]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
mm: convert do_anonymous_page() to use a folio
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
b073d7f8 55#include <linux/kmsan.h>
9a840895 56#include <linux/ksm.h>
1da177e4 57#include <linux/rmap.h>
b95f1b31 58#include <linux/export.h>
0ff92245 59#include <linux/delayacct.h>
1da177e4 60#include <linux/init.h>
01c8f1c4 61#include <linux/pfn_t.h>
edc79b2a 62#include <linux/writeback.h>
8a9f3ccd 63#include <linux/memcontrol.h>
cddb8a5c 64#include <linux/mmu_notifier.h>
3dc14741
HD
65#include <linux/swapops.h>
66#include <linux/elf.h>
5a0e3ad6 67#include <linux/gfp.h>
4daae3b4 68#include <linux/migrate.h>
2fbc57c5 69#include <linux/string.h>
467b171a 70#include <linux/memory-tiers.h>
1592eef0 71#include <linux/debugfs.h>
6b251fc9 72#include <linux/userfaultfd_k.h>
bc2466e4 73#include <linux/dax.h>
6b31d595 74#include <linux/oom.h>
98fa15f3 75#include <linux/numa.h>
bce617ed
PX
76#include <linux/perf_event.h>
77#include <linux/ptrace.h>
e80d3909 78#include <linux/vmalloc.h>
33024536 79#include <linux/sched/sysctl.h>
1da177e4 80
b3d1411b
JFG
81#include <trace/events/kmem.h>
82
6952b61d 83#include <asm/io.h>
33a709b2 84#include <asm/mmu_context.h>
1da177e4 85#include <asm/pgalloc.h>
7c0f6ba6 86#include <linux/uaccess.h>
1da177e4
LT
87#include <asm/tlb.h>
88#include <asm/tlbflush.h>
1da177e4 89
e80d3909 90#include "pgalloc-track.h"
42b77728 91#include "internal.h"
014bb1de 92#include "swap.h"
42b77728 93
af27d940 94#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 95#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
96#endif
97
a9ee6cf5 98#ifndef CONFIG_NUMA
1da177e4 99unsigned long max_mapnr;
1da177e4 100EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
101
102struct page *mem_map;
1da177e4
LT
103EXPORT_SYMBOL(mem_map);
104#endif
105
5c041f5d
PX
106static vm_fault_t do_fault(struct vm_fault *vmf);
107
1da177e4
LT
108/*
109 * A number of key systems in x86 including ioremap() rely on the assumption
110 * that high_memory defines the upper bound on direct map memory, then end
111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113 * and ZONE_HIGHMEM.
114 */
166f61b9 115void *high_memory;
1da177e4 116EXPORT_SYMBOL(high_memory);
1da177e4 117
32a93233
IM
118/*
119 * Randomize the address space (stacks, mmaps, brk, etc.).
120 *
121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122 * as ancient (libc5 based) binaries can segfault. )
123 */
124int randomize_va_space __read_mostly =
125#ifdef CONFIG_COMPAT_BRK
126 1;
127#else
128 2;
129#endif
a62eaf15 130
46bdb427
WD
131#ifndef arch_wants_old_prefaulted_pte
132static inline bool arch_wants_old_prefaulted_pte(void)
133{
134 /*
135 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 * some architectures, even if it's performed in hardware. By
137 * default, "false" means prefaulted entries will be 'young'.
138 */
139 return false;
140}
141#endif
142
a62eaf15
AK
143static int __init disable_randmaps(char *s)
144{
145 randomize_va_space = 0;
9b41046c 146 return 1;
a62eaf15
AK
147}
148__setup("norandmaps", disable_randmaps);
149
62eede62 150unsigned long zero_pfn __read_mostly;
0b70068e
AB
151EXPORT_SYMBOL(zero_pfn);
152
166f61b9
TH
153unsigned long highest_memmap_pfn __read_mostly;
154
a13ea5b7
HD
155/*
156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157 */
158static int __init init_zero_pfn(void)
159{
160 zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 return 0;
162}
e720e7d0 163early_initcall(init_zero_pfn);
a62eaf15 164
f1a79412 165void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 166{
f1a79412 167 trace_rss_stat(mm, member);
b3d1411b 168}
d559db08 169
1da177e4
LT
170/*
171 * Note: this doesn't free the actual pages themselves. That
172 * has been handled earlier when unmapping all the memory regions.
173 */
9e1b32ca
BH
174static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175 unsigned long addr)
1da177e4 176{
2f569afd 177 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 178 pmd_clear(pmd);
9e1b32ca 179 pte_free_tlb(tlb, token, addr);
c4812909 180 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
181}
182
e0da382c
HD
183static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184 unsigned long addr, unsigned long end,
185 unsigned long floor, unsigned long ceiling)
1da177e4
LT
186{
187 pmd_t *pmd;
188 unsigned long next;
e0da382c 189 unsigned long start;
1da177e4 190
e0da382c 191 start = addr;
1da177e4 192 pmd = pmd_offset(pud, addr);
1da177e4
LT
193 do {
194 next = pmd_addr_end(addr, end);
195 if (pmd_none_or_clear_bad(pmd))
196 continue;
9e1b32ca 197 free_pte_range(tlb, pmd, addr);
1da177e4
LT
198 } while (pmd++, addr = next, addr != end);
199
e0da382c
HD
200 start &= PUD_MASK;
201 if (start < floor)
202 return;
203 if (ceiling) {
204 ceiling &= PUD_MASK;
205 if (!ceiling)
206 return;
1da177e4 207 }
e0da382c
HD
208 if (end - 1 > ceiling - 1)
209 return;
210
211 pmd = pmd_offset(pud, start);
212 pud_clear(pud);
9e1b32ca 213 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 214 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
215}
216
c2febafc 217static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
1da177e4
LT
220{
221 pud_t *pud;
222 unsigned long next;
e0da382c 223 unsigned long start;
1da177e4 224
e0da382c 225 start = addr;
c2febafc 226 pud = pud_offset(p4d, addr);
1da177e4
LT
227 do {
228 next = pud_addr_end(addr, end);
229 if (pud_none_or_clear_bad(pud))
230 continue;
e0da382c 231 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
232 } while (pud++, addr = next, addr != end);
233
c2febafc
KS
234 start &= P4D_MASK;
235 if (start < floor)
236 return;
237 if (ceiling) {
238 ceiling &= P4D_MASK;
239 if (!ceiling)
240 return;
241 }
242 if (end - 1 > ceiling - 1)
243 return;
244
245 pud = pud_offset(p4d, start);
246 p4d_clear(p4d);
247 pud_free_tlb(tlb, pud, start);
b4e98d9a 248 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
249}
250
251static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252 unsigned long addr, unsigned long end,
253 unsigned long floor, unsigned long ceiling)
254{
255 p4d_t *p4d;
256 unsigned long next;
257 unsigned long start;
258
259 start = addr;
260 p4d = p4d_offset(pgd, addr);
261 do {
262 next = p4d_addr_end(addr, end);
263 if (p4d_none_or_clear_bad(p4d))
264 continue;
265 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266 } while (p4d++, addr = next, addr != end);
267
e0da382c
HD
268 start &= PGDIR_MASK;
269 if (start < floor)
270 return;
271 if (ceiling) {
272 ceiling &= PGDIR_MASK;
273 if (!ceiling)
274 return;
1da177e4 275 }
e0da382c
HD
276 if (end - 1 > ceiling - 1)
277 return;
278
c2febafc 279 p4d = p4d_offset(pgd, start);
e0da382c 280 pgd_clear(pgd);
c2febafc 281 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
282}
283
284/*
e0da382c 285 * This function frees user-level page tables of a process.
1da177e4 286 */
42b77728 287void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
288 unsigned long addr, unsigned long end,
289 unsigned long floor, unsigned long ceiling)
1da177e4
LT
290{
291 pgd_t *pgd;
292 unsigned long next;
e0da382c
HD
293
294 /*
295 * The next few lines have given us lots of grief...
296 *
297 * Why are we testing PMD* at this top level? Because often
298 * there will be no work to do at all, and we'd prefer not to
299 * go all the way down to the bottom just to discover that.
300 *
301 * Why all these "- 1"s? Because 0 represents both the bottom
302 * of the address space and the top of it (using -1 for the
303 * top wouldn't help much: the masks would do the wrong thing).
304 * The rule is that addr 0 and floor 0 refer to the bottom of
305 * the address space, but end 0 and ceiling 0 refer to the top
306 * Comparisons need to use "end - 1" and "ceiling - 1" (though
307 * that end 0 case should be mythical).
308 *
309 * Wherever addr is brought up or ceiling brought down, we must
310 * be careful to reject "the opposite 0" before it confuses the
311 * subsequent tests. But what about where end is brought down
312 * by PMD_SIZE below? no, end can't go down to 0 there.
313 *
314 * Whereas we round start (addr) and ceiling down, by different
315 * masks at different levels, in order to test whether a table
316 * now has no other vmas using it, so can be freed, we don't
317 * bother to round floor or end up - the tests don't need that.
318 */
1da177e4 319
e0da382c
HD
320 addr &= PMD_MASK;
321 if (addr < floor) {
322 addr += PMD_SIZE;
323 if (!addr)
324 return;
325 }
326 if (ceiling) {
327 ceiling &= PMD_MASK;
328 if (!ceiling)
329 return;
330 }
331 if (end - 1 > ceiling - 1)
332 end -= PMD_SIZE;
333 if (addr > end - 1)
334 return;
07e32661
AK
335 /*
336 * We add page table cache pages with PAGE_SIZE,
337 * (see pte_free_tlb()), flush the tlb if we need
338 */
ed6a7935 339 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 340 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
341 do {
342 next = pgd_addr_end(addr, end);
343 if (pgd_none_or_clear_bad(pgd))
344 continue;
c2febafc 345 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 346 } while (pgd++, addr = next, addr != end);
e0da382c
HD
347}
348
763ecb03
LH
349void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350 struct vm_area_struct *vma, unsigned long floor,
351 unsigned long ceiling)
e0da382c 352{
763ecb03
LH
353 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354
355 do {
e0da382c 356 unsigned long addr = vma->vm_start;
763ecb03
LH
357 struct vm_area_struct *next;
358
359 /*
360 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361 * be 0. This will underflow and is okay.
362 */
363 next = mas_find(&mas, ceiling - 1);
e0da382c 364
8f4f8c16 365 /*
25d9e2d1
NP
366 * Hide vma from rmap and truncate_pagecache before freeing
367 * pgtables
8f4f8c16 368 */
5beb4930 369 unlink_anon_vmas(vma);
8f4f8c16
HD
370 unlink_file_vma(vma);
371
9da61aef 372 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 373 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 374 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
375 } else {
376 /*
377 * Optimization: gather nearby vmas into one call down
378 */
379 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 380 && !is_vm_hugetlb_page(next)) {
3bf5ee95 381 vma = next;
763ecb03 382 next = mas_find(&mas, ceiling - 1);
5beb4930 383 unlink_anon_vmas(vma);
8f4f8c16 384 unlink_file_vma(vma);
3bf5ee95
HD
385 }
386 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 387 floor, next ? next->vm_start : ceiling);
3bf5ee95 388 }
e0da382c 389 vma = next;
763ecb03 390 } while (vma);
1da177e4
LT
391}
392
03c4f204 393void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 394{
03c4f204 395 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 396
8ac1f832 397 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 398 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
399 /*
400 * Ensure all pte setup (eg. pte page lock and page clearing) are
401 * visible before the pte is made visible to other CPUs by being
402 * put into page tables.
403 *
404 * The other side of the story is the pointer chasing in the page
405 * table walking code (when walking the page table without locking;
406 * ie. most of the time). Fortunately, these data accesses consist
407 * of a chain of data-dependent loads, meaning most CPUs (alpha
408 * being the notable exception) will already guarantee loads are
409 * seen in-order. See the alpha page table accessors for the
410 * smp_rmb() barriers in page table walking code.
411 */
412 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
413 pmd_populate(mm, pmd, *pte);
414 *pte = NULL;
4b471e88 415 }
c4088ebd 416 spin_unlock(ptl);
03c4f204
QZ
417}
418
4cf58924 419int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 420{
4cf58924 421 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
422 if (!new)
423 return -ENOMEM;
424
03c4f204 425 pmd_install(mm, pmd, &new);
2f569afd
MS
426 if (new)
427 pte_free(mm, new);
1bb3630e 428 return 0;
1da177e4
LT
429}
430
4cf58924 431int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 432{
4cf58924 433 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
434 if (!new)
435 return -ENOMEM;
436
437 spin_lock(&init_mm.page_table_lock);
8ac1f832 438 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 439 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 440 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 441 new = NULL;
4b471e88 442 }
1bb3630e 443 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
444 if (new)
445 pte_free_kernel(&init_mm, new);
1bb3630e 446 return 0;
1da177e4
LT
447}
448
d559db08
KH
449static inline void init_rss_vec(int *rss)
450{
451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452}
453
454static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 455{
d559db08
KH
456 int i;
457
34e55232 458 if (current->mm == mm)
05af2e10 459 sync_mm_rss(mm);
d559db08
KH
460 for (i = 0; i < NR_MM_COUNTERS; i++)
461 if (rss[i])
462 add_mm_counter(mm, i, rss[i]);
ae859762
HD
463}
464
b5810039 465/*
6aab341e
LT
466 * This function is called to print an error when a bad pte
467 * is found. For example, we might have a PFN-mapped pte in
468 * a region that doesn't allow it.
b5810039
NP
469 *
470 * The calling function must still handle the error.
471 */
3dc14741
HD
472static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 pte_t pte, struct page *page)
b5810039 474{
3dc14741 475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
476 p4d_t *p4d = p4d_offset(pgd, addr);
477 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
478 pmd_t *pmd = pmd_offset(pud, addr);
479 struct address_space *mapping;
480 pgoff_t index;
d936cf9b
HD
481 static unsigned long resume;
482 static unsigned long nr_shown;
483 static unsigned long nr_unshown;
484
485 /*
486 * Allow a burst of 60 reports, then keep quiet for that minute;
487 * or allow a steady drip of one report per second.
488 */
489 if (nr_shown == 60) {
490 if (time_before(jiffies, resume)) {
491 nr_unshown++;
492 return;
493 }
494 if (nr_unshown) {
1170532b
JP
495 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496 nr_unshown);
d936cf9b
HD
497 nr_unshown = 0;
498 }
499 nr_shown = 0;
500 }
501 if (nr_shown++ == 0)
502 resume = jiffies + 60 * HZ;
3dc14741
HD
503
504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 index = linear_page_index(vma, addr);
506
1170532b
JP
507 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
508 current->comm,
509 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 510 if (page)
f0b791a3 511 dump_page(page, "bad pte");
6aa9b8b2 512 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 513 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 514 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
515 vma->vm_file,
516 vma->vm_ops ? vma->vm_ops->fault : NULL,
517 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 518 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 519 dump_stack();
373d4d09 520 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
521}
522
ee498ed7 523/*
7e675137 524 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 525 *
7e675137
NP
526 * "Special" mappings do not wish to be associated with a "struct page" (either
527 * it doesn't exist, or it exists but they don't want to touch it). In this
528 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 529 *
7e675137
NP
530 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531 * pte bit, in which case this function is trivial. Secondly, an architecture
532 * may not have a spare pte bit, which requires a more complicated scheme,
533 * described below.
534 *
535 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536 * special mapping (even if there are underlying and valid "struct pages").
537 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 538 *
b379d790
JH
539 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
541 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542 * mapping will always honor the rule
6aab341e
LT
543 *
544 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545 *
7e675137
NP
546 * And for normal mappings this is false.
547 *
548 * This restricts such mappings to be a linear translation from virtual address
549 * to pfn. To get around this restriction, we allow arbitrary mappings so long
550 * as the vma is not a COW mapping; in that case, we know that all ptes are
551 * special (because none can have been COWed).
b379d790 552 *
b379d790 553 *
7e675137 554 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
555 *
556 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557 * page" backing, however the difference is that _all_ pages with a struct
558 * page (that is, those where pfn_valid is true) are refcounted and considered
559 * normal pages by the VM. The disadvantage is that pages are refcounted
560 * (which can be slower and simply not an option for some PFNMAP users). The
561 * advantage is that we don't have to follow the strict linearity rule of
562 * PFNMAP mappings in order to support COWable mappings.
563 *
ee498ed7 564 */
25b2995a
CH
565struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566 pte_t pte)
ee498ed7 567{
22b31eec 568 unsigned long pfn = pte_pfn(pte);
7e675137 569
00b3a331 570 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 571 if (likely(!pte_special(pte)))
22b31eec 572 goto check_pfn;
667a0a06
DV
573 if (vma->vm_ops && vma->vm_ops->find_special_page)
574 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
575 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576 return NULL;
df6ad698
JG
577 if (is_zero_pfn(pfn))
578 return NULL;
e1fb4a08 579 if (pte_devmap(pte))
3218f871
AS
580 /*
581 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582 * and will have refcounts incremented on their struct pages
583 * when they are inserted into PTEs, thus they are safe to
584 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585 * do not have refcounts. Example of legacy ZONE_DEVICE is
586 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587 */
e1fb4a08
DJ
588 return NULL;
589
df6ad698 590 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
591 return NULL;
592 }
593
00b3a331 594 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 595
b379d790
JH
596 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597 if (vma->vm_flags & VM_MIXEDMAP) {
598 if (!pfn_valid(pfn))
599 return NULL;
600 goto out;
601 } else {
7e675137
NP
602 unsigned long off;
603 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
604 if (pfn == vma->vm_pgoff + off)
605 return NULL;
606 if (!is_cow_mapping(vma->vm_flags))
607 return NULL;
608 }
6aab341e
LT
609 }
610
b38af472
HD
611 if (is_zero_pfn(pfn))
612 return NULL;
00b3a331 613
22b31eec
HD
614check_pfn:
615 if (unlikely(pfn > highest_memmap_pfn)) {
616 print_bad_pte(vma, addr, pte, NULL);
617 return NULL;
618 }
6aab341e
LT
619
620 /*
7e675137 621 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 622 * eg. VDSO mappings can cause them to exist.
6aab341e 623 */
b379d790 624out:
6aab341e 625 return pfn_to_page(pfn);
ee498ed7
HD
626}
627
318e9342
VMO
628struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
629 pte_t pte)
630{
631 struct page *page = vm_normal_page(vma, addr, pte);
632
633 if (page)
634 return page_folio(page);
635 return NULL;
636}
637
28093f9f
GS
638#ifdef CONFIG_TRANSPARENT_HUGEPAGE
639struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
640 pmd_t pmd)
641{
642 unsigned long pfn = pmd_pfn(pmd);
643
644 /*
645 * There is no pmd_special() but there may be special pmds, e.g.
646 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 647 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
648 */
649 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
650 if (vma->vm_flags & VM_MIXEDMAP) {
651 if (!pfn_valid(pfn))
652 return NULL;
653 goto out;
654 } else {
655 unsigned long off;
656 off = (addr - vma->vm_start) >> PAGE_SHIFT;
657 if (pfn == vma->vm_pgoff + off)
658 return NULL;
659 if (!is_cow_mapping(vma->vm_flags))
660 return NULL;
661 }
662 }
663
e1fb4a08
DJ
664 if (pmd_devmap(pmd))
665 return NULL;
3cde287b 666 if (is_huge_zero_pmd(pmd))
28093f9f
GS
667 return NULL;
668 if (unlikely(pfn > highest_memmap_pfn))
669 return NULL;
670
671 /*
672 * NOTE! We still have PageReserved() pages in the page tables.
673 * eg. VDSO mappings can cause them to exist.
674 */
675out:
676 return pfn_to_page(pfn);
677}
678#endif
679
b756a3b5
AP
680static void restore_exclusive_pte(struct vm_area_struct *vma,
681 struct page *page, unsigned long address,
682 pte_t *ptep)
683{
684 pte_t pte;
685 swp_entry_t entry;
686
687 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
688 if (pte_swp_soft_dirty(*ptep))
689 pte = pte_mksoft_dirty(pte);
690
691 entry = pte_to_swp_entry(*ptep);
692 if (pte_swp_uffd_wp(*ptep))
693 pte = pte_mkuffd_wp(pte);
694 else if (is_writable_device_exclusive_entry(entry))
695 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
696
6c287605
DH
697 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
698
b756a3b5
AP
699 /*
700 * No need to take a page reference as one was already
701 * created when the swap entry was made.
702 */
703 if (PageAnon(page))
f1e2db12 704 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
705 else
706 /*
707 * Currently device exclusive access only supports anonymous
708 * memory so the entry shouldn't point to a filebacked page.
709 */
4d8ff640 710 WARN_ON_ONCE(1);
b756a3b5 711
1eba86c0
PT
712 set_pte_at(vma->vm_mm, address, ptep, pte);
713
b756a3b5
AP
714 /*
715 * No need to invalidate - it was non-present before. However
716 * secondary CPUs may have mappings that need invalidating.
717 */
718 update_mmu_cache(vma, address, ptep);
719}
720
721/*
722 * Tries to restore an exclusive pte if the page lock can be acquired without
723 * sleeping.
724 */
725static int
726try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
727 unsigned long addr)
728{
729 swp_entry_t entry = pte_to_swp_entry(*src_pte);
730 struct page *page = pfn_swap_entry_to_page(entry);
731
732 if (trylock_page(page)) {
733 restore_exclusive_pte(vma, page, addr, src_pte);
734 unlock_page(page);
735 return 0;
736 }
737
738 return -EBUSY;
739}
740
1da177e4
LT
741/*
742 * copy one vm_area from one task to the other. Assumes the page tables
743 * already present in the new task to be cleared in the whole range
744 * covered by this vma.
1da177e4
LT
745 */
746
df3a57d1
LT
747static unsigned long
748copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
749 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
750 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 751{
8f34f1ea 752 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
753 pte_t pte = *src_pte;
754 struct page *page;
df3a57d1
LT
755 swp_entry_t entry = pte_to_swp_entry(pte);
756
757 if (likely(!non_swap_entry(entry))) {
758 if (swap_duplicate(entry) < 0)
9a5cc85c 759 return -EIO;
df3a57d1
LT
760
761 /* make sure dst_mm is on swapoff's mmlist. */
762 if (unlikely(list_empty(&dst_mm->mmlist))) {
763 spin_lock(&mmlist_lock);
764 if (list_empty(&dst_mm->mmlist))
765 list_add(&dst_mm->mmlist,
766 &src_mm->mmlist);
767 spin_unlock(&mmlist_lock);
768 }
1493a191
DH
769 /* Mark the swap entry as shared. */
770 if (pte_swp_exclusive(*src_pte)) {
771 pte = pte_swp_clear_exclusive(*src_pte);
772 set_pte_at(src_mm, addr, src_pte, pte);
773 }
df3a57d1
LT
774 rss[MM_SWAPENTS]++;
775 } else if (is_migration_entry(entry)) {
af5cdaf8 776 page = pfn_swap_entry_to_page(entry);
1da177e4 777
df3a57d1 778 rss[mm_counter(page)]++;
5042db43 779
6c287605 780 if (!is_readable_migration_entry(entry) &&
df3a57d1 781 is_cow_mapping(vm_flags)) {
5042db43 782 /*
6c287605
DH
783 * COW mappings require pages in both parent and child
784 * to be set to read. A previously exclusive entry is
785 * now shared.
5042db43 786 */
4dd845b5
AP
787 entry = make_readable_migration_entry(
788 swp_offset(entry));
df3a57d1
LT
789 pte = swp_entry_to_pte(entry);
790 if (pte_swp_soft_dirty(*src_pte))
791 pte = pte_swp_mksoft_dirty(pte);
792 if (pte_swp_uffd_wp(*src_pte))
793 pte = pte_swp_mkuffd_wp(pte);
794 set_pte_at(src_mm, addr, src_pte, pte);
795 }
796 } else if (is_device_private_entry(entry)) {
af5cdaf8 797 page = pfn_swap_entry_to_page(entry);
5042db43 798
df3a57d1
LT
799 /*
800 * Update rss count even for unaddressable pages, as
801 * they should treated just like normal pages in this
802 * respect.
