch_faults_on_old_pte
125static inline bool arch_faults_on_old_pte(void)
126{
127 /*
128 * Those arches which don't have hw access flag feature need to
129 * implement their own helper. By default, "true" means pagefault
130 * will be hit on old pte.
131 */
132 return true;
133}
134#endif
135
46bdb427
WD
136#ifndef arch_wants_old_prefaulted_pte
137static inline bool arch_wants_old_prefaulted_pte(void)
138{
139 /*
140 * Transitioning a PTE from 'old' to 'young' can be expensive on
141 * some architectures, even if it's performed in hardware. By
142 * default, "false" means prefaulted entries will be 'young'.
143 */
144 return false;
145}
146#endif
147
a62eaf15
AK
148static int __init disable_randmaps(char *s)
149{
150 randomize_va_space = 0;
9b41046c 151 return 1;
a62eaf15
AK
152}
153__setup("norandmaps", disable_randmaps);
154
62eede62 155unsigned long zero_pfn __read_mostly;
0b70068e
AB
156EXPORT_SYMBOL(zero_pfn);
157
166f61b9
TH
158unsigned long highest_memmap_pfn __read_mostly;
159
a13ea5b7
HD
160/*
161 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162 */
163static int __init init_zero_pfn(void)
164{
165 zero_pfn = page_to_pfn(ZERO_PAGE(0));
166 return 0;
167}
e720e7d0 168early_initcall(init_zero_pfn);
a62eaf15 169
e4dcad20 170void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 171{
e4dcad20 172 trace_rss_stat(mm, member, count);
b3d1411b 173}
d559db08 174
34e55232
KH
175#if defined(SPLIT_RSS_COUNTING)
176
ea48cf78 177void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
178{
179 int i;
180
181 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
182 if (current->rss_stat.count[i]) {
183 add_mm_counter(mm, i, current->rss_stat.count[i]);
184 current->rss_stat.count[i] = 0;
34e55232
KH
185 }
186 }
05af2e10 187 current->rss_stat.events = 0;
34e55232
KH
188}
189
190static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191{
192 struct task_struct *task = current;
193
194 if (likely(task->mm == mm))
195 task->rss_stat.count[member] += val;
196 else
197 add_mm_counter(mm, member, val);
198}
199#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202/* sync counter once per 64 page faults */
203#define TASK_RSS_EVENTS_THRESH (64)
204static void check_sync_rss_stat(struct task_struct *task)
205{
206 if (unlikely(task != current))
207 return;
208 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 209 sync_mm_rss(task->mm);
34e55232 210}
9547d01b 211#else /* SPLIT_RSS_COUNTING */
34e55232
KH
212
213#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
216static void check_sync_rss_stat(struct task_struct *task)
217{
218}
219
9547d01b
PZ
220#endif /* SPLIT_RSS_COUNTING */
221
1da177e4
LT
222/*
223 * Note: this doesn't free the actual pages themselves. That
224 * has been handled earlier when unmapping all the memory regions.
225 */
9e1b32ca
BH
226static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 unsigned long addr)
1da177e4 228{
2f569afd 229 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 230 pmd_clear(pmd);
9e1b32ca 231 pte_free_tlb(tlb, token, addr);
c4812909 232 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
233}
234
e0da382c
HD
235static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 unsigned long addr, unsigned long end,
237 unsigned long floor, unsigned long ceiling)
1da177e4
LT
238{
239 pmd_t *pmd;
240 unsigned long next;
e0da382c 241 unsigned long start;
1da177e4 242
e0da382c 243 start = addr;
1da177e4 244 pmd = pmd_offset(pud, addr);
1da177e4
LT
245 do {
246 next = pmd_addr_end(addr, end);
247 if (pmd_none_or_clear_bad(pmd))
248 continue;
9e1b32ca 249 free_pte_range(tlb, pmd, addr);
1da177e4
LT
250 } while (pmd++, addr = next, addr != end);
251
e0da382c
HD
252 start &= PUD_MASK;
253 if (start < floor)
254 return;
255 if (ceiling) {
256 ceiling &= PUD_MASK;
257 if (!ceiling)
258 return;
1da177e4 259 }
e0da382c
HD
260 if (end - 1 > ceiling - 1)
261 return;
262
263 pmd = pmd_offset(pud, start);
264 pud_clear(pud);
9e1b32ca 265 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 266 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
267}
268
c2febafc 269static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
270 unsigned long addr, unsigned long end,
271 unsigned long floor, unsigned long ceiling)
1da177e4
LT
272{
273 pud_t *pud;
274 unsigned long next;
e0da382c 275 unsigned long start;
1da177e4 276
e0da382c 277 start = addr;
c2febafc 278 pud = pud_offset(p4d, addr);
1da177e4
LT
279 do {
280 next = pud_addr_end(addr, end);
281 if (pud_none_or_clear_bad(pud))
282 continue;
e0da382c 283 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
284 } while (pud++, addr = next, addr != end);
285
c2febafc
KS
286 start &= P4D_MASK;
287 if (start < floor)
288 return;
289 if (ceiling) {
290 ceiling &= P4D_MASK;
291 if (!ceiling)
292 return;
293 }
294 if (end - 1 > ceiling - 1)
295 return;
296
297 pud = pud_offset(p4d, start);
298 p4d_clear(p4d);
299 pud_free_tlb(tlb, pud, start);
b4e98d9a 300 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
301}
302
303static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
306{
307 p4d_t *p4d;
308 unsigned long next;
309 unsigned long start;
310
311 start = addr;
312 p4d = p4d_offset(pgd, addr);
313 do {
314 next = p4d_addr_end(addr, end);
315 if (p4d_none_or_clear_bad(p4d))
316 continue;
317 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318 } while (p4d++, addr = next, addr != end);
319
e0da382c
HD
320 start &= PGDIR_MASK;
321 if (start < floor)
322 return;
323 if (ceiling) {
324 ceiling &= PGDIR_MASK;
325 if (!ceiling)
326 return;
1da177e4 327 }
e0da382c
HD
328 if (end - 1 > ceiling - 1)
329 return;
330
c2febafc 331 p4d = p4d_offset(pgd, start);
e0da382c 332 pgd_clear(pgd);
c2febafc 333 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
334}
335
336/*
e0da382c 337 * This function frees user-level page tables of a process.
1da177e4 338 */
42b77728 339void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
340 unsigned long addr, unsigned long end,
341 unsigned long floor, unsigned long ceiling)
1da177e4
LT
342{
343 pgd_t *pgd;
344 unsigned long next;
e0da382c
HD
345
346 /*
347 * The next few lines have given us lots of grief...
348 *
349 * Why are we testing PMD* at this top level? Because often
350 * there will be no work to do at all, and we'd prefer not to
351 * go all the way down to the bottom just to discover that.
352 *
353 * Why all these "- 1"s? Because 0 represents both the bottom
354 * of the address space and the top of it (using -1 for the
355 * top wouldn't help much: the masks would do the wrong thing).
356 * The rule is that addr 0 and floor 0 refer to the bottom of
357 * the address space, but end 0 and ceiling 0 refer to the top
358 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359 * that end 0 case should be mythical).
360 *
361 * Wherever addr is brought up or ceiling brought down, we must
362 * be careful to reject "the opposite 0" before it confuses the
363 * subsequent tests. But what about where end is brought down
364 * by PMD_SIZE below? no, end can't go down to 0 there.
365 *
366 * Whereas we round start (addr) and ceiling down, by different
367 * masks at different levels, in order to test whether a table
368 * now has no other vmas using it, so can be freed, we don't
369 * bother to round floor or end up - the tests don't need that.
370 */
1da177e4 371
e0da382c
HD
372 addr &= PMD_MASK;
373 if (addr < floor) {
374 addr += PMD_SIZE;
375 if (!addr)
376 return;
377 }
378 if (ceiling) {
379 ceiling &= PMD_MASK;
380 if (!ceiling)
381 return;
382 }
383 if (end - 1 > ceiling - 1)
384 end -= PMD_SIZE;
385 if (addr > end - 1)
386 return;
07e32661
AK
387 /*
388 * We add page table cache pages with PAGE_SIZE,
389 * (see pte_free_tlb()), flush the tlb if we need
390 */
ed6a7935 391 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 392 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
393 do {
394 next = pgd_addr_end(addr, end);
395 if (pgd_none_or_clear_bad(pgd))
396 continue;
c2febafc 397 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 398 } while (pgd++, addr = next, addr != end);
e0da382c
HD
399}
400
42b77728 401void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 402 unsigned long floor, unsigned long ceiling)
e0da382c
HD
403{
404 while (vma) {
405 struct vm_area_struct *next = vma->vm_next;
406 unsigned long addr = vma->vm_start;
407
8f4f8c16 408 /*
25d9e2d1
NP
409 * Hide vma from rmap and truncate_pagecache before freeing
410 * pgtables
8f4f8c16 411 */
5beb4930 412 unlink_anon_vmas(vma);
8f4f8c16
HD
413 unlink_file_vma(vma);
414
9da61aef 415 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 416 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 417 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
418 } else {
419 /*
420 * Optimization: gather nearby vmas into one call down
421 */
422 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 423 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
424 vma = next;
425 next = vma->vm_next;
5beb4930 426 unlink_anon_vmas(vma);
8f4f8c16 427 unlink_file_vma(vma);
3bf5ee95
HD
428 }
429 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 430 floor, next ? next->vm_start : ceiling);
3bf5ee95 431 }
e0da382c
HD
432 vma = next;
433 }
1da177e4
LT
434}
435
4cf58924 436int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 437{
c4088ebd 438 spinlock_t *ptl;
4cf58924 439 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
440 if (!new)
441 return -ENOMEM;
442
362a61ad
NP
443 /*
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
447 *
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
bb7cdd38 454 * smp_rmb() barriers in page table walking code.
362a61ad
NP
455 */
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457
c4088ebd 458 ptl = pmd_lock(mm, pmd);
8ac1f832 459 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 460 mm_inc_nr_ptes(mm);
1da177e4 461 pmd_populate(mm, pmd, new);
2f569afd 462 new = NULL;
4b471e88 463 }
c4088ebd 464 spin_unlock(ptl);
2f569afd
MS
465 if (new)
466 pte_free(mm, new);
1bb3630e 467 return 0;
1da177e4
LT
468}
469
4cf58924 470int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 471{
4cf58924 472 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
473 if (!new)
474 return -ENOMEM;
475
362a61ad
NP
476 smp_wmb(); /* See comment in __pte_alloc */
477
1bb3630e 478 spin_lock(&init_mm.page_table_lock);
8ac1f832 479 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 480 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 481 new = NULL;
4b471e88 482 }
1bb3630e 483 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
484 if (new)
485 pte_free_kernel(&init_mm, new);
1bb3630e 486 return 0;
1da177e4
LT
487}
488
d559db08
KH
489static inline void init_rss_vec(int *rss)
490{
491 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492}
493
494static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 495{
d559db08
KH
496 int i;
497
34e55232 498 if (current->mm == mm)
05af2e10 499 sync_mm_rss(mm);
d559db08
KH
500 for (i = 0; i < NR_MM_COUNTERS; i++)
501 if (rss[i])
502 add_mm_counter(mm, i, rss[i]);
ae859762
HD
503}
504
b5810039 505/*
6aab341e
LT
506 * This function is called to print an error when a bad pte
507 * is found. For example, we might have a PFN-mapped pte in
508 * a region that doesn't allow it.
b5810039
NP
509 *
510 * The calling function must still handle the error.
511 */
3dc14741
HD
512static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513 pte_t pte, struct page *page)
b5810039 514{
3dc14741 515 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
516 p4d_t *p4d = p4d_offset(pgd, addr);
517 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
518 pmd_t *pmd = pmd_offset(pud, addr);
519 struct address_space *mapping;
520 pgoff_t index;
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 return;
533 }
534 if (nr_unshown) {
1170532b
JP
535 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536 nr_unshown);
d936cf9b
HD
537 nr_unshown = 0;
538 }
539 nr_shown = 0;
540 }
541 if (nr_shown++ == 0)
542 resume = jiffies + 60 * HZ;
3dc14741
HD
543
544 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545 index = linear_page_index(vma, addr);
546
1170532b
JP
547 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
548 current->comm,
549 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 550 if (page)
f0b791a3 551 dump_page(page, "bad pte");
6aa9b8b2 552 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 553 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 554 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
555 vma->vm_file,
556 vma->vm_ops ? vma->vm_ops->fault : NULL,
557 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558 mapping ? mapping->a_ops->readpage : NULL);
b5810039 559 dump_stack();
373d4d09 560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
561}
562
ee498ed7 563/*
7e675137 564 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 565 *
7e675137
NP
566 * "Special" mappings do not wish to be associated with a "struct page" (either
567 * it doesn't exist, or it exists but they don't want to touch it). In this
568 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 569 *
7e675137
NP
570 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571 * pte bit, in which case this function is trivial. Secondly, an architecture
572 * may not have a spare pte bit, which requires a more complicated scheme,
573 * described below.
574 *
575 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576 * special mapping (even if there are underlying and valid "struct pages").
577 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 578 *
b379d790
JH
579 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
581 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582 * mapping will always honor the rule
6aab341e
LT
583 *
584 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585 *
7e675137
NP
586 * And for normal mappings this is false.
587 *
588 * This restricts such mappings to be a linear translation from virtual address
589 * to pfn. To get around this restriction, we allow arbitrary mappings so long
590 * as the vma is not a COW mapping; in that case, we know that all ptes are
591 * special (because none can have been COWed).
b379d790 592 *
b379d790 593 *
7e675137 594 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
595 *
596 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597 * page" backing, however the difference is that _all_ pages with a struct
598 * page (that is, those where pfn_valid is true) are refcounted and considered
599 * normal pages by the VM. The disadvantage is that pages are refcounted
600 * (which can be slower and simply not an option for some PFNMAP users). The
601 * advantage is that we don't have to follow the strict linearity rule of
602 * PFNMAP mappings in order to support COWable mappings.
603 *
ee498ed7 604 */
25b2995a
CH
605struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606 pte_t pte)
ee498ed7 607{
22b31eec 608 unsigned long pfn = pte_pfn(pte);
7e675137 609
00b3a331 610 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 611 if (likely(!pte_special(pte)))
22b31eec 612 goto check_pfn;
667a0a06
DV
613 if (vma->vm_ops && vma->vm_ops->find_special_page)
614 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
615 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616 return NULL;
df6ad698
JG
617 if (is_zero_pfn(pfn))
618 return NULL;
e1fb4a08
DJ
619 if (pte_devmap(pte))
620 return NULL;
621
df6ad698 622 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
623 return NULL;
624 }
625
00b3a331 626 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 627
b379d790
JH
628 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629 if (vma->vm_flags & VM_MIXEDMAP) {
630 if (!pfn_valid(pfn))
631 return NULL;
632 goto out;
633 } else {
7e675137
NP
634 unsigned long off;
635 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
636 if (pfn == vma->vm_pgoff + off)
637 return NULL;
638 if (!is_cow_mapping(vma->vm_flags))
639 return NULL;
640 }
6aab341e
LT
641 }
642
b38af472
HD
643 if (is_zero_pfn(pfn))
644 return NULL;
00b3a331 645
22b31eec
HD
646check_pfn:
647 if (unlikely(pfn > highest_memmap_pfn)) {
648 print_bad_pte(vma, addr, pte, NULL);
649 return NULL;
650 }
6aab341e
LT
651
652 /*
7e675137 653 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 654 * eg. VDSO mappings can cause them to exist.
6aab341e 655 */
b379d790 656out:
6aab341e 657 return pfn_to_page(pfn);
ee498ed7
HD
658}
659
28093f9f
GS
660#ifdef CONFIG_TRANSPARENT_HUGEPAGE
661struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662 pmd_t pmd)
663{
664 unsigned long pfn = pmd_pfn(pmd);
665
666 /*
667 * There is no pmd_special() but there may be special pmds, e.g.
668 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 669 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
670 */
671 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672 if (vma->vm_flags & VM_MIXEDMAP) {
673 if (!pfn_valid(pfn))
674 return NULL;
675 goto out;
676 } else {
677 unsigned long off;
678 off = (addr - vma->vm_start) >> PAGE_SHIFT;
679 if (pfn == vma->vm_pgoff + off)
680 return NULL;
681 if (!is_cow_mapping(vma->vm_flags))
682 return NULL;
683 }
684 }
685
e1fb4a08
DJ
686 if (pmd_devmap(pmd))
687 return NULL;
3cde287b 688 if (is_huge_zero_pmd(pmd))
28093f9f
GS
689 return NULL;
690 if (unlikely(pfn > highest_memmap_pfn))
691 return NULL;
692
693 /*
694 * NOTE! We still have PageReserved() pages in the page tables.
695 * eg. VDSO mappings can cause them to exist.
696 */
697out:
698 return pfn_to_page(pfn);
699}
700#endif
701
b756a3b5
AP
702static void restore_exclusive_pte(struct vm_area_struct *vma,
703 struct page *page, unsigned long address,
704 pte_t *ptep)
705{
706 pte_t pte;
707 swp_entry_t entry;
708
709 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
710 if (pte_swp_soft_dirty(*ptep))
711 pte = pte_mksoft_dirty(pte);
712
713 entry = pte_to_swp_entry(*ptep);
714 if (pte_swp_uffd_wp(*ptep))
715 pte = pte_mkuffd_wp(pte);
716 else if (is_writable_device_exclusive_entry(entry))
717 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
718
719 set_pte_at(vma->vm_mm, address, ptep, pte);
720
721 /*
722 * No need to take a page reference as one was already
723 * created when the swap entry was made.
724 */
725 if (PageAnon(page))
726 page_add_anon_rmap(page, vma, address, false);
727 else
728 /*
729 * Currently device exclusive access only supports anonymous
730 * memory so the entry shouldn't point to a filebacked page.
731 */
732 WARN_ON_ONCE(!PageAnon(page));
733
734 if (vma->vm_flags & VM_LOCKED)
735 mlock_vma_page(page);
736
737 /*
738 * No need to invalidate - it was non-present before. However
739 * secondary CPUs may have mappings that need invalidating.
740 */
741 update_mmu_cache(vma, address, ptep);
742}
743
744/*
745 * Tries to restore an exclusive pte if the page lock can be acquired without
746 * sleeping.
747 */
748static int
749try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
750 unsigned long addr)
751{
752 swp_entry_t entry = pte_to_swp_entry(*src_pte);
753 struct page *page = pfn_swap_entry_to_page(entry);
754
755 if (trylock_page(page)) {
756 restore_exclusive_pte(vma, page, addr, src_pte);
757 unlock_page(page);
758 return 0;
759 }
760
761 return -EBUSY;
762}
763
1da177e4
LT
764/*
765 * copy one vm_area from one task to the other. Assumes the page tables
766 * already present in the new task to be cleared in the whole range
767 * covered by this vma.
1da177e4
LT
768 */
769
df3a57d1
LT
770static unsigned long
771copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
772 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
773 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 774{
8f34f1ea 775 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
776 pte_t pte = *src_pte;
777 struct page *page;
df3a57d1
LT
778 swp_entry_t entry = pte_to_swp_entry(pte);
779
780 if (likely(!non_swap_entry(entry))) {
781 if (swap_duplicate(entry) < 0)
9a5cc85c 782 return -EIO;
df3a57d1
LT
783
784 /* make sure dst_mm is on swapoff's mmlist. */
785 if (unlikely(list_empty(&dst_mm->mmlist))) {
786 spin_lock(&mmlist_lock);
787 if (list_empty(&dst_mm->mmlist))
788 list_add(&dst_mm->mmlist,
789 &src_mm->mmlist);
790 spin_unlock(&mmlist_lock);
791 }
792 rss[MM_SWAPENTS]++;
793 } else if (is_migration_entry(entry)) {
af5cdaf8 794 page = pfn_swap_entry_to_page(entry);
1da177e4 795
df3a57d1 796 rss[mm_counter(page)]++;
5042db43 797
4dd845b5 798 if (is_writable_migration_entry(entry) &&
df3a57d1 799 is_cow_mapping(vm_flags)) {
5042db43 800 /*
df3a57d1
LT
801 * COW mappings require pages in both
802 * parent and child to be set to read.
5042db43 803 */
4dd845b5
AP
804 entry = make_readable_migration_entry(
805 swp_offset(entry));
df3a57d1
LT
806 pte = swp_entry_to_pte(entry);
807 if (pte_swp_soft_dirty(*src_pte))
808 pte = pte_swp_mksoft_dirty(pte);
809 if (pte_swp_uffd_wp(*src_pte))
810 pte = pte_swp_mkuffd_wp(pte);
811 set_pte_at(src_mm, addr, src_pte, pte);
812 }
813 } else if (is_device_private_entry(entry)) {
af5cdaf8 814 page = pfn_swap_entry_to_page(entry);
5042db43 815
df3a57d1
LT
816 /*
817 * Update rss count even for unaddressable pages, as
818 * they should treated just like normal pages in this
819 * respect.
820 *
821 * We will likely want to have some new rss counters
822 * for unaddressable pages, at some point. But for now
823 * keep things as they are.
824 */
825 get_page(page);
826 rss[mm_counter(page)]++;
827 page_dup_rmap(page, false);
828
829 /*
830 * We do not preserve soft-dirty information, because so
831 * far, checkpoint/restore is the only feature that
832 * requires that. And checkpoint/restore does not work
833 * when a device driver is involved (you cannot easily
834 * save and restore device driver state).
