]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
mm: memory: use folio_throttle_swaprate() in page_copy_prealloc()
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
b073d7f8 55#include <linux/kmsan.h>
9a840895 56#include <linux/ksm.h>
1da177e4 57#include <linux/rmap.h>
b95f1b31 58#include <linux/export.h>
0ff92245 59#include <linux/delayacct.h>
1da177e4 60#include <linux/init.h>
01c8f1c4 61#include <linux/pfn_t.h>
edc79b2a 62#include <linux/writeback.h>
8a9f3ccd 63#include <linux/memcontrol.h>
cddb8a5c 64#include <linux/mmu_notifier.h>
3dc14741
HD
65#include <linux/swapops.h>
66#include <linux/elf.h>
5a0e3ad6 67#include <linux/gfp.h>
4daae3b4 68#include <linux/migrate.h>
2fbc57c5 69#include <linux/string.h>
467b171a 70#include <linux/memory-tiers.h>
1592eef0 71#include <linux/debugfs.h>
6b251fc9 72#include <linux/userfaultfd_k.h>
bc2466e4 73#include <linux/dax.h>
6b31d595 74#include <linux/oom.h>
98fa15f3 75#include <linux/numa.h>
bce617ed
PX
76#include <linux/perf_event.h>
77#include <linux/ptrace.h>
e80d3909 78#include <linux/vmalloc.h>
33024536 79#include <linux/sched/sysctl.h>
1da177e4 80
b3d1411b
JFG
81#include <trace/events/kmem.h>
82
6952b61d 83#include <asm/io.h>
33a709b2 84#include <asm/mmu_context.h>
1da177e4 85#include <asm/pgalloc.h>
7c0f6ba6 86#include <linux/uaccess.h>
1da177e4
LT
87#include <asm/tlb.h>
88#include <asm/tlbflush.h>
1da177e4 89
e80d3909 90#include "pgalloc-track.h"
42b77728 91#include "internal.h"
014bb1de 92#include "swap.h"
42b77728 93
af27d940 94#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 95#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
96#endif
97
a9ee6cf5 98#ifndef CONFIG_NUMA
1da177e4 99unsigned long max_mapnr;
1da177e4 100EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
101
102struct page *mem_map;
1da177e4
LT
103EXPORT_SYMBOL(mem_map);
104#endif
105
5c041f5d
PX
106static vm_fault_t do_fault(struct vm_fault *vmf);
107
1da177e4
LT
108/*
109 * A number of key systems in x86 including ioremap() rely on the assumption
110 * that high_memory defines the upper bound on direct map memory, then end
111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113 * and ZONE_HIGHMEM.
114 */
166f61b9 115void *high_memory;
1da177e4 116EXPORT_SYMBOL(high_memory);
1da177e4 117
32a93233
IM
118/*
119 * Randomize the address space (stacks, mmaps, brk, etc.).
120 *
121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122 * as ancient (libc5 based) binaries can segfault. )
123 */
124int randomize_va_space __read_mostly =
125#ifdef CONFIG_COMPAT_BRK
126 1;
127#else
128 2;
129#endif
a62eaf15 130
46bdb427
WD
131#ifndef arch_wants_old_prefaulted_pte
132static inline bool arch_wants_old_prefaulted_pte(void)
133{
134 /*
135 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 * some architectures, even if it's performed in hardware. By
137 * default, "false" means prefaulted entries will be 'young'.
138 */
139 return false;
140}
141#endif
142
a62eaf15
AK
143static int __init disable_randmaps(char *s)
144{
145 randomize_va_space = 0;
9b41046c 146 return 1;
a62eaf15
AK
147}
148__setup("norandmaps", disable_randmaps);
149
62eede62 150unsigned long zero_pfn __read_mostly;
0b70068e
AB
151EXPORT_SYMBOL(zero_pfn);
152
166f61b9
TH
153unsigned long highest_memmap_pfn __read_mostly;
154
a13ea5b7
HD
155/*
156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157 */
158static int __init init_zero_pfn(void)
159{
160 zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 return 0;
162}
e720e7d0 163early_initcall(init_zero_pfn);
a62eaf15 164
f1a79412 165void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 166{
f1a79412 167 trace_rss_stat(mm, member);
b3d1411b 168}
d559db08 169
1da177e4
LT
170/*
171 * Note: this doesn't free the actual pages themselves. That
172 * has been handled earlier when unmapping all the memory regions.
173 */
9e1b32ca
BH
174static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175 unsigned long addr)
1da177e4 176{
2f569afd 177 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 178 pmd_clear(pmd);
9e1b32ca 179 pte_free_tlb(tlb, token, addr);
c4812909 180 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
181}
182
e0da382c
HD
183static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184 unsigned long addr, unsigned long end,
185 unsigned long floor, unsigned long ceiling)
1da177e4
LT
186{
187 pmd_t *pmd;
188 unsigned long next;
e0da382c 189 unsigned long start;
1da177e4 190
e0da382c 191 start = addr;
1da177e4 192 pmd = pmd_offset(pud, addr);
1da177e4
LT
193 do {
194 next = pmd_addr_end(addr, end);
195 if (pmd_none_or_clear_bad(pmd))
196 continue;
9e1b32ca 197 free_pte_range(tlb, pmd, addr);
1da177e4
LT
198 } while (pmd++, addr = next, addr != end);
199
e0da382c
HD
200 start &= PUD_MASK;
201 if (start < floor)
202 return;
203 if (ceiling) {
204 ceiling &= PUD_MASK;
205 if (!ceiling)
206 return;
1da177e4 207 }
e0da382c
HD
208 if (end - 1 > ceiling - 1)
209 return;
210
211 pmd = pmd_offset(pud, start);
212 pud_clear(pud);
9e1b32ca 213 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 214 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
215}
216
c2febafc 217static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
1da177e4
LT
220{
221 pud_t *pud;
222 unsigned long next;
e0da382c 223 unsigned long start;
1da177e4 224
e0da382c 225 start = addr;
c2febafc 226 pud = pud_offset(p4d, addr);
1da177e4
LT
227 do {
228 next = pud_addr_end(addr, end);
229 if (pud_none_or_clear_bad(pud))
230 continue;
e0da382c 231 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
232 } while (pud++, addr = next, addr != end);
233
c2febafc
KS
234 start &= P4D_MASK;
235 if (start < floor)
236 return;
237 if (ceiling) {
238 ceiling &= P4D_MASK;
239 if (!ceiling)
240 return;
241 }
242 if (end - 1 > ceiling - 1)
243 return;
244
245 pud = pud_offset(p4d, start);
246 p4d_clear(p4d);
247 pud_free_tlb(tlb, pud, start);
b4e98d9a 248 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
249}
250
251static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252 unsigned long addr, unsigned long end,
253 unsigned long floor, unsigned long ceiling)
254{
255 p4d_t *p4d;
256 unsigned long next;
257 unsigned long start;
258
259 start = addr;
260 p4d = p4d_offset(pgd, addr);
261 do {
262 next = p4d_addr_end(addr, end);
263 if (p4d_none_or_clear_bad(p4d))
264 continue;
265 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266 } while (p4d++, addr = next, addr != end);
267
e0da382c
HD
268 start &= PGDIR_MASK;
269 if (start < floor)
270 return;
271 if (ceiling) {
272 ceiling &= PGDIR_MASK;
273 if (!ceiling)
274 return;
1da177e4 275 }
e0da382c
HD
276 if (end - 1 > ceiling - 1)
277 return;
278
c2febafc 279 p4d = p4d_offset(pgd, start);
e0da382c 280 pgd_clear(pgd);
c2febafc 281 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
282}
283
284/*
e0da382c 285 * This function frees user-level page tables of a process.
1da177e4 286 */
42b77728 287void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
288 unsigned long addr, unsigned long end,
289 unsigned long floor, unsigned long ceiling)
1da177e4
LT
290{
291 pgd_t *pgd;
292 unsigned long next;
e0da382c
HD
293
294 /*
295 * The next few lines have given us lots of grief...
296 *
297 * Why are we testing PMD* at this top level? Because often
298 * there will be no work to do at all, and we'd prefer not to
299 * go all the way down to the bottom just to discover that.
300 *
301 * Why all these "- 1"s? Because 0 represents both the bottom
302 * of the address space and the top of it (using -1 for the
303 * top wouldn't help much: the masks would do the wrong thing).
304 * The rule is that addr 0 and floor 0 refer to the bottom of
305 * the address space, but end 0 and ceiling 0 refer to the top
306 * Comparisons need to use "end - 1" and "ceiling - 1" (though
307 * that end 0 case should be mythical).
308 *
309 * Wherever addr is brought up or ceiling brought down, we must
310 * be careful to reject "the opposite 0" before it confuses the
311 * subsequent tests. But what about where end is brought down
312 * by PMD_SIZE below? no, end can't go down to 0 there.
313 *
314 * Whereas we round start (addr) and ceiling down, by different
315 * masks at different levels, in order to test whether a table
316 * now has no other vmas using it, so can be freed, we don't
317 * bother to round floor or end up - the tests don't need that.
318 */
1da177e4 319
e0da382c
HD
320 addr &= PMD_MASK;
321 if (addr < floor) {
322 addr += PMD_SIZE;
323 if (!addr)
324 return;
325 }
326 if (ceiling) {
327 ceiling &= PMD_MASK;
328 if (!ceiling)
329 return;
330 }
331 if (end - 1 > ceiling - 1)
332 end -= PMD_SIZE;
333 if (addr > end - 1)
334 return;
07e32661
AK
335 /*
336 * We add page table cache pages with PAGE_SIZE,
337 * (see pte_free_tlb()), flush the tlb if we need
338 */
ed6a7935 339 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 340 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
341 do {
342 next = pgd_addr_end(addr, end);
343 if (pgd_none_or_clear_bad(pgd))
344 continue;
c2febafc 345 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 346 } while (pgd++, addr = next, addr != end);
e0da382c
HD
347}
348
763ecb03
LH
349void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350 struct vm_area_struct *vma, unsigned long floor,
351 unsigned long ceiling)
e0da382c 352{
763ecb03
LH
353 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354
355 do {
e0da382c 356 unsigned long addr = vma->vm_start;
763ecb03
LH
357 struct vm_area_struct *next;
358
359 /*
360 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361 * be 0. This will underflow and is okay.
362 */
363 next = mas_find(&mas, ceiling - 1);
e0da382c 364
8f4f8c16 365 /*
25d9e2d1
NP
366 * Hide vma from rmap and truncate_pagecache before freeing
367 * pgtables
8f4f8c16 368 */
5beb4930 369 unlink_anon_vmas(vma);
8f4f8c16
HD
370 unlink_file_vma(vma);
371
9da61aef 372 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 373 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 374 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
375 } else {
376 /*
377 * Optimization: gather nearby vmas into one call down
378 */
379 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 380 && !is_vm_hugetlb_page(next)) {
3bf5ee95 381 vma = next;
763ecb03 382 next = mas_find(&mas, ceiling - 1);
5beb4930 383 unlink_anon_vmas(vma);
8f4f8c16 384 unlink_file_vma(vma);
3bf5ee95
HD
385 }
386 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 387 floor, next ? next->vm_start : ceiling);
3bf5ee95 388 }
e0da382c 389 vma = next;
763ecb03 390 } while (vma);
1da177e4
LT
391}
392
03c4f204 393void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 394{
03c4f204 395 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 396
8ac1f832 397 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 398 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
399 /*
400 * Ensure all pte setup (eg. pte page lock and page clearing) are
401 * visible before the pte is made visible to other CPUs by being
402 * put into page tables.
403 *
404 * The other side of the story is the pointer chasing in the page
405 * table walking code (when walking the page table without locking;
406 * ie. most of the time). Fortunately, these data accesses consist
407 * of a chain of data-dependent loads, meaning most CPUs (alpha
408 * being the notable exception) will already guarantee loads are
409 * seen in-order. See the alpha page table accessors for the
410 * smp_rmb() barriers in page table walking code.
411 */
412 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
413 pmd_populate(mm, pmd, *pte);
414 *pte = NULL;
4b471e88 415 }
c4088ebd 416 spin_unlock(ptl);
03c4f204
QZ
417}
418
4cf58924 419int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 420{
4cf58924 421 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
422 if (!new)
423 return -ENOMEM;
424
03c4f204 425 pmd_install(mm, pmd, &new);
2f569afd
MS
426 if (new)
427 pte_free(mm, new);
1bb3630e 428 return 0;
1da177e4
LT
429}
430
4cf58924 431int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 432{
4cf58924 433 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
434 if (!new)
435 return -ENOMEM;
436
437 spin_lock(&init_mm.page_table_lock);
8ac1f832 438 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 439 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 440 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 441 new = NULL;
4b471e88 442 }
1bb3630e 443 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
444 if (new)
445 pte_free_kernel(&init_mm, new);
1bb3630e 446 return 0;
1da177e4
LT
447}
448
d559db08
KH
449static inline void init_rss_vec(int *rss)
450{
451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452}
453
454static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 455{
d559db08
KH
456 int i;
457
34e55232 458 if (current->mm == mm)
05af2e10 459 sync_mm_rss(mm);
d559db08
KH
460 for (i = 0; i < NR_MM_COUNTERS; i++)
461 if (rss[i])
462 add_mm_counter(mm, i, rss[i]);
ae859762
HD
463}
464
b5810039 465/*
6aab341e
LT
466 * This function is called to print an error when a bad pte
467 * is found. For example, we might have a PFN-mapped pte in
468 * a region that doesn't allow it.
b5810039
NP
469 *
470 * The calling function must still handle the error.
471 */
3dc14741
HD
472static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 pte_t pte, struct page *page)
b5810039 474{
3dc14741 475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
476 p4d_t *p4d = p4d_offset(pgd, addr);
477 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
478 pmd_t *pmd = pmd_offset(pud, addr);
479 struct address_space *mapping;
480 pgoff_t index;
d936cf9b
HD
481 static unsigned long resume;
482 static unsigned long nr_shown;
483 static unsigned long nr_unshown;
484
485 /*
486 * Allow a burst of 60 reports, then keep quiet for that minute;
487 * or allow a steady drip of one report per second.
488 */
489 if (nr_shown == 60) {
490 if (time_before(jiffies, resume)) {
491 nr_unshown++;
492 return;
493 }
494 if (nr_unshown) {
1170532b
JP
495 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496 nr_unshown);
d936cf9b
HD
497 nr_unshown = 0;
498 }
499 nr_shown = 0;
500 }
501 if (nr_shown++ == 0)
502 resume = jiffies + 60 * HZ;
3dc14741
HD
503
504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 index = linear_page_index(vma, addr);
506
1170532b
JP
507 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
508 current->comm,
509 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 510 if (page)
f0b791a3 511 dump_page(page, "bad pte");
6aa9b8b2 512 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 513 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 514 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
515 vma->vm_file,
516 vma->vm_ops ? vma->vm_ops->fault : NULL,
517 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 518 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 519 dump_stack();
373d4d09 520 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
521}
522
ee498ed7 523/*
7e675137 524 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 525 *
7e675137
NP
526 * "Special" mappings do not wish to be associated with a "struct page" (either
527 * it doesn't exist, or it exists but they don't want to touch it). In this
528 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 529 *
7e675137
NP
530 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531 * pte bit, in which case this function is trivial. Secondly, an architecture
532 * may not have a spare pte bit, which requires a more complicated scheme,
533 * described below.