803 *
804 * We will likely want to have some new rss counters
805 * for unaddressable pages, at some point. But for now
806 * keep things as they are.
807 */
808 get_page(page);
809 rss[mm_counter(page)]++;
fb3d824d
DH
810 /* Cannot fail as these pages cannot get pinned. */
811 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
812
813 /*
814 * We do not preserve soft-dirty information, because so
815 * far, checkpoint/restore is the only feature that
816 * requires that. And checkpoint/restore does not work
817 * when a device driver is involved (you cannot easily
818 * save and restore device driver state).
819 */
4dd845b5 820 if (is_writable_device_private_entry(entry) &&
df3a57d1 821 is_cow_mapping(vm_flags)) {
4dd845b5
AP
822 entry = make_readable_device_private_entry(
823 swp_offset(entry));
df3a57d1
LT
824 pte = swp_entry_to_pte(entry);
825 if (pte_swp_uffd_wp(*src_pte))
826 pte = pte_swp_mkuffd_wp(pte);
827 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 828 }
b756a3b5
AP
829 } else if (is_device_exclusive_entry(entry)) {
830 /*
831 * Make device exclusive entries present by restoring the
832 * original entry then copying as for a present pte. Device
833 * exclusive entries currently only support private writable
834 * (ie. COW) mappings.
835 */
836 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
837 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
838 return -EBUSY;
839 return -ENOENT;
c56d1b62 840 } else if (is_pte_marker_entry(entry)) {
7e3ce3f8 841 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
49d6d7fb 842 set_pte_at(dst_mm, addr, dst_pte, pte);
c56d1b62 843 return 0;
1da177e4 844 }
8f34f1ea
PX
845 if (!userfaultfd_wp(dst_vma))
846 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
847 set_pte_at(dst_mm, addr, dst_pte, pte);
848 return 0;
849}
850
70e806e4 851/*
b51ad4f8 852 * Copy a present and normal page.
70e806e4 853 *
b51ad4f8
DH
854 * NOTE! The usual case is that this isn't required;
855 * instead, the caller can just increase the page refcount
856 * and re-use the pte the traditional way.
70e806e4
PX
857 *
858 * And if we need a pre-allocated page but don't yet have
859 * one, return a negative error to let the preallocation
860 * code know so that it can do so outside the page table
861 * lock.
862 */
863static inline int
c78f4636
PX
864copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
865 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
b51ad4f8 866 struct page **prealloc, struct page *page)
70e806e4
PX
867{
868 struct page *new_page;
b51ad4f8 869 pte_t pte;
70e806e4 870
70e806e4
PX
871 new_page = *prealloc;
872 if (!new_page)
873 return -EAGAIN;
874
875 /*
876 * We have a prealloc page, all good! Take it
877 * over and copy the page & arm it.
878 */
879 *prealloc = NULL;
c78f4636 880 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 881 __SetPageUptodate(new_page);
40f2bbf7 882 page_add_new_anon_rmap(new_page, dst_vma, addr);
c78f4636 883 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
884 rss[mm_counter(new_page)]++;
885
886 /* All done, just insert the new page copy in the child */
c78f4636
PX
887 pte = mk_pte(new_page, dst_vma->vm_page_prot);
888 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
889 if (userfaultfd_pte_wp(dst_vma, *src_pte))
890 /* Uffd-wp needs to be delivered to dest pte as well */
f1eb1bac 891 pte = pte_mkuffd_wp(pte);
c78f4636 892 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
893 return 0;
894}
895
896/*
897 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
898 * is required to copy this pte.
899 */
900static inline int
c78f4636
PX
901copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903 struct page **prealloc)
df3a57d1 904{
c78f4636
PX
905 struct mm_struct *src_mm = src_vma->vm_mm;
906 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
907 pte_t pte = *src_pte;
908 struct page *page;
909
c78f4636 910 page = vm_normal_page(src_vma, addr, pte);
fb3d824d 911 if (page && PageAnon(page)) {
b51ad4f8
DH
912 /*
913 * If this page may have been pinned by the parent process,
914 * copy the page immediately for the child so that we'll always
915 * guarantee the pinned page won't be randomly replaced in the
916 * future.
917 */
70e806e4 918 get_page(page);
fb3d824d
DH
919 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
920 /* Page maybe pinned, we have to copy. */
921 put_page(page);
922 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
923 addr, rss, prealloc, page);
924 }
925 rss[mm_counter(page)]++;
b51ad4f8 926 } else if (page) {
70e806e4 927 get_page(page);
fb3d824d 928 page_dup_file_rmap(page, false);
70e806e4
PX
929 rss[mm_counter(page)]++;
930 }
931
1da177e4
LT
932 /*
933 * If it's a COW mapping, write protect it both
934 * in the parent and the child
935 */
1b2de5d0 936 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 937 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 938 pte = pte_wrprotect(pte);
1da177e4 939 }
6c287605 940 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
1da177e4
LT
941
942 /*
943 * If it's a shared mapping, mark it clean in
944 * the child
945 */
946 if (vm_flags & VM_SHARED)
947 pte = pte_mkclean(pte);
948 pte = pte_mkold(pte);
6aab341e 949
8f34f1ea 950 if (!userfaultfd_wp(dst_vma))
b569a176
PX
951 pte = pte_clear_uffd_wp(pte);
952
c78f4636 953 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
954 return 0;
955}
956
957static inline struct page *
958page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
959 unsigned long addr)
960{
961 struct page *new_page;
962
963 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
964 if (!new_page)
965 return NULL;
966
8f425e4e 967 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
70e806e4
PX
968 put_page(new_page);
969 return NULL;
6aab341e 970 }
70e806e4 971 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 972
70e806e4 973 return new_page;
1da177e4
LT
974}
975
c78f4636
PX
976static int
977copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
978 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
979 unsigned long end)
1da177e4 980{
c78f4636
PX
981 struct mm_struct *dst_mm = dst_vma->vm_mm;
982 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 983 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 984 pte_t *src_pte, *dst_pte;
c74df32c 985 spinlock_t *src_ptl, *dst_ptl;
70e806e4 986 int progress, ret = 0;
d559db08 987 int rss[NR_MM_COUNTERS];
570a335b 988 swp_entry_t entry = (swp_entry_t){0};
70e806e4 989 struct page *prealloc = NULL;
1da177e4
LT
990
991again:
70e806e4 992 progress = 0;
d559db08
KH
993 init_rss_vec(rss);
994
c74df32c 995 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
996 if (!dst_pte) {
997 ret = -ENOMEM;
998 goto out;
999 }
ece0e2b6 1000 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1001 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1002 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1003 orig_src_pte = src_pte;
1004 orig_dst_pte = dst_pte;
6606c3e0 1005 arch_enter_lazy_mmu_mode();
1da177e4 1006
1da177e4
LT
1007 do {
1008 /*
1009 * We are holding two locks at this point - either of them
1010 * could generate latencies in another task on another CPU.
1011 */
e040f218
HD
1012 if (progress >= 32) {
1013 progress = 0;
1014 if (need_resched() ||
95c354fe 1015 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1016 break;
1017 }
1da177e4
LT
1018 if (pte_none(*src_pte)) {
1019 progress++;
1020 continue;
1021 }
79a1971c 1022 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1023 ret = copy_nonpresent_pte(dst_mm, src_mm,
1024 dst_pte, src_pte,
1025 dst_vma, src_vma,
1026 addr, rss);
1027 if (ret == -EIO) {
1028 entry = pte_to_swp_entry(*src_pte);
79a1971c 1029 break;
b756a3b5
AP
1030 } else if (ret == -EBUSY) {
1031 break;
1032 } else if (!ret) {
1033 progress += 8;
1034 continue;
9a5cc85c 1035 }
b756a3b5
AP
1036
1037 /*
1038 * Device exclusive entry restored, continue by copying
1039 * the now present pte.
1040 */
1041 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1042 }
70e806e4 1043 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1044 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1045 addr, rss, &prealloc);
70e806e4
PX
1046 /*
1047 * If we need a pre-allocated page for this pte, drop the
1048 * locks, allocate, and try again.
1049 */
1050 if (unlikely(ret == -EAGAIN))
1051 break;
1052 if (unlikely(prealloc)) {
1053 /*
1054 * pre-alloc page cannot be reused by next time so as
1055 * to strictly follow mempolicy (e.g., alloc_page_vma()
1056 * will allocate page according to address). This
1057 * could only happen if one pinned pte changed.
1058 */
1059 put_page(prealloc);
1060 prealloc = NULL;
1061 }
1da177e4
LT
1062 progress += 8;
1063 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1064
6606c3e0 1065 arch_leave_lazy_mmu_mode();
c74df32c 1066 spin_unlock(src_ptl);
ece0e2b6 1067 pte_unmap(orig_src_pte);
d559db08 1068 add_mm_rss_vec(dst_mm, rss);
c36987e2 1069 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1070 cond_resched();
570a335b 1071
9a5cc85c
AP
1072 if (ret == -EIO) {
1073 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1074 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1075 ret = -ENOMEM;
1076 goto out;
1077 }
1078 entry.val = 0;
b756a3b5
AP
1079 } else if (ret == -EBUSY) {
1080 goto out;
9a5cc85c 1081 } else if (ret == -EAGAIN) {
c78f4636 1082 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1083 if (!prealloc)
570a335b 1084 return -ENOMEM;
9a5cc85c
AP
1085 } else if (ret) {
1086 VM_WARN_ON_ONCE(1);
570a335b 1087 }
9a5cc85c
AP
1088
1089 /* We've captured and resolved the error. Reset, try again. */
1090 ret = 0;
1091
1da177e4
LT
1092 if (addr != end)
1093 goto again;
70e806e4
PX
1094out:
1095 if (unlikely(prealloc))
1096 put_page(prealloc);
1097 return ret;
1da177e4
LT
1098}
1099
c78f4636
PX
1100static inline int
1101copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1102 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1103 unsigned long end)
1da177e4 1104{
c78f4636
PX
1105 struct mm_struct *dst_mm = dst_vma->vm_mm;
1106 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1107 pmd_t *src_pmd, *dst_pmd;
1108 unsigned long next;
1109
1110 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1111 if (!dst_pmd)
1112 return -ENOMEM;
1113 src_pmd = pmd_offset(src_pud, addr);
1114 do {
1115 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1116 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1117 || pmd_devmap(*src_pmd)) {
71e3aac0 1118 int err;
c78f4636 1119 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1120 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1121 addr, dst_vma, src_vma);
71e3aac0
AA
1122 if (err == -ENOMEM)
1123 return -ENOMEM;
1124 if (!err)
1125 continue;
1126 /* fall through */
1127 }
1da177e4
LT
1128 if (pmd_none_or_clear_bad(src_pmd))
1129 continue;
c78f4636
PX
1130 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1131 addr, next))
1da177e4
LT
1132 return -ENOMEM;
1133 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1134 return 0;
1135}
1136
c78f4636
PX
1137static inline int
1138copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1140 unsigned long end)
1da177e4 1141{
c78f4636
PX
1142 struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1144 pud_t *src_pud, *dst_pud;
1145 unsigned long next;
1146
c2febafc 1147 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1148 if (!dst_pud)
1149 return -ENOMEM;
c2febafc 1150 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1151 do {
1152 next = pud_addr_end(addr, end);
a00cc7d9
MW
1153 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1154 int err;
1155
c78f4636 1156 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1157 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1158 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1159 if (err == -ENOMEM)
1160 return -ENOMEM;
1161 if (!err)
1162 continue;
1163 /* fall through */
1164 }
1da177e4
LT
1165 if (pud_none_or_clear_bad(src_pud))
1166 continue;
c78f4636
PX
1167 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1168 addr, next))
1da177e4
LT
1169 return -ENOMEM;
1170 } while (dst_pud++, src_pud++, addr = next, addr != end);
1171 return 0;
1172}
1173
c78f4636
PX
1174static inline int
1175copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1177 unsigned long end)
c2febafc 1178{
c78f4636 1179 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1180 p4d_t *src_p4d, *dst_p4d;
1181 unsigned long next;
1182
1183 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1184 if (!dst_p4d)
1185 return -ENOMEM;
1186 src_p4d = p4d_offset(src_pgd, addr);
1187 do {
1188 next = p4d_addr_end(addr, end);
1189 if (p4d_none_or_clear_bad(src_p4d))
1190 continue;
c78f4636
PX
1191 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1192 addr, next))
c2febafc
KS
1193 return -ENOMEM;
1194 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1195 return 0;
1196}
1197
c56d1b62
PX
1198/*
1199 * Return true if the vma needs to copy the pgtable during this fork(). Return
1200 * false when we can speed up fork() by allowing lazy page faults later until
1201 * when the child accesses the memory range.
1202 */
bc70fbf2 1203static bool
c56d1b62
PX
1204vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1205{
1206 /*
1207 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1208 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1209 * contains uffd-wp protection information, that's something we can't
1210 * retrieve from page cache, and skip copying will lose those info.
1211 */
1212 if (userfaultfd_wp(dst_vma))
1213 return true;
1214
bcd51a3c 1215 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1216 return true;
1217
1218 if (src_vma->anon_vma)
1219 return true;
1220
1221 /*
1222 * Don't copy ptes where a page fault will fill them correctly. Fork
1223 * becomes much lighter when there are big shared or private readonly
1224 * mappings. The tradeoff is that copy_page_range is more efficient
1225 * than faulting.
1226 */
1227 return false;
1228}
1229
c78f4636
PX
1230int
1231copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1232{
1233 pgd_t *src_pgd, *dst_pgd;
1234 unsigned long next;
c78f4636
PX
1235 unsigned long addr = src_vma->vm_start;
1236 unsigned long end = src_vma->vm_end;
1237 struct mm_struct *dst_mm = dst_vma->vm_mm;
1238 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1239 struct mmu_notifier_range range;
2ec74c3e 1240 bool is_cow;
cddb8a5c 1241 int ret;
1da177e4 1242
c56d1b62 1243 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1244 return 0;
d992895b 1245
c78f4636 1246 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1247 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1248
c78f4636 1249 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1250 /*
1251 * We do not free on error cases below as remove_vma
1252 * gets called on error from higher level routine
1253 */
c78f4636 1254 ret = track_pfn_copy(src_vma);
2ab64037 1255 if (ret)
1256 return ret;
1257 }
1258
cddb8a5c
AA
1259 /*
1260 * We need to invalidate the secondary MMU mappings only when
1261 * there could be a permission downgrade on the ptes of the
1262 * parent mm. And a permission downgrade will only happen if
1263 * is_cow_mapping() returns true.
1264 */
c78f4636 1265 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1266
1267 if (is_cow) {
7269f999 1268 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
7d4a8be0 1269 0, src_mm, addr, end);
ac46d4f3 1270 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1271 /*
1272 * Disabling preemption is not needed for the write side, as
1273 * the read side doesn't spin, but goes to the mmap_lock.
1274 *
1275 * Use the raw variant of the seqcount_t write API to avoid
1276 * lockdep complaining about preemptibility.
1277 */
1278 mmap_assert_write_locked(src_mm);
1279 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1280 }
cddb8a5c
AA
1281
1282 ret = 0;
1da177e4
LT
1283 dst_pgd = pgd_offset(dst_mm, addr);
1284 src_pgd = pgd_offset(src_mm, addr);
1285 do {
1286 next = pgd_addr_end(addr, end);
1287 if (pgd_none_or_clear_bad(src_pgd))
1288 continue;
c78f4636
PX
1289 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1290 addr, next))) {
cddb8a5c
AA
1291 ret = -ENOMEM;
1292 break;
1293 }
1da177e4 1294 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1295
57efa1fe
JG
1296 if (is_cow) {
1297 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1298 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1299 }
cddb8a5c 1300 return ret;
1da177e4
LT
1301}
1302
5abfd71d
PX
1303/* Whether we should zap all COWed (private) pages too */
1304static inline bool should_zap_cows(struct zap_details *details)
1305{
1306 /* By default, zap all pages */
1307 if (!details)
1308 return true;
1309
1310 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1311 return details->even_cows;
5abfd71d
PX
1312}
1313
2e148f1e 1314/* Decides whether we should zap this page with the page pointer specified */
254ab940 1315static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1316{
5abfd71d
PX
1317 /* If we can make a decision without *page.. */
1318 if (should_zap_cows(details))
254ab940 1319 return true;
5abfd71d
PX
1320
1321 /* E.g. the caller passes NULL for the case of a zero page */
1322 if (!page)
254ab940 1323 return true;
3506659e 1324
2e148f1e
PX
1325 /* Otherwise we should only zap non-anon pages */
1326 return !PageAnon(page);
3506659e
MWO
1327}
1328
999dad82
PX
1329static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1330{
1331 if (!details)
1332 return false;
1333
1334 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1335}
1336
1337/*
1338 * This function makes sure that we'll replace the none pte with an uffd-wp
1339 * swap special pte marker when necessary. Must be with the pgtable lock held.
1340 */
1341static inline void
1342zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1343 unsigned long addr, pte_t *pte,
1344 struct zap_details *details, pte_t pteval)
1345{
1346 if (zap_drop_file_uffd_wp(details))
1347 return;
1348
1349 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1350}
1351
51c6f666 1352static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1353 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1354 unsigned long addr, unsigned long end,
97a89413 1355 struct zap_details *details)
1da177e4 1356{
b5810039 1357 struct mm_struct *mm = tlb->mm;
d16dfc55 1358 int force_flush = 0;
d559db08 1359 int rss[NR_MM_COUNTERS];
97a89413 1360 spinlock_t *ptl;
5f1a1907 1361 pte_t *start_pte;
97a89413 1362 pte_t *pte;
8a5f14a2 1363 swp_entry_t entry;
d559db08 1364
ed6a7935 1365 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1366again:
e303297e 1367 init_rss_vec(rss);
5f1a1907
SR
1368 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1369 pte = start_pte;
3ea27719 1370 flush_tlb_batched_pending(mm);
6606c3e0 1371 arch_enter_lazy_mmu_mode();
1da177e4
LT
1372 do {
1373 pte_t ptent = *pte;
8018db85
PX
1374 struct page *page;
1375
166f61b9 1376 if (pte_none(ptent))
1da177e4 1377 continue;
6f5e6b9e 1378
7b167b68
MK
1379 if (need_resched())
1380 break;
1381
1da177e4 1382 if (pte_present(ptent)) {
5df397de
LT
1383 unsigned int delay_rmap;
1384
25b2995a 1385 page = vm_normal_page(vma, addr, ptent);
254ab940 1386 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1387 continue;
b5810039 1388 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1389 tlb->fullmm);
1da177e4 1390 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1391 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1392 ptent);
1da177e4
LT
1393 if (unlikely(!page))
1394 continue;
eca56ff9 1395
5df397de 1396 delay_rmap = 0;
eca56ff9 1397 if (!PageAnon(page)) {
1cf35d47 1398 if (pte_dirty(ptent)) {
6237bcd9 1399 set_page_dirty(page);
5df397de
LT
1400 if (tlb_delay_rmap(tlb)) {
1401 delay_rmap = 1;
1402 force_flush = 1;
1403 }
1cf35d47 1404 }
8788f678 1405 if (pte_young(ptent) && likely(vma_has_recency(vma)))
bf3f3bc5 1406 mark_page_accessed(page);
6237bcd9 1407 }
eca56ff9 1408 rss[mm_counter(page)]--;
5df397de
LT
1409 if (!delay_rmap) {
1410 page_remove_rmap(page, vma, false);
1411 if (unlikely(page_mapcount(page) < 0))
1412 print_bad_pte(vma, addr, ptent, page);
1413 }
1414 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1cf35d47 1415 force_flush = 1;
ce9ec37b 1416 addr += PAGE_SIZE;
d16dfc55 1417 break;
1cf35d47 1418 }
1da177e4
LT
1419 continue;
1420 }
5042db43
JG
1421
1422 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1423 if (is_device_private_entry(entry) ||
1424 is_device_exclusive_entry(entry)) {
8018db85 1425 page = pfn_swap_entry_to_page(entry);
254ab940 1426 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1427 continue;
999dad82
PX
1428 /*
1429 * Both device private/exclusive mappings should only
1430 * work with anonymous page so far, so we don't need to
1431 * consider uffd-wp bit when zap. For more information,
1432 * see zap_install_uffd_wp_if_needed().
1433 */
1434 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1435 rss[mm_counter(page)]--;
b756a3b5 1436 if (is_device_private_entry(entry))
cea86fe2 1437 page_remove_rmap(page, vma, false);
5042db43 1438 put_page(page);
8018db85 1439 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1440 /* Genuine swap entry, hence a private anon page */
1441 if (!should_zap_cows(details))
1442 continue;
8a5f14a2 1443 rss[MM_SWAPENTS]--;
8018db85
PX
1444 if (unlikely(!free_swap_and_cache(entry)))
1445 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1446 } else if (is_migration_entry(entry)) {
af5cdaf8 1447 page = pfn_swap_entry_to_page(entry);
254ab940 1448 if (!should_zap_page(details, page))
5abfd71d 1449 continue;
eca56ff9 1450 rss[mm_counter(page)]--;
999dad82
PX
1451 } else if (pte_marker_entry_uffd_wp(entry)) {
1452 /* Only drop the uffd-wp marker if explicitly requested */
1453 if (!zap_drop_file_uffd_wp(details))
1454 continue;
9f186f9e
ML
1455 } else if (is_hwpoison_entry(entry) ||
1456 is_swapin_error_entry(entry)) {
5abfd71d
PX
1457 if (!should_zap_cows(details))
1458 continue;
1459 } else {
1460 /* We should have covered all the swap entry types */
1461 WARN_ON_ONCE(1);
b084d435 1462 }
9888a1ca 1463 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1464 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1465 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1466
d559db08 1467 add_mm_rss_vec(mm, rss);
6606c3e0 1468 arch_leave_lazy_mmu_mode();
51c6f666 1469
1cf35d47 1470 /* Do the actual TLB flush before dropping ptl */
5df397de 1471 if (force_flush) {
1cf35d47 1472 tlb_flush_mmu_tlbonly(tlb);
f036c818 1473 tlb_flush_rmaps(tlb, vma);
5df397de 1474 }
1cf35d47
LT
1475 pte_unmap_unlock(start_pte, ptl);
1476
1477 /*
1478 * If we forced a TLB flush (either due to running out of
1479 * batch buffers or because we needed to flush dirty TLB
1480 * entries before releasing the ptl), free the batched
1481 * memory too. Restart if we didn't do everything.
1482 */
1483 if (force_flush) {
1484 force_flush = 0;
fa0aafb8 1485 tlb_flush_mmu(tlb);
7b167b68
MK
1486 }
1487
1488 if (addr != end) {
1489 cond_resched();
1490 goto again;
d16dfc55
PZ
1491 }
1492
51c6f666 1493 return addr;
1da177e4
LT
1494}
1495
51c6f666 1496static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1497 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1498 unsigned long addr, unsigned long end,
97a89413 1499 struct zap_details *details)
1da177e4
LT
1500{
1501 pmd_t *pmd;
1502 unsigned long next;
1503
1504 pmd = pmd_offset(pud, addr);
1505 do {
1506 next = pmd_addr_end(addr, end);
84c3fc4e 1507 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1508 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1509 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1510 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1511 goto next;
71e3aac0 1512 /* fall through */
3506659e
MWO
1513 } else if (details && details->single_folio &&
1514 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1515 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1516 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1517 /*
1518 * Take and drop THP pmd lock so that we cannot return
1519 * prematurely, while zap_huge_pmd() has cleared *pmd,
1520 * but not yet decremented compound_mapcount().
1521 */
1522 spin_unlock(ptl);
71e3aac0 1523 }
22061a1f 1524
1a5a9906
AA
1525 /*
1526 * Here there can be other concurrent MADV_DONTNEED or
1527 * trans huge page faults running, and if the pmd is
1528 * none or trans huge it can change under us. This is
c1e8d7c6 1529 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1530 * mode.