835 */
4dd845b5 836 if (is_writable_device_private_entry(entry) &&
df3a57d1 837 is_cow_mapping(vm_flags)) {
4dd845b5
AP
838 entry = make_readable_device_private_entry(
839 swp_offset(entry));
df3a57d1
LT
840 pte = swp_entry_to_pte(entry);
841 if (pte_swp_uffd_wp(*src_pte))
842 pte = pte_swp_mkuffd_wp(pte);
843 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 844 }
b756a3b5
AP
845 } else if (is_device_exclusive_entry(entry)) {
846 /*
847 * Make device exclusive entries present by restoring the
848 * original entry then copying as for a present pte. Device
849 * exclusive entries currently only support private writable
850 * (ie. COW) mappings.
851 */
852 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
853 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
854 return -EBUSY;
855 return -ENOENT;
1da177e4 856 }
8f34f1ea
PX
857 if (!userfaultfd_wp(dst_vma))
858 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
859 set_pte_at(dst_mm, addr, dst_pte, pte);
860 return 0;
861}
862
70e806e4
PX
863/*
864 * Copy a present and normal page if necessary.
865 *
866 * NOTE! The usual case is that this doesn't need to do
867 * anything, and can just return a positive value. That
868 * will let the caller know that it can just increase
869 * the page refcount and re-use the pte the traditional
870 * way.
871 *
872 * But _if_ we need to copy it because it needs to be
873 * pinned in the parent (and the child should get its own
874 * copy rather than just a reference to the same page),
875 * we'll do that here and return zero to let the caller
876 * know we're done.
877 *
878 * And if we need a pre-allocated page but don't yet have
879 * one, return a negative error to let the preallocation
880 * code know so that it can do so outside the page table
881 * lock.
882 */
883static inline int
c78f4636
PX
884copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
885 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
886 struct page **prealloc, pte_t pte, struct page *page)
70e806e4
PX
887{
888 struct page *new_page;
889
70e806e4 890 /*
70e806e4
PX
891 * What we want to do is to check whether this page may
892 * have been pinned by the parent process. If so,
893 * instead of wrprotect the pte on both sides, we copy
894 * the page immediately so that we'll always guarantee
895 * the pinned page won't be randomly replaced in the
896 * future.
897 *
f3c64eda
LT
898 * The page pinning checks are just "has this mm ever
899 * seen pinning", along with the (inexact) check of
900 * the page count. That might give false positives for
901 * for pinning, but it will work correctly.
70e806e4 902 */
97a7e473 903 if (likely(!page_needs_cow_for_dma(src_vma, page)))
70e806e4
PX
904 return 1;
905
70e806e4
PX
906 new_page = *prealloc;
907 if (!new_page)
908 return -EAGAIN;
909
910 /*
911 * We have a prealloc page, all good! Take it
912 * over and copy the page & arm it.
913 */
914 *prealloc = NULL;
c78f4636 915 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 916 __SetPageUptodate(new_page);
c78f4636
PX
917 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
918 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
919 rss[mm_counter(new_page)]++;
920
921 /* All done, just insert the new page copy in the child */
c78f4636
PX
922 pte = mk_pte(new_page, dst_vma->vm_page_prot);
923 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
924 if (userfaultfd_pte_wp(dst_vma, *src_pte))
925 /* Uffd-wp needs to be delivered to dest pte as well */
926 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 927 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
928 return 0;
929}
930
931/*
932 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
933 * is required to copy this pte.
934 */
935static inline int
c78f4636
PX
936copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
937 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
938 struct page **prealloc)
df3a57d1 939{
c78f4636
PX
940 struct mm_struct *src_mm = src_vma->vm_mm;
941 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
942 pte_t pte = *src_pte;
943 struct page *page;
944
c78f4636 945 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
946 if (page) {
947 int retval;
948
c78f4636
PX
949 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950 addr, rss, prealloc, pte, page);
70e806e4
PX
951 if (retval <= 0)
952 return retval;
953
954 get_page(page);
955 page_dup_rmap(page, false);
956 rss[mm_counter(page)]++;
957 }
958
1da177e4
LT
959 /*
960 * If it's a COW mapping, write protect it both
961 * in the parent and the child
962 */
1b2de5d0 963 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 964 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 965 pte = pte_wrprotect(pte);
1da177e4
LT
966 }
967
968 /*
969 * If it's a shared mapping, mark it clean in
970 * the child
971 */
972 if (vm_flags & VM_SHARED)
973 pte = pte_mkclean(pte);
974 pte = pte_mkold(pte);
6aab341e 975
8f34f1ea 976 if (!userfaultfd_wp(dst_vma))
b569a176
PX
977 pte = pte_clear_uffd_wp(pte);
978
c78f4636 979 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
980 return 0;
981}
982
983static inline struct page *
984page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
985 unsigned long addr)
986{
987 struct page *new_page;
988
989 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
990 if (!new_page)
991 return NULL;
992
993 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
994 put_page(new_page);
995 return NULL;
6aab341e 996 }
70e806e4 997 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 998
70e806e4 999 return new_page;
1da177e4
LT
1000}
1001
c78f4636
PX
1002static int
1003copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005 unsigned long end)
1da177e4 1006{
c78f4636
PX
1007 struct mm_struct *dst_mm = dst_vma->vm_mm;
1008 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1009 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1010 pte_t *src_pte, *dst_pte;
c74df32c 1011 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1012 int progress, ret = 0;
d559db08 1013 int rss[NR_MM_COUNTERS];
570a335b 1014 swp_entry_t entry = (swp_entry_t){0};
70e806e4 1015 struct page *prealloc = NULL;
1da177e4
LT
1016
1017again:
70e806e4 1018 progress = 0;
d559db08
KH
1019 init_rss_vec(rss);
1020
c74df32c 1021 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1022 if (!dst_pte) {
1023 ret = -ENOMEM;
1024 goto out;
1025 }
ece0e2b6 1026 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1027 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1028 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1029 orig_src_pte = src_pte;
1030 orig_dst_pte = dst_pte;
6606c3e0 1031 arch_enter_lazy_mmu_mode();
1da177e4 1032
1da177e4
LT
1033 do {
1034 /*
1035 * We are holding two locks at this point - either of them
1036 * could generate latencies in another task on another CPU.
1037 */
e040f218
HD
1038 if (progress >= 32) {
1039 progress = 0;
1040 if (need_resched() ||
95c354fe 1041 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1042 break;
1043 }
1da177e4
LT
1044 if (pte_none(*src_pte)) {
1045 progress++;
1046 continue;
1047 }
79a1971c 1048 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1049 ret = copy_nonpresent_pte(dst_mm, src_mm,
1050 dst_pte, src_pte,
1051 dst_vma, src_vma,
1052 addr, rss);
1053 if (ret == -EIO) {
1054 entry = pte_to_swp_entry(*src_pte);
79a1971c 1055 break;
b756a3b5
AP
1056 } else if (ret == -EBUSY) {
1057 break;
1058 } else if (!ret) {
1059 progress += 8;
1060 continue;
9a5cc85c 1061 }
b756a3b5
AP
1062
1063 /*
1064 * Device exclusive entry restored, continue by copying
1065 * the now present pte.
1066 */
1067 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1068 }
70e806e4 1069 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1070 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1071 addr, rss, &prealloc);
70e806e4
PX
1072 /*
1073 * If we need a pre-allocated page for this pte, drop the
1074 * locks, allocate, and try again.
1075 */
1076 if (unlikely(ret == -EAGAIN))
1077 break;
1078 if (unlikely(prealloc)) {
1079 /*
1080 * pre-alloc page cannot be reused by next time so as
1081 * to strictly follow mempolicy (e.g., alloc_page_vma()
1082 * will allocate page according to address). This
1083 * could only happen if one pinned pte changed.
1084 */
1085 put_page(prealloc);
1086 prealloc = NULL;
1087 }
1da177e4
LT
1088 progress += 8;
1089 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1090
6606c3e0 1091 arch_leave_lazy_mmu_mode();
c74df32c 1092 spin_unlock(src_ptl);
ece0e2b6 1093 pte_unmap(orig_src_pte);
d559db08 1094 add_mm_rss_vec(dst_mm, rss);
c36987e2 1095 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1096 cond_resched();
570a335b 1097
9a5cc85c
AP
1098 if (ret == -EIO) {
1099 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1100 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1101 ret = -ENOMEM;
1102 goto out;
1103 }
1104 entry.val = 0;
b756a3b5
AP
1105 } else if (ret == -EBUSY) {
1106 goto out;
9a5cc85c 1107 } else if (ret == -EAGAIN) {
c78f4636 1108 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1109 if (!prealloc)
570a335b 1110 return -ENOMEM;
9a5cc85c
AP
1111 } else if (ret) {
1112 VM_WARN_ON_ONCE(1);
570a335b 1113 }
9a5cc85c
AP
1114
1115 /* We've captured and resolved the error. Reset, try again. */
1116 ret = 0;
1117
1da177e4
LT
1118 if (addr != end)
1119 goto again;
70e806e4
PX
1120out:
1121 if (unlikely(prealloc))
1122 put_page(prealloc);
1123 return ret;
1da177e4
LT
1124}
1125
c78f4636
PX
1126static inline int
1127copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1128 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1129 unsigned long end)
1da177e4 1130{
c78f4636
PX
1131 struct mm_struct *dst_mm = dst_vma->vm_mm;
1132 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1133 pmd_t *src_pmd, *dst_pmd;
1134 unsigned long next;
1135
1136 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1137 if (!dst_pmd)
1138 return -ENOMEM;
1139 src_pmd = pmd_offset(src_pud, addr);
1140 do {
1141 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1142 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1143 || pmd_devmap(*src_pmd)) {
71e3aac0 1144 int err;
c78f4636 1145 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1146 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1147 addr, dst_vma, src_vma);
71e3aac0
AA
1148 if (err == -ENOMEM)
1149 return -ENOMEM;
1150 if (!err)
1151 continue;
1152 /* fall through */
1153 }
1da177e4
LT
1154 if (pmd_none_or_clear_bad(src_pmd))
1155 continue;
c78f4636
PX
1156 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1157 addr, next))
1da177e4
LT
1158 return -ENOMEM;
1159 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1160 return 0;
1161}
1162
c78f4636
PX
1163static inline int
1164copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1165 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1166 unsigned long end)
1da177e4 1167{
c78f4636
PX
1168 struct mm_struct *dst_mm = dst_vma->vm_mm;
1169 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1170 pud_t *src_pud, *dst_pud;
1171 unsigned long next;
1172
c2febafc 1173 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1174 if (!dst_pud)
1175 return -ENOMEM;
c2febafc 1176 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1177 do {
1178 next = pud_addr_end(addr, end);
a00cc7d9
MW
1179 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1180 int err;
1181
c78f4636 1182 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1183 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1184 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1185 if (err == -ENOMEM)
1186 return -ENOMEM;
1187 if (!err)
1188 continue;
1189 /* fall through */
1190 }
1da177e4
LT
1191 if (pud_none_or_clear_bad(src_pud))
1192 continue;
c78f4636
PX
1193 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1194 addr, next))
1da177e4
LT
1195 return -ENOMEM;
1196 } while (dst_pud++, src_pud++, addr = next, addr != end);
1197 return 0;
1198}
1199
c78f4636
PX
1200static inline int
1201copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1202 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1203 unsigned long end)
c2febafc 1204{
c78f4636 1205 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1206 p4d_t *src_p4d, *dst_p4d;
1207 unsigned long next;
1208
1209 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1210 if (!dst_p4d)
1211 return -ENOMEM;
1212 src_p4d = p4d_offset(src_pgd, addr);
1213 do {
1214 next = p4d_addr_end(addr, end);
1215 if (p4d_none_or_clear_bad(src_p4d))
1216 continue;
c78f4636
PX
1217 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1218 addr, next))
c2febafc
KS
1219 return -ENOMEM;
1220 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1221 return 0;
1222}
1223
c78f4636
PX
1224int
1225copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1226{
1227 pgd_t *src_pgd, *dst_pgd;
1228 unsigned long next;
c78f4636
PX
1229 unsigned long addr = src_vma->vm_start;
1230 unsigned long end = src_vma->vm_end;
1231 struct mm_struct *dst_mm = dst_vma->vm_mm;
1232 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1233 struct mmu_notifier_range range;
2ec74c3e 1234 bool is_cow;
cddb8a5c 1235 int ret;
1da177e4 1236
d992895b
NP
1237 /*
1238 * Don't copy ptes where a page fault will fill them correctly.
1239 * Fork becomes much lighter when there are big shared or private
1240 * readonly mappings. The tradeoff is that copy_page_range is more
1241 * efficient than faulting.
1242 */
c78f4636
PX
1243 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1244 !src_vma->anon_vma)
0661a336 1245 return 0;
d992895b 1246
c78f4636
PX
1247 if (is_vm_hugetlb_page(src_vma))
1248 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1249
c78f4636 1250 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1251 /*
1252 * We do not free on error cases below as remove_vma
1253 * gets called on error from higher level routine
1254 */
c78f4636 1255 ret = track_pfn_copy(src_vma);
2ab64037 1256 if (ret)
1257 return ret;
1258 }
1259
cddb8a5c
AA
1260 /*
1261 * We need to invalidate the secondary MMU mappings only when
1262 * there could be a permission downgrade on the ptes of the
1263 * parent mm. And a permission downgrade will only happen if
1264 * is_cow_mapping() returns true.
1265 */
c78f4636 1266 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1267
1268 if (is_cow) {
7269f999 1269 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1270 0, src_vma, src_mm, addr, end);
ac46d4f3 1271 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1272 /*
1273 * Disabling preemption is not needed for the write side, as
1274 * the read side doesn't spin, but goes to the mmap_lock.
1275 *
1276 * Use the raw variant of the seqcount_t write API to avoid
1277 * lockdep complaining about preemptibility.
1278 */
1279 mmap_assert_write_locked(src_mm);
1280 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1281 }
cddb8a5c
AA
1282
1283 ret = 0;
1da177e4
LT
1284 dst_pgd = pgd_offset(dst_mm, addr);
1285 src_pgd = pgd_offset(src_mm, addr);
1286 do {
1287 next = pgd_addr_end(addr, end);
1288 if (pgd_none_or_clear_bad(src_pgd))
1289 continue;
c78f4636
PX
1290 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1291 addr, next))) {
cddb8a5c
AA
1292 ret = -ENOMEM;
1293 break;
1294 }
1da177e4 1295 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1296
57efa1fe
JG
1297 if (is_cow) {
1298 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1299 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1300 }
cddb8a5c 1301 return ret;
1da177e4
LT
1302}
1303
51c6f666 1304static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1305 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1306 unsigned long addr, unsigned long end,
97a89413 1307 struct zap_details *details)
1da177e4 1308{
b5810039 1309 struct mm_struct *mm = tlb->mm;
d16dfc55 1310 int force_flush = 0;
d559db08 1311 int rss[NR_MM_COUNTERS];
97a89413 1312 spinlock_t *ptl;
5f1a1907 1313 pte_t *start_pte;
97a89413 1314 pte_t *pte;
8a5f14a2 1315 swp_entry_t entry;
d559db08 1316
ed6a7935 1317 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1318again:
e303297e 1319 init_rss_vec(rss);
5f1a1907
SR
1320 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1321 pte = start_pte;
3ea27719 1322 flush_tlb_batched_pending(mm);
6606c3e0 1323 arch_enter_lazy_mmu_mode();
1da177e4
LT
1324 do {
1325 pte_t ptent = *pte;
166f61b9 1326 if (pte_none(ptent))
1da177e4 1327 continue;
6f5e6b9e 1328
7b167b68
MK
1329 if (need_resched())
1330 break;
1331
1da177e4 1332 if (pte_present(ptent)) {
ee498ed7 1333 struct page *page;
51c6f666 1334
25b2995a 1335 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1336 if (unlikely(details) && page) {
1337 /*
1338 * unmap_shared_mapping_pages() wants to
1339 * invalidate cache without truncating:
1340 * unmap shared but keep private pages.
1341 */
1342 if (details->check_mapping &&
800d8c63 1343 details->check_mapping != page_rmapping(page))
1da177e4 1344 continue;
1da177e4 1345 }
b5810039 1346 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1347 tlb->fullmm);
1da177e4
LT
1348 tlb_remove_tlb_entry(tlb, pte, addr);
1349 if (unlikely(!page))
1350 continue;
eca56ff9
JM
1351
1352 if (!PageAnon(page)) {
1cf35d47
LT
1353 if (pte_dirty(ptent)) {
1354 force_flush = 1;
6237bcd9 1355 set_page_dirty(page);
1cf35d47 1356 }
4917e5d0 1357 if (pte_young(ptent) &&
64363aad 1358 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1359 mark_page_accessed(page);
6237bcd9 1360 }
eca56ff9 1361 rss[mm_counter(page)]--;
d281ee61 1362 page_remove_rmap(page, false);
3dc14741
HD
1363 if (unlikely(page_mapcount(page) < 0))
1364 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1365 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1366 force_flush = 1;
ce9ec37b 1367 addr += PAGE_SIZE;
d16dfc55 1368 break;
1cf35d47 1369 }
1da177e4
LT
1370 continue;
1371 }
5042db43
JG
1372
1373 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1374 if (is_device_private_entry(entry) ||
1375 is_device_exclusive_entry(entry)) {
af5cdaf8 1376 struct page *page = pfn_swap_entry_to_page(entry);
5042db43
JG
1377
1378 if (unlikely(details && details->check_mapping)) {
1379 /*
1380 * unmap_shared_mapping_pages() wants to
1381 * invalidate cache without truncating:
1382 * unmap shared but keep private pages.
1383 */
1384 if (details->check_mapping !=
1385 page_rmapping(page))
1386 continue;
1387 }
1388
1389 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1390 rss[mm_counter(page)]--;
b756a3b5
AP
1391
1392 if (is_device_private_entry(entry))
1393 page_remove_rmap(page, false);
1394
5042db43
JG
1395 put_page(page);
1396 continue;
1397 }
1398
3e8715fd
KS
1399 /* If details->check_mapping, we leave swap entries. */
1400 if (unlikely(details))
1da177e4 1401 continue;
b084d435 1402
8a5f14a2
KS
1403 if (!non_swap_entry(entry))
1404 rss[MM_SWAPENTS]--;
1405 else if (is_migration_entry(entry)) {
1406 struct page *page;
9f9f1acd 1407
af5cdaf8 1408 page = pfn_swap_entry_to_page(entry);
eca56ff9 1409 rss[mm_counter(page)]--;
b084d435 1410 }
8a5f14a2
KS
1411 if (unlikely(!free_swap_and_cache(entry)))
1412 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1413 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1414 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1415
d559db08 1416 add_mm_rss_vec(mm, rss);
6606c3e0 1417 arch_leave_lazy_mmu_mode();
51c6f666 1418
1cf35d47 1419 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1420 if (force_flush)
1cf35d47 1421 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1422 pte_unmap_unlock(start_pte, ptl);
1423
1424 /*
1425 * If we forced a TLB flush (either due to running out of
1426 * batch buffers or because we needed to flush dirty TLB
1427 * entries before releasing the ptl), free the batched
1428 * memory too. Restart if we didn't do everything.
1429 */
1430 if (force_flush) {
1431 force_flush = 0;
fa0aafb8 1432 tlb_flush_mmu(tlb);
7b167b68
MK
1433 }
1434
1435 if (addr != end) {
1436 cond_resched();
1437 goto again;
d16dfc55
PZ
1438 }
1439
51c6f666 1440 return addr;
1da177e4
LT
1441}
1442
51c6f666 1443static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1444 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1445 unsigned long addr, unsigned long end,
97a89413 1446 struct zap_details *details)
1da177e4
LT
1447{
1448 pmd_t *pmd;
1449 unsigned long next;
1450
1451 pmd = pmd_offset(pud, addr);
1452 do {
1453 next = pmd_addr_end(addr, end);
84c3fc4e 1454 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1455 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1456 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1457 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1458 goto next;
71e3aac0 1459 /* fall through */
22061a1f
HD
1460 } else if (details && details->single_page &&
1461 PageTransCompound(details->single_page) &&
1462 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1463 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1464 /*
1465 * Take and drop THP pmd lock so that we cannot return
1466 * prematurely, while zap_huge_pmd() has cleared *pmd,
1467 * but not yet decremented compound_mapcount().
1468 */
1469 spin_unlock(ptl);
71e3aac0 1470 }
22061a1f 1471
1a5a9906
AA
1472 /*
1473 * Here there can be other concurrent MADV_DONTNEED or
1474 * trans huge page faults running, and if the pmd is
1475 * none or trans huge it can change under us. This is
c1e8d7c6 1476 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1477 * mode.