534 *
535 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536 * special mapping (even if there are underlying and valid "struct pages").
537 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 538 *
b379d790
JH
539 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
541 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542 * mapping will always honor the rule
6aab341e
LT
543 *
544 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545 *
7e675137
NP
546 * And for normal mappings this is false.
547 *
548 * This restricts such mappings to be a linear translation from virtual address
549 * to pfn. To get around this restriction, we allow arbitrary mappings so long
550 * as the vma is not a COW mapping; in that case, we know that all ptes are
551 * special (because none can have been COWed).
b379d790 552 *
b379d790 553 *
7e675137 554 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
555 *
556 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557 * page" backing, however the difference is that _all_ pages with a struct
558 * page (that is, those where pfn_valid is true) are refcounted and considered
559 * normal pages by the VM. The disadvantage is that pages are refcounted
560 * (which can be slower and simply not an option for some PFNMAP users). The
561 * advantage is that we don't have to follow the strict linearity rule of
562 * PFNMAP mappings in order to support COWable mappings.
563 *
ee498ed7 564 */
25b2995a
CH
565struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566 pte_t pte)
ee498ed7 567{
22b31eec 568 unsigned long pfn = pte_pfn(pte);
7e675137 569
00b3a331 570 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 571 if (likely(!pte_special(pte)))
22b31eec 572 goto check_pfn;
667a0a06
DV
573 if (vma->vm_ops && vma->vm_ops->find_special_page)
574 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
575 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576 return NULL;
df6ad698
JG
577 if (is_zero_pfn(pfn))
578 return NULL;
e1fb4a08 579 if (pte_devmap(pte))
3218f871
AS
580 /*
581 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582 * and will have refcounts incremented on their struct pages
583 * when they are inserted into PTEs, thus they are safe to
584 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585 * do not have refcounts. Example of legacy ZONE_DEVICE is
586 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587 */
e1fb4a08
DJ
588 return NULL;
589
df6ad698 590 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
591 return NULL;
592 }
593
00b3a331 594 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 595
b379d790
JH
596 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597 if (vma->vm_flags & VM_MIXEDMAP) {
598 if (!pfn_valid(pfn))
599 return NULL;
600 goto out;
601 } else {
7e675137
NP
602 unsigned long off;
603 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
604 if (pfn == vma->vm_pgoff + off)
605 return NULL;
606 if (!is_cow_mapping(vma->vm_flags))
607 return NULL;
608 }
6aab341e
LT
609 }
610
b38af472
HD
611 if (is_zero_pfn(pfn))
612 return NULL;
00b3a331 613
22b31eec
HD
614check_pfn:
615 if (unlikely(pfn > highest_memmap_pfn)) {
616 print_bad_pte(vma, addr, pte, NULL);
617 return NULL;
618 }
6aab341e
LT
619
620 /*
7e675137 621 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 622 * eg. VDSO mappings can cause them to exist.
6aab341e 623 */
b379d790 624out:
6aab341e 625 return pfn_to_page(pfn);
ee498ed7
HD
626}
627
318e9342
VMO
628struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
629 pte_t pte)
630{
631 struct page *page = vm_normal_page(vma, addr, pte);
632
633 if (page)
634 return page_folio(page);
635 return NULL;
636}
637
28093f9f
GS
638#ifdef CONFIG_TRANSPARENT_HUGEPAGE
639struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
640 pmd_t pmd)
641{
642 unsigned long pfn = pmd_pfn(pmd);
643
644 /*
645 * There is no pmd_special() but there may be special pmds, e.g.
646 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 647 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
648 */
649 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
650 if (vma->vm_flags & VM_MIXEDMAP) {
651 if (!pfn_valid(pfn))
652 return NULL;
653 goto out;
654 } else {
655 unsigned long off;
656 off = (addr - vma->vm_start) >> PAGE_SHIFT;
657 if (pfn == vma->vm_pgoff + off)
658 return NULL;
659 if (!is_cow_mapping(vma->vm_flags))
660 return NULL;
661 }
662 }
663
e1fb4a08
DJ
664 if (pmd_devmap(pmd))
665 return NULL;
3cde287b 666 if (is_huge_zero_pmd(pmd))
28093f9f
GS
667 return NULL;
668 if (unlikely(pfn > highest_memmap_pfn))
669 return NULL;
670
671 /*
672 * NOTE! We still have PageReserved() pages in the page tables.
673 * eg. VDSO mappings can cause them to exist.
674 */
675out:
676 return pfn_to_page(pfn);
677}
678#endif
679
b756a3b5
AP
680static void restore_exclusive_pte(struct vm_area_struct *vma,
681 struct page *page, unsigned long address,
682 pte_t *ptep)
683{
684 pte_t pte;
685 swp_entry_t entry;
686
687 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
688 if (pte_swp_soft_dirty(*ptep))
689 pte = pte_mksoft_dirty(pte);
690
691 entry = pte_to_swp_entry(*ptep);
692 if (pte_swp_uffd_wp(*ptep))
693 pte = pte_mkuffd_wp(pte);
694 else if (is_writable_device_exclusive_entry(entry))
695 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
696
6c287605
DH
697 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
698
b756a3b5
AP
699 /*
700 * No need to take a page reference as one was already
701 * created when the swap entry was made.
702 */
703 if (PageAnon(page))
f1e2db12 704 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
705 else
706 /*
707 * Currently device exclusive access only supports anonymous
708 * memory so the entry shouldn't point to a filebacked page.
709 */
4d8ff640 710 WARN_ON_ONCE(1);
b756a3b5 711
1eba86c0
PT
712 set_pte_at(vma->vm_mm, address, ptep, pte);
713
b756a3b5
AP
714 /*
715 * No need to invalidate - it was non-present before. However
716 * secondary CPUs may have mappings that need invalidating.
717 */
718 update_mmu_cache(vma, address, ptep);
719}
720
721/*
722 * Tries to restore an exclusive pte if the page lock can be acquired without
723 * sleeping.
724 */
725static int
726try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
727 unsigned long addr)
728{
729 swp_entry_t entry = pte_to_swp_entry(*src_pte);
730 struct page *page = pfn_swap_entry_to_page(entry);
731
732 if (trylock_page(page)) {
733 restore_exclusive_pte(vma, page, addr, src_pte);
734 unlock_page(page);
735 return 0;
736 }
737
738 return -EBUSY;
739}
740
1da177e4
LT
741/*
742 * copy one vm_area from one task to the other. Assumes the page tables
743 * already present in the new task to be cleared in the whole range
744 * covered by this vma.
1da177e4
LT
745 */
746
df3a57d1
LT
747static unsigned long
748copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
749 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
750 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 751{
8f34f1ea 752 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
753 pte_t pte = *src_pte;
754 struct page *page;
df3a57d1
LT
755 swp_entry_t entry = pte_to_swp_entry(pte);
756
757 if (likely(!non_swap_entry(entry))) {
758 if (swap_duplicate(entry) < 0)
9a5cc85c 759 return -EIO;
df3a57d1
LT
760
761 /* make sure dst_mm is on swapoff's mmlist. */
762 if (unlikely(list_empty(&dst_mm->mmlist))) {
763 spin_lock(&mmlist_lock);
764 if (list_empty(&dst_mm->mmlist))
765 list_add(&dst_mm->mmlist,
766 &src_mm->mmlist);
767 spin_unlock(&mmlist_lock);
768 }
1493a191
DH
769 /* Mark the swap entry as shared. */
770 if (pte_swp_exclusive(*src_pte)) {
771 pte = pte_swp_clear_exclusive(*src_pte);
772 set_pte_at(src_mm, addr, src_pte, pte);
773 }
df3a57d1
LT
774 rss[MM_SWAPENTS]++;
775 } else if (is_migration_entry(entry)) {
af5cdaf8 776 page = pfn_swap_entry_to_page(entry);
1da177e4 777
df3a57d1 778 rss[mm_counter(page)]++;
5042db43 779
6c287605 780 if (!is_readable_migration_entry(entry) &&
df3a57d1 781 is_cow_mapping(vm_flags)) {
5042db43 782 /*
6c287605
DH
783 * COW mappings require pages in both parent and child
784 * to be set to read. A previously exclusive entry is
785 * now shared.
5042db43 786 */
4dd845b5
AP
787 entry = make_readable_migration_entry(
788 swp_offset(entry));
df3a57d1
LT
789 pte = swp_entry_to_pte(entry);
790 if (pte_swp_soft_dirty(*src_pte))
791 pte = pte_swp_mksoft_dirty(pte);
792 if (pte_swp_uffd_wp(*src_pte))
793 pte = pte_swp_mkuffd_wp(pte);
794 set_pte_at(src_mm, addr, src_pte, pte);
795 }
796 } else if (is_device_private_entry(entry)) {
af5cdaf8 797 page = pfn_swap_entry_to_page(entry);
5042db43 798
df3a57d1
LT
799 /*
800 * Update rss count even for unaddressable pages, as
801 * they should treated just like normal pages in this
802 * respect.
803 *
804 * We will likely want to have some new rss counters
805 * for unaddressable pages, at some point. But for now
806 * keep things as they are.
807 */
808 get_page(page);
809 rss[mm_counter(page)]++;
fb3d824d
DH
810 /* Cannot fail as these pages cannot get pinned. */
811 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
812
813 /*
814 * We do not preserve soft-dirty information, because so
815 * far, checkpoint/restore is the only feature that
816 * requires that. And checkpoint/restore does not work
817 * when a device driver is involved (you cannot easily
818 * save and restore device driver state).
819 */
4dd845b5 820 if (is_writable_device_private_entry(entry) &&
df3a57d1 821 is_cow_mapping(vm_flags)) {
4dd845b5
AP
822 entry = make_readable_device_private_entry(
823 swp_offset(entry));
df3a57d1
LT
824 pte = swp_entry_to_pte(entry);
825 if (pte_swp_uffd_wp(*src_pte))
826 pte = pte_swp_mkuffd_wp(pte);
827 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 828 }
b756a3b5
AP
829 } else if (is_device_exclusive_entry(entry)) {
830 /*
831 * Make device exclusive entries present by restoring the
832 * original entry then copying as for a present pte. Device
833 * exclusive entries currently only support private writable
834 * (ie. COW) mappings.
835 */
836 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
837 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
838 return -EBUSY;
839 return -ENOENT;
c56d1b62 840 } else if (is_pte_marker_entry(entry)) {
7e3ce3f8 841 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
49d6d7fb 842 set_pte_at(dst_mm, addr, dst_pte, pte);
c56d1b62 843 return 0;
1da177e4 844 }
8f34f1ea
PX
845 if (!userfaultfd_wp(dst_vma))
846 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
847 set_pte_at(dst_mm, addr, dst_pte, pte);
848 return 0;
849}
850
70e806e4 851/*
b51ad4f8 852 * Copy a present and normal page.
70e806e4 853 *
b51ad4f8
DH
854 * NOTE! The usual case is that this isn't required;
855 * instead, the caller can just increase the page refcount
856 * and re-use the pte the traditional way.
70e806e4
PX
857 *
858 * And if we need a pre-allocated page but don't yet have
859 * one, return a negative error to let the preallocation
860 * code know so that it can do so outside the page table
861 * lock.
862 */
863static inline int
c78f4636
PX
864copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
865 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 866 struct folio **prealloc, struct page *page)
70e806e4 867{
edf50470 868 struct folio *new_folio;
b51ad4f8 869 pte_t pte;
70e806e4 870
edf50470
MWO
871 new_folio = *prealloc;
872 if (!new_folio)
70e806e4
PX
873 return -EAGAIN;
874
875 /*
876 * We have a prealloc page, all good! Take it
877 * over and copy the page & arm it.
878 */
879 *prealloc = NULL;
edf50470
MWO
880 copy_user_highpage(&new_folio->page, page, addr, src_vma);
881 __folio_mark_uptodate(new_folio);
882 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
883 folio_add_lru_vma(new_folio, dst_vma);
884 rss[MM_ANONPAGES]++;
70e806e4
PX
885
886 /* All done, just insert the new page copy in the child */
edf50470 887 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
c78f4636 888 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
889 if (userfaultfd_pte_wp(dst_vma, *src_pte))
890 /* Uffd-wp needs to be delivered to dest pte as well */
f1eb1bac 891 pte = pte_mkuffd_wp(pte);
c78f4636 892 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
893 return 0;
894}
895
896/*
897 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
898 * is required to copy this pte.
899 */
900static inline int
c78f4636
PX
901copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 903 struct folio **prealloc)
df3a57d1 904{
c78f4636
PX
905 struct mm_struct *src_mm = src_vma->vm_mm;
906 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
907 pte_t pte = *src_pte;
908 struct page *page;
14ddee41 909 struct folio *folio;
df3a57d1 910
c78f4636 911 page = vm_normal_page(src_vma, addr, pte);
14ddee41
MWO
912 if (page)
913 folio = page_folio(page);
914 if (page && folio_test_anon(folio)) {
b51ad4f8
DH
915 /*
916 * If this page may have been pinned by the parent process,
917 * copy the page immediately for the child so that we'll always
918 * guarantee the pinned page won't be randomly replaced in the
919 * future.
