]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
mm/page-writeback: fix a typo in comment "effictive"->"effective"
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
1da177e4 74
b3d1411b
JFG
75#include <trace/events/kmem.h>
76
6952b61d 77#include <asm/io.h>
33a709b2 78#include <asm/mmu_context.h>
1da177e4 79#include <asm/pgalloc.h>
7c0f6ba6 80#include <linux/uaccess.h>
1da177e4
LT
81#include <asm/tlb.h>
82#include <asm/tlbflush.h>
83#include <asm/pgtable.h>
84
42b77728
JB
85#include "internal.h"
86
af27d940 87#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 88#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
89#endif
90
d41dee36 91#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
92/* use the per-pgdat data instead for discontigmem - mbligh */
93unsigned long max_mapnr;
1da177e4 94EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
95
96struct page *mem_map;
1da177e4
LT
97EXPORT_SYMBOL(mem_map);
98#endif
99
1da177e4
LT
100/*
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 * and ZONE_HIGHMEM.
106 */
166f61b9 107void *high_memory;
1da177e4 108EXPORT_SYMBOL(high_memory);
1da177e4 109
32a93233
IM
110/*
111 * Randomize the address space (stacks, mmaps, brk, etc.).
112 *
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
115 */
116int randomize_va_space __read_mostly =
117#ifdef CONFIG_COMPAT_BRK
118 1;
119#else
120 2;
121#endif
a62eaf15 122
83d116c5
JH
123#ifndef arch_faults_on_old_pte
124static inline bool arch_faults_on_old_pte(void)
125{
126 /*
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
130 */
131 return true;
132}
133#endif
134
a62eaf15
AK
135static int __init disable_randmaps(char *s)
136{
137 randomize_va_space = 0;
9b41046c 138 return 1;
a62eaf15
AK
139}
140__setup("norandmaps", disable_randmaps);
141
62eede62 142unsigned long zero_pfn __read_mostly;
0b70068e
AB
143EXPORT_SYMBOL(zero_pfn);
144
166f61b9
TH
145unsigned long highest_memmap_pfn __read_mostly;
146
a13ea5b7
HD
147/*
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149 */
150static int __init init_zero_pfn(void)
151{
152 zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 return 0;
154}
155core_initcall(init_zero_pfn);
a62eaf15 156
e4dcad20 157void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 158{
e4dcad20 159 trace_rss_stat(mm, member, count);
b3d1411b 160}
d559db08 161
34e55232
KH
162#if defined(SPLIT_RSS_COUNTING)
163
ea48cf78 164void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
165{
166 int i;
167
168 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
169 if (current->rss_stat.count[i]) {
170 add_mm_counter(mm, i, current->rss_stat.count[i]);
171 current->rss_stat.count[i] = 0;
34e55232
KH
172 }
173 }
05af2e10 174 current->rss_stat.events = 0;
34e55232
KH
175}
176
177static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178{
179 struct task_struct *task = current;
180
181 if (likely(task->mm == mm))
182 task->rss_stat.count[member] += val;
183 else
184 add_mm_counter(mm, member, val);
185}
186#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189/* sync counter once per 64 page faults */
190#define TASK_RSS_EVENTS_THRESH (64)
191static void check_sync_rss_stat(struct task_struct *task)
192{
193 if (unlikely(task != current))
194 return;
195 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 196 sync_mm_rss(task->mm);
34e55232 197}
9547d01b 198#else /* SPLIT_RSS_COUNTING */
34e55232
KH
199
200#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203static void check_sync_rss_stat(struct task_struct *task)
204{
205}
206
9547d01b
PZ
207#endif /* SPLIT_RSS_COUNTING */
208
1da177e4
LT
209/*
210 * Note: this doesn't free the actual pages themselves. That
211 * has been handled earlier when unmapping all the memory regions.
212 */
9e1b32ca
BH
213static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 unsigned long addr)
1da177e4 215{
2f569afd 216 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 217 pmd_clear(pmd);
9e1b32ca 218 pte_free_tlb(tlb, token, addr);
c4812909 219 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
220}
221
e0da382c
HD
222static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 unsigned long addr, unsigned long end,
224 unsigned long floor, unsigned long ceiling)
1da177e4
LT
225{
226 pmd_t *pmd;
227 unsigned long next;
e0da382c 228 unsigned long start;
1da177e4 229
e0da382c 230 start = addr;
1da177e4 231 pmd = pmd_offset(pud, addr);
1da177e4
LT
232 do {
233 next = pmd_addr_end(addr, end);
234 if (pmd_none_or_clear_bad(pmd))
235 continue;
9e1b32ca 236 free_pte_range(tlb, pmd, addr);
1da177e4
LT
237 } while (pmd++, addr = next, addr != end);
238
e0da382c
HD
239 start &= PUD_MASK;
240 if (start < floor)
241 return;
242 if (ceiling) {
243 ceiling &= PUD_MASK;
244 if (!ceiling)
245 return;
1da177e4 246 }
e0da382c
HD
247 if (end - 1 > ceiling - 1)
248 return;
249
250 pmd = pmd_offset(pud, start);
251 pud_clear(pud);
9e1b32ca 252 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 253 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
254}
255
c2febafc 256static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
257 unsigned long addr, unsigned long end,
258 unsigned long floor, unsigned long ceiling)
1da177e4
LT
259{
260 pud_t *pud;
261 unsigned long next;
e0da382c 262 unsigned long start;
1da177e4 263
e0da382c 264 start = addr;
c2febafc 265 pud = pud_offset(p4d, addr);
1da177e4
LT
266 do {
267 next = pud_addr_end(addr, end);
268 if (pud_none_or_clear_bad(pud))
269 continue;
e0da382c 270 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
271 } while (pud++, addr = next, addr != end);
272
c2febafc
KS
273 start &= P4D_MASK;
274 if (start < floor)
275 return;
276 if (ceiling) {
277 ceiling &= P4D_MASK;
278 if (!ceiling)
279 return;
280 }
281 if (end - 1 > ceiling - 1)
282 return;
283
284 pud = pud_offset(p4d, start);
285 p4d_clear(p4d);
286 pud_free_tlb(tlb, pud, start);
b4e98d9a 287 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
288}
289
290static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 unsigned long addr, unsigned long end,
292 unsigned long floor, unsigned long ceiling)
293{
294 p4d_t *p4d;
295 unsigned long next;
296 unsigned long start;
297
298 start = addr;
299 p4d = p4d_offset(pgd, addr);
300 do {
301 next = p4d_addr_end(addr, end);
302 if (p4d_none_or_clear_bad(p4d))
303 continue;
304 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 } while (p4d++, addr = next, addr != end);
306
e0da382c
HD
307 start &= PGDIR_MASK;
308 if (start < floor)
309 return;
310 if (ceiling) {
311 ceiling &= PGDIR_MASK;
312 if (!ceiling)
313 return;
1da177e4 314 }
e0da382c
HD
315 if (end - 1 > ceiling - 1)
316 return;
317
c2febafc 318 p4d = p4d_offset(pgd, start);
e0da382c 319 pgd_clear(pgd);
c2febafc 320 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
321}
322
323/*
e0da382c 324 * This function frees user-level page tables of a process.
1da177e4 325 */
42b77728 326void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
327 unsigned long addr, unsigned long end,
328 unsigned long floor, unsigned long ceiling)
1da177e4
LT
329{
330 pgd_t *pgd;
331 unsigned long next;
e0da382c
HD
332
333 /*
334 * The next few lines have given us lots of grief...
335 *
336 * Why are we testing PMD* at this top level? Because often
337 * there will be no work to do at all, and we'd prefer not to
338 * go all the way down to the bottom just to discover that.
339 *
340 * Why all these "- 1"s? Because 0 represents both the bottom
341 * of the address space and the top of it (using -1 for the
342 * top wouldn't help much: the masks would do the wrong thing).
343 * The rule is that addr 0 and floor 0 refer to the bottom of
344 * the address space, but end 0 and ceiling 0 refer to the top
345 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 * that end 0 case should be mythical).
347 *
348 * Wherever addr is brought up or ceiling brought down, we must
349 * be careful to reject "the opposite 0" before it confuses the
350 * subsequent tests. But what about where end is brought down
351 * by PMD_SIZE below? no, end can't go down to 0 there.
352 *
353 * Whereas we round start (addr) and ceiling down, by different
354 * masks at different levels, in order to test whether a table
355 * now has no other vmas using it, so can be freed, we don't
356 * bother to round floor or end up - the tests don't need that.
357 */
1da177e4 358
e0da382c
HD
359 addr &= PMD_MASK;
360 if (addr < floor) {
361 addr += PMD_SIZE;
362 if (!addr)
363 return;
364 }
365 if (ceiling) {
366 ceiling &= PMD_MASK;
367 if (!ceiling)
368 return;
369 }
370 if (end - 1 > ceiling - 1)
371 end -= PMD_SIZE;
372 if (addr > end - 1)
373 return;
07e32661
AK
374 /*
375 * We add page table cache pages with PAGE_SIZE,
376 * (see pte_free_tlb()), flush the tlb if we need
377 */
ed6a7935 378 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 379 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
380 do {
381 next = pgd_addr_end(addr, end);
382 if (pgd_none_or_clear_bad(pgd))
383 continue;
c2febafc 384 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 385 } while (pgd++, addr = next, addr != end);
e0da382c
HD
386}
387
42b77728 388void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 389 unsigned long floor, unsigned long ceiling)
e0da382c
HD
390{
391 while (vma) {
392 struct vm_area_struct *next = vma->vm_next;
393 unsigned long addr = vma->vm_start;
394
8f4f8c16 395 /*
25d9e2d1
NP
396 * Hide vma from rmap and truncate_pagecache before freeing
397 * pgtables
8f4f8c16 398 */
5beb4930 399 unlink_anon_vmas(vma);
8f4f8c16
HD
400 unlink_file_vma(vma);
401
9da61aef 402 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 404 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
405 } else {
406 /*
407 * Optimization: gather nearby vmas into one call down
408 */
409 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 410 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
411 vma = next;
412 next = vma->vm_next;
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16 414 unlink_file_vma(vma);
3bf5ee95
HD
415 }
416 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 417 floor, next ? next->vm_start : ceiling);
3bf5ee95 418 }
e0da382c
HD
419 vma = next;
420 }
1da177e4
LT
421}
422
4cf58924 423int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 424{
c4088ebd 425 spinlock_t *ptl;
4cf58924 426 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
427 if (!new)
428 return -ENOMEM;
429
362a61ad
NP
430 /*
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
434 *
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_read_barrier_depends() barriers in page table walking code.
442 */
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
c4088ebd 445 ptl = pmd_lock(mm, pmd);
8ac1f832 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 447 mm_inc_nr_ptes(mm);
1da177e4 448 pmd_populate(mm, pmd, new);
2f569afd 449 new = NULL;
4b471e88 450 }
c4088ebd 451 spin_unlock(ptl);
2f569afd
MS
452 if (new)
453 pte_free(mm, new);
1bb3630e 454 return 0;
1da177e4
LT
455}
456
4cf58924 457int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 458{
4cf58924 459 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
460 if (!new)
461 return -ENOMEM;
462
362a61ad
NP
463 smp_wmb(); /* See comment in __pte_alloc */
464
1bb3630e 465 spin_lock(&init_mm.page_table_lock);
8ac1f832 466 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 467 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 468 new = NULL;
4b471e88 469 }
1bb3630e 470 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
471 if (new)
472 pte_free_kernel(&init_mm, new);
1bb3630e 473 return 0;
1da177e4
LT
474}
475
d559db08
KH
476static inline void init_rss_vec(int *rss)
477{
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479}
480
481static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 482{
d559db08
KH
483 int i;
484
34e55232 485 if (current->mm == mm)
05af2e10 486 sync_mm_rss(mm);
d559db08
KH
487 for (i = 0; i < NR_MM_COUNTERS; i++)
488 if (rss[i])
489 add_mm_counter(mm, i, rss[i]);
ae859762
HD
490}
491
b5810039 492/*
6aab341e
LT
493 * This function is called to print an error when a bad pte
494 * is found. For example, we might have a PFN-mapped pte in
495 * a region that doesn't allow it.
b5810039
NP
496 *
497 * The calling function must still handle the error.
498 */
3dc14741
HD
499static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 pte_t pte, struct page *page)
b5810039 501{
3dc14741 502 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
503 p4d_t *p4d = p4d_offset(pgd, addr);
504 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
505 pmd_t *pmd = pmd_offset(pud, addr);
506 struct address_space *mapping;
507 pgoff_t index;
d936cf9b
HD
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
511
512 /*
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
515 */
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
518 nr_unshown++;
519 return;
520 }
521 if (nr_unshown) {
1170532b
JP
522 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 nr_unshown);
d936cf9b
HD
524 nr_unshown = 0;
525 }
526 nr_shown = 0;
527 }
528 if (nr_shown++ == 0)
529 resume = jiffies + 60 * HZ;
3dc14741
HD
530
531 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 index = linear_page_index(vma, addr);
533
1170532b
JP
534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
535 current->comm,
536 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 537 if (page)
f0b791a3 538 dump_page(page, "bad pte");
6aa9b8b2 539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 540 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
542 vma->vm_file,
543 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 mapping ? mapping->a_ops->readpage : NULL);
b5810039 546 dump_stack();
373d4d09 547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
548}
549
ee498ed7 550/*
7e675137 551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 552 *
7e675137
NP
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 556 *
7e675137
NP
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
560 * described below.
561 *
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 565 *
b379d790
JH
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
6aab341e
LT
570 *
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572 *
7e675137
NP
573 * And for normal mappings this is false.
574 *
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
b379d790 579 *
b379d790 580 *
7e675137 581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
582 *
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
590 *
ee498ed7 591 */
25b2995a
CH
592struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 pte_t pte)
ee498ed7 594{
22b31eec 595 unsigned long pfn = pte_pfn(pte);
7e675137 596
00b3a331 597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 598 if (likely(!pte_special(pte)))
22b31eec 599 goto check_pfn;
667a0a06
DV
600 if (vma->vm_ops && vma->vm_ops->find_special_page)
601 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 return NULL;
df6ad698
JG
604 if (is_zero_pfn(pfn))
605 return NULL;
e1fb4a08
DJ
606 if (pte_devmap(pte))
607 return NULL;
608
df6ad698 609 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
610 return NULL;
611 }
612
00b3a331 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 614
b379d790
JH
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
7e675137
NP
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
627 }
6aab341e
LT
628 }
629
b38af472
HD
630 if (is_zero_pfn(pfn))
631 return NULL;
00b3a331 632
22b31eec
HD
633check_pfn:
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
636 return NULL;
637 }
6aab341e
LT
638
639 /*
7e675137 640 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 641 * eg. VDSO mappings can cause them to exist.
6aab341e 642 */
b379d790 643out:
6aab341e 644 return pfn_to_page(pfn);
ee498ed7
HD
645}
646
28093f9f
GS
647#ifdef CONFIG_TRANSPARENT_HUGEPAGE
648struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 pmd_t pmd)
650{
651 unsigned long pfn = pmd_pfn(pmd);
652
653 /*
654 * There is no pmd_special() but there may be special pmds, e.g.
655 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
657 */
658 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 if (vma->vm_flags & VM_MIXEDMAP) {
660 if (!pfn_valid(pfn))
661 return NULL;
662 goto out;
663 } else {
664 unsigned long off;
665 off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 if (pfn == vma->vm_pgoff + off)
667 return NULL;
668 if (!is_cow_mapping(vma->vm_flags))
669 return NULL;
670 }
671 }
672
e1fb4a08
DJ
673 if (pmd_devmap(pmd))
674 return NULL;
3cde287b 675 if (is_huge_zero_pmd(pmd))
28093f9f
GS
676 return NULL;
677 if (unlikely(pfn > highest_memmap_pfn))
678 return NULL;
679
680 /*
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
683 */
684out:
685 return pfn_to_page(pfn);
686}
687#endif
688
1da177e4
LT
689/*
690 * copy one vm_area from one task to the other. Assumes the page tables
691 * already present in the new task to be cleared in the whole range
692 * covered by this vma.
1da177e4
LT
693 */
694
570a335b 695static inline unsigned long
1da177e4 696copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 697 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 698 unsigned long addr, int *rss)
1da177e4 699{
b5810039 700 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
701 pte_t pte = *src_pte;
702 struct page *page;
1da177e4
LT
703
704 /* pte contains position in swap or file, so copy. */
705 if (unlikely(!pte_present(pte))) {
0661a336
KS
706 swp_entry_t entry = pte_to_swp_entry(pte);
707
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
711
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
723
eca56ff9 724 rss[mm_counter(page)]++;
0661a336
KS
725
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
728 /*
729 * COW mappings require pages in both
730 * parent and child to be set to read.
731 */
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
f45ec5ff
PX
736 if (pte_swp_uffd_wp(*src_pte))
737 pte = pte_swp_mkuffd_wp(pte);
0661a336 738 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 739 }
5042db43
JG
740 } else if (is_device_private_entry(entry)) {
741 page = device_private_entry_to_page(entry);
742
743 /*
744 * Update rss count even for unaddressable pages, as
745 * they should treated just like normal pages in this
746 * respect.
747 *
748 * We will likely want to have some new rss counters
749 * for unaddressable pages, at some point. But for now
750 * keep things as they are.
751 */
752 get_page(page);
753 rss[mm_counter(page)]++;
754 page_dup_rmap(page, false);
755
756 /*
757 * We do not preserve soft-dirty information, because so
758 * far, checkpoint/restore is the only feature that
759 * requires that. And checkpoint/restore does not work
760 * when a device driver is involved (you cannot easily
761 * save and restore device driver state).
762 */
763 if (is_write_device_private_entry(entry) &&
764 is_cow_mapping(vm_flags)) {
765 make_device_private_entry_read(&entry);
766 pte = swp_entry_to_pte(entry);
f45ec5ff
PX
767 if (pte_swp_uffd_wp(*src_pte))
768 pte = pte_swp_mkuffd_wp(pte);
5042db43
JG
769 set_pte_at(src_mm, addr, src_pte, pte);
770 }
1da177e4 771 }
ae859762 772 goto out_set_pte;
1da177e4
LT
773 }
774
1da177e4
LT
775 /*
776 * If it's a COW mapping, write protect it both
777 * in the parent and the child
778 */
1b2de5d0 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 780 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 781 pte = pte_wrprotect(pte);
1da177e4
LT
782 }
783
784 /*
785 * If it's a shared mapping, mark it clean in
786 * the child
787 */
788 if (vm_flags & VM_SHARED)
789 pte = pte_mkclean(pte);
790 pte = pte_mkold(pte);
6aab341e 791
b569a176
PX
792 /*
793 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794 * does not have the VM_UFFD_WP, which means that the uffd
795 * fork event is not enabled.
796 */
797 if (!(vm_flags & VM_UFFD_WP))
798 pte = pte_clear_uffd_wp(pte);
799
6aab341e
LT
800 page = vm_normal_page(vma, addr, pte);
801 if (page) {
802 get_page(page);
53f9263b 803 page_dup_rmap(page, false);
eca56ff9 804 rss[mm_counter(page)]++;
6aab341e 805 }
ae859762
HD
806
807out_set_pte:
808 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 809 return 0;
1da177e4
LT
810}
811
21bda264 812static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
813 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
814 unsigned long addr, unsigned long end)
1da177e4 815{
c36987e2 816 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 817 pte_t *src_pte, *dst_pte;
c74df32c 818 spinlock_t *src_ptl, *dst_ptl;
e040f218 819 int progress = 0;
d559db08 820 int rss[NR_MM_COUNTERS];
570a335b 821 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
822
823again:
d559db08
KH
824 init_rss_vec(rss);
825
c74df32c 826 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
827 if (!dst_pte)
828 return -ENOMEM;
ece0e2b6 829 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 830 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 831 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
832 orig_src_pte = src_pte;
833 orig_dst_pte = dst_pte;
6606c3e0 834 arch_enter_lazy_mmu_mode();
1da177e4 835
1da177e4
LT
836 do {
837 /*
838 * We are holding two locks at this point - either of them
839 * could generate latencies in another task on another CPU.