1478 */
1479 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1480 goto next;
97a89413 1481 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1482next:
97a89413
PZ
1483 cond_resched();
1484 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1485
1486 return addr;
1da177e4
LT
1487}
1488
51c6f666 1489static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1490 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1491 unsigned long addr, unsigned long end,
97a89413 1492 struct zap_details *details)
1da177e4
LT
1493{
1494 pud_t *pud;
1495 unsigned long next;
1496
c2febafc 1497 pud = pud_offset(p4d, addr);
1da177e4
LT
1498 do {
1499 next = pud_addr_end(addr, end);
a00cc7d9
MW
1500 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1501 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1502 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1503 split_huge_pud(vma, pud, addr);
1504 } else if (zap_huge_pud(tlb, vma, pud, addr))
1505 goto next;
1506 /* fall through */
1507 }
97a89413 1508 if (pud_none_or_clear_bad(pud))
1da177e4 1509 continue;
97a89413 1510 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1511next:
1512 cond_resched();
97a89413 1513 } while (pud++, addr = next, addr != end);
51c6f666
RH
1514
1515 return addr;
1da177e4
LT
1516}
1517
c2febafc
KS
1518static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1519 struct vm_area_struct *vma, pgd_t *pgd,
1520 unsigned long addr, unsigned long end,
1521 struct zap_details *details)
1522{
1523 p4d_t *p4d;
1524 unsigned long next;
1525
1526 p4d = p4d_offset(pgd, addr);
1527 do {
1528 next = p4d_addr_end(addr, end);
1529 if (p4d_none_or_clear_bad(p4d))
1530 continue;
1531 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1532 } while (p4d++, addr = next, addr != end);
1533
1534 return addr;
1535}
1536
aac45363 1537void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1538 struct vm_area_struct *vma,
1539 unsigned long addr, unsigned long end,
1540 struct zap_details *details)
1da177e4
LT
1541{
1542 pgd_t *pgd;
1543 unsigned long next;
1544
1da177e4
LT
1545 BUG_ON(addr >= end);
1546 tlb_start_vma(tlb, vma);
1547 pgd = pgd_offset(vma->vm_mm, addr);
1548 do {
1549 next = pgd_addr_end(addr, end);
97a89413 1550 if (pgd_none_or_clear_bad(pgd))
1da177e4 1551 continue;
c2febafc 1552 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1553 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1554 tlb_end_vma(tlb, vma);
1555}
51c6f666 1556
f5cc4eef
AV
1557
1558static void unmap_single_vma(struct mmu_gather *tlb,
1559 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1560 unsigned long end_addr,
f5cc4eef
AV
1561 struct zap_details *details)
1562{
1563 unsigned long start = max(vma->vm_start, start_addr);
1564 unsigned long end;
1565
1566 if (start >= vma->vm_end)
1567 return;
1568 end = min(vma->vm_end, end_addr);
1569 if (end <= vma->vm_start)
1570 return;
1571
cbc91f71
SD
1572 if (vma->vm_file)
1573 uprobe_munmap(vma, start, end);
1574
b3b9c293 1575 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1576 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1577
1578 if (start != end) {
1579 if (unlikely(is_vm_hugetlb_page(vma))) {
1580 /*
1581 * It is undesirable to test vma->vm_file as it
1582 * should be non-null for valid hugetlb area.
1583 * However, vm_file will be NULL in the error
7aa6b4ad 1584 * cleanup path of mmap_region. When
f5cc4eef 1585 * hugetlbfs ->mmap method fails,
7aa6b4ad 1586 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1587 * before calling this function to clean up.
1588 * Since no pte has actually been setup, it is
1589 * safe to do nothing in this case.
1590 */
24669e58 1591 if (vma->vm_file) {
83cde9e8 1592 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1593 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1594 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1595 }
f5cc4eef
AV
1596 } else
1597 unmap_page_range(tlb, vma, start, end, details);
1598 }
1da177e4
LT
1599}
1600
1da177e4
LT
1601/**
1602 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1603 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1604 * @vma: the starting vma
1605 * @start_addr: virtual address at which to start unmapping
1606 * @end_addr: virtual address at which to end unmapping
1da177e4 1607 *
508034a3 1608 * Unmap all pages in the vma list.
1da177e4 1609 *
1da177e4
LT
1610 * Only addresses between `start' and `end' will be unmapped.
1611 *
1612 * The VMA list must be sorted in ascending virtual address order.
1613 *
1614 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1615 * range after unmap_vmas() returns. So the only responsibility here is to
1616 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1617 * drops the lock and schedules.
1618 */
6e8bb019 1619void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1620 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1621 unsigned long end_addr)
1da177e4 1622{
ac46d4f3 1623 struct mmu_notifier_range range;
1da177e4 1624
6f4f13e8
JG
1625 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1626 start_addr, end_addr);
ac46d4f3 1627 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1628 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1629 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1630 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1631}
1632
1633/**
1634 * zap_page_range - remove user pages in a given range
1635 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1636 * @start: starting address of pages to zap
1da177e4 1637 * @size: number of bytes to zap
f5cc4eef
AV
1638 *
1639 * Caller must protect the VMA list
1da177e4 1640 */
7e027b14 1641void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1642 unsigned long size)
1da177e4 1643{
ac46d4f3 1644 struct mmu_notifier_range range;
d16dfc55 1645 struct mmu_gather tlb;
1da177e4 1646
1da177e4 1647 lru_add_drain();
7269f999 1648 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1649 start, start + size);
a72afd87 1650 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1651 update_hiwater_rss(vma->vm_mm);
1652 mmu_notifier_invalidate_range_start(&range);
1653 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1654 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1655 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1656 tlb_finish_mmu(&tlb);
1da177e4
LT
1657}
1658
f5cc4eef
AV
1659/**
1660 * zap_page_range_single - remove user pages in a given range
1661 * @vma: vm_area_struct holding the applicable pages
1662 * @address: starting address of pages to zap
1663 * @size: number of bytes to zap
8a5f14a2 1664 * @details: details of shared cache invalidation
f5cc4eef
AV
1665 *
1666 * The range must fit into one VMA.
1da177e4 1667 */
f5cc4eef 1668static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1669 unsigned long size, struct zap_details *details)
1670{
ac46d4f3 1671 struct mmu_notifier_range range;
d16dfc55 1672 struct mmu_gather tlb;
1da177e4 1673
1da177e4 1674 lru_add_drain();
7269f999 1675 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1676 address, address + size);
a72afd87 1677 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1678 update_hiwater_rss(vma->vm_mm);
1679 mmu_notifier_invalidate_range_start(&range);
1680 unmap_single_vma(&tlb, vma, address, range.end, details);
1681 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1682 tlb_finish_mmu(&tlb);
1da177e4
LT
1683}
1684
c627f9cc
JS
1685/**
1686 * zap_vma_ptes - remove ptes mapping the vma
1687 * @vma: vm_area_struct holding ptes to be zapped
1688 * @address: starting address of pages to zap
1689 * @size: number of bytes to zap
1690 *
1691 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1692 *
1693 * The entire address range must be fully contained within the vma.
1694 *
c627f9cc 1695 */
27d036e3 1696void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1697 unsigned long size)
1698{
1699 if (address < vma->vm_start || address + size > vma->vm_end ||
1700 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1701 return;
1702
f5cc4eef 1703 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1704}
1705EXPORT_SYMBOL_GPL(zap_vma_ptes);
1706
8cd3984d 1707static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1708{
c2febafc
KS
1709 pgd_t *pgd;
1710 p4d_t *p4d;
1711 pud_t *pud;
1712 pmd_t *pmd;
1713
1714 pgd = pgd_offset(mm, addr);
1715 p4d = p4d_alloc(mm, pgd, addr);
1716 if (!p4d)
1717 return NULL;
1718 pud = pud_alloc(mm, p4d, addr);
1719 if (!pud)
1720 return NULL;
1721 pmd = pmd_alloc(mm, pud, addr);
1722 if (!pmd)
1723 return NULL;
1724
1725 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1726 return pmd;
1727}
1728
1729pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1730 spinlock_t **ptl)
1731{
1732 pmd_t *pmd = walk_to_pmd(mm, addr);
1733
1734 if (!pmd)
1735 return NULL;
c2febafc 1736 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1737}
1738
8efd6f5b
AR
1739static int validate_page_before_insert(struct page *page)
1740{
1741 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1742 return -EINVAL;
1743 flush_dcache_page(page);
1744 return 0;
1745}
1746
1747static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1748 unsigned long addr, struct page *page, pgprot_t prot)
1749{
1750 if (!pte_none(*pte))
1751 return -EBUSY;
1752 /* Ok, finally just insert the thing.. */
1753 get_page(page);
1754 inc_mm_counter_fast(mm, mm_counter_file(page));
1755 page_add_file_rmap(page, false);
1756 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1757 return 0;
1758}
1759
238f58d8
LT
1760/*
1761 * This is the old fallback for page remapping.
1762 *
1763 * For historical reasons, it only allows reserved pages. Only
1764 * old drivers should use this, and they needed to mark their
1765 * pages reserved for the old functions anyway.
1766 */
423bad60
NP
1767static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1768 struct page *page, pgprot_t prot)
238f58d8 1769{
423bad60 1770 struct mm_struct *mm = vma->vm_mm;
238f58d8 1771 int retval;
c9cfcddf 1772 pte_t *pte;
8a9f3ccd
BS
1773 spinlock_t *ptl;
1774
8efd6f5b
AR
1775 retval = validate_page_before_insert(page);
1776 if (retval)
5b4e655e 1777 goto out;
238f58d8 1778 retval = -ENOMEM;
c9cfcddf 1779 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1780 if (!pte)
5b4e655e 1781 goto out;
8efd6f5b 1782 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1783 pte_unmap_unlock(pte, ptl);
1784out:
1785 return retval;
1786}
1787
8cd3984d 1788#ifdef pte_index
7f70c2a6 1789static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1790 unsigned long addr, struct page *page, pgprot_t prot)
1791{
1792 int err;
1793
1794 if (!page_count(page))
1795 return -EINVAL;
1796 err = validate_page_before_insert(page);
7f70c2a6
AR
1797 if (err)
1798 return err;
1799 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1800}
1801
1802/* insert_pages() amortizes the cost of spinlock operations
1803 * when inserting pages in a loop. Arch *must* define pte_index.
1804 */
1805static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1806 struct page **pages, unsigned long *num, pgprot_t prot)
1807{
1808 pmd_t *pmd = NULL;
7f70c2a6
AR
1809 pte_t *start_pte, *pte;
1810 spinlock_t *pte_lock;
8cd3984d
AR
1811 struct mm_struct *const mm = vma->vm_mm;
1812 unsigned long curr_page_idx = 0;
1813 unsigned long remaining_pages_total = *num;
1814 unsigned long pages_to_write_in_pmd;
1815 int ret;
1816more:
1817 ret = -EFAULT;
1818 pmd = walk_to_pmd(mm, addr);
1819 if (!pmd)
1820 goto out;
1821
1822 pages_to_write_in_pmd = min_t(unsigned long,
1823 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1824
1825 /* Allocate the PTE if necessary; takes PMD lock once only. */
1826 ret = -ENOMEM;
1827 if (pte_alloc(mm, pmd))
1828 goto out;
8cd3984d
AR
1829
1830 while (pages_to_write_in_pmd) {
1831 int pte_idx = 0;
1832 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1833
7f70c2a6
AR
1834 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1835 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1836 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1837 addr, pages[curr_page_idx], prot);
1838 if (unlikely(err)) {
7f70c2a6 1839 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1840 ret = err;
1841 remaining_pages_total -= pte_idx;
1842 goto out;
1843 }
1844 addr += PAGE_SIZE;
1845 ++curr_page_idx;
1846 }
7f70c2a6 1847 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1848 pages_to_write_in_pmd -= batch_size;
1849 remaining_pages_total -= batch_size;
1850 }
1851 if (remaining_pages_total)
1852 goto more;
1853 ret = 0;
1854out:
1855 *num = remaining_pages_total;
1856 return ret;
1857}
1858#endif /* ifdef pte_index */
1859
1860/**
1861 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1862 * @vma: user vma to map to
1863 * @addr: target start user address of these pages
1864 * @pages: source kernel pages
1865 * @num: in: number of pages to map. out: number of pages that were *not*
1866 * mapped. (0 means all pages were successfully mapped).
1867 *
1868 * Preferred over vm_insert_page() when inserting multiple pages.
1869 *
1870 * In case of error, we may have mapped a subset of the provided
1871 * pages. It is the caller's responsibility to account for this case.
1872 *
1873 * The same restrictions apply as in vm_insert_page().
1874 */
1875int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1876 struct page **pages, unsigned long *num)
1877{
1878#ifdef pte_index
1879 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1880
1881 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1882 return -EFAULT;
1883 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1884 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1885 BUG_ON(vma->vm_flags & VM_PFNMAP);
1886 vma->vm_flags |= VM_MIXEDMAP;
1887 }
1888 /* Defer page refcount checking till we're about to map that page. */
1889 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1890#else
1891 unsigned long idx = 0, pgcount = *num;
45779b03 1892 int err = -EINVAL;
8cd3984d
AR
1893
1894 for (; idx < pgcount; ++idx) {
1895 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1896 if (err)
1897 break;
1898 }
1899 *num = pgcount - idx;
1900 return err;
1901#endif /* ifdef pte_index */
1902}
1903EXPORT_SYMBOL(vm_insert_pages);
1904
bfa5bf6d
REB
1905/**
1906 * vm_insert_page - insert single page into user vma
1907 * @vma: user vma to map to
1908 * @addr: target user address of this page
1909 * @page: source kernel page
1910 *
a145dd41
LT
1911 * This allows drivers to insert individual pages they've allocated
1912 * into a user vma.
1913 *
1914 * The page has to be a nice clean _individual_ kernel allocation.
1915 * If you allocate a compound page, you need to have marked it as
1916 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1917 * (see split_page()).
a145dd41
LT
1918 *
1919 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1920 * took an arbitrary page protection parameter. This doesn't allow
1921 * that. Your vma protection will have to be set up correctly, which
1922 * means that if you want a shared writable mapping, you'd better
1923 * ask for a shared writable mapping!
1924 *
1925 * The page does not need to be reserved.
4b6e1e37
KK
1926 *
1927 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1928 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1929 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1930 * function from other places, for example from page-fault handler.
a862f68a
MR
1931 *
1932 * Return: %0 on success, negative error code otherwise.
a145dd41 1933 */
423bad60
NP
1934int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1935 struct page *page)
a145dd41
LT
1936{
1937 if (addr < vma->vm_start || addr >= vma->vm_end)
1938 return -EFAULT;
1939 if (!page_count(page))
1940 return -EINVAL;
4b6e1e37 1941 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1942 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1943 BUG_ON(vma->vm_flags & VM_PFNMAP);
1944 vma->vm_flags |= VM_MIXEDMAP;
1945 }
423bad60 1946 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1947}
e3c3374f 1948EXPORT_SYMBOL(vm_insert_page);
a145dd41 1949
a667d745
SJ
1950/*
1951 * __vm_map_pages - maps range of kernel pages into user vma
1952 * @vma: user vma to map to
1953 * @pages: pointer to array of source kernel pages
1954 * @num: number of pages in page array
1955 * @offset: user's requested vm_pgoff
1956 *
1957 * This allows drivers to map range of kernel pages into a user vma.
1958 *
1959 * Return: 0 on success and error code otherwise.
1960 */
1961static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1962 unsigned long num, unsigned long offset)
1963{
1964 unsigned long count = vma_pages(vma);
1965 unsigned long uaddr = vma->vm_start;
1966 int ret, i;
1967
1968 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1969 if (offset >= num)
a667d745
SJ
1970 return -ENXIO;
1971
1972 /* Fail if the user requested size exceeds available object size */
1973 if (count > num - offset)
1974 return -ENXIO;
1975
1976 for (i = 0; i < count; i++) {
1977 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1978 if (ret < 0)
1979 return ret;
1980 uaddr += PAGE_SIZE;
1981 }
1982
1983 return 0;
1984}
1985
1986/**
1987 * vm_map_pages - maps range of kernel pages starts with non zero offset
1988 * @vma: user vma to map to
1989 * @pages: pointer to array of source kernel pages
1990 * @num: number of pages in page array
1991 *
1992 * Maps an object consisting of @num pages, catering for the user's
1993 * requested vm_pgoff
1994 *
1995 * If we fail to insert any page into the vma, the function will return
1996 * immediately leaving any previously inserted pages present. Callers
1997 * from the mmap handler may immediately return the error as their caller
1998 * will destroy the vma, removing any successfully inserted pages. Other
1999 * callers should make their own arrangements for calling unmap_region().
2000 *
2001 * Context: Process context. Called by mmap handlers.
2002 * Return: 0 on success and error code otherwise.
2003 */
2004int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2005 unsigned long num)
2006{
2007 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2008}
2009EXPORT_SYMBOL(vm_map_pages);
2010
2011/**
2012 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2013 * @vma: user vma to map to
2014 * @pages: pointer to array of source kernel pages
2015 * @num: number of pages in page array
2016 *
2017 * Similar to vm_map_pages(), except that it explicitly sets the offset
2018 * to 0. This function is intended for the drivers that did not consider
2019 * vm_pgoff.
2020 *
2021 * Context: Process context. Called by mmap handlers.
2022 * Return: 0 on success and error code otherwise.
2023 */
2024int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2025 unsigned long num)
2026{
2027 return __vm_map_pages(vma, pages, num, 0);
2028}
2029EXPORT_SYMBOL(vm_map_pages_zero);
2030
9b5a8e00 2031static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2032 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2033{
2034 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2035 pte_t *pte, entry;
2036 spinlock_t *ptl;
2037
423bad60
NP
2038 pte = get_locked_pte(mm, addr, &ptl);
2039 if (!pte)
9b5a8e00 2040 return VM_FAULT_OOM;
b2770da6
RZ
2041 if (!pte_none(*pte)) {
2042 if (mkwrite) {
2043 /*
2044 * For read faults on private mappings the PFN passed
2045 * in may not match the PFN we have mapped if the
2046 * mapped PFN is a writeable COW page. In the mkwrite
2047 * case we are creating a writable PTE for a shared
f2c57d91
JK
2048 * mapping and we expect the PFNs to match. If they
2049 * don't match, we are likely racing with block
2050 * allocation and mapping invalidation so just skip the
2051 * update.
b2770da6 2052 */
f2c57d91
JK
2053 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2054 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2055 goto out_unlock;
f2c57d91 2056 }
cae85cb8
JK
2057 entry = pte_mkyoung(*pte);
2058 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2059 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2060 update_mmu_cache(vma, addr, pte);
2061 }
2062 goto out_unlock;
b2770da6 2063 }
423bad60
NP
2064
2065 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2066 if (pfn_t_devmap(pfn))
2067 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2068 else
2069 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2070
b2770da6
RZ
2071 if (mkwrite) {
2072 entry = pte_mkyoung(entry);
2073 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2074 }
2075
423bad60 2076 set_pte_at(mm, addr, pte, entry);
4b3073e1 2077 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2078
423bad60
NP
2079out_unlock:
2080 pte_unmap_unlock(pte, ptl);
9b5a8e00 2081 return VM_FAULT_NOPAGE;
423bad60
NP
2082}
2083
f5e6d1d5
MW
2084/**
2085 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2086 * @vma: user vma to map to
2087 * @addr: target user address of this page
2088 * @pfn: source kernel pfn
2089 * @pgprot: pgprot flags for the inserted page
2090 *
a1a0aea5 2091 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2092 * to override pgprot on a per-page basis.
2093 *
2094 * This only makes sense for IO mappings, and it makes no sense for
2095 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2096 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2097 * impractical.
2098 *
574c5b3d
TH
2099 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2100 * a value of @pgprot different from that of @vma->vm_page_prot.
2101 *
ae2b01f3 2102 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2103 * Return: vm_fault_t value.
2104 */
2105vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2106 unsigned long pfn, pgprot_t pgprot)
2107{
6d958546
MW
2108 /*
2109 * Technically, architectures with pte_special can avoid all these
2110 * restrictions (same for remap_pfn_range). However we would like
2111 * consistency in testing and feature parity among all, so we should
2112 * try to keep these invariants in place for everybody.
2113 */
2114 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2115 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2116 (VM_PFNMAP|VM_MIXEDMAP));
2117 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2118 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2119
2120 if (addr < vma->vm_start || addr >= vma->vm_end)
2121 return VM_FAULT_SIGBUS;
2122
2123 if (!pfn_modify_allowed(pfn, pgprot))
2124 return VM_FAULT_SIGBUS;
2125
2126 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2127
9b5a8e00 2128 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2129 false);
f5e6d1d5
MW
2130}
2131EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2132
ae2b01f3
MW
2133/**
2134 * vmf_insert_pfn - insert single pfn into user vma
2135 * @vma: user vma to map to
2136 * @addr: target user address of this page
2137 * @pfn: source kernel pfn
2138 *
2139 * Similar to vm_insert_page, this allows drivers to insert individual pages
2140 * they've allocated into a user vma. Same comments apply.
2141 *
2142 * This function should only be called from a vm_ops->fault handler, and
2143 * in that case the handler should return the result of this function.
2144 *
2145 * vma cannot be a COW mapping.
2146 *
2147 * As this is called only for pages that do not currently exist, we
2148 * do not need to flush old virtual caches or the TLB.
2149 *
2150 * Context: Process context. May allocate using %GFP_KERNEL.
2151 * Return: vm_fault_t value.
2152 */
2153vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2154 unsigned long pfn)
2155{
2156 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2157}
2158EXPORT_SYMBOL(vmf_insert_pfn);
2159
785a3fab
DW
2160static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2161{
2162 /* these checks mirror the abort conditions in vm_normal_page */
2163 if (vma->vm_flags & VM_MIXEDMAP)
2164 return true;
2165 if (pfn_t_devmap(pfn))
2166 return true;
2167 if (pfn_t_special(pfn))
2168 return true;
2169 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2170 return true;
2171 return false;
2172}
2173
79f3aa5b 2174static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2175 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2176 bool mkwrite)
423bad60 2177{
79f3aa5b 2178 int err;
87744ab3 2179
785a3fab 2180 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2181
423bad60 2182 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2183 return VM_FAULT_SIGBUS;
308a047c
BP
2184
2185 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2186
42e4089c 2187 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2188 return VM_FAULT_SIGBUS;
42e4089c 2189
423bad60
NP
2190 /*
2191 * If we don't have pte special, then we have to use the pfn_valid()
2192 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2193 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2194 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2195 * without pte special, it would there be refcounted as a normal page.