920 */
14ddee41 921 folio_get(folio);
fb3d824d 922 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
14ddee41
MWO
923 /* Page may be pinned, we have to copy. */
924 folio_put(folio);
fb3d824d
DH
925 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
926 addr, rss, prealloc, page);
927 }
edf50470 928 rss[MM_ANONPAGES]++;
b51ad4f8 929 } else if (page) {
14ddee41 930 folio_get(folio);
fb3d824d 931 page_dup_file_rmap(page, false);
edf50470 932 rss[mm_counter_file(page)]++;
70e806e4
PX
933 }
934
1da177e4
LT
935 /*
936 * If it's a COW mapping, write protect it both
937 * in the parent and the child
938 */
1b2de5d0 939 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 940 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 941 pte = pte_wrprotect(pte);
1da177e4 942 }
14ddee41 943 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
1da177e4
LT
944
945 /*
946 * If it's a shared mapping, mark it clean in
947 * the child
948 */
949 if (vm_flags & VM_SHARED)
950 pte = pte_mkclean(pte);
951 pte = pte_mkold(pte);
6aab341e 952
8f34f1ea 953 if (!userfaultfd_wp(dst_vma))
b569a176
PX
954 pte = pte_clear_uffd_wp(pte);
955
c78f4636 956 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
957 return 0;
958}
959
edf50470
MWO
960static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
961 struct vm_area_struct *vma, unsigned long addr)
70e806e4 962{
edf50470 963 struct folio *new_folio;
70e806e4 964
edf50470
MWO
965 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
966 if (!new_folio)
70e806e4
PX
967 return NULL;
968
edf50470
MWO
969 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
970 folio_put(new_folio);
70e806e4 971 return NULL;
6aab341e 972 }
e601ded4 973 folio_throttle_swaprate(new_folio, GFP_KERNEL);
ae859762 974
edf50470 975 return new_folio;
1da177e4
LT
976}
977
c78f4636
PX
978static int
979copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
980 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
981 unsigned long end)
1da177e4 982{
c78f4636
PX
983 struct mm_struct *dst_mm = dst_vma->vm_mm;
984 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 985 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 986 pte_t *src_pte, *dst_pte;
c74df32c 987 spinlock_t *src_ptl, *dst_ptl;
70e806e4 988 int progress, ret = 0;
d559db08 989 int rss[NR_MM_COUNTERS];
570a335b 990 swp_entry_t entry = (swp_entry_t){0};
edf50470 991 struct folio *prealloc = NULL;
1da177e4
LT
992
993again:
70e806e4 994 progress = 0;
d559db08
KH
995 init_rss_vec(rss);
996
c74df32c 997 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
998 if (!dst_pte) {
999 ret = -ENOMEM;
1000 goto out;
1001 }
ece0e2b6 1002 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1003 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1004 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1005 orig_src_pte = src_pte;
1006 orig_dst_pte = dst_pte;
6606c3e0 1007 arch_enter_lazy_mmu_mode();
1da177e4 1008
1da177e4
LT
1009 do {
1010 /*
1011 * We are holding two locks at this point - either of them
1012 * could generate latencies in another task on another CPU.
1013 */
e040f218
HD
1014 if (progress >= 32) {
1015 progress = 0;
1016 if (need_resched() ||
95c354fe 1017 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1018 break;
1019 }
1da177e4
LT
1020 if (pte_none(*src_pte)) {
1021 progress++;
1022 continue;
1023 }
79a1971c 1024 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1025 ret = copy_nonpresent_pte(dst_mm, src_mm,
1026 dst_pte, src_pte,
1027 dst_vma, src_vma,
1028 addr, rss);
1029 if (ret == -EIO) {
1030 entry = pte_to_swp_entry(*src_pte);
79a1971c 1031 break;
b756a3b5
AP
1032 } else if (ret == -EBUSY) {
1033 break;
1034 } else if (!ret) {
1035 progress += 8;
1036 continue;
9a5cc85c 1037 }
b756a3b5
AP
1038
1039 /*
1040 * Device exclusive entry restored, continue by copying
1041 * the now present pte.
1042 */
1043 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1044 }
70e806e4 1045 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1046 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1047 addr, rss, &prealloc);
70e806e4
PX
1048 /*
1049 * If we need a pre-allocated page for this pte, drop the
1050 * locks, allocate, and try again.
1051 */
1052 if (unlikely(ret == -EAGAIN))
1053 break;
1054 if (unlikely(prealloc)) {
1055 /*
1056 * pre-alloc page cannot be reused by next time so as
1057 * to strictly follow mempolicy (e.g., alloc_page_vma()
1058 * will allocate page according to address). This
1059 * could only happen if one pinned pte changed.
1060 */
edf50470 1061 folio_put(prealloc);
70e806e4
PX
1062 prealloc = NULL;
1063 }
1da177e4
LT
1064 progress += 8;
1065 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1066
6606c3e0 1067 arch_leave_lazy_mmu_mode();
c74df32c 1068 spin_unlock(src_ptl);
ece0e2b6 1069 pte_unmap(orig_src_pte);
d559db08 1070 add_mm_rss_vec(dst_mm, rss);
c36987e2 1071 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1072 cond_resched();
570a335b 1073
9a5cc85c
AP
1074 if (ret == -EIO) {
1075 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1076 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1077 ret = -ENOMEM;
1078 goto out;
1079 }
1080 entry.val = 0;
b756a3b5
AP
1081 } else if (ret == -EBUSY) {
1082 goto out;
9a5cc85c 1083 } else if (ret == -EAGAIN) {
c78f4636 1084 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1085 if (!prealloc)
570a335b 1086 return -ENOMEM;
9a5cc85c
AP
1087 } else if (ret) {
1088 VM_WARN_ON_ONCE(1);
570a335b 1089 }
9a5cc85c
AP
1090
1091 /* We've captured and resolved the error. Reset, try again. */
1092 ret = 0;
1093
1da177e4
LT
1094 if (addr != end)
1095 goto again;
70e806e4
PX
1096out:
1097 if (unlikely(prealloc))
edf50470 1098 folio_put(prealloc);
70e806e4 1099 return ret;
1da177e4
LT
1100}
1101
c78f4636
PX
1102static inline int
1103copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1105 unsigned long end)
1da177e4 1106{
c78f4636
PX
1107 struct mm_struct *dst_mm = dst_vma->vm_mm;
1108 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1109 pmd_t *src_pmd, *dst_pmd;
1110 unsigned long next;
1111
1112 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1113 if (!dst_pmd)
1114 return -ENOMEM;
1115 src_pmd = pmd_offset(src_pud, addr);
1116 do {
1117 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1118 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1119 || pmd_devmap(*src_pmd)) {
71e3aac0 1120 int err;
c78f4636 1121 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1122 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1123 addr, dst_vma, src_vma);
71e3aac0
AA
1124 if (err == -ENOMEM)
1125 return -ENOMEM;
1126 if (!err)
1127 continue;
1128 /* fall through */
1129 }
1da177e4
LT
1130 if (pmd_none_or_clear_bad(src_pmd))
1131 continue;
c78f4636
PX
1132 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1133 addr, next))
1da177e4
LT
1134 return -ENOMEM;
1135 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1136 return 0;
1137}
1138
c78f4636
PX
1139static inline int
1140copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1141 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1142 unsigned long end)
1da177e4 1143{
c78f4636
PX
1144 struct mm_struct *dst_mm = dst_vma->vm_mm;
1145 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1146 pud_t *src_pud, *dst_pud;
1147 unsigned long next;
1148
c2febafc 1149 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1150 if (!dst_pud)
1151 return -ENOMEM;
c2febafc 1152 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1153 do {
1154 next = pud_addr_end(addr, end);
a00cc7d9
MW
1155 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1156 int err;
1157
c78f4636 1158 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1159 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1160 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1161 if (err == -ENOMEM)
1162 return -ENOMEM;
1163 if (!err)
1164 continue;
1165 /* fall through */
1166 }
1da177e4
LT
1167 if (pud_none_or_clear_bad(src_pud))
1168 continue;
c78f4636
PX
1169 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1170 addr, next))
1da177e4
LT
1171 return -ENOMEM;
1172 } while (dst_pud++, src_pud++, addr = next, addr != end);
1173 return 0;
1174}
1175
c78f4636
PX
1176static inline int
1177copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1178 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1179 unsigned long end)
c2febafc 1180{
c78f4636 1181 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1182 p4d_t *src_p4d, *dst_p4d;
1183 unsigned long next;
1184
1185 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1186 if (!dst_p4d)
1187 return -ENOMEM;
1188 src_p4d = p4d_offset(src_pgd, addr);
1189 do {
1190 next = p4d_addr_end(addr, end);
1191 if (p4d_none_or_clear_bad(src_p4d))
1192 continue;
c78f4636
PX
1193 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1194 addr, next))
c2febafc
KS
1195 return -ENOMEM;
1196 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1197 return 0;
1198}
1199
c56d1b62
PX
1200/*
1201 * Return true if the vma needs to copy the pgtable during this fork(). Return
1202 * false when we can speed up fork() by allowing lazy page faults later until
1203 * when the child accesses the memory range.
1204 */
bc70fbf2 1205static bool
c56d1b62
PX
1206vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1207{
1208 /*
1209 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1210 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1211 * contains uffd-wp protection information, that's something we can't
1212 * retrieve from page cache, and skip copying will lose those info.
1213 */
1214 if (userfaultfd_wp(dst_vma))
1215 return true;
1216
bcd51a3c 1217 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1218 return true;
1219
1220 if (src_vma->anon_vma)
1221 return true;
1222
1223 /*
1224 * Don't copy ptes where a page fault will fill them correctly. Fork
1225 * becomes much lighter when there are big shared or private readonly
1226 * mappings. The tradeoff is that copy_page_range is more efficient
1227 * than faulting.
1228 */
1229 return false;
1230}
1231
c78f4636
PX
1232int
1233copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1234{
1235 pgd_t *src_pgd, *dst_pgd;
1236 unsigned long next;
c78f4636
PX
1237 unsigned long addr = src_vma->vm_start;
1238 unsigned long end = src_vma->vm_end;
1239 struct mm_struct *dst_mm = dst_vma->vm_mm;
1240 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1241 struct mmu_notifier_range range;
2ec74c3e 1242 bool is_cow;
cddb8a5c 1243 int ret;
1da177e4 1244
c56d1b62 1245 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1246 return 0;
d992895b 1247
c78f4636 1248 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1249 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1250
c78f4636 1251 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1252 /*
1253 * We do not free on error cases below as remove_vma
1254 * gets called on error from higher level routine
1255 */
c78f4636 1256 ret = track_pfn_copy(src_vma);
2ab64037 1257 if (ret)
1258 return ret;
1259 }
1260
cddb8a5c
AA
1261 /*
1262 * We need to invalidate the secondary MMU mappings only when
1263 * there could be a permission downgrade on the ptes of the
1264 * parent mm. And a permission downgrade will only happen if
1265 * is_cow_mapping() returns true.
1266 */
c78f4636 1267 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1268
1269 if (is_cow) {
7269f999 1270 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
7d4a8be0 1271 0, src_mm, addr, end);
ac46d4f3 1272 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1273 /*
1274 * Disabling preemption is not needed for the write side, as
1275 * the read side doesn't spin, but goes to the mmap_lock.
1276 *
1277 * Use the raw variant of the seqcount_t write API to avoid
1278 * lockdep complaining about preemptibility.
1279 */
1280 mmap_assert_write_locked(src_mm);
1281 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1282 }
cddb8a5c
AA
1283
1284 ret = 0;
1da177e4
LT
1285 dst_pgd = pgd_offset(dst_mm, addr);
1286 src_pgd = pgd_offset(src_mm, addr);
1287 do {
1288 next = pgd_addr_end(addr, end);
1289 if (pgd_none_or_clear_bad(src_pgd))
1290 continue;
c78f4636
PX
1291 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1292 addr, next))) {
d155df53 1293 untrack_pfn_clear(dst_vma);
cddb8a5c
AA
1294 ret = -ENOMEM;
1295 break;
1296 }
1da177e4 1297 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1298
57efa1fe
JG
1299 if (is_cow) {
1300 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1301 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1302 }
cddb8a5c 1303 return ret;
1da177e4
LT
1304}
1305
5abfd71d
PX
1306/* Whether we should zap all COWed (private) pages too */
1307static inline bool should_zap_cows(struct zap_details *details)
1308{
1309 /* By default, zap all pages */
1310 if (!details)
1311 return true;
1312
1313 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1314 return details->even_cows;
5abfd71d
PX
1315}
1316
2e148f1e 1317/* Decides whether we should zap this page with the page pointer specified */
254ab940 1318static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1319{
5abfd71d
PX
1320 /* If we can make a decision without *page.. */
1321 if (should_zap_cows(details))
254ab940 1322 return true;
5abfd71d
PX
1323
1324 /* E.g. the caller passes NULL for the case of a zero page */
1325 if (!page)
254ab940 1326 return true;
3506659e 1327
2e148f1e
PX
1328 /* Otherwise we should only zap non-anon pages */
1329 return !PageAnon(page);
3506659e
MWO
1330}
1331
999dad82
PX
1332static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1333{
1334 if (!details)
1335 return false;
1336
1337 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1338}
1339
1340/*
1341 * This function makes sure that we'll replace the none pte with an uffd-wp
1342 * swap special pte marker when necessary. Must be with the pgtable lock held.
1343 */
1344static inline void
1345zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1346 unsigned long addr, pte_t *pte,
1347 struct zap_details *details, pte_t pteval)
1348{
1349 if (zap_drop_file_uffd_wp(details))
1350 return;
1351
1352 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1353}
1354
51c6f666 1355static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1356 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1357 unsigned long addr, unsigned long end,
97a89413 1358 struct zap_details *details)
1da177e4 1359{
b5810039 1360 struct mm_struct *mm = tlb->mm;
d16dfc55 1361 int force_flush = 0;
d559db08 1362 int rss[NR_MM_COUNTERS];
97a89413 1363 spinlock_t *ptl;
5f1a1907 1364 pte_t *start_pte;
97a89413 1365 pte_t *pte;
8a5f14a2 1366 swp_entry_t entry;
d559db08 1367
ed6a7935 1368 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1369again:
e303297e 1370 init_rss_vec(rss);
5f1a1907
SR
1371 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1372 pte = start_pte;
3ea27719 1373 flush_tlb_batched_pending(mm);
6606c3e0 1374 arch_enter_lazy_mmu_mode();
1da177e4
LT
1375 do {
1376 pte_t ptent = *pte;
8018db85
PX
1377 struct page *page;
1378
166f61b9 1379 if (pte_none(ptent))
1da177e4 1380 continue;
6f5e6b9e 1381
7b167b68
MK
1382 if (need_resched())
1383 break;
1384
1da177e4 1385 if (pte_present(ptent)) {
5df397de
LT
1386 unsigned int delay_rmap;
1387
25b2995a 1388 page = vm_normal_page(vma, addr, ptent);
254ab940 1389 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1390 continue;
b5810039 1391 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1392 tlb->fullmm);
1da177e4 1393 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1394 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1395 ptent);
1da177e4
LT
1396 if (unlikely(!page))
1397 continue;
eca56ff9 1398
5df397de 1399 delay_rmap = 0;
eca56ff9 1400 if (!PageAnon(page)) {
1cf35d47 1401 if (pte_dirty(ptent)) {
6237bcd9 1402 set_page_dirty(page);
5df397de
LT
1403 if (tlb_delay_rmap(tlb)) {
1404 delay_rmap = 1;
1405 force_flush = 1;
1406 }
1cf35d47 1407 }
8788f678 1408 if (pte_young(ptent) && likely(vma_has_recency(vma)))
bf3f3bc5 1409 mark_page_accessed(page);
6237bcd9 1410 }
eca56ff9 1411 rss[mm_counter(page)]--;
5df397de
LT
1412 if (!delay_rmap) {
1413 page_remove_rmap(page, vma, false);
1414 if (unlikely(page_mapcount(page) < 0))
1415 print_bad_pte(vma, addr, ptent, page);
1416 }
1417 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1cf35d47 1418 force_flush = 1;
ce9ec37b 1419 addr += PAGE_SIZE;
d16dfc55 1420 break;
1cf35d47 1421 }
1da177e4
LT
1422 continue;
1423 }
5042db43
JG
1424
1425 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1426 if (is_device_private_entry(entry) ||
1427 is_device_exclusive_entry(entry)) {
8018db85 1428 page = pfn_swap_entry_to_page(entry);
254ab940 1429 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1430 continue;
999dad82
PX
1431 /*
1432 * Both device private/exclusive mappings should only
1433 * work with anonymous page so far, so we don't need to
1434 * consider uffd-wp bit when zap. For more information,
1435 * see zap_install_uffd_wp_if_needed().