840 */
e040f218
HD
841 if (progress >= 32) {
842 progress = 0;
843 if (need_resched() ||
95c354fe 844 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
845 break;
846 }
1da177e4
LT
847 if (pte_none(*src_pte)) {
848 progress++;
849 continue;
850 }
570a335b
HD
851 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
852 vma, addr, rss);
853 if (entry.val)
854 break;
1da177e4
LT
855 progress += 8;
856 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 857
6606c3e0 858 arch_leave_lazy_mmu_mode();
c74df32c 859 spin_unlock(src_ptl);
ece0e2b6 860 pte_unmap(orig_src_pte);
d559db08 861 add_mm_rss_vec(dst_mm, rss);
c36987e2 862 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 863 cond_resched();
570a335b
HD
864
865 if (entry.val) {
866 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
867 return -ENOMEM;
868 progress = 0;
869 }
1da177e4
LT
870 if (addr != end)
871 goto again;
872 return 0;
873}
874
875static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
876 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
877 unsigned long addr, unsigned long end)
878{
879 pmd_t *src_pmd, *dst_pmd;
880 unsigned long next;
881
882 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
883 if (!dst_pmd)
884 return -ENOMEM;
885 src_pmd = pmd_offset(src_pud, addr);
886 do {
887 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
888 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
889 || pmd_devmap(*src_pmd)) {
71e3aac0 890 int err;
a00cc7d9 891 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
892 err = copy_huge_pmd(dst_mm, src_mm,
893 dst_pmd, src_pmd, addr, vma);
894 if (err == -ENOMEM)
895 return -ENOMEM;
896 if (!err)
897 continue;
898 /* fall through */
899 }
1da177e4
LT
900 if (pmd_none_or_clear_bad(src_pmd))
901 continue;
902 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
903 vma, addr, next))
904 return -ENOMEM;
905 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
906 return 0;
907}
908
909static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 910 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
911 unsigned long addr, unsigned long end)
912{
913 pud_t *src_pud, *dst_pud;
914 unsigned long next;
915
c2febafc 916 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
917 if (!dst_pud)
918 return -ENOMEM;
c2febafc 919 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
920 do {
921 next = pud_addr_end(addr, end);
a00cc7d9
MW
922 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
923 int err;
924
925 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
926 err = copy_huge_pud(dst_mm, src_mm,
927 dst_pud, src_pud, addr, vma);
928 if (err == -ENOMEM)
929 return -ENOMEM;
930 if (!err)
931 continue;
932 /* fall through */
933 }
1da177e4
LT
934 if (pud_none_or_clear_bad(src_pud))
935 continue;
936 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
937 vma, addr, next))
938 return -ENOMEM;
939 } while (dst_pud++, src_pud++, addr = next, addr != end);
940 return 0;
941}
942
c2febafc
KS
943static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
944 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
945 unsigned long addr, unsigned long end)
946{
947 p4d_t *src_p4d, *dst_p4d;
948 unsigned long next;
949
950 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
951 if (!dst_p4d)
952 return -ENOMEM;
953 src_p4d = p4d_offset(src_pgd, addr);
954 do {
955 next = p4d_addr_end(addr, end);
956 if (p4d_none_or_clear_bad(src_p4d))
957 continue;
958 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
959 vma, addr, next))
960 return -ENOMEM;
961 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
962 return 0;
963}
964
1da177e4
LT
965int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
966 struct vm_area_struct *vma)
967{
968 pgd_t *src_pgd, *dst_pgd;
969 unsigned long next;
970 unsigned long addr = vma->vm_start;
971 unsigned long end = vma->vm_end;
ac46d4f3 972 struct mmu_notifier_range range;
2ec74c3e 973 bool is_cow;
cddb8a5c 974 int ret;
1da177e4 975
d992895b
NP
976 /*
977 * Don't copy ptes where a page fault will fill them correctly.
978 * Fork becomes much lighter when there are big shared or private
979 * readonly mappings. The tradeoff is that copy_page_range is more
980 * efficient than faulting.
981 */
0661a336
KS
982 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
983 !vma->anon_vma)
984 return 0;
d992895b 985
1da177e4
LT
986 if (is_vm_hugetlb_page(vma))
987 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
988
b3b9c293 989 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 990 /*
991 * We do not free on error cases below as remove_vma
992 * gets called on error from higher level routine
993 */
5180da41 994 ret = track_pfn_copy(vma);
2ab64037 995 if (ret)
996 return ret;
997 }
998
cddb8a5c
AA
999 /*
1000 * We need to invalidate the secondary MMU mappings only when
1001 * there could be a permission downgrade on the ptes of the
1002 * parent mm. And a permission downgrade will only happen if
1003 * is_cow_mapping() returns true.
1004 */
2ec74c3e 1005 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1006
1007 if (is_cow) {
7269f999
JG
1008 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1009 0, vma, src_mm, addr, end);
ac46d4f3
JG
1010 mmu_notifier_invalidate_range_start(&range);
1011 }
cddb8a5c
AA
1012
1013 ret = 0;
1da177e4
LT
1014 dst_pgd = pgd_offset(dst_mm, addr);
1015 src_pgd = pgd_offset(src_mm, addr);
1016 do {
1017 next = pgd_addr_end(addr, end);
1018 if (pgd_none_or_clear_bad(src_pgd))
1019 continue;
c2febafc 1020 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1021 vma, addr, next))) {
1022 ret = -ENOMEM;
1023 break;
1024 }
1da177e4 1025 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1026
2ec74c3e 1027 if (is_cow)
ac46d4f3 1028 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1029 return ret;
1da177e4
LT
1030}
1031
51c6f666 1032static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1033 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1034 unsigned long addr, unsigned long end,
97a89413 1035 struct zap_details *details)
1da177e4 1036{
b5810039 1037 struct mm_struct *mm = tlb->mm;
d16dfc55 1038 int force_flush = 0;
d559db08 1039 int rss[NR_MM_COUNTERS];
97a89413 1040 spinlock_t *ptl;
5f1a1907 1041 pte_t *start_pte;
97a89413 1042 pte_t *pte;
8a5f14a2 1043 swp_entry_t entry;
d559db08 1044
ed6a7935 1045 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1046again:
e303297e 1047 init_rss_vec(rss);
5f1a1907
SR
1048 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1049 pte = start_pte;
3ea27719 1050 flush_tlb_batched_pending(mm);
6606c3e0 1051 arch_enter_lazy_mmu_mode();
1da177e4
LT
1052 do {
1053 pte_t ptent = *pte;
166f61b9 1054 if (pte_none(ptent))
1da177e4 1055 continue;
6f5e6b9e 1056
7b167b68
MK
1057 if (need_resched())
1058 break;
1059
1da177e4 1060 if (pte_present(ptent)) {
ee498ed7 1061 struct page *page;
51c6f666 1062
25b2995a 1063 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1064 if (unlikely(details) && page) {
1065 /*
1066 * unmap_shared_mapping_pages() wants to
1067 * invalidate cache without truncating:
1068 * unmap shared but keep private pages.
1069 */
1070 if (details->check_mapping &&
800d8c63 1071 details->check_mapping != page_rmapping(page))
1da177e4 1072 continue;
1da177e4 1073 }
b5810039 1074 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1075 tlb->fullmm);
1da177e4
LT
1076 tlb_remove_tlb_entry(tlb, pte, addr);
1077 if (unlikely(!page))
1078 continue;
eca56ff9
JM
1079
1080 if (!PageAnon(page)) {
1cf35d47
LT
1081 if (pte_dirty(ptent)) {
1082 force_flush = 1;
6237bcd9 1083 set_page_dirty(page);
1cf35d47 1084 }
4917e5d0 1085 if (pte_young(ptent) &&
64363aad 1086 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1087 mark_page_accessed(page);
6237bcd9 1088 }
eca56ff9 1089 rss[mm_counter(page)]--;
d281ee61 1090 page_remove_rmap(page, false);
3dc14741
HD
1091 if (unlikely(page_mapcount(page) < 0))
1092 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1093 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1094 force_flush = 1;
ce9ec37b 1095 addr += PAGE_SIZE;
d16dfc55 1096 break;
1cf35d47 1097 }
1da177e4
LT
1098 continue;
1099 }
5042db43
JG
1100
1101 entry = pte_to_swp_entry(ptent);
1102 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1103 struct page *page = device_private_entry_to_page(entry);
1104
1105 if (unlikely(details && details->check_mapping)) {
1106 /*
1107 * unmap_shared_mapping_pages() wants to
1108 * invalidate cache without truncating:
1109 * unmap shared but keep private pages.
1110 */
1111 if (details->check_mapping !=
1112 page_rmapping(page))
1113 continue;
1114 }
1115
1116 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1117 rss[mm_counter(page)]--;
1118 page_remove_rmap(page, false);
1119 put_page(page);
1120 continue;
1121 }
1122
3e8715fd
KS
1123 /* If details->check_mapping, we leave swap entries. */
1124 if (unlikely(details))
1da177e4 1125 continue;
b084d435 1126
8a5f14a2
KS
1127 if (!non_swap_entry(entry))
1128 rss[MM_SWAPENTS]--;
1129 else if (is_migration_entry(entry)) {
1130 struct page *page;
9f9f1acd 1131
8a5f14a2 1132 page = migration_entry_to_page(entry);
eca56ff9 1133 rss[mm_counter(page)]--;
b084d435 1134 }
8a5f14a2
KS
1135 if (unlikely(!free_swap_and_cache(entry)))
1136 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1137 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1138 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1139
d559db08 1140 add_mm_rss_vec(mm, rss);
6606c3e0 1141 arch_leave_lazy_mmu_mode();
51c6f666 1142
1cf35d47 1143 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1144 if (force_flush)
1cf35d47 1145 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1146 pte_unmap_unlock(start_pte, ptl);
1147
1148 /*
1149 * If we forced a TLB flush (either due to running out of
1150 * batch buffers or because we needed to flush dirty TLB
1151 * entries before releasing the ptl), free the batched
1152 * memory too. Restart if we didn't do everything.
1153 */
1154 if (force_flush) {
1155 force_flush = 0;
fa0aafb8 1156 tlb_flush_mmu(tlb);
7b167b68
MK
1157 }
1158
1159 if (addr != end) {
1160 cond_resched();
1161 goto again;
d16dfc55
PZ
1162 }
1163
51c6f666 1164 return addr;
1da177e4
LT
1165}
1166
51c6f666 1167static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1168 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1169 unsigned long addr, unsigned long end,
97a89413 1170 struct zap_details *details)
1da177e4
LT
1171{
1172 pmd_t *pmd;
1173 unsigned long next;
1174
1175 pmd = pmd_offset(pud, addr);
1176 do {
1177 next = pmd_addr_end(addr, end);
84c3fc4e 1178 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1179 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1180 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1181 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1182 goto next;
71e3aac0
AA
1183 /* fall through */
1184 }
1a5a9906
AA
1185 /*
1186 * Here there can be other concurrent MADV_DONTNEED or
1187 * trans huge page faults running, and if the pmd is
1188 * none or trans huge it can change under us. This is
1189 * because MADV_DONTNEED holds the mmap_sem in read
1190 * mode.
1191 */
1192 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1193 goto next;
97a89413 1194 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1195next:
97a89413
PZ
1196 cond_resched();
1197 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1198
1199 return addr;
1da177e4
LT
1200}
1201
51c6f666 1202static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1203 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1204 unsigned long addr, unsigned long end,
97a89413 1205 struct zap_details *details)
1da177e4
LT
1206{
1207 pud_t *pud;
1208 unsigned long next;
1209
c2febafc 1210 pud = pud_offset(p4d, addr);
1da177e4
LT
1211 do {
1212 next = pud_addr_end(addr, end);
a00cc7d9
MW
1213 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1214 if (next - addr != HPAGE_PUD_SIZE) {
1215 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1216 split_huge_pud(vma, pud, addr);
1217 } else if (zap_huge_pud(tlb, vma, pud, addr))
1218 goto next;
1219 /* fall through */
1220 }
97a89413 1221 if (pud_none_or_clear_bad(pud))
1da177e4 1222 continue;
97a89413 1223 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1224next:
1225 cond_resched();
97a89413 1226 } while (pud++, addr = next, addr != end);
51c6f666
RH
1227
1228 return addr;
1da177e4
LT
1229}
1230
c2febafc
KS
1231static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1232 struct vm_area_struct *vma, pgd_t *pgd,
1233 unsigned long addr, unsigned long end,
1234 struct zap_details *details)
1235{
1236 p4d_t *p4d;
1237 unsigned long next;
1238
1239 p4d = p4d_offset(pgd, addr);
1240 do {
1241 next = p4d_addr_end(addr, end);
1242 if (p4d_none_or_clear_bad(p4d))
1243 continue;
1244 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1245 } while (p4d++, addr = next, addr != end);
1246
1247 return addr;
1248}
1249
aac45363 1250void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1251 struct vm_area_struct *vma,
1252 unsigned long addr, unsigned long end,
1253 struct zap_details *details)
1da177e4
LT
1254{
1255 pgd_t *pgd;
1256 unsigned long next;
1257
1da177e4
LT
1258 BUG_ON(addr >= end);
1259 tlb_start_vma(tlb, vma);
1260 pgd = pgd_offset(vma->vm_mm, addr);
1261 do {
1262 next = pgd_addr_end(addr, end);
97a89413 1263 if (pgd_none_or_clear_bad(pgd))
1da177e4 1264 continue;
c2febafc 1265 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1266 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1267 tlb_end_vma(tlb, vma);
1268}
51c6f666 1269
f5cc4eef
AV
1270
1271static void unmap_single_vma(struct mmu_gather *tlb,
1272 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1273 unsigned long end_addr,
f5cc4eef
AV
1274 struct zap_details *details)
1275{
1276 unsigned long start = max(vma->vm_start, start_addr);
1277 unsigned long end;
1278
1279 if (start >= vma->vm_end)
1280 return;
1281 end = min(vma->vm_end, end_addr);
1282 if (end <= vma->vm_start)
1283 return;
1284
cbc91f71
SD
1285 if (vma->vm_file)
1286 uprobe_munmap(vma, start, end);
1287
b3b9c293 1288 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1289 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1290
1291 if (start != end) {
1292 if (unlikely(is_vm_hugetlb_page(vma))) {
1293 /*
1294 * It is undesirable to test vma->vm_file as it
1295 * should be non-null for valid hugetlb area.
1296 * However, vm_file will be NULL in the error
7aa6b4ad 1297 * cleanup path of mmap_region. When
f5cc4eef 1298 * hugetlbfs ->mmap method fails,
7aa6b4ad 1299 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1300 * before calling this function to clean up.
1301 * Since no pte has actually been setup, it is
1302 * safe to do nothing in this case.
1303 */
24669e58 1304 if (vma->vm_file) {
83cde9e8 1305 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1306 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1307 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1308 }
f5cc4eef
AV
1309 } else
1310 unmap_page_range(tlb, vma, start, end, details);
1311 }
1da177e4
LT
1312}
1313
1da177e4
LT
1314/**
1315 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1316 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1317 * @vma: the starting vma
1318 * @start_addr: virtual address at which to start unmapping
1319 * @end_addr: virtual address at which to end unmapping
1da177e4 1320 *
508034a3 1321 * Unmap all pages in the vma list.
1da177e4 1322 *
1da177e4
LT
1323 * Only addresses between `start' and `end' will be unmapped.
1324 *
1325 * The VMA list must be sorted in ascending virtual address order.
1326 *
1327 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328 * range after unmap_vmas() returns. So the only responsibility here is to
1329 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330 * drops the lock and schedules.
1331 */
6e8bb019 1332void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1333 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1334 unsigned long end_addr)
1da177e4 1335{
ac46d4f3 1336 struct mmu_notifier_range range;
1da177e4 1337
6f4f13e8
JG
1338 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1339 start_addr, end_addr);
ac46d4f3 1340 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1341 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1342 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1343 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1344}
1345
1346/**
1347 * zap_page_range - remove user pages in a given range
1348 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1349 * @start: starting address of pages to zap
1da177e4 1350 * @size: number of bytes to zap
f5cc4eef
AV
1351 *
1352 * Caller must protect the VMA list
1da177e4 1353 */
7e027b14 1354void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1355 unsigned long size)
1da177e4 1356{
ac46d4f3 1357 struct mmu_notifier_range range;
d16dfc55 1358 struct mmu_gather tlb;
1da177e4 1359
1da177e4 1360 lru_add_drain();
7269f999 1361 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1362 start, start + size);
ac46d4f3
JG
1363 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1364 update_hiwater_rss(vma->vm_mm);
1365 mmu_notifier_invalidate_range_start(&range);
1366 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1367 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1368 mmu_notifier_invalidate_range_end(&range);
1369 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1370}
1371
f5cc4eef
AV
1372/**
1373 * zap_page_range_single - remove user pages in a given range
1374 * @vma: vm_area_struct holding the applicable pages
1375 * @address: starting address of pages to zap
1376 * @size: number of bytes to zap
8a5f14a2 1377 * @details: details of shared cache invalidation
f5cc4eef
AV
1378 *
1379 * The range must fit into one VMA.
1da177e4 1380 */
f5cc4eef 1381static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1382 unsigned long size, struct zap_details *details)
1383{
ac46d4f3 1384 struct mmu_notifier_range range;
d16dfc55 1385 struct mmu_gather tlb;
1da177e4 1386
1da177e4 1387 lru_add_drain();
7269f999 1388 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1389 address, address + size);
ac46d4f3
JG
1390 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1391 update_hiwater_rss(vma->vm_mm);
1392 mmu_notifier_invalidate_range_start(&range);
1393 unmap_single_vma(&tlb, vma, address, range.end, details);
1394 mmu_notifier_invalidate_range_end(&range);
1395 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1396}
1397
c627f9cc
JS
1398/**
1399 * zap_vma_ptes - remove ptes mapping the vma
1400 * @vma: vm_area_struct holding ptes to be zapped
1401 * @address: starting address of pages to zap
1402 * @size: number of bytes to zap
1403 *
1404 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405 *
1406 * The entire address range must be fully contained within the vma.