423bad60 2196 */
00b3a331
LD
2197 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2198 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2199 struct page *page;
2200
03fc2da6
DW
2201 /*
2202 * At this point we are committed to insert_page()
2203 * regardless of whether the caller specified flags that
2204 * result in pfn_t_has_page() == false.
2205 */
2206 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2207 err = insert_page(vma, addr, page, pgprot);
2208 } else {
9b5a8e00 2209 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2210 }
b2770da6 2211
5d747637
MW
2212 if (err == -ENOMEM)
2213 return VM_FAULT_OOM;
2214 if (err < 0 && err != -EBUSY)
2215 return VM_FAULT_SIGBUS;
2216
2217 return VM_FAULT_NOPAGE;
e0dc0d8f 2218}
79f3aa5b 2219
574c5b3d
TH
2220/**
2221 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2222 * @vma: user vma to map to
2223 * @addr: target user address of this page
2224 * @pfn: source kernel pfn
2225 * @pgprot: pgprot flags for the inserted page
2226 *
a1a0aea5 2227 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2228 * to override pgprot on a per-page basis.
2229 *
2230 * Typically this function should be used by drivers to set caching- and
2231 * encryption bits different than those of @vma->vm_page_prot, because
2232 * the caching- or encryption mode may not be known at mmap() time.
2233 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2234 * to set caching and encryption bits for those vmas (except for COW pages).
2235 * This is ensured by core vm only modifying these page table entries using
2236 * functions that don't touch caching- or encryption bits, using pte_modify()
2237 * if needed. (See for example mprotect()).
2238 * Also when new page-table entries are created, this is only done using the
2239 * fault() callback, and never using the value of vma->vm_page_prot,
2240 * except for page-table entries that point to anonymous pages as the result
2241 * of COW.
2242 *
2243 * Context: Process context. May allocate using %GFP_KERNEL.
2244 * Return: vm_fault_t value.
2245 */
2246vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2247 pfn_t pfn, pgprot_t pgprot)
2248{
2249 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2250}
5379e4dd 2251EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2252
79f3aa5b
MW
2253vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2254 pfn_t pfn)
2255{
574c5b3d 2256 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2257}
5d747637 2258EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2259
ab77dab4
SJ
2260/*
2261 * If the insertion of PTE failed because someone else already added a
2262 * different entry in the mean time, we treat that as success as we assume
2263 * the same entry was actually inserted.
2264 */
ab77dab4
SJ
2265vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2266 unsigned long addr, pfn_t pfn)
b2770da6 2267{
574c5b3d 2268 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2269}
ab77dab4 2270EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2271
1da177e4
LT
2272/*
2273 * maps a range of physical memory into the requested pages. the old
2274 * mappings are removed. any references to nonexistent pages results
2275 * in null mappings (currently treated as "copy-on-access")
2276 */
2277static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2278 unsigned long addr, unsigned long end,
2279 unsigned long pfn, pgprot_t prot)
2280{
90a3e375 2281 pte_t *pte, *mapped_pte;
c74df32c 2282 spinlock_t *ptl;
42e4089c 2283 int err = 0;
1da177e4 2284
90a3e375 2285 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2286 if (!pte)
2287 return -ENOMEM;
6606c3e0 2288 arch_enter_lazy_mmu_mode();
1da177e4
LT
2289 do {
2290 BUG_ON(!pte_none(*pte));
42e4089c
AK
2291 if (!pfn_modify_allowed(pfn, prot)) {
2292 err = -EACCES;
2293 break;
2294 }
7e675137 2295 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2296 pfn++;
2297 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2298 arch_leave_lazy_mmu_mode();
90a3e375 2299 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2300 return err;
1da177e4
LT
2301}
2302
2303static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2304 unsigned long addr, unsigned long end,
2305 unsigned long pfn, pgprot_t prot)
2306{
2307 pmd_t *pmd;
2308 unsigned long next;
42e4089c 2309 int err;
1da177e4
LT
2310
2311 pfn -= addr >> PAGE_SHIFT;
2312 pmd = pmd_alloc(mm, pud, addr);
2313 if (!pmd)
2314 return -ENOMEM;
f66055ab 2315 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2316 do {
2317 next = pmd_addr_end(addr, end);
42e4089c
AK
2318 err = remap_pte_range(mm, pmd, addr, next,
2319 pfn + (addr >> PAGE_SHIFT), prot);
2320 if (err)
2321 return err;
1da177e4
LT
2322 } while (pmd++, addr = next, addr != end);
2323 return 0;
2324}
2325
c2febafc 2326static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2327 unsigned long addr, unsigned long end,
2328 unsigned long pfn, pgprot_t prot)
2329{
2330 pud_t *pud;
2331 unsigned long next;
42e4089c 2332 int err;
1da177e4
LT
2333
2334 pfn -= addr >> PAGE_SHIFT;
c2febafc 2335 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2336 if (!pud)
2337 return -ENOMEM;
2338 do {
2339 next = pud_addr_end(addr, end);
42e4089c
AK
2340 err = remap_pmd_range(mm, pud, addr, next,
2341 pfn + (addr >> PAGE_SHIFT), prot);
2342 if (err)
2343 return err;
1da177e4
LT
2344 } while (pud++, addr = next, addr != end);
2345 return 0;
2346}
2347
c2febafc
KS
2348static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2349 unsigned long addr, unsigned long end,
2350 unsigned long pfn, pgprot_t prot)
2351{
2352 p4d_t *p4d;
2353 unsigned long next;
42e4089c 2354 int err;
c2febafc
KS
2355
2356 pfn -= addr >> PAGE_SHIFT;
2357 p4d = p4d_alloc(mm, pgd, addr);
2358 if (!p4d)
2359 return -ENOMEM;
2360 do {
2361 next = p4d_addr_end(addr, end);
42e4089c
AK
2362 err = remap_pud_range(mm, p4d, addr, next,
2363 pfn + (addr >> PAGE_SHIFT), prot);
2364 if (err)
2365 return err;
c2febafc
KS
2366 } while (p4d++, addr = next, addr != end);
2367 return 0;
2368}
2369
74ffa5a3
CH
2370/*
2371 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2372 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2373 */
74ffa5a3
CH
2374int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2375 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2376{
2377 pgd_t *pgd;
2378 unsigned long next;
2d15cab8 2379 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2380 struct mm_struct *mm = vma->vm_mm;
2381 int err;
2382
0c4123e3
AZ
2383 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2384 return -EINVAL;
2385
1da177e4
LT
2386 /*
2387 * Physically remapped pages are special. Tell the
2388 * rest of the world about it:
2389 * VM_IO tells people not to look at these pages
2390 * (accesses can have side effects).
6aab341e
LT
2391 * VM_PFNMAP tells the core MM that the base pages are just
2392 * raw PFN mappings, and do not have a "struct page" associated
2393 * with them.
314e51b9
KK
2394 * VM_DONTEXPAND
2395 * Disable vma merging and expanding with mremap().
2396 * VM_DONTDUMP
2397 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2398 *
2399 * There's a horrible special case to handle copy-on-write
2400 * behaviour that some programs depend on. We mark the "original"
2401 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2402 * See vm_normal_page() for details.
1da177e4 2403 */
b3b9c293
KK
2404 if (is_cow_mapping(vma->vm_flags)) {
2405 if (addr != vma->vm_start || end != vma->vm_end)
2406 return -EINVAL;
fb155c16 2407 vma->vm_pgoff = pfn;
b3b9c293
KK
2408 }
2409
314e51b9 2410 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2411
2412 BUG_ON(addr >= end);
2413 pfn -= addr >> PAGE_SHIFT;
2414 pgd = pgd_offset(mm, addr);
2415 flush_cache_range(vma, addr, end);
1da177e4
LT
2416 do {
2417 next = pgd_addr_end(addr, end);
c2febafc 2418 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2419 pfn + (addr >> PAGE_SHIFT), prot);
2420 if (err)
74ffa5a3 2421 return err;
1da177e4 2422 } while (pgd++, addr = next, addr != end);
2ab64037 2423
74ffa5a3
CH
2424 return 0;
2425}
2426
2427/**
2428 * remap_pfn_range - remap kernel memory to userspace
2429 * @vma: user vma to map to
2430 * @addr: target page aligned user address to start at
2431 * @pfn: page frame number of kernel physical memory address
2432 * @size: size of mapping area
2433 * @prot: page protection flags for this mapping
2434 *
2435 * Note: this is only safe if the mm semaphore is held when called.
2436 *
2437 * Return: %0 on success, negative error code otherwise.
2438 */
2439int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2440 unsigned long pfn, unsigned long size, pgprot_t prot)
2441{
2442 int err;
2443
2444 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2445 if (err)
74ffa5a3 2446 return -EINVAL;
2ab64037 2447
74ffa5a3
CH
2448 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2449 if (err)
2450 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2451 return err;
2452}
2453EXPORT_SYMBOL(remap_pfn_range);
2454
b4cbb197
LT
2455/**
2456 * vm_iomap_memory - remap memory to userspace
2457 * @vma: user vma to map to
abd69b9e 2458 * @start: start of the physical memory to be mapped
b4cbb197
LT
2459 * @len: size of area
2460 *
2461 * This is a simplified io_remap_pfn_range() for common driver use. The
2462 * driver just needs to give us the physical memory range to be mapped,
2463 * we'll figure out the rest from the vma information.
2464 *
2465 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2466 * whatever write-combining details or similar.
a862f68a
MR
2467 *
2468 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2469 */
2470int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2471{
2472 unsigned long vm_len, pfn, pages;
2473
2474 /* Check that the physical memory area passed in looks valid */
2475 if (start + len < start)
2476 return -EINVAL;
2477 /*
2478 * You *really* shouldn't map things that aren't page-aligned,
2479 * but we've historically allowed it because IO memory might
2480 * just have smaller alignment.
2481 */
2482 len += start & ~PAGE_MASK;
2483 pfn = start >> PAGE_SHIFT;
2484 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2485 if (pfn + pages < pfn)
2486 return -EINVAL;
2487
2488 /* We start the mapping 'vm_pgoff' pages into the area */
2489 if (vma->vm_pgoff > pages)
2490 return -EINVAL;
2491 pfn += vma->vm_pgoff;
2492 pages -= vma->vm_pgoff;
2493
2494 /* Can we fit all of the mapping? */
2495 vm_len = vma->vm_end - vma->vm_start;
2496 if (vm_len >> PAGE_SHIFT > pages)
2497 return -EINVAL;
2498
2499 /* Ok, let it rip */
2500 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2501}
2502EXPORT_SYMBOL(vm_iomap_memory);
2503
aee16b3c
JF
2504static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2505 unsigned long addr, unsigned long end,
e80d3909
JR
2506 pte_fn_t fn, void *data, bool create,
2507 pgtbl_mod_mask *mask)
aee16b3c 2508{
8abb50c7 2509 pte_t *pte, *mapped_pte;
be1db475 2510 int err = 0;
3f649ab7 2511 spinlock_t *ptl;
aee16b3c 2512
be1db475 2513 if (create) {
8abb50c7 2514 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2515 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2516 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2517 if (!pte)
2518 return -ENOMEM;
2519 } else {
8abb50c7 2520 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2521 pte_offset_kernel(pmd, addr) :
2522 pte_offset_map_lock(mm, pmd, addr, &ptl);
2523 }
aee16b3c
JF
2524
2525 BUG_ON(pmd_huge(*pmd));
2526
38e0edb1
JF
2527 arch_enter_lazy_mmu_mode();
2528
eeb4a05f
CH
2529 if (fn) {
2530 do {
2531 if (create || !pte_none(*pte)) {
2532 err = fn(pte++, addr, data);
2533 if (err)
2534 break;
2535 }
2536 } while (addr += PAGE_SIZE, addr != end);
2537 }
e80d3909 2538 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2539
38e0edb1
JF
2540 arch_leave_lazy_mmu_mode();
2541
aee16b3c 2542 if (mm != &init_mm)
8abb50c7 2543 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2544 return err;
2545}
2546
2547static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2548 unsigned long addr, unsigned long end,
e80d3909
JR
2549 pte_fn_t fn, void *data, bool create,
2550 pgtbl_mod_mask *mask)
aee16b3c
JF
2551{
2552 pmd_t *pmd;
2553 unsigned long next;
be1db475 2554 int err = 0;
aee16b3c 2555
ceb86879
AK
2556 BUG_ON(pud_huge(*pud));
2557
be1db475 2558 if (create) {
e80d3909 2559 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2560 if (!pmd)
2561 return -ENOMEM;
2562 } else {
2563 pmd = pmd_offset(pud, addr);
2564 }
aee16b3c
JF
2565 do {
2566 next = pmd_addr_end(addr, end);
0c95cba4
NP
2567 if (pmd_none(*pmd) && !create)
2568 continue;
2569 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2570 return -EINVAL;
2571 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2572 if (!create)
2573 continue;
2574 pmd_clear_bad(pmd);
be1db475 2575 }
0c95cba4
NP
2576 err = apply_to_pte_range(mm, pmd, addr, next,
2577 fn, data, create, mask);
2578 if (err)
2579 break;
aee16b3c 2580 } while (pmd++, addr = next, addr != end);
0c95cba4 2581
aee16b3c
JF
2582 return err;
2583}
2584
c2febafc 2585static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2586 unsigned long addr, unsigned long end,
e80d3909
JR
2587 pte_fn_t fn, void *data, bool create,
2588 pgtbl_mod_mask *mask)
aee16b3c
JF
2589{
2590 pud_t *pud;
2591 unsigned long next;
be1db475 2592 int err = 0;
aee16b3c 2593
be1db475 2594 if (create) {
e80d3909 2595 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2596 if (!pud)
2597 return -ENOMEM;
2598 } else {
2599 pud = pud_offset(p4d, addr);
2600 }
aee16b3c
JF
2601 do {
2602 next = pud_addr_end(addr, end);
0c95cba4
NP
2603 if (pud_none(*pud) && !create)
2604 continue;
2605 if (WARN_ON_ONCE(pud_leaf(*pud)))
2606 return -EINVAL;
2607 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2608 if (!create)
2609 continue;
2610 pud_clear_bad(pud);
be1db475 2611 }
0c95cba4
NP
2612 err = apply_to_pmd_range(mm, pud, addr, next,
2613 fn, data, create, mask);
2614 if (err)
2615 break;
aee16b3c 2616 } while (pud++, addr = next, addr != end);
0c95cba4 2617
aee16b3c
JF
2618 return err;
2619}
2620
c2febafc
KS
2621static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2622 unsigned long addr, unsigned long end,
e80d3909
JR
2623 pte_fn_t fn, void *data, bool create,
2624 pgtbl_mod_mask *mask)
c2febafc
KS
2625{
2626 p4d_t *p4d;
2627 unsigned long next;
be1db475 2628 int err = 0;
c2febafc 2629
be1db475 2630 if (create) {
e80d3909 2631 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2632 if (!p4d)
2633 return -ENOMEM;
2634 } else {
2635 p4d = p4d_offset(pgd, addr);
2636 }
c2febafc
KS
2637 do {
2638 next = p4d_addr_end(addr, end);
0c95cba4
NP
2639 if (p4d_none(*p4d) && !create)
2640 continue;
2641 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2642 return -EINVAL;
2643 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2644 if (!create)
2645 continue;
2646 p4d_clear_bad(p4d);
be1db475 2647 }
0c95cba4
NP
2648 err = apply_to_pud_range(mm, p4d, addr, next,
2649 fn, data, create, mask);
2650 if (err)
2651 break;
c2febafc 2652 } while (p4d++, addr = next, addr != end);
0c95cba4 2653
c2febafc
KS
2654 return err;
2655}
2656
be1db475
DA
2657static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2658 unsigned long size, pte_fn_t fn,
2659 void *data, bool create)
aee16b3c
JF
2660{
2661 pgd_t *pgd;
e80d3909 2662 unsigned long start = addr, next;
57250a5b 2663 unsigned long end = addr + size;
e80d3909 2664 pgtbl_mod_mask mask = 0;
be1db475 2665 int err = 0;
aee16b3c 2666
9cb65bc3
MP
2667 if (WARN_ON(addr >= end))
2668 return -EINVAL;
2669
aee16b3c
JF
2670 pgd = pgd_offset(mm, addr);
2671 do {
2672 next = pgd_addr_end(addr, end);
0c95cba4 2673 if (pgd_none(*pgd) && !create)
be1db475 2674 continue;
0c95cba4
NP
2675 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2676 return -EINVAL;
2677 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2678 if (!create)
2679 continue;
2680 pgd_clear_bad(pgd);
2681 }
2682 err = apply_to_p4d_range(mm, pgd, addr, next,
2683 fn, data, create, &mask);
aee16b3c
JF
2684 if (err)
2685 break;
2686 } while (pgd++, addr = next, addr != end);
57250a5b 2687
e80d3909
JR
2688 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2689 arch_sync_kernel_mappings(start, start + size);
2690
aee16b3c
JF
2691 return err;
2692}
be1db475
DA
2693
2694/*
2695 * Scan a region of virtual memory, filling in page tables as necessary
2696 * and calling a provided function on each leaf page table.
2697 */
2698int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2699 unsigned long size, pte_fn_t fn, void *data)
2700{
2701 return __apply_to_page_range(mm, addr, size, fn, data, true);
2702}
aee16b3c
JF
2703EXPORT_SYMBOL_GPL(apply_to_page_range);
2704
be1db475
DA
2705/*
2706 * Scan a region of virtual memory, calling a provided function on
2707 * each leaf page table where it exists.
2708 *
2709 * Unlike apply_to_page_range, this does _not_ fill in page tables
2710 * where they are absent.
2711 */
2712int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2713 unsigned long size, pte_fn_t fn, void *data)
2714{
2715 return __apply_to_page_range(mm, addr, size, fn, data, false);
2716}
2717EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2718
8f4e2101 2719/*
9b4bdd2f
KS
2720 * handle_pte_fault chooses page fault handler according to an entry which was
2721 * read non-atomically. Before making any commitment, on those architectures
2722 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2723 * parts, do_swap_page must check under lock before unmapping the pte and
2724 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2725 * and do_anonymous_page can safely check later on).
8f4e2101 2726 */
4c21e2f2 2727static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2728 pte_t *page_table, pte_t orig_pte)
2729{
2730 int same = 1;
923717cb 2731#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2732 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2733 spinlock_t *ptl = pte_lockptr(mm, pmd);
2734 spin_lock(ptl);
8f4e2101 2735 same = pte_same(*page_table, orig_pte);
4c21e2f2 2736 spin_unlock(ptl);
8f4e2101
HD
2737 }
2738#endif
2739 pte_unmap(page_table);
2740 return same;
2741}
2742
83d116c5
JH
2743static inline bool cow_user_page(struct page *dst, struct page *src,
2744 struct vm_fault *vmf)
6aab341e 2745{
83d116c5
JH
2746 bool ret;
2747 void *kaddr;
2748 void __user *uaddr;
c3e5ea6e 2749 bool locked = false;
83d116c5
JH
2750 struct vm_area_struct *vma = vmf->vma;
2751 struct mm_struct *mm = vma->vm_mm;
2752 unsigned long addr = vmf->address;
2753
83d116c5
JH
2754 if (likely(src)) {
2755 copy_user_highpage(dst, src, addr, vma);
2756 return true;
2757 }
2758
6aab341e
LT
2759 /*
2760 * If the source page was a PFN mapping, we don't have
2761 * a "struct page" for it. We do a best-effort copy by
2762 * just copying from the original user address. If that
2763 * fails, we just zero-fill it. Live with it.
2764 */
83d116c5
JH
2765 kaddr = kmap_atomic(dst);
2766 uaddr = (void __user *)(addr & PAGE_MASK);
2767
2768 /*
2769 * On architectures with software "accessed" bits, we would
2770 * take a double page fault, so mark it accessed here.
2771 */
c3e5ea6e 2772 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2773 pte_t entry;
5d2a2dbb 2774
83d116c5 2775 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2776 locked = true;
83d116c5
JH
2777 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2778 /*
2779 * Other thread has already handled the fault
7df67697 2780 * and update local tlb only
83d116c5 2781 */
7df67697 2782 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2783 ret = false;
2784 goto pte_unlock;
2785 }
2786
2787 entry = pte_mkyoung(vmf->orig_pte);
2788 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2789 update_mmu_cache(vma, addr, vmf->pte);
2790 }
2791
2792 /*
2793 * This really shouldn't fail, because the page is there
2794 * in the page tables. But it might just be unreadable,
2795 * in which case we just give up and fill the result with
2796 * zeroes.
2797 */
2798 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2799 if (locked)
2800 goto warn;
2801
2802 /* Re-validate under PTL if the page is still mapped */
2803 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2804 locked = true;
2805 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2806 /* The PTE changed under us, update local tlb */
2807 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2808 ret = false;
2809 goto pte_unlock;
2810 }
2811
5d2a2dbb 2812 /*
985ba004 2813 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2814 * Try to copy again under PTL.
5d2a2dbb 2815 */
c3e5ea6e
KS
2816 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2817 /*
2818 * Give a warn in case there can be some obscure
2819 * use-case
2820 */
2821warn:
2822 WARN_ON_ONCE(1);
2823 clear_page(kaddr);
2824 }
83d116c5
JH
2825 }
2826
2827 ret = true;
2828
2829pte_unlock:
c3e5ea6e 2830 if (locked)
83d116c5
JH
2831 pte_unmap_unlock(vmf->pte, vmf->ptl);
2832 kunmap_atomic(kaddr);
2833 flush_dcache_page(dst);
2834
2835 return ret;
6aab341e
LT
2836}
2837
c20cd45e
MH
2838static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2839{
2840 struct file *vm_file = vma->vm_file;
2841
2842 if (vm_file)
2843 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2844
2845 /*
2846 * Special mappings (e.g. VDSO) do not have any file so fake
2847 * a default GFP_KERNEL for them.