1436 */
1437 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1438 rss[mm_counter(page)]--;
b756a3b5 1439 if (is_device_private_entry(entry))
cea86fe2 1440 page_remove_rmap(page, vma, false);
5042db43 1441 put_page(page);
8018db85 1442 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1443 /* Genuine swap entry, hence a private anon page */
1444 if (!should_zap_cows(details))
1445 continue;
8a5f14a2 1446 rss[MM_SWAPENTS]--;
8018db85
PX
1447 if (unlikely(!free_swap_and_cache(entry)))
1448 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1449 } else if (is_migration_entry(entry)) {
af5cdaf8 1450 page = pfn_swap_entry_to_page(entry);
254ab940 1451 if (!should_zap_page(details, page))
5abfd71d 1452 continue;
eca56ff9 1453 rss[mm_counter(page)]--;
999dad82
PX
1454 } else if (pte_marker_entry_uffd_wp(entry)) {
1455 /* Only drop the uffd-wp marker if explicitly requested */
1456 if (!zap_drop_file_uffd_wp(details))
1457 continue;
9f186f9e
ML
1458 } else if (is_hwpoison_entry(entry) ||
1459 is_swapin_error_entry(entry)) {
5abfd71d
PX
1460 if (!should_zap_cows(details))
1461 continue;
1462 } else {
1463 /* We should have covered all the swap entry types */
1464 WARN_ON_ONCE(1);
b084d435 1465 }
9888a1ca 1466 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1467 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1468 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1469
d559db08 1470 add_mm_rss_vec(mm, rss);
6606c3e0 1471 arch_leave_lazy_mmu_mode();
51c6f666 1472
1cf35d47 1473 /* Do the actual TLB flush before dropping ptl */
5df397de 1474 if (force_flush) {
1cf35d47 1475 tlb_flush_mmu_tlbonly(tlb);
f036c818 1476 tlb_flush_rmaps(tlb, vma);
5df397de 1477 }
1cf35d47
LT
1478 pte_unmap_unlock(start_pte, ptl);
1479
1480 /*
1481 * If we forced a TLB flush (either due to running out of
1482 * batch buffers or because we needed to flush dirty TLB
1483 * entries before releasing the ptl), free the batched
1484 * memory too. Restart if we didn't do everything.
1485 */
1486 if (force_flush) {
1487 force_flush = 0;
fa0aafb8 1488 tlb_flush_mmu(tlb);
7b167b68
MK
1489 }
1490
1491 if (addr != end) {
1492 cond_resched();
1493 goto again;
d16dfc55
PZ
1494 }
1495
51c6f666 1496 return addr;
1da177e4
LT
1497}
1498
51c6f666 1499static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1500 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1501 unsigned long addr, unsigned long end,
97a89413 1502 struct zap_details *details)
1da177e4
LT
1503{
1504 pmd_t *pmd;
1505 unsigned long next;
1506
1507 pmd = pmd_offset(pud, addr);
1508 do {
1509 next = pmd_addr_end(addr, end);
84c3fc4e 1510 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1511 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1512 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1513 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1514 goto next;
71e3aac0 1515 /* fall through */
3506659e
MWO
1516 } else if (details && details->single_folio &&
1517 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1518 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1519 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1520 /*
1521 * Take and drop THP pmd lock so that we cannot return
1522 * prematurely, while zap_huge_pmd() has cleared *pmd,
1523 * but not yet decremented compound_mapcount().
1524 */
1525 spin_unlock(ptl);
71e3aac0 1526 }
22061a1f 1527
1a5a9906
AA
1528 /*
1529 * Here there can be other concurrent MADV_DONTNEED or
1530 * trans huge page faults running, and if the pmd is
1531 * none or trans huge it can change under us. This is
c1e8d7c6 1532 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1533 * mode.
1534 */
1535 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1536 goto next;
97a89413 1537 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1538next:
97a89413
PZ
1539 cond_resched();
1540 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1541
1542 return addr;
1da177e4
LT
1543}
1544
51c6f666 1545static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1546 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1547 unsigned long addr, unsigned long end,
97a89413 1548 struct zap_details *details)
1da177e4
LT
1549{
1550 pud_t *pud;
1551 unsigned long next;
1552
c2febafc 1553 pud = pud_offset(p4d, addr);
1da177e4
LT
1554 do {
1555 next = pud_addr_end(addr, end);
a00cc7d9
MW
1556 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1557 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1558 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1559 split_huge_pud(vma, pud, addr);
1560 } else if (zap_huge_pud(tlb, vma, pud, addr))
1561 goto next;
1562 /* fall through */
1563 }
97a89413 1564 if (pud_none_or_clear_bad(pud))
1da177e4 1565 continue;
97a89413 1566 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1567next:
1568 cond_resched();
97a89413 1569 } while (pud++, addr = next, addr != end);
51c6f666
RH
1570
1571 return addr;
1da177e4
LT
1572}
1573
c2febafc
KS
1574static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1575 struct vm_area_struct *vma, pgd_t *pgd,
1576 unsigned long addr, unsigned long end,
1577 struct zap_details *details)
1578{
1579 p4d_t *p4d;
1580 unsigned long next;
1581
1582 p4d = p4d_offset(pgd, addr);
1583 do {
1584 next = p4d_addr_end(addr, end);
1585 if (p4d_none_or_clear_bad(p4d))
1586 continue;
1587 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1588 } while (p4d++, addr = next, addr != end);
1589
1590 return addr;
1591}
1592
aac45363 1593void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1594 struct vm_area_struct *vma,
1595 unsigned long addr, unsigned long end,
1596 struct zap_details *details)
1da177e4
LT
1597{
1598 pgd_t *pgd;
1599 unsigned long next;
1600
1da177e4
LT
1601 BUG_ON(addr >= end);
1602 tlb_start_vma(tlb, vma);
1603 pgd = pgd_offset(vma->vm_mm, addr);
1604 do {
1605 next = pgd_addr_end(addr, end);
97a89413 1606 if (pgd_none_or_clear_bad(pgd))
1da177e4 1607 continue;
c2febafc 1608 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1609 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1610 tlb_end_vma(tlb, vma);
1611}
51c6f666 1612
f5cc4eef
AV
1613
1614static void unmap_single_vma(struct mmu_gather *tlb,
1615 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1616 unsigned long end_addr,
68f48381 1617 struct zap_details *details, bool mm_wr_locked)
f5cc4eef
AV
1618{
1619 unsigned long start = max(vma->vm_start, start_addr);
1620 unsigned long end;
1621
1622 if (start >= vma->vm_end)
1623 return;
1624 end = min(vma->vm_end, end_addr);
1625 if (end <= vma->vm_start)
1626 return;
1627
cbc91f71
SD
1628 if (vma->vm_file)
1629 uprobe_munmap(vma, start, end);
1630
b3b9c293 1631 if (unlikely(vma->vm_flags & VM_PFNMAP))
68f48381 1632 untrack_pfn(vma, 0, 0, mm_wr_locked);
f5cc4eef
AV
1633
1634 if (start != end) {
1635 if (unlikely(is_vm_hugetlb_page(vma))) {
1636 /*
1637 * It is undesirable to test vma->vm_file as it
1638 * should be non-null for valid hugetlb area.
1639 * However, vm_file will be NULL in the error
7aa6b4ad 1640 * cleanup path of mmap_region. When
f5cc4eef 1641 * hugetlbfs ->mmap method fails,
7aa6b4ad 1642 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1643 * before calling this function to clean up.
1644 * Since no pte has actually been setup, it is
1645 * safe to do nothing in this case.
1646 */
24669e58 1647 if (vma->vm_file) {
05e90bd0
PX
1648 zap_flags_t zap_flags = details ?
1649 details->zap_flags : 0;
05e90bd0
PX
1650 __unmap_hugepage_range_final(tlb, vma, start, end,
1651 NULL, zap_flags);
24669e58 1652 }
f5cc4eef
AV
1653 } else
1654 unmap_page_range(tlb, vma, start, end, details);
1655 }
1da177e4
LT
1656}
1657
1da177e4
LT
1658/**
1659 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1660 * @tlb: address of the caller's struct mmu_gather
763ecb03 1661 * @mt: the maple tree
1da177e4
LT
1662 * @vma: the starting vma
1663 * @start_addr: virtual address at which to start unmapping
1664 * @end_addr: virtual address at which to end unmapping
1da177e4 1665 *
508034a3 1666 * Unmap all pages in the vma list.
1da177e4 1667 *
1da177e4
LT
1668 * Only addresses between `start' and `end' will be unmapped.
1669 *
1670 * The VMA list must be sorted in ascending virtual address order.
1671 *
1672 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1673 * range after unmap_vmas() returns. So the only responsibility here is to
1674 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1675 * drops the lock and schedules.
1676 */
763ecb03 1677void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1da177e4 1678 struct vm_area_struct *vma, unsigned long start_addr,
68f48381 1679 unsigned long end_addr, bool mm_wr_locked)
1da177e4 1680{
ac46d4f3 1681 struct mmu_notifier_range range;
999dad82 1682 struct zap_details details = {
04ada095 1683 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1684 /* Careful - we need to zap private pages too! */
1685 .even_cows = true,
1686 };
763ecb03 1687 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1da177e4 1688
7d4a8be0 1689 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
6f4f13e8 1690 start_addr, end_addr);
ac46d4f3 1691 mmu_notifier_invalidate_range_start(&range);
763ecb03 1692 do {
68f48381
SB
1693 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1694 mm_wr_locked);
763ecb03 1695 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
ac46d4f3 1696 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1697}
1698
f5cc4eef
AV
1699/**
1700 * zap_page_range_single - remove user pages in a given range
1701 * @vma: vm_area_struct holding the applicable pages
1702 * @address: starting address of pages to zap
1703 * @size: number of bytes to zap
8a5f14a2 1704 * @details: details of shared cache invalidation
f5cc4eef
AV
1705 *
1706 * The range must fit into one VMA.
1da177e4 1707 */
21b85b09 1708void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1709 unsigned long size, struct zap_details *details)
1710{
21b85b09 1711 const unsigned long end = address + size;
ac46d4f3 1712 struct mmu_notifier_range range;
d16dfc55 1713 struct mmu_gather tlb;
1da177e4 1714
1da177e4 1715 lru_add_drain();
7d4a8be0 1716 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
21b85b09
MK
1717 address, end);
1718 if (is_vm_hugetlb_page(vma))
1719 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1720 &range.end);
a72afd87 1721 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1722 update_hiwater_rss(vma->vm_mm);
1723 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1724 /*
1725 * unmap 'address-end' not 'range.start-range.end' as range
1726 * could have been expanded for hugetlb pmd sharing.
1727 */
68f48381 1728 unmap_single_vma(&tlb, vma, address, end, details, false);
ac46d4f3 1729 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1730 tlb_finish_mmu(&tlb);
1da177e4
LT
1731}
1732
c627f9cc
JS
1733/**
1734 * zap_vma_ptes - remove ptes mapping the vma
1735 * @vma: vm_area_struct holding ptes to be zapped
1736 * @address: starting address of pages to zap
1737 * @size: number of bytes to zap
1738 *
1739 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1740 *
1741 * The entire address range must be fully contained within the vma.
1742 *
c627f9cc 1743 */
27d036e3 1744void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1745 unsigned long size)
1746{
88a35912 1747 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1748 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1749 return;
1750
f5cc4eef 1751 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1752}
1753EXPORT_SYMBOL_GPL(zap_vma_ptes);
1754
8cd3984d 1755static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1756{
c2febafc
KS
1757 pgd_t *pgd;
1758 p4d_t *p4d;
1759 pud_t *pud;
1760 pmd_t *pmd;
1761
1762 pgd = pgd_offset(mm, addr);
1763 p4d = p4d_alloc(mm, pgd, addr);
1764 if (!p4d)
1765 return NULL;
1766 pud = pud_alloc(mm, p4d, addr);
1767 if (!pud)
1768 return NULL;
1769 pmd = pmd_alloc(mm, pud, addr);
1770 if (!pmd)
1771 return NULL;
1772
1773 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1774 return pmd;
1775}
1776
1777pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1778 spinlock_t **ptl)
1779{
1780 pmd_t *pmd = walk_to_pmd(mm, addr);
1781
1782 if (!pmd)
1783 return NULL;
c2febafc 1784 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1785}
1786
8efd6f5b
AR
1787static int validate_page_before_insert(struct page *page)
1788{
1789 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1790 return -EINVAL;
1791 flush_dcache_page(page);
1792 return 0;
1793}
1794
cea86fe2 1795static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1796 unsigned long addr, struct page *page, pgprot_t prot)
1797{
1798 if (!pte_none(*pte))
1799 return -EBUSY;
1800 /* Ok, finally just insert the thing.. */
1801 get_page(page);
f1a79412 1802 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2
HD
1803 page_add_file_rmap(page, vma, false);
1804 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1805 return 0;
1806}
1807
238f58d8
LT
1808/*
1809 * This is the old fallback for page remapping.
1810 *
1811 * For historical reasons, it only allows reserved pages. Only
1812 * old drivers should use this, and they needed to mark their
1813 * pages reserved for the old functions anyway.
1814 */
423bad60
NP
1815static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1816 struct page *page, pgprot_t prot)
238f58d8
LT
1817{
1818 int retval;
c9cfcddf 1819 pte_t *pte;
8a9f3ccd
BS
1820 spinlock_t *ptl;
1821
8efd6f5b
AR
1822 retval = validate_page_before_insert(page);
1823 if (retval)
5b4e655e 1824 goto out;
238f58d8 1825 retval = -ENOMEM;
cea86fe2 1826 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1827 if (!pte)
5b4e655e 1828 goto out;
cea86fe2 1829 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1830 pte_unmap_unlock(pte, ptl);
1831out:
1832 return retval;
1833}
1834
8cd3984d 1835#ifdef pte_index
cea86fe2 1836static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1837 unsigned long addr, struct page *page, pgprot_t prot)
1838{
1839 int err;
1840
1841 if (!page_count(page))
1842 return -EINVAL;
1843 err = validate_page_before_insert(page);
7f70c2a6
AR
1844 if (err)
1845 return err;
cea86fe2 1846 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1847}
1848
1849/* insert_pages() amortizes the cost of spinlock operations
1850 * when inserting pages in a loop. Arch *must* define pte_index.