1407 *
c627f9cc 1408 */
27d036e3 1409void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1410 unsigned long size)
1411{
1412 if (address < vma->vm_start || address + size > vma->vm_end ||
1413 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1414 return;
1415
f5cc4eef 1416 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1417}
1418EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419
8cd3984d 1420static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1421{
c2febafc
KS
1422 pgd_t *pgd;
1423 p4d_t *p4d;
1424 pud_t *pud;
1425 pmd_t *pmd;
1426
1427 pgd = pgd_offset(mm, addr);
1428 p4d = p4d_alloc(mm, pgd, addr);
1429 if (!p4d)
1430 return NULL;
1431 pud = pud_alloc(mm, p4d, addr);
1432 if (!pud)
1433 return NULL;
1434 pmd = pmd_alloc(mm, pud, addr);
1435 if (!pmd)
1436 return NULL;
1437
1438 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1439 return pmd;
1440}
1441
1442pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1443 spinlock_t **ptl)
1444{
1445 pmd_t *pmd = walk_to_pmd(mm, addr);
1446
1447 if (!pmd)
1448 return NULL;
c2febafc 1449 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1450}
1451
8efd6f5b
AR
1452static int validate_page_before_insert(struct page *page)
1453{
1454 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1455 return -EINVAL;
1456 flush_dcache_page(page);
1457 return 0;
1458}
1459
1460static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1461 unsigned long addr, struct page *page, pgprot_t prot)
1462{
1463 if (!pte_none(*pte))
1464 return -EBUSY;
1465 /* Ok, finally just insert the thing.. */
1466 get_page(page);
1467 inc_mm_counter_fast(mm, mm_counter_file(page));
1468 page_add_file_rmap(page, false);
1469 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470 return 0;
1471}
1472
238f58d8
LT
1473/*
1474 * This is the old fallback for page remapping.
1475 *
1476 * For historical reasons, it only allows reserved pages. Only
1477 * old drivers should use this, and they needed to mark their
1478 * pages reserved for the old functions anyway.
1479 */
423bad60
NP
1480static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1481 struct page *page, pgprot_t prot)
238f58d8 1482{
423bad60 1483 struct mm_struct *mm = vma->vm_mm;
238f58d8 1484 int retval;
c9cfcddf 1485 pte_t *pte;
8a9f3ccd
BS
1486 spinlock_t *ptl;
1487
8efd6f5b
AR
1488 retval = validate_page_before_insert(page);
1489 if (retval)
5b4e655e 1490 goto out;
238f58d8 1491 retval = -ENOMEM;
c9cfcddf 1492 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1493 if (!pte)
5b4e655e 1494 goto out;
8efd6f5b 1495 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1496 pte_unmap_unlock(pte, ptl);
1497out:
1498 return retval;
1499}
1500
8cd3984d
AR
1501#ifdef pte_index
1502static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd,
1503 unsigned long addr, struct page *page, pgprot_t prot)
1504{
1505 int err;
1506
1507 if (!page_count(page))
1508 return -EINVAL;
1509 err = validate_page_before_insert(page);
1510 return err ? err : insert_page_into_pte_locked(
1511 mm, pte_offset_map(pmd, addr), addr, page, prot);
1512}
1513
1514/* insert_pages() amortizes the cost of spinlock operations
1515 * when inserting pages in a loop. Arch *must* define pte_index.
1516 */
1517static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1518 struct page **pages, unsigned long *num, pgprot_t prot)
1519{
1520 pmd_t *pmd = NULL;
1521 spinlock_t *pte_lock = NULL;
1522 struct mm_struct *const mm = vma->vm_mm;
1523 unsigned long curr_page_idx = 0;
1524 unsigned long remaining_pages_total = *num;
1525 unsigned long pages_to_write_in_pmd;
1526 int ret;
1527more:
1528 ret = -EFAULT;
1529 pmd = walk_to_pmd(mm, addr);
1530 if (!pmd)
1531 goto out;
1532
1533 pages_to_write_in_pmd = min_t(unsigned long,
1534 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1535
1536 /* Allocate the PTE if necessary; takes PMD lock once only. */
1537 ret = -ENOMEM;
1538 if (pte_alloc(mm, pmd))
1539 goto out;
1540 pte_lock = pte_lockptr(mm, pmd);
1541
1542 while (pages_to_write_in_pmd) {
1543 int pte_idx = 0;
1544 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1545
1546 spin_lock(pte_lock);
1547 for (; pte_idx < batch_size; ++pte_idx) {
1548 int err = insert_page_in_batch_locked(mm, pmd,
1549 addr, pages[curr_page_idx], prot);
1550 if (unlikely(err)) {
1551 spin_unlock(pte_lock);
1552 ret = err;
1553 remaining_pages_total -= pte_idx;
1554 goto out;
1555 }
1556 addr += PAGE_SIZE;
1557 ++curr_page_idx;
1558 }
1559 spin_unlock(pte_lock);
1560 pages_to_write_in_pmd -= batch_size;
1561 remaining_pages_total -= batch_size;
1562 }
1563 if (remaining_pages_total)
1564 goto more;
1565 ret = 0;
1566out:
1567 *num = remaining_pages_total;
1568 return ret;
1569}
1570#endif /* ifdef pte_index */
1571
1572/**
1573 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1574 * @vma: user vma to map to
1575 * @addr: target start user address of these pages
1576 * @pages: source kernel pages
1577 * @num: in: number of pages to map. out: number of pages that were *not*
1578 * mapped. (0 means all pages were successfully mapped).
1579 *
1580 * Preferred over vm_insert_page() when inserting multiple pages.
1581 *
1582 * In case of error, we may have mapped a subset of the provided
1583 * pages. It is the caller's responsibility to account for this case.
1584 *
1585 * The same restrictions apply as in vm_insert_page().
1586 */
1587int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1588 struct page **pages, unsigned long *num)
1589{
1590#ifdef pte_index
1591 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1592
1593 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1594 return -EFAULT;
1595 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1596 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1597 BUG_ON(vma->vm_flags & VM_PFNMAP);
1598 vma->vm_flags |= VM_MIXEDMAP;
1599 }
1600 /* Defer page refcount checking till we're about to map that page. */
1601 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1602#else
1603 unsigned long idx = 0, pgcount = *num;
1604 int err;
1605
1606 for (; idx < pgcount; ++idx) {
1607 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1608 if (err)
1609 break;
1610 }
1611 *num = pgcount - idx;
1612 return err;
1613#endif /* ifdef pte_index */
1614}
1615EXPORT_SYMBOL(vm_insert_pages);
1616
bfa5bf6d
REB
1617/**
1618 * vm_insert_page - insert single page into user vma
1619 * @vma: user vma to map to
1620 * @addr: target user address of this page
1621 * @page: source kernel page
1622 *
a145dd41
LT
1623 * This allows drivers to insert individual pages they've allocated
1624 * into a user vma.
1625 *
1626 * The page has to be a nice clean _individual_ kernel allocation.
1627 * If you allocate a compound page, you need to have marked it as
1628 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1629 * (see split_page()).
a145dd41
LT
1630 *
1631 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1632 * took an arbitrary page protection parameter. This doesn't allow
1633 * that. Your vma protection will have to be set up correctly, which
1634 * means that if you want a shared writable mapping, you'd better
1635 * ask for a shared writable mapping!
1636 *
1637 * The page does not need to be reserved.
4b6e1e37
KK
1638 *
1639 * Usually this function is called from f_op->mmap() handler
1640 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1641 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1642 * function from other places, for example from page-fault handler.
a862f68a
MR
1643 *
1644 * Return: %0 on success, negative error code otherwise.
a145dd41 1645 */
423bad60
NP
1646int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1647 struct page *page)
a145dd41
LT
1648{
1649 if (addr < vma->vm_start || addr >= vma->vm_end)
1650 return -EFAULT;
1651 if (!page_count(page))
1652 return -EINVAL;
4b6e1e37
KK
1653 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1654 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1655 BUG_ON(vma->vm_flags & VM_PFNMAP);
1656 vma->vm_flags |= VM_MIXEDMAP;
1657 }
423bad60 1658 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1659}
e3c3374f 1660EXPORT_SYMBOL(vm_insert_page);
a145dd41 1661
a667d745
SJ
1662/*
1663 * __vm_map_pages - maps range of kernel pages into user vma
1664 * @vma: user vma to map to
1665 * @pages: pointer to array of source kernel pages
1666 * @num: number of pages in page array
1667 * @offset: user's requested vm_pgoff
1668 *
1669 * This allows drivers to map range of kernel pages into a user vma.
1670 *
1671 * Return: 0 on success and error code otherwise.
1672 */
1673static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1674 unsigned long num, unsigned long offset)
1675{
1676 unsigned long count = vma_pages(vma);
1677 unsigned long uaddr = vma->vm_start;
1678 int ret, i;
1679
1680 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1681 if (offset >= num)
a667d745
SJ
1682 return -ENXIO;
1683
1684 /* Fail if the user requested size exceeds available object size */
1685 if (count > num - offset)
1686 return -ENXIO;
1687
1688 for (i = 0; i < count; i++) {
1689 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1690 if (ret < 0)
1691 return ret;
1692 uaddr += PAGE_SIZE;
1693 }
1694
1695 return 0;
1696}
1697
1698/**
1699 * vm_map_pages - maps range of kernel pages starts with non zero offset
1700 * @vma: user vma to map to
1701 * @pages: pointer to array of source kernel pages
1702 * @num: number of pages in page array
1703 *
1704 * Maps an object consisting of @num pages, catering for the user's
1705 * requested vm_pgoff
1706 *
1707 * If we fail to insert any page into the vma, the function will return
1708 * immediately leaving any previously inserted pages present. Callers
1709 * from the mmap handler may immediately return the error as their caller
1710 * will destroy the vma, removing any successfully inserted pages. Other
1711 * callers should make their own arrangements for calling unmap_region().
1712 *
1713 * Context: Process context. Called by mmap handlers.
1714 * Return: 0 on success and error code otherwise.
1715 */
1716int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1717 unsigned long num)
1718{
1719 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1720}
1721EXPORT_SYMBOL(vm_map_pages);
1722
1723/**
1724 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1725 * @vma: user vma to map to
1726 * @pages: pointer to array of source kernel pages
1727 * @num: number of pages in page array
1728 *
1729 * Similar to vm_map_pages(), except that it explicitly sets the offset
1730 * to 0. This function is intended for the drivers that did not consider
1731 * vm_pgoff.
1732 *
1733 * Context: Process context. Called by mmap handlers.
1734 * Return: 0 on success and error code otherwise.
1735 */
1736int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1737 unsigned long num)
1738{
1739 return __vm_map_pages(vma, pages, num, 0);
1740}
1741EXPORT_SYMBOL(vm_map_pages_zero);
1742
9b5a8e00 1743static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1744 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1745{
1746 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1747 pte_t *pte, entry;
1748 spinlock_t *ptl;
1749
423bad60
NP
1750 pte = get_locked_pte(mm, addr, &ptl);
1751 if (!pte)
9b5a8e00 1752 return VM_FAULT_OOM;
b2770da6
RZ
1753 if (!pte_none(*pte)) {
1754 if (mkwrite) {
1755 /*
1756 * For read faults on private mappings the PFN passed
1757 * in may not match the PFN we have mapped if the
1758 * mapped PFN is a writeable COW page. In the mkwrite
1759 * case we are creating a writable PTE for a shared
f2c57d91
JK
1760 * mapping and we expect the PFNs to match. If they
1761 * don't match, we are likely racing with block
1762 * allocation and mapping invalidation so just skip the
1763 * update.
b2770da6 1764 */
f2c57d91
JK
1765 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1766 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1767 goto out_unlock;
f2c57d91 1768 }
cae85cb8
JK
1769 entry = pte_mkyoung(*pte);
1770 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1771 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1772 update_mmu_cache(vma, addr, pte);
1773 }
1774 goto out_unlock;
b2770da6 1775 }
423bad60
NP
1776
1777 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1778 if (pfn_t_devmap(pfn))
1779 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1780 else
1781 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1782
b2770da6
RZ
1783 if (mkwrite) {
1784 entry = pte_mkyoung(entry);
1785 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1786 }
1787
423bad60 1788 set_pte_at(mm, addr, pte, entry);
4b3073e1 1789 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1790
423bad60
NP
1791out_unlock:
1792 pte_unmap_unlock(pte, ptl);
9b5a8e00 1793 return VM_FAULT_NOPAGE;
423bad60
NP
1794}
1795
f5e6d1d5
MW
1796/**
1797 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1798 * @vma: user vma to map to
1799 * @addr: target user address of this page
1800 * @pfn: source kernel pfn
1801 * @pgprot: pgprot flags for the inserted page
1802 *
1803 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1804 * to override pgprot on a per-page basis.
1805 *
1806 * This only makes sense for IO mappings, and it makes no sense for
1807 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1808 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1809 * impractical.
1810 *
574c5b3d
TH
1811 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1812 * a value of @pgprot different from that of @vma->vm_page_prot.
1813 *
ae2b01f3 1814 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1815 * Return: vm_fault_t value.
1816 */
1817vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1818 unsigned long pfn, pgprot_t pgprot)
1819{
6d958546
MW
1820 /*
1821 * Technically, architectures with pte_special can avoid all these
1822 * restrictions (same for remap_pfn_range). However we would like
1823 * consistency in testing and feature parity among all, so we should
1824 * try to keep these invariants in place for everybody.
1825 */
1826 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1827 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1828 (VM_PFNMAP|VM_MIXEDMAP));
1829 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1830 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1831
1832 if (addr < vma->vm_start || addr >= vma->vm_end)
1833 return VM_FAULT_SIGBUS;
1834
1835 if (!pfn_modify_allowed(pfn, pgprot))
1836 return VM_FAULT_SIGBUS;
1837
1838 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1839
9b5a8e00 1840 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1841 false);
f5e6d1d5
MW
1842}
1843EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1844
ae2b01f3
MW
1845/**
1846 * vmf_insert_pfn - insert single pfn into user vma
1847 * @vma: user vma to map to
1848 * @addr: target user address of this page
1849 * @pfn: source kernel pfn
1850 *
1851 * Similar to vm_insert_page, this allows drivers to insert individual pages
1852 * they've allocated into a user vma. Same comments apply.
1853 *
1854 * This function should only be called from a vm_ops->fault handler, and
1855 * in that case the handler should return the result of this function.
1856 *
1857 * vma cannot be a COW mapping.
1858 *
1859 * As this is called only for pages that do not currently exist, we
1860 * do not need to flush old virtual caches or the TLB.
1861 *
1862 * Context: Process context. May allocate using %GFP_KERNEL.
1863 * Return: vm_fault_t value.
1864 */
1865vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1866 unsigned long pfn)
1867{
1868 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1869}
1870EXPORT_SYMBOL(vmf_insert_pfn);
1871
785a3fab
DW
1872static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1873{
1874 /* these checks mirror the abort conditions in vm_normal_page */
1875 if (vma->vm_flags & VM_MIXEDMAP)
1876 return true;
1877 if (pfn_t_devmap(pfn))
1878 return true;
1879 if (pfn_t_special(pfn))
1880 return true;
1881 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1882 return true;
1883 return false;
1884}
1885
79f3aa5b 1886static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
1887 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1888 bool mkwrite)
423bad60 1889{
79f3aa5b 1890 int err;
87744ab3 1891
785a3fab 1892 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1893
423bad60 1894 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1895 return VM_FAULT_SIGBUS;
308a047c
BP
1896
1897 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1898
42e4089c 1899 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1900 return VM_FAULT_SIGBUS;
42e4089c 1901
423bad60
NP
1902 /*
1903 * If we don't have pte special, then we have to use the pfn_valid()
1904 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1905 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1906 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1907 * without pte special, it would there be refcounted as a normal page.
423bad60 1908 */
00b3a331
LD
1909 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1910 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1911 struct page *page;
1912
03fc2da6
DW
1913 /*
1914 * At this point we are committed to insert_page()
1915 * regardless of whether the caller specified flags that
1916 * result in pfn_t_has_page() == false.
1917 */
1918 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1919 err = insert_page(vma, addr, page, pgprot);
1920 } else {
9b5a8e00 1921 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1922 }
b2770da6 1923
5d747637
MW
1924 if (err == -ENOMEM)
1925 return VM_FAULT_OOM;
1926 if (err < 0 && err != -EBUSY)
1927 return VM_FAULT_SIGBUS;
1928
1929 return VM_FAULT_NOPAGE;
e0dc0d8f 1930}
79f3aa5b 1931
574c5b3d
TH
1932/**
1933 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1934 * @vma: user vma to map to
1935 * @addr: target user address of this page
1936 * @pfn: source kernel pfn
1937 * @pgprot: pgprot flags for the inserted page
1938 *
1939 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1940 * to override pgprot on a per-page basis.
1941 *
1942 * Typically this function should be used by drivers to set caching- and
1943 * encryption bits different than those of @vma->vm_page_prot, because
1944 * the caching- or encryption mode may not be known at mmap() time.
1945 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1946 * to set caching and encryption bits for those vmas (except for COW pages).
1947 * This is ensured by core vm only modifying these page table entries using
1948 * functions that don't touch caching- or encryption bits, using pte_modify()
1949 * if needed. (See for example mprotect()).
1950 * Also when new page-table entries are created, this is only done using the
1951 * fault() callback, and never using the value of vma->vm_page_prot,
1952 * except for page-table entries that point to anonymous pages as the result
1953 * of COW.
1954 *
1955 * Context: Process context. May allocate using %GFP_KERNEL.
1956 * Return: vm_fault_t value.
1957 */
1958vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1959 pfn_t pfn, pgprot_t pgprot)
1960{
1961 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1962}
5379e4dd 1963EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 1964
79f3aa5b
MW
1965vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1966 pfn_t pfn)
1967{
574c5b3d 1968 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 1969}
5d747637 1970EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1971
ab77dab4
SJ
1972/*
1973 * If the insertion of PTE failed because someone else already added a
1974 * different entry in the mean time, we treat that as success as we assume
1975 * the same entry was actually inserted.
1976 */
ab77dab4
SJ
1977vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1978 unsigned long addr, pfn_t pfn)
b2770da6 1979{
574c5b3d 1980 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 1981}
ab77dab4 1982EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1983
1da177e4
LT
1984/*
1985 * maps a range of physical memory into the requested pages. the old
1986 * mappings are removed. any references to nonexistent pages results
1987 * in null mappings (currently treated as "copy-on-access")
1988 */
1989static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1990 unsigned long addr, unsigned long end,
1991 unsigned long pfn, pgprot_t prot)
1992{
1993 pte_t *pte;
c74df32c 1994 spinlock_t *ptl;
42e4089c 1995 int err = 0;
1da177e4 1996
c74df32c 1997 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1998 if (!pte)
1999 return -ENOMEM;
6606c3e0 2000 arch_enter_lazy_mmu_mode();
1da177e4
LT
2001 do {
2002 BUG_ON(!pte_none(*pte));
42e4089c
AK
2003 if (!pfn_modify_allowed(pfn, prot)) {
2004 err = -EACCES;
2005 break;
2006 }
7e675137 2007 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2008 pfn++;
2009 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2010 arch_leave_lazy_mmu_mode();
c74df32c 2011 pte_unmap_unlock(pte - 1, ptl);
42e4089c 2012 return err;
1da177e4
LT
2013}
2014
2015static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2016 unsigned long addr, unsigned long end,
2017 unsigned long pfn, pgprot_t prot)
2018{
2019 pmd_t *pmd;
2020 unsigned long next;
42e4089c 2021 int err;
1da177e4
LT
2022
2023 pfn -= addr >> PAGE_SHIFT;
2024 pmd = pmd_alloc(mm, pud, addr);
2025 if (!pmd)
2026 return -ENOMEM;
f66055ab 2027 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2028 do {
2029 next = pmd_addr_end(addr, end);
42e4089c
AK
2030 err = remap_pte_range(mm, pmd, addr, next,
2031 pfn + (addr >> PAGE_SHIFT), prot);
2032 if (err)
2033 return err;
1da177e4
LT
2034 } while (pmd++, addr = next, addr != end);
2035 return 0;
2036}
2037
c2febafc 2038static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2039 unsigned long addr, unsigned long end,
2040 unsigned long pfn, pgprot_t prot)
2041{
2042 pud_t *pud;
2043 unsigned long next;
42e4089c 2044 int err;
1da177e4
LT
2045
2046 pfn -= addr >> PAGE_SHIFT;
c2febafc 2047 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2048 if (!pud)
2049 return -ENOMEM;
2050 do {
2051 next = pud_addr_end(addr, end);
42e4089c
AK
2052 err = remap_pmd_range(mm, pud, addr, next,
2053 pfn + (addr >> PAGE_SHIFT), prot);
2054 if (err)
2055 return err;
1da177e4
LT
2056 } while (pud++, addr = next, addr != end);
2057 return 0;
2058}
2059
c2febafc
KS
2060static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2061 unsigned long addr, unsigned long end,
2062 unsigned long pfn, pgprot_t prot)
2063{
2064 p4d_t *p4d;
2065 unsigned long next;
42e4089c 2066 int err;
c2febafc
KS
2067
2068 pfn -= addr >> PAGE_SHIFT;
2069 p4d = p4d_alloc(mm, pgd, addr);
2070 if (!p4d)
2071 return -ENOMEM;
2072 do {
2073 next = p4d_addr_end(addr, end);
42e4089c
AK
2074 err = remap_pud_range(mm, p4d, addr, next,
2075 pfn + (addr >> PAGE_SHIFT), prot);
2076 if (err)
2077 return err;
c2febafc
KS
2078 } while (p4d++, addr = next, addr != end);
2079 return 0;
2080}
2081
bfa5bf6d
REB
2082/**
2083 * remap_pfn_range - remap kernel memory to userspace
2084 * @vma: user vma to map to
2085 * @addr: target user address to start at
86a76331 2086 * @pfn: page frame number of kernel physical memory address
552657b7 2087 * @size: size of mapping area
bfa5bf6d
REB
2088 * @prot: page protection flags for this mapping
2089 *
a862f68a
MR
2090 * Note: this is only safe if the mm semaphore is held when called.