2848 */
2849 return GFP_KERNEL;
2850}
2851
fb09a464
KS
2852/*
2853 * Notify the address space that the page is about to become writable so that
2854 * it can prohibit this or wait for the page to get into an appropriate state.
2855 *
2856 * We do this without the lock held, so that it can sleep if it needs to.
2857 */
2b740303 2858static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2859{
2b740303 2860 vm_fault_t ret;
38b8cb7f
JK
2861 struct page *page = vmf->page;
2862 unsigned int old_flags = vmf->flags;
fb09a464 2863
38b8cb7f 2864 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2865
dc617f29
DW
2866 if (vmf->vma->vm_file &&
2867 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2868 return VM_FAULT_SIGBUS;
2869
11bac800 2870 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2871 /* Restore original flags so that caller is not surprised */
2872 vmf->flags = old_flags;
fb09a464
KS
2873 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2874 return ret;
2875 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2876 lock_page(page);
2877 if (!page->mapping) {
2878 unlock_page(page);
2879 return 0; /* retry */
2880 }
2881 ret |= VM_FAULT_LOCKED;
2882 } else
2883 VM_BUG_ON_PAGE(!PageLocked(page), page);
2884 return ret;
2885}
2886
97ba0c2b
JK
2887/*
2888 * Handle dirtying of a page in shared file mapping on a write fault.
2889 *
2890 * The function expects the page to be locked and unlocks it.
2891 */
89b15332 2892static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2893{
89b15332 2894 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2895 struct address_space *mapping;
89b15332 2896 struct page *page = vmf->page;
97ba0c2b
JK
2897 bool dirtied;
2898 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2899
2900 dirtied = set_page_dirty(page);
2901 VM_BUG_ON_PAGE(PageAnon(page), page);
2902 /*
2903 * Take a local copy of the address_space - page.mapping may be zeroed
2904 * by truncate after unlock_page(). The address_space itself remains
2905 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2906 * release semantics to prevent the compiler from undoing this copying.
2907 */
2908 mapping = page_rmapping(page);
2909 unlock_page(page);
2910
89b15332
JW
2911 if (!page_mkwrite)
2912 file_update_time(vma->vm_file);
2913
2914 /*
2915 * Throttle page dirtying rate down to writeback speed.
2916 *
2917 * mapping may be NULL here because some device drivers do not
2918 * set page.mapping but still dirty their pages
2919 *
c1e8d7c6 2920 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2921 * is pinning the mapping, as per above.
2922 */
97ba0c2b 2923 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2924 struct file *fpin;
2925
2926 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2927 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2928 if (fpin) {
2929 fput(fpin);
2930 return VM_FAULT_RETRY;
2931 }
97ba0c2b
JK
2932 }
2933
89b15332 2934 return 0;
97ba0c2b
JK
2935}
2936
4e047f89
SR
2937/*
2938 * Handle write page faults for pages that can be reused in the current vma
2939 *
2940 * This can happen either due to the mapping being with the VM_SHARED flag,
2941 * or due to us being the last reference standing to the page. In either
2942 * case, all we need to do here is to mark the page as writable and update
2943 * any related book-keeping.
2944 */
997dd98d 2945static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2946 __releases(vmf->ptl)
4e047f89 2947{
82b0f8c3 2948 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2949 struct page *page = vmf->page;
4e047f89
SR
2950 pte_t entry;
2951 /*
2952 * Clear the pages cpupid information as the existing
2953 * information potentially belongs to a now completely
2954 * unrelated process.
2955 */
2956 if (page)
2957 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2958
2994302b
JK
2959 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2960 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2961 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2962 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2963 update_mmu_cache(vma, vmf->address, vmf->pte);
2964 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2965 count_vm_event(PGREUSE);
4e047f89
SR
2966}
2967
2f38ab2c
SR
2968/*
2969 * Handle the case of a page which we actually need to copy to a new page.
2970 *
c1e8d7c6 2971 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2972 * without the ptl held.
2973 *
2974 * High level logic flow:
2975 *
2976 * - Allocate a page, copy the content of the old page to the new one.
2977 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2978 * - Take the PTL. If the pte changed, bail out and release the allocated page
2979 * - If the pte is still the way we remember it, update the page table and all
2980 * relevant references. This includes dropping the reference the page-table
2981 * held to the old page, as well as updating the rmap.
2982 * - In any case, unlock the PTL and drop the reference we took to the old page.
2983 */
2b740303 2984static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2985{
82b0f8c3 2986 struct vm_area_struct *vma = vmf->vma;
bae473a4 2987 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2988 struct page *old_page = vmf->page;
2f38ab2c 2989 struct page *new_page = NULL;
2f38ab2c
SR
2990 pte_t entry;
2991 int page_copied = 0;
ac46d4f3 2992 struct mmu_notifier_range range;
2f38ab2c
SR
2993
2994 if (unlikely(anon_vma_prepare(vma)))
2995 goto oom;
2996
2994302b 2997 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2998 new_page = alloc_zeroed_user_highpage_movable(vma,
2999 vmf->address);
2f38ab2c
SR
3000 if (!new_page)
3001 goto oom;
3002 } else {
bae473a4 3003 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 3004 vmf->address);
2f38ab2c
SR
3005 if (!new_page)
3006 goto oom;
83d116c5
JH
3007
3008 if (!cow_user_page(new_page, old_page, vmf)) {
3009 /*
3010 * COW failed, if the fault was solved by other,
3011 * it's fine. If not, userspace would re-fault on
3012 * the same address and we will handle the fault
3013 * from the second attempt.
3014 */
3015 put_page(new_page);
3016 if (old_page)
3017 put_page(old_page);
3018 return 0;
3019 }
2f38ab2c 3020 }
2f38ab2c 3021
d9eb1ea2 3022 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 3023 goto oom_free_new;
9d82c694 3024 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3025
eb3c24f3
MG
3026 __SetPageUptodate(new_page);
3027
7269f999 3028 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3029 vmf->address & PAGE_MASK,
ac46d4f3
JG
3030 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3031 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3032
3033 /*
3034 * Re-check the pte - we dropped the lock
3035 */
82b0f8c3 3036 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3037 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3038 if (old_page) {
3039 if (!PageAnon(old_page)) {
eca56ff9
JM
3040 dec_mm_counter_fast(mm,
3041 mm_counter_file(old_page));
2f38ab2c
SR
3042 inc_mm_counter_fast(mm, MM_ANONPAGES);
3043 }
3044 } else {
3045 inc_mm_counter_fast(mm, MM_ANONPAGES);
3046 }
2994302b 3047 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3048 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3049 entry = pte_sw_mkyoung(entry);
2f38ab2c 3050 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 3051
2f38ab2c
SR
3052 /*
3053 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3054 * pte with the new entry, to keep TLBs on different CPUs in
3055 * sync. This code used to set the new PTE then flush TLBs, but
3056 * that left a window where the new PTE could be loaded into
3057 * some TLBs while the old PTE remains in others.
2f38ab2c 3058 */
82b0f8c3
JK
3059 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3060 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 3061 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3062 /*
3063 * We call the notify macro here because, when using secondary
3064 * mmu page tables (such as kvm shadow page tables), we want the
3065 * new page to be mapped directly into the secondary page table.
3066 */
82b0f8c3
JK
3067 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3068 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3069 if (old_page) {
3070 /*
3071 * Only after switching the pte to the new page may
3072 * we remove the mapcount here. Otherwise another
3073 * process may come and find the rmap count decremented
3074 * before the pte is switched to the new page, and
3075 * "reuse" the old page writing into it while our pte
3076 * here still points into it and can be read by other
3077 * threads.
3078 *
3079 * The critical issue is to order this
3080 * page_remove_rmap with the ptp_clear_flush above.
3081 * Those stores are ordered by (if nothing else,)
3082 * the barrier present in the atomic_add_negative
3083 * in page_remove_rmap.
3084 *
3085 * Then the TLB flush in ptep_clear_flush ensures that
3086 * no process can access the old page before the
3087 * decremented mapcount is visible. And the old page
3088 * cannot be reused until after the decremented
3089 * mapcount is visible. So transitively, TLBs to
3090 * old page will be flushed before it can be reused.
3091 */
d281ee61 3092 page_remove_rmap(old_page, false);
2f38ab2c
SR
3093 }
3094
3095 /* Free the old page.. */
3096 new_page = old_page;
3097 page_copied = 1;
3098 } else {
7df67697 3099 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3100 }
3101
3102 if (new_page)
09cbfeaf 3103 put_page(new_page);
2f38ab2c 3104
82b0f8c3 3105 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3106 /*
3107 * No need to double call mmu_notifier->invalidate_range() callback as
3108 * the above ptep_clear_flush_notify() did already call it.
3109 */
ac46d4f3 3110 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
3111 if (old_page) {
3112 /*
3113 * Don't let another task, with possibly unlocked vma,
3114 * keep the mlocked page.
3115 */
3116 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3117 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
3118 if (PageMlocked(old_page))
3119 munlock_vma_page(old_page);
2f38ab2c
SR
3120 unlock_page(old_page);
3121 }
f4c4a3f4
HY
3122 if (page_copied)
3123 free_swap_cache(old_page);
09cbfeaf 3124 put_page(old_page);
2f38ab2c
SR
3125 }
3126 return page_copied ? VM_FAULT_WRITE : 0;
3127oom_free_new:
09cbfeaf 3128 put_page(new_page);
2f38ab2c
SR
3129oom:
3130 if (old_page)
09cbfeaf 3131 put_page(old_page);
2f38ab2c
SR
3132 return VM_FAULT_OOM;
3133}
3134
66a6197c
JK
3135/**
3136 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3137 * writeable once the page is prepared
3138 *
3139 * @vmf: structure describing the fault
3140 *
3141 * This function handles all that is needed to finish a write page fault in a
3142 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3143 * It handles locking of PTE and modifying it.
66a6197c
JK
3144 *
3145 * The function expects the page to be locked or other protection against
3146 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3147 *
2797e79f 3148 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3149 * we acquired PTE lock.
66a6197c 3150 */
2b740303 3151vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3152{
3153 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3154 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3155 &vmf->ptl);
3156 /*
3157 * We might have raced with another page fault while we released the
3158 * pte_offset_map_lock.
3159 */
3160 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3161 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3162 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3163 return VM_FAULT_NOPAGE;
66a6197c
JK
3164 }
3165 wp_page_reuse(vmf);
a19e2553 3166 return 0;
66a6197c
JK
3167}
3168
dd906184
BH
3169/*
3170 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3171 * mapping
3172 */
2b740303 3173static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3174{
82b0f8c3 3175 struct vm_area_struct *vma = vmf->vma;
bae473a4 3176
dd906184 3177 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3178 vm_fault_t ret;
dd906184 3179
82b0f8c3 3180 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3181 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3182 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3183 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3184 return ret;
66a6197c 3185 return finish_mkwrite_fault(vmf);
dd906184 3186 }
997dd98d
JK
3187 wp_page_reuse(vmf);
3188 return VM_FAULT_WRITE;
dd906184
BH
3189}
3190
2b740303 3191static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3192 __releases(vmf->ptl)
93e478d4 3193{
82b0f8c3 3194 struct vm_area_struct *vma = vmf->vma;
89b15332 3195 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3196
a41b70d6 3197 get_page(vmf->page);
93e478d4 3198
93e478d4 3199 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3200 vm_fault_t tmp;
93e478d4 3201
82b0f8c3 3202 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3203 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3204 if (unlikely(!tmp || (tmp &
3205 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3206 put_page(vmf->page);
93e478d4
SR
3207 return tmp;
3208 }
66a6197c 3209 tmp = finish_mkwrite_fault(vmf);
a19e2553 3210 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3211 unlock_page(vmf->page);
a41b70d6 3212 put_page(vmf->page);
66a6197c 3213 return tmp;
93e478d4 3214 }
66a6197c
JK
3215 } else {
3216 wp_page_reuse(vmf);
997dd98d 3217 lock_page(vmf->page);
93e478d4 3218 }
89b15332 3219 ret |= fault_dirty_shared_page(vmf);
997dd98d 3220 put_page(vmf->page);
93e478d4 3221
89b15332 3222 return ret;
93e478d4
SR
3223}
3224
1da177e4
LT
3225/*
3226 * This routine handles present pages, when users try to write
3227 * to a shared page. It is done by copying the page to a new address
3228 * and decrementing the shared-page counter for the old page.
3229 *
1da177e4
LT
3230 * Note that this routine assumes that the protection checks have been
3231 * done by the caller (the low-level page fault routine in most cases).
3232 * Thus we can safely just mark it writable once we've done any necessary
3233 * COW.
3234 *
3235 * We also mark the page dirty at this point even though the page will
3236 * change only once the write actually happens. This avoids a few races,
3237 * and potentially makes it more efficient.
3238 *
c1e8d7c6 3239 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3240 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3241 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3242 */
2b740303 3243static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3244 __releases(vmf->ptl)
1da177e4 3245{
82b0f8c3 3246 struct vm_area_struct *vma = vmf->vma;
1da177e4 3247
292924b2 3248 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3249 pte_unmap_unlock(vmf->pte, vmf->ptl);
3250 return handle_userfault(vmf, VM_UFFD_WP);
3251 }
3252
6ce64428
NA
3253 /*
3254 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3255 * is flushed in this case before copying.
3256 */
3257 if (unlikely(userfaultfd_wp(vmf->vma) &&
3258 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3259 flush_tlb_page(vmf->vma, vmf->address);
3260
a41b70d6
JK
3261 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3262 if (!vmf->page) {
251b97f5 3263 /*
64e45507
PF
3264 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3265 * VM_PFNMAP VMA.
251b97f5
PZ
3266 *
3267 * We should not cow pages in a shared writeable mapping.
dd906184 3268 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3269 */
3270 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3271 (VM_WRITE|VM_SHARED))
2994302b 3272 return wp_pfn_shared(vmf);
2f38ab2c 3273
82b0f8c3 3274 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3275 return wp_page_copy(vmf);
251b97f5 3276 }
1da177e4 3277
d08b3851 3278 /*
ee6a6457
PZ
3279 * Take out anonymous pages first, anonymous shared vmas are
3280 * not dirty accountable.
d08b3851 3281 */
52d1e606 3282 if (PageAnon(vmf->page)) {
09854ba9
LT
3283 struct page *page = vmf->page;
3284
3285 /* PageKsm() doesn't necessarily raise the page refcount */
3286 if (PageKsm(page) || page_count(page) != 1)
3287 goto copy;
3288 if (!trylock_page(page))
3289 goto copy;
3290 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3291 unlock_page(page);
52d1e606 3292 goto copy;
b009c024 3293 }
09854ba9
LT
3294 /*
3295 * Ok, we've got the only map reference, and the only
3296 * page count reference, and the page is locked,
3297 * it's dark out, and we're wearing sunglasses. Hit it.
3298 */
09854ba9 3299 unlock_page(page);
be068f29 3300 wp_page_reuse(vmf);
09854ba9 3301 return VM_FAULT_WRITE;
ee6a6457 3302 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3303 (VM_WRITE|VM_SHARED))) {
a41b70d6 3304 return wp_page_shared(vmf);
1da177e4 3305 }
52d1e606 3306copy:
1da177e4
LT
3307 /*
3308 * Ok, we need to copy. Oh, well..
3309 */
a41b70d6 3310 get_page(vmf->page);
28766805 3311
82b0f8c3 3312 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3313 return wp_page_copy(vmf);
1da177e4
LT
3314}
3315
97a89413 3316static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3317 unsigned long start_addr, unsigned long end_addr,
3318 struct zap_details *details)
3319{
f5cc4eef 3320 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3321}
3322
f808c13f 3323static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
3324 struct zap_details *details)
3325{
3326 struct vm_area_struct *vma;
1da177e4
LT
3327 pgoff_t vba, vea, zba, zea;
3328
6b2dbba8 3329 vma_interval_tree_foreach(vma, root,
1da177e4 3330 details->first_index, details->last_index) {
1da177e4
LT
3331
3332 vba = vma->vm_pgoff;
d6e93217 3333 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3334 zba = details->first_index;
3335 if (zba < vba)
3336 zba = vba;
3337 zea = details->last_index;
3338 if (zea > vea)
3339 zea = vea;
3340
97a89413 3341 unmap_mapping_range_vma(vma,
1da177e4
LT
3342 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3343 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3344 details);
1da177e4
LT
3345 }
3346}
3347
22061a1f
HD
3348/**
3349 * unmap_mapping_page() - Unmap single page from processes.
3350 * @page: The locked page to be unmapped.
3351 *
3352 * Unmap this page from any userspace process which still has it mmaped.
3353 * Typically, for efficiency, the range of nearby pages has already been
3354 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3355 * truncation or invalidation holds the lock on a page, it may find that
3356 * the page has been remapped again: and then uses unmap_mapping_page()
3357 * to unmap it finally.
3358 */
3359void unmap_mapping_page(struct page *page)
3360{
3361 struct address_space *mapping = page->mapping;
3362 struct zap_details details = { };
3363
3364 VM_BUG_ON(!PageLocked(page));
3365 VM_BUG_ON(PageTail(page));
3366
3367 details.check_mapping = mapping;
3368 details.first_index = page->index;
3369 details.last_index = page->index + thp_nr_pages(page) - 1;
3370 details.single_page = page;
3371
3372 i_mmap_lock_write(mapping);
3373 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3374 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3375 i_mmap_unlock_write(mapping);
3376}
3377
977fbdcd
MW
3378/**
3379 * unmap_mapping_pages() - Unmap pages from processes.
3380 * @mapping: The address space containing pages to be unmapped.
3381 * @start: Index of first page to be unmapped.
3382 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3383 * @even_cows: Whether to unmap even private COWed pages.
3384 *
3385 * Unmap the pages in this address space from any userspace process which
3386 * has them mmaped. Generally, you want to remove COWed pages as well when
3387 * a file is being truncated, but not when invalidating pages from the page
3388 * cache.
3389 */
3390void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3391 pgoff_t nr, bool even_cows)
3392{
3393 struct zap_details details = { };
3394
3395 details.check_mapping = even_cows ? NULL : mapping;
3396 details.first_index = start;
3397 details.last_index = start + nr - 1;
3398 if (details.last_index < details.first_index)
3399 details.last_index = ULONG_MAX;
3400
3401 i_mmap_lock_write(mapping);
3402 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3403 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3404 i_mmap_unlock_write(mapping);
3405}
6e0e99d5 3406EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3407
1da177e4 3408/**
8a5f14a2 3409 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3410 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3411 * file.
3412 *
3d41088f 3413 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3414 * @holebegin: byte in first page to unmap, relative to the start of
3415 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3416 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3417 * must keep the partial page. In contrast, we must get rid of
3418 * partial pages.
3419 * @holelen: size of prospective hole in bytes. This will be rounded
3420 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3421 * end of the file.
3422 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3423 * but 0 when invalidating pagecache, don't throw away private data.
3424 */
3425void unmap_mapping_range(struct address_space *mapping,
3426 loff_t const holebegin, loff_t const holelen, int even_cows)
3427{
1da177e4
LT
3428 pgoff_t hba = holebegin >> PAGE_SHIFT;
3429 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3430
3431 /* Check for overflow. */
3432 if (sizeof(holelen) > sizeof(hlen)) {
3433 long long holeend =
3434 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3435 if (holeend & ~(long long)ULONG_MAX)
3436 hlen = ULONG_MAX - hba + 1;
3437 }
3438
977fbdcd 3439 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3440}
3441EXPORT_SYMBOL(unmap_mapping_range);
3442
b756a3b5
AP
3443/*
3444 * Restore a potential device exclusive pte to a working pte entry
3445 */
3446static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3447{
3448 struct page *page = vmf->page;
3449 struct vm_area_struct *vma = vmf->vma;
3450 struct mmu_notifier_range range;
3451
3452 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3453 return VM_FAULT_RETRY;
3454 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3455 vma->vm_mm, vmf->address & PAGE_MASK,
3456 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3457 mmu_notifier_invalidate_range_start(&range);
3458
3459 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3460 &vmf->ptl);
3461 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3462 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3463
3464 pte_unmap_unlock(vmf->pte, vmf->ptl);
3465 unlock_page(page);
3466
3467 mmu_notifier_invalidate_range_end(&range);
3468 return 0;
3469}
3470
1da177e4 3471/*
c1e8d7c6 3472 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3473 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3474 * We return with pte unmapped and unlocked.
3475 *
c1e8d7c6 3476 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3477 * as does filemap_fault().