1531 */
1532 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1533 goto next;
97a89413 1534 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1535next:
97a89413
PZ
1536 cond_resched();
1537 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1538
1539 return addr;
1da177e4
LT
1540}
1541
51c6f666 1542static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1543 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1544 unsigned long addr, unsigned long end,
97a89413 1545 struct zap_details *details)
1da177e4
LT
1546{
1547 pud_t *pud;
1548 unsigned long next;
1549
c2febafc 1550 pud = pud_offset(p4d, addr);
1da177e4
LT
1551 do {
1552 next = pud_addr_end(addr, end);
a00cc7d9
MW
1553 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1554 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1555 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1556 split_huge_pud(vma, pud, addr);
1557 } else if (zap_huge_pud(tlb, vma, pud, addr))
1558 goto next;
1559 /* fall through */
1560 }
97a89413 1561 if (pud_none_or_clear_bad(pud))
1da177e4 1562 continue;
97a89413 1563 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1564next:
1565 cond_resched();
97a89413 1566 } while (pud++, addr = next, addr != end);
51c6f666
RH
1567
1568 return addr;
1da177e4
LT
1569}
1570
c2febafc
KS
1571static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1572 struct vm_area_struct *vma, pgd_t *pgd,
1573 unsigned long addr, unsigned long end,
1574 struct zap_details *details)
1575{
1576 p4d_t *p4d;
1577 unsigned long next;
1578
1579 p4d = p4d_offset(pgd, addr);
1580 do {
1581 next = p4d_addr_end(addr, end);
1582 if (p4d_none_or_clear_bad(p4d))
1583 continue;
1584 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1585 } while (p4d++, addr = next, addr != end);
1586
1587 return addr;
1588}
1589
aac45363 1590void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1591 struct vm_area_struct *vma,
1592 unsigned long addr, unsigned long end,
1593 struct zap_details *details)
1da177e4
LT
1594{
1595 pgd_t *pgd;
1596 unsigned long next;
1597
1da177e4
LT
1598 BUG_ON(addr >= end);
1599 tlb_start_vma(tlb, vma);
1600 pgd = pgd_offset(vma->vm_mm, addr);
1601 do {
1602 next = pgd_addr_end(addr, end);
97a89413 1603 if (pgd_none_or_clear_bad(pgd))
1da177e4 1604 continue;
c2febafc 1605 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1606 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1607 tlb_end_vma(tlb, vma);
1608}
51c6f666 1609
f5cc4eef
AV
1610
1611static void unmap_single_vma(struct mmu_gather *tlb,
1612 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1613 unsigned long end_addr,
f5cc4eef
AV
1614 struct zap_details *details)
1615{
1616 unsigned long start = max(vma->vm_start, start_addr);
1617 unsigned long end;
1618
1619 if (start >= vma->vm_end)
1620 return;
1621 end = min(vma->vm_end, end_addr);
1622 if (end <= vma->vm_start)
1623 return;
1624
cbc91f71
SD
1625 if (vma->vm_file)
1626 uprobe_munmap(vma, start, end);
1627
b3b9c293 1628 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1629 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1630
1631 if (start != end) {
1632 if (unlikely(is_vm_hugetlb_page(vma))) {
1633 /*
1634 * It is undesirable to test vma->vm_file as it
1635 * should be non-null for valid hugetlb area.
1636 * However, vm_file will be NULL in the error
7aa6b4ad 1637 * cleanup path of mmap_region. When
f5cc4eef 1638 * hugetlbfs ->mmap method fails,
7aa6b4ad 1639 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1640 * before calling this function to clean up.
1641 * Since no pte has actually been setup, it is
1642 * safe to do nothing in this case.
1643 */
24669e58 1644 if (vma->vm_file) {
05e90bd0
PX
1645 zap_flags_t zap_flags = details ?
1646 details->zap_flags : 0;
05e90bd0
PX
1647 __unmap_hugepage_range_final(tlb, vma, start, end,
1648 NULL, zap_flags);
24669e58 1649 }
f5cc4eef
AV
1650 } else
1651 unmap_page_range(tlb, vma, start, end, details);
1652 }
1da177e4
LT
1653}
1654
1da177e4
LT
1655/**
1656 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1657 * @tlb: address of the caller's struct mmu_gather
763ecb03 1658 * @mt: the maple tree
1da177e4
LT
1659 * @vma: the starting vma
1660 * @start_addr: virtual address at which to start unmapping
1661 * @end_addr: virtual address at which to end unmapping
1da177e4 1662 *
508034a3 1663 * Unmap all pages in the vma list.
1da177e4 1664 *
1da177e4
LT
1665 * Only addresses between `start' and `end' will be unmapped.
1666 *
1667 * The VMA list must be sorted in ascending virtual address order.
1668 *
1669 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1670 * range after unmap_vmas() returns. So the only responsibility here is to
1671 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1672 * drops the lock and schedules.
1673 */
763ecb03 1674void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1da177e4 1675 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1676 unsigned long end_addr)
1da177e4 1677{
ac46d4f3 1678 struct mmu_notifier_range range;
999dad82 1679 struct zap_details details = {
04ada095 1680 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1681 /* Careful - we need to zap private pages too! */
1682 .even_cows = true,
1683 };
763ecb03 1684 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1da177e4 1685
7d4a8be0 1686 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
6f4f13e8 1687 start_addr, end_addr);
ac46d4f3 1688 mmu_notifier_invalidate_range_start(&range);
763ecb03 1689 do {
999dad82 1690 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
763ecb03 1691 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
ac46d4f3 1692 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1693}
1694
f5cc4eef
AV
1695/**
1696 * zap_page_range_single - remove user pages in a given range
1697 * @vma: vm_area_struct holding the applicable pages
1698 * @address: starting address of pages to zap
1699 * @size: number of bytes to zap
8a5f14a2 1700 * @details: details of shared cache invalidation
f5cc4eef
AV
1701 *
1702 * The range must fit into one VMA.
1da177e4 1703 */
21b85b09 1704void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1705 unsigned long size, struct zap_details *details)
1706{
21b85b09 1707 const unsigned long end = address + size;
ac46d4f3 1708 struct mmu_notifier_range range;
d16dfc55 1709 struct mmu_gather tlb;
1da177e4 1710
1da177e4 1711 lru_add_drain();
7d4a8be0 1712 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
21b85b09
MK
1713 address, end);
1714 if (is_vm_hugetlb_page(vma))
1715 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1716 &range.end);
a72afd87 1717 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1718 update_hiwater_rss(vma->vm_mm);
1719 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1720 /*
1721 * unmap 'address-end' not 'range.start-range.end' as range
1722 * could have been expanded for hugetlb pmd sharing.
1723 */
1724 unmap_single_vma(&tlb, vma, address, end, details);
ac46d4f3 1725 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1726 tlb_finish_mmu(&tlb);
1da177e4
LT
1727}
1728
c627f9cc
JS
1729/**
1730 * zap_vma_ptes - remove ptes mapping the vma
1731 * @vma: vm_area_struct holding ptes to be zapped
1732 * @address: starting address of pages to zap
1733 * @size: number of bytes to zap
1734 *
1735 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1736 *
1737 * The entire address range must be fully contained within the vma.
1738 *
c627f9cc 1739 */
27d036e3 1740void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1741 unsigned long size)
1742{
88a35912 1743 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1744 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1745 return;
1746
f5cc4eef 1747 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1748}
1749EXPORT_SYMBOL_GPL(zap_vma_ptes);
1750
8cd3984d 1751static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1752{
c2febafc
KS
1753 pgd_t *pgd;
1754 p4d_t *p4d;
1755 pud_t *pud;
1756 pmd_t *pmd;
1757
1758 pgd = pgd_offset(mm, addr);
1759 p4d = p4d_alloc(mm, pgd, addr);
1760 if (!p4d)
1761 return NULL;
1762 pud = pud_alloc(mm, p4d, addr);
1763 if (!pud)
1764 return NULL;
1765 pmd = pmd_alloc(mm, pud, addr);
1766 if (!pmd)
1767 return NULL;
1768
1769 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1770 return pmd;
1771}
1772
1773pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1774 spinlock_t **ptl)
1775{
1776 pmd_t *pmd = walk_to_pmd(mm, addr);
1777
1778 if (!pmd)
1779 return NULL;
c2febafc 1780 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1781}
1782
8efd6f5b
AR
1783static int validate_page_before_insert(struct page *page)
1784{
1785 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1786 return -EINVAL;
1787 flush_dcache_page(page);
1788 return 0;
1789}
1790
cea86fe2 1791static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1792 unsigned long addr, struct page *page, pgprot_t prot)
1793{
1794 if (!pte_none(*pte))
1795 return -EBUSY;
1796 /* Ok, finally just insert the thing.. */
1797 get_page(page);
f1a79412 1798 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2
HD
1799 page_add_file_rmap(page, vma, false);
1800 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1801 return 0;
1802}
1803
238f58d8
LT
1804/*
1805 * This is the old fallback for page remapping.
1806 *
1807 * For historical reasons, it only allows reserved pages. Only
1808 * old drivers should use this, and they needed to mark their
1809 * pages reserved for the old functions anyway.
1810 */
423bad60
NP
1811static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1812 struct page *page, pgprot_t prot)
238f58d8
LT
1813{
1814 int retval;
c9cfcddf 1815 pte_t *pte;
8a9f3ccd
BS
1816 spinlock_t *ptl;
1817
8efd6f5b
AR
1818 retval = validate_page_before_insert(page);
1819 if (retval)
5b4e655e 1820 goto out;
238f58d8 1821 retval = -ENOMEM;
cea86fe2 1822 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1823 if (!pte)
5b4e655e 1824 goto out;
cea86fe2 1825 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1826 pte_unmap_unlock(pte, ptl);
1827out:
1828 return retval;
1829}
1830
8cd3984d 1831#ifdef pte_index
cea86fe2 1832static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1833 unsigned long addr, struct page *page, pgprot_t prot)
1834{
1835 int err;
1836
1837 if (!page_count(page))
1838 return -EINVAL;
1839 err = validate_page_before_insert(page);
7f70c2a6
AR
1840 if (err)
1841 return err;
cea86fe2 1842 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1843}
1844
1845/* insert_pages() amortizes the cost of spinlock operations
1846 * when inserting pages in a loop. Arch *must* define pte_index.
1847 */
1848static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1849 struct page **pages, unsigned long *num, pgprot_t prot)
1850{
1851 pmd_t *pmd = NULL;
7f70c2a6
AR
1852 pte_t *start_pte, *pte;
1853 spinlock_t *pte_lock;
8cd3984d
AR
1854 struct mm_struct *const mm = vma->vm_mm;
1855 unsigned long curr_page_idx = 0;
1856 unsigned long remaining_pages_total = *num;
1857 unsigned long pages_to_write_in_pmd;
1858 int ret;
1859more:
1860 ret = -EFAULT;
1861 pmd = walk_to_pmd(mm, addr);
1862 if (!pmd)
1863 goto out;
1864
1865 pages_to_write_in_pmd = min_t(unsigned long,
1866 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1867
1868 /* Allocate the PTE if necessary; takes PMD lock once only. */
1869 ret = -ENOMEM;
1870 if (pte_alloc(mm, pmd))
1871 goto out;
8cd3984d
AR
1872
1873 while (pages_to_write_in_pmd) {
1874 int pte_idx = 0;
1875 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1876
7f70c2a6
AR
1877 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1878 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1879 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1880 addr, pages[curr_page_idx], prot);
1881 if (unlikely(err)) {
7f70c2a6 1882 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1883 ret = err;
1884 remaining_pages_total -= pte_idx;
1885 goto out;
1886 }
1887 addr += PAGE_SIZE;
1888 ++curr_page_idx;
1889 }
7f70c2a6 1890 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1891 pages_to_write_in_pmd -= batch_size;
1892 remaining_pages_total -= batch_size;
1893 }
1894 if (remaining_pages_total)
1895 goto more;
1896 ret = 0;
1897out:
1898 *num = remaining_pages_total;
1899 return ret;
1900}
1901#endif /* ifdef pte_index */
1902
1903/**
1904 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1905 * @vma: user vma to map to
1906 * @addr: target start user address of these pages
1907 * @pages: source kernel pages
1908 * @num: in: number of pages to map. out: number of pages that were *not*
1909 * mapped. (0 means all pages were successfully mapped).
1910 *
1911 * Preferred over vm_insert_page() when inserting multiple pages.
1912 *
1913 * In case of error, we may have mapped a subset of the provided
1914 * pages. It is the caller's responsibility to account for this case.
1915 *
1916 * The same restrictions apply as in vm_insert_page().
1917 */
1918int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1919 struct page **pages, unsigned long *num)
1920{
1921#ifdef pte_index
1922 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1923
1924 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1925 return -EFAULT;
1926 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1927 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1928 BUG_ON(vma->vm_flags & VM_PFNMAP);
1929 vma->vm_flags |= VM_MIXEDMAP;
1930 }
1931 /* Defer page refcount checking till we're about to map that page. */
1932 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1933#else
1934 unsigned long idx = 0, pgcount = *num;
45779b03 1935 int err = -EINVAL;
8cd3984d
AR
1936
1937 for (; idx < pgcount; ++idx) {
1938 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1939 if (err)
1940 break;
1941 }
1942 *num = pgcount - idx;
1943 return err;
1944#endif /* ifdef pte_index */
1945}
1946EXPORT_SYMBOL(vm_insert_pages);
1947
bfa5bf6d
REB
1948/**
1949 * vm_insert_page - insert single page into user vma
1950 * @vma: user vma to map to
1951 * @addr: target user address of this page
1952 * @page: source kernel page
1953 *
a145dd41
LT
1954 * This allows drivers to insert individual pages they've allocated
1955 * into a user vma.
1956 *
1957 * The page has to be a nice clean _individual_ kernel allocation.
1958 * If you allocate a compound page, you need to have marked it as
1959 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1960 * (see split_page()).
a145dd41
LT
1961 *
1962 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1963 * took an arbitrary page protection parameter. This doesn't allow
1964 * that. Your vma protection will have to be set up correctly, which
1965 * means that if you want a shared writable mapping, you'd better
1966 * ask for a shared writable mapping!
1967 *
1968 * The page does not need to be reserved.
4b6e1e37
KK
1969 *
1970 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1971 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1972 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1973 * function from other places, for example from page-fault handler.
a862f68a
MR
1974 *
1975 * Return: %0 on success, negative error code otherwise.
a145dd41 1976 */
423bad60
NP
1977int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1978 struct page *page)
a145dd41
LT
1979{
1980 if (addr < vma->vm_start || addr >= vma->vm_end)
1981 return -EFAULT;
1982 if (!page_count(page))
1983 return -EINVAL;
4b6e1e37 1984 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1985 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1986 BUG_ON(vma->vm_flags & VM_PFNMAP);
1987 vma->vm_flags |= VM_MIXEDMAP;
1988 }
423bad60 1989 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1990}
e3c3374f 1991EXPORT_SYMBOL(vm_insert_page);
a145dd41 1992
a667d745
SJ
1993/*
1994 * __vm_map_pages - maps range of kernel pages into user vma
1995 * @vma: user vma to map to
1996 * @pages: pointer to array of source kernel pages
1997 * @num: number of pages in page array
1998 * @offset: user's requested vm_pgoff
1999 *
2000 * This allows drivers to map range of kernel pages into a user vma.
2001 *
2002 * Return: 0 on success and error code otherwise.
2003 */
2004static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2005 unsigned long num, unsigned long offset)
2006{
2007 unsigned long count = vma_pages(vma);
2008 unsigned long uaddr = vma->vm_start;
2009 int ret, i;
2010
2011 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2012 if (offset >= num)
a667d745
SJ
2013 return -ENXIO;
2014
2015 /* Fail if the user requested size exceeds available object size */
2016 if (count > num - offset)
2017 return -ENXIO;
2018
2019 for (i = 0; i < count; i++) {
2020 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2021 if (ret < 0)
2022 return ret;
2023 uaddr += PAGE_SIZE;
2024 }
2025
2026 return 0;
2027}
2028
2029/**
2030 * vm_map_pages - maps range of kernel pages starts with non zero offset
2031 * @vma: user vma to map to
2032 * @pages: pointer to array of source kernel pages
2033 * @num: number of pages in page array
2034 *
2035 * Maps an object consisting of @num pages, catering for the user's
2036 * requested vm_pgoff
2037 *
2038 * If we fail to insert any page into the vma, the function will return
2039 * immediately leaving any previously inserted pages present. Callers
2040 * from the mmap handler may immediately return the error as their caller
2041 * will destroy the vma, removing any successfully inserted pages. Other
2042 * callers should make their own arrangements for calling unmap_region().
2043 *
2044 * Context: Process context. Called by mmap handlers.
2045 * Return: 0 on success and error code otherwise.
2046 */
2047int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2048 unsigned long num)
2049{
2050 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2051}
2052EXPORT_SYMBOL(vm_map_pages);
2053
2054/**
2055 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2056 * @vma: user vma to map to
2057 * @pages: pointer to array of source kernel pages
2058 * @num: number of pages in page array
2059 *
2060 * Similar to vm_map_pages(), except that it explicitly sets the offset
2061 * to 0. This function is intended for the drivers that did not consider
2062 * vm_pgoff.
2063 *
2064 * Context: Process context. Called by mmap handlers.
2065 * Return: 0 on success and error code otherwise.
2066 */
2067int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2068 unsigned long num)
2069{
2070 return __vm_map_pages(vma, pages, num, 0);
2071}
2072EXPORT_SYMBOL(vm_map_pages_zero);
2073
9b5a8e00 2074static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2075 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2076{
2077 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2078 pte_t *pte, entry;
2079 spinlock_t *ptl;
2080
423bad60
NP
2081 pte = get_locked_pte(mm, addr, &ptl);
2082 if (!pte)
9b5a8e00 2083 return VM_FAULT_OOM;
b2770da6
RZ
2084 if (!pte_none(*pte)) {
2085 if (mkwrite) {
2086 /*
2087 * For read faults on private mappings the PFN passed
2088 * in may not match the PFN we have mapped if the
2089 * mapped PFN is a writeable COW page. In the mkwrite
2090 * case we are creating a writable PTE for a shared
f2c57d91
JK
2091 * mapping and we expect the PFNs to match. If they
2092 * don't match, we are likely racing with block
2093 * allocation and mapping invalidation so just skip the
2094 * update.
b2770da6 2095 */
f2c57d91
JK
2096 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2097 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2098 goto out_unlock;
f2c57d91 2099 }
cae85cb8
JK
2100 entry = pte_mkyoung(*pte);
2101 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2102 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2103 update_mmu_cache(vma, addr, pte);
2104 }
2105 goto out_unlock;
b2770da6 2106 }
423bad60
NP
2107
2108 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2109 if (pfn_t_devmap(pfn))
2110 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2111 else
2112 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2113
b2770da6
RZ
2114 if (mkwrite) {
2115 entry = pte_mkyoung(entry);
2116 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2117 }
2118
423bad60 2119 set_pte_at(mm, addr, pte, entry);
4b3073e1 2120 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2121
423bad60
NP
2122out_unlock:
2123 pte_unmap_unlock(pte, ptl);
9b5a8e00 2124 return VM_FAULT_NOPAGE;
423bad60
NP
2125}
2126
f5e6d1d5
MW
2127/**
2128 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2129 * @vma: user vma to map to
2130 * @addr: target user address of this page
2131 * @pfn: source kernel pfn
2132 * @pgprot: pgprot flags for the inserted page
2133 *
a1a0aea5 2134 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2135 * to override pgprot on a per-page basis.
2136 *
2137 * This only makes sense for IO mappings, and it makes no sense for
2138 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2139 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2140 * impractical.
2141 *
574c5b3d
TH
2142 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2143 * a value of @pgprot different from that of @vma->vm_page_prot.
2144 *
ae2b01f3 2145 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2146 * Return: vm_fault_t value.
2147 */
2148vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2149 unsigned long pfn, pgprot_t pgprot)
2150{
6d958546
MW
2151 /*
2152 * Technically, architectures with pte_special can avoid all these
2153 * restrictions (same for remap_pfn_range). However we would like
2154 * consistency in testing and feature parity among all, so we should
2155 * try to keep these invariants in place for everybody.
2156 */
2157 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2158 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2159 (VM_PFNMAP|VM_MIXEDMAP));
2160 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2161 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2162
2163 if (addr < vma->vm_start || addr >= vma->vm_end)
2164 return VM_FAULT_SIGBUS;
2165
2166 if (!pfn_modify_allowed(pfn, pgprot))
2167 return VM_FAULT_SIGBUS;
2168
2169 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2170
9b5a8e00 2171 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2172 false);
f5e6d1d5
MW
2173}
2174EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2175
ae2b01f3
MW
2176/**
2177 * vmf_insert_pfn - insert single pfn into user vma
2178 * @vma: user vma to map to
2179 * @addr: target user address of this page
2180 * @pfn: source kernel pfn
2181 *
2182 * Similar to vm_insert_page, this allows drivers to insert individual pages
2183 * they've allocated into a user vma. Same comments apply.
2184 *
2185 * This function should only be called from a vm_ops->fault handler, and
2186 * in that case the handler should return the result of this function.
2187 *
2188 * vma cannot be a COW mapping.
2189 *
2190 * As this is called only for pages that do not currently exist, we
2191 * do not need to flush old virtual caches or the TLB.
2192 *
2193 * Context: Process context. May allocate using %GFP_KERNEL.
2194 * Return: vm_fault_t value.
2195 */
2196vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2197 unsigned long pfn)
2198{
2199 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2200}
2201EXPORT_SYMBOL(vmf_insert_pfn);
2202
785a3fab
DW
2203static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2204{
2205 /* these checks mirror the abort conditions in vm_normal_page */
2206 if (vma->vm_flags & VM_MIXEDMAP)
2207 return true;
2208 if (pfn_t_devmap(pfn))
2209 return true;
2210 if (pfn_t_special(pfn))
2211 return true;
2212 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2213 return true;
2214 return false;
2215}
2216
79f3aa5b 2217static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2218 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2219 bool mkwrite)
423bad60 2220{
79f3aa5b 2221 int err;
87744ab3 2222
785a3fab 2223 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2224
423bad60 2225 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2226 return VM_FAULT_SIGBUS;
308a047c
BP
2227
2228 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2229
42e4089c 2230 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2231 return VM_FAULT_SIGBUS;
42e4089c 2232
423bad60
NP
2233 /*
2234 * If we don't have pte special, then we have to use the pfn_valid()
2235 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2236 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2237 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2238 * without pte special, it would there be refcounted as a normal page.
423bad60 2239 */
00b3a331
LD
2240 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2241 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2242 struct page *page;
2243
03fc2da6
DW
2244 /*
2245 * At this point we are committed to insert_page()
2246 * regardless of whether the caller specified flags that
2247 * result in pfn_t_has_page() == false.
2248 */
2249 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2250 err = insert_page(vma, addr, page, pgprot);
2251 } else {
9b5a8e00 2252 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2253 }
b2770da6 2254
5d747637
MW
2255 if (err == -ENOMEM)
2256 return VM_FAULT_OOM;
2257 if (err < 0 && err != -EBUSY)
2258 return VM_FAULT_SIGBUS;
2259
2260 return VM_FAULT_NOPAGE;
e0dc0d8f 2261}
79f3aa5b 2262
574c5b3d
TH
2263/**
2264 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2265 * @vma: user vma to map to
2266 * @addr: target user address of this page
2267 * @pfn: source kernel pfn
2268 * @pgprot: pgprot flags for the inserted page
2269 *
a1a0aea5 2270 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2271 * to override pgprot on a per-page basis.
2272 *
2273 * Typically this function should be used by drivers to set caching- and
2274 * encryption bits different than those of @vma->vm_page_prot, because
2275 * the caching- or encryption mode may not be known at mmap() time.
2276 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2277 * to set caching and encryption bits for those vmas (except for COW pages).
2278 * This is ensured by core vm only modifying these page table entries using
2279 * functions that don't touch caching- or encryption bits, using pte_modify()
2280 * if needed. (See for example mprotect()).