2091 *
2092 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 2093 */
1da177e4
LT
2094int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2095 unsigned long pfn, unsigned long size, pgprot_t prot)
2096{
2097 pgd_t *pgd;
2098 unsigned long next;
2d15cab8 2099 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2100 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2101 unsigned long remap_pfn = pfn;
1da177e4
LT
2102 int err;
2103
2104 /*
2105 * Physically remapped pages are special. Tell the
2106 * rest of the world about it:
2107 * VM_IO tells people not to look at these pages
2108 * (accesses can have side effects).
6aab341e
LT
2109 * VM_PFNMAP tells the core MM that the base pages are just
2110 * raw PFN mappings, and do not have a "struct page" associated
2111 * with them.
314e51b9
KK
2112 * VM_DONTEXPAND
2113 * Disable vma merging and expanding with mremap().
2114 * VM_DONTDUMP
2115 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2116 *
2117 * There's a horrible special case to handle copy-on-write
2118 * behaviour that some programs depend on. We mark the "original"
2119 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2120 * See vm_normal_page() for details.
1da177e4 2121 */
b3b9c293
KK
2122 if (is_cow_mapping(vma->vm_flags)) {
2123 if (addr != vma->vm_start || end != vma->vm_end)
2124 return -EINVAL;
fb155c16 2125 vma->vm_pgoff = pfn;
b3b9c293
KK
2126 }
2127
d5957d2f 2128 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2129 if (err)
3c8bb73a 2130 return -EINVAL;
fb155c16 2131
314e51b9 2132 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2133
2134 BUG_ON(addr >= end);
2135 pfn -= addr >> PAGE_SHIFT;
2136 pgd = pgd_offset(mm, addr);
2137 flush_cache_range(vma, addr, end);
1da177e4
LT
2138 do {
2139 next = pgd_addr_end(addr, end);
c2febafc 2140 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2141 pfn + (addr >> PAGE_SHIFT), prot);
2142 if (err)
2143 break;
2144 } while (pgd++, addr = next, addr != end);
2ab64037 2145
2146 if (err)
d5957d2f 2147 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2148
1da177e4
LT
2149 return err;
2150}
2151EXPORT_SYMBOL(remap_pfn_range);
2152
b4cbb197
LT
2153/**
2154 * vm_iomap_memory - remap memory to userspace
2155 * @vma: user vma to map to
abd69b9e 2156 * @start: start of the physical memory to be mapped
b4cbb197
LT
2157 * @len: size of area
2158 *
2159 * This is a simplified io_remap_pfn_range() for common driver use. The
2160 * driver just needs to give us the physical memory range to be mapped,
2161 * we'll figure out the rest from the vma information.
2162 *
2163 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2164 * whatever write-combining details or similar.
a862f68a
MR
2165 *
2166 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2167 */
2168int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2169{
2170 unsigned long vm_len, pfn, pages;
2171
2172 /* Check that the physical memory area passed in looks valid */
2173 if (start + len < start)
2174 return -EINVAL;
2175 /*
2176 * You *really* shouldn't map things that aren't page-aligned,
2177 * but we've historically allowed it because IO memory might
2178 * just have smaller alignment.
2179 */
2180 len += start & ~PAGE_MASK;
2181 pfn = start >> PAGE_SHIFT;
2182 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2183 if (pfn + pages < pfn)
2184 return -EINVAL;
2185
2186 /* We start the mapping 'vm_pgoff' pages into the area */
2187 if (vma->vm_pgoff > pages)
2188 return -EINVAL;
2189 pfn += vma->vm_pgoff;
2190 pages -= vma->vm_pgoff;
2191
2192 /* Can we fit all of the mapping? */
2193 vm_len = vma->vm_end - vma->vm_start;
2194 if (vm_len >> PAGE_SHIFT > pages)
2195 return -EINVAL;
2196
2197 /* Ok, let it rip */
2198 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2199}
2200EXPORT_SYMBOL(vm_iomap_memory);
2201
aee16b3c
JF
2202static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2203 unsigned long addr, unsigned long end,
be1db475 2204 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2205{
2206 pte_t *pte;
be1db475 2207 int err = 0;
94909914 2208 spinlock_t *uninitialized_var(ptl);
aee16b3c 2209
be1db475
DA
2210 if (create) {
2211 pte = (mm == &init_mm) ?
2212 pte_alloc_kernel(pmd, addr) :
2213 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2214 if (!pte)
2215 return -ENOMEM;
2216 } else {
2217 pte = (mm == &init_mm) ?
2218 pte_offset_kernel(pmd, addr) :
2219 pte_offset_map_lock(mm, pmd, addr, &ptl);
2220 }
aee16b3c
JF
2221
2222 BUG_ON(pmd_huge(*pmd));
2223
38e0edb1
JF
2224 arch_enter_lazy_mmu_mode();
2225
aee16b3c 2226 do {
be1db475
DA
2227 if (create || !pte_none(*pte)) {
2228 err = fn(pte++, addr, data);
2229 if (err)
2230 break;
2231 }
c36987e2 2232 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2233
38e0edb1
JF
2234 arch_leave_lazy_mmu_mode();
2235
aee16b3c
JF
2236 if (mm != &init_mm)
2237 pte_unmap_unlock(pte-1, ptl);
2238 return err;
2239}
2240
2241static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2242 unsigned long addr, unsigned long end,
be1db475 2243 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2244{
2245 pmd_t *pmd;
2246 unsigned long next;
be1db475 2247 int err = 0;
aee16b3c 2248
ceb86879
AK
2249 BUG_ON(pud_huge(*pud));
2250
be1db475
DA
2251 if (create) {
2252 pmd = pmd_alloc(mm, pud, addr);
2253 if (!pmd)
2254 return -ENOMEM;
2255 } else {
2256 pmd = pmd_offset(pud, addr);
2257 }
aee16b3c
JF
2258 do {
2259 next = pmd_addr_end(addr, end);
be1db475
DA
2260 if (create || !pmd_none_or_clear_bad(pmd)) {
2261 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2262 create);
2263 if (err)
2264 break;
2265 }
aee16b3c
JF
2266 } while (pmd++, addr = next, addr != end);
2267 return err;
2268}
2269
c2febafc 2270static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2271 unsigned long addr, unsigned long end,
be1db475 2272 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2273{
2274 pud_t *pud;
2275 unsigned long next;
be1db475 2276 int err = 0;
aee16b3c 2277
be1db475
DA
2278 if (create) {
2279 pud = pud_alloc(mm, p4d, addr);
2280 if (!pud)
2281 return -ENOMEM;
2282 } else {
2283 pud = pud_offset(p4d, addr);
2284 }
aee16b3c
JF
2285 do {
2286 next = pud_addr_end(addr, end);
be1db475
DA
2287 if (create || !pud_none_or_clear_bad(pud)) {
2288 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2289 create);
2290 if (err)
2291 break;
2292 }
aee16b3c
JF
2293 } while (pud++, addr = next, addr != end);
2294 return err;
2295}
2296
c2febafc
KS
2297static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2298 unsigned long addr, unsigned long end,
be1db475 2299 pte_fn_t fn, void *data, bool create)
c2febafc
KS
2300{
2301 p4d_t *p4d;
2302 unsigned long next;
be1db475 2303 int err = 0;
c2febafc 2304
be1db475
DA
2305 if (create) {
2306 p4d = p4d_alloc(mm, pgd, addr);
2307 if (!p4d)
2308 return -ENOMEM;
2309 } else {
2310 p4d = p4d_offset(pgd, addr);
2311 }
c2febafc
KS
2312 do {
2313 next = p4d_addr_end(addr, end);
be1db475
DA
2314 if (create || !p4d_none_or_clear_bad(p4d)) {
2315 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2316 create);
2317 if (err)
2318 break;
2319 }
c2febafc
KS
2320 } while (p4d++, addr = next, addr != end);
2321 return err;
2322}
2323
be1db475
DA
2324static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2325 unsigned long size, pte_fn_t fn,
2326 void *data, bool create)
aee16b3c
JF
2327{
2328 pgd_t *pgd;
2329 unsigned long next;
57250a5b 2330 unsigned long end = addr + size;
be1db475 2331 int err = 0;
aee16b3c 2332
9cb65bc3
MP
2333 if (WARN_ON(addr >= end))
2334 return -EINVAL;
2335
aee16b3c
JF
2336 pgd = pgd_offset(mm, addr);
2337 do {
2338 next = pgd_addr_end(addr, end);
be1db475
DA
2339 if (!create && pgd_none_or_clear_bad(pgd))
2340 continue;
2341 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
aee16b3c
JF
2342 if (err)
2343 break;
2344 } while (pgd++, addr = next, addr != end);
57250a5b 2345
aee16b3c
JF
2346 return err;
2347}
be1db475
DA
2348
2349/*
2350 * Scan a region of virtual memory, filling in page tables as necessary
2351 * and calling a provided function on each leaf page table.
2352 */
2353int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2354 unsigned long size, pte_fn_t fn, void *data)
2355{
2356 return __apply_to_page_range(mm, addr, size, fn, data, true);
2357}
aee16b3c
JF
2358EXPORT_SYMBOL_GPL(apply_to_page_range);
2359
be1db475
DA
2360/*
2361 * Scan a region of virtual memory, calling a provided function on
2362 * each leaf page table where it exists.
2363 *
2364 * Unlike apply_to_page_range, this does _not_ fill in page tables
2365 * where they are absent.
2366 */
2367int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2368 unsigned long size, pte_fn_t fn, void *data)
2369{
2370 return __apply_to_page_range(mm, addr, size, fn, data, false);
2371}
2372EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2373
8f4e2101 2374/*
9b4bdd2f
KS
2375 * handle_pte_fault chooses page fault handler according to an entry which was
2376 * read non-atomically. Before making any commitment, on those architectures
2377 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2378 * parts, do_swap_page must check under lock before unmapping the pte and
2379 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2380 * and do_anonymous_page can safely check later on).
8f4e2101 2381 */
4c21e2f2 2382static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2383 pte_t *page_table, pte_t orig_pte)
2384{
2385 int same = 1;
923717cb 2386#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2387 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2388 spinlock_t *ptl = pte_lockptr(mm, pmd);
2389 spin_lock(ptl);
8f4e2101 2390 same = pte_same(*page_table, orig_pte);
4c21e2f2 2391 spin_unlock(ptl);
8f4e2101
HD
2392 }
2393#endif
2394 pte_unmap(page_table);
2395 return same;
2396}
2397
83d116c5
JH
2398static inline bool cow_user_page(struct page *dst, struct page *src,
2399 struct vm_fault *vmf)
6aab341e 2400{
83d116c5
JH
2401 bool ret;
2402 void *kaddr;
2403 void __user *uaddr;
c3e5ea6e 2404 bool locked = false;
83d116c5
JH
2405 struct vm_area_struct *vma = vmf->vma;
2406 struct mm_struct *mm = vma->vm_mm;
2407 unsigned long addr = vmf->address;
2408
0abdd7a8
DW
2409 debug_dma_assert_idle(src);
2410
83d116c5
JH
2411 if (likely(src)) {
2412 copy_user_highpage(dst, src, addr, vma);
2413 return true;
2414 }
2415
6aab341e
LT
2416 /*
2417 * If the source page was a PFN mapping, we don't have
2418 * a "struct page" for it. We do a best-effort copy by
2419 * just copying from the original user address. If that
2420 * fails, we just zero-fill it. Live with it.
2421 */
83d116c5
JH
2422 kaddr = kmap_atomic(dst);
2423 uaddr = (void __user *)(addr & PAGE_MASK);
2424
2425 /*
2426 * On architectures with software "accessed" bits, we would
2427 * take a double page fault, so mark it accessed here.
2428 */
c3e5ea6e 2429 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2430 pte_t entry;
5d2a2dbb 2431
83d116c5 2432 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2433 locked = true;
83d116c5
JH
2434 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2435 /*
2436 * Other thread has already handled the fault
7df67697 2437 * and update local tlb only
83d116c5 2438 */
7df67697 2439 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2440 ret = false;
2441 goto pte_unlock;
2442 }
2443
2444 entry = pte_mkyoung(vmf->orig_pte);
2445 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2446 update_mmu_cache(vma, addr, vmf->pte);
2447 }
2448
2449 /*
2450 * This really shouldn't fail, because the page is there
2451 * in the page tables. But it might just be unreadable,
2452 * in which case we just give up and fill the result with
2453 * zeroes.
2454 */
2455 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2456 if (locked)
2457 goto warn;
2458
2459 /* Re-validate under PTL if the page is still mapped */
2460 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2461 locked = true;
2462 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2463 /* The PTE changed under us, update local tlb */
2464 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2465 ret = false;
2466 goto pte_unlock;
2467 }
2468
5d2a2dbb 2469 /*
c3e5ea6e
KS
2470 * The same page can be mapped back since last copy attampt.
2471 * Try to copy again under PTL.
5d2a2dbb 2472 */
c3e5ea6e
KS
2473 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2474 /*
2475 * Give a warn in case there can be some obscure
2476 * use-case
2477 */
2478warn:
2479 WARN_ON_ONCE(1);
2480 clear_page(kaddr);
2481 }
83d116c5
JH
2482 }
2483
2484 ret = true;
2485
2486pte_unlock:
c3e5ea6e 2487 if (locked)
83d116c5
JH
2488 pte_unmap_unlock(vmf->pte, vmf->ptl);
2489 kunmap_atomic(kaddr);
2490 flush_dcache_page(dst);
2491
2492 return ret;
6aab341e
LT
2493}
2494
c20cd45e
MH
2495static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2496{
2497 struct file *vm_file = vma->vm_file;
2498
2499 if (vm_file)
2500 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2501
2502 /*
2503 * Special mappings (e.g. VDSO) do not have any file so fake
2504 * a default GFP_KERNEL for them.
2505 */
2506 return GFP_KERNEL;
2507}
2508
fb09a464
KS
2509/*
2510 * Notify the address space that the page is about to become writable so that
2511 * it can prohibit this or wait for the page to get into an appropriate state.
2512 *
2513 * We do this without the lock held, so that it can sleep if it needs to.
2514 */
2b740303 2515static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2516{
2b740303 2517 vm_fault_t ret;
38b8cb7f
JK
2518 struct page *page = vmf->page;
2519 unsigned int old_flags = vmf->flags;
fb09a464 2520
38b8cb7f 2521 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2522
dc617f29
DW
2523 if (vmf->vma->vm_file &&
2524 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2525 return VM_FAULT_SIGBUS;
2526
11bac800 2527 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2528 /* Restore original flags so that caller is not surprised */
2529 vmf->flags = old_flags;
fb09a464
KS
2530 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2531 return ret;
2532 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2533 lock_page(page);
2534 if (!page->mapping) {
2535 unlock_page(page);
2536 return 0; /* retry */
2537 }
2538 ret |= VM_FAULT_LOCKED;
2539 } else
2540 VM_BUG_ON_PAGE(!PageLocked(page), page);
2541 return ret;
2542}
2543
97ba0c2b
JK
2544/*
2545 * Handle dirtying of a page in shared file mapping on a write fault.
2546 *
2547 * The function expects the page to be locked and unlocks it.
2548 */
89b15332 2549static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2550{
89b15332 2551 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2552 struct address_space *mapping;
89b15332 2553 struct page *page = vmf->page;
97ba0c2b
JK
2554 bool dirtied;
2555 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2556
2557 dirtied = set_page_dirty(page);
2558 VM_BUG_ON_PAGE(PageAnon(page), page);
2559 /*
2560 * Take a local copy of the address_space - page.mapping may be zeroed
2561 * by truncate after unlock_page(). The address_space itself remains
2562 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2563 * release semantics to prevent the compiler from undoing this copying.
2564 */
2565 mapping = page_rmapping(page);
2566 unlock_page(page);
2567
89b15332
JW
2568 if (!page_mkwrite)
2569 file_update_time(vma->vm_file);
2570
2571 /*
2572 * Throttle page dirtying rate down to writeback speed.
2573 *
2574 * mapping may be NULL here because some device drivers do not
2575 * set page.mapping but still dirty their pages
2576 *
2577 * Drop the mmap_sem before waiting on IO, if we can. The file
2578 * is pinning the mapping, as per above.
2579 */
97ba0c2b 2580 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2581 struct file *fpin;
2582
2583 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2584 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2585 if (fpin) {
2586 fput(fpin);
2587 return VM_FAULT_RETRY;
2588 }
97ba0c2b
JK
2589 }
2590
89b15332 2591 return 0;
97ba0c2b
JK
2592}
2593
4e047f89
SR
2594/*
2595 * Handle write page faults for pages that can be reused in the current vma
2596 *
2597 * This can happen either due to the mapping being with the VM_SHARED flag,
2598 * or due to us being the last reference standing to the page. In either
2599 * case, all we need to do here is to mark the page as writable and update
2600 * any related book-keeping.
2601 */
997dd98d 2602static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2603 __releases(vmf->ptl)
4e047f89 2604{
82b0f8c3 2605 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2606 struct page *page = vmf->page;
4e047f89
SR
2607 pte_t entry;
2608 /*
2609 * Clear the pages cpupid information as the existing
2610 * information potentially belongs to a now completely
2611 * unrelated process.
2612 */
2613 if (page)
2614 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2615
2994302b
JK
2616 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2617 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2618 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2619 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2620 update_mmu_cache(vma, vmf->address, vmf->pte);
2621 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2622}
2623
2f38ab2c
SR
2624/*
2625 * Handle the case of a page which we actually need to copy to a new page.