1851 */
1852static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1853 struct page **pages, unsigned long *num, pgprot_t prot)
1854{
1855 pmd_t *pmd = NULL;
7f70c2a6
AR
1856 pte_t *start_pte, *pte;
1857 spinlock_t *pte_lock;
8cd3984d
AR
1858 struct mm_struct *const mm = vma->vm_mm;
1859 unsigned long curr_page_idx = 0;
1860 unsigned long remaining_pages_total = *num;
1861 unsigned long pages_to_write_in_pmd;
1862 int ret;
1863more:
1864 ret = -EFAULT;
1865 pmd = walk_to_pmd(mm, addr);
1866 if (!pmd)
1867 goto out;
1868
1869 pages_to_write_in_pmd = min_t(unsigned long,
1870 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1871
1872 /* Allocate the PTE if necessary; takes PMD lock once only. */
1873 ret = -ENOMEM;
1874 if (pte_alloc(mm, pmd))
1875 goto out;
8cd3984d
AR
1876
1877 while (pages_to_write_in_pmd) {
1878 int pte_idx = 0;
1879 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1880
7f70c2a6
AR
1881 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1882 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1883 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1884 addr, pages[curr_page_idx], prot);
1885 if (unlikely(err)) {
7f70c2a6 1886 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1887 ret = err;
1888 remaining_pages_total -= pte_idx;
1889 goto out;
1890 }
1891 addr += PAGE_SIZE;
1892 ++curr_page_idx;
1893 }
7f70c2a6 1894 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1895 pages_to_write_in_pmd -= batch_size;
1896 remaining_pages_total -= batch_size;
1897 }
1898 if (remaining_pages_total)
1899 goto more;
1900 ret = 0;
1901out:
1902 *num = remaining_pages_total;
1903 return ret;
1904}
1905#endif /* ifdef pte_index */
1906
1907/**
1908 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1909 * @vma: user vma to map to
1910 * @addr: target start user address of these pages
1911 * @pages: source kernel pages
1912 * @num: in: number of pages to map. out: number of pages that were *not*
1913 * mapped. (0 means all pages were successfully mapped).
1914 *
1915 * Preferred over vm_insert_page() when inserting multiple pages.
1916 *
1917 * In case of error, we may have mapped a subset of the provided
1918 * pages. It is the caller's responsibility to account for this case.
1919 *
1920 * The same restrictions apply as in vm_insert_page().
1921 */
1922int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1923 struct page **pages, unsigned long *num)
1924{
1925#ifdef pte_index
1926 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1927
1928 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1929 return -EFAULT;
1930 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1931 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d 1932 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 1933 vm_flags_set(vma, VM_MIXEDMAP);
8cd3984d
AR
1934 }
1935 /* Defer page refcount checking till we're about to map that page. */
1936 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1937#else
1938 unsigned long idx = 0, pgcount = *num;
45779b03 1939 int err = -EINVAL;
8cd3984d
AR
1940
1941 for (; idx < pgcount; ++idx) {
1942 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1943 if (err)
1944 break;
1945 }
1946 *num = pgcount - idx;
1947 return err;
1948#endif /* ifdef pte_index */
1949}
1950EXPORT_SYMBOL(vm_insert_pages);
1951
bfa5bf6d
REB
1952/**
1953 * vm_insert_page - insert single page into user vma
1954 * @vma: user vma to map to
1955 * @addr: target user address of this page
1956 * @page: source kernel page
1957 *
a145dd41
LT
1958 * This allows drivers to insert individual pages they've allocated
1959 * into a user vma.
1960 *
1961 * The page has to be a nice clean _individual_ kernel allocation.
1962 * If you allocate a compound page, you need to have marked it as
1963 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1964 * (see split_page()).
a145dd41
LT
1965 *
1966 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1967 * took an arbitrary page protection parameter. This doesn't allow
1968 * that. Your vma protection will have to be set up correctly, which
1969 * means that if you want a shared writable mapping, you'd better
1970 * ask for a shared writable mapping!
1971 *
1972 * The page does not need to be reserved.
4b6e1e37
KK
1973 *
1974 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1975 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1976 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1977 * function from other places, for example from page-fault handler.
a862f68a
MR
1978 *
1979 * Return: %0 on success, negative error code otherwise.
a145dd41 1980 */
423bad60
NP
1981int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1982 struct page *page)
a145dd41
LT
1983{
1984 if (addr < vma->vm_start || addr >= vma->vm_end)
1985 return -EFAULT;
1986 if (!page_count(page))
1987 return -EINVAL;
4b6e1e37 1988 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1989 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37 1990 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 1991 vm_flags_set(vma, VM_MIXEDMAP);
4b6e1e37 1992 }
423bad60 1993 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1994}
e3c3374f 1995EXPORT_SYMBOL(vm_insert_page);
a145dd41 1996
a667d745
SJ
1997/*
1998 * __vm_map_pages - maps range of kernel pages into user vma
1999 * @vma: user vma to map to
2000 * @pages: pointer to array of source kernel pages
2001 * @num: number of pages in page array
2002 * @offset: user's requested vm_pgoff
2003 *
2004 * This allows drivers to map range of kernel pages into a user vma.
2005 *
2006 * Return: 0 on success and error code otherwise.
2007 */
2008static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2009 unsigned long num, unsigned long offset)
2010{
2011 unsigned long count = vma_pages(vma);
2012 unsigned long uaddr = vma->vm_start;
2013 int ret, i;
2014
2015 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2016 if (offset >= num)
a667d745
SJ
2017 return -ENXIO;
2018
2019 /* Fail if the user requested size exceeds available object size */
2020 if (count > num - offset)
2021 return -ENXIO;
2022
2023 for (i = 0; i < count; i++) {
2024 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2025 if (ret < 0)
2026 return ret;
2027 uaddr += PAGE_SIZE;
2028 }
2029
2030 return 0;
2031}
2032
2033/**
2034 * vm_map_pages - maps range of kernel pages starts with non zero offset
2035 * @vma: user vma to map to
2036 * @pages: pointer to array of source kernel pages
2037 * @num: number of pages in page array
2038 *
2039 * Maps an object consisting of @num pages, catering for the user's
2040 * requested vm_pgoff
2041 *
2042 * If we fail to insert any page into the vma, the function will return
2043 * immediately leaving any previously inserted pages present. Callers
2044 * from the mmap handler may immediately return the error as their caller
2045 * will destroy the vma, removing any successfully inserted pages. Other
2046 * callers should make their own arrangements for calling unmap_region().
2047 *
2048 * Context: Process context. Called by mmap handlers.
2049 * Return: 0 on success and error code otherwise.
2050 */
2051int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2052 unsigned long num)
2053{
2054 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2055}
2056EXPORT_SYMBOL(vm_map_pages);
2057
2058/**
2059 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2060 * @vma: user vma to map to
2061 * @pages: pointer to array of source kernel pages
2062 * @num: number of pages in page array
2063 *
2064 * Similar to vm_map_pages(), except that it explicitly sets the offset
2065 * to 0. This function is intended for the drivers that did not consider
2066 * vm_pgoff.
2067 *
2068 * Context: Process context. Called by mmap handlers.
2069 * Return: 0 on success and error code otherwise.
2070 */
2071int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2072 unsigned long num)
2073{
2074 return __vm_map_pages(vma, pages, num, 0);
2075}
2076EXPORT_SYMBOL(vm_map_pages_zero);
2077
9b5a8e00 2078static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2079 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2080{
2081 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2082 pte_t *pte, entry;
2083 spinlock_t *ptl;
2084
423bad60
NP
2085 pte = get_locked_pte(mm, addr, &ptl);
2086 if (!pte)
9b5a8e00 2087 return VM_FAULT_OOM;
b2770da6
RZ
2088 if (!pte_none(*pte)) {
2089 if (mkwrite) {
2090 /*
2091 * For read faults on private mappings the PFN passed
2092 * in may not match the PFN we have mapped if the
2093 * mapped PFN is a writeable COW page. In the mkwrite
2094 * case we are creating a writable PTE for a shared
f2c57d91
JK
2095 * mapping and we expect the PFNs to match. If they
2096 * don't match, we are likely racing with block
2097 * allocation and mapping invalidation so just skip the
2098 * update.
b2770da6 2099 */
f2c57d91
JK
2100 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2101 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2102 goto out_unlock;
f2c57d91 2103 }
cae85cb8
JK
2104 entry = pte_mkyoung(*pte);
2105 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2106 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2107 update_mmu_cache(vma, addr, pte);
2108 }
2109 goto out_unlock;
b2770da6 2110 }
423bad60
NP
2111
2112 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2113 if (pfn_t_devmap(pfn))
2114 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2115 else
2116 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2117
b2770da6
RZ
2118 if (mkwrite) {
2119 entry = pte_mkyoung(entry);
2120 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2121 }
2122
423bad60 2123 set_pte_at(mm, addr, pte, entry);
4b3073e1 2124 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2125
423bad60
NP
2126out_unlock:
2127 pte_unmap_unlock(pte, ptl);
9b5a8e00 2128 return VM_FAULT_NOPAGE;
423bad60
NP
2129}
2130
f5e6d1d5
MW
2131/**
2132 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2133 * @vma: user vma to map to
2134 * @addr: target user address of this page
2135 * @pfn: source kernel pfn
2136 * @pgprot: pgprot flags for the inserted page
2137 *
a1a0aea5 2138 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2139 * to override pgprot on a per-page basis.
2140 *
2141 * This only makes sense for IO mappings, and it makes no sense for
2142 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2143 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2144 * impractical.
2145 *
574c5b3d
TH
2146 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2147 * a value of @pgprot different from that of @vma->vm_page_prot.
2148 *
ae2b01f3 2149 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2150 * Return: vm_fault_t value.
2151 */
2152vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2153 unsigned long pfn, pgprot_t pgprot)
2154{
6d958546
MW
2155 /*
2156 * Technically, architectures with pte_special can avoid all these
2157 * restrictions (same for remap_pfn_range). However we would like
2158 * consistency in testing and feature parity among all, so we should
2159 * try to keep these invariants in place for everybody.
2160 */
2161 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2162 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2163 (VM_PFNMAP|VM_MIXEDMAP));
2164 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2165 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2166
2167 if (addr < vma->vm_start || addr >= vma->vm_end)
2168 return VM_FAULT_SIGBUS;
2169
2170 if (!pfn_modify_allowed(pfn, pgprot))
2171 return VM_FAULT_SIGBUS;
2172
2173 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2174
9b5a8e00 2175 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2176 false);
f5e6d1d5
MW
2177}
2178EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2179
ae2b01f3
MW
2180/**
2181 * vmf_insert_pfn - insert single pfn into user vma
2182 * @vma: user vma to map to
2183 * @addr: target user address of this page
2184 * @pfn: source kernel pfn
2185 *
2186 * Similar to vm_insert_page, this allows drivers to insert individual pages
2187 * they've allocated into a user vma. Same comments apply.
2188 *
2189 * This function should only be called from a vm_ops->fault handler, and
2190 * in that case the handler should return the result of this function.
2191 *
2192 * vma cannot be a COW mapping.
2193 *
2194 * As this is called only for pages that do not currently exist, we
2195 * do not need to flush old virtual caches or the TLB.
2196 *
2197 * Context: Process context. May allocate using %GFP_KERNEL.
2198 * Return: vm_fault_t value.
2199 */
2200vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2201 unsigned long pfn)
2202{
2203 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2204}
2205EXPORT_SYMBOL(vmf_insert_pfn);
2206
785a3fab
DW
2207static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2208{
2209 /* these checks mirror the abort conditions in vm_normal_page */
2210 if (vma->vm_flags & VM_MIXEDMAP)
2211 return true;
2212 if (pfn_t_devmap(pfn))
2213 return true;
2214 if (pfn_t_special(pfn))
2215 return true;
2216 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2217 return true;
2218 return false;
2219}
2220
79f3aa5b 2221static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2222 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2223 bool mkwrite)
423bad60 2224{
79f3aa5b 2225 int err;
87744ab3 2226
785a3fab 2227 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2228
423bad60 2229 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2230 return VM_FAULT_SIGBUS;
308a047c
BP
2231
2232 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2233
42e4089c 2234 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2235 return VM_FAULT_SIGBUS;
42e4089c 2236
423bad60
NP
2237 /*
2238 * If we don't have pte special, then we have to use the pfn_valid()
2239 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2240 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2241 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2242 * without pte special, it would there be refcounted as a normal page.
423bad60 2243 */
00b3a331
LD
2244 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2245 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2246 struct page *page;
2247
03fc2da6
DW
2248 /*
2249 * At this point we are committed to insert_page()
2250 * regardless of whether the caller specified flags that
2251 * result in pfn_t_has_page() == false.
2252 */
2253 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2254 err = insert_page(vma, addr, page, pgprot);
2255 } else {
9b5a8e00 2256 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2257 }
b2770da6 2258
5d747637
MW
2259 if (err == -ENOMEM)
2260 return VM_FAULT_OOM;
2261 if (err < 0 && err != -EBUSY)
2262 return VM_FAULT_SIGBUS;
2263
2264 return VM_FAULT_NOPAGE;
e0dc0d8f 2265}
79f3aa5b 2266
574c5b3d
TH
2267/**
2268 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2269 * @vma: user vma to map to
2270 * @addr: target user address of this page
2271 * @pfn: source kernel pfn
2272 * @pgprot: pgprot flags for the inserted page
2273 *
a1a0aea5 2274 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2275 * to override pgprot on a per-page basis.
2276 *
2277 * Typically this function should be used by drivers to set caching- and
2278 * encryption bits different than those of @vma->vm_page_prot, because
2279 * the caching- or encryption mode may not be known at mmap() time.
2280 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2281 * to set caching and encryption bits for those vmas (except for COW pages).
2282 * This is ensured by core vm only modifying these page table entries using
2283 * functions that don't touch caching- or encryption bits, using pte_modify()
2284 * if needed. (See for example mprotect()).
2285 * Also when new page-table entries are created, this is only done using the
2286 * fault() callback, and never using the value of vma->vm_page_prot,
2287 * except for page-table entries that point to anonymous pages as the result
2288 * of COW.
2289 *
2290 * Context: Process context. May allocate using %GFP_KERNEL.
2291 * Return: vm_fault_t value.
2292 */
2293vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2294 pfn_t pfn, pgprot_t pgprot)
2295{
2296 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2297}
5379e4dd 2298EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2299
79f3aa5b
MW
2300vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2301 pfn_t pfn)
2302{
574c5b3d 2303 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2304}
5d747637 2305EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2306
ab77dab4
SJ
2307/*
2308 * If the insertion of PTE failed because someone else already added a
2309 * different entry in the mean time, we treat that as success as we assume
2310 * the same entry was actually inserted.