2281 * Also when new page-table entries are created, this is only done using the
2282 * fault() callback, and never using the value of vma->vm_page_prot,
2283 * except for page-table entries that point to anonymous pages as the result
2284 * of COW.
2285 *
2286 * Context: Process context. May allocate using %GFP_KERNEL.
2287 * Return: vm_fault_t value.
2288 */
2289vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2290 pfn_t pfn, pgprot_t pgprot)
2291{
2292 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2293}
5379e4dd 2294EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2295
79f3aa5b
MW
2296vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2297 pfn_t pfn)
2298{
574c5b3d 2299 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2300}
5d747637 2301EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2302
ab77dab4
SJ
2303/*
2304 * If the insertion of PTE failed because someone else already added a
2305 * different entry in the mean time, we treat that as success as we assume
2306 * the same entry was actually inserted.
2307 */
ab77dab4
SJ
2308vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2309 unsigned long addr, pfn_t pfn)
b2770da6 2310{
574c5b3d 2311 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2312}
ab77dab4 2313EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2314
1da177e4
LT
2315/*
2316 * maps a range of physical memory into the requested pages. the old
2317 * mappings are removed. any references to nonexistent pages results
2318 * in null mappings (currently treated as "copy-on-access")
2319 */
2320static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2321 unsigned long addr, unsigned long end,
2322 unsigned long pfn, pgprot_t prot)
2323{
90a3e375 2324 pte_t *pte, *mapped_pte;
c74df32c 2325 spinlock_t *ptl;
42e4089c 2326 int err = 0;
1da177e4 2327
90a3e375 2328 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2329 if (!pte)
2330 return -ENOMEM;
6606c3e0 2331 arch_enter_lazy_mmu_mode();
1da177e4
LT
2332 do {
2333 BUG_ON(!pte_none(*pte));
42e4089c
AK
2334 if (!pfn_modify_allowed(pfn, prot)) {
2335 err = -EACCES;
2336 break;
2337 }
7e675137 2338 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2339 pfn++;
2340 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2341 arch_leave_lazy_mmu_mode();
90a3e375 2342 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2343 return err;
1da177e4
LT
2344}
2345
2346static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2347 unsigned long addr, unsigned long end,
2348 unsigned long pfn, pgprot_t prot)
2349{
2350 pmd_t *pmd;
2351 unsigned long next;
42e4089c 2352 int err;
1da177e4
LT
2353
2354 pfn -= addr >> PAGE_SHIFT;
2355 pmd = pmd_alloc(mm, pud, addr);
2356 if (!pmd)
2357 return -ENOMEM;
f66055ab 2358 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2359 do {
2360 next = pmd_addr_end(addr, end);
42e4089c
AK
2361 err = remap_pte_range(mm, pmd, addr, next,
2362 pfn + (addr >> PAGE_SHIFT), prot);
2363 if (err)
2364 return err;
1da177e4
LT
2365 } while (pmd++, addr = next, addr != end);
2366 return 0;
2367}
2368
c2febafc 2369static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2370 unsigned long addr, unsigned long end,
2371 unsigned long pfn, pgprot_t prot)
2372{
2373 pud_t *pud;
2374 unsigned long next;
42e4089c 2375 int err;
1da177e4
LT
2376
2377 pfn -= addr >> PAGE_SHIFT;
c2febafc 2378 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2379 if (!pud)
2380 return -ENOMEM;
2381 do {
2382 next = pud_addr_end(addr, end);
42e4089c
AK
2383 err = remap_pmd_range(mm, pud, addr, next,
2384 pfn + (addr >> PAGE_SHIFT), prot);
2385 if (err)
2386 return err;
1da177e4
LT
2387 } while (pud++, addr = next, addr != end);
2388 return 0;
2389}
2390
c2febafc
KS
2391static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2392 unsigned long addr, unsigned long end,
2393 unsigned long pfn, pgprot_t prot)
2394{
2395 p4d_t *p4d;
2396 unsigned long next;
42e4089c 2397 int err;
c2febafc
KS
2398
2399 pfn -= addr >> PAGE_SHIFT;
2400 p4d = p4d_alloc(mm, pgd, addr);
2401 if (!p4d)
2402 return -ENOMEM;
2403 do {
2404 next = p4d_addr_end(addr, end);
42e4089c
AK
2405 err = remap_pud_range(mm, p4d, addr, next,
2406 pfn + (addr >> PAGE_SHIFT), prot);
2407 if (err)
2408 return err;
c2febafc
KS
2409 } while (p4d++, addr = next, addr != end);
2410 return 0;
2411}
2412
74ffa5a3
CH
2413/*
2414 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2415 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2416 */
74ffa5a3
CH
2417int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2418 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2419{
2420 pgd_t *pgd;
2421 unsigned long next;
2d15cab8 2422 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2423 struct mm_struct *mm = vma->vm_mm;
2424 int err;
2425
0c4123e3
AZ
2426 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2427 return -EINVAL;
2428
1da177e4
LT
2429 /*
2430 * Physically remapped pages are special. Tell the
2431 * rest of the world about it:
2432 * VM_IO tells people not to look at these pages
2433 * (accesses can have side effects).
6aab341e
LT
2434 * VM_PFNMAP tells the core MM that the base pages are just
2435 * raw PFN mappings, and do not have a "struct page" associated
2436 * with them.
314e51b9
KK
2437 * VM_DONTEXPAND
2438 * Disable vma merging and expanding with mremap().
2439 * VM_DONTDUMP
2440 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2441 *
2442 * There's a horrible special case to handle copy-on-write
2443 * behaviour that some programs depend on. We mark the "original"
2444 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2445 * See vm_normal_page() for details.
1da177e4 2446 */
b3b9c293
KK
2447 if (is_cow_mapping(vma->vm_flags)) {
2448 if (addr != vma->vm_start || end != vma->vm_end)
2449 return -EINVAL;
fb155c16 2450 vma->vm_pgoff = pfn;
b3b9c293
KK
2451 }
2452
314e51b9 2453 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2454
2455 BUG_ON(addr >= end);
2456 pfn -= addr >> PAGE_SHIFT;
2457 pgd = pgd_offset(mm, addr);
2458 flush_cache_range(vma, addr, end);
1da177e4
LT
2459 do {
2460 next = pgd_addr_end(addr, end);
c2febafc 2461 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2462 pfn + (addr >> PAGE_SHIFT), prot);
2463 if (err)
74ffa5a3 2464 return err;
1da177e4 2465 } while (pgd++, addr = next, addr != end);
2ab64037 2466
74ffa5a3
CH
2467 return 0;
2468}
2469
2470/**
2471 * remap_pfn_range - remap kernel memory to userspace
2472 * @vma: user vma to map to
2473 * @addr: target page aligned user address to start at
2474 * @pfn: page frame number of kernel physical memory address
2475 * @size: size of mapping area
2476 * @prot: page protection flags for this mapping
2477 *
2478 * Note: this is only safe if the mm semaphore is held when called.
2479 *
2480 * Return: %0 on success, negative error code otherwise.
2481 */
2482int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2483 unsigned long pfn, unsigned long size, pgprot_t prot)
2484{
2485 int err;
2486
2487 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2488 if (err)
74ffa5a3 2489 return -EINVAL;
2ab64037 2490
74ffa5a3
CH
2491 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2492 if (err)
2493 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2494 return err;
2495}
2496EXPORT_SYMBOL(remap_pfn_range);
2497
b4cbb197
LT
2498/**
2499 * vm_iomap_memory - remap memory to userspace
2500 * @vma: user vma to map to
abd69b9e 2501 * @start: start of the physical memory to be mapped
b4cbb197
LT
2502 * @len: size of area
2503 *
2504 * This is a simplified io_remap_pfn_range() for common driver use. The
2505 * driver just needs to give us the physical memory range to be mapped,
2506 * we'll figure out the rest from the vma information.
2507 *
2508 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2509 * whatever write-combining details or similar.
a862f68a
MR
2510 *
2511 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2512 */
2513int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2514{
2515 unsigned long vm_len, pfn, pages;
2516
2517 /* Check that the physical memory area passed in looks valid */
2518 if (start + len < start)
2519 return -EINVAL;
2520 /*
2521 * You *really* shouldn't map things that aren't page-aligned,
2522 * but we've historically allowed it because IO memory might
2523 * just have smaller alignment.
2524 */
2525 len += start & ~PAGE_MASK;
2526 pfn = start >> PAGE_SHIFT;
2527 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2528 if (pfn + pages < pfn)
2529 return -EINVAL;
2530
2531 /* We start the mapping 'vm_pgoff' pages into the area */
2532 if (vma->vm_pgoff > pages)
2533 return -EINVAL;
2534 pfn += vma->vm_pgoff;
2535 pages -= vma->vm_pgoff;
2536
2537 /* Can we fit all of the mapping? */
2538 vm_len = vma->vm_end - vma->vm_start;
2539 if (vm_len >> PAGE_SHIFT > pages)
2540 return -EINVAL;
2541
2542 /* Ok, let it rip */
2543 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2544}
2545EXPORT_SYMBOL(vm_iomap_memory);
2546
aee16b3c
JF
2547static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2548 unsigned long addr, unsigned long end,
e80d3909
JR
2549 pte_fn_t fn, void *data, bool create,
2550 pgtbl_mod_mask *mask)
aee16b3c 2551{
8abb50c7 2552 pte_t *pte, *mapped_pte;
be1db475 2553 int err = 0;
3f649ab7 2554 spinlock_t *ptl;
aee16b3c 2555
be1db475 2556 if (create) {
8abb50c7 2557 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2558 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2559 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2560 if (!pte)
2561 return -ENOMEM;
2562 } else {
8abb50c7 2563 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2564 pte_offset_kernel(pmd, addr) :
2565 pte_offset_map_lock(mm, pmd, addr, &ptl);
2566 }
aee16b3c
JF
2567
2568 BUG_ON(pmd_huge(*pmd));
2569
38e0edb1
JF
2570 arch_enter_lazy_mmu_mode();
2571
eeb4a05f
CH
2572 if (fn) {
2573 do {
2574 if (create || !pte_none(*pte)) {
2575 err = fn(pte++, addr, data);
2576 if (err)
2577 break;
2578 }
2579 } while (addr += PAGE_SIZE, addr != end);
2580 }
e80d3909 2581 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2582
38e0edb1
JF
2583 arch_leave_lazy_mmu_mode();
2584
aee16b3c 2585 if (mm != &init_mm)
8abb50c7 2586 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2587 return err;
2588}
2589
2590static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2591 unsigned long addr, unsigned long end,
e80d3909
JR
2592 pte_fn_t fn, void *data, bool create,
2593 pgtbl_mod_mask *mask)
aee16b3c
JF
2594{
2595 pmd_t *pmd;
2596 unsigned long next;
be1db475 2597 int err = 0;
aee16b3c 2598
ceb86879
AK
2599 BUG_ON(pud_huge(*pud));
2600
be1db475 2601 if (create) {
e80d3909 2602 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2603 if (!pmd)
2604 return -ENOMEM;
2605 } else {
2606 pmd = pmd_offset(pud, addr);
2607 }
aee16b3c
JF
2608 do {
2609 next = pmd_addr_end(addr, end);
0c95cba4
NP
2610 if (pmd_none(*pmd) && !create)
2611 continue;
2612 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2613 return -EINVAL;
2614 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2615 if (!create)
2616 continue;
2617 pmd_clear_bad(pmd);
be1db475 2618 }
0c95cba4
NP
2619 err = apply_to_pte_range(mm, pmd, addr, next,
2620 fn, data, create, mask);
2621 if (err)
2622 break;
aee16b3c 2623 } while (pmd++, addr = next, addr != end);
0c95cba4 2624
aee16b3c
JF
2625 return err;
2626}
2627
c2febafc 2628static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2629 unsigned long addr, unsigned long end,
e80d3909
JR
2630 pte_fn_t fn, void *data, bool create,
2631 pgtbl_mod_mask *mask)
aee16b3c
JF
2632{
2633 pud_t *pud;
2634 unsigned long next;
be1db475 2635 int err = 0;
aee16b3c 2636
be1db475 2637 if (create) {
e80d3909 2638 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2639 if (!pud)
2640 return -ENOMEM;
2641 } else {
2642 pud = pud_offset(p4d, addr);
2643 }
aee16b3c
JF
2644 do {
2645 next = pud_addr_end(addr, end);
0c95cba4
NP
2646 if (pud_none(*pud) && !create)
2647 continue;
2648 if (WARN_ON_ONCE(pud_leaf(*pud)))
2649 return -EINVAL;
2650 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2651 if (!create)
2652 continue;
2653 pud_clear_bad(pud);
be1db475 2654 }
0c95cba4
NP
2655 err = apply_to_pmd_range(mm, pud, addr, next,
2656 fn, data, create, mask);
2657 if (err)
2658 break;
aee16b3c 2659 } while (pud++, addr = next, addr != end);
0c95cba4 2660
aee16b3c
JF
2661 return err;
2662}
2663
c2febafc
KS
2664static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2665 unsigned long addr, unsigned long end,
e80d3909
JR
2666 pte_fn_t fn, void *data, bool create,
2667 pgtbl_mod_mask *mask)
c2febafc
KS
2668{
2669 p4d_t *p4d;
2670 unsigned long next;
be1db475 2671 int err = 0;
c2febafc 2672
be1db475 2673 if (create) {
e80d3909 2674 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2675 if (!p4d)
2676 return -ENOMEM;
2677 } else {
2678 p4d = p4d_offset(pgd, addr);
2679 }
c2febafc
KS
2680 do {
2681 next = p4d_addr_end(addr, end);
0c95cba4
NP
2682 if (p4d_none(*p4d) && !create)
2683 continue;
2684 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2685 return -EINVAL;
2686 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2687 if (!create)
2688 continue;
2689 p4d_clear_bad(p4d);
be1db475 2690 }
0c95cba4
NP
2691 err = apply_to_pud_range(mm, p4d, addr, next,
2692 fn, data, create, mask);
2693 if (err)
2694 break;
c2febafc 2695 } while (p4d++, addr = next, addr != end);
0c95cba4 2696
c2febafc
KS
2697 return err;
2698}
2699
be1db475
DA
2700static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2701 unsigned long size, pte_fn_t fn,
2702 void *data, bool create)
aee16b3c
JF
2703{
2704 pgd_t *pgd;
e80d3909 2705 unsigned long start = addr, next;
57250a5b 2706 unsigned long end = addr + size;
e80d3909 2707 pgtbl_mod_mask mask = 0;
be1db475 2708 int err = 0;
aee16b3c 2709
9cb65bc3
MP
2710 if (WARN_ON(addr >= end))
2711 return -EINVAL;
2712
aee16b3c
JF
2713 pgd = pgd_offset(mm, addr);
2714 do {
2715 next = pgd_addr_end(addr, end);
0c95cba4 2716 if (pgd_none(*pgd) && !create)
be1db475 2717 continue;
0c95cba4
NP
2718 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2719 return -EINVAL;
2720 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2721 if (!create)
2722 continue;
2723 pgd_clear_bad(pgd);
2724 }
2725 err = apply_to_p4d_range(mm, pgd, addr, next,
2726 fn, data, create, &mask);
aee16b3c
JF
2727 if (err)
2728 break;
2729 } while (pgd++, addr = next, addr != end);
57250a5b 2730
e80d3909
JR
2731 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2732 arch_sync_kernel_mappings(start, start + size);
2733
aee16b3c
JF
2734 return err;
2735}
be1db475
DA
2736
2737/*
2738 * Scan a region of virtual memory, filling in page tables as necessary
2739 * and calling a provided function on each leaf page table.
2740 */
2741int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2742 unsigned long size, pte_fn_t fn, void *data)
2743{
2744 return __apply_to_page_range(mm, addr, size, fn, data, true);
2745}
aee16b3c
JF
2746EXPORT_SYMBOL_GPL(apply_to_page_range);
2747
be1db475
DA
2748/*
2749 * Scan a region of virtual memory, calling a provided function on
2750 * each leaf page table where it exists.
2751 *
2752 * Unlike apply_to_page_range, this does _not_ fill in page tables
2753 * where they are absent.
2754 */
2755int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2756 unsigned long size, pte_fn_t fn, void *data)
2757{
2758 return __apply_to_page_range(mm, addr, size, fn, data, false);
2759}
2760EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2761
8f4e2101 2762/*
9b4bdd2f
KS
2763 * handle_pte_fault chooses page fault handler according to an entry which was
2764 * read non-atomically. Before making any commitment, on those architectures
2765 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2766 * parts, do_swap_page must check under lock before unmapping the pte and
2767 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2768 * and do_anonymous_page can safely check later on).
8f4e2101 2769 */
2ca99358 2770static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2771{
2772 int same = 1;
923717cb 2773#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2774 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2775 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2776 spin_lock(ptl);
2ca99358 2777 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2778 spin_unlock(ptl);
8f4e2101
HD
2779 }
2780#endif
2ca99358
PX
2781 pte_unmap(vmf->pte);
2782 vmf->pte = NULL;
8f4e2101
HD
2783 return same;
2784}
2785
a873dfe1
TL
2786/*
2787 * Return:
2788 * 0: copied succeeded
2789 * -EHWPOISON: copy failed due to hwpoison in source page
2790 * -EAGAIN: copied failed (some other reason)
2791 */
2792static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2793 struct vm_fault *vmf)
6aab341e 2794{
a873dfe1 2795 int ret;
83d116c5
JH
2796 void *kaddr;
2797 void __user *uaddr;
c3e5ea6e 2798 bool locked = false;
83d116c5
JH
2799 struct vm_area_struct *vma = vmf->vma;
2800 struct mm_struct *mm = vma->vm_mm;
2801 unsigned long addr = vmf->address;
2802
83d116c5 2803 if (likely(src)) {
d302c239
TL
2804 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2805 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2806 return -EHWPOISON;
d302c239 2807 }
a873dfe1 2808 return 0;
83d116c5
JH
2809 }
2810
6aab341e
LT
2811 /*
2812 * If the source page was a PFN mapping, we don't have
2813 * a "struct page" for it. We do a best-effort copy by
2814 * just copying from the original user address. If that
2815 * fails, we just zero-fill it. Live with it.
2816 */
83d116c5
JH
2817 kaddr = kmap_atomic(dst);
2818 uaddr = (void __user *)(addr & PAGE_MASK);
2819
2820 /*
2821 * On architectures with software "accessed" bits, we would
2822 * take a double page fault, so mark it accessed here.
2823 */
e1fd09e3 2824 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2825 pte_t entry;
5d2a2dbb 2826
83d116c5 2827 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2828 locked = true;
83d116c5
JH
2829 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2830 /*
2831 * Other thread has already handled the fault
7df67697 2832 * and update local tlb only
83d116c5 2833 */
7df67697 2834 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2835 ret = -EAGAIN;
83d116c5
JH
2836 goto pte_unlock;
2837 }
2838
2839 entry = pte_mkyoung(vmf->orig_pte);
2840 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2841 update_mmu_cache(vma, addr, vmf->pte);
2842 }
2843
2844 /*
2845 * This really shouldn't fail, because the page is there
2846 * in the page tables. But it might just be unreadable,
2847 * in which case we just give up and fill the result with
2848 * zeroes.
2849 */
2850 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2851 if (locked)
2852 goto warn;
2853
2854 /* Re-validate under PTL if the page is still mapped */
2855 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2856 locked = true;
2857 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2858 /* The PTE changed under us, update local tlb */
2859 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2860 ret = -EAGAIN;
c3e5ea6e
KS
2861 goto pte_unlock;
2862 }
2863
5d2a2dbb 2864 /*
985ba004 2865 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2866 * Try to copy again under PTL.
5d2a2dbb 2867 */
c3e5ea6e
KS
2868 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2869 /*
2870 * Give a warn in case there can be some obscure
2871 * use-case
2872 */
2873warn:
2874 WARN_ON_ONCE(1);
2875 clear_page(kaddr);
2876 }
83d116c5
JH
2877 }
2878
a873dfe1 2879 ret = 0;
83d116c5
JH
2880
2881pte_unlock:
c3e5ea6e 2882 if (locked)
83d116c5
JH
2883 pte_unmap_unlock(vmf->pte, vmf->ptl);
2884 kunmap_atomic(kaddr);
2885 flush_dcache_page(dst);
2886
2887 return ret;
6aab341e
LT
2888}
2889
c20cd45e
MH
2890static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2891{
2892 struct file *vm_file = vma->vm_file;
2893
2894 if (vm_file)
2895 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2896
2897 /*
2898 * Special mappings (e.g. VDSO) do not have any file so fake
2899 * a default GFP_KERNEL for them.
2900 */
2901 return GFP_KERNEL;
2902}
2903
fb09a464
KS
2904/*
2905 * Notify the address space that the page is about to become writable so that
2906 * it can prohibit this or wait for the page to get into an appropriate state.
2907 *
2908 * We do this without the lock held, so that it can sleep if it needs to.
2909 */
2b740303 2910static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2911{
2b740303 2912 vm_fault_t ret;
38b8cb7f
JK
2913 struct page *page = vmf->page;
2914 unsigned int old_flags = vmf->flags;
fb09a464 2915
38b8cb7f 2916 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2917
dc617f29
DW
2918 if (vmf->vma->vm_file &&
2919 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2920 return VM_FAULT_SIGBUS;
2921
11bac800 2922 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2923 /* Restore original flags so that caller is not surprised */
2924 vmf->flags = old_flags;
fb09a464
KS
2925 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2926 return ret;
2927 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2928 lock_page(page);
2929 if (!page->mapping) {
2930 unlock_page(page);
2931 return 0; /* retry */
2932 }
2933 ret |= VM_FAULT_LOCKED;
2934 } else
2935 VM_BUG_ON_PAGE(!PageLocked(page), page);
2936 return ret;
2937}
2938
97ba0c2b
JK
2939/*
2940 * Handle dirtying of a page in shared file mapping on a write fault.
2941 *
2942 * The function expects the page to be locked and unlocks it.
2943 */
89b15332 2944static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2945{
89b15332 2946 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2947 struct address_space *mapping;
89b15332 2948 struct page *page = vmf->page;
97ba0c2b
JK
2949 bool dirtied;
2950 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2951
2952 dirtied = set_page_dirty(page);
2953 VM_BUG_ON_PAGE(PageAnon(page), page);
2954 /*
2955 * Take a local copy of the address_space - page.mapping may be zeroed
2956 * by truncate after unlock_page(). The address_space itself remains
2957 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2958 * release semantics to prevent the compiler from undoing this copying.
2959 */
2960 mapping = page_rmapping(page);
2961 unlock_page(page);
2962
89b15332
JW
2963 if (!page_mkwrite)
2964 file_update_time(vma->vm_file);
2965
2966 /*
2967 * Throttle page dirtying rate down to writeback speed.
2968 *
2969 * mapping may be NULL here because some device drivers do not
2970 * set page.mapping but still dirty their pages
2971 *
c1e8d7c6 2972 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2973 * is pinning the mapping, as per above.
2974 */
97ba0c2b 2975 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2976 struct file *fpin;
2977
2978 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2979 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2980 if (fpin) {
2981 fput(fpin);
d9272525 2982 return VM_FAULT_COMPLETED;
89b15332 2983 }
97ba0c2b
JK
2984 }
2985
89b15332 2986 return 0;
97ba0c2b
JK
2987}
2988
4e047f89
SR
2989/*
2990 * Handle write page faults for pages that can be reused in the current vma
2991 *
2992 * This can happen either due to the mapping being with the VM_SHARED flag,
2993 * or due to us being the last reference standing to the page. In either
2994 * case, all we need to do here is to mark the page as writable and update
2995 * any related book-keeping.
2996 */
997dd98d 2997static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2998 __releases(vmf->ptl)
4e047f89 2999{
82b0f8c3 3000 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3001 struct page *page = vmf->page;
4e047f89 3002 pte_t entry;
6c287605 3003
c89357e2 3004 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
cdb281e6 3005 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
6c287605 3006
4e047f89
SR
3007 /*
3008 * Clear the pages cpupid information as the existing
3009 * information potentially belongs to a now completely
3010 * unrelated process.