2626 *
2627 * Called with mmap_sem locked and the old page referenced, but
2628 * without the ptl held.
2629 *
2630 * High level logic flow:
2631 *
2632 * - Allocate a page, copy the content of the old page to the new one.
2633 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2634 * - Take the PTL. If the pte changed, bail out and release the allocated page
2635 * - If the pte is still the way we remember it, update the page table and all
2636 * relevant references. This includes dropping the reference the page-table
2637 * held to the old page, as well as updating the rmap.
2638 * - In any case, unlock the PTL and drop the reference we took to the old page.
2639 */
2b740303 2640static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2641{
82b0f8c3 2642 struct vm_area_struct *vma = vmf->vma;
bae473a4 2643 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2644 struct page *old_page = vmf->page;
2f38ab2c 2645 struct page *new_page = NULL;
2f38ab2c
SR
2646 pte_t entry;
2647 int page_copied = 0;
ac46d4f3 2648 struct mmu_notifier_range range;
2f38ab2c
SR
2649
2650 if (unlikely(anon_vma_prepare(vma)))
2651 goto oom;
2652
2994302b 2653 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2654 new_page = alloc_zeroed_user_highpage_movable(vma,
2655 vmf->address);
2f38ab2c
SR
2656 if (!new_page)
2657 goto oom;
2658 } else {
bae473a4 2659 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2660 vmf->address);
2f38ab2c
SR
2661 if (!new_page)
2662 goto oom;
83d116c5
JH
2663
2664 if (!cow_user_page(new_page, old_page, vmf)) {
2665 /*
2666 * COW failed, if the fault was solved by other,
2667 * it's fine. If not, userspace would re-fault on
2668 * the same address and we will handle the fault
2669 * from the second attempt.
2670 */
2671 put_page(new_page);
2672 if (old_page)
2673 put_page(old_page);
2674 return 0;
2675 }
2f38ab2c 2676 }
2f38ab2c 2677
d9eb1ea2 2678 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2679 goto oom_free_new;
9d82c694 2680 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2681
eb3c24f3
MG
2682 __SetPageUptodate(new_page);
2683
7269f999 2684 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2685 vmf->address & PAGE_MASK,
ac46d4f3
JG
2686 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2687 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2688
2689 /*
2690 * Re-check the pte - we dropped the lock
2691 */
82b0f8c3 2692 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2693 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2694 if (old_page) {
2695 if (!PageAnon(old_page)) {
eca56ff9
JM
2696 dec_mm_counter_fast(mm,
2697 mm_counter_file(old_page));
2f38ab2c
SR
2698 inc_mm_counter_fast(mm, MM_ANONPAGES);
2699 }
2700 } else {
2701 inc_mm_counter_fast(mm, MM_ANONPAGES);
2702 }
2994302b 2703 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2704 entry = mk_pte(new_page, vma->vm_page_prot);
44bf431b 2705 entry = pte_sw_mkyoung(entry);
2f38ab2c
SR
2706 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2707 /*
2708 * Clear the pte entry and flush it first, before updating the
2709 * pte with the new entry. This will avoid a race condition
2710 * seen in the presence of one thread doing SMC and another
2711 * thread doing COW.
2712 */
82b0f8c3
JK
2713 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2714 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2f38ab2c
SR
2715 lru_cache_add_active_or_unevictable(new_page, vma);
2716 /*
2717 * We call the notify macro here because, when using secondary
2718 * mmu page tables (such as kvm shadow page tables), we want the
2719 * new page to be mapped directly into the secondary page table.
2720 */
82b0f8c3
JK
2721 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2722 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2723 if (old_page) {
2724 /*
2725 * Only after switching the pte to the new page may
2726 * we remove the mapcount here. Otherwise another
2727 * process may come and find the rmap count decremented
2728 * before the pte is switched to the new page, and
2729 * "reuse" the old page writing into it while our pte
2730 * here still points into it and can be read by other
2731 * threads.
2732 *
2733 * The critical issue is to order this
2734 * page_remove_rmap with the ptp_clear_flush above.
2735 * Those stores are ordered by (if nothing else,)
2736 * the barrier present in the atomic_add_negative
2737 * in page_remove_rmap.
2738 *
2739 * Then the TLB flush in ptep_clear_flush ensures that
2740 * no process can access the old page before the
2741 * decremented mapcount is visible. And the old page
2742 * cannot be reused until after the decremented
2743 * mapcount is visible. So transitively, TLBs to
2744 * old page will be flushed before it can be reused.
2745 */
d281ee61 2746 page_remove_rmap(old_page, false);
2f38ab2c
SR
2747 }
2748
2749 /* Free the old page.. */
2750 new_page = old_page;
2751 page_copied = 1;
2752 } else {
7df67697 2753 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2754 }
2755
2756 if (new_page)
09cbfeaf 2757 put_page(new_page);
2f38ab2c 2758
82b0f8c3 2759 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2760 /*
2761 * No need to double call mmu_notifier->invalidate_range() callback as
2762 * the above ptep_clear_flush_notify() did already call it.
2763 */
ac46d4f3 2764 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2765 if (old_page) {
2766 /*
2767 * Don't let another task, with possibly unlocked vma,
2768 * keep the mlocked page.
2769 */
2770 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2771 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2772 if (PageMlocked(old_page))
2773 munlock_vma_page(old_page);
2f38ab2c
SR
2774 unlock_page(old_page);
2775 }
09cbfeaf 2776 put_page(old_page);
2f38ab2c
SR
2777 }
2778 return page_copied ? VM_FAULT_WRITE : 0;
2779oom_free_new:
09cbfeaf 2780 put_page(new_page);
2f38ab2c
SR
2781oom:
2782 if (old_page)
09cbfeaf 2783 put_page(old_page);
2f38ab2c
SR
2784 return VM_FAULT_OOM;
2785}
2786
66a6197c
JK
2787/**
2788 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2789 * writeable once the page is prepared
2790 *
2791 * @vmf: structure describing the fault
2792 *
2793 * This function handles all that is needed to finish a write page fault in a
2794 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2795 * It handles locking of PTE and modifying it.
66a6197c
JK
2796 *
2797 * The function expects the page to be locked or other protection against
2798 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2799 *
2800 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2801 * we acquired PTE lock.
66a6197c 2802 */
2b740303 2803vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2804{
2805 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2806 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2807 &vmf->ptl);
2808 /*
2809 * We might have raced with another page fault while we released the
2810 * pte_offset_map_lock.
2811 */
2812 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 2813 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 2814 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2815 return VM_FAULT_NOPAGE;
66a6197c
JK
2816 }
2817 wp_page_reuse(vmf);
a19e2553 2818 return 0;
66a6197c
JK
2819}
2820
dd906184
BH
2821/*
2822 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2823 * mapping
2824 */
2b740303 2825static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2826{
82b0f8c3 2827 struct vm_area_struct *vma = vmf->vma;
bae473a4 2828
dd906184 2829 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2830 vm_fault_t ret;
dd906184 2831
82b0f8c3 2832 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2833 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2834 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2835 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2836 return ret;
66a6197c 2837 return finish_mkwrite_fault(vmf);
dd906184 2838 }
997dd98d
JK
2839 wp_page_reuse(vmf);
2840 return VM_FAULT_WRITE;
dd906184
BH
2841}
2842
2b740303 2843static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2844 __releases(vmf->ptl)
93e478d4 2845{
82b0f8c3 2846 struct vm_area_struct *vma = vmf->vma;
89b15332 2847 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 2848
a41b70d6 2849 get_page(vmf->page);
93e478d4 2850
93e478d4 2851 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2852 vm_fault_t tmp;
93e478d4 2853
82b0f8c3 2854 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2855 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2856 if (unlikely(!tmp || (tmp &
2857 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2858 put_page(vmf->page);
93e478d4
SR
2859 return tmp;
2860 }
66a6197c 2861 tmp = finish_mkwrite_fault(vmf);
a19e2553 2862 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2863 unlock_page(vmf->page);
a41b70d6 2864 put_page(vmf->page);
66a6197c 2865 return tmp;
93e478d4 2866 }
66a6197c
JK
2867 } else {
2868 wp_page_reuse(vmf);
997dd98d 2869 lock_page(vmf->page);
93e478d4 2870 }
89b15332 2871 ret |= fault_dirty_shared_page(vmf);
997dd98d 2872 put_page(vmf->page);
93e478d4 2873
89b15332 2874 return ret;
93e478d4
SR
2875}
2876
1da177e4
LT
2877/*
2878 * This routine handles present pages, when users try to write
2879 * to a shared page. It is done by copying the page to a new address
2880 * and decrementing the shared-page counter for the old page.
2881 *
1da177e4
LT
2882 * Note that this routine assumes that the protection checks have been
2883 * done by the caller (the low-level page fault routine in most cases).
2884 * Thus we can safely just mark it writable once we've done any necessary
2885 * COW.
2886 *
2887 * We also mark the page dirty at this point even though the page will
2888 * change only once the write actually happens. This avoids a few races,
2889 * and potentially makes it more efficient.
2890 *
8f4e2101
HD
2891 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2892 * but allow concurrent faults), with pte both mapped and locked.
2893 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2894 */
2b740303 2895static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2896 __releases(vmf->ptl)
1da177e4 2897{
82b0f8c3 2898 struct vm_area_struct *vma = vmf->vma;
1da177e4 2899
292924b2 2900 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
2901 pte_unmap_unlock(vmf->pte, vmf->ptl);
2902 return handle_userfault(vmf, VM_UFFD_WP);
2903 }
2904
a41b70d6
JK
2905 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2906 if (!vmf->page) {
251b97f5 2907 /*
64e45507
PF
2908 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2909 * VM_PFNMAP VMA.
251b97f5
PZ
2910 *
2911 * We should not cow pages in a shared writeable mapping.
dd906184 2912 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2913 */
2914 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2915 (VM_WRITE|VM_SHARED))
2994302b 2916 return wp_pfn_shared(vmf);
2f38ab2c 2917
82b0f8c3 2918 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2919 return wp_page_copy(vmf);
251b97f5 2920 }
1da177e4 2921
d08b3851 2922 /*
ee6a6457
PZ
2923 * Take out anonymous pages first, anonymous shared vmas are
2924 * not dirty accountable.
d08b3851 2925 */
52d1e606 2926 if (PageAnon(vmf->page)) {
ba3c4ce6 2927 int total_map_swapcount;
52d1e606
KT
2928 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2929 page_count(vmf->page) != 1))
2930 goto copy;
a41b70d6
JK
2931 if (!trylock_page(vmf->page)) {
2932 get_page(vmf->page);
82b0f8c3 2933 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2934 lock_page(vmf->page);
82b0f8c3
JK
2935 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2936 vmf->address, &vmf->ptl);
2994302b 2937 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 2938 update_mmu_tlb(vma, vmf->address, vmf->pte);
a41b70d6 2939 unlock_page(vmf->page);
82b0f8c3 2940 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2941 put_page(vmf->page);
28766805 2942 return 0;
ab967d86 2943 }
a41b70d6 2944 put_page(vmf->page);
ee6a6457 2945 }
52d1e606
KT
2946 if (PageKsm(vmf->page)) {
2947 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2948 vmf->address);
2949 unlock_page(vmf->page);
2950 if (!reused)
2951 goto copy;
2952 wp_page_reuse(vmf);
2953 return VM_FAULT_WRITE;
2954 }
ba3c4ce6
HY
2955 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2956 if (total_map_swapcount == 1) {
6d0a07ed
AA
2957 /*
2958 * The page is all ours. Move it to
2959 * our anon_vma so the rmap code will
2960 * not search our parent or siblings.
2961 * Protected against the rmap code by
2962 * the page lock.
2963 */
a41b70d6 2964 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2965 }
a41b70d6 2966 unlock_page(vmf->page);
997dd98d
JK
2967 wp_page_reuse(vmf);
2968 return VM_FAULT_WRITE;
b009c024 2969 }
a41b70d6 2970 unlock_page(vmf->page);
ee6a6457 2971 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2972 (VM_WRITE|VM_SHARED))) {
a41b70d6 2973 return wp_page_shared(vmf);
1da177e4 2974 }
52d1e606 2975copy:
1da177e4
LT
2976 /*
2977 * Ok, we need to copy. Oh, well..
2978 */
a41b70d6 2979 get_page(vmf->page);
28766805 2980
82b0f8c3 2981 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2982 return wp_page_copy(vmf);
1da177e4
LT
2983}
2984
97a89413 2985static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2986 unsigned long start_addr, unsigned long end_addr,
2987 struct zap_details *details)
2988{
f5cc4eef 2989 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2990}
2991
f808c13f 2992static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2993 struct zap_details *details)
2994{
2995 struct vm_area_struct *vma;
1da177e4
LT
2996 pgoff_t vba, vea, zba, zea;
2997
6b2dbba8 2998 vma_interval_tree_foreach(vma, root,
1da177e4 2999 details->first_index, details->last_index) {
1da177e4
LT
3000
3001 vba = vma->vm_pgoff;
d6e93217 3002 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3003 zba = details->first_index;
3004 if (zba < vba)
3005 zba = vba;
3006 zea = details->last_index;
3007 if (zea > vea)
3008 zea = vea;
3009
97a89413 3010 unmap_mapping_range_vma(vma,
1da177e4
LT
3011 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3012 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3013 details);
1da177e4
LT
3014 }
3015}
3016
977fbdcd
MW
3017/**
3018 * unmap_mapping_pages() - Unmap pages from processes.
3019 * @mapping: The address space containing pages to be unmapped.
3020 * @start: Index of first page to be unmapped.
3021 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3022 * @even_cows: Whether to unmap even private COWed pages.
3023 *
3024 * Unmap the pages in this address space from any userspace process which
3025 * has them mmaped. Generally, you want to remove COWed pages as well when
3026 * a file is being truncated, but not when invalidating pages from the page
3027 * cache.
3028 */
3029void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3030 pgoff_t nr, bool even_cows)
3031{
3032 struct zap_details details = { };
3033
3034 details.check_mapping = even_cows ? NULL : mapping;
3035 details.first_index = start;
3036 details.last_index = start + nr - 1;
3037 if (details.last_index < details.first_index)
3038 details.last_index = ULONG_MAX;
3039
3040 i_mmap_lock_write(mapping);
3041 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3042 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3043 i_mmap_unlock_write(mapping);
3044}
3045
1da177e4 3046/**
8a5f14a2 3047 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3048 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3049 * file.
3050 *
3d41088f 3051 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3052 * @holebegin: byte in first page to unmap, relative to the start of
3053 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3054 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3055 * must keep the partial page. In contrast, we must get rid of
3056 * partial pages.
3057 * @holelen: size of prospective hole in bytes. This will be rounded
3058 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3059 * end of the file.
3060 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3061 * but 0 when invalidating pagecache, don't throw away private data.
3062 */
3063void unmap_mapping_range(struct address_space *mapping,
3064 loff_t const holebegin, loff_t const holelen, int even_cows)
3065{
1da177e4
LT
3066 pgoff_t hba = holebegin >> PAGE_SHIFT;
3067 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3068
3069 /* Check for overflow. */
3070 if (sizeof(holelen) > sizeof(hlen)) {
3071 long long holeend =
3072 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3073 if (holeend & ~(long long)ULONG_MAX)
3074 hlen = ULONG_MAX - hba + 1;
3075 }
3076
977fbdcd 3077 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3078}
3079EXPORT_SYMBOL(unmap_mapping_range);
3080
1da177e4 3081/*
8f4e2101
HD
3082 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3083 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3084 * We return with pte unmapped and unlocked.
3085 *
3086 * We return with the mmap_sem locked or unlocked in the same cases
3087 * as does filemap_fault().
1da177e4 3088 */
2b740303 3089vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3090{
82b0f8c3 3091 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3092 struct page *page = NULL, *swapcache;
65500d23 3093 swp_entry_t entry;
1da177e4 3094 pte_t pte;
d065bd81 3095 int locked;
ad8c2ee8 3096 int exclusive = 0;
2b740303 3097 vm_fault_t ret = 0;
1da177e4 3098
eaf649eb 3099 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3100 goto out;
65500d23 3101
2994302b 3102 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3103 if (unlikely(non_swap_entry(entry))) {
3104 if (is_migration_entry(entry)) {
82b0f8c3
JK
3105 migration_entry_wait(vma->vm_mm, vmf->pmd,
3106 vmf->address);
5042db43 3107 } else if (is_device_private_entry(entry)) {
897e6365
CH
3108 vmf->page = device_private_entry_to_page(entry);
3109 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3110 } else if (is_hwpoison_entry(entry)) {
3111 ret = VM_FAULT_HWPOISON;
3112 } else {
2994302b 3113 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3114 ret = VM_FAULT_SIGBUS;
d1737fdb 3115 }
0697212a
CL
3116 goto out;
3117 }
0bcac06f
MK
3118
3119
0ff92245 3120 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3121 page = lookup_swap_cache(entry, vma, vmf->address);
3122 swapcache = page;
f8020772 3123
1da177e4 3124 if (!page) {
0bcac06f
MK
3125 struct swap_info_struct *si = swp_swap_info(entry);
3126
aa8d22a1 3127 if (si->flags & SWP_SYNCHRONOUS_IO &&
eb085574 3128 __swap_count(entry) == 1) {
0bcac06f 3129 /* skip swapcache */
e9e9b7ec
MK
3130 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3131 vmf->address);
0bcac06f 3132 if (page) {
4c6355b2
JW
3133 int err;
3134
0bcac06f
MK
3135 __SetPageLocked(page);
3136 __SetPageSwapBacked(page);
3137 set_page_private(page, entry.val);
4c6355b2
JW
3138
3139 /* Tell memcg to use swap ownership records */
3140 SetPageSwapCache(page);
3141 err = mem_cgroup_charge(page, vma->vm_mm,
d9eb1ea2 3142 GFP_KERNEL);
4c6355b2
JW
3143 ClearPageSwapCache(page);
3144 if (err)
3145 goto out_page;
3146
6058eaec 3147 lru_cache_add(page);
0bcac06f
MK
3148 swap_readpage(page, true);
3149 }
aa8d22a1 3150 } else {
e9e9b7ec
MK
3151 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3152 vmf);
aa8d22a1 3153 swapcache = page;
0bcac06f
MK
3154 }
3155
1da177e4
LT
3156 if (!page) {
3157 /*
8f4e2101
HD
3158 * Back out if somebody else faulted in this pte
3159 * while we released the pte lock.
1da177e4 3160 */
82b0f8c3
JK
3161 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3162 vmf->address, &vmf->ptl);
2994302b 3163 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3164 ret = VM_FAULT_OOM;
0ff92245 3165 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3166 goto unlock;
1da177e4
LT
3167 }
3168
3169 /* Had to read the page from swap area: Major fault */
3170 ret = VM_FAULT_MAJOR;
f8891e5e 3171 count_vm_event(PGMAJFAULT);
2262185c 3172 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3173 } else if (PageHWPoison(page)) {
71f72525
WF
3174 /*
3175 * hwpoisoned dirty swapcache pages are kept for killing
3176 * owner processes (which may be unknown at hwpoison time)
3177 */
d1737fdb
AK
3178 ret = VM_FAULT_HWPOISON;
3179 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3180 goto out_release;
1da177e4
LT
3181 }
3182
82b0f8c3 3183 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3184
073e587e 3185 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3186 if (!locked) {
3187 ret |= VM_FAULT_RETRY;
3188 goto out_release;
3189 }
073e587e 3190
4969c119 3191 /*
31c4a3d3
HD
3192 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3193 * release the swapcache from under us. The page pin, and pte_same
3194 * test below, are not enough to exclude that. Even if it is still
3195 * swapcache, we need to check that the page's swap has not changed.