2311 */
ab77dab4
SJ
2312vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2313 unsigned long addr, pfn_t pfn)
b2770da6 2314{
574c5b3d 2315 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2316}
ab77dab4 2317EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2318
1da177e4
LT
2319/*
2320 * maps a range of physical memory into the requested pages. the old
2321 * mappings are removed. any references to nonexistent pages results
2322 * in null mappings (currently treated as "copy-on-access")
2323 */
2324static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2325 unsigned long addr, unsigned long end,
2326 unsigned long pfn, pgprot_t prot)
2327{
90a3e375 2328 pte_t *pte, *mapped_pte;
c74df32c 2329 spinlock_t *ptl;
42e4089c 2330 int err = 0;
1da177e4 2331
90a3e375 2332 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2333 if (!pte)
2334 return -ENOMEM;
6606c3e0 2335 arch_enter_lazy_mmu_mode();
1da177e4
LT
2336 do {
2337 BUG_ON(!pte_none(*pte));
42e4089c
AK
2338 if (!pfn_modify_allowed(pfn, prot)) {
2339 err = -EACCES;
2340 break;
2341 }
7e675137 2342 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2343 pfn++;
2344 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2345 arch_leave_lazy_mmu_mode();
90a3e375 2346 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2347 return err;
1da177e4
LT
2348}
2349
2350static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2351 unsigned long addr, unsigned long end,
2352 unsigned long pfn, pgprot_t prot)
2353{
2354 pmd_t *pmd;
2355 unsigned long next;
42e4089c 2356 int err;
1da177e4
LT
2357
2358 pfn -= addr >> PAGE_SHIFT;
2359 pmd = pmd_alloc(mm, pud, addr);
2360 if (!pmd)
2361 return -ENOMEM;
f66055ab 2362 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2363 do {
2364 next = pmd_addr_end(addr, end);
42e4089c
AK
2365 err = remap_pte_range(mm, pmd, addr, next,
2366 pfn + (addr >> PAGE_SHIFT), prot);
2367 if (err)
2368 return err;
1da177e4
LT
2369 } while (pmd++, addr = next, addr != end);
2370 return 0;
2371}
2372
c2febafc 2373static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2374 unsigned long addr, unsigned long end,
2375 unsigned long pfn, pgprot_t prot)
2376{
2377 pud_t *pud;
2378 unsigned long next;
42e4089c 2379 int err;
1da177e4
LT
2380
2381 pfn -= addr >> PAGE_SHIFT;
c2febafc 2382 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2383 if (!pud)
2384 return -ENOMEM;
2385 do {
2386 next = pud_addr_end(addr, end);
42e4089c
AK
2387 err = remap_pmd_range(mm, pud, addr, next,
2388 pfn + (addr >> PAGE_SHIFT), prot);
2389 if (err)
2390 return err;
1da177e4
LT
2391 } while (pud++, addr = next, addr != end);
2392 return 0;
2393}
2394
c2febafc
KS
2395static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2396 unsigned long addr, unsigned long end,
2397 unsigned long pfn, pgprot_t prot)
2398{
2399 p4d_t *p4d;
2400 unsigned long next;
42e4089c 2401 int err;
c2febafc
KS
2402
2403 pfn -= addr >> PAGE_SHIFT;
2404 p4d = p4d_alloc(mm, pgd, addr);
2405 if (!p4d)
2406 return -ENOMEM;
2407 do {
2408 next = p4d_addr_end(addr, end);
42e4089c
AK
2409 err = remap_pud_range(mm, p4d, addr, next,
2410 pfn + (addr >> PAGE_SHIFT), prot);
2411 if (err)
2412 return err;
c2febafc
KS
2413 } while (p4d++, addr = next, addr != end);
2414 return 0;
2415}
2416
74ffa5a3
CH
2417/*
2418 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2419 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2420 */
74ffa5a3
CH
2421int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2422 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2423{
2424 pgd_t *pgd;
2425 unsigned long next;
2d15cab8 2426 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2427 struct mm_struct *mm = vma->vm_mm;
2428 int err;
2429
0c4123e3
AZ
2430 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2431 return -EINVAL;
2432
1da177e4
LT
2433 /*
2434 * Physically remapped pages are special. Tell the
2435 * rest of the world about it:
2436 * VM_IO tells people not to look at these pages
2437 * (accesses can have side effects).
6aab341e
LT
2438 * VM_PFNMAP tells the core MM that the base pages are just
2439 * raw PFN mappings, and do not have a "struct page" associated
2440 * with them.
314e51b9
KK
2441 * VM_DONTEXPAND
2442 * Disable vma merging and expanding with mremap().
2443 * VM_DONTDUMP
2444 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2445 *
2446 * There's a horrible special case to handle copy-on-write
2447 * behaviour that some programs depend on. We mark the "original"
2448 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2449 * See vm_normal_page() for details.
1da177e4 2450 */
b3b9c293
KK
2451 if (is_cow_mapping(vma->vm_flags)) {
2452 if (addr != vma->vm_start || end != vma->vm_end)
2453 return -EINVAL;
fb155c16 2454 vma->vm_pgoff = pfn;
b3b9c293
KK
2455 }
2456
1c71222e 2457 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1da177e4
LT
2458
2459 BUG_ON(addr >= end);
2460 pfn -= addr >> PAGE_SHIFT;
2461 pgd = pgd_offset(mm, addr);
2462 flush_cache_range(vma, addr, end);
1da177e4
LT
2463 do {
2464 next = pgd_addr_end(addr, end);
c2febafc 2465 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2466 pfn + (addr >> PAGE_SHIFT), prot);
2467 if (err)
74ffa5a3 2468 return err;
1da177e4 2469 } while (pgd++, addr = next, addr != end);
2ab64037 2470
74ffa5a3
CH
2471 return 0;
2472}
2473
2474/**
2475 * remap_pfn_range - remap kernel memory to userspace
2476 * @vma: user vma to map to
2477 * @addr: target page aligned user address to start at
2478 * @pfn: page frame number of kernel physical memory address
2479 * @size: size of mapping area
2480 * @prot: page protection flags for this mapping
2481 *
2482 * Note: this is only safe if the mm semaphore is held when called.
2483 *
2484 * Return: %0 on success, negative error code otherwise.
2485 */
2486int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2487 unsigned long pfn, unsigned long size, pgprot_t prot)
2488{
2489 int err;
2490
2491 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2492 if (err)
74ffa5a3 2493 return -EINVAL;
2ab64037 2494
74ffa5a3
CH
2495 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2496 if (err)
68f48381 2497 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
1da177e4
LT
2498 return err;
2499}
2500EXPORT_SYMBOL(remap_pfn_range);
2501
b4cbb197
LT
2502/**
2503 * vm_iomap_memory - remap memory to userspace
2504 * @vma: user vma to map to
abd69b9e 2505 * @start: start of the physical memory to be mapped
b4cbb197
LT
2506 * @len: size of area
2507 *
2508 * This is a simplified io_remap_pfn_range() for common driver use. The
2509 * driver just needs to give us the physical memory range to be mapped,
2510 * we'll figure out the rest from the vma information.
2511 *
2512 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2513 * whatever write-combining details or similar.
a862f68a
MR
2514 *
2515 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2516 */
2517int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2518{
2519 unsigned long vm_len, pfn, pages;
2520
2521 /* Check that the physical memory area passed in looks valid */
2522 if (start + len < start)
2523 return -EINVAL;
2524 /*
2525 * You *really* shouldn't map things that aren't page-aligned,
2526 * but we've historically allowed it because IO memory might
2527 * just have smaller alignment.
2528 */
2529 len += start & ~PAGE_MASK;
2530 pfn = start >> PAGE_SHIFT;
2531 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2532 if (pfn + pages < pfn)
2533 return -EINVAL;
2534
2535 /* We start the mapping 'vm_pgoff' pages into the area */
2536 if (vma->vm_pgoff > pages)
2537 return -EINVAL;
2538 pfn += vma->vm_pgoff;
2539 pages -= vma->vm_pgoff;
2540
2541 /* Can we fit all of the mapping? */
2542 vm_len = vma->vm_end - vma->vm_start;
2543 if (vm_len >> PAGE_SHIFT > pages)
2544 return -EINVAL;
2545
2546 /* Ok, let it rip */
2547 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2548}
2549EXPORT_SYMBOL(vm_iomap_memory);
2550
aee16b3c
JF
2551static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2552 unsigned long addr, unsigned long end,
e80d3909
JR
2553 pte_fn_t fn, void *data, bool create,
2554 pgtbl_mod_mask *mask)
aee16b3c 2555{
8abb50c7 2556 pte_t *pte, *mapped_pte;
be1db475 2557 int err = 0;
3f649ab7 2558 spinlock_t *ptl;
aee16b3c 2559
be1db475 2560 if (create) {
8abb50c7 2561 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2562 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2563 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2564 if (!pte)
2565 return -ENOMEM;
2566 } else {
8abb50c7 2567 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2568 pte_offset_kernel(pmd, addr) :
2569 pte_offset_map_lock(mm, pmd, addr, &ptl);
2570 }
aee16b3c
JF
2571
2572 BUG_ON(pmd_huge(*pmd));
2573
38e0edb1
JF
2574 arch_enter_lazy_mmu_mode();
2575
eeb4a05f
CH
2576 if (fn) {
2577 do {
2578 if (create || !pte_none(*pte)) {
2579 err = fn(pte++, addr, data);
2580 if (err)
2581 break;
2582 }
2583 } while (addr += PAGE_SIZE, addr != end);
2584 }
e80d3909 2585 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2586
38e0edb1
JF
2587 arch_leave_lazy_mmu_mode();
2588
aee16b3c 2589 if (mm != &init_mm)
8abb50c7 2590 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2591 return err;
2592}
2593
2594static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2595 unsigned long addr, unsigned long end,
e80d3909
JR
2596 pte_fn_t fn, void *data, bool create,
2597 pgtbl_mod_mask *mask)
aee16b3c
JF
2598{
2599 pmd_t *pmd;
2600 unsigned long next;
be1db475 2601 int err = 0;
aee16b3c 2602
ceb86879
AK
2603 BUG_ON(pud_huge(*pud));
2604
be1db475 2605 if (create) {
e80d3909 2606 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2607 if (!pmd)
2608 return -ENOMEM;
2609 } else {
2610 pmd = pmd_offset(pud, addr);
2611 }
aee16b3c
JF
2612 do {
2613 next = pmd_addr_end(addr, end);
0c95cba4
NP
2614 if (pmd_none(*pmd) && !create)
2615 continue;
2616 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2617 return -EINVAL;
2618 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2619 if (!create)
2620 continue;
2621 pmd_clear_bad(pmd);
be1db475 2622 }
0c95cba4
NP
2623 err = apply_to_pte_range(mm, pmd, addr, next,
2624 fn, data, create, mask);
2625 if (err)
2626 break;
aee16b3c 2627 } while (pmd++, addr = next, addr != end);
0c95cba4 2628
aee16b3c
JF
2629 return err;
2630}
2631
c2febafc 2632static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2633 unsigned long addr, unsigned long end,
e80d3909
JR
2634 pte_fn_t fn, void *data, bool create,
2635 pgtbl_mod_mask *mask)
aee16b3c
JF
2636{
2637 pud_t *pud;
2638 unsigned long next;
be1db475 2639 int err = 0;
aee16b3c 2640
be1db475 2641 if (create) {
e80d3909 2642 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2643 if (!pud)
2644 return -ENOMEM;
2645 } else {
2646 pud = pud_offset(p4d, addr);
2647 }
aee16b3c
JF
2648 do {
2649 next = pud_addr_end(addr, end);
0c95cba4
NP
2650 if (pud_none(*pud) && !create)
2651 continue;
2652 if (WARN_ON_ONCE(pud_leaf(*pud)))
2653 return -EINVAL;
2654 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2655 if (!create)
2656 continue;
2657 pud_clear_bad(pud);
be1db475 2658 }
0c95cba4
NP
2659 err = apply_to_pmd_range(mm, pud, addr, next,
2660 fn, data, create, mask);
2661 if (err)
2662 break;
aee16b3c 2663 } while (pud++, addr = next, addr != end);
0c95cba4 2664
aee16b3c
JF
2665 return err;
2666}
2667
c2febafc
KS
2668static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2669 unsigned long addr, unsigned long end,
e80d3909
JR
2670 pte_fn_t fn, void *data, bool create,
2671 pgtbl_mod_mask *mask)
c2febafc
KS
2672{
2673 p4d_t *p4d;
2674 unsigned long next;
be1db475 2675 int err = 0;
c2febafc 2676
be1db475 2677 if (create) {
e80d3909 2678 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2679 if (!p4d)
2680 return -ENOMEM;
2681 } else {
2682 p4d = p4d_offset(pgd, addr);
2683 }
c2febafc
KS
2684 do {
2685 next = p4d_addr_end(addr, end);
0c95cba4
NP
2686 if (p4d_none(*p4d) && !create)
2687 continue;
2688 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2689 return -EINVAL;
2690 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2691 if (!create)
2692 continue;
2693 p4d_clear_bad(p4d);
be1db475 2694 }
0c95cba4
NP
2695 err = apply_to_pud_range(mm, p4d, addr, next,
2696 fn, data, create, mask);
2697 if (err)
2698 break;
c2febafc 2699 } while (p4d++, addr = next, addr != end);
0c95cba4 2700
c2febafc
KS
2701 return err;
2702}
2703
be1db475
DA
2704static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2705 unsigned long size, pte_fn_t fn,
2706 void *data, bool create)
aee16b3c
JF
2707{
2708 pgd_t *pgd;
e80d3909 2709 unsigned long start = addr, next;
57250a5b 2710 unsigned long end = addr + size;
e80d3909 2711 pgtbl_mod_mask mask = 0;
be1db475 2712 int err = 0;
aee16b3c 2713
9cb65bc3
MP
2714 if (WARN_ON(addr >= end))
2715 return -EINVAL;
2716
aee16b3c
JF
2717 pgd = pgd_offset(mm, addr);
2718 do {
2719 next = pgd_addr_end(addr, end);
0c95cba4 2720 if (pgd_none(*pgd) && !create)
be1db475 2721 continue;
0c95cba4
NP
2722 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2723 return -EINVAL;
2724 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2725 if (!create)
2726 continue;
2727 pgd_clear_bad(pgd);
2728 }
2729 err = apply_to_p4d_range(mm, pgd, addr, next,
2730 fn, data, create, &mask);
aee16b3c
JF
2731 if (err)
2732 break;
2733 } while (pgd++, addr = next, addr != end);
57250a5b 2734
e80d3909
JR
2735 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2736 arch_sync_kernel_mappings(start, start + size);
2737
aee16b3c
JF
2738 return err;
2739}
be1db475
DA
2740
2741/*
2742 * Scan a region of virtual memory, filling in page tables as necessary
2743 * and calling a provided function on each leaf page table.
2744 */
2745int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2746 unsigned long size, pte_fn_t fn, void *data)
2747{
2748 return __apply_to_page_range(mm, addr, size, fn, data, true);
2749}
aee16b3c
JF
2750EXPORT_SYMBOL_GPL(apply_to_page_range);
2751
be1db475
DA
2752/*
2753 * Scan a region of virtual memory, calling a provided function on
2754 * each leaf page table where it exists.
2755 *
2756 * Unlike apply_to_page_range, this does _not_ fill in page tables
2757 * where they are absent.