3011 */
3012 if (page)
3013 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3014
2994302b
JK
3015 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3016 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3017 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3018 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3019 update_mmu_cache(vma, vmf->address, vmf->pte);
3020 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3021 count_vm_event(PGREUSE);
4e047f89
SR
3022}
3023
2f38ab2c 3024/*
c89357e2
DH
3025 * Handle the case of a page which we actually need to copy to a new page,
3026 * either due to COW or unsharing.
2f38ab2c 3027 *
c1e8d7c6 3028 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3029 * without the ptl held.
3030 *
3031 * High level logic flow:
3032 *
3033 * - Allocate a page, copy the content of the old page to the new one.
3034 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3035 * - Take the PTL. If the pte changed, bail out and release the allocated page
3036 * - If the pte is still the way we remember it, update the page table and all
3037 * relevant references. This includes dropping the reference the page-table
3038 * held to the old page, as well as updating the rmap.
3039 * - In any case, unlock the PTL and drop the reference we took to the old page.
3040 */
2b740303 3041static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3042{
c89357e2 3043 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3044 struct vm_area_struct *vma = vmf->vma;
bae473a4 3045 struct mm_struct *mm = vma->vm_mm;
a41b70d6 3046 struct page *old_page = vmf->page;
2f38ab2c 3047 struct page *new_page = NULL;
2f38ab2c
SR
3048 pte_t entry;
3049 int page_copied = 0;
ac46d4f3 3050 struct mmu_notifier_range range;
a873dfe1 3051 int ret;
2f38ab2c 3052
662ce1dc
YY
3053 delayacct_wpcopy_start();
3054
2f38ab2c
SR
3055 if (unlikely(anon_vma_prepare(vma)))
3056 goto oom;
3057
2994302b 3058 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
6bc56a4d
MWO
3059 struct folio *new_folio;
3060
3061 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3062 if (!new_folio)
2f38ab2c 3063 goto oom;
6bc56a4d 3064 new_page = &new_folio->page;
2f38ab2c 3065 } else {
bae473a4 3066 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 3067 vmf->address);
2f38ab2c
SR
3068 if (!new_page)
3069 goto oom;
83d116c5 3070
a873dfe1
TL
3071 ret = __wp_page_copy_user(new_page, old_page, vmf);
3072 if (ret) {
83d116c5
JH
3073 /*
3074 * COW failed, if the fault was solved by other,
3075 * it's fine. If not, userspace would re-fault on
3076 * the same address and we will handle the fault
3077 * from the second attempt.
a873dfe1 3078 * The -EHWPOISON case will not be retried.
83d116c5
JH
3079 */
3080 put_page(new_page);
3081 if (old_page)
3082 put_page(old_page);
662ce1dc
YY
3083
3084 delayacct_wpcopy_end();
a873dfe1 3085 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3086 }
b073d7f8 3087 kmsan_copy_page_meta(new_page, old_page);
2f38ab2c 3088 }
2f38ab2c 3089
8f425e4e 3090 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
2f38ab2c 3091 goto oom_free_new;
9d82c694 3092 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3093
eb3c24f3
MG
3094 __SetPageUptodate(new_page);
3095
7d4a8be0 3096 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6f4f13e8 3097 vmf->address & PAGE_MASK,
ac46d4f3
JG
3098 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3099 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3100
3101 /*
3102 * Re-check the pte - we dropped the lock
3103 */
82b0f8c3 3104 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3105 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3106 if (old_page) {
3107 if (!PageAnon(old_page)) {
f1a79412
SB
3108 dec_mm_counter(mm, mm_counter_file(old_page));
3109 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3110 }
3111 } else {
f1a79412 3112 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3113 }
2994302b 3114 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3115 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3116 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3117 if (unlikely(unshare)) {
3118 if (pte_soft_dirty(vmf->orig_pte))
3119 entry = pte_mksoft_dirty(entry);
3120 if (pte_uffd_wp(vmf->orig_pte))
3121 entry = pte_mkuffd_wp(entry);
3122 } else {
3123 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3124 }
111fe718 3125
2f38ab2c
SR
3126 /*
3127 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3128 * pte with the new entry, to keep TLBs on different CPUs in
3129 * sync. This code used to set the new PTE then flush TLBs, but
3130 * that left a window where the new PTE could be loaded into
3131 * some TLBs while the old PTE remains in others.
2f38ab2c 3132 */
82b0f8c3 3133 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
40f2bbf7 3134 page_add_new_anon_rmap(new_page, vma, vmf->address);
b518154e 3135 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3136 /*
3137 * We call the notify macro here because, when using secondary
3138 * mmu page tables (such as kvm shadow page tables), we want the
3139 * new page to be mapped directly into the secondary page table.
3140 */
c89357e2 3141 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3142 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3143 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3144 if (old_page) {
3145 /*
3146 * Only after switching the pte to the new page may
3147 * we remove the mapcount here. Otherwise another
3148 * process may come and find the rmap count decremented
3149 * before the pte is switched to the new page, and
3150 * "reuse" the old page writing into it while our pte
3151 * here still points into it and can be read by other
3152 * threads.
3153 *
3154 * The critical issue is to order this
3155 * page_remove_rmap with the ptp_clear_flush above.
3156 * Those stores are ordered by (if nothing else,)
3157 * the barrier present in the atomic_add_negative
3158 * in page_remove_rmap.
3159 *
3160 * Then the TLB flush in ptep_clear_flush ensures that
3161 * no process can access the old page before the
3162 * decremented mapcount is visible. And the old page
3163 * cannot be reused until after the decremented
3164 * mapcount is visible. So transitively, TLBs to
3165 * old page will be flushed before it can be reused.
3166 */
cea86fe2 3167 page_remove_rmap(old_page, vma, false);
2f38ab2c
SR
3168 }
3169
3170 /* Free the old page.. */
3171 new_page = old_page;
3172 page_copied = 1;
3173 } else {
7df67697 3174 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3175 }
3176
3177 if (new_page)
09cbfeaf 3178 put_page(new_page);
2f38ab2c 3179
82b0f8c3 3180 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3181 /*
3182 * No need to double call mmu_notifier->invalidate_range() callback as
3183 * the above ptep_clear_flush_notify() did already call it.
3184 */
ac46d4f3 3185 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c 3186 if (old_page) {
f4c4a3f4
HY
3187 if (page_copied)
3188 free_swap_cache(old_page);
09cbfeaf 3189 put_page(old_page);
2f38ab2c 3190 }
662ce1dc
YY
3191
3192 delayacct_wpcopy_end();
cb8d8633 3193 return 0;
2f38ab2c 3194oom_free_new:
09cbfeaf 3195 put_page(new_page);
2f38ab2c
SR
3196oom:
3197 if (old_page)
09cbfeaf 3198 put_page(old_page);
662ce1dc
YY
3199
3200 delayacct_wpcopy_end();
2f38ab2c
SR
3201 return VM_FAULT_OOM;
3202}
3203
66a6197c
JK
3204/**
3205 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3206 * writeable once the page is prepared
3207 *
3208 * @vmf: structure describing the fault
3209 *
3210 * This function handles all that is needed to finish a write page fault in a
3211 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3212 * It handles locking of PTE and modifying it.
66a6197c
JK
3213 *
3214 * The function expects the page to be locked or other protection against
3215 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3216 *
2797e79f 3217 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3218 * we acquired PTE lock.
66a6197c 3219 */
2b740303 3220vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3221{
3222 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3223 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3224 &vmf->ptl);
3225 /*
3226 * We might have raced with another page fault while we released the
3227 * pte_offset_map_lock.
3228 */
3229 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3230 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3231 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3232 return VM_FAULT_NOPAGE;
66a6197c
JK
3233 }
3234 wp_page_reuse(vmf);
a19e2553 3235 return 0;
66a6197c
JK
3236}
3237
dd906184
BH
3238/*
3239 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3240 * mapping
3241 */
2b740303 3242static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3243{
82b0f8c3 3244 struct vm_area_struct *vma = vmf->vma;
bae473a4 3245
dd906184 3246 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3247 vm_fault_t ret;
dd906184 3248
82b0f8c3 3249 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3250 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3251 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3252 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3253 return ret;
66a6197c 3254 return finish_mkwrite_fault(vmf);
dd906184 3255 }
997dd98d 3256 wp_page_reuse(vmf);
cb8d8633 3257 return 0;
dd906184
BH
3258}
3259
2b740303 3260static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3261 __releases(vmf->ptl)
93e478d4 3262{
82b0f8c3 3263 struct vm_area_struct *vma = vmf->vma;
cb8d8633 3264 vm_fault_t ret = 0;
93e478d4 3265
a41b70d6 3266 get_page(vmf->page);
93e478d4 3267
93e478d4 3268 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3269 vm_fault_t tmp;
93e478d4 3270
82b0f8c3 3271 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3272 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3273 if (unlikely(!tmp || (tmp &
3274 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3275 put_page(vmf->page);
93e478d4
SR
3276 return tmp;
3277 }
66a6197c 3278 tmp = finish_mkwrite_fault(vmf);
a19e2553 3279 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3280 unlock_page(vmf->page);
a41b70d6 3281 put_page(vmf->page);
66a6197c 3282 return tmp;
93e478d4 3283 }
66a6197c
JK
3284 } else {
3285 wp_page_reuse(vmf);
997dd98d 3286 lock_page(vmf->page);
93e478d4 3287 }
89b15332 3288 ret |= fault_dirty_shared_page(vmf);
997dd98d 3289 put_page(vmf->page);
93e478d4 3290
89b15332 3291 return ret;
93e478d4
SR
3292}
3293
1da177e4 3294/*
c89357e2
DH
3295 * This routine handles present pages, when
3296 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3297 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3298 * (FAULT_FLAG_UNSHARE)
3299 *
3300 * It is done by copying the page to a new address and decrementing the
3301 * shared-page counter for the old page.
1da177e4 3302 *
1da177e4
LT
3303 * Note that this routine assumes that the protection checks have been
3304 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3305 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3306 * done any necessary COW.
1da177e4 3307 *
c89357e2
DH
3308 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3309 * though the page will change only once the write actually happens. This
3310 * avoids a few races, and potentially makes it more efficient.
1da177e4 3311 *
c1e8d7c6 3312 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3313 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3314 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3315 */
2b740303 3316static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3317 __releases(vmf->ptl)
1da177e4 3318{
c89357e2 3319 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3320 struct vm_area_struct *vma = vmf->vma;
b9086fde 3321 struct folio *folio = NULL;
1da177e4 3322
c89357e2
DH
3323 if (likely(!unshare)) {
3324 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3325 pte_unmap_unlock(vmf->pte, vmf->ptl);
3326 return handle_userfault(vmf, VM_UFFD_WP);
3327 }
3328
3329 /*
3330 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3331 * is flushed in this case before copying.
3332 */
3333 if (unlikely(userfaultfd_wp(vmf->vma) &&
3334 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3335 flush_tlb_page(vmf->vma, vmf->address);
3336 }
6ce64428 3337
a41b70d6 3338 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
c89357e2 3339
b9086fde
DH
3340 /*
3341 * Shared mapping: we are guaranteed to have VM_WRITE and
3342 * FAULT_FLAG_WRITE set at this point.
3343 */
3344 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
251b97f5 3345 /*
64e45507
PF
3346 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3347 * VM_PFNMAP VMA.
251b97f5
PZ
3348 *
3349 * We should not cow pages in a shared writeable mapping.
dd906184 3350 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5 3351 */
b9086fde 3352 if (!vmf->page)
2994302b 3353 return wp_pfn_shared(vmf);
b9086fde 3354 return wp_page_shared(vmf);
251b97f5 3355 }
1da177e4 3356
b9086fde
DH
3357 if (vmf->page)
3358 folio = page_folio(vmf->page);
3359
d08b3851 3360 /*
b9086fde
DH
3361 * Private mapping: create an exclusive anonymous page copy if reuse
3362 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
d08b3851 3363 */
b9086fde 3364 if (folio && folio_test_anon(folio)) {
6c287605
DH
3365 /*
3366 * If the page is exclusive to this process we must reuse the
3367 * page without further checks.
3368 */
e4a2ed94 3369 if (PageAnonExclusive(vmf->page))
6c287605
DH
3370 goto reuse;
3371
53a05ad9 3372 /*
e4a2ed94
MWO
3373 * We have to verify under folio lock: these early checks are
3374 * just an optimization to avoid locking the folio and freeing
53a05ad9
DH
3375 * the swapcache if there is little hope that we can reuse.
3376 *
e4a2ed94 3377 * KSM doesn't necessarily raise the folio refcount.
53a05ad9 3378 */
e4a2ed94 3379 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
d4c47097 3380 goto copy;
e4a2ed94 3381 if (!folio_test_lru(folio))
d4c47097
DH
3382 /*
3383 * Note: We cannot easily detect+handle references from
e4a2ed94 3384 * remote LRU pagevecs or references to LRU folios.
d4c47097
DH
3385 */
3386 lru_add_drain();
e4a2ed94 3387 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
09854ba9 3388 goto copy;
e4a2ed94 3389 if (!folio_trylock(folio))
09854ba9 3390 goto copy;
e4a2ed94
MWO
3391 if (folio_test_swapcache(folio))
3392 folio_free_swap(folio);
3393 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3394 folio_unlock(folio);
52d1e606 3395 goto copy;
b009c024 3396 }
09854ba9 3397 /*
e4a2ed94
MWO
3398 * Ok, we've got the only folio reference from our mapping
3399 * and the folio is locked, it's dark out, and we're wearing
53a05ad9 3400 * sunglasses. Hit it.
09854ba9 3401 */
e4a2ed94
MWO
3402 page_move_anon_rmap(vmf->page, vma);
3403 folio_unlock(folio);
6c287605 3404reuse:
c89357e2
DH
3405 if (unlikely(unshare)) {
3406 pte_unmap_unlock(vmf->pte, vmf->ptl);
3407 return 0;
3408 }
be068f29 3409 wp_page_reuse(vmf);
cb8d8633 3410 return 0;
1da177e4 3411 }
52d1e606 3412copy:
1da177e4
LT
3413 /*
3414 * Ok, we need to copy. Oh, well..
3415 */
b9086fde
DH
3416 if (folio)
3417 folio_get(folio);
28766805 3418
82b0f8c3 3419 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b 3420#ifdef CONFIG_KSM
b9086fde 3421 if (folio && folio_test_ksm(folio))
94bfe85b
YY
3422 count_vm_event(COW_KSM);
3423#endif
a41b70d6 3424 return wp_page_copy(vmf);
1da177e4
LT
3425}
3426
97a89413 3427static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3428 unsigned long start_addr, unsigned long end_addr,
3429 struct zap_details *details)
3430{
f5cc4eef 3431 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3432}
3433
f808c13f 3434static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3435 pgoff_t first_index,
3436 pgoff_t last_index,
1da177e4
LT
3437 struct zap_details *details)
3438{
3439 struct vm_area_struct *vma;
1da177e4
LT
3440 pgoff_t vba, vea, zba, zea;
3441
232a6a1c 3442 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3443 vba = vma->vm_pgoff;
d6e93217 3444 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3445 zba = max(first_index, vba);
3446 zea = min(last_index, vea);
1da177e4 3447
97a89413 3448 unmap_mapping_range_vma(vma,
1da177e4
LT
3449 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3450 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3451 details);
1da177e4
LT
3452 }
3453}
3454
22061a1f 3455/**
3506659e
MWO
3456 * unmap_mapping_folio() - Unmap single folio from processes.
3457 * @folio: The locked folio to be unmapped.
22061a1f 3458 *
3506659e 3459 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3460 * Typically, for efficiency, the range of nearby pages has already been
3461 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3462 * truncation or invalidation holds the lock on a folio, it may find that
3463 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3464 * to unmap it finally.
3465 */
3506659e 3466void unmap_mapping_folio(struct folio *folio)
22061a1f 3467{
3506659e 3468 struct address_space *mapping = folio->mapping;
22061a1f 3469 struct zap_details details = { };
232a6a1c
PX
3470 pgoff_t first_index;
3471 pgoff_t last_index;
22061a1f 3472
3506659e 3473 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3474
3506659e
MWO
3475 first_index = folio->index;
3476 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3477
2e148f1e 3478 details.even_cows = false;
3506659e 3479 details.single_folio = folio;
999dad82 3480 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3481
2c865995 3482 i_mmap_lock_read(mapping);
22061a1f 3483 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3484 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3485 last_index, &details);
2c865995 3486 i_mmap_unlock_read(mapping);
22061a1f
HD
3487}
3488
977fbdcd
MW
3489/**
3490 * unmap_mapping_pages() - Unmap pages from processes.
3491 * @mapping: The address space containing pages to be unmapped.
3492 * @start: Index of first page to be unmapped.
3493 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3494 * @even_cows: Whether to unmap even private COWed pages.
3495 *
3496 * Unmap the pages in this address space from any userspace process which
3497 * has them mmaped. Generally, you want to remove COWed pages as well when
3498 * a file is being truncated, but not when invalidating pages from the page
3499 * cache.
3500 */
3501void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3502 pgoff_t nr, bool even_cows)
3503{
3504 struct zap_details details = { };
232a6a1c
PX
3505 pgoff_t first_index = start;
3506 pgoff_t last_index = start + nr - 1;
977fbdcd 3507
2e148f1e 3508 details.even_cows = even_cows;
232a6a1c
PX
3509 if (last_index < first_index)
3510 last_index = ULONG_MAX;
977fbdcd 3511
2c865995 3512 i_mmap_lock_read(mapping);
977fbdcd 3513 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3514 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3515 last_index, &details);
2c865995 3516 i_mmap_unlock_read(mapping);
977fbdcd 3517}
6e0e99d5 3518EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3519
1da177e4 3520/**
8a5f14a2 3521 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3522 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3523 * file.
3524 *
3d41088f 3525 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3526 * @holebegin: byte in first page to unmap, relative to the start of
3527 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3528 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3529 * must keep the partial page. In contrast, we must get rid of
3530 * partial pages.
3531 * @holelen: size of prospective hole in bytes. This will be rounded
3532 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3533 * end of the file.
3534 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3535 * but 0 when invalidating pagecache, don't throw away private data.
3536 */
3537void unmap_mapping_range(struct address_space *mapping,
3538 loff_t const holebegin, loff_t const holelen, int even_cows)
3539{
1da177e4
LT
3540 pgoff_t hba = holebegin >> PAGE_SHIFT;
3541 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3542
3543 /* Check for overflow. */
3544 if (sizeof(holelen) > sizeof(hlen)) {
3545 long long holeend =
3546 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3547 if (holeend & ~(long long)ULONG_MAX)
3548 hlen = ULONG_MAX - hba + 1;
3549 }
3550
977fbdcd 3551 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3552}
3553EXPORT_SYMBOL(unmap_mapping_range);
3554
b756a3b5
AP
3555/*
3556 * Restore a potential device exclusive pte to a working pte entry
3557 */
3558static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3559{
19672a9e 3560 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3561 struct vm_area_struct *vma = vmf->vma;
3562 struct mmu_notifier_range range;
3563
19672a9e 3564 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
b756a3b5 3565 return VM_FAULT_RETRY;
7d4a8be0 3566 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5
AP
3567 vma->vm_mm, vmf->address & PAGE_MASK,
3568 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3569 mmu_notifier_invalidate_range_start(&range);
3570
3571 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3572 &vmf->ptl);
3573 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
19672a9e 3574 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5
AP
3575
3576 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3577 folio_unlock(folio);
b756a3b5
AP
3578
3579 mmu_notifier_invalidate_range_end(&range);
3580 return 0;
3581}
3582
a160e537 3583static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3584 struct vm_area_struct *vma,
3585 unsigned int fault_flags)
3586{
a160e537 3587 if (!folio_test_swapcache(folio))
c145e0b4 3588 return false;
9202d527 3589 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3590 folio_test_mlocked(folio))
c145e0b4
DH
3591 return true;
3592 /*
3593 * If we want to map a page that's in the swapcache writable, we
3594 * have to detect via the refcount if we're really the exclusive
3595 * user. Try freeing the swapcache to get rid of the swapcache
3596 * reference only in case it's likely that we'll be the exlusive user.
3597 */
a160e537
MWO
3598 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3599 folio_ref_count(folio) == 2;
c145e0b4
DH
3600}
3601
9c28a205
PX
3602static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3603{
3604 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3605 vmf->address, &vmf->ptl);
3606 /*
3607 * Be careful so that we will only recover a special uffd-wp pte into a
3608 * none pte. Otherwise it means the pte could have changed, so retry.
7e3ce3f8
PX
3609 *
3610 * This should also cover the case where e.g. the pte changed
3611 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3612 * So is_pte_marker() check is not enough to safely drop the pte.
9c28a205 3613 */
7e3ce3f8 3614 if (pte_same(vmf->orig_pte, *vmf->pte))
9c28a205
PX
3615 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3616 pte_unmap_unlock(vmf->pte, vmf->ptl);
3617 return 0;
3618}
3619
3620/*
3621 * This is actually a page-missing access, but with uffd-wp special pte
3622 * installed. It means this pte was wr-protected before being unmapped.
3623 */
3624static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3625{
3626 /*
3627 * Just in case there're leftover special ptes even after the region
3628 * got unregistered - we can simply clear them. We can also do that
3629 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3630 * ranges, but it should be more efficient to be done lazily here.
3631 */
3632 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3633 return pte_marker_clear(vmf);
3634
3635 /* do_fault() can handle pte markers too like none pte */
3636 return do_fault(vmf);
3637}
3638
5c041f5d
PX
3639static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3640{
3641 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3642 unsigned long marker = pte_marker_get(entry);
3643
3644 /*
ca92ea3d
PX
3645 * PTE markers should never be empty. If anything weird happened,
3646 * the best thing to do is to kill the process along with its mm.
5c041f5d 3647 */
ca92ea3d 3648 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3649 return VM_FAULT_SIGBUS;
3650
15520a3f
PX
3651 /* Higher priority than uffd-wp when data corrupted */
3652 if (marker & PTE_MARKER_SWAPIN_ERROR)
3653 return VM_FAULT_SIGBUS;
3654
9c28a205
PX
3655 if (pte_marker_entry_uffd_wp(entry))
3656 return pte_marker_handle_uffd_wp(vmf);
3657
3658 /* This is an unknown pte marker */
3659 return VM_FAULT_SIGBUS;
5c041f5d
PX
3660}
3661
1da177e4 3662/*
c1e8d7c6 3663 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3664 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3665 * We return with pte unmapped and unlocked.
3666 *
c1e8d7c6 3667 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3668 * as does filemap_fault().
1da177e4 3669 */
2b740303 3670vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3671{
82b0f8c3 3672 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3673 struct folio *swapcache, *folio = NULL;
3674 struct page *page;
2799e775 3675 struct swap_info_struct *si = NULL;
14f9135d 3676 rmap_t rmap_flags = RMAP_NONE;
1493a191 3677 bool exclusive = false;
65500d23 3678 swp_entry_t entry;
1da177e4 3679 pte_t pte;
d065bd81 3680 int locked;
2b740303 3681 vm_fault_t ret = 0;
aae466b0 3682 void *shadow = NULL;
1da177e4 3683
2ca99358 3684 if (!pte_unmap_same(vmf))
8f4e2101 3685 goto out;
65500d23 3686
2994302b 3687 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3688 if (unlikely(non_swap_entry(entry))) {
3689 if (is_migration_entry(entry)) {
82b0f8c3
JK
3690 migration_entry_wait(vma->vm_mm, vmf->pmd,
3691 vmf->address);
b756a3b5
AP
3692 } else if (is_device_exclusive_entry(entry)) {
3693 vmf->page = pfn_swap_entry_to_page(entry);
3694 ret = remove_device_exclusive_entry(vmf);
5042db43 3695 } else if (is_device_private_entry(entry)) {
af5cdaf8 3696 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3697 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3698 vmf->address, &vmf->ptl);
3699 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3700 spin_unlock(vmf->ptl);
3701 goto out;
3702 }
3703
3704 /*
3705 * Get a page reference while we know the page can't be
3706 * freed.