4969c119 3196 */
0bcac06f
MK
3197 if (unlikely((!PageSwapCache(page) ||
3198 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3199 goto out_page;
3200
82b0f8c3 3201 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3202 if (unlikely(!page)) {
3203 ret = VM_FAULT_OOM;
3204 page = swapcache;
cbf86cfe 3205 goto out_page;
5ad64688
HD
3206 }
3207
9d82c694 3208 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3209
1da177e4 3210 /*
8f4e2101 3211 * Back out if somebody else already faulted in this pte.
1da177e4 3212 */
82b0f8c3
JK
3213 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3214 &vmf->ptl);
2994302b 3215 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3216 goto out_nomap;
b8107480
KK
3217
3218 if (unlikely(!PageUptodate(page))) {
3219 ret = VM_FAULT_SIGBUS;
3220 goto out_nomap;
1da177e4
LT
3221 }
3222
8c7c6e34
KH
3223 /*
3224 * The page isn't present yet, go ahead with the fault.
3225 *
3226 * Be careful about the sequence of operations here.
3227 * To get its accounting right, reuse_swap_page() must be called
3228 * while the page is counted on swap but not yet in mapcount i.e.
3229 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3230 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3231 */
1da177e4 3232
bae473a4
KS
3233 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3234 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3235 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3236 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3237 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3238 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3239 ret |= VM_FAULT_WRITE;
d281ee61 3240 exclusive = RMAP_EXCLUSIVE;
1da177e4 3241 }
1da177e4 3242 flush_icache_page(vma, page);
2994302b 3243 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3244 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3245 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3246 pte = pte_mkuffd_wp(pte);
3247 pte = pte_wrprotect(pte);
3248 }
82b0f8c3 3249 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3250 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3251 vmf->orig_pte = pte;
0bcac06f
MK
3252
3253 /* ksm created a completely new copy */
3254 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3255 page_add_new_anon_rmap(page, vma, vmf->address, false);
00501b53 3256 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
3257 } else {
3258 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
0bcac06f 3259 activate_page(page);
00501b53 3260 }
1da177e4 3261
c475a8ab 3262 swap_free(entry);
5ccc5aba
VD
3263 if (mem_cgroup_swap_full(page) ||
3264 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3265 try_to_free_swap(page);
c475a8ab 3266 unlock_page(page);
0bcac06f 3267 if (page != swapcache && swapcache) {
4969c119
AA
3268 /*
3269 * Hold the lock to avoid the swap entry to be reused
3270 * until we take the PT lock for the pte_same() check
3271 * (to avoid false positives from pte_same). For
3272 * further safety release the lock after the swap_free
3273 * so that the swap count won't change under a
3274 * parallel locked swapcache.
3275 */
3276 unlock_page(swapcache);
09cbfeaf 3277 put_page(swapcache);
4969c119 3278 }
c475a8ab 3279
82b0f8c3 3280 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3281 ret |= do_wp_page(vmf);
61469f1d
HD
3282 if (ret & VM_FAULT_ERROR)
3283 ret &= VM_FAULT_ERROR;
1da177e4
LT
3284 goto out;
3285 }
3286
3287 /* No need to invalidate - it was non-present before */
82b0f8c3 3288 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3289unlock:
82b0f8c3 3290 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3291out:
3292 return ret;
b8107480 3293out_nomap:
82b0f8c3 3294 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3295out_page:
b8107480 3296 unlock_page(page);
4779cb31 3297out_release:
09cbfeaf 3298 put_page(page);
0bcac06f 3299 if (page != swapcache && swapcache) {
4969c119 3300 unlock_page(swapcache);
09cbfeaf 3301 put_page(swapcache);
4969c119 3302 }
65500d23 3303 return ret;
1da177e4
LT
3304}
3305
3306/*
8f4e2101
HD
3307 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3308 * but allow concurrent faults), and pte mapped but not yet locked.
3309 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3310 */
2b740303 3311static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3312{
82b0f8c3 3313 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3314 struct page *page;
2b740303 3315 vm_fault_t ret = 0;
1da177e4 3316 pte_t entry;
1da177e4 3317
6b7339f4
KS
3318 /* File mapping without ->vm_ops ? */
3319 if (vma->vm_flags & VM_SHARED)
3320 return VM_FAULT_SIGBUS;
3321
7267ec00
KS
3322 /*
3323 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3324 * pte_offset_map() on pmds where a huge pmd might be created
3325 * from a different thread.
3326 *
3327 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3328 * parallel threads are excluded by other means.
3329 *
3330 * Here we only have down_read(mmap_sem).
3331 */
4cf58924 3332 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3333 return VM_FAULT_OOM;
3334
3335 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3336 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3337 return 0;
3338
11ac5524 3339 /* Use the zero-page for reads */
82b0f8c3 3340 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3341 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3342 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3343 vma->vm_page_prot));
82b0f8c3
JK
3344 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3345 vmf->address, &vmf->ptl);
7df67697
BM
3346 if (!pte_none(*vmf->pte)) {
3347 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3348 goto unlock;
7df67697 3349 }
6b31d595
MH
3350 ret = check_stable_address_space(vma->vm_mm);
3351 if (ret)
3352 goto unlock;
6b251fc9
AA
3353 /* Deliver the page fault to userland, check inside PT lock */
3354 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3355 pte_unmap_unlock(vmf->pte, vmf->ptl);
3356 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3357 }
a13ea5b7
HD
3358 goto setpte;
3359 }
3360
557ed1fa 3361 /* Allocate our own private page. */
557ed1fa
NP
3362 if (unlikely(anon_vma_prepare(vma)))
3363 goto oom;
82b0f8c3 3364 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3365 if (!page)
3366 goto oom;
eb3c24f3 3367
d9eb1ea2 3368 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3369 goto oom_free_page;
9d82c694 3370 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3371
52f37629
MK
3372 /*
3373 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3374 * preceding stores to the page contents become visible before
52f37629
MK
3375 * the set_pte_at() write.
3376 */
0ed361de 3377 __SetPageUptodate(page);
8f4e2101 3378
557ed1fa 3379 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3380 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3381 if (vma->vm_flags & VM_WRITE)
3382 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3383
82b0f8c3
JK
3384 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3385 &vmf->ptl);
7df67697
BM
3386 if (!pte_none(*vmf->pte)) {
3387 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3388 goto release;
7df67697 3389 }
9ba69294 3390
6b31d595
MH
3391 ret = check_stable_address_space(vma->vm_mm);
3392 if (ret)
3393 goto release;
3394
6b251fc9
AA
3395 /* Deliver the page fault to userland, check inside PT lock */
3396 if (userfaultfd_missing(vma)) {
82b0f8c3 3397 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3398 put_page(page);
82b0f8c3 3399 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3400 }
3401
bae473a4 3402 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3403 page_add_new_anon_rmap(page, vma, vmf->address, false);
00501b53 3404 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3405setpte:
82b0f8c3 3406 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3407
3408 /* No need to invalidate - it was non-present before */
82b0f8c3 3409 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3410unlock:
82b0f8c3 3411 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3412 return ret;
8f4e2101 3413release:
09cbfeaf 3414 put_page(page);
8f4e2101 3415 goto unlock;
8a9f3ccd 3416oom_free_page:
09cbfeaf 3417 put_page(page);
65500d23 3418oom:
1da177e4
LT
3419 return VM_FAULT_OOM;
3420}
3421
9a95f3cf
PC
3422/*
3423 * The mmap_sem must have been held on entry, and may have been
3424 * released depending on flags and vma->vm_ops->fault() return value.
3425 * See filemap_fault() and __lock_page_retry().
3426 */
2b740303 3427static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3428{
82b0f8c3 3429 struct vm_area_struct *vma = vmf->vma;
2b740303 3430 vm_fault_t ret;
7eae74af 3431
63f3655f
MH
3432 /*
3433 * Preallocate pte before we take page_lock because this might lead to
3434 * deadlocks for memcg reclaim which waits for pages under writeback:
3435 * lock_page(A)
3436 * SetPageWriteback(A)
3437 * unlock_page(A)
3438 * lock_page(B)
3439 * lock_page(B)
3440 * pte_alloc_pne
3441 * shrink_page_list
3442 * wait_on_page_writeback(A)
3443 * SetPageWriteback(B)
3444 * unlock_page(B)
3445 * # flush A, B to clear the writeback
3446 */
3447 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3448 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3449 if (!vmf->prealloc_pte)
3450 return VM_FAULT_OOM;
3451 smp_wmb(); /* See comment in __pte_alloc() */
3452 }
3453
11bac800 3454 ret = vma->vm_ops->fault(vmf);
3917048d 3455 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3456 VM_FAULT_DONE_COW)))
bc2466e4 3457 return ret;
7eae74af 3458
667240e0 3459 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3460 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3461 unlock_page(vmf->page);
3462 put_page(vmf->page);
936ca80d 3463 vmf->page = NULL;
7eae74af
KS
3464 return VM_FAULT_HWPOISON;
3465 }
3466
3467 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3468 lock_page(vmf->page);
7eae74af 3469 else
667240e0 3470 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3471
7eae74af
KS
3472 return ret;
3473}
3474
d0f0931d
RZ
3475/*
3476 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3477 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3478 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3479 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3480 */
3481static int pmd_devmap_trans_unstable(pmd_t *pmd)
3482{
3483 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3484}
3485
2b740303 3486static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3487{
82b0f8c3 3488 struct vm_area_struct *vma = vmf->vma;
7267ec00 3489
82b0f8c3 3490 if (!pmd_none(*vmf->pmd))
7267ec00 3491 goto map_pte;
82b0f8c3
JK
3492 if (vmf->prealloc_pte) {
3493 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3494 if (unlikely(!pmd_none(*vmf->pmd))) {
3495 spin_unlock(vmf->ptl);
7267ec00
KS
3496 goto map_pte;
3497 }
3498
c4812909 3499 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3500 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3501 spin_unlock(vmf->ptl);
7f2b6ce8 3502 vmf->prealloc_pte = NULL;
4cf58924 3503 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3504 return VM_FAULT_OOM;
3505 }
3506map_pte:
3507 /*
3508 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3509 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3510 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3511 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3512 * running immediately after a huge pmd fault in a different thread of
3513 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3514 * All we have to ensure is that it is a regular pmd that we can walk
3515 * with pte_offset_map() and we can do that through an atomic read in
3516 * C, which is what pmd_trans_unstable() provides.
7267ec00 3517 */
d0f0931d 3518 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3519 return VM_FAULT_NOPAGE;
3520
d0f0931d
RZ
3521 /*
3522 * At this point we know that our vmf->pmd points to a page of ptes
3523 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3524 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3525 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3526 * be valid and we will re-check to make sure the vmf->pte isn't
3527 * pte_none() under vmf->ptl protection when we return to
3528 * alloc_set_pte().
3529 */
82b0f8c3
JK
3530 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3531 &vmf->ptl);
7267ec00
KS
3532 return 0;
3533}
3534
396bcc52 3535#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3536static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3537{
82b0f8c3 3538 struct vm_area_struct *vma = vmf->vma;
953c66c2 3539
82b0f8c3 3540 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3541 /*
3542 * We are going to consume the prealloc table,
3543 * count that as nr_ptes.
3544 */
c4812909 3545 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3546 vmf->prealloc_pte = NULL;
953c66c2
AK
3547}
3548
2b740303 3549static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3550{
82b0f8c3
JK
3551 struct vm_area_struct *vma = vmf->vma;
3552 bool write = vmf->flags & FAULT_FLAG_WRITE;
3553 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3554 pmd_t entry;
2b740303
SJ
3555 int i;
3556 vm_fault_t ret;
10102459
KS
3557
3558 if (!transhuge_vma_suitable(vma, haddr))
3559 return VM_FAULT_FALLBACK;
3560
3561 ret = VM_FAULT_FALLBACK;
3562 page = compound_head(page);
3563
953c66c2
AK
3564 /*
3565 * Archs like ppc64 need additonal space to store information
3566 * related to pte entry. Use the preallocated table for that.
3567 */
82b0f8c3 3568 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3569 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3570 if (!vmf->prealloc_pte)
953c66c2
AK
3571 return VM_FAULT_OOM;
3572 smp_wmb(); /* See comment in __pte_alloc() */
3573 }
3574
82b0f8c3
JK
3575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3576 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3577 goto out;
3578
3579 for (i = 0; i < HPAGE_PMD_NR; i++)
3580 flush_icache_page(vma, page + i);
3581
3582 entry = mk_huge_pmd(page, vma->vm_page_prot);
3583 if (write)
f55e1014 3584 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3585
fadae295 3586 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3587 page_add_file_rmap(page, true);
953c66c2
AK
3588 /*
3589 * deposit and withdraw with pmd lock held
3590 */
3591 if (arch_needs_pgtable_deposit())
82b0f8c3 3592 deposit_prealloc_pte(vmf);
10102459 3593
82b0f8c3 3594 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3595
82b0f8c3 3596 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3597
3598 /* fault is handled */
3599 ret = 0;
95ecedcd 3600 count_vm_event(THP_FILE_MAPPED);
10102459 3601out:
82b0f8c3 3602 spin_unlock(vmf->ptl);
10102459
KS
3603 return ret;
3604}
3605#else
2b740303 3606static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3607{
3608 BUILD_BUG();
3609 return 0;
3610}
3611#endif
3612
8c6e50b0 3613/**
7267ec00
KS
3614 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3615 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3616 *
82b0f8c3 3617 * @vmf: fault environment
8c6e50b0 3618 * @page: page to map
8c6e50b0 3619 *
82b0f8c3
JK
3620 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3621 * return.
8c6e50b0
KS
3622 *
3623 * Target users are page handler itself and implementations of
3624 * vm_ops->map_pages.
a862f68a
MR
3625 *
3626 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3627 */
9d82c694 3628vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3bb97794 3629{
82b0f8c3
JK
3630 struct vm_area_struct *vma = vmf->vma;
3631 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3632 pte_t entry;
2b740303 3633 vm_fault_t ret;
10102459 3634
396bcc52 3635 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
82b0f8c3 3636 ret = do_set_pmd(vmf, page);
10102459 3637 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3638 return ret;
10102459 3639 }
3bb97794 3640
82b0f8c3
JK
3641 if (!vmf->pte) {
3642 ret = pte_alloc_one_map(vmf);
7267ec00 3643 if (ret)
b0b9b3df 3644 return ret;
7267ec00
KS
3645 }
3646
3647 /* Re-check under ptl */
7df67697
BM
3648 if (unlikely(!pte_none(*vmf->pte))) {
3649 update_mmu_tlb(vma, vmf->address, vmf->pte);
b0b9b3df 3650 return VM_FAULT_NOPAGE;
7df67697 3651 }
7267ec00 3652
3bb97794
KS
3653 flush_icache_page(vma, page);
3654 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3655 entry = pte_sw_mkyoung(entry);
3bb97794
KS
3656 if (write)
3657 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3658 /* copy-on-write page */
3659 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3660 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3661 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00 3662 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3663 } else {
eca56ff9 3664 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3665 page_add_file_rmap(page, false);
3bb97794 3666 }
82b0f8c3 3667 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3668
3669 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3670 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3671
b0b9b3df 3672 return 0;
3bb97794
KS
3673}
3674
9118c0cb
JK
3675
3676/**
3677 * finish_fault - finish page fault once we have prepared the page to fault
3678 *
3679 * @vmf: structure describing the fault
3680 *
3681 * This function handles all that is needed to finish a page fault once the
3682 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3683 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3684 * addition.
9118c0cb
JK
3685 *
3686 * The function expects the page to be locked and on success it consumes a
3687 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3688 *
3689 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3690 */
2b740303 3691vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3692{
3693 struct page *page;
2b740303 3694 vm_fault_t ret = 0;
9118c0cb
JK
3695
3696 /* Did we COW the page? */
3697 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3698 !(vmf->vma->vm_flags & VM_SHARED))
3699 page = vmf->cow_page;
3700 else
3701 page = vmf->page;
6b31d595
MH
3702
3703 /*
3704 * check even for read faults because we might have lost our CoWed
3705 * page
3706 */
3707 if (!(vmf->vma->vm_flags & VM_SHARED))
3708 ret = check_stable_address_space(vmf->vma->vm_mm);
3709 if (!ret)
9d82c694 3710 ret = alloc_set_pte(vmf, page);
9118c0cb
JK
3711 if (vmf->pte)
3712 pte_unmap_unlock(vmf->pte, vmf->ptl);
3713 return ret;
3714}
3715
3a91053a
KS
3716static unsigned long fault_around_bytes __read_mostly =
3717 rounddown_pow_of_two(65536);
a9b0f861 3718
a9b0f861
KS
3719#ifdef CONFIG_DEBUG_FS
3720static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3721{
a9b0f861 3722 *val = fault_around_bytes;
1592eef0
KS
3723 return 0;
3724}
3725
b4903d6e 3726/*
da391d64
WK
3727 * fault_around_bytes must be rounded down to the nearest page order as it's
3728 * what do_fault_around() expects to see.
b4903d6e 3729 */
a9b0f861 3730static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3731{
a9b0f861 3732 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3733 return -EINVAL;
b4903d6e
AR
3734 if (val > PAGE_SIZE)
3735 fault_around_bytes = rounddown_pow_of_two(val);
3736 else
3737 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3738 return 0;
3739}
0a1345f8 3740DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3741 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3742
3743static int __init fault_around_debugfs(void)
3744{
d9f7979c
GKH
3745 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3746 &fault_around_bytes_fops);
1592eef0
KS
3747 return 0;
3748}
3749late_initcall(fault_around_debugfs);
1592eef0 3750#endif
8c6e50b0 3751
1fdb412b
KS
3752/*
3753 * do_fault_around() tries to map few pages around the fault address. The hope
3754 * is that the pages will be needed soon and this will lower the number of
3755 * faults to handle.
3756 *
3757 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3758 * not ready to be mapped: not up-to-date, locked, etc.
3759 *
3760 * This function is called with the page table lock taken. In the split ptlock
3761 * case the page table lock only protects only those entries which belong to
3762 * the page table corresponding to the fault address.
3763 *
3764 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3765 * only once.
3766 *
da391d64
WK
3767 * fault_around_bytes defines how many bytes we'll try to map.
3768 * do_fault_around() expects it to be set to a power of two less than or equal
3769 * to PTRS_PER_PTE.
1fdb412b 3770 *
da391d64
WK
3771 * The virtual address of the area that we map is naturally aligned to
3772 * fault_around_bytes rounded down to the machine page size
3773 * (and therefore to page order). This way it's easier to guarantee
3774 * that we don't cross page table boundaries.