2758 */
2759int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2760 unsigned long size, pte_fn_t fn, void *data)
2761{
2762 return __apply_to_page_range(mm, addr, size, fn, data, false);
2763}
2764EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2765
8f4e2101 2766/*
9b4bdd2f
KS
2767 * handle_pte_fault chooses page fault handler according to an entry which was
2768 * read non-atomically. Before making any commitment, on those architectures
2769 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2770 * parts, do_swap_page must check under lock before unmapping the pte and
2771 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2772 * and do_anonymous_page can safely check later on).
8f4e2101 2773 */
2ca99358 2774static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2775{
2776 int same = 1;
923717cb 2777#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2778 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2779 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2780 spin_lock(ptl);
2ca99358 2781 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2782 spin_unlock(ptl);
8f4e2101
HD
2783 }
2784#endif
2ca99358
PX
2785 pte_unmap(vmf->pte);
2786 vmf->pte = NULL;
8f4e2101
HD
2787 return same;
2788}
2789
a873dfe1
TL
2790/*
2791 * Return:
2792 * 0: copied succeeded
2793 * -EHWPOISON: copy failed due to hwpoison in source page
2794 * -EAGAIN: copied failed (some other reason)
2795 */
2796static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2797 struct vm_fault *vmf)
6aab341e 2798{
a873dfe1 2799 int ret;
83d116c5
JH
2800 void *kaddr;
2801 void __user *uaddr;
c3e5ea6e 2802 bool locked = false;
83d116c5
JH
2803 struct vm_area_struct *vma = vmf->vma;
2804 struct mm_struct *mm = vma->vm_mm;
2805 unsigned long addr = vmf->address;
2806
83d116c5 2807 if (likely(src)) {
d302c239
TL
2808 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2809 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2810 return -EHWPOISON;
d302c239 2811 }
a873dfe1 2812 return 0;
83d116c5
JH
2813 }
2814
6aab341e
LT
2815 /*
2816 * If the source page was a PFN mapping, we don't have
2817 * a "struct page" for it. We do a best-effort copy by
2818 * just copying from the original user address. If that
2819 * fails, we just zero-fill it. Live with it.
2820 */
83d116c5
JH
2821 kaddr = kmap_atomic(dst);
2822 uaddr = (void __user *)(addr & PAGE_MASK);
2823
2824 /*
2825 * On architectures with software "accessed" bits, we would
2826 * take a double page fault, so mark it accessed here.
2827 */
e1fd09e3 2828 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2829 pte_t entry;
5d2a2dbb 2830
83d116c5 2831 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2832 locked = true;
83d116c5
JH
2833 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2834 /*
2835 * Other thread has already handled the fault
7df67697 2836 * and update local tlb only
83d116c5 2837 */
7df67697 2838 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2839 ret = -EAGAIN;
83d116c5
JH
2840 goto pte_unlock;
2841 }
2842
2843 entry = pte_mkyoung(vmf->orig_pte);
2844 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2845 update_mmu_cache(vma, addr, vmf->pte);
2846 }
2847
2848 /*
2849 * This really shouldn't fail, because the page is there
2850 * in the page tables. But it might just be unreadable,
2851 * in which case we just give up and fill the result with
2852 * zeroes.
2853 */
2854 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2855 if (locked)
2856 goto warn;
2857
2858 /* Re-validate under PTL if the page is still mapped */
2859 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2860 locked = true;
2861 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2862 /* The PTE changed under us, update local tlb */
2863 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2864 ret = -EAGAIN;
c3e5ea6e
KS
2865 goto pte_unlock;
2866 }
2867
5d2a2dbb 2868 /*
985ba004 2869 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2870 * Try to copy again under PTL.
5d2a2dbb 2871 */
c3e5ea6e
KS
2872 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2873 /*
2874 * Give a warn in case there can be some obscure
2875 * use-case
2876 */
2877warn:
2878 WARN_ON_ONCE(1);
2879 clear_page(kaddr);
2880 }
83d116c5
JH
2881 }
2882
a873dfe1 2883 ret = 0;
83d116c5
JH
2884
2885pte_unlock:
c3e5ea6e 2886 if (locked)
83d116c5
JH
2887 pte_unmap_unlock(vmf->pte, vmf->ptl);
2888 kunmap_atomic(kaddr);
2889 flush_dcache_page(dst);
2890
2891 return ret;
6aab341e
LT
2892}
2893
c20cd45e
MH
2894static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2895{
2896 struct file *vm_file = vma->vm_file;
2897
2898 if (vm_file)
2899 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2900
2901 /*
2902 * Special mappings (e.g. VDSO) do not have any file so fake
2903 * a default GFP_KERNEL for them.
2904 */
2905 return GFP_KERNEL;
2906}
2907
fb09a464
KS
2908/*
2909 * Notify the address space that the page is about to become writable so that
2910 * it can prohibit this or wait for the page to get into an appropriate state.
2911 *
2912 * We do this without the lock held, so that it can sleep if it needs to.
2913 */
2b740303 2914static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2915{
2b740303 2916 vm_fault_t ret;
38b8cb7f
JK
2917 struct page *page = vmf->page;
2918 unsigned int old_flags = vmf->flags;
fb09a464 2919
38b8cb7f 2920 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2921
dc617f29
DW
2922 if (vmf->vma->vm_file &&
2923 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2924 return VM_FAULT_SIGBUS;
2925
11bac800 2926 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2927 /* Restore original flags so that caller is not surprised */
2928 vmf->flags = old_flags;
fb09a464
KS
2929 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2930 return ret;
2931 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2932 lock_page(page);
2933 if (!page->mapping) {
2934 unlock_page(page);
2935 return 0; /* retry */
2936 }
2937 ret |= VM_FAULT_LOCKED;
2938 } else
2939 VM_BUG_ON_PAGE(!PageLocked(page), page);
2940 return ret;
2941}
2942
97ba0c2b
JK
2943/*
2944 * Handle dirtying of a page in shared file mapping on a write fault.
2945 *
2946 * The function expects the page to be locked and unlocks it.
2947 */
89b15332 2948static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2949{
89b15332 2950 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2951 struct address_space *mapping;
89b15332 2952 struct page *page = vmf->page;
97ba0c2b
JK
2953 bool dirtied;
2954 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2955
2956 dirtied = set_page_dirty(page);
2957 VM_BUG_ON_PAGE(PageAnon(page), page);
2958 /*
2959 * Take a local copy of the address_space - page.mapping may be zeroed
2960 * by truncate after unlock_page(). The address_space itself remains
2961 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2962 * release semantics to prevent the compiler from undoing this copying.
2963 */
2964 mapping = page_rmapping(page);
2965 unlock_page(page);
2966
89b15332
JW
2967 if (!page_mkwrite)
2968 file_update_time(vma->vm_file);
2969
2970 /*
2971 * Throttle page dirtying rate down to writeback speed.
2972 *
2973 * mapping may be NULL here because some device drivers do not
2974 * set page.mapping but still dirty their pages
2975 *
c1e8d7c6 2976 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2977 * is pinning the mapping, as per above.
2978 */
97ba0c2b 2979 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2980 struct file *fpin;
2981
2982 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2983 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2984 if (fpin) {
2985 fput(fpin);
d9272525 2986 return VM_FAULT_COMPLETED;
89b15332 2987 }
97ba0c2b
JK
2988 }
2989
89b15332 2990 return 0;
97ba0c2b
JK
2991}
2992
4e047f89
SR
2993/*
2994 * Handle write page faults for pages that can be reused in the current vma
2995 *
2996 * This can happen either due to the mapping being with the VM_SHARED flag,
2997 * or due to us being the last reference standing to the page. In either
2998 * case, all we need to do here is to mark the page as writable and update
2999 * any related book-keeping.
3000 */
997dd98d 3001static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3002 __releases(vmf->ptl)
4e047f89 3003{
82b0f8c3 3004 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3005 struct page *page = vmf->page;
4e047f89 3006 pte_t entry;
6c287605 3007
c89357e2 3008 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
cdb281e6 3009 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
6c287605 3010
4e047f89
SR
3011 /*
3012 * Clear the pages cpupid information as the existing
3013 * information potentially belongs to a now completely
3014 * unrelated process.
3015 */
3016 if (page)
3017 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3018
2994302b
JK
3019 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3020 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3021 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3022 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3023 update_mmu_cache(vma, vmf->address, vmf->pte);
3024 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3025 count_vm_event(PGREUSE);
4e047f89
SR
3026}
3027
2f38ab2c 3028/*
c89357e2
DH
3029 * Handle the case of a page which we actually need to copy to a new page,
3030 * either due to COW or unsharing.
2f38ab2c 3031 *
c1e8d7c6 3032 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3033 * without the ptl held.
3034 *
3035 * High level logic flow:
3036 *
3037 * - Allocate a page, copy the content of the old page to the new one.
3038 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3039 * - Take the PTL. If the pte changed, bail out and release the allocated page
3040 * - If the pte is still the way we remember it, update the page table and all
3041 * relevant references. This includes dropping the reference the page-table
3042 * held to the old page, as well as updating the rmap.
3043 * - In any case, unlock the PTL and drop the reference we took to the old page.
3044 */
2b740303 3045static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3046{
c89357e2 3047 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3048 struct vm_area_struct *vma = vmf->vma;
bae473a4 3049 struct mm_struct *mm = vma->vm_mm;
28d41a48
MWO
3050 struct folio *old_folio = NULL;
3051 struct folio *new_folio = NULL;
2f38ab2c
SR
3052 pte_t entry;
3053 int page_copied = 0;
ac46d4f3 3054 struct mmu_notifier_range range;
a873dfe1 3055 int ret;
2f38ab2c 3056
662ce1dc
YY
3057 delayacct_wpcopy_start();
3058
28d41a48
MWO
3059 if (vmf->page)
3060 old_folio = page_folio(vmf->page);
2f38ab2c
SR
3061 if (unlikely(anon_vma_prepare(vma)))
3062 goto oom;
3063
2994302b 3064 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
6bc56a4d
MWO
3065 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3066 if (!new_folio)
2f38ab2c
SR
3067 goto oom;
3068 } else {
28d41a48
MWO
3069 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3070 vmf->address, false);
3071 if (!new_folio)
2f38ab2c 3072 goto oom;
83d116c5 3073
28d41a48 3074 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
a873dfe1 3075 if (ret) {
83d116c5
JH
3076 /*
3077 * COW failed, if the fault was solved by other,
3078 * it's fine. If not, userspace would re-fault on
3079 * the same address and we will handle the fault
3080 * from the second attempt.
a873dfe1 3081 * The -EHWPOISON case will not be retried.
83d116c5 3082 */
28d41a48
MWO
3083 folio_put(new_folio);
3084 if (old_folio)
3085 folio_put(old_folio);
662ce1dc
YY
3086
3087 delayacct_wpcopy_end();
a873dfe1 3088 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3089 }
28d41a48 3090 kmsan_copy_page_meta(&new_folio->page, vmf->page);
2f38ab2c 3091 }
2f38ab2c 3092
28d41a48 3093 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
2f38ab2c 3094 goto oom_free_new;
28d41a48 3095 cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL);
2f38ab2c 3096
28d41a48 3097 __folio_mark_uptodate(new_folio);
eb3c24f3 3098
7d4a8be0 3099 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6f4f13e8 3100 vmf->address & PAGE_MASK,
ac46d4f3
JG
3101 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3102 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3103
3104 /*
3105 * Re-check the pte - we dropped the lock
3106 */
82b0f8c3 3107 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3108 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
28d41a48
MWO
3109 if (old_folio) {
3110 if (!folio_test_anon(old_folio)) {
3111 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
f1a79412 3112 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3113 }
3114 } else {
f1a79412 3115 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3116 }
2994302b 3117 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
28d41a48 3118 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
50c25ee9 3119 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3120 if (unlikely(unshare)) {
3121 if (pte_soft_dirty(vmf->orig_pte))
3122 entry = pte_mksoft_dirty(entry);
3123 if (pte_uffd_wp(vmf->orig_pte))
3124 entry = pte_mkuffd_wp(entry);
3125 } else {
3126 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3127 }
111fe718 3128
2f38ab2c
SR
3129 /*
3130 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3131 * pte with the new entry, to keep TLBs on different CPUs in
3132 * sync. This code used to set the new PTE then flush TLBs, but
3133 * that left a window where the new PTE could be loaded into
3134 * some TLBs while the old PTE remains in others.
2f38ab2c 3135 */
82b0f8c3 3136 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
28d41a48
MWO
3137 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3138 folio_add_lru_vma(new_folio, vma);
2f38ab2c
SR
3139 /*
3140 * We call the notify macro here because, when using secondary
3141 * mmu page tables (such as kvm shadow page tables), we want the
3142 * new page to be mapped directly into the secondary page table.
3143 */
c89357e2 3144 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3145 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3146 update_mmu_cache(vma, vmf->address, vmf->pte);
28d41a48 3147 if (old_folio) {
2f38ab2c
SR
3148 /*
3149 * Only after switching the pte to the new page may
3150 * we remove the mapcount here. Otherwise another
3151 * process may come and find the rmap count decremented
3152 * before the pte is switched to the new page, and
3153 * "reuse" the old page writing into it while our pte
3154 * here still points into it and can be read by other
3155 * threads.
3156 *
3157 * The critical issue is to order this
3158 * page_remove_rmap with the ptp_clear_flush above.
3159 * Those stores are ordered by (if nothing else,)
3160 * the barrier present in the atomic_add_negative
3161 * in page_remove_rmap.
3162 *
3163 * Then the TLB flush in ptep_clear_flush ensures that
3164 * no process can access the old page before the
3165 * decremented mapcount is visible. And the old page
3166 * cannot be reused until after the decremented
3167 * mapcount is visible. So transitively, TLBs to
3168 * old page will be flushed before it can be reused.
3169 */
28d41a48 3170 page_remove_rmap(vmf->page, vma, false);
2f38ab2c
SR
3171 }
3172
3173 /* Free the old page.. */
28d41a48 3174 new_folio = old_folio;
2f38ab2c
SR
3175 page_copied = 1;
3176 } else {
7df67697 3177 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3178 }
3179
28d41a48
MWO
3180 if (new_folio)
3181 folio_put(new_folio);
2f38ab2c 3182
82b0f8c3 3183 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3184 /*
3185 * No need to double call mmu_notifier->invalidate_range() callback as
3186 * the above ptep_clear_flush_notify() did already call it.
3187 */
ac46d4f3 3188 mmu_notifier_invalidate_range_only_end(&range);
28d41a48 3189 if (old_folio) {
f4c4a3f4 3190 if (page_copied)
28d41a48
MWO
3191 free_swap_cache(&old_folio->page);
3192 folio_put(old_folio);
2f38ab2c 3193 }
662ce1dc
YY
3194
3195 delayacct_wpcopy_end();
cb8d8633 3196 return 0;
2f38ab2c 3197oom_free_new:
28d41a48 3198 folio_put(new_folio);
2f38ab2c 3199oom:
28d41a48
MWO
3200 if (old_folio)
3201 folio_put(old_folio);
662ce1dc
YY
3202
3203 delayacct_wpcopy_end();
2f38ab2c
SR
3204 return VM_FAULT_OOM;
3205}
3206
66a6197c
JK
3207/**
3208 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3209 * writeable once the page is prepared
3210 *
3211 * @vmf: structure describing the fault
3212 *
3213 * This function handles all that is needed to finish a write page fault in a
3214 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3215 * It handles locking of PTE and modifying it.