3707 */
3708 get_page(vmf->page);
3709 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 3710 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 3711 put_page(vmf->page);
d1737fdb
AK
3712 } else if (is_hwpoison_entry(entry)) {
3713 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
3714 } else if (is_pte_marker_entry(entry)) {
3715 ret = handle_pte_marker(vmf);
d1737fdb 3716 } else {
2994302b 3717 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3718 ret = VM_FAULT_SIGBUS;
d1737fdb 3719 }
0697212a
CL
3720 goto out;
3721 }
0bcac06f 3722
2799e775
ML
3723 /* Prevent swapoff from happening to us. */
3724 si = get_swap_device(entry);
3725 if (unlikely(!si))
3726 goto out;
0bcac06f 3727
5a423081
MWO
3728 folio = swap_cache_get_folio(entry, vma, vmf->address);
3729 if (folio)
3730 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3731 swapcache = folio;
f8020772 3732
d4f9565a 3733 if (!folio) {
a449bf58
QC
3734 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3735 __swap_count(entry) == 1) {
0bcac06f 3736 /* skip swapcache */
63ad4add
MWO
3737 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3738 vma, vmf->address, false);
3739 page = &folio->page;
3740 if (folio) {
3741 __folio_set_locked(folio);
3742 __folio_set_swapbacked(folio);
4c6355b2 3743
65995918 3744 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
3745 vma->vm_mm, GFP_KERNEL,
3746 entry)) {
545b1b07 3747 ret = VM_FAULT_OOM;
4c6355b2 3748 goto out_page;
545b1b07 3749 }
0add0c77 3750 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3751
aae466b0
JK
3752 shadow = get_shadow_from_swap_cache(entry);
3753 if (shadow)
63ad4add 3754 workingset_refault(folio, shadow);
0076f029 3755
63ad4add 3756 folio_add_lru(folio);
0add0c77
SB
3757
3758 /* To provide entry to swap_readpage() */
63ad4add 3759 folio_set_swap_entry(folio, entry);
5169b844 3760 swap_readpage(page, true, NULL);
63ad4add 3761 folio->private = NULL;
0bcac06f 3762 }
aa8d22a1 3763 } else {
e9e9b7ec
MK
3764 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3765 vmf);
63ad4add
MWO
3766 if (page)
3767 folio = page_folio(page);
d4f9565a 3768 swapcache = folio;
0bcac06f
MK
3769 }
3770
d4f9565a 3771 if (!folio) {
1da177e4 3772 /*
8f4e2101
HD
3773 * Back out if somebody else faulted in this pte
3774 * while we released the pte lock.
1da177e4 3775 */
82b0f8c3
JK
3776 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3777 vmf->address, &vmf->ptl);
2994302b 3778 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3779 ret = VM_FAULT_OOM;
65500d23 3780 goto unlock;
1da177e4
LT
3781 }
3782
3783 /* Had to read the page from swap area: Major fault */
3784 ret = VM_FAULT_MAJOR;
f8891e5e 3785 count_vm_event(PGMAJFAULT);
2262185c 3786 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3787 } else if (PageHWPoison(page)) {
71f72525
WF
3788 /*
3789 * hwpoisoned dirty swapcache pages are kept for killing
3790 * owner processes (which may be unknown at hwpoison time)
3791 */
d1737fdb 3792 ret = VM_FAULT_HWPOISON;
4779cb31 3793 goto out_release;
1da177e4
LT
3794 }
3795
19672a9e 3796 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
e709ffd6 3797
d065bd81
ML
3798 if (!locked) {
3799 ret |= VM_FAULT_RETRY;
3800 goto out_release;
3801 }
073e587e 3802
84d60fdd
DH
3803 if (swapcache) {
3804 /*
3b344157 3805 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
3806 * swapcache from under us. The page pin, and pte_same test
3807 * below, are not enough to exclude that. Even if it is still
3808 * swapcache, we need to check that the page's swap has not
3809 * changed.
3810 */
63ad4add 3811 if (unlikely(!folio_test_swapcache(folio) ||
84d60fdd
DH
3812 page_private(page) != entry.val))
3813 goto out_page;
3814
3815 /*
3816 * KSM sometimes has to copy on read faults, for example, if
3817 * page->index of !PageKSM() pages would be nonlinear inside the
3818 * anon VMA -- PageKSM() is lost on actual swapout.
3819 */
3820 page = ksm_might_need_to_copy(page, vma, vmf->address);
3821 if (unlikely(!page)) {
3822 ret = VM_FAULT_OOM;
84d60fdd
DH
3823 goto out_page;
3824 }
63ad4add 3825 folio = page_folio(page);
c145e0b4
DH
3826
3827 /*
3828 * If we want to map a page that's in the swapcache writable, we
3829 * have to detect via the refcount if we're really the exclusive
3830 * owner. Try removing the extra reference from the local LRU
3831 * pagevecs if required.
3832 */
d4f9565a 3833 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 3834 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 3835 lru_add_drain();
5ad64688
HD
3836 }
3837
9d82c694 3838 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3839
1da177e4 3840 /*
8f4e2101 3841 * Back out if somebody else already faulted in this pte.
1da177e4 3842 */
82b0f8c3
JK
3843 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3844 &vmf->ptl);
2994302b 3845 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3846 goto out_nomap;
b8107480 3847
63ad4add 3848 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
3849 ret = VM_FAULT_SIGBUS;
3850 goto out_nomap;
1da177e4
LT
3851 }
3852
78fbe906
DH
3853 /*
3854 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3855 * must never point at an anonymous page in the swapcache that is
3856 * PG_anon_exclusive. Sanity check that this holds and especially, that
3857 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3858 * check after taking the PT lock and making sure that nobody
3859 * concurrently faulted in this page and set PG_anon_exclusive.
3860 */
63ad4add
MWO
3861 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3862 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 3863
1493a191
DH
3864 /*
3865 * Check under PT lock (to protect against concurrent fork() sharing
3866 * the swap entry concurrently) for certainly exclusive pages.
3867 */
63ad4add 3868 if (!folio_test_ksm(folio)) {
1493a191 3869 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 3870 if (folio != swapcache) {
1493a191
DH
3871 /*
3872 * We have a fresh page that is not exposed to the
3873 * swapcache -> certainly exclusive.
3874 */
3875 exclusive = true;
63ad4add 3876 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 3877 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3878 /*
3879 * This is tricky: not all swap backends support
3880 * concurrent page modifications while under writeback.
3881 *
3882 * So if we stumble over such a page in the swapcache
3883 * we must not set the page exclusive, otherwise we can
3884 * map it writable without further checks and modify it
3885 * while still under writeback.
3886 *
3887 * For these problematic swap backends, simply drop the
3888 * exclusive marker: this is perfectly fine as we start
3889 * writeback only if we fully unmapped the page and
3890 * there are no unexpected references on the page after
3891 * unmapping succeeded. After fully unmapped, no
3892 * further GUP references (FOLL_GET and FOLL_PIN) can
3893 * appear, so dropping the exclusive marker and mapping
3894 * it only R/O is fine.
3895 */
3896 exclusive = false;
3897 }
3898 }
3899
8c7c6e34 3900 /*
c145e0b4
DH
3901 * Remove the swap entry and conditionally try to free up the swapcache.
3902 * We're already holding a reference on the page but haven't mapped it
3903 * yet.
8c7c6e34 3904 */
c145e0b4 3905 swap_free(entry);
a160e537
MWO
3906 if (should_try_to_free_swap(folio, vma, vmf->flags))
3907 folio_free_swap(folio);
1da177e4 3908
f1a79412
SB
3909 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3910 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 3911 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3912
3913 /*
1493a191
DH
3914 * Same logic as in do_wp_page(); however, optimize for pages that are
3915 * certainly not shared either because we just allocated them without
3916 * exposing them to the swapcache or because the swap entry indicates
3917 * exclusivity.
c145e0b4 3918 */
63ad4add
MWO
3919 if (!folio_test_ksm(folio) &&
3920 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
3921 if (vmf->flags & FAULT_FLAG_WRITE) {
3922 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3923 vmf->flags &= ~FAULT_FLAG_WRITE;
6c287605 3924 }
14f9135d 3925 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3926 }
1da177e4 3927 flush_icache_page(vma, page);
2994302b 3928 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3929 pte = pte_mksoft_dirty(pte);
f1eb1bac 3930 if (pte_swp_uffd_wp(vmf->orig_pte))
f45ec5ff 3931 pte = pte_mkuffd_wp(pte);
2994302b 3932 vmf->orig_pte = pte;
0bcac06f
MK
3933
3934 /* ksm created a completely new copy */
d4f9565a 3935 if (unlikely(folio != swapcache && swapcache)) {
40f2bbf7 3936 page_add_new_anon_rmap(page, vma, vmf->address);
63ad4add 3937 folio_add_lru_vma(folio, vma);
0bcac06f 3938 } else {
f1e2db12 3939 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 3940 }
1da177e4 3941
63ad4add
MWO
3942 VM_BUG_ON(!folio_test_anon(folio) ||
3943 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
3944 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3945 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3946
63ad4add 3947 folio_unlock(folio);
d4f9565a 3948 if (folio != swapcache && swapcache) {
4969c119
AA
3949 /*
3950 * Hold the lock to avoid the swap entry to be reused
3951 * until we take the PT lock for the pte_same() check
3952 * (to avoid false positives from pte_same). For
3953 * further safety release the lock after the swap_free
3954 * so that the swap count won't change under a
3955 * parallel locked swapcache.
3956 */
d4f9565a
MWO
3957 folio_unlock(swapcache);
3958 folio_put(swapcache);
4969c119 3959 }
c475a8ab 3960
82b0f8c3 3961 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3962 ret |= do_wp_page(vmf);
61469f1d
HD
3963 if (ret & VM_FAULT_ERROR)
3964 ret &= VM_FAULT_ERROR;
1da177e4
LT
3965 goto out;
3966 }
3967
3968 /* No need to invalidate - it was non-present before */
82b0f8c3 3969 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3970unlock:
82b0f8c3 3971 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3972out:
2799e775
ML
3973 if (si)
3974 put_swap_device(si);
1da177e4 3975 return ret;
b8107480 3976out_nomap:
82b0f8c3 3977 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3978out_page:
63ad4add 3979 folio_unlock(folio);
4779cb31 3980out_release:
63ad4add 3981 folio_put(folio);
d4f9565a
MWO
3982 if (folio != swapcache && swapcache) {
3983 folio_unlock(swapcache);
3984 folio_put(swapcache);
4969c119 3985 }
2799e775
ML
3986 if (si)
3987 put_swap_device(si);
65500d23 3988 return ret;
1da177e4
LT
3989}
3990
3991/*
c1e8d7c6 3992 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3993 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3994 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3995 */
2b740303 3996static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3997{
82b0f8c3 3998 struct vm_area_struct *vma = vmf->vma;
6bc56a4d 3999 struct folio *folio;
2b740303 4000 vm_fault_t ret = 0;
1da177e4 4001 pte_t entry;
1da177e4 4002
6b7339f4
KS
4003 /* File mapping without ->vm_ops ? */
4004 if (vma->vm_flags & VM_SHARED)
4005 return VM_FAULT_SIGBUS;
4006
7267ec00
KS
4007 /*
4008 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4009 * pte_offset_map() on pmds where a huge pmd might be created
4010 * from a different thread.
4011 *
3e4e28c5 4012 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
4013 * parallel threads are excluded by other means.
4014 *
3e4e28c5 4015 * Here we only have mmap_read_lock(mm).
7267ec00 4016 */
4cf58924 4017 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4018 return VM_FAULT_OOM;
4019
f9ce0be7 4020 /* See comment in handle_pte_fault() */
82b0f8c3 4021 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
4022 return 0;
4023
11ac5524 4024 /* Use the zero-page for reads */
82b0f8c3 4025 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4026 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4027 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4028 vma->vm_page_prot));
82b0f8c3
JK
4029 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4030 vmf->address, &vmf->ptl);
7df67697
BM
4031 if (!pte_none(*vmf->pte)) {
4032 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4033 goto unlock;
7df67697 4034 }
6b31d595
MH
4035 ret = check_stable_address_space(vma->vm_mm);
4036 if (ret)
4037 goto unlock;
6b251fc9
AA
4038 /* Deliver the page fault to userland, check inside PT lock */
4039 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4040 pte_unmap_unlock(vmf->pte, vmf->ptl);
4041 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4042 }
a13ea5b7
HD
4043 goto setpte;
4044 }
4045
557ed1fa 4046 /* Allocate our own private page. */
557ed1fa
NP
4047 if (unlikely(anon_vma_prepare(vma)))
4048 goto oom;
6bc56a4d
MWO
4049 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4050 if (!folio)
557ed1fa 4051 goto oom;
eb3c24f3 4052
6bc56a4d 4053 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
eb3c24f3 4054 goto oom_free_page;
cb3184de 4055 cgroup_throttle_swaprate(&folio->page, GFP_KERNEL);
eb3c24f3 4056
52f37629 4057 /*
cb3184de 4058 * The memory barrier inside __folio_mark_uptodate makes sure that
f4f5329d 4059 * preceding stores to the page contents become visible before
52f37629
MK
4060 * the set_pte_at() write.
4061 */
cb3184de 4062 __folio_mark_uptodate(folio);
8f4e2101 4063
cb3184de 4064 entry = mk_pte(&folio->page, vma->vm_page_prot);
50c25ee9 4065 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4066 if (vma->vm_flags & VM_WRITE)
4067 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4068
82b0f8c3
JK
4069 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4070 &vmf->ptl);
7df67697 4071 if (!pte_none(*vmf->pte)) {
bce8cb3c 4072 update_mmu_tlb(vma, vmf->address, vmf->pte);
557ed1fa 4073 goto release;
7df67697 4074 }
9ba69294 4075
6b31d595
MH
4076 ret = check_stable_address_space(vma->vm_mm);
4077 if (ret)
4078 goto release;
4079
6b251fc9
AA
4080 /* Deliver the page fault to userland, check inside PT lock */
4081 if (userfaultfd_missing(vma)) {
82b0f8c3 4082 pte_unmap_unlock(vmf->pte, vmf->ptl);
cb3184de 4083 folio_put(folio);
82b0f8c3 4084 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4085 }
4086
f1a79412 4087 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
cb3184de
MWO
4088 folio_add_new_anon_rmap(folio, vma, vmf->address);
4089 folio_add_lru_vma(folio, vma);
a13ea5b7 4090setpte:
82b0f8c3 4091 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4092
4093 /* No need to invalidate - it was non-present before */
82b0f8c3 4094 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4095unlock:
82b0f8c3 4096 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4097 return ret;
8f4e2101 4098release:
cb3184de 4099 folio_put(folio);
8f4e2101 4100 goto unlock;
8a9f3ccd 4101oom_free_page:
cb3184de 4102 folio_put(folio);
65500d23 4103oom:
1da177e4
LT
4104 return VM_FAULT_OOM;
4105}
4106
9a95f3cf 4107/*
c1e8d7c6 4108 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4109 * released depending on flags and vma->vm_ops->fault() return value.
4110 * See filemap_fault() and __lock_page_retry().
4111 */
2b740303 4112static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4113{
82b0f8c3 4114 struct vm_area_struct *vma = vmf->vma;
2b740303 4115 vm_fault_t ret;
7eae74af 4116
63f3655f
MH
4117 /*
4118 * Preallocate pte before we take page_lock because this might lead to
4119 * deadlocks for memcg reclaim which waits for pages under writeback:
4120 * lock_page(A)
4121 * SetPageWriteback(A)
4122 * unlock_page(A)
4123 * lock_page(B)
4124 * lock_page(B)
d383807a 4125 * pte_alloc_one
63f3655f
MH
4126 * shrink_page_list
4127 * wait_on_page_writeback(A)
4128 * SetPageWriteback(B)
4129 * unlock_page(B)
4130 * # flush A, B to clear the writeback
4131 */
4132 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4133 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4134 if (!vmf->prealloc_pte)
4135 return VM_FAULT_OOM;
63f3655f
MH
4136 }
4137
11bac800 4138 ret = vma->vm_ops->fault(vmf);
3917048d 4139 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4140 VM_FAULT_DONE_COW)))
bc2466e4 4141 return ret;
7eae74af 4142
667240e0 4143 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4144 struct page *page = vmf->page;
e53ac737
RR
4145 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4146 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4147 if (page_mapped(page))
4148 unmap_mapping_pages(page_mapping(page),
4149 page->index, 1, false);
e53ac737 4150 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4151 if (invalidate_inode_page(page))
4152 poisonret = VM_FAULT_NOPAGE;
4153 unlock_page(page);
e53ac737 4154 }
3149c79f 4155 put_page(page);
936ca80d 4156 vmf->page = NULL;
e53ac737 4157 return poisonret;
7eae74af
KS
4158 }
4159
4160 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4161 lock_page(vmf->page);
7eae74af 4162 else
667240e0 4163 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4164
7eae74af
KS
4165 return ret;
4166}
4167
396bcc52 4168#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4169static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4170{
82b0f8c3 4171 struct vm_area_struct *vma = vmf->vma;
953c66c2 4172
82b0f8c3 4173 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4174 /*
4175 * We are going to consume the prealloc table,
4176 * count that as nr_ptes.
4177 */
c4812909 4178 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4179 vmf->prealloc_pte = NULL;
953c66c2
AK
4180}
4181
f9ce0be7 4182vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4183{
82b0f8c3
JK
4184 struct vm_area_struct *vma = vmf->vma;
4185 bool write = vmf->flags & FAULT_FLAG_WRITE;
4186 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4187 pmd_t entry;
2b740303 4188 int i;
d01ac3c3 4189 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4190
4191 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4192 return ret;
10102459 4193
10102459 4194 page = compound_head(page);
d01ac3c3
MWO
4195 if (compound_order(page) != HPAGE_PMD_ORDER)
4196 return ret;
10102459 4197
eac96c3e
YS
4198 /*
4199 * Just backoff if any subpage of a THP is corrupted otherwise
4200 * the corrupted page may mapped by PMD silently to escape the
4201 * check. This kind of THP just can be PTE mapped. Access to
4202 * the corrupted subpage should trigger SIGBUS as expected.
4203 */
4204 if (unlikely(PageHasHWPoisoned(page)))
4205 return ret;
4206
953c66c2 4207 /*
f0953a1b 4208 * Archs like ppc64 need additional space to store information
953c66c2
AK
4209 * related to pte entry. Use the preallocated table for that.
4210 */
82b0f8c3 4211 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4212 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4213 if (!vmf->prealloc_pte)
953c66c2 4214 return VM_FAULT_OOM;
953c66c2
AK
4215 }
4216
82b0f8c3
JK
4217 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4218 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4219 goto out;
4220
4221 for (i = 0; i < HPAGE_PMD_NR; i++)
4222 flush_icache_page(vma, page + i);
4223
4224 entry = mk_huge_pmd(page, vma->vm_page_prot);
4225 if (write)
f55e1014 4226 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4227
fadae295 4228 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4229 page_add_file_rmap(page, vma, true);
4230
953c66c2
AK
4231 /*
4232 * deposit and withdraw with pmd lock held
4233 */
4234 if (arch_needs_pgtable_deposit())
82b0f8c3 4235 deposit_prealloc_pte(vmf);
10102459 4236
82b0f8c3 4237 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4238
82b0f8c3 4239 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4240
4241 /* fault is handled */
4242 ret = 0;
95ecedcd 4243 count_vm_event(THP_FILE_MAPPED);
10102459 4244out:
82b0f8c3 4245 spin_unlock(vmf->ptl);
10102459
KS
4246 return ret;
4247}
4248#else
f9ce0be7 4249vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4250{
f9ce0be7 4251 return VM_FAULT_FALLBACK;
10102459
KS
4252}
4253#endif
4254
9d3af4b4 4255void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4256{
82b0f8c3 4257 struct vm_area_struct *vma = vmf->vma;
9c28a205 4258 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
82b0f8c3 4259 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4260 bool prefault = vmf->address != addr;
3bb97794 4261 pte_t entry;
7267ec00 4262
3bb97794
KS
4263 flush_icache_page(vma, page);
4264 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4265
4266 if (prefault && arch_wants_old_prefaulted_pte())
4267 entry = pte_mkold(entry);
50c25ee9
TB
4268 else
4269 entry = pte_sw_mkyoung(entry);
46bdb427 4270
3bb97794
KS
4271 if (write)
4272 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205 4273 if (unlikely(uffd_wp))
f1eb1bac 4274 entry = pte_mkuffd_wp(entry);
bae473a4
KS
4275 /* copy-on-write page */
4276 if (write && !(vma->vm_flags & VM_SHARED)) {
f1a79412 4277 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4278 page_add_new_anon_rmap(page, vma, addr);
b518154e 4279 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4280 } else {
f1a79412 4281 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2 4282 page_add_file_rmap(page, vma, false);
3bb97794 4283 }
9d3af4b4 4284 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4285}
4286
f46f2ade
PX
4287static bool vmf_pte_changed(struct vm_fault *vmf)
4288{
4289 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4290 return !pte_same(*vmf->pte, vmf->orig_pte);
4291
4292 return !pte_none(*vmf->pte);
4293}
4294
9118c0cb
JK
4295/**
4296 * finish_fault - finish page fault once we have prepared the page to fault
4297 *
4298 * @vmf: structure describing the fault
4299 *
4300 * This function handles all that is needed to finish a page fault once the
4301 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4302 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4303 * addition.
9118c0cb
JK
4304 *
4305 * The function expects the page to be locked and on success it consumes a
4306 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4307 *
4308 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4309 */
2b740303 4310vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4311{
f9ce0be7 4312 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4313 struct page *page;
f9ce0be7 4314 vm_fault_t ret;
9118c0cb
JK
4315
4316 /* Did we COW the page? */
f9ce0be7 4317 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4318 page = vmf->cow_page;
4319 else
4320 page = vmf->page;
6b31d595
MH
4321
4322 /*
4323 * check even for read faults because we might have lost our CoWed
4324 * page
4325 */
f9ce0be7
KS
4326 if (!(vma->vm_flags & VM_SHARED)) {
4327 ret = check_stable_address_space(vma->vm_mm);
4328 if (ret)
4329 return ret;
4330 }
4331
4332 if (pmd_none(*vmf->pmd)) {
4333 if (PageTransCompound(page)) {
4334 ret = do_set_pmd(vmf, page);
4335 if (ret != VM_FAULT_FALLBACK)
4336 return ret;
4337 }
4338
03c4f204
QZ
4339 if (vmf->prealloc_pte)
4340 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4341 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4342 return VM_FAULT_OOM;
4343 }
4344
3fe2895c
JB
4345 /*
4346 * See comment in handle_pte_fault() for how this scenario happens, we
4347 * need to return NOPAGE so that we drop this page.