1fdb412b 3775 */
2b740303 3776static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3777{
82b0f8c3 3778 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3779 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3780 pgoff_t end_pgoff;
2b740303
SJ
3781 int off;
3782 vm_fault_t ret = 0;
8c6e50b0 3783
4db0c3c2 3784 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3785 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3786
82b0f8c3
JK
3787 vmf->address = max(address & mask, vmf->vma->vm_start);
3788 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3789 start_pgoff -= off;
8c6e50b0
KS
3790
3791 /*
da391d64
WK
3792 * end_pgoff is either the end of the page table, the end of
3793 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3794 */
bae473a4 3795 end_pgoff = start_pgoff -
82b0f8c3 3796 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3797 PTRS_PER_PTE - 1;
82b0f8c3 3798 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3799 start_pgoff + nr_pages - 1);
8c6e50b0 3800
82b0f8c3 3801 if (pmd_none(*vmf->pmd)) {
4cf58924 3802 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3803 if (!vmf->prealloc_pte)
c5f88bd2 3804 goto out;
7267ec00 3805 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3806 }
3807
82b0f8c3 3808 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3809
7267ec00 3810 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3811 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3812 ret = VM_FAULT_NOPAGE;
3813 goto out;
3814 }
3815
3816 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3817 if (!vmf->pte)
7267ec00
KS
3818 goto out;
3819
3820 /* check if the page fault is solved */
82b0f8c3
JK
3821 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3822 if (!pte_none(*vmf->pte))
7267ec00 3823 ret = VM_FAULT_NOPAGE;
82b0f8c3 3824 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3825out:
82b0f8c3
JK
3826 vmf->address = address;
3827 vmf->pte = NULL;
7267ec00 3828 return ret;
8c6e50b0
KS
3829}
3830
2b740303 3831static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3832{
82b0f8c3 3833 struct vm_area_struct *vma = vmf->vma;
2b740303 3834 vm_fault_t ret = 0;
8c6e50b0
KS
3835
3836 /*
3837 * Let's call ->map_pages() first and use ->fault() as fallback
3838 * if page by the offset is not ready to be mapped (cold cache or
3839 * something).
3840 */
9b4bdd2f 3841 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3842 ret = do_fault_around(vmf);
7267ec00
KS
3843 if (ret)
3844 return ret;
8c6e50b0 3845 }
e655fb29 3846
936ca80d 3847 ret = __do_fault(vmf);
e655fb29
KS
3848 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3849 return ret;
3850
9118c0cb 3851 ret |= finish_fault(vmf);
936ca80d 3852 unlock_page(vmf->page);
7267ec00 3853 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3854 put_page(vmf->page);
e655fb29
KS
3855 return ret;
3856}
3857
2b740303 3858static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3859{
82b0f8c3 3860 struct vm_area_struct *vma = vmf->vma;
2b740303 3861 vm_fault_t ret;
ec47c3b9
KS
3862
3863 if (unlikely(anon_vma_prepare(vma)))
3864 return VM_FAULT_OOM;
3865
936ca80d
JK
3866 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3867 if (!vmf->cow_page)
ec47c3b9
KS
3868 return VM_FAULT_OOM;
3869
d9eb1ea2 3870 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 3871 put_page(vmf->cow_page);
ec47c3b9
KS
3872 return VM_FAULT_OOM;
3873 }
9d82c694 3874 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 3875
936ca80d 3876 ret = __do_fault(vmf);
ec47c3b9
KS
3877 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3878 goto uncharge_out;
3917048d
JK
3879 if (ret & VM_FAULT_DONE_COW)
3880 return ret;
ec47c3b9 3881
b1aa812b 3882 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3883 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3884
9118c0cb 3885 ret |= finish_fault(vmf);
b1aa812b
JK
3886 unlock_page(vmf->page);
3887 put_page(vmf->page);
7267ec00
KS
3888 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3889 goto uncharge_out;
ec47c3b9
KS
3890 return ret;
3891uncharge_out:
936ca80d 3892 put_page(vmf->cow_page);
ec47c3b9
KS
3893 return ret;
3894}
3895
2b740303 3896static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3897{
82b0f8c3 3898 struct vm_area_struct *vma = vmf->vma;
2b740303 3899 vm_fault_t ret, tmp;
1d65f86d 3900
936ca80d 3901 ret = __do_fault(vmf);
7eae74af 3902 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3903 return ret;
1da177e4
LT
3904
3905 /*
f0c6d4d2
KS
3906 * Check if the backing address space wants to know that the page is
3907 * about to become writable
1da177e4 3908 */
fb09a464 3909 if (vma->vm_ops->page_mkwrite) {
936ca80d 3910 unlock_page(vmf->page);
38b8cb7f 3911 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3912 if (unlikely(!tmp ||
3913 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3914 put_page(vmf->page);
fb09a464 3915 return tmp;
4294621f 3916 }
fb09a464
KS
3917 }
3918
9118c0cb 3919 ret |= finish_fault(vmf);
7267ec00
KS
3920 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3921 VM_FAULT_RETRY))) {
936ca80d
JK
3922 unlock_page(vmf->page);
3923 put_page(vmf->page);
f0c6d4d2 3924 return ret;
1da177e4 3925 }
b827e496 3926
89b15332 3927 ret |= fault_dirty_shared_page(vmf);
1d65f86d 3928 return ret;
54cb8821 3929}
d00806b1 3930
9a95f3cf
PC
3931/*
3932 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3933 * but allow concurrent faults).
3934 * The mmap_sem may have been released depending on flags and our
3935 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3936 * If mmap_sem is released, vma may become invalid (for example
3937 * by other thread calling munmap()).
9a95f3cf 3938 */
2b740303 3939static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3940{
82b0f8c3 3941 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3942 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3943 vm_fault_t ret;
54cb8821 3944
ff09d7ec
AK
3945 /*
3946 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3947 */
3948 if (!vma->vm_ops->fault) {
3949 /*
3950 * If we find a migration pmd entry or a none pmd entry, which
3951 * should never happen, return SIGBUS
3952 */
3953 if (unlikely(!pmd_present(*vmf->pmd)))
3954 ret = VM_FAULT_SIGBUS;
3955 else {
3956 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3957 vmf->pmd,
3958 vmf->address,
3959 &vmf->ptl);
3960 /*
3961 * Make sure this is not a temporary clearing of pte
3962 * by holding ptl and checking again. A R/M/W update
3963 * of pte involves: take ptl, clearing the pte so that
3964 * we don't have concurrent modification by hardware
3965 * followed by an update.
3966 */
3967 if (unlikely(pte_none(*vmf->pte)))
3968 ret = VM_FAULT_SIGBUS;
3969 else
3970 ret = VM_FAULT_NOPAGE;
3971
3972 pte_unmap_unlock(vmf->pte, vmf->ptl);
3973 }
3974 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3975 ret = do_read_fault(vmf);
3976 else if (!(vma->vm_flags & VM_SHARED))
3977 ret = do_cow_fault(vmf);
3978 else
3979 ret = do_shared_fault(vmf);
3980
3981 /* preallocated pagetable is unused: free it */
3982 if (vmf->prealloc_pte) {
fc8efd2d 3983 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3984 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3985 }
3986 return ret;
54cb8821
NP
3987}
3988
b19a9939 3989static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3990 unsigned long addr, int page_nid,
3991 int *flags)
9532fec1
MG
3992{
3993 get_page(page);
3994
3995 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3996 if (page_nid == numa_node_id()) {
9532fec1 3997 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3998 *flags |= TNF_FAULT_LOCAL;
3999 }
9532fec1
MG
4000
4001 return mpol_misplaced(page, vma, addr);
4002}
4003
2b740303 4004static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4005{
82b0f8c3 4006 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4007 struct page *page = NULL;
98fa15f3 4008 int page_nid = NUMA_NO_NODE;
90572890 4009 int last_cpupid;
cbee9f88 4010 int target_nid;
b8593bfd 4011 bool migrated = false;
04a86453 4012 pte_t pte, old_pte;
288bc549 4013 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4014 int flags = 0;
d10e63f2
MG
4015
4016 /*
166f61b9
TH
4017 * The "pte" at this point cannot be used safely without
4018 * validation through pte_unmap_same(). It's of NUMA type but
4019 * the pfn may be screwed if the read is non atomic.
166f61b9 4020 */
82b0f8c3
JK
4021 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4022 spin_lock(vmf->ptl);
cee216a6 4023 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4024 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4025 goto out;
4026 }
4027
cee216a6
AK
4028 /*
4029 * Make it present again, Depending on how arch implementes non
4030 * accessible ptes, some can allow access by kernel mode.
4031 */
04a86453
AK
4032 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4033 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 4034 pte = pte_mkyoung(pte);
b191f9b1
MG
4035 if (was_writable)
4036 pte = pte_mkwrite(pte);
04a86453 4037 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 4038 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 4039
82b0f8c3 4040 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 4041 if (!page) {
82b0f8c3 4042 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
4043 return 0;
4044 }
4045
e81c4802
KS
4046 /* TODO: handle PTE-mapped THP */
4047 if (PageCompound(page)) {
82b0f8c3 4048 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
4049 return 0;
4050 }
4051
6688cc05 4052 /*
bea66fbd
MG
4053 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4054 * much anyway since they can be in shared cache state. This misses
4055 * the case where a mapping is writable but the process never writes
4056 * to it but pte_write gets cleared during protection updates and
4057 * pte_dirty has unpredictable behaviour between PTE scan updates,
4058 * background writeback, dirty balancing and application behaviour.
6688cc05 4059 */
d59dc7bc 4060 if (!pte_write(pte))
6688cc05
PZ
4061 flags |= TNF_NO_GROUP;
4062
dabe1d99
RR
4063 /*
4064 * Flag if the page is shared between multiple address spaces. This
4065 * is later used when determining whether to group tasks together
4066 */
4067 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4068 flags |= TNF_SHARED;
4069
90572890 4070 last_cpupid = page_cpupid_last(page);
8191acbd 4071 page_nid = page_to_nid(page);
82b0f8c3 4072 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4073 &flags);
82b0f8c3 4074 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 4075 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
4076 put_page(page);
4077 goto out;
4078 }
4079
4080 /* Migrate to the requested node */
1bc115d8 4081 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 4082 if (migrated) {
8191acbd 4083 page_nid = target_nid;
6688cc05 4084 flags |= TNF_MIGRATED;
074c2381
MG
4085 } else
4086 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
4087
4088out:
98fa15f3 4089 if (page_nid != NUMA_NO_NODE)
6688cc05 4090 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
4091 return 0;
4092}
4093
2b740303 4094static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4095{
f4200391 4096 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4097 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4098 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4099 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4100 return VM_FAULT_FALLBACK;
4101}
4102
183f24aa 4103/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4104static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4105{
529b930b 4106 if (vma_is_anonymous(vmf->vma)) {
292924b2 4107 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4108 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4109 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4110 }
327e9fd4
THV
4111 if (vmf->vma->vm_ops->huge_fault) {
4112 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4113
4114 if (!(ret & VM_FAULT_FALLBACK))
4115 return ret;
4116 }
af9e4d5f 4117
327e9fd4 4118 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4119 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4120
b96375f7
MW
4121 return VM_FAULT_FALLBACK;
4122}
4123
2b740303 4124static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4125{
327e9fd4
THV
4126#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4127 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4128 /* No support for anonymous transparent PUD pages yet */
4129 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4130 goto split;
4131 if (vmf->vma->vm_ops->huge_fault) {
4132 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4133
4134 if (!(ret & VM_FAULT_FALLBACK))
4135 return ret;
4136 }
4137split:
4138 /* COW or write-notify not handled on PUD level: split pud.*/
4139 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4140#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4141 return VM_FAULT_FALLBACK;
4142}
4143
2b740303 4144static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4145{
4146#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4147 /* No support for anonymous transparent PUD pages yet */
4148 if (vma_is_anonymous(vmf->vma))
4149 return VM_FAULT_FALLBACK;
4150 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4151 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4152#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4153 return VM_FAULT_FALLBACK;
4154}
4155
1da177e4
LT
4156/*
4157 * These routines also need to handle stuff like marking pages dirty
4158 * and/or accessed for architectures that don't do it in hardware (most
4159 * RISC architectures). The early dirtying is also good on the i386.
4160 *
4161 * There is also a hook called "update_mmu_cache()" that architectures
4162 * with external mmu caches can use to update those (ie the Sparc or
4163 * PowerPC hashed page tables that act as extended TLBs).
4164 *
7267ec00
KS
4165 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4166 * concurrent faults).
9a95f3cf 4167 *
7267ec00
KS
4168 * The mmap_sem may have been released depending on flags and our return value.
4169 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4170 */
2b740303 4171static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4172{
4173 pte_t entry;
4174
82b0f8c3 4175 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4176 /*
4177 * Leave __pte_alloc() until later: because vm_ops->fault may
4178 * want to allocate huge page, and if we expose page table
4179 * for an instant, it will be difficult to retract from
4180 * concurrent faults and from rmap lookups.
4181 */
82b0f8c3 4182 vmf->pte = NULL;
7267ec00
KS
4183 } else {
4184 /* See comment in pte_alloc_one_map() */
d0f0931d 4185 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4186 return 0;
4187 /*
4188 * A regular pmd is established and it can't morph into a huge
4189 * pmd from under us anymore at this point because we hold the
4190 * mmap_sem read mode and khugepaged takes it in write mode.
4191 * So now it's safe to run pte_offset_map().
4192 */
82b0f8c3 4193 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4194 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4195
4196 /*
4197 * some architectures can have larger ptes than wordsize,
4198 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4199 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4200 * accesses. The code below just needs a consistent view
4201 * for the ifs and we later double check anyway with the
7267ec00
KS
4202 * ptl lock held. So here a barrier will do.
4203 */
4204 barrier();
2994302b 4205 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4206 pte_unmap(vmf->pte);
4207 vmf->pte = NULL;
65500d23 4208 }
1da177e4
LT
4209 }
4210
82b0f8c3
JK
4211 if (!vmf->pte) {
4212 if (vma_is_anonymous(vmf->vma))
4213 return do_anonymous_page(vmf);
7267ec00 4214 else
82b0f8c3 4215 return do_fault(vmf);
7267ec00
KS
4216 }
4217
2994302b
JK
4218 if (!pte_present(vmf->orig_pte))
4219 return do_swap_page(vmf);
7267ec00 4220
2994302b
JK
4221 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4222 return do_numa_page(vmf);
d10e63f2 4223
82b0f8c3
JK
4224 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4225 spin_lock(vmf->ptl);
2994302b 4226 entry = vmf->orig_pte;
7df67697
BM
4227 if (unlikely(!pte_same(*vmf->pte, entry))) {
4228 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4229 goto unlock;
7df67697 4230 }
82b0f8c3 4231 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4232 if (!pte_write(entry))
2994302b 4233 return do_wp_page(vmf);
1da177e4
LT
4234 entry = pte_mkdirty(entry);
4235 }
4236 entry = pte_mkyoung(entry);
82b0f8c3
JK
4237 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4238 vmf->flags & FAULT_FLAG_WRITE)) {
4239 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
4240 } else {
4241 /*
4242 * This is needed only for protection faults but the arch code
4243 * is not yet telling us if this is a protection fault or not.
4244 * This still avoids useless tlb flushes for .text page faults
4245 * with threads.
4246 */
82b0f8c3
JK
4247 if (vmf->flags & FAULT_FLAG_WRITE)
4248 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4249 }
8f4e2101 4250unlock:
82b0f8c3 4251 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4252 return 0;
1da177e4
LT
4253}
4254
4255/*
4256 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
4257 *
4258 * The mmap_sem may have been released depending on flags and our
4259 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4260 */
2b740303
SJ
4261static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4262 unsigned long address, unsigned int flags)
1da177e4 4263{
82b0f8c3 4264 struct vm_fault vmf = {
bae473a4 4265 .vma = vma,
1a29d85e 4266 .address = address & PAGE_MASK,
bae473a4 4267 .flags = flags,
0721ec8b 4268 .pgoff = linear_page_index(vma, address),
667240e0 4269 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4270 };
fde26bed 4271 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4272 struct mm_struct *mm = vma->vm_mm;
1da177e4 4273 pgd_t *pgd;
c2febafc 4274 p4d_t *p4d;
2b740303 4275 vm_fault_t ret;
1da177e4 4276
1da177e4 4277 pgd = pgd_offset(mm, address);
c2febafc
KS
4278 p4d = p4d_alloc(mm, pgd, address);
4279 if (!p4d)
4280 return VM_FAULT_OOM;
a00cc7d9 4281
c2febafc 4282 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4283 if (!vmf.pud)
c74df32c 4284 return VM_FAULT_OOM;
625110b5 4285retry_pud:
7635d9cb 4286 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4287 ret = create_huge_pud(&vmf);
4288 if (!(ret & VM_FAULT_FALLBACK))
4289 return ret;
4290 } else {
4291 pud_t orig_pud = *vmf.pud;
4292
4293 barrier();
4294 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4295
a00cc7d9
MW
4296 /* NUMA case for anonymous PUDs would go here */
4297
f6f37321 4298 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4299 ret = wp_huge_pud(&vmf, orig_pud);
4300 if (!(ret & VM_FAULT_FALLBACK))
4301 return ret;
4302 } else {
4303 huge_pud_set_accessed(&vmf, orig_pud);
4304 return 0;
4305 }
4306 }
4307 }
4308
4309 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4310 if (!vmf.pmd)
c74df32c 4311 return VM_FAULT_OOM;
625110b5
TH
4312
4313 /* Huge pud page fault raced with pmd_alloc? */
4314 if (pud_trans_unstable(vmf.pud))
4315 goto retry_pud;
4316
7635d9cb 4317 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4318 ret = create_huge_pmd(&vmf);
c0292554
KS
4319 if (!(ret & VM_FAULT_FALLBACK))
4320 return ret;
71e3aac0 4321 } else {
82b0f8c3 4322 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4323
71e3aac0 4324 barrier();
84c3fc4e
ZY
4325 if (unlikely(is_swap_pmd(orig_pmd))) {
4326 VM_BUG_ON(thp_migration_supported() &&
4327 !is_pmd_migration_entry(orig_pmd));
4328 if (is_pmd_migration_entry(orig_pmd))
4329 pmd_migration_entry_wait(mm, vmf.pmd);
4330 return 0;
4331 }
5c7fb56e 4332 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4333 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4334 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4335
f6f37321 4336 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4337 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4338 if (!(ret & VM_FAULT_FALLBACK))
4339 return ret;
a1dd450b 4340 } else {
82b0f8c3 4341 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4342 return 0;
1f1d06c3 4343 }
71e3aac0
AA
4344 }
4345 }
4346
82b0f8c3 4347 return handle_pte_fault(&vmf);
1da177e4
LT
4348}
4349
9a95f3cf
PC
4350/*
4351 * By the time we get here, we already hold the mm semaphore
4352 *
4353 * The mmap_sem may have been released depending on flags and our
4354 * return value. See filemap_fault() and __lock_page_or_retry().
4355 */
2b740303 4356vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 4357 unsigned int flags)
519e5247 4358{
2b740303 4359 vm_fault_t ret;
519e5247
JW
4360
4361 __set_current_state(TASK_RUNNING);
4362
4363 count_vm_event(PGFAULT);
2262185c 4364 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4365
4366 /* do counter updates before entering really critical section. */
4367 check_sync_rss_stat(current);
4368
de0c799b
LD
4369 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4370 flags & FAULT_FLAG_INSTRUCTION,
4371 flags & FAULT_FLAG_REMOTE))
4372 return VM_FAULT_SIGSEGV;
4373
519e5247
JW
4374 /*
4375 * Enable the memcg OOM handling for faults triggered in user
4376 * space. Kernel faults are handled more gracefully.
4377 */
4378 if (flags & FAULT_FLAG_USER)
29ef680a 4379 mem_cgroup_enter_user_fault();
519e5247 4380
bae473a4
KS
4381 if (unlikely(is_vm_hugetlb_page(vma)))
4382 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4383 else
4384 ret = __handle_mm_fault(vma, address, flags);
519e5247 4385
49426420 4386 if (flags & FAULT_FLAG_USER) {
29ef680a 4387 mem_cgroup_exit_user_fault();
166f61b9
TH
4388 /*
4389 * The task may have entered a memcg OOM situation but
4390 * if the allocation error was handled gracefully (no
4391 * VM_FAULT_OOM), there is no need to kill anything.