1da177e4 3478 */
2b740303 3479vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3480{
82b0f8c3 3481 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3482 struct page *page = NULL, *swapcache;
2799e775 3483 struct swap_info_struct *si = NULL;
65500d23 3484 swp_entry_t entry;
1da177e4 3485 pte_t pte;
d065bd81 3486 int locked;
ad8c2ee8 3487 int exclusive = 0;
2b740303 3488 vm_fault_t ret = 0;
aae466b0 3489 void *shadow = NULL;
1da177e4 3490
eaf649eb 3491 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3492 goto out;
65500d23 3493
2994302b 3494 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3495 if (unlikely(non_swap_entry(entry))) {
3496 if (is_migration_entry(entry)) {
82b0f8c3
JK
3497 migration_entry_wait(vma->vm_mm, vmf->pmd,
3498 vmf->address);
b756a3b5
AP
3499 } else if (is_device_exclusive_entry(entry)) {
3500 vmf->page = pfn_swap_entry_to_page(entry);
3501 ret = remove_device_exclusive_entry(vmf);
5042db43 3502 } else if (is_device_private_entry(entry)) {
af5cdaf8 3503 vmf->page = pfn_swap_entry_to_page(entry);
897e6365 3504 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3505 } else if (is_hwpoison_entry(entry)) {
3506 ret = VM_FAULT_HWPOISON;
3507 } else {
2994302b 3508 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3509 ret = VM_FAULT_SIGBUS;
d1737fdb 3510 }
0697212a
CL
3511 goto out;
3512 }
0bcac06f 3513
2799e775
ML
3514 /* Prevent swapoff from happening to us. */
3515 si = get_swap_device(entry);
3516 if (unlikely(!si))
3517 goto out;
0bcac06f 3518
3d1c7fd9 3519 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3520 page = lookup_swap_cache(entry, vma, vmf->address);
3521 swapcache = page;
f8020772 3522
1da177e4 3523 if (!page) {
a449bf58
QC
3524 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3525 __swap_count(entry) == 1) {
0bcac06f 3526 /* skip swapcache */
e9e9b7ec
MK
3527 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3528 vmf->address);
0bcac06f
MK
3529 if (page) {
3530 __SetPageLocked(page);
3531 __SetPageSwapBacked(page);
4c6355b2 3532
0add0c77
SB
3533 if (mem_cgroup_swapin_charge_page(page,
3534 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3535 ret = VM_FAULT_OOM;
4c6355b2 3536 goto out_page;
545b1b07 3537 }
0add0c77 3538 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3539
aae466b0
JK
3540 shadow = get_shadow_from_swap_cache(entry);
3541 if (shadow)
3542 workingset_refault(page, shadow);
0076f029 3543
6058eaec 3544 lru_cache_add(page);
0add0c77
SB
3545
3546 /* To provide entry to swap_readpage() */
3547 set_page_private(page, entry.val);
0bcac06f 3548 swap_readpage(page, true);
0add0c77 3549 set_page_private(page, 0);
0bcac06f 3550 }
aa8d22a1 3551 } else {
e9e9b7ec
MK
3552 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3553 vmf);
aa8d22a1 3554 swapcache = page;
0bcac06f
MK
3555 }
3556
1da177e4
LT
3557 if (!page) {
3558 /*
8f4e2101
HD
3559 * Back out if somebody else faulted in this pte
3560 * while we released the pte lock.
1da177e4 3561 */
82b0f8c3
JK
3562 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3563 vmf->address, &vmf->ptl);
2994302b 3564 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3565 ret = VM_FAULT_OOM;
3d1c7fd9 3566 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
65500d23 3567 goto unlock;
1da177e4
LT
3568 }
3569
3570 /* Had to read the page from swap area: Major fault */
3571 ret = VM_FAULT_MAJOR;
f8891e5e 3572 count_vm_event(PGMAJFAULT);
2262185c 3573 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3574 } else if (PageHWPoison(page)) {
71f72525
WF
3575 /*
3576 * hwpoisoned dirty swapcache pages are kept for killing
3577 * owner processes (which may be unknown at hwpoison time)
3578 */
d1737fdb 3579 ret = VM_FAULT_HWPOISON;
3d1c7fd9 3580 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
4779cb31 3581 goto out_release;
1da177e4
LT
3582 }
3583
82b0f8c3 3584 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3585
3d1c7fd9 3586 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
d065bd81
ML
3587 if (!locked) {
3588 ret |= VM_FAULT_RETRY;
3589 goto out_release;
3590 }
073e587e 3591
4969c119 3592 /*
31c4a3d3
HD
3593 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3594 * release the swapcache from under us. The page pin, and pte_same
3595 * test below, are not enough to exclude that. Even if it is still
3596 * swapcache, we need to check that the page's swap has not changed.
4969c119 3597 */
0bcac06f
MK
3598 if (unlikely((!PageSwapCache(page) ||
3599 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3600 goto out_page;
3601
82b0f8c3 3602 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3603 if (unlikely(!page)) {
3604 ret = VM_FAULT_OOM;
3605 page = swapcache;
cbf86cfe 3606 goto out_page;
5ad64688
HD
3607 }
3608
9d82c694 3609 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3610
1da177e4 3611 /*
8f4e2101 3612 * Back out if somebody else already faulted in this pte.
1da177e4 3613 */
82b0f8c3
JK
3614 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3615 &vmf->ptl);
2994302b 3616 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3617 goto out_nomap;
b8107480
KK
3618
3619 if (unlikely(!PageUptodate(page))) {
3620 ret = VM_FAULT_SIGBUS;
3621 goto out_nomap;
1da177e4
LT
3622 }
3623
8c7c6e34
KH
3624 /*
3625 * The page isn't present yet, go ahead with the fault.
3626 *
3627 * Be careful about the sequence of operations here.
3628 * To get its accounting right, reuse_swap_page() must be called
3629 * while the page is counted on swap but not yet in mapcount i.e.
3630 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3631 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3632 */
1da177e4 3633
bae473a4
KS
3634 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3635 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3636 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3637 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3638 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3639 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3640 ret |= VM_FAULT_WRITE;
d281ee61 3641 exclusive = RMAP_EXCLUSIVE;
1da177e4 3642 }
1da177e4 3643 flush_icache_page(vma, page);
2994302b 3644 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3645 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3646 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3647 pte = pte_mkuffd_wp(pte);
3648 pte = pte_wrprotect(pte);
3649 }
82b0f8c3 3650 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3651 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3652 vmf->orig_pte = pte;
0bcac06f
MK
3653
3654 /* ksm created a completely new copy */
3655 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3656 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3657 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3658 } else {
3659 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3660 }
1da177e4 3661
c475a8ab 3662 swap_free(entry);
5ccc5aba
VD
3663 if (mem_cgroup_swap_full(page) ||
3664 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3665 try_to_free_swap(page);
c475a8ab 3666 unlock_page(page);
0bcac06f 3667 if (page != swapcache && swapcache) {
4969c119
AA
3668 /*
3669 * Hold the lock to avoid the swap entry to be reused
3670 * until we take the PT lock for the pte_same() check
3671 * (to avoid false positives from pte_same). For
3672 * further safety release the lock after the swap_free
3673 * so that the swap count won't change under a
3674 * parallel locked swapcache.
3675 */
3676 unlock_page(swapcache);
09cbfeaf 3677 put_page(swapcache);
4969c119 3678 }
c475a8ab 3679
82b0f8c3 3680 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3681 ret |= do_wp_page(vmf);
61469f1d
HD
3682 if (ret & VM_FAULT_ERROR)
3683 ret &= VM_FAULT_ERROR;
1da177e4
LT
3684 goto out;
3685 }
3686
3687 /* No need to invalidate - it was non-present before */
82b0f8c3 3688 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3689unlock:
82b0f8c3 3690 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3691out:
2799e775
ML
3692 if (si)
3693 put_swap_device(si);
1da177e4 3694 return ret;
b8107480 3695out_nomap:
82b0f8c3 3696 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3697out_page:
b8107480 3698 unlock_page(page);
4779cb31 3699out_release:
09cbfeaf 3700 put_page(page);
0bcac06f 3701 if (page != swapcache && swapcache) {
4969c119 3702 unlock_page(swapcache);
09cbfeaf 3703 put_page(swapcache);
4969c119 3704 }
2799e775
ML
3705 if (si)
3706 put_swap_device(si);
65500d23 3707 return ret;
1da177e4
LT
3708}
3709
3710/*
c1e8d7c6 3711 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3712 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3713 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3714 */
2b740303 3715static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3716{
82b0f8c3 3717 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3718 struct page *page;
2b740303 3719 vm_fault_t ret = 0;
1da177e4 3720 pte_t entry;
1da177e4 3721
6b7339f4
KS
3722 /* File mapping without ->vm_ops ? */
3723 if (vma->vm_flags & VM_SHARED)
3724 return VM_FAULT_SIGBUS;
3725
7267ec00
KS
3726 /*
3727 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3728 * pte_offset_map() on pmds where a huge pmd might be created
3729 * from a different thread.
3730 *
3e4e28c5 3731 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3732 * parallel threads are excluded by other means.
3733 *
3e4e28c5 3734 * Here we only have mmap_read_lock(mm).
7267ec00 3735 */
4cf58924 3736 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3737 return VM_FAULT_OOM;
3738
f9ce0be7 3739 /* See comment in handle_pte_fault() */
82b0f8c3 3740 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3741 return 0;
3742
11ac5524 3743 /* Use the zero-page for reads */
82b0f8c3 3744 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3745 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3746 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3747 vma->vm_page_prot));
82b0f8c3
JK
3748 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3749 vmf->address, &vmf->ptl);
7df67697
BM
3750 if (!pte_none(*vmf->pte)) {
3751 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3752 goto unlock;
7df67697 3753 }
6b31d595
MH
3754 ret = check_stable_address_space(vma->vm_mm);
3755 if (ret)
3756 goto unlock;
6b251fc9
AA
3757 /* Deliver the page fault to userland, check inside PT lock */
3758 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3759 pte_unmap_unlock(vmf->pte, vmf->ptl);
3760 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3761 }
a13ea5b7
HD
3762 goto setpte;
3763 }
3764
557ed1fa 3765 /* Allocate our own private page. */
557ed1fa
NP
3766 if (unlikely(anon_vma_prepare(vma)))
3767 goto oom;
82b0f8c3 3768 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3769 if (!page)
3770 goto oom;
eb3c24f3 3771
d9eb1ea2 3772 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3773 goto oom_free_page;
9d82c694 3774 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3775
52f37629
MK
3776 /*
3777 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3778 * preceding stores to the page contents become visible before
52f37629
MK
3779 * the set_pte_at() write.
3780 */
0ed361de 3781 __SetPageUptodate(page);
8f4e2101 3782
557ed1fa 3783 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 3784 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3785 if (vma->vm_flags & VM_WRITE)
3786 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3787
82b0f8c3
JK
3788 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3789 &vmf->ptl);
7df67697
BM
3790 if (!pte_none(*vmf->pte)) {
3791 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3792 goto release;
7df67697 3793 }
9ba69294 3794
6b31d595
MH
3795 ret = check_stable_address_space(vma->vm_mm);
3796 if (ret)
3797 goto release;
3798
6b251fc9
AA
3799 /* Deliver the page fault to userland, check inside PT lock */
3800 if (userfaultfd_missing(vma)) {
82b0f8c3 3801 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3802 put_page(page);
82b0f8c3 3803 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3804 }
3805
bae473a4 3806 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3807 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3808 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3809setpte:
82b0f8c3 3810 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3811
3812 /* No need to invalidate - it was non-present before */
82b0f8c3 3813 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3814unlock:
82b0f8c3 3815 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3816 return ret;
8f4e2101 3817release:
09cbfeaf 3818 put_page(page);
8f4e2101 3819 goto unlock;
8a9f3ccd 3820oom_free_page:
09cbfeaf 3821 put_page(page);
65500d23 3822oom:
1da177e4
LT
3823 return VM_FAULT_OOM;
3824}
3825
9a95f3cf 3826/*
c1e8d7c6 3827 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3828 * released depending on flags and vma->vm_ops->fault() return value.
3829 * See filemap_fault() and __lock_page_retry().
3830 */
2b740303 3831static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3832{
82b0f8c3 3833 struct vm_area_struct *vma = vmf->vma;
2b740303 3834 vm_fault_t ret;
7eae74af 3835
63f3655f
MH
3836 /*
3837 * Preallocate pte before we take page_lock because this might lead to
3838 * deadlocks for memcg reclaim which waits for pages under writeback:
3839 * lock_page(A)
3840 * SetPageWriteback(A)
3841 * unlock_page(A)
3842 * lock_page(B)
3843 * lock_page(B)
d383807a 3844 * pte_alloc_one
63f3655f
MH
3845 * shrink_page_list
3846 * wait_on_page_writeback(A)
3847 * SetPageWriteback(B)
3848 * unlock_page(B)
3849 * # flush A, B to clear the writeback
3850 */
3851 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3852 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3853 if (!vmf->prealloc_pte)
3854 return VM_FAULT_OOM;
3855 smp_wmb(); /* See comment in __pte_alloc() */
3856 }
3857
11bac800 3858 ret = vma->vm_ops->fault(vmf);
3917048d 3859 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3860 VM_FAULT_DONE_COW)))
bc2466e4 3861 return ret;
7eae74af 3862
667240e0 3863 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3864 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3865 unlock_page(vmf->page);
3866 put_page(vmf->page);
936ca80d 3867 vmf->page = NULL;
7eae74af
KS
3868 return VM_FAULT_HWPOISON;
3869 }
3870
3871 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3872 lock_page(vmf->page);
7eae74af 3873 else
667240e0 3874 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3875
7eae74af
KS
3876 return ret;
3877}
3878
396bcc52 3879#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3880static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3881{
82b0f8c3 3882 struct vm_area_struct *vma = vmf->vma;
953c66c2 3883
82b0f8c3 3884 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3885 /*
3886 * We are going to consume the prealloc table,
3887 * count that as nr_ptes.
3888 */
c4812909 3889 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3890 vmf->prealloc_pte = NULL;
953c66c2
AK
3891}
3892
f9ce0be7 3893vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3894{
82b0f8c3
JK
3895 struct vm_area_struct *vma = vmf->vma;
3896 bool write = vmf->flags & FAULT_FLAG_WRITE;
3897 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3898 pmd_t entry;
2b740303 3899 int i;
d01ac3c3 3900 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3901
3902 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3903 return ret;
10102459 3904
10102459 3905 page = compound_head(page);
d01ac3c3
MWO
3906 if (compound_order(page) != HPAGE_PMD_ORDER)
3907 return ret;
10102459 3908
953c66c2 3909 /*
f0953a1b 3910 * Archs like ppc64 need additional space to store information
953c66c2
AK
3911 * related to pte entry. Use the preallocated table for that.
3912 */
82b0f8c3 3913 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3914 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3915 if (!vmf->prealloc_pte)
953c66c2
AK
3916 return VM_FAULT_OOM;
3917 smp_wmb(); /* See comment in __pte_alloc() */
3918 }
3919
82b0f8c3
JK
3920 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3921 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3922 goto out;
3923
3924 for (i = 0; i < HPAGE_PMD_NR; i++)
3925 flush_icache_page(vma, page + i);
3926
3927 entry = mk_huge_pmd(page, vma->vm_page_prot);
3928 if (write)
f55e1014 3929 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3930
fadae295 3931 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3932 page_add_file_rmap(page, true);
953c66c2
AK
3933 /*
3934 * deposit and withdraw with pmd lock held
3935 */
3936 if (arch_needs_pgtable_deposit())
82b0f8c3 3937 deposit_prealloc_pte(vmf);
10102459 3938
82b0f8c3 3939 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3940
82b0f8c3 3941 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3942
3943 /* fault is handled */
3944 ret = 0;
95ecedcd 3945 count_vm_event(THP_FILE_MAPPED);
10102459 3946out:
82b0f8c3 3947 spin_unlock(vmf->ptl);
10102459
KS
3948 return ret;
3949}
3950#else
f9ce0be7 3951vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3952{
f9ce0be7 3953 return VM_FAULT_FALLBACK;
10102459
KS
3954}
3955#endif
3956
9d3af4b4 3957void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 3958{
82b0f8c3
JK
3959 struct vm_area_struct *vma = vmf->vma;
3960 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 3961 bool prefault = vmf->address != addr;
3bb97794 3962 pte_t entry;
7267ec00 3963
3bb97794
KS
3964 flush_icache_page(vma, page);
3965 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
3966
3967 if (prefault && arch_wants_old_prefaulted_pte())
3968 entry = pte_mkold(entry);
50c25ee9
TB
3969 else
3970 entry = pte_sw_mkyoung(entry);
46bdb427 3971
3bb97794
KS
3972 if (write)
3973 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3974 /* copy-on-write page */
3975 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3976 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 3977 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 3978 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3979 } else {
eca56ff9 3980 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3981 page_add_file_rmap(page, false);
3bb97794 3982 }
9d3af4b4 3983 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
3984}
3985
9118c0cb
JK
3986/**
3987 * finish_fault - finish page fault once we have prepared the page to fault
3988 *
3989 * @vmf: structure describing the fault
3990 *
3991 * This function handles all that is needed to finish a page fault once the
3992 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3993 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3994 * addition.
9118c0cb
JK
3995 *
3996 * The function expects the page to be locked and on success it consumes a
3997 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3998 *
3999 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4000 */
2b740303 4001vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4002{
f9ce0be7 4003 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4004 struct page *page;
f9ce0be7 4005 vm_fault_t ret;
9118c0cb
JK
4006
4007 /* Did we COW the page? */
f9ce0be7 4008 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4009 page = vmf->cow_page;
4010 else
4011 page = vmf->page;
6b31d595
MH
4012
4013 /*
4014 * check even for read faults because we might have lost our CoWed
4015 * page
4016 */
f9ce0be7
KS
4017 if (!(vma->vm_flags & VM_SHARED)) {
4018 ret = check_stable_address_space(vma->vm_mm);
4019 if (ret)
4020 return ret;
4021 }
4022
4023 if (pmd_none(*vmf->pmd)) {
4024 if (PageTransCompound(page)) {
4025 ret = do_set_pmd(vmf, page);
4026 if (ret != VM_FAULT_FALLBACK)
4027 return ret;
4028 }
4029
e4dc3489
QZ
4030 if (vmf->prealloc_pte) {
4031 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4032 if (likely(pmd_none(*vmf->pmd))) {
4033 mm_inc_nr_ptes(vma->vm_mm);
4034 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4035 vmf->prealloc_pte = NULL;
4036 }
4037 spin_unlock(vmf->ptl);
4038 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
f9ce0be7 4039 return VM_FAULT_OOM;
e4dc3489 4040 }
f9ce0be7
KS
4041 }
4042
4043 /* See comment in handle_pte_fault() */
4044 if (pmd_devmap_trans_unstable(vmf->pmd))
4045 return 0;
4046
4047 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4048 vmf->address, &vmf->ptl);
4049 ret = 0;
4050 /* Re-check under ptl */
4051 if (likely(pte_none(*vmf->pte)))
9d3af4b4 4052 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
4053 else
4054 ret = VM_FAULT_NOPAGE;
4055
4056 update_mmu_tlb(vma, vmf->address, vmf->pte);
4057 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4058 return ret;
4059}
4060
3a91053a
KS
4061static unsigned long fault_around_bytes __read_mostly =
4062 rounddown_pow_of_two(65536);
a9b0f861 4063
a9b0f861
KS
4064#ifdef CONFIG_DEBUG_FS
4065static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4066{
a9b0f861 4067 *val = fault_around_bytes;
1592eef0
KS
4068 return 0;
4069}
4070
b4903d6e 4071/*
da391d64
WK
4072 * fault_around_bytes must be rounded down to the nearest page order as it's
4073 * what do_fault_around() expects to see.
b4903d6e 4074 */
a9b0f861 4075static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4076{
a9b0f861 4077 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4078 return -EINVAL;
b4903d6e
AR
4079 if (val > PAGE_SIZE)
4080 fault_around_bytes = rounddown_pow_of_two(val);
4081 else
4082 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4083 return 0;
4084}
0a1345f8 4085DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4086 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4087
4088static int __init fault_around_debugfs(void)
4089{
d9f7979c
GKH
4090 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4091 &fault_around_bytes_fops);
1592eef0
KS
4092 return 0;
4093}
4094late_initcall(fault_around_debugfs);
1592eef0 4095#endif
8c6e50b0 4096
1fdb412b
KS
4097/*
4098 * do_fault_around() tries to map few pages around the fault address. The hope
4099 * is that the pages will be needed soon and this will lower the number of
4100 * faults to handle.
4101 *
4102 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4103 * not ready to be mapped: not up-to-date, locked, etc.
4104 *
4105 * This function is called with the page table lock taken. In the split ptlock
4106 * case the page table lock only protects only those entries which belong to
4107 * the page table corresponding to the fault address.
4108 *
4109 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4110 * only once.
4111 *
da391d64
WK
4112 * fault_around_bytes defines how many bytes we'll try to map.
4113 * do_fault_around() expects it to be set to a power of two less than or equal
4114 * to PTRS_PER_PTE.
1fdb412b 4115 *
da391d64
WK
4116 * The virtual address of the area that we map is naturally aligned to
4117 * fault_around_bytes rounded down to the machine page size
4118 * (and therefore to page order). This way it's easier to guarantee
4119 * that we don't cross page table boundaries.
1fdb412b 4120 */
2b740303 4121static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4122{
82b0f8c3 4123 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4124 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4125 pgoff_t end_pgoff;
2b740303 4126 int off;
8c6e50b0 4127
4db0c3c2 4128 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4129 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4130
f9ce0be7
KS
4131 address = max(address & mask, vmf->vma->vm_start);
4132 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4133 start_pgoff -= off;
8c6e50b0
KS
4134
4135 /*
da391d64
WK
4136 * end_pgoff is either the end of the page table, the end of
4137 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4138 */
bae473a4 4139 end_pgoff = start_pgoff -
f9ce0be7 4140 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4141 PTRS_PER_PTE - 1;
82b0f8c3 4142 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4143 start_pgoff + nr_pages - 1);
8c6e50b0 4144
82b0f8c3 4145 if (pmd_none(*vmf->pmd)) {
4cf58924 4146 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4147 if (!vmf->prealloc_pte)
f9ce0be7 4148 return VM_FAULT_OOM;
7267ec00 4149 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
4150 }
4151
f9ce0be7 4152 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4153}
4154
2b740303 4155static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4156{
82b0f8c3 4157 struct vm_area_struct *vma = vmf->vma;
2b740303 4158 vm_fault_t ret = 0;
8c6e50b0
KS
4159
4160 /*
4161 * Let's call ->map_pages() first and use ->fault() as fallback
4162 * if page by the offset is not ready to be mapped (cold cache or
4163 * something).