4348 */
f9ce0be7 4349 if (pmd_devmap_trans_unstable(vmf->pmd))
3fe2895c 4350 return VM_FAULT_NOPAGE;
f9ce0be7
KS
4351
4352 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4353 vmf->address, &vmf->ptl);
70427f6e 4354
f9ce0be7 4355 /* Re-check under ptl */
70427f6e 4356 if (likely(!vmf_pte_changed(vmf))) {
9d3af4b4 4357 do_set_pte(vmf, page, vmf->address);
70427f6e
SA
4358
4359 /* no need to invalidate: a not-present page won't be cached */
4360 update_mmu_cache(vma, vmf->address, vmf->pte);
4361
4362 ret = 0;
4363 } else {
4364 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4365 ret = VM_FAULT_NOPAGE;
70427f6e 4366 }
f9ce0be7 4367
f9ce0be7 4368 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4369 return ret;
4370}
4371
3a91053a
KS
4372static unsigned long fault_around_bytes __read_mostly =
4373 rounddown_pow_of_two(65536);
a9b0f861 4374
a9b0f861
KS
4375#ifdef CONFIG_DEBUG_FS
4376static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4377{
a9b0f861 4378 *val = fault_around_bytes;
1592eef0
KS
4379 return 0;
4380}
4381
b4903d6e 4382/*
da391d64
WK
4383 * fault_around_bytes must be rounded down to the nearest page order as it's
4384 * what do_fault_around() expects to see.
b4903d6e 4385 */
a9b0f861 4386static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4387{
a9b0f861 4388 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4389 return -EINVAL;
b4903d6e
AR
4390 if (val > PAGE_SIZE)
4391 fault_around_bytes = rounddown_pow_of_two(val);
4392 else
4393 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4394 return 0;
4395}
0a1345f8 4396DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4397 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4398
4399static int __init fault_around_debugfs(void)
4400{
d9f7979c
GKH
4401 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4402 &fault_around_bytes_fops);
1592eef0
KS
4403 return 0;
4404}
4405late_initcall(fault_around_debugfs);
1592eef0 4406#endif
8c6e50b0 4407
1fdb412b
KS
4408/*
4409 * do_fault_around() tries to map few pages around the fault address. The hope
4410 * is that the pages will be needed soon and this will lower the number of
4411 * faults to handle.
4412 *
4413 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4414 * not ready to be mapped: not up-to-date, locked, etc.
4415 *
1fdb412b
KS
4416 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4417 * only once.
4418 *
da391d64
WK
4419 * fault_around_bytes defines how many bytes we'll try to map.
4420 * do_fault_around() expects it to be set to a power of two less than or equal
4421 * to PTRS_PER_PTE.
1fdb412b 4422 *
da391d64
WK
4423 * The virtual address of the area that we map is naturally aligned to
4424 * fault_around_bytes rounded down to the machine page size
4425 * (and therefore to page order). This way it's easier to guarantee
4426 * that we don't cross page table boundaries.
1fdb412b 4427 */
2b740303 4428static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4429{
82b0f8c3 4430 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4431 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4432 pgoff_t end_pgoff;
2b740303 4433 int off;
8c6e50b0 4434
4db0c3c2 4435 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4436 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4437
f9ce0be7
KS
4438 address = max(address & mask, vmf->vma->vm_start);
4439 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4440 start_pgoff -= off;
8c6e50b0
KS
4441
4442 /*
da391d64
WK
4443 * end_pgoff is either the end of the page table, the end of
4444 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4445 */
bae473a4 4446 end_pgoff = start_pgoff -
f9ce0be7 4447 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4448 PTRS_PER_PTE - 1;
82b0f8c3 4449 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4450 start_pgoff + nr_pages - 1);
8c6e50b0 4451
82b0f8c3 4452 if (pmd_none(*vmf->pmd)) {
4cf58924 4453 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4454 if (!vmf->prealloc_pte)
f9ce0be7 4455 return VM_FAULT_OOM;
8c6e50b0
KS
4456 }
4457
f9ce0be7 4458 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4459}
4460
9c28a205
PX
4461/* Return true if we should do read fault-around, false otherwise */
4462static inline bool should_fault_around(struct vm_fault *vmf)
4463{
4464 /* No ->map_pages? No way to fault around... */
4465 if (!vmf->vma->vm_ops->map_pages)
4466 return false;
4467
4468 if (uffd_disable_fault_around(vmf->vma))
4469 return false;
4470
4471 return fault_around_bytes >> PAGE_SHIFT > 1;
4472}
4473
2b740303 4474static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4475{
2b740303 4476 vm_fault_t ret = 0;
8c6e50b0
KS
4477
4478 /*
4479 * Let's call ->map_pages() first and use ->fault() as fallback
4480 * if page by the offset is not ready to be mapped (cold cache or
4481 * something).
4482 */
9c28a205
PX
4483 if (should_fault_around(vmf)) {
4484 ret = do_fault_around(vmf);
4485 if (ret)
4486 return ret;
8c6e50b0 4487 }
e655fb29 4488
936ca80d 4489 ret = __do_fault(vmf);
e655fb29
KS
4490 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4491 return ret;
4492
9118c0cb 4493 ret |= finish_fault(vmf);
936ca80d 4494 unlock_page(vmf->page);
7267ec00 4495 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4496 put_page(vmf->page);
e655fb29
KS
4497 return ret;
4498}
4499
2b740303 4500static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4501{
82b0f8c3 4502 struct vm_area_struct *vma = vmf->vma;
2b740303 4503 vm_fault_t ret;
ec47c3b9
KS
4504
4505 if (unlikely(anon_vma_prepare(vma)))
4506 return VM_FAULT_OOM;
4507
936ca80d
JK
4508 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4509 if (!vmf->cow_page)
ec47c3b9
KS
4510 return VM_FAULT_OOM;
4511
8f425e4e
MWO
4512 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4513 GFP_KERNEL)) {
936ca80d 4514 put_page(vmf->cow_page);
ec47c3b9
KS
4515 return VM_FAULT_OOM;
4516 }
9d82c694 4517 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4518
936ca80d 4519 ret = __do_fault(vmf);
ec47c3b9
KS
4520 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4521 goto uncharge_out;
3917048d
JK
4522 if (ret & VM_FAULT_DONE_COW)
4523 return ret;
ec47c3b9 4524
b1aa812b 4525 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4526 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4527
9118c0cb 4528 ret |= finish_fault(vmf);
b1aa812b
JK
4529 unlock_page(vmf->page);
4530 put_page(vmf->page);
7267ec00
KS
4531 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4532 goto uncharge_out;
ec47c3b9
KS
4533 return ret;
4534uncharge_out:
936ca80d 4535 put_page(vmf->cow_page);
ec47c3b9
KS
4536 return ret;
4537}
4538
2b740303 4539static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4540{
82b0f8c3 4541 struct vm_area_struct *vma = vmf->vma;
2b740303 4542 vm_fault_t ret, tmp;
1d65f86d 4543
936ca80d 4544 ret = __do_fault(vmf);
7eae74af 4545 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4546 return ret;
1da177e4
LT
4547
4548 /*
f0c6d4d2
KS
4549 * Check if the backing address space wants to know that the page is
4550 * about to become writable
1da177e4 4551 */
fb09a464 4552 if (vma->vm_ops->page_mkwrite) {
936ca80d 4553 unlock_page(vmf->page);
38b8cb7f 4554 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4555 if (unlikely(!tmp ||
4556 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4557 put_page(vmf->page);
fb09a464 4558 return tmp;
4294621f 4559 }
fb09a464
KS
4560 }
4561
9118c0cb 4562 ret |= finish_fault(vmf);
7267ec00
KS
4563 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4564 VM_FAULT_RETRY))) {
936ca80d
JK
4565 unlock_page(vmf->page);
4566 put_page(vmf->page);
f0c6d4d2 4567 return ret;
1da177e4 4568 }
b827e496 4569
89b15332 4570 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4571 return ret;
54cb8821 4572}
d00806b1 4573
9a95f3cf 4574/*
c1e8d7c6 4575 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4576 * but allow concurrent faults).
c1e8d7c6 4577 * The mmap_lock may have been released depending on flags and our
9138e47e 4578 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4579 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4580 * by other thread calling munmap()).
9a95f3cf 4581 */
2b740303 4582static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4583{
82b0f8c3 4584 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4585 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4586 vm_fault_t ret;
54cb8821 4587
ff09d7ec
AK
4588 /*
4589 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4590 */
4591 if (!vma->vm_ops->fault) {
4592 /*
4593 * If we find a migration pmd entry or a none pmd entry, which
4594 * should never happen, return SIGBUS
4595 */
4596 if (unlikely(!pmd_present(*vmf->pmd)))
4597 ret = VM_FAULT_SIGBUS;
4598 else {
4599 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4600 vmf->pmd,
4601 vmf->address,
4602 &vmf->ptl);
4603 /*
4604 * Make sure this is not a temporary clearing of pte
4605 * by holding ptl and checking again. A R/M/W update
4606 * of pte involves: take ptl, clearing the pte so that
4607 * we don't have concurrent modification by hardware
4608 * followed by an update.
4609 */
4610 if (unlikely(pte_none(*vmf->pte)))
4611 ret = VM_FAULT_SIGBUS;
4612 else
4613 ret = VM_FAULT_NOPAGE;
4614
4615 pte_unmap_unlock(vmf->pte, vmf->ptl);
4616 }
4617 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4618 ret = do_read_fault(vmf);
4619 else if (!(vma->vm_flags & VM_SHARED))
4620 ret = do_cow_fault(vmf);
4621 else
4622 ret = do_shared_fault(vmf);
4623
4624 /* preallocated pagetable is unused: free it */
4625 if (vmf->prealloc_pte) {
fc8efd2d 4626 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4627 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4628 }
4629 return ret;
54cb8821
NP
4630}
4631
f4c0d836
YS
4632int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4633 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4634{
4635 get_page(page);
4636
4637 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4638 if (page_nid == numa_node_id()) {
9532fec1 4639 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4640 *flags |= TNF_FAULT_LOCAL;
4641 }
9532fec1
MG
4642
4643 return mpol_misplaced(page, vma, addr);
4644}
4645
2b740303 4646static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4647{
82b0f8c3 4648 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4649 struct page *page = NULL;
98fa15f3 4650 int page_nid = NUMA_NO_NODE;
6a56ccbc 4651 bool writable = false;
90572890 4652 int last_cpupid;
cbee9f88 4653 int target_nid;
04a86453 4654 pte_t pte, old_pte;
6688cc05 4655 int flags = 0;
d10e63f2
MG
4656
4657 /*
166f61b9
TH
4658 * The "pte" at this point cannot be used safely without
4659 * validation through pte_unmap_same(). It's of NUMA type but
4660 * the pfn may be screwed if the read is non atomic.
166f61b9 4661 */
82b0f8c3
JK
4662 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4663 spin_lock(vmf->ptl);
cee216a6 4664 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4665 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4666 goto out;
4667 }
4668
b99a342d
HY
4669 /* Get the normal PTE */
4670 old_pte = ptep_get(vmf->pte);
04a86453 4671 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4672
6a56ccbc
DH
4673 /*
4674 * Detect now whether the PTE could be writable; this information
4675 * is only valid while holding the PT lock.
4676 */
4677 writable = pte_write(pte);
4678 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4679 can_change_pte_writable(vma, vmf->address, pte))
4680 writable = true;
4681
82b0f8c3 4682 page = vm_normal_page(vma, vmf->address, pte);
3218f871 4683 if (!page || is_zone_device_page(page))
b99a342d 4684 goto out_map;
d10e63f2 4685
e81c4802 4686 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4687 if (PageCompound(page))
4688 goto out_map;
e81c4802 4689
6688cc05 4690 /*
bea66fbd
MG
4691 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4692 * much anyway since they can be in shared cache state. This misses
4693 * the case where a mapping is writable but the process never writes
4694 * to it but pte_write gets cleared during protection updates and
4695 * pte_dirty has unpredictable behaviour between PTE scan updates,
4696 * background writeback, dirty balancing and application behaviour.
6688cc05 4697 */
6a56ccbc 4698 if (!writable)
6688cc05
PZ
4699 flags |= TNF_NO_GROUP;
4700
dabe1d99
RR
4701 /*
4702 * Flag if the page is shared between multiple address spaces. This
4703 * is later used when determining whether to group tasks together
4704 */
4705 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4706 flags |= TNF_SHARED;
4707
8191acbd 4708 page_nid = page_to_nid(page);
33024536
HY
4709 /*
4710 * For memory tiering mode, cpupid of slow memory page is used
4711 * to record page access time. So use default value.
4712 */
4713 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4714 !node_is_toptier(page_nid))
4715 last_cpupid = (-1 & LAST_CPUPID_MASK);
4716 else
4717 last_cpupid = page_cpupid_last(page);
82b0f8c3 4718 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4719 &flags);
98fa15f3 4720 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4721 put_page(page);
b99a342d 4722 goto out_map;
4daae3b4 4723 }
b99a342d 4724 pte_unmap_unlock(vmf->pte, vmf->ptl);
6a56ccbc 4725 writable = false;
4daae3b4
MG
4726
4727 /* Migrate to the requested node */
bf90ac19 4728 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4729 page_nid = target_nid;
6688cc05 4730 flags |= TNF_MIGRATED;
b99a342d 4731 } else {
074c2381 4732 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4733 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4734 spin_lock(vmf->ptl);
4735 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4736 pte_unmap_unlock(vmf->pte, vmf->ptl);
4737 goto out;
4738 }
4739 goto out_map;
4740 }
4daae3b4
MG
4741
4742out:
98fa15f3 4743 if (page_nid != NUMA_NO_NODE)
6688cc05 4744 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4745 return 0;
b99a342d
HY
4746out_map:
4747 /*
4748 * Make it present again, depending on how arch implements
4749 * non-accessible ptes, some can allow access by kernel mode.
4750 */
4751 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4752 pte = pte_modify(old_pte, vma->vm_page_prot);
4753 pte = pte_mkyoung(pte);
6a56ccbc 4754 if (writable)
b99a342d
HY
4755 pte = pte_mkwrite(pte);
4756 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4757 update_mmu_cache(vma, vmf->address, vmf->pte);
4758 pte_unmap_unlock(vmf->pte, vmf->ptl);
4759 goto out;
d10e63f2
MG
4760}
4761
2b740303 4762static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4763{
f4200391 4764 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4765 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4766 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4767 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4768 return VM_FAULT_FALLBACK;
4769}
4770
183f24aa 4771/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4772static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4773{
c89357e2 4774 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
aea06577 4775 vm_fault_t ret;
c89357e2 4776
529b930b 4777 if (vma_is_anonymous(vmf->vma)) {
c89357e2
DH
4778 if (likely(!unshare) &&
4779 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4780 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4781 return do_huge_pmd_wp_page(vmf);
529b930b 4782 }
327e9fd4 4783
aea06577
DH
4784 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4785 if (vmf->vma->vm_ops->huge_fault) {
4786 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4787 if (!(ret & VM_FAULT_FALLBACK))
4788 return ret;
4789 }
327e9fd4 4790 }
af9e4d5f 4791
327e9fd4 4792 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4793 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4794
b96375f7
MW
4795 return VM_FAULT_FALLBACK;
4796}
4797
2b740303 4798static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4799{
14c99d65
GJ
4800#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4801 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4802 /* No support for anonymous transparent PUD pages yet */
4803 if (vma_is_anonymous(vmf->vma))
4804 return VM_FAULT_FALLBACK;
4805 if (vmf->vma->vm_ops->huge_fault)
4806 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4807#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4808 return VM_FAULT_FALLBACK;
4809}
4810
4811static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4812{
327e9fd4
THV
4813#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4814 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
aea06577
DH
4815 vm_fault_t ret;
4816
a00cc7d9
MW
4817 /* No support for anonymous transparent PUD pages yet */
4818 if (vma_is_anonymous(vmf->vma))
327e9fd4 4819 goto split;
aea06577
DH
4820 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4821 if (vmf->vma->vm_ops->huge_fault) {
4822 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4823 if (!(ret & VM_FAULT_FALLBACK))
4824 return ret;
4825 }
327e9fd4
THV
4826 }
4827split:
4828 /* COW or write-notify not handled on PUD level: split pud.*/
4829 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
14c99d65 4830#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4831 return VM_FAULT_FALLBACK;
4832}
4833
1da177e4
LT
4834/*
4835 * These routines also need to handle stuff like marking pages dirty
4836 * and/or accessed for architectures that don't do it in hardware (most
4837 * RISC architectures). The early dirtying is also good on the i386.
4838 *
4839 * There is also a hook called "update_mmu_cache()" that architectures
4840 * with external mmu caches can use to update those (ie the Sparc or
4841 * PowerPC hashed page tables that act as extended TLBs).
4842 *
c1e8d7c6 4843 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4844 * concurrent faults).
9a95f3cf 4845 *
c1e8d7c6 4846 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4847 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4848 */
2b740303 4849static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4850{
4851 pte_t entry;
4852
82b0f8c3 4853 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4854 /*
4855 * Leave __pte_alloc() until later: because vm_ops->fault may
4856 * want to allocate huge page, and if we expose page table
4857 * for an instant, it will be difficult to retract from
4858 * concurrent faults and from rmap lookups.
4859 */
82b0f8c3 4860 vmf->pte = NULL;
f46f2ade 4861 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4862 } else {
f9ce0be7
KS
4863 /*
4864 * If a huge pmd materialized under us just retry later. Use
4865 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4866 * of pmd_trans_huge() to ensure the pmd didn't become
4867 * pmd_trans_huge under us and then back to pmd_none, as a
4868 * result of MADV_DONTNEED running immediately after a huge pmd
4869 * fault in a different thread of this mm, in turn leading to a
4870 * misleading pmd_trans_huge() retval. All we have to ensure is
4871 * that it is a regular pmd that we can walk with
4872 * pte_offset_map() and we can do that through an atomic read
4873 * in C, which is what pmd_trans_unstable() provides.
4874 */
d0f0931d 4875 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4876 return 0;
4877 /*
4878 * A regular pmd is established and it can't morph into a huge
4879 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4880 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4881 * So now it's safe to run pte_offset_map().
4882 */
82b0f8c3 4883 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4884 vmf->orig_pte = *vmf->pte;
f46f2ade 4885 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00
KS
4886
4887 /*
4888 * some architectures can have larger ptes than wordsize,
4889 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4890 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4891 * accesses. The code below just needs a consistent view
4892 * for the ifs and we later double check anyway with the
7267ec00
KS
4893 * ptl lock held. So here a barrier will do.
4894 */
4895 barrier();
2994302b 4896 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4897 pte_unmap(vmf->pte);
4898 vmf->pte = NULL;
65500d23 4899 }
1da177e4
LT
4900 }
4901
82b0f8c3
JK
4902 if (!vmf->pte) {
4903 if (vma_is_anonymous(vmf->vma))
4904 return do_anonymous_page(vmf);
7267ec00 4905 else
82b0f8c3 4906 return do_fault(vmf);
7267ec00
KS
4907 }
4908
2994302b
JK
4909 if (!pte_present(vmf->orig_pte))
4910 return do_swap_page(vmf);
7267ec00 4911
2994302b
JK
4912 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4913 return do_numa_page(vmf);
d10e63f2 4914
82b0f8c3
JK
4915 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4916 spin_lock(vmf->ptl);
2994302b 4917 entry = vmf->orig_pte;
7df67697
BM
4918 if (unlikely(!pte_same(*vmf->pte, entry))) {
4919 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4920 goto unlock;
7df67697 4921 }
c89357e2 4922 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 4923 if (!pte_write(entry))
2994302b 4924 return do_wp_page(vmf);
c89357e2
DH
4925 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4926 entry = pte_mkdirty(entry);
1da177e4
LT
4927 }
4928 entry = pte_mkyoung(entry);
82b0f8c3
JK
4929 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4930 vmf->flags & FAULT_FLAG_WRITE)) {
4931 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4932 } else {
b7333b58
YS
4933 /* Skip spurious TLB flush for retried page fault */
4934 if (vmf->flags & FAULT_FLAG_TRIED)
4935 goto unlock;
1a44e149
AA
4936 /*
4937 * This is needed only for protection faults but the arch code
4938 * is not yet telling us if this is a protection fault or not.
4939 * This still avoids useless tlb flushes for .text page faults
4940 * with threads.
4941 */
82b0f8c3
JK
4942 if (vmf->flags & FAULT_FLAG_WRITE)
4943 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4944 }
8f4e2101 4945unlock:
82b0f8c3 4946 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4947 return 0;
1da177e4
LT
4948}
4949
4950/*
4951 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4952 *
c1e8d7c6 4953 * The mmap_lock may have been released depending on flags and our
9138e47e 4954 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4955 */
2b740303
SJ
4956static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4957 unsigned long address, unsigned int flags)
1da177e4 4958{
82b0f8c3 4959 struct vm_fault vmf = {
bae473a4 4960 .vma = vma,
1a29d85e 4961 .address = address & PAGE_MASK,
824ddc60 4962 .real_address = address,
bae473a4 4963 .flags = flags,
0721ec8b 4964 .pgoff = linear_page_index(vma, address),
667240e0 4965 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4966 };
dcddffd4 4967 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 4968 unsigned long vm_flags = vma->vm_flags;
1da177e4 4969 pgd_t *pgd;
c2febafc 4970 p4d_t *p4d;
2b740303 4971 vm_fault_t ret;
1da177e4 4972
1da177e4 4973 pgd = pgd_offset(mm, address);
c2febafc
KS
4974 p4d = p4d_alloc(mm, pgd, address);
4975 if (!p4d)
4976 return VM_FAULT_OOM;
a00cc7d9 4977
c2febafc 4978 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4979 if (!vmf.pud)
c74df32c 4980 return VM_FAULT_OOM;
625110b5 4981retry_pud:
7da4e2cb 4982 if (pud_none(*vmf.pud) &&
a7f4e6e4 4983 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
4984 ret = create_huge_pud(&vmf);
4985 if (!(ret & VM_FAULT_FALLBACK))
4986 return ret;
4987 } else {
4988 pud_t orig_pud = *vmf.pud;
4989
4990 barrier();
4991 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4992
c89357e2
DH
4993 /*
4994 * TODO once we support anonymous PUDs: NUMA case and
4995 * FAULT_FLAG_UNSHARE handling.
4996 */
4997 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
4998 ret = wp_huge_pud(&vmf, orig_pud);
4999 if (!(ret & VM_FAULT_FALLBACK))
5000 return ret;
5001 } else {
5002 huge_pud_set_accessed(&vmf, orig_pud);
5003 return 0;
5004 }
5005 }
5006 }
5007
5008 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5009 if (!vmf.pmd)
c74df32c 5010 return VM_FAULT_OOM;
625110b5
TH
5011
5012 /* Huge pud page fault raced with pmd_alloc? */
5013 if (pud_trans_unstable(vmf.pud))
5014 goto retry_pud;
5015
7da4e2cb 5016 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5017 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5018 ret = create_huge_pmd(&vmf);
c0292554
KS
5019 if (!(ret & VM_FAULT_FALLBACK))
5020 return ret;
71e3aac0 5021 } else {
5db4f15c 5022 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 5023
71e3aac0 5024 barrier();
5db4f15c 5025 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5026 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5027 !is_pmd_migration_entry(vmf.orig_pmd));
5028 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5029 pmd_migration_entry_wait(mm, vmf.pmd);
5030 return 0;
5031 }
5db4f15c
YS
5032 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5033 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5034 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5035
c89357e2
DH
5036 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5037 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5038 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5039 if (!(ret & VM_FAULT_FALLBACK))
5040 return ret;
a1dd450b 5041 } else {
5db4f15c 5042 huge_pmd_set_accessed(&vmf);
9845cbbd 5043 return 0;
1f1d06c3 5044 }
71e3aac0
AA
5045 }
5046 }
5047
82b0f8c3 5048 return handle_pte_fault(&vmf);
1da177e4
LT
5049}
5050
bce617ed 5051/**
f0953a1b 5052 * mm_account_fault - Do page fault accounting
bce617ed
PX
5053 *
5054 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5055 * of perf event counters, but we'll still do the per-task accounting to
5056 * the task who triggered this page fault.
5057 * @address: the faulted address.
5058 * @flags: the fault flags.
5059 * @ret: the fault retcode.
5060 *
f0953a1b 5061 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5062 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5063 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5064 * still be in per-arch page fault handlers at the entry of page fault.
5065 */
5066static inline void mm_account_fault(struct pt_regs *regs,
5067 unsigned long address, unsigned int flags,
5068 vm_fault_t ret)
5069{
5070 bool major;
5071
5072 /*
5073 * We don't do accounting for some specific faults:
5074 *
5075 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5076 * includes arch_vma_access_permitted() failing before reaching here.
5077 * So this is not a "this many hardware page faults" counter. We
5078 * should use the hw profiling for that.
5079 *
5080 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5081 * once they're completed.
5082 */
5083 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5084 return;
5085
5086 /*
5087 * We define the fault as a major fault when the final successful fault
5088 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5089 * handle it immediately previously).