4392 * Just clean up the OOM state peacefully.
4393 */
4394 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4395 mem_cgroup_oom_synchronize(false);
49426420 4396 }
3812c8c8 4397
519e5247
JW
4398 return ret;
4399}
e1d6d01a 4400EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4401
90eceff1
KS
4402#ifndef __PAGETABLE_P4D_FOLDED
4403/*
4404 * Allocate p4d page table.
4405 * We've already handled the fast-path in-line.
4406 */
4407int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4408{
4409 p4d_t *new = p4d_alloc_one(mm, address);
4410 if (!new)
4411 return -ENOMEM;
4412
4413 smp_wmb(); /* See comment in __pte_alloc */
4414
4415 spin_lock(&mm->page_table_lock);
4416 if (pgd_present(*pgd)) /* Another has populated it */
4417 p4d_free(mm, new);
4418 else
4419 pgd_populate(mm, pgd, new);
4420 spin_unlock(&mm->page_table_lock);
4421 return 0;
4422}
4423#endif /* __PAGETABLE_P4D_FOLDED */
4424
1da177e4
LT
4425#ifndef __PAGETABLE_PUD_FOLDED
4426/*
4427 * Allocate page upper directory.
872fec16 4428 * We've already handled the fast-path in-line.
1da177e4 4429 */
c2febafc 4430int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4431{
c74df32c
HD
4432 pud_t *new = pud_alloc_one(mm, address);
4433 if (!new)
1bb3630e 4434 return -ENOMEM;
1da177e4 4435
362a61ad
NP
4436 smp_wmb(); /* See comment in __pte_alloc */
4437
872fec16 4438 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4439 if (!p4d_present(*p4d)) {
4440 mm_inc_nr_puds(mm);
c2febafc 4441 p4d_populate(mm, p4d, new);
b4e98d9a 4442 } else /* Another has populated it */
5e541973 4443 pud_free(mm, new);
c74df32c 4444 spin_unlock(&mm->page_table_lock);
1bb3630e 4445 return 0;
1da177e4
LT
4446}
4447#endif /* __PAGETABLE_PUD_FOLDED */
4448
4449#ifndef __PAGETABLE_PMD_FOLDED
4450/*
4451 * Allocate page middle directory.
872fec16 4452 * We've already handled the fast-path in-line.
1da177e4 4453 */
1bb3630e 4454int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4455{
a00cc7d9 4456 spinlock_t *ptl;
c74df32c
HD
4457 pmd_t *new = pmd_alloc_one(mm, address);
4458 if (!new)
1bb3630e 4459 return -ENOMEM;
1da177e4 4460
362a61ad
NP
4461 smp_wmb(); /* See comment in __pte_alloc */
4462
a00cc7d9 4463 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4464 if (!pud_present(*pud)) {
4465 mm_inc_nr_pmds(mm);
1bb3630e 4466 pud_populate(mm, pud, new);
dc6c9a35 4467 } else /* Another has populated it */
5e541973 4468 pmd_free(mm, new);
a00cc7d9 4469 spin_unlock(ptl);
1bb3630e 4470 return 0;
e0f39591 4471}
1da177e4
LT
4472#endif /* __PAGETABLE_PMD_FOLDED */
4473
09796395 4474static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4475 struct mmu_notifier_range *range,
a4d1a885 4476 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4477{
4478 pgd_t *pgd;
c2febafc 4479 p4d_t *p4d;
f8ad0f49
JW
4480 pud_t *pud;
4481 pmd_t *pmd;
4482 pte_t *ptep;
4483
4484 pgd = pgd_offset(mm, address);
4485 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4486 goto out;
4487
c2febafc
KS
4488 p4d = p4d_offset(pgd, address);
4489 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4490 goto out;
4491
4492 pud = pud_offset(p4d, address);
f8ad0f49
JW
4493 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4494 goto out;
4495
4496 pmd = pmd_offset(pud, address);
f66055ab 4497 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4498
09796395
RZ
4499 if (pmd_huge(*pmd)) {
4500 if (!pmdpp)
4501 goto out;
4502
ac46d4f3 4503 if (range) {
7269f999 4504 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4505 NULL, mm, address & PMD_MASK,
4506 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4507 mmu_notifier_invalidate_range_start(range);
a4d1a885 4508 }
09796395
RZ
4509 *ptlp = pmd_lock(mm, pmd);
4510 if (pmd_huge(*pmd)) {
4511 *pmdpp = pmd;
4512 return 0;
4513 }
4514 spin_unlock(*ptlp);
ac46d4f3
JG
4515 if (range)
4516 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4517 }
4518
4519 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4520 goto out;
4521
ac46d4f3 4522 if (range) {
7269f999 4523 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4524 address & PAGE_MASK,
4525 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4526 mmu_notifier_invalidate_range_start(range);
a4d1a885 4527 }
f8ad0f49 4528 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4529 if (!pte_present(*ptep))
4530 goto unlock;
4531 *ptepp = ptep;
4532 return 0;
4533unlock:
4534 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4535 if (range)
4536 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4537out:
4538 return -EINVAL;
4539}
4540
f729c8c9
RZ
4541static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4542 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4543{
4544 int res;
4545
4546 /* (void) is needed to make gcc happy */
4547 (void) __cond_lock(*ptlp,
ac46d4f3 4548 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4549 ptepp, NULL, ptlp)));
09796395
RZ
4550 return res;
4551}
4552
4553int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4554 struct mmu_notifier_range *range,
4555 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4556{
4557 int res;
4558
4559 /* (void) is needed to make gcc happy */
4560 (void) __cond_lock(*ptlp,
ac46d4f3 4561 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4562 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4563 return res;
4564}
09796395 4565EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4566
3b6748e2
JW
4567/**
4568 * follow_pfn - look up PFN at a user virtual address
4569 * @vma: memory mapping
4570 * @address: user virtual address
4571 * @pfn: location to store found PFN
4572 *
4573 * Only IO mappings and raw PFN mappings are allowed.
4574 *
a862f68a 4575 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4576 */
4577int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4578 unsigned long *pfn)
4579{
4580 int ret = -EINVAL;
4581 spinlock_t *ptl;
4582 pte_t *ptep;
4583
4584 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4585 return ret;
4586
4587 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4588 if (ret)
4589 return ret;
4590 *pfn = pte_pfn(*ptep);
4591 pte_unmap_unlock(ptep, ptl);
4592 return 0;
4593}
4594EXPORT_SYMBOL(follow_pfn);
4595
28b2ee20 4596#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4597int follow_phys(struct vm_area_struct *vma,
4598 unsigned long address, unsigned int flags,
4599 unsigned long *prot, resource_size_t *phys)
28b2ee20 4600{
03668a4d 4601 int ret = -EINVAL;
28b2ee20
RR
4602 pte_t *ptep, pte;
4603 spinlock_t *ptl;
28b2ee20 4604
d87fe660 4605 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4606 goto out;
28b2ee20 4607
03668a4d 4608 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4609 goto out;
28b2ee20 4610 pte = *ptep;
03668a4d 4611
f6f37321 4612 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4613 goto unlock;
28b2ee20
RR
4614
4615 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4616 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4617
03668a4d 4618 ret = 0;
28b2ee20
RR
4619unlock:
4620 pte_unmap_unlock(ptep, ptl);
4621out:
d87fe660 4622 return ret;
28b2ee20
RR
4623}
4624
4625int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4626 void *buf, int len, int write)
4627{
4628 resource_size_t phys_addr;
4629 unsigned long prot = 0;
2bc7273b 4630 void __iomem *maddr;
28b2ee20
RR
4631 int offset = addr & (PAGE_SIZE-1);
4632
d87fe660 4633 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4634 return -EINVAL;
4635
9cb12d7b 4636 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4637 if (!maddr)
4638 return -ENOMEM;
4639
28b2ee20
RR
4640 if (write)
4641 memcpy_toio(maddr + offset, buf, len);
4642 else
4643 memcpy_fromio(buf, maddr + offset, len);
4644 iounmap(maddr);
4645
4646 return len;
4647}
5a73633e 4648EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4649#endif
4650
0ec76a11 4651/*
206cb636
SW
4652 * Access another process' address space as given in mm. If non-NULL, use the
4653 * given task for page fault accounting.
0ec76a11 4654 */
84d77d3f 4655int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4656 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4657{
0ec76a11 4658 struct vm_area_struct *vma;
0ec76a11 4659 void *old_buf = buf;
442486ec 4660 int write = gup_flags & FOLL_WRITE;
0ec76a11 4661
1e426fe2
KK
4662 if (down_read_killable(&mm->mmap_sem))
4663 return 0;
4664
183ff22b 4665 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4666 while (len) {
4667 int bytes, ret, offset;
4668 void *maddr;
28b2ee20 4669 struct page *page = NULL;
0ec76a11 4670
1e987790 4671 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4672 gup_flags, &page, &vma, NULL);
28b2ee20 4673 if (ret <= 0) {
dbffcd03
RR
4674#ifndef CONFIG_HAVE_IOREMAP_PROT
4675 break;
4676#else
28b2ee20
RR
4677 /*
4678 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4679 * we can access using slightly different code.
4680 */
28b2ee20 4681 vma = find_vma(mm, addr);
fe936dfc 4682 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4683 break;
4684 if (vma->vm_ops && vma->vm_ops->access)
4685 ret = vma->vm_ops->access(vma, addr, buf,
4686 len, write);
4687 if (ret <= 0)
28b2ee20
RR
4688 break;
4689 bytes = ret;
dbffcd03 4690#endif
0ec76a11 4691 } else {
28b2ee20
RR
4692 bytes = len;
4693 offset = addr & (PAGE_SIZE-1);
4694 if (bytes > PAGE_SIZE-offset)
4695 bytes = PAGE_SIZE-offset;
4696
4697 maddr = kmap(page);
4698 if (write) {
4699 copy_to_user_page(vma, page, addr,
4700 maddr + offset, buf, bytes);
4701 set_page_dirty_lock(page);
4702 } else {
4703 copy_from_user_page(vma, page, addr,
4704 buf, maddr + offset, bytes);
4705 }
4706 kunmap(page);
09cbfeaf 4707 put_page(page);
0ec76a11 4708 }
0ec76a11
DH
4709 len -= bytes;
4710 buf += bytes;
4711 addr += bytes;
4712 }
4713 up_read(&mm->mmap_sem);
0ec76a11
DH
4714
4715 return buf - old_buf;
4716}
03252919 4717
5ddd36b9 4718/**
ae91dbfc 4719 * access_remote_vm - access another process' address space
5ddd36b9
SW
4720 * @mm: the mm_struct of the target address space
4721 * @addr: start address to access
4722 * @buf: source or destination buffer
4723 * @len: number of bytes to transfer
6347e8d5 4724 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4725 *
4726 * The caller must hold a reference on @mm.
a862f68a
MR
4727 *
4728 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4729 */
4730int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4731 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4732{
6347e8d5 4733 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4734}
4735
206cb636
SW
4736/*
4737 * Access another process' address space.
4738 * Source/target buffer must be kernel space,
4739 * Do not walk the page table directly, use get_user_pages
4740 */
4741int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4742 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4743{
4744 struct mm_struct *mm;
4745 int ret;
4746
4747 mm = get_task_mm(tsk);
4748 if (!mm)
4749 return 0;
4750
f307ab6d 4751 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4752
206cb636
SW
4753 mmput(mm);
4754
4755 return ret;
4756}
fcd35857 4757EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4758
03252919
AK
4759/*
4760 * Print the name of a VMA.
4761 */
4762void print_vma_addr(char *prefix, unsigned long ip)
4763{
4764 struct mm_struct *mm = current->mm;
4765 struct vm_area_struct *vma;
4766
e8bff74a 4767 /*
0a7f682d 4768 * we might be running from an atomic context so we cannot sleep
e8bff74a 4769 */
0a7f682d 4770 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4771 return;
4772
03252919
AK
4773 vma = find_vma(mm, ip);
4774 if (vma && vma->vm_file) {
4775 struct file *f = vma->vm_file;
0a7f682d 4776 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4777 if (buf) {
2fbc57c5 4778 char *p;
03252919 4779
9bf39ab2 4780 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4781 if (IS_ERR(p))
4782 p = "?";
2fbc57c5 4783 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4784 vma->vm_start,
4785 vma->vm_end - vma->vm_start);
4786 free_page((unsigned long)buf);
4787 }
4788 }
51a07e50 4789 up_read(&mm->mmap_sem);
03252919 4790}
3ee1afa3 4791
662bbcb2 4792#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4793void __might_fault(const char *file, int line)
3ee1afa3 4794{
95156f00
PZ
4795 /*
4796 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4797 * holding the mmap_sem, this is safe because kernel memory doesn't
4798 * get paged out, therefore we'll never actually fault, and the
4799 * below annotations will generate false positives.
4800 */
db68ce10 4801 if (uaccess_kernel())
95156f00 4802 return;
9ec23531 4803 if (pagefault_disabled())
662bbcb2 4804 return;
9ec23531
DH
4805 __might_sleep(file, line, 0);
4806#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4807 if (current->mm)
3ee1afa3 4808 might_lock_read(&current->mm->mmap_sem);
9ec23531 4809#endif
3ee1afa3 4810}
9ec23531 4811EXPORT_SYMBOL(__might_fault);
3ee1afa3 4812#endif
47ad8475
AA
4813
4814#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4815/*
4816 * Process all subpages of the specified huge page with the specified
4817 * operation. The target subpage will be processed last to keep its
4818 * cache lines hot.
4819 */
4820static inline void process_huge_page(
4821 unsigned long addr_hint, unsigned int pages_per_huge_page,
4822 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4823 void *arg)
47ad8475 4824{
c79b57e4
HY
4825 int i, n, base, l;
4826 unsigned long addr = addr_hint &
4827 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4828
c6ddfb6c 4829 /* Process target subpage last to keep its cache lines hot */
47ad8475 4830 might_sleep();
c79b57e4
HY
4831 n = (addr_hint - addr) / PAGE_SIZE;
4832 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4833 /* If target subpage in first half of huge page */
c79b57e4
HY
4834 base = 0;
4835 l = n;
c6ddfb6c 4836 /* Process subpages at the end of huge page */
c79b57e4
HY
4837 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4838 cond_resched();
c6ddfb6c 4839 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4840 }
4841 } else {
c6ddfb6c 4842 /* If target subpage in second half of huge page */
c79b57e4
HY
4843 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4844 l = pages_per_huge_page - n;
c6ddfb6c 4845 /* Process subpages at the begin of huge page */
c79b57e4
HY
4846 for (i = 0; i < base; i++) {
4847 cond_resched();
c6ddfb6c 4848 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4849 }
4850 }
4851 /*
c6ddfb6c
HY
4852 * Process remaining subpages in left-right-left-right pattern
4853 * towards the target subpage
c79b57e4
HY
4854 */
4855 for (i = 0; i < l; i++) {
4856 int left_idx = base + i;
4857 int right_idx = base + 2 * l - 1 - i;
4858
4859 cond_resched();
c6ddfb6c 4860 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4861 cond_resched();
c6ddfb6c 4862 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4863 }
4864}
4865
c6ddfb6c
HY
4866static void clear_gigantic_page(struct page *page,
4867 unsigned long addr,
4868 unsigned int pages_per_huge_page)
4869{
4870 int i;
4871 struct page *p = page;
4872
4873 might_sleep();
4874 for (i = 0; i < pages_per_huge_page;
4875 i++, p = mem_map_next(p, page, i)) {
4876 cond_resched();
4877 clear_user_highpage(p, addr + i * PAGE_SIZE);
4878 }
4879}
4880
4881static void clear_subpage(unsigned long addr, int idx, void *arg)
4882{
4883 struct page *page = arg;
4884
4885 clear_user_highpage(page + idx, addr);
4886}
4887
4888void clear_huge_page(struct page *page,
4889 unsigned long addr_hint, unsigned int pages_per_huge_page)
4890{
4891 unsigned long addr = addr_hint &
4892 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4893
4894 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4895 clear_gigantic_page(page, addr, pages_per_huge_page);
4896 return;
4897 }
4898
4899 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4900}
4901
47ad8475
AA
4902static void copy_user_gigantic_page(struct page *dst, struct page *src,
4903 unsigned long addr,
4904 struct vm_area_struct *vma,
4905 unsigned int pages_per_huge_page)
4906{
4907 int i;
4908 struct page *dst_base = dst;
4909 struct page *src_base = src;
4910
4911 for (i = 0; i < pages_per_huge_page; ) {
4912 cond_resched();
4913 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4914
4915 i++;
4916 dst = mem_map_next(dst, dst_base, i);
4917 src = mem_map_next(src, src_base, i);
4918 }
4919}
4920
c9f4cd71
HY
4921struct copy_subpage_arg {
4922 struct page *dst;
4923 struct page *src;
4924 struct vm_area_struct *vma;
4925};
4926
4927static void copy_subpage(unsigned long addr, int idx, void *arg)
4928{
4929 struct copy_subpage_arg *copy_arg = arg;
4930
4931 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4932 addr, copy_arg->vma);
4933}
4934
47ad8475 4935void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4936 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4937 unsigned int pages_per_huge_page)
4938{
c9f4cd71
HY
4939 unsigned long addr = addr_hint &
4940 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4941 struct copy_subpage_arg arg = {
4942 .dst = dst,
4943 .src = src,
4944 .vma = vma,
4945 };
47ad8475
AA
4946
4947 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4948 copy_user_gigantic_page(dst, src, addr, vma,
4949 pages_per_huge_page);
4950 return;
4951 }
4952
c9f4cd71 4953 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4954}
fa4d75c1
MK
4955
4956long copy_huge_page_from_user(struct page *dst_page,
4957 const void __user *usr_src,
810a56b9
MK
4958 unsigned int pages_per_huge_page,
4959 bool allow_pagefault)
fa4d75c1
MK
4960{
4961 void *src = (void *)usr_src;
4962 void *page_kaddr;
4963 unsigned long i, rc = 0;
4964 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4965
4966 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4967 if (allow_pagefault)
4968 page_kaddr = kmap(dst_page + i);
4969 else
4970 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4971 rc = copy_from_user(page_kaddr,
4972 (const void __user *)(src + i * PAGE_SIZE),
4973 PAGE_SIZE);
810a56b9
MK
4974 if (allow_pagefault)
4975 kunmap(dst_page + i);
4976 else
4977 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4978
4979 ret_val -= (PAGE_SIZE - rc);
4980 if (rc)
4981 break;
4982
4983 cond_resched();
4984 }
4985 return ret_val;
4986}
47ad8475 4987#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4988
40b64acd 4989#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4990
4991static struct kmem_cache *page_ptl_cachep;
4992
4993void __init ptlock_cache_init(void)
4994{
4995 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4996 SLAB_PANIC, NULL);
4997}
4998
539edb58 4999bool ptlock_alloc(struct page *page)
49076ec2
KS
5000{
5001 spinlock_t *ptl;
5002
b35f1819 5003 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5004 if (!ptl)
5005 return false;
539edb58 5006 page->ptl = ptl;
49076ec2
KS
5007 return true;
5008}
5009
539edb58 5010void ptlock_free(struct page *page)
49076ec2 5011{
b35f1819 5012 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5013}
5014#endif