4164 */
9b4bdd2f 4165 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
c949b097
AR
4166 if (likely(!userfaultfd_minor(vmf->vma))) {
4167 ret = do_fault_around(vmf);
4168 if (ret)
4169 return ret;
4170 }
8c6e50b0 4171 }
e655fb29 4172
936ca80d 4173 ret = __do_fault(vmf);
e655fb29
KS
4174 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4175 return ret;
4176
9118c0cb 4177 ret |= finish_fault(vmf);
936ca80d 4178 unlock_page(vmf->page);
7267ec00 4179 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4180 put_page(vmf->page);
e655fb29
KS
4181 return ret;
4182}
4183
2b740303 4184static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4185{
82b0f8c3 4186 struct vm_area_struct *vma = vmf->vma;
2b740303 4187 vm_fault_t ret;
ec47c3b9
KS
4188
4189 if (unlikely(anon_vma_prepare(vma)))
4190 return VM_FAULT_OOM;
4191
936ca80d
JK
4192 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4193 if (!vmf->cow_page)
ec47c3b9
KS
4194 return VM_FAULT_OOM;
4195
d9eb1ea2 4196 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 4197 put_page(vmf->cow_page);
ec47c3b9
KS
4198 return VM_FAULT_OOM;
4199 }
9d82c694 4200 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4201
936ca80d 4202 ret = __do_fault(vmf);
ec47c3b9
KS
4203 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4204 goto uncharge_out;
3917048d
JK
4205 if (ret & VM_FAULT_DONE_COW)
4206 return ret;
ec47c3b9 4207
b1aa812b 4208 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4209 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4210
9118c0cb 4211 ret |= finish_fault(vmf);
b1aa812b
JK
4212 unlock_page(vmf->page);
4213 put_page(vmf->page);
7267ec00
KS
4214 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4215 goto uncharge_out;
ec47c3b9
KS
4216 return ret;
4217uncharge_out:
936ca80d 4218 put_page(vmf->cow_page);
ec47c3b9
KS
4219 return ret;
4220}
4221
2b740303 4222static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4223{
82b0f8c3 4224 struct vm_area_struct *vma = vmf->vma;
2b740303 4225 vm_fault_t ret, tmp;
1d65f86d 4226
936ca80d 4227 ret = __do_fault(vmf);
7eae74af 4228 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4229 return ret;
1da177e4
LT
4230
4231 /*
f0c6d4d2
KS
4232 * Check if the backing address space wants to know that the page is
4233 * about to become writable
1da177e4 4234 */
fb09a464 4235 if (vma->vm_ops->page_mkwrite) {
936ca80d 4236 unlock_page(vmf->page);
38b8cb7f 4237 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4238 if (unlikely(!tmp ||
4239 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4240 put_page(vmf->page);
fb09a464 4241 return tmp;
4294621f 4242 }
fb09a464
KS
4243 }
4244
9118c0cb 4245 ret |= finish_fault(vmf);
7267ec00
KS
4246 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4247 VM_FAULT_RETRY))) {
936ca80d
JK
4248 unlock_page(vmf->page);
4249 put_page(vmf->page);
f0c6d4d2 4250 return ret;
1da177e4 4251 }
b827e496 4252
89b15332 4253 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4254 return ret;
54cb8821 4255}
d00806b1 4256
9a95f3cf 4257/*
c1e8d7c6 4258 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4259 * but allow concurrent faults).
c1e8d7c6 4260 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4261 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4262 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4263 * by other thread calling munmap()).
9a95f3cf 4264 */
2b740303 4265static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4266{
82b0f8c3 4267 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4268 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4269 vm_fault_t ret;
54cb8821 4270
ff09d7ec
AK
4271 /*
4272 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4273 */
4274 if (!vma->vm_ops->fault) {
4275 /*
4276 * If we find a migration pmd entry or a none pmd entry, which
4277 * should never happen, return SIGBUS
4278 */
4279 if (unlikely(!pmd_present(*vmf->pmd)))
4280 ret = VM_FAULT_SIGBUS;
4281 else {
4282 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4283 vmf->pmd,
4284 vmf->address,
4285 &vmf->ptl);
4286 /*
4287 * Make sure this is not a temporary clearing of pte
4288 * by holding ptl and checking again. A R/M/W update
4289 * of pte involves: take ptl, clearing the pte so that
4290 * we don't have concurrent modification by hardware
4291 * followed by an update.
4292 */
4293 if (unlikely(pte_none(*vmf->pte)))
4294 ret = VM_FAULT_SIGBUS;
4295 else
4296 ret = VM_FAULT_NOPAGE;
4297
4298 pte_unmap_unlock(vmf->pte, vmf->ptl);
4299 }
4300 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4301 ret = do_read_fault(vmf);
4302 else if (!(vma->vm_flags & VM_SHARED))
4303 ret = do_cow_fault(vmf);
4304 else
4305 ret = do_shared_fault(vmf);
4306
4307 /* preallocated pagetable is unused: free it */
4308 if (vmf->prealloc_pte) {
fc8efd2d 4309 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4310 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4311 }
4312 return ret;
54cb8821
NP
4313}
4314
f4c0d836
YS
4315int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4316 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4317{
4318 get_page(page);
4319
4320 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4321 if (page_nid == numa_node_id()) {
9532fec1 4322 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4323 *flags |= TNF_FAULT_LOCAL;
4324 }
9532fec1
MG
4325
4326 return mpol_misplaced(page, vma, addr);
4327}
4328
2b740303 4329static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4330{
82b0f8c3 4331 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4332 struct page *page = NULL;
98fa15f3 4333 int page_nid = NUMA_NO_NODE;
90572890 4334 int last_cpupid;
cbee9f88 4335 int target_nid;
04a86453 4336 pte_t pte, old_pte;
288bc549 4337 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4338 int flags = 0;
d10e63f2
MG
4339
4340 /*
166f61b9
TH
4341 * The "pte" at this point cannot be used safely without
4342 * validation through pte_unmap_same(). It's of NUMA type but
4343 * the pfn may be screwed if the read is non atomic.
166f61b9 4344 */
82b0f8c3
JK
4345 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4346 spin_lock(vmf->ptl);
cee216a6 4347 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4348 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4349 goto out;
4350 }
4351
b99a342d
HY
4352 /* Get the normal PTE */
4353 old_pte = ptep_get(vmf->pte);
04a86453 4354 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4355
82b0f8c3 4356 page = vm_normal_page(vma, vmf->address, pte);
b99a342d
HY
4357 if (!page)
4358 goto out_map;
d10e63f2 4359
e81c4802 4360 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4361 if (PageCompound(page))
4362 goto out_map;
e81c4802 4363
6688cc05 4364 /*
bea66fbd
MG
4365 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4366 * much anyway since they can be in shared cache state. This misses
4367 * the case where a mapping is writable but the process never writes
4368 * to it but pte_write gets cleared during protection updates and
4369 * pte_dirty has unpredictable behaviour between PTE scan updates,
4370 * background writeback, dirty balancing and application behaviour.
6688cc05 4371 */
b99a342d 4372 if (!was_writable)
6688cc05
PZ
4373 flags |= TNF_NO_GROUP;
4374
dabe1d99
RR
4375 /*
4376 * Flag if the page is shared between multiple address spaces. This
4377 * is later used when determining whether to group tasks together
4378 */
4379 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4380 flags |= TNF_SHARED;
4381
90572890 4382 last_cpupid = page_cpupid_last(page);
8191acbd 4383 page_nid = page_to_nid(page);
82b0f8c3 4384 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4385 &flags);
98fa15f3 4386 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4387 put_page(page);
b99a342d 4388 goto out_map;
4daae3b4 4389 }
b99a342d 4390 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4391
4392 /* Migrate to the requested node */
bf90ac19 4393 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4394 page_nid = target_nid;
6688cc05 4395 flags |= TNF_MIGRATED;
b99a342d 4396 } else {
074c2381 4397 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4398 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4399 spin_lock(vmf->ptl);
4400 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4401 pte_unmap_unlock(vmf->pte, vmf->ptl);
4402 goto out;
4403 }
4404 goto out_map;
4405 }
4daae3b4
MG
4406
4407out:
98fa15f3 4408 if (page_nid != NUMA_NO_NODE)
6688cc05 4409 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4410 return 0;
b99a342d
HY
4411out_map:
4412 /*
4413 * Make it present again, depending on how arch implements
4414 * non-accessible ptes, some can allow access by kernel mode.
4415 */
4416 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4417 pte = pte_modify(old_pte, vma->vm_page_prot);
4418 pte = pte_mkyoung(pte);
4419 if (was_writable)
4420 pte = pte_mkwrite(pte);
4421 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4422 update_mmu_cache(vma, vmf->address, vmf->pte);
4423 pte_unmap_unlock(vmf->pte, vmf->ptl);
4424 goto out;
d10e63f2
MG
4425}
4426
2b740303 4427static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4428{
f4200391 4429 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4430 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4431 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4432 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4433 return VM_FAULT_FALLBACK;
4434}
4435
183f24aa 4436/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4437static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4438{
529b930b 4439 if (vma_is_anonymous(vmf->vma)) {
5db4f15c 4440 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4441 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4442 return do_huge_pmd_wp_page(vmf);
529b930b 4443 }
327e9fd4
THV
4444 if (vmf->vma->vm_ops->huge_fault) {
4445 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4446
4447 if (!(ret & VM_FAULT_FALLBACK))
4448 return ret;
4449 }
af9e4d5f 4450
327e9fd4 4451 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4452 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4453
b96375f7
MW
4454 return VM_FAULT_FALLBACK;
4455}
4456
2b740303 4457static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4458{
327e9fd4
THV
4459#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4460 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4461 /* No support for anonymous transparent PUD pages yet */
4462 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4463 goto split;
4464 if (vmf->vma->vm_ops->huge_fault) {
4465 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4466
4467 if (!(ret & VM_FAULT_FALLBACK))
4468 return ret;
4469 }
4470split:
4471 /* COW or write-notify not handled on PUD level: split pud.*/
4472 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4473#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4474 return VM_FAULT_FALLBACK;
4475}
4476
2b740303 4477static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4478{
4479#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4480 /* No support for anonymous transparent PUD pages yet */
4481 if (vma_is_anonymous(vmf->vma))
4482 return VM_FAULT_FALLBACK;
4483 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4484 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4485#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4486 return VM_FAULT_FALLBACK;
4487}
4488
1da177e4
LT
4489/*
4490 * These routines also need to handle stuff like marking pages dirty
4491 * and/or accessed for architectures that don't do it in hardware (most
4492 * RISC architectures). The early dirtying is also good on the i386.
4493 *
4494 * There is also a hook called "update_mmu_cache()" that architectures
4495 * with external mmu caches can use to update those (ie the Sparc or
4496 * PowerPC hashed page tables that act as extended TLBs).
4497 *
c1e8d7c6 4498 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4499 * concurrent faults).
9a95f3cf 4500 *
c1e8d7c6 4501 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4502 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4503 */
2b740303 4504static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4505{
4506 pte_t entry;
4507
82b0f8c3 4508 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4509 /*
4510 * Leave __pte_alloc() until later: because vm_ops->fault may
4511 * want to allocate huge page, and if we expose page table
4512 * for an instant, it will be difficult to retract from
4513 * concurrent faults and from rmap lookups.
4514 */
82b0f8c3 4515 vmf->pte = NULL;
7267ec00 4516 } else {
f9ce0be7
KS
4517 /*
4518 * If a huge pmd materialized under us just retry later. Use
4519 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4520 * of pmd_trans_huge() to ensure the pmd didn't become
4521 * pmd_trans_huge under us and then back to pmd_none, as a
4522 * result of MADV_DONTNEED running immediately after a huge pmd
4523 * fault in a different thread of this mm, in turn leading to a
4524 * misleading pmd_trans_huge() retval. All we have to ensure is
4525 * that it is a regular pmd that we can walk with
4526 * pte_offset_map() and we can do that through an atomic read
4527 * in C, which is what pmd_trans_unstable() provides.
4528 */
d0f0931d 4529 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4530 return 0;
4531 /*
4532 * A regular pmd is established and it can't morph into a huge
4533 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4534 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4535 * So now it's safe to run pte_offset_map().
4536 */
82b0f8c3 4537 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4538 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4539
4540 /*
4541 * some architectures can have larger ptes than wordsize,
4542 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4543 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4544 * accesses. The code below just needs a consistent view
4545 * for the ifs and we later double check anyway with the
7267ec00
KS
4546 * ptl lock held. So here a barrier will do.
4547 */
4548 barrier();
2994302b 4549 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4550 pte_unmap(vmf->pte);
4551 vmf->pte = NULL;
65500d23 4552 }
1da177e4
LT
4553 }
4554
82b0f8c3
JK
4555 if (!vmf->pte) {
4556 if (vma_is_anonymous(vmf->vma))
4557 return do_anonymous_page(vmf);
7267ec00 4558 else
82b0f8c3 4559 return do_fault(vmf);
7267ec00
KS
4560 }
4561
2994302b
JK
4562 if (!pte_present(vmf->orig_pte))
4563 return do_swap_page(vmf);
7267ec00 4564
2994302b
JK
4565 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4566 return do_numa_page(vmf);
d10e63f2 4567
82b0f8c3
JK
4568 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4569 spin_lock(vmf->ptl);
2994302b 4570 entry = vmf->orig_pte;
7df67697
BM
4571 if (unlikely(!pte_same(*vmf->pte, entry))) {
4572 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4573 goto unlock;
7df67697 4574 }
82b0f8c3 4575 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4576 if (!pte_write(entry))
2994302b 4577 return do_wp_page(vmf);
1da177e4
LT
4578 entry = pte_mkdirty(entry);
4579 }
4580 entry = pte_mkyoung(entry);
82b0f8c3
JK
4581 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4582 vmf->flags & FAULT_FLAG_WRITE)) {
4583 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4584 } else {
b7333b58
YS
4585 /* Skip spurious TLB flush for retried page fault */
4586 if (vmf->flags & FAULT_FLAG_TRIED)
4587 goto unlock;
1a44e149
AA
4588 /*
4589 * This is needed only for protection faults but the arch code
4590 * is not yet telling us if this is a protection fault or not.
4591 * This still avoids useless tlb flushes for .text page faults
4592 * with threads.
4593 */
82b0f8c3
JK
4594 if (vmf->flags & FAULT_FLAG_WRITE)
4595 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4596 }
8f4e2101 4597unlock:
82b0f8c3 4598 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4599 return 0;
1da177e4
LT
4600}
4601
4602/*
4603 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4604 *
c1e8d7c6 4605 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4606 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4607 */
2b740303
SJ
4608static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4609 unsigned long address, unsigned int flags)
1da177e4 4610{
82b0f8c3 4611 struct vm_fault vmf = {
bae473a4 4612 .vma = vma,
1a29d85e 4613 .address = address & PAGE_MASK,
bae473a4 4614 .flags = flags,
0721ec8b 4615 .pgoff = linear_page_index(vma, address),
667240e0 4616 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4617 };
fde26bed 4618 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4619 struct mm_struct *mm = vma->vm_mm;
1da177e4 4620 pgd_t *pgd;
c2febafc 4621 p4d_t *p4d;
2b740303 4622 vm_fault_t ret;
1da177e4 4623
1da177e4 4624 pgd = pgd_offset(mm, address);
c2febafc
KS
4625 p4d = p4d_alloc(mm, pgd, address);
4626 if (!p4d)
4627 return VM_FAULT_OOM;
a00cc7d9 4628
c2febafc 4629 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4630 if (!vmf.pud)
c74df32c 4631 return VM_FAULT_OOM;
625110b5 4632retry_pud:
7635d9cb 4633 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4634 ret = create_huge_pud(&vmf);
4635 if (!(ret & VM_FAULT_FALLBACK))
4636 return ret;
4637 } else {
4638 pud_t orig_pud = *vmf.pud;
4639
4640 barrier();
4641 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4642
a00cc7d9
MW
4643 /* NUMA case for anonymous PUDs would go here */
4644
f6f37321 4645 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4646 ret = wp_huge_pud(&vmf, orig_pud);
4647 if (!(ret & VM_FAULT_FALLBACK))
4648 return ret;
4649 } else {
4650 huge_pud_set_accessed(&vmf, orig_pud);
4651 return 0;
4652 }
4653 }
4654 }
4655
4656 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4657 if (!vmf.pmd)
c74df32c 4658 return VM_FAULT_OOM;
625110b5
TH
4659
4660 /* Huge pud page fault raced with pmd_alloc? */
4661 if (pud_trans_unstable(vmf.pud))
4662 goto retry_pud;
4663
7635d9cb 4664 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4665 ret = create_huge_pmd(&vmf);
c0292554
KS
4666 if (!(ret & VM_FAULT_FALLBACK))
4667 return ret;
71e3aac0 4668 } else {
5db4f15c 4669 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 4670
71e3aac0 4671 barrier();
5db4f15c 4672 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 4673 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
4674 !is_pmd_migration_entry(vmf.orig_pmd));
4675 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
4676 pmd_migration_entry_wait(mm, vmf.pmd);
4677 return 0;
4678 }
5db4f15c
YS
4679 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4680 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4681 return do_huge_pmd_numa_page(&vmf);
d10e63f2 4682
5db4f15c
YS
4683 if (dirty && !pmd_write(vmf.orig_pmd)) {
4684 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
4685 if (!(ret & VM_FAULT_FALLBACK))
4686 return ret;
a1dd450b 4687 } else {
5db4f15c 4688 huge_pmd_set_accessed(&vmf);
9845cbbd 4689 return 0;
1f1d06c3 4690 }
71e3aac0
AA
4691 }
4692 }
4693
82b0f8c3 4694 return handle_pte_fault(&vmf);
1da177e4
LT
4695}
4696
bce617ed 4697/**
f0953a1b 4698 * mm_account_fault - Do page fault accounting
bce617ed
PX
4699 *
4700 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4701 * of perf event counters, but we'll still do the per-task accounting to
4702 * the task who triggered this page fault.
4703 * @address: the faulted address.
4704 * @flags: the fault flags.
4705 * @ret: the fault retcode.
4706 *
f0953a1b 4707 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 4708 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 4709 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
4710 * still be in per-arch page fault handlers at the entry of page fault.
4711 */
4712static inline void mm_account_fault(struct pt_regs *regs,
4713 unsigned long address, unsigned int flags,
4714 vm_fault_t ret)
4715{
4716 bool major;
4717
4718 /*
4719 * We don't do accounting for some specific faults:
4720 *
4721 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4722 * includes arch_vma_access_permitted() failing before reaching here.
4723 * So this is not a "this many hardware page faults" counter. We
4724 * should use the hw profiling for that.
4725 *
4726 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4727 * once they're completed.
4728 */
4729 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4730 return;
4731
4732 /*
4733 * We define the fault as a major fault when the final successful fault
4734 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4735 * handle it immediately previously).
4736 */
4737 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4738
a2beb5f1
PX
4739 if (major)
4740 current->maj_flt++;
4741 else
4742 current->min_flt++;
4743
bce617ed 4744 /*
a2beb5f1
PX
4745 * If the fault is done for GUP, regs will be NULL. We only do the
4746 * accounting for the per thread fault counters who triggered the
4747 * fault, and we skip the perf event updates.
bce617ed
PX
4748 */
4749 if (!regs)
4750 return;
4751
a2beb5f1 4752 if (major)
bce617ed 4753 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4754 else
bce617ed 4755 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4756}
4757
9a95f3cf
PC
4758/*
4759 * By the time we get here, we already hold the mm semaphore
4760 *
c1e8d7c6 4761 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4762 * return value. See filemap_fault() and __lock_page_or_retry().
4763 */
2b740303 4764vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4765 unsigned int flags, struct pt_regs *regs)
519e5247 4766{
2b740303 4767 vm_fault_t ret;
519e5247
JW
4768
4769 __set_current_state(TASK_RUNNING);
4770
4771 count_vm_event(PGFAULT);
2262185c 4772 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4773
4774 /* do counter updates before entering really critical section. */
4775 check_sync_rss_stat(current);
4776
de0c799b
LD
4777 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4778 flags & FAULT_FLAG_INSTRUCTION,
4779 flags & FAULT_FLAG_REMOTE))
4780 return VM_FAULT_SIGSEGV;
4781
519e5247
JW
4782 /*
4783 * Enable the memcg OOM handling for faults triggered in user
4784 * space. Kernel faults are handled more gracefully.
4785 */
4786 if (flags & FAULT_FLAG_USER)
29ef680a 4787 mem_cgroup_enter_user_fault();
519e5247 4788
bae473a4
KS
4789 if (unlikely(is_vm_hugetlb_page(vma)))
4790 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4791 else
4792 ret = __handle_mm_fault(vma, address, flags);
519e5247 4793
49426420 4794 if (flags & FAULT_FLAG_USER) {
29ef680a 4795 mem_cgroup_exit_user_fault();
166f61b9
TH
4796 /*
4797 * The task may have entered a memcg OOM situation but
4798 * if the allocation error was handled gracefully (no
4799 * VM_FAULT_OOM), there is no need to kill anything.