5090 */
5091 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5092
a2beb5f1
PX
5093 if (major)
5094 current->maj_flt++;
5095 else
5096 current->min_flt++;
5097
bce617ed 5098 /*
a2beb5f1
PX
5099 * If the fault is done for GUP, regs will be NULL. We only do the
5100 * accounting for the per thread fault counters who triggered the
5101 * fault, and we skip the perf event updates.
bce617ed
PX
5102 */
5103 if (!regs)
5104 return;
5105
a2beb5f1 5106 if (major)
bce617ed 5107 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5108 else
bce617ed 5109 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5110}
5111
ec1c86b2
YZ
5112#ifdef CONFIG_LRU_GEN
5113static void lru_gen_enter_fault(struct vm_area_struct *vma)
5114{
8788f678
YZ
5115 /* the LRU algorithm only applies to accesses with recency */
5116 current->in_lru_fault = vma_has_recency(vma);
ec1c86b2
YZ
5117}
5118
5119static void lru_gen_exit_fault(void)
5120{
5121 current->in_lru_fault = false;
5122}
5123#else
5124static void lru_gen_enter_fault(struct vm_area_struct *vma)
5125{
5126}
5127
5128static void lru_gen_exit_fault(void)
5129{
5130}
5131#endif /* CONFIG_LRU_GEN */
5132
cdc5021c
DH
5133static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5134 unsigned int *flags)
5135{
5136 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5137 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5138 return VM_FAULT_SIGSEGV;
5139 /*
5140 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5141 * just treat it like an ordinary read-fault otherwise.
5142 */
5143 if (!is_cow_mapping(vma->vm_flags))
5144 *flags &= ~FAULT_FLAG_UNSHARE;
79881fed
DH
5145 } else if (*flags & FAULT_FLAG_WRITE) {
5146 /* Write faults on read-only mappings are impossible ... */
5147 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5148 return VM_FAULT_SIGSEGV;
5149 /* ... and FOLL_FORCE only applies to COW mappings. */
5150 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5151 !is_cow_mapping(vma->vm_flags)))
5152 return VM_FAULT_SIGSEGV;
cdc5021c
DH
5153 }
5154 return 0;
5155}
5156
9a95f3cf
PC
5157/*
5158 * By the time we get here, we already hold the mm semaphore
5159 *
c1e8d7c6 5160 * The mmap_lock may have been released depending on flags and our
9138e47e 5161 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5162 */
2b740303 5163vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5164 unsigned int flags, struct pt_regs *regs)
519e5247 5165{
2b740303 5166 vm_fault_t ret;
519e5247
JW
5167
5168 __set_current_state(TASK_RUNNING);
5169
5170 count_vm_event(PGFAULT);
2262185c 5171 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247 5172
cdc5021c
DH
5173 ret = sanitize_fault_flags(vma, &flags);
5174 if (ret)
5175 return ret;
5176
de0c799b
LD
5177 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5178 flags & FAULT_FLAG_INSTRUCTION,
5179 flags & FAULT_FLAG_REMOTE))
5180 return VM_FAULT_SIGSEGV;
5181
519e5247
JW
5182 /*
5183 * Enable the memcg OOM handling for faults triggered in user
5184 * space. Kernel faults are handled more gracefully.
5185 */
5186 if (flags & FAULT_FLAG_USER)
29ef680a 5187 mem_cgroup_enter_user_fault();
519e5247 5188
ec1c86b2
YZ
5189 lru_gen_enter_fault(vma);
5190
bae473a4
KS
5191 if (unlikely(is_vm_hugetlb_page(vma)))
5192 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5193 else
5194 ret = __handle_mm_fault(vma, address, flags);
519e5247 5195
ec1c86b2
YZ
5196 lru_gen_exit_fault();
5197
49426420 5198 if (flags & FAULT_FLAG_USER) {
29ef680a 5199 mem_cgroup_exit_user_fault();
166f61b9
TH
5200 /*
5201 * The task may have entered a memcg OOM situation but
5202 * if the allocation error was handled gracefully (no
5203 * VM_FAULT_OOM), there is no need to kill anything.
5204 * Just clean up the OOM state peacefully.
5205 */
5206 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5207 mem_cgroup_oom_synchronize(false);
49426420 5208 }
3812c8c8 5209
bce617ed
PX
5210 mm_account_fault(regs, address, flags, ret);
5211
519e5247
JW
5212 return ret;
5213}
e1d6d01a 5214EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5215
90eceff1
KS
5216#ifndef __PAGETABLE_P4D_FOLDED
5217/*
5218 * Allocate p4d page table.
5219 * We've already handled the fast-path in-line.
5220 */
5221int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5222{
5223 p4d_t *new = p4d_alloc_one(mm, address);
5224 if (!new)
5225 return -ENOMEM;
5226
90eceff1 5227 spin_lock(&mm->page_table_lock);
ed33b5a6 5228 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5229 p4d_free(mm, new);
ed33b5a6
QZ
5230 } else {
5231 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5232 pgd_populate(mm, pgd, new);
ed33b5a6 5233 }
90eceff1
KS
5234 spin_unlock(&mm->page_table_lock);
5235 return 0;
5236}
5237#endif /* __PAGETABLE_P4D_FOLDED */
5238
1da177e4
LT
5239#ifndef __PAGETABLE_PUD_FOLDED
5240/*
5241 * Allocate page upper directory.
872fec16 5242 * We've already handled the fast-path in-line.
1da177e4 5243 */
c2febafc 5244int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5245{
c74df32c
HD
5246 pud_t *new = pud_alloc_one(mm, address);
5247 if (!new)
1bb3630e 5248 return -ENOMEM;
1da177e4 5249
872fec16 5250 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5251 if (!p4d_present(*p4d)) {
5252 mm_inc_nr_puds(mm);
ed33b5a6 5253 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5254 p4d_populate(mm, p4d, new);
b4e98d9a 5255 } else /* Another has populated it */
5e541973 5256 pud_free(mm, new);
c74df32c 5257 spin_unlock(&mm->page_table_lock);
1bb3630e 5258 return 0;
1da177e4
LT
5259}
5260#endif /* __PAGETABLE_PUD_FOLDED */
5261
5262#ifndef __PAGETABLE_PMD_FOLDED
5263/*
5264 * Allocate page middle directory.
872fec16 5265 * We've already handled the fast-path in-line.
1da177e4 5266 */
1bb3630e 5267int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5268{
a00cc7d9 5269 spinlock_t *ptl;
c74df32c
HD
5270 pmd_t *new = pmd_alloc_one(mm, address);
5271 if (!new)
1bb3630e 5272 return -ENOMEM;
1da177e4 5273
a00cc7d9 5274 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5275 if (!pud_present(*pud)) {
5276 mm_inc_nr_pmds(mm);
ed33b5a6 5277 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5278 pud_populate(mm, pud, new);
ed33b5a6 5279 } else { /* Another has populated it */
5e541973 5280 pmd_free(mm, new);
ed33b5a6 5281 }
a00cc7d9 5282 spin_unlock(ptl);
1bb3630e 5283 return 0;
e0f39591 5284}
1da177e4
LT
5285#endif /* __PAGETABLE_PMD_FOLDED */
5286
0e5e64c0
MS
5287/**
5288 * follow_pte - look up PTE at a user virtual address
5289 * @mm: the mm_struct of the target address space
5290 * @address: user virtual address
5291 * @ptepp: location to store found PTE
5292 * @ptlp: location to store the lock for the PTE
5293 *
5294 * On a successful return, the pointer to the PTE is stored in @ptepp;
5295 * the corresponding lock is taken and its location is stored in @ptlp.
5296 * The contents of the PTE are only stable until @ptlp is released;
5297 * any further use, if any, must be protected against invalidation
5298 * with MMU notifiers.
5299 *
5300 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5301 * should be taken for read.
5302 *
5303 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5304 * it is not a good general-purpose API.
5305 *
5306 * Return: zero on success, -ve otherwise.
5307 */
5308int follow_pte(struct mm_struct *mm, unsigned long address,
5309 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5310{
5311 pgd_t *pgd;
c2febafc 5312 p4d_t *p4d;
f8ad0f49
JW
5313 pud_t *pud;
5314 pmd_t *pmd;
5315 pte_t *ptep;
5316
5317 pgd = pgd_offset(mm, address);
5318 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5319 goto out;
5320
c2febafc
KS
5321 p4d = p4d_offset(pgd, address);
5322 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5323 goto out;
5324
5325 pud = pud_offset(p4d, address);
f8ad0f49
JW
5326 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5327 goto out;
5328
5329 pmd = pmd_offset(pud, address);
f66055ab 5330 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5331
09796395 5332 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
5333 goto out;
5334
5335 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
5336 if (!pte_present(*ptep))
5337 goto unlock;
5338 *ptepp = ptep;
5339 return 0;
5340unlock:
5341 pte_unmap_unlock(ptep, *ptlp);
5342out:
5343 return -EINVAL;
5344}
9fd6dad1
PB
5345EXPORT_SYMBOL_GPL(follow_pte);
5346
3b6748e2
JW
5347/**
5348 * follow_pfn - look up PFN at a user virtual address
5349 * @vma: memory mapping
5350 * @address: user virtual address
5351 * @pfn: location to store found PFN
5352 *
5353 * Only IO mappings and raw PFN mappings are allowed.
5354 *
9fd6dad1
PB
5355 * This function does not allow the caller to read the permissions
5356 * of the PTE. Do not use it.
5357 *
a862f68a 5358 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5359 */
5360int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5361 unsigned long *pfn)
5362{
5363 int ret = -EINVAL;
5364 spinlock_t *ptl;
5365 pte_t *ptep;
5366
5367 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5368 return ret;
5369
9fd6dad1 5370 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5371 if (ret)
5372 return ret;
5373 *pfn = pte_pfn(*ptep);
5374 pte_unmap_unlock(ptep, ptl);
5375 return 0;
5376}
5377EXPORT_SYMBOL(follow_pfn);
5378
28b2ee20 5379#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5380int follow_phys(struct vm_area_struct *vma,
5381 unsigned long address, unsigned int flags,
5382 unsigned long *prot, resource_size_t *phys)
28b2ee20 5383{
03668a4d 5384 int ret = -EINVAL;
28b2ee20
RR
5385 pte_t *ptep, pte;
5386 spinlock_t *ptl;
28b2ee20 5387
d87fe660 5388 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5389 goto out;
28b2ee20 5390
9fd6dad1 5391 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5392 goto out;
28b2ee20 5393 pte = *ptep;
03668a4d 5394
f6f37321 5395 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5396 goto unlock;
28b2ee20
RR
5397
5398 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5399 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5400
03668a4d 5401 ret = 0;
28b2ee20
RR
5402unlock:
5403 pte_unmap_unlock(ptep, ptl);
5404out:
d87fe660 5405 return ret;
28b2ee20
RR
5406}
5407
96667f8a
SV
5408/**
5409 * generic_access_phys - generic implementation for iomem mmap access
5410 * @vma: the vma to access
f0953a1b 5411 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
5412 * @buf: buffer to read/write
5413 * @len: length of transfer
5414 * @write: set to FOLL_WRITE when writing, otherwise reading
5415 *
5416 * This is a generic implementation for &vm_operations_struct.access for an
5417 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5418 * not page based.
5419 */
28b2ee20
RR
5420int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5421 void *buf, int len, int write)
5422{
5423 resource_size_t phys_addr;
5424 unsigned long prot = 0;
2bc7273b 5425 void __iomem *maddr;
96667f8a
SV
5426 pte_t *ptep, pte;
5427 spinlock_t *ptl;
5428 int offset = offset_in_page(addr);
5429 int ret = -EINVAL;
5430
5431 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5432 return -EINVAL;
5433
5434retry:
e913a8cd 5435 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5436 return -EINVAL;
5437 pte = *ptep;
5438 pte_unmap_unlock(ptep, ptl);
28b2ee20 5439
96667f8a
SV
5440 prot = pgprot_val(pte_pgprot(pte));
5441 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5442
5443 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5444 return -EINVAL;
5445
9cb12d7b 5446 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5447 if (!maddr)
5448 return -ENOMEM;
5449
e913a8cd 5450 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5451 goto out_unmap;
5452
5453 if (!pte_same(pte, *ptep)) {
5454 pte_unmap_unlock(ptep, ptl);
5455 iounmap(maddr);
5456
5457 goto retry;
5458 }
5459
28b2ee20
RR
5460 if (write)
5461 memcpy_toio(maddr + offset, buf, len);
5462 else
5463 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
5464 ret = len;
5465 pte_unmap_unlock(ptep, ptl);
5466out_unmap:
28b2ee20
RR
5467 iounmap(maddr);
5468
96667f8a 5469 return ret;
28b2ee20 5470}
5a73633e 5471EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5472#endif
5473
0ec76a11 5474/*
d3f5ffca 5475 * Access another process' address space as given in mm.
0ec76a11 5476 */
d3f5ffca
JH
5477int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5478 int len, unsigned int gup_flags)
0ec76a11 5479{
0ec76a11 5480 struct vm_area_struct *vma;
0ec76a11 5481 void *old_buf = buf;
442486ec 5482 int write = gup_flags & FOLL_WRITE;
0ec76a11 5483
d8ed45c5 5484 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5485 return 0;
5486
183ff22b 5487 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5488 while (len) {
5489 int bytes, ret, offset;
5490 void *maddr;
28b2ee20 5491 struct page *page = NULL;
0ec76a11 5492
64019a2e 5493 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5494 gup_flags, &page, &vma, NULL);
28b2ee20 5495 if (ret <= 0) {
dbffcd03
RR
5496#ifndef CONFIG_HAVE_IOREMAP_PROT
5497 break;
5498#else
28b2ee20
RR
5499 /*
5500 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5501 * we can access using slightly different code.
5502 */
3e418f98
LH
5503 vma = vma_lookup(mm, addr);
5504 if (!vma)
28b2ee20
RR
5505 break;
5506 if (vma->vm_ops && vma->vm_ops->access)
5507 ret = vma->vm_ops->access(vma, addr, buf,
5508 len, write);
5509 if (ret <= 0)
28b2ee20
RR
5510 break;
5511 bytes = ret;
dbffcd03 5512#endif
0ec76a11 5513 } else {
28b2ee20
RR
5514 bytes = len;
5515 offset = addr & (PAGE_SIZE-1);
5516 if (bytes > PAGE_SIZE-offset)
5517 bytes = PAGE_SIZE-offset;
5518
5519 maddr = kmap(page);
5520 if (write) {
5521 copy_to_user_page(vma, page, addr,
5522 maddr + offset, buf, bytes);
5523 set_page_dirty_lock(page);
5524 } else {
5525 copy_from_user_page(vma, page, addr,
5526 buf, maddr + offset, bytes);
5527 }
5528 kunmap(page);
09cbfeaf 5529 put_page(page);
0ec76a11 5530 }
0ec76a11
DH
5531 len -= bytes;
5532 buf += bytes;
5533 addr += bytes;
5534 }
d8ed45c5 5535 mmap_read_unlock(mm);
0ec76a11
DH
5536
5537 return buf - old_buf;
5538}
03252919 5539
5ddd36b9 5540/**
ae91dbfc 5541 * access_remote_vm - access another process' address space
5ddd36b9
SW
5542 * @mm: the mm_struct of the target address space
5543 * @addr: start address to access
5544 * @buf: source or destination buffer
5545 * @len: number of bytes to transfer
6347e8d5 5546 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5547 *
5548 * The caller must hold a reference on @mm.
a862f68a
MR
5549 *
5550 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5551 */
5552int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5553 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5554{
d3f5ffca 5555 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5556}
5557
206cb636
SW
5558/*
5559 * Access another process' address space.
5560 * Source/target buffer must be kernel space,
5561 * Do not walk the page table directly, use get_user_pages
5562 */
5563int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5564 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5565{
5566 struct mm_struct *mm;
5567 int ret;
5568
5569 mm = get_task_mm(tsk);
5570 if (!mm)
5571 return 0;
5572
d3f5ffca 5573 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5574
206cb636
SW
5575 mmput(mm);
5576
5577 return ret;
5578}
fcd35857 5579EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5580
03252919
AK
5581/*
5582 * Print the name of a VMA.
5583 */
5584void print_vma_addr(char *prefix, unsigned long ip)
5585{
5586 struct mm_struct *mm = current->mm;
5587 struct vm_area_struct *vma;
5588
e8bff74a 5589 /*
0a7f682d 5590 * we might be running from an atomic context so we cannot sleep
e8bff74a 5591 */
d8ed45c5 5592 if (!mmap_read_trylock(mm))
e8bff74a
IM
5593 return;
5594
03252919
AK
5595 vma = find_vma(mm, ip);
5596 if (vma && vma->vm_file) {
5597 struct file *f = vma->vm_file;
0a7f682d 5598 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5599 if (buf) {
2fbc57c5 5600 char *p;
03252919 5601
9bf39ab2 5602 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5603 if (IS_ERR(p))
5604 p = "?";
2fbc57c5 5605 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5606 vma->vm_start,
5607 vma->vm_end - vma->vm_start);
5608 free_page((unsigned long)buf);
5609 }
5610 }
d8ed45c5 5611 mmap_read_unlock(mm);
03252919 5612}
3ee1afa3 5613
662bbcb2 5614#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5615void __might_fault(const char *file, int line)
3ee1afa3 5616{
9ec23531 5617 if (pagefault_disabled())
662bbcb2 5618 return;
42a38756 5619 __might_sleep(file, line);
9ec23531 5620#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5621 if (current->mm)
da1c55f1 5622 might_lock_read(&current->mm->mmap_lock);
9ec23531 5623#endif
3ee1afa3 5624}
9ec23531 5625EXPORT_SYMBOL(__might_fault);
3ee1afa3 5626#endif
47ad8475
AA
5627
5628#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5629/*
5630 * Process all subpages of the specified huge page with the specified
5631 * operation. The target subpage will be processed last to keep its
5632 * cache lines hot.
5633 */
5634static inline void process_huge_page(
5635 unsigned long addr_hint, unsigned int pages_per_huge_page,
5636 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5637 void *arg)
47ad8475 5638{
c79b57e4
HY
5639 int i, n, base, l;
5640 unsigned long addr = addr_hint &
5641 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5642
c6ddfb6c 5643 /* Process target subpage last to keep its cache lines hot */
47ad8475 5644 might_sleep();
c79b57e4
HY
5645 n = (addr_hint - addr) / PAGE_SIZE;
5646 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5647 /* If target subpage in first half of huge page */
c79b57e4
HY
5648 base = 0;
5649 l = n;
c6ddfb6c 5650 /* Process subpages at the end of huge page */
c79b57e4
HY
5651 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5652 cond_resched();
c6ddfb6c 5653 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5654 }
5655 } else {
c6ddfb6c 5656 /* If target subpage in second half of huge page */
c79b57e4
HY
5657 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5658 l = pages_per_huge_page - n;
c6ddfb6c 5659 /* Process subpages at the begin of huge page */
c79b57e4
HY
5660 for (i = 0; i < base; i++) {
5661 cond_resched();
c6ddfb6c 5662 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5663 }
5664 }
5665 /*
c6ddfb6c
HY
5666 * Process remaining subpages in left-right-left-right pattern
5667 * towards the target subpage
c79b57e4
HY
5668 */
5669 for (i = 0; i < l; i++) {
5670 int left_idx = base + i;
5671 int right_idx = base + 2 * l - 1 - i;
5672
5673 cond_resched();
c6ddfb6c 5674 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5675 cond_resched();
c6ddfb6c 5676 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5677 }
5678}
5679
c6ddfb6c
HY
5680static void clear_gigantic_page(struct page *page,
5681 unsigned long addr,
5682 unsigned int pages_per_huge_page)
5683{
5684 int i;
14455eab 5685 struct page *p;
c6ddfb6c
HY
5686
5687 might_sleep();
14455eab
CL
5688 for (i = 0; i < pages_per_huge_page; i++) {
5689 p = nth_page(page, i);
c6ddfb6c
HY
5690 cond_resched();
5691 clear_user_highpage(p, addr + i * PAGE_SIZE);
5692 }
5693}
5694
5695static void clear_subpage(unsigned long addr, int idx, void *arg)
5696{
5697 struct page *page = arg;
5698
5699 clear_user_highpage(page + idx, addr);
5700}
5701
5702void clear_huge_page(struct page *page,
5703 unsigned long addr_hint, unsigned int pages_per_huge_page)
5704{
5705 unsigned long addr = addr_hint &
5706 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5707
5708 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5709 clear_gigantic_page(page, addr, pages_per_huge_page);
5710 return;
5711 }
5712
5713 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5714}
5715
47ad8475
AA
5716static void copy_user_gigantic_page(struct page *dst, struct page *src,
5717 unsigned long addr,
5718 struct vm_area_struct *vma,
5719 unsigned int pages_per_huge_page)
5720{
5721 int i;
5722 struct page *dst_base = dst;
5723 struct page *src_base = src;
5724
14455eab
CL
5725 for (i = 0; i < pages_per_huge_page; i++) {
5726 dst = nth_page(dst_base, i);
5727 src = nth_page(src_base, i);
5728
47ad8475
AA
5729 cond_resched();
5730 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
47ad8475
AA
5731 }
5732}
5733
c9f4cd71
HY
5734struct copy_subpage_arg {
5735 struct page *dst;
5736 struct page *src;
5737 struct vm_area_struct *vma;
5738};
5739
5740static void copy_subpage(unsigned long addr, int idx, void *arg)
5741{
5742 struct copy_subpage_arg *copy_arg = arg;
5743
5744 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5745 addr, copy_arg->vma);
5746}
5747
47ad8475 5748void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5749 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5750 unsigned int pages_per_huge_page)
5751{
c9f4cd71
HY
5752 unsigned long addr = addr_hint &
5753 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5754 struct copy_subpage_arg arg = {
5755 .dst = dst,
5756 .src = src,
5757 .vma = vma,
5758 };
47ad8475
AA
5759
5760 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5761 copy_user_gigantic_page(dst, src, addr, vma,
5762 pages_per_huge_page);
5763 return;
5764 }
5765
c9f4cd71 5766 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5767}
fa4d75c1
MK
5768
5769long copy_huge_page_from_user(struct page *dst_page,
5770 const void __user *usr_src,
810a56b9
MK
5771 unsigned int pages_per_huge_page,
5772 bool allow_pagefault)
fa4d75c1 5773{
fa4d75c1
MK
5774 void *page_kaddr;
5775 unsigned long i, rc = 0;
5776 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
14455eab 5777 struct page *subpage;
fa4d75c1 5778
14455eab
CL
5779 for (i = 0; i < pages_per_huge_page; i++) {
5780 subpage = nth_page(dst_page, i);
810a56b9 5781 if (allow_pagefault)
3272cfc2 5782 page_kaddr = kmap(subpage);
810a56b9 5783 else
3272cfc2 5784 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5785 rc = copy_from_user(page_kaddr,
b063e374 5786 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5787 if (allow_pagefault)
3272cfc2 5788 kunmap(subpage);
810a56b9
MK
5789 else
5790 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5791
5792 ret_val -= (PAGE_SIZE - rc);
5793 if (rc)
5794 break;
5795
e763243c
MS
5796 flush_dcache_page(subpage);
5797
fa4d75c1
MK
5798 cond_resched();
5799 }
5800 return ret_val;
5801}
47ad8475 5802#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5803
40b64acd 5804#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5805
5806static struct kmem_cache *page_ptl_cachep;
5807
5808void __init ptlock_cache_init(void)
5809{
5810 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5811 SLAB_PANIC, NULL);
5812}
5813
539edb58 5814bool ptlock_alloc(struct page *page)
49076ec2
KS
5815{
5816 spinlock_t *ptl;
5817
b35f1819 5818 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5819 if (!ptl)
5820 return false;
539edb58 5821 page->ptl = ptl;
49076ec2
KS
5822 return true;
5823}
5824
539edb58 5825void ptlock_free(struct page *page)
49076ec2 5826{
b35f1819 5827 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5828}
5829#endif