4800 * Just clean up the OOM state peacefully.
4801 */
4802 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4803 mem_cgroup_oom_synchronize(false);
49426420 4804 }
3812c8c8 4805
bce617ed
PX
4806 mm_account_fault(regs, address, flags, ret);
4807
519e5247
JW
4808 return ret;
4809}
e1d6d01a 4810EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4811
90eceff1
KS
4812#ifndef __PAGETABLE_P4D_FOLDED
4813/*
4814 * Allocate p4d page table.
4815 * We've already handled the fast-path in-line.
4816 */
4817int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4818{
4819 p4d_t *new = p4d_alloc_one(mm, address);
4820 if (!new)
4821 return -ENOMEM;
4822
4823 smp_wmb(); /* See comment in __pte_alloc */
4824
4825 spin_lock(&mm->page_table_lock);
4826 if (pgd_present(*pgd)) /* Another has populated it */
4827 p4d_free(mm, new);
4828 else
4829 pgd_populate(mm, pgd, new);
4830 spin_unlock(&mm->page_table_lock);
4831 return 0;
4832}
4833#endif /* __PAGETABLE_P4D_FOLDED */
4834
1da177e4
LT
4835#ifndef __PAGETABLE_PUD_FOLDED
4836/*
4837 * Allocate page upper directory.
872fec16 4838 * We've already handled the fast-path in-line.
1da177e4 4839 */
c2febafc 4840int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4841{
c74df32c
HD
4842 pud_t *new = pud_alloc_one(mm, address);
4843 if (!new)
1bb3630e 4844 return -ENOMEM;
1da177e4 4845
362a61ad
NP
4846 smp_wmb(); /* See comment in __pte_alloc */
4847
872fec16 4848 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4849 if (!p4d_present(*p4d)) {
4850 mm_inc_nr_puds(mm);
c2febafc 4851 p4d_populate(mm, p4d, new);
b4e98d9a 4852 } else /* Another has populated it */
5e541973 4853 pud_free(mm, new);
c74df32c 4854 spin_unlock(&mm->page_table_lock);
1bb3630e 4855 return 0;
1da177e4
LT
4856}
4857#endif /* __PAGETABLE_PUD_FOLDED */
4858
4859#ifndef __PAGETABLE_PMD_FOLDED
4860/*
4861 * Allocate page middle directory.
872fec16 4862 * We've already handled the fast-path in-line.
1da177e4 4863 */
1bb3630e 4864int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4865{
a00cc7d9 4866 spinlock_t *ptl;
c74df32c
HD
4867 pmd_t *new = pmd_alloc_one(mm, address);
4868 if (!new)
1bb3630e 4869 return -ENOMEM;
1da177e4 4870
362a61ad
NP
4871 smp_wmb(); /* See comment in __pte_alloc */
4872
a00cc7d9 4873 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4874 if (!pud_present(*pud)) {
4875 mm_inc_nr_pmds(mm);
1bb3630e 4876 pud_populate(mm, pud, new);
dc6c9a35 4877 } else /* Another has populated it */
5e541973 4878 pmd_free(mm, new);
a00cc7d9 4879 spin_unlock(ptl);
1bb3630e 4880 return 0;
e0f39591 4881}
1da177e4
LT
4882#endif /* __PAGETABLE_PMD_FOLDED */
4883
9fd6dad1
PB
4884int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4885 struct mmu_notifier_range *range, pte_t **ptepp,
4886 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4887{
4888 pgd_t *pgd;
c2febafc 4889 p4d_t *p4d;
f8ad0f49
JW
4890 pud_t *pud;
4891 pmd_t *pmd;
4892 pte_t *ptep;
4893
4894 pgd = pgd_offset(mm, address);
4895 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4896 goto out;
4897
c2febafc
KS
4898 p4d = p4d_offset(pgd, address);
4899 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4900 goto out;
4901
4902 pud = pud_offset(p4d, address);
f8ad0f49
JW
4903 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4904 goto out;
4905
4906 pmd = pmd_offset(pud, address);
f66055ab 4907 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4908
09796395
RZ
4909 if (pmd_huge(*pmd)) {
4910 if (!pmdpp)
4911 goto out;
4912
ac46d4f3 4913 if (range) {
7269f999 4914 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4915 NULL, mm, address & PMD_MASK,
4916 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4917 mmu_notifier_invalidate_range_start(range);
a4d1a885 4918 }
09796395
RZ
4919 *ptlp = pmd_lock(mm, pmd);
4920 if (pmd_huge(*pmd)) {
4921 *pmdpp = pmd;
4922 return 0;
4923 }
4924 spin_unlock(*ptlp);
ac46d4f3
JG
4925 if (range)
4926 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4927 }
4928
4929 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4930 goto out;
4931
ac46d4f3 4932 if (range) {
7269f999 4933 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4934 address & PAGE_MASK,
4935 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4936 mmu_notifier_invalidate_range_start(range);
a4d1a885 4937 }
f8ad0f49 4938 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4939 if (!pte_present(*ptep))
4940 goto unlock;
4941 *ptepp = ptep;
4942 return 0;
4943unlock:
4944 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4945 if (range)
4946 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4947out:
4948 return -EINVAL;
4949}
4950
9fd6dad1
PB
4951/**
4952 * follow_pte - look up PTE at a user virtual address
4953 * @mm: the mm_struct of the target address space
4954 * @address: user virtual address
4955 * @ptepp: location to store found PTE
4956 * @ptlp: location to store the lock for the PTE
4957 *
4958 * On a successful return, the pointer to the PTE is stored in @ptepp;
4959 * the corresponding lock is taken and its location is stored in @ptlp.
4960 * The contents of the PTE are only stable until @ptlp is released;
4961 * any further use, if any, must be protected against invalidation
4962 * with MMU notifiers.
4963 *
4964 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4965 * should be taken for read.
4966 *
4967 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4968 * it is not a good general-purpose API.
4969 *
4970 * Return: zero on success, -ve otherwise.
4971 */
4972int follow_pte(struct mm_struct *mm, unsigned long address,
4973 pte_t **ptepp, spinlock_t **ptlp)
4974{
4975 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4976}
4977EXPORT_SYMBOL_GPL(follow_pte);
4978
3b6748e2
JW
4979/**
4980 * follow_pfn - look up PFN at a user virtual address
4981 * @vma: memory mapping
4982 * @address: user virtual address
4983 * @pfn: location to store found PFN
4984 *
4985 * Only IO mappings and raw PFN mappings are allowed.
4986 *
9fd6dad1
PB
4987 * This function does not allow the caller to read the permissions
4988 * of the PTE. Do not use it.
4989 *
a862f68a 4990 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4991 */
4992int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4993 unsigned long *pfn)
4994{
4995 int ret = -EINVAL;
4996 spinlock_t *ptl;
4997 pte_t *ptep;
4998
4999 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5000 return ret;
5001
9fd6dad1 5002 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5003 if (ret)
5004 return ret;
5005 *pfn = pte_pfn(*ptep);
5006 pte_unmap_unlock(ptep, ptl);
5007 return 0;
5008}
5009EXPORT_SYMBOL(follow_pfn);
5010
28b2ee20 5011#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5012int follow_phys(struct vm_area_struct *vma,
5013 unsigned long address, unsigned int flags,
5014 unsigned long *prot, resource_size_t *phys)
28b2ee20 5015{
03668a4d 5016 int ret = -EINVAL;
28b2ee20
RR
5017 pte_t *ptep, pte;
5018 spinlock_t *ptl;
28b2ee20 5019
d87fe660 5020 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5021 goto out;
28b2ee20 5022
9fd6dad1 5023 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5024 goto out;
28b2ee20 5025 pte = *ptep;
03668a4d 5026
f6f37321 5027 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5028 goto unlock;
28b2ee20
RR
5029
5030 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5031 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5032
03668a4d 5033 ret = 0;
28b2ee20
RR
5034unlock:
5035 pte_unmap_unlock(ptep, ptl);
5036out:
d87fe660 5037 return ret;
28b2ee20
RR
5038}
5039
96667f8a
SV
5040/**
5041 * generic_access_phys - generic implementation for iomem mmap access
5042 * @vma: the vma to access
f0953a1b 5043 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
5044 * @buf: buffer to read/write
5045 * @len: length of transfer
5046 * @write: set to FOLL_WRITE when writing, otherwise reading
5047 *
5048 * This is a generic implementation for &vm_operations_struct.access for an
5049 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5050 * not page based.
5051 */
28b2ee20
RR
5052int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5053 void *buf, int len, int write)
5054{
5055 resource_size_t phys_addr;
5056 unsigned long prot = 0;
2bc7273b 5057 void __iomem *maddr;
96667f8a
SV
5058 pte_t *ptep, pte;
5059 spinlock_t *ptl;
5060 int offset = offset_in_page(addr);
5061 int ret = -EINVAL;
5062
5063 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5064 return -EINVAL;
5065
5066retry:
e913a8cd 5067 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5068 return -EINVAL;
5069 pte = *ptep;
5070 pte_unmap_unlock(ptep, ptl);
28b2ee20 5071
96667f8a
SV
5072 prot = pgprot_val(pte_pgprot(pte));
5073 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5074
5075 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5076 return -EINVAL;
5077
9cb12d7b 5078 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5079 if (!maddr)
5080 return -ENOMEM;
5081
e913a8cd 5082 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5083 goto out_unmap;
5084
5085 if (!pte_same(pte, *ptep)) {
5086 pte_unmap_unlock(ptep, ptl);
5087 iounmap(maddr);
5088
5089 goto retry;
5090 }
5091
28b2ee20
RR
5092 if (write)
5093 memcpy_toio(maddr + offset, buf, len);
5094 else
5095 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
5096 ret = len;
5097 pte_unmap_unlock(ptep, ptl);
5098out_unmap:
28b2ee20
RR
5099 iounmap(maddr);
5100
96667f8a 5101 return ret;
28b2ee20 5102}
5a73633e 5103EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5104#endif
5105
0ec76a11 5106/*
d3f5ffca 5107 * Access another process' address space as given in mm.
0ec76a11 5108 */
d3f5ffca
JH
5109int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5110 int len, unsigned int gup_flags)
0ec76a11 5111{
0ec76a11 5112 struct vm_area_struct *vma;
0ec76a11 5113 void *old_buf = buf;
442486ec 5114 int write = gup_flags & FOLL_WRITE;
0ec76a11 5115
d8ed45c5 5116 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5117 return 0;
5118
183ff22b 5119 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5120 while (len) {
5121 int bytes, ret, offset;
5122 void *maddr;
28b2ee20 5123 struct page *page = NULL;
0ec76a11 5124
64019a2e 5125 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5126 gup_flags, &page, &vma, NULL);
28b2ee20 5127 if (ret <= 0) {
dbffcd03
RR
5128#ifndef CONFIG_HAVE_IOREMAP_PROT
5129 break;
5130#else
28b2ee20
RR
5131 /*
5132 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5133 * we can access using slightly different code.
5134 */
3e418f98
LH
5135 vma = vma_lookup(mm, addr);
5136 if (!vma)
28b2ee20
RR
5137 break;
5138 if (vma->vm_ops && vma->vm_ops->access)
5139 ret = vma->vm_ops->access(vma, addr, buf,
5140 len, write);
5141 if (ret <= 0)
28b2ee20
RR
5142 break;
5143 bytes = ret;
dbffcd03 5144#endif
0ec76a11 5145 } else {
28b2ee20
RR
5146 bytes = len;
5147 offset = addr & (PAGE_SIZE-1);
5148 if (bytes > PAGE_SIZE-offset)
5149 bytes = PAGE_SIZE-offset;
5150
5151 maddr = kmap(page);
5152 if (write) {
5153 copy_to_user_page(vma, page, addr,
5154 maddr + offset, buf, bytes);
5155 set_page_dirty_lock(page);
5156 } else {
5157 copy_from_user_page(vma, page, addr,
5158 buf, maddr + offset, bytes);
5159 }
5160 kunmap(page);
09cbfeaf 5161 put_page(page);
0ec76a11 5162 }
0ec76a11
DH
5163 len -= bytes;
5164 buf += bytes;
5165 addr += bytes;
5166 }
d8ed45c5 5167 mmap_read_unlock(mm);
0ec76a11
DH
5168
5169 return buf - old_buf;
5170}
03252919 5171
5ddd36b9 5172/**
ae91dbfc 5173 * access_remote_vm - access another process' address space
5ddd36b9
SW
5174 * @mm: the mm_struct of the target address space
5175 * @addr: start address to access
5176 * @buf: source or destination buffer
5177 * @len: number of bytes to transfer
6347e8d5 5178 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5179 *
5180 * The caller must hold a reference on @mm.
a862f68a
MR
5181 *
5182 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5183 */
5184int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5185 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5186{
d3f5ffca 5187 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5188}
5189
206cb636
SW
5190/*
5191 * Access another process' address space.
5192 * Source/target buffer must be kernel space,
5193 * Do not walk the page table directly, use get_user_pages
5194 */
5195int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5196 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5197{
5198 struct mm_struct *mm;
5199 int ret;
5200
5201 mm = get_task_mm(tsk);
5202 if (!mm)
5203 return 0;
5204
d3f5ffca 5205 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5206
206cb636
SW
5207 mmput(mm);
5208
5209 return ret;
5210}
fcd35857 5211EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5212
03252919
AK
5213/*
5214 * Print the name of a VMA.
5215 */
5216void print_vma_addr(char *prefix, unsigned long ip)
5217{
5218 struct mm_struct *mm = current->mm;
5219 struct vm_area_struct *vma;
5220
e8bff74a 5221 /*
0a7f682d 5222 * we might be running from an atomic context so we cannot sleep
e8bff74a 5223 */
d8ed45c5 5224 if (!mmap_read_trylock(mm))
e8bff74a
IM
5225 return;
5226
03252919
AK
5227 vma = find_vma(mm, ip);
5228 if (vma && vma->vm_file) {
5229 struct file *f = vma->vm_file;
0a7f682d 5230 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5231 if (buf) {
2fbc57c5 5232 char *p;
03252919 5233
9bf39ab2 5234 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5235 if (IS_ERR(p))
5236 p = "?";
2fbc57c5 5237 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5238 vma->vm_start,
5239 vma->vm_end - vma->vm_start);
5240 free_page((unsigned long)buf);
5241 }
5242 }
d8ed45c5 5243 mmap_read_unlock(mm);
03252919 5244}
3ee1afa3 5245
662bbcb2 5246#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5247void __might_fault(const char *file, int line)
3ee1afa3 5248{
95156f00
PZ
5249 /*
5250 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5251 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5252 * get paged out, therefore we'll never actually fault, and the
5253 * below annotations will generate false positives.
5254 */
db68ce10 5255 if (uaccess_kernel())
95156f00 5256 return;
9ec23531 5257 if (pagefault_disabled())
662bbcb2 5258 return;
9ec23531
DH
5259 __might_sleep(file, line, 0);
5260#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5261 if (current->mm)
da1c55f1 5262 might_lock_read(&current->mm->mmap_lock);
9ec23531 5263#endif
3ee1afa3 5264}
9ec23531 5265EXPORT_SYMBOL(__might_fault);
3ee1afa3 5266#endif
47ad8475
AA
5267
5268#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5269/*
5270 * Process all subpages of the specified huge page with the specified
5271 * operation. The target subpage will be processed last to keep its
5272 * cache lines hot.
5273 */
5274static inline void process_huge_page(
5275 unsigned long addr_hint, unsigned int pages_per_huge_page,
5276 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5277 void *arg)
47ad8475 5278{
c79b57e4
HY
5279 int i, n, base, l;
5280 unsigned long addr = addr_hint &
5281 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5282
c6ddfb6c 5283 /* Process target subpage last to keep its cache lines hot */
47ad8475 5284 might_sleep();
c79b57e4
HY
5285 n = (addr_hint - addr) / PAGE_SIZE;
5286 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5287 /* If target subpage in first half of huge page */
c79b57e4
HY
5288 base = 0;
5289 l = n;
c6ddfb6c 5290 /* Process subpages at the end of huge page */
c79b57e4
HY
5291 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5292 cond_resched();
c6ddfb6c 5293 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5294 }
5295 } else {
c6ddfb6c 5296 /* If target subpage in second half of huge page */
c79b57e4
HY
5297 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5298 l = pages_per_huge_page - n;
c6ddfb6c 5299 /* Process subpages at the begin of huge page */
c79b57e4
HY
5300 for (i = 0; i < base; i++) {
5301 cond_resched();
c6ddfb6c 5302 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5303 }
5304 }
5305 /*
c6ddfb6c
HY
5306 * Process remaining subpages in left-right-left-right pattern
5307 * towards the target subpage
c79b57e4
HY
5308 */
5309 for (i = 0; i < l; i++) {
5310 int left_idx = base + i;
5311 int right_idx = base + 2 * l - 1 - i;
5312
5313 cond_resched();
c6ddfb6c 5314 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5315 cond_resched();
c6ddfb6c 5316 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5317 }
5318}
5319
c6ddfb6c
HY
5320static void clear_gigantic_page(struct page *page,
5321 unsigned long addr,
5322 unsigned int pages_per_huge_page)
5323{
5324 int i;
5325 struct page *p = page;
5326
5327 might_sleep();
5328 for (i = 0; i < pages_per_huge_page;
5329 i++, p = mem_map_next(p, page, i)) {
5330 cond_resched();
5331 clear_user_highpage(p, addr + i * PAGE_SIZE);
5332 }
5333}
5334
5335static void clear_subpage(unsigned long addr, int idx, void *arg)
5336{
5337 struct page *page = arg;
5338
5339 clear_user_highpage(page + idx, addr);
5340}
5341
5342void clear_huge_page(struct page *page,
5343 unsigned long addr_hint, unsigned int pages_per_huge_page)
5344{
5345 unsigned long addr = addr_hint &
5346 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5347
5348 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5349 clear_gigantic_page(page, addr, pages_per_huge_page);
5350 return;
5351 }
5352
5353 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5354}
5355
47ad8475
AA
5356static void copy_user_gigantic_page(struct page *dst, struct page *src,
5357 unsigned long addr,
5358 struct vm_area_struct *vma,
5359 unsigned int pages_per_huge_page)
5360{
5361 int i;
5362 struct page *dst_base = dst;
5363 struct page *src_base = src;
5364
5365 for (i = 0; i < pages_per_huge_page; ) {
5366 cond_resched();
5367 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5368
5369 i++;
5370 dst = mem_map_next(dst, dst_base, i);
5371 src = mem_map_next(src, src_base, i);
5372 }
5373}
5374
c9f4cd71
HY
5375struct copy_subpage_arg {
5376 struct page *dst;
5377 struct page *src;
5378 struct vm_area_struct *vma;
5379};
5380
5381static void copy_subpage(unsigned long addr, int idx, void *arg)
5382{
5383 struct copy_subpage_arg *copy_arg = arg;
5384
5385 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5386 addr, copy_arg->vma);
5387}
5388
47ad8475 5389void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5390 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5391 unsigned int pages_per_huge_page)
5392{
c9f4cd71
HY
5393 unsigned long addr = addr_hint &
5394 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5395 struct copy_subpage_arg arg = {
5396 .dst = dst,
5397 .src = src,
5398 .vma = vma,
5399 };
47ad8475
AA
5400
5401 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5402 copy_user_gigantic_page(dst, src, addr, vma,
5403 pages_per_huge_page);
5404 return;
5405 }
5406
c9f4cd71 5407 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5408}
fa4d75c1
MK
5409
5410long copy_huge_page_from_user(struct page *dst_page,
5411 const void __user *usr_src,
810a56b9
MK
5412 unsigned int pages_per_huge_page,
5413 bool allow_pagefault)
fa4d75c1
MK
5414{
5415 void *src = (void *)usr_src;
5416 void *page_kaddr;
5417 unsigned long i, rc = 0;
5418 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5419 struct page *subpage = dst_page;
fa4d75c1 5420
3272cfc2
MK
5421 for (i = 0; i < pages_per_huge_page;
5422 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5423 if (allow_pagefault)
3272cfc2 5424 page_kaddr = kmap(subpage);
810a56b9 5425 else
3272cfc2 5426 page_kaddr = kmap_atomic(subpage);
fa4d75c1
MK
5427 rc = copy_from_user(page_kaddr,
5428 (const void __user *)(src + i * PAGE_SIZE),
5429 PAGE_SIZE);
810a56b9 5430 if (allow_pagefault)
3272cfc2 5431 kunmap(subpage);
810a56b9
MK
5432 else
5433 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5434
5435 ret_val -= (PAGE_SIZE - rc);
5436 if (rc)
5437 break;
5438
5439 cond_resched();
5440 }
5441 return ret_val;
5442}
47ad8475 5443#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5444
40b64acd 5445#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5446
5447static struct kmem_cache *page_ptl_cachep;
5448
5449void __init ptlock_cache_init(void)
5450{
5451 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5452 SLAB_PANIC, NULL);
5453}
5454
539edb58 5455bool ptlock_alloc(struct page *page)
49076ec2
KS
5456{
5457 spinlock_t *ptl;
5458
b35f1819 5459 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5460 if (!ptl)
5461 return false;
539edb58 5462 page->ptl = ptl;
49076ec2
KS
5463 return true;
5464}
5465
539edb58 5466void ptlock_free(struct page *page)
49076ec2 5467{
b35f1819 5468 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5469}
5470#endif