66a6197c
JK
3216 *
3217 * The function expects the page to be locked or other protection against
3218 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3219 *
2797e79f 3220 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3221 * we acquired PTE lock.
66a6197c 3222 */
2b740303 3223vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3224{
3225 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3226 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3227 &vmf->ptl);
3228 /*
3229 * We might have raced with another page fault while we released the
3230 * pte_offset_map_lock.
3231 */
3232 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3233 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3234 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3235 return VM_FAULT_NOPAGE;
66a6197c
JK
3236 }
3237 wp_page_reuse(vmf);
a19e2553 3238 return 0;
66a6197c
JK
3239}
3240
dd906184
BH
3241/*
3242 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3243 * mapping
3244 */
2b740303 3245static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3246{
82b0f8c3 3247 struct vm_area_struct *vma = vmf->vma;
bae473a4 3248
dd906184 3249 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3250 vm_fault_t ret;
dd906184 3251
82b0f8c3 3252 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3253 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3254 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3255 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3256 return ret;
66a6197c 3257 return finish_mkwrite_fault(vmf);
dd906184 3258 }
997dd98d 3259 wp_page_reuse(vmf);
cb8d8633 3260 return 0;
dd906184
BH
3261}
3262
2b740303 3263static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3264 __releases(vmf->ptl)
93e478d4 3265{
82b0f8c3 3266 struct vm_area_struct *vma = vmf->vma;
cb8d8633 3267 vm_fault_t ret = 0;
93e478d4 3268
a41b70d6 3269 get_page(vmf->page);
93e478d4 3270
93e478d4 3271 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3272 vm_fault_t tmp;
93e478d4 3273
82b0f8c3 3274 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3275 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3276 if (unlikely(!tmp || (tmp &
3277 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3278 put_page(vmf->page);
93e478d4
SR
3279 return tmp;
3280 }
66a6197c 3281 tmp = finish_mkwrite_fault(vmf);
a19e2553 3282 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3283 unlock_page(vmf->page);
a41b70d6 3284 put_page(vmf->page);
66a6197c 3285 return tmp;
93e478d4 3286 }
66a6197c
JK
3287 } else {
3288 wp_page_reuse(vmf);
997dd98d 3289 lock_page(vmf->page);
93e478d4 3290 }
89b15332 3291 ret |= fault_dirty_shared_page(vmf);
997dd98d 3292 put_page(vmf->page);
93e478d4 3293
89b15332 3294 return ret;
93e478d4
SR
3295}
3296
1da177e4 3297/*
c89357e2
DH
3298 * This routine handles present pages, when
3299 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3300 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3301 * (FAULT_FLAG_UNSHARE)
3302 *
3303 * It is done by copying the page to a new address and decrementing the
3304 * shared-page counter for the old page.
1da177e4 3305 *
1da177e4
LT
3306 * Note that this routine assumes that the protection checks have been
3307 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3308 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3309 * done any necessary COW.
1da177e4 3310 *
c89357e2
DH
3311 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3312 * though the page will change only once the write actually happens. This
3313 * avoids a few races, and potentially makes it more efficient.
1da177e4 3314 *
c1e8d7c6 3315 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3316 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3317 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3318 */
2b740303 3319static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3320 __releases(vmf->ptl)
1da177e4 3321{
c89357e2 3322 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3323 struct vm_area_struct *vma = vmf->vma;
b9086fde 3324 struct folio *folio = NULL;
1da177e4 3325
c89357e2
DH
3326 if (likely(!unshare)) {
3327 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3328 pte_unmap_unlock(vmf->pte, vmf->ptl);
3329 return handle_userfault(vmf, VM_UFFD_WP);
3330 }
3331
3332 /*
3333 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3334 * is flushed in this case before copying.
3335 */
3336 if (unlikely(userfaultfd_wp(vmf->vma) &&
3337 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3338 flush_tlb_page(vmf->vma, vmf->address);
3339 }
6ce64428 3340
a41b70d6 3341 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
c89357e2 3342
b9086fde
DH
3343 /*
3344 * Shared mapping: we are guaranteed to have VM_WRITE and
3345 * FAULT_FLAG_WRITE set at this point.
3346 */
3347 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
251b97f5 3348 /*
64e45507
PF
3349 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3350 * VM_PFNMAP VMA.
251b97f5
PZ
3351 *
3352 * We should not cow pages in a shared writeable mapping.
dd906184 3353 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5 3354 */
b9086fde 3355 if (!vmf->page)
2994302b 3356 return wp_pfn_shared(vmf);
b9086fde 3357 return wp_page_shared(vmf);
251b97f5 3358 }
1da177e4 3359
b9086fde
DH
3360 if (vmf->page)
3361 folio = page_folio(vmf->page);
3362
d08b3851 3363 /*
b9086fde
DH
3364 * Private mapping: create an exclusive anonymous page copy if reuse
3365 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
d08b3851 3366 */
b9086fde 3367 if (folio && folio_test_anon(folio)) {
6c287605
DH
3368 /*
3369 * If the page is exclusive to this process we must reuse the
3370 * page without further checks.
3371 */
e4a2ed94 3372 if (PageAnonExclusive(vmf->page))
6c287605
DH
3373 goto reuse;
3374
53a05ad9 3375 /*
e4a2ed94
MWO
3376 * We have to verify under folio lock: these early checks are
3377 * just an optimization to avoid locking the folio and freeing
53a05ad9
DH
3378 * the swapcache if there is little hope that we can reuse.
3379 *
e4a2ed94 3380 * KSM doesn't necessarily raise the folio refcount.
53a05ad9 3381 */
e4a2ed94 3382 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
d4c47097 3383 goto copy;
e4a2ed94 3384 if (!folio_test_lru(folio))
d4c47097
DH
3385 /*
3386 * Note: We cannot easily detect+handle references from
e4a2ed94 3387 * remote LRU pagevecs or references to LRU folios.
d4c47097
DH
3388 */
3389 lru_add_drain();
e4a2ed94 3390 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
09854ba9 3391 goto copy;
e4a2ed94 3392 if (!folio_trylock(folio))
09854ba9 3393 goto copy;
e4a2ed94
MWO
3394 if (folio_test_swapcache(folio))
3395 folio_free_swap(folio);
3396 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3397 folio_unlock(folio);
52d1e606 3398 goto copy;
b009c024 3399 }
09854ba9 3400 /*
e4a2ed94
MWO
3401 * Ok, we've got the only folio reference from our mapping
3402 * and the folio is locked, it's dark out, and we're wearing
53a05ad9 3403 * sunglasses. Hit it.
09854ba9 3404 */
e4a2ed94
MWO
3405 page_move_anon_rmap(vmf->page, vma);
3406 folio_unlock(folio);
6c287605 3407reuse:
c89357e2
DH
3408 if (unlikely(unshare)) {
3409 pte_unmap_unlock(vmf->pte, vmf->ptl);
3410 return 0;
3411 }
be068f29 3412 wp_page_reuse(vmf);
cb8d8633 3413 return 0;
1da177e4 3414 }
52d1e606 3415copy:
1da177e4
LT
3416 /*
3417 * Ok, we need to copy. Oh, well..
3418 */
b9086fde
DH
3419 if (folio)
3420 folio_get(folio);
28766805 3421
82b0f8c3 3422 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b 3423#ifdef CONFIG_KSM
b9086fde 3424 if (folio && folio_test_ksm(folio))
94bfe85b
YY
3425 count_vm_event(COW_KSM);
3426#endif
a41b70d6 3427 return wp_page_copy(vmf);
1da177e4
LT
3428}
3429
97a89413 3430static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3431 unsigned long start_addr, unsigned long end_addr,
3432 struct zap_details *details)
3433{
f5cc4eef 3434 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3435}
3436
f808c13f 3437static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3438 pgoff_t first_index,
3439 pgoff_t last_index,
1da177e4
LT
3440 struct zap_details *details)
3441{
3442 struct vm_area_struct *vma;
1da177e4
LT
3443 pgoff_t vba, vea, zba, zea;
3444
232a6a1c 3445 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3446 vba = vma->vm_pgoff;
d6e93217 3447 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3448 zba = max(first_index, vba);
3449 zea = min(last_index, vea);
1da177e4 3450
97a89413 3451 unmap_mapping_range_vma(vma,
1da177e4
LT
3452 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3453 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3454 details);
1da177e4
LT
3455 }
3456}
3457
22061a1f 3458/**
3506659e
MWO
3459 * unmap_mapping_folio() - Unmap single folio from processes.
3460 * @folio: The locked folio to be unmapped.
22061a1f 3461 *
3506659e 3462 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3463 * Typically, for efficiency, the range of nearby pages has already been
3464 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3465 * truncation or invalidation holds the lock on a folio, it may find that
3466 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3467 * to unmap it finally.
3468 */
3506659e 3469void unmap_mapping_folio(struct folio *folio)
22061a1f 3470{
3506659e 3471 struct address_space *mapping = folio->mapping;
22061a1f 3472 struct zap_details details = { };
232a6a1c
PX
3473 pgoff_t first_index;
3474 pgoff_t last_index;
22061a1f 3475
3506659e 3476 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3477
3506659e
MWO
3478 first_index = folio->index;
3479 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3480
2e148f1e 3481 details.even_cows = false;
3506659e 3482 details.single_folio = folio;
999dad82 3483 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3484
2c865995 3485 i_mmap_lock_read(mapping);
22061a1f 3486 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3487 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3488 last_index, &details);
2c865995 3489 i_mmap_unlock_read(mapping);
22061a1f
HD
3490}
3491
977fbdcd
MW
3492/**
3493 * unmap_mapping_pages() - Unmap pages from processes.
3494 * @mapping: The address space containing pages to be unmapped.
3495 * @start: Index of first page to be unmapped.
3496 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3497 * @even_cows: Whether to unmap even private COWed pages.
3498 *
3499 * Unmap the pages in this address space from any userspace process which
3500 * has them mmaped. Generally, you want to remove COWed pages as well when
3501 * a file is being truncated, but not when invalidating pages from the page
3502 * cache.
3503 */
3504void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3505 pgoff_t nr, bool even_cows)
3506{
3507 struct zap_details details = { };
232a6a1c
PX
3508 pgoff_t first_index = start;
3509 pgoff_t last_index = start + nr - 1;
977fbdcd 3510
2e148f1e 3511 details.even_cows = even_cows;
232a6a1c
PX
3512 if (last_index < first_index)
3513 last_index = ULONG_MAX;
977fbdcd 3514
2c865995 3515 i_mmap_lock_read(mapping);
977fbdcd 3516 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3517 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3518 last_index, &details);
2c865995 3519 i_mmap_unlock_read(mapping);
977fbdcd 3520}
6e0e99d5 3521EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3522
1da177e4 3523/**
8a5f14a2 3524 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3525 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3526 * file.
3527 *
3d41088f 3528 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3529 * @holebegin: byte in first page to unmap, relative to the start of
3530 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3531 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3532 * must keep the partial page. In contrast, we must get rid of
3533 * partial pages.
3534 * @holelen: size of prospective hole in bytes. This will be rounded
3535 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3536 * end of the file.
3537 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3538 * but 0 when invalidating pagecache, don't throw away private data.
3539 */
3540void unmap_mapping_range(struct address_space *mapping,
3541 loff_t const holebegin, loff_t const holelen, int even_cows)
3542{
1da177e4
LT
3543 pgoff_t hba = holebegin >> PAGE_SHIFT;
3544 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3545
3546 /* Check for overflow. */
3547 if (sizeof(holelen) > sizeof(hlen)) {
3548 long long holeend =
3549 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3550 if (holeend & ~(long long)ULONG_MAX)
3551 hlen = ULONG_MAX - hba + 1;
3552 }
3553
977fbdcd 3554 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3555}
3556EXPORT_SYMBOL(unmap_mapping_range);
3557
b756a3b5
AP
3558/*
3559 * Restore a potential device exclusive pte to a working pte entry
3560 */
3561static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3562{
19672a9e 3563 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3564 struct vm_area_struct *vma = vmf->vma;
3565 struct mmu_notifier_range range;
3566
19672a9e 3567 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
b756a3b5 3568 return VM_FAULT_RETRY;
7d4a8be0 3569 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5
AP
3570 vma->vm_mm, vmf->address & PAGE_MASK,
3571 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3572 mmu_notifier_invalidate_range_start(&range);
3573
3574 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3575 &vmf->ptl);
3576 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
19672a9e 3577 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5
AP
3578
3579 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3580 folio_unlock(folio);
b756a3b5
AP
3581
3582 mmu_notifier_invalidate_range_end(&range);
3583 return 0;
3584}
3585
a160e537 3586static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3587 struct vm_area_struct *vma,
3588 unsigned int fault_flags)
3589{
a160e537 3590 if (!folio_test_swapcache(folio))
c145e0b4 3591 return false;
9202d527 3592 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3593 folio_test_mlocked(folio))
c145e0b4
DH
3594 return true;
3595 /*
3596 * If we want to map a page that's in the swapcache writable, we
3597 * have to detect via the refcount if we're really the exclusive
3598 * user. Try freeing the swapcache to get rid of the swapcache
3599 * reference only in case it's likely that we'll be the exlusive user.
3600 */
a160e537
MWO
3601 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3602 folio_ref_count(folio) == 2;
c145e0b4
DH
3603}
3604
9c28a205
PX
3605static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3606{
3607 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3608 vmf->address, &vmf->ptl);
3609 /*
3610 * Be careful so that we will only recover a special uffd-wp pte into a
3611 * none pte. Otherwise it means the pte could have changed, so retry.
7e3ce3f8
PX
3612 *
3613 * This should also cover the case where e.g. the pte changed
3614 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3615 * So is_pte_marker() check is not enough to safely drop the pte.
9c28a205 3616 */
7e3ce3f8 3617 if (pte_same(vmf->orig_pte, *vmf->pte))
9c28a205
PX
3618 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3619 pte_unmap_unlock(vmf->pte, vmf->ptl);
3620 return 0;
3621}
3622
3623/*
3624 * This is actually a page-missing access, but with uffd-wp special pte
3625 * installed. It means this pte was wr-protected before being unmapped.
3626 */
3627static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3628{
3629 /*
3630 * Just in case there're leftover special ptes even after the region
7a079ba2 3631 * got unregistered - we can simply clear them.
9c28a205
PX
3632 */
3633 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3634 return pte_marker_clear(vmf);
3635
3636 /* do_fault() can handle pte markers too like none pte */
3637 return do_fault(vmf);
3638}
3639
5c041f5d
PX
3640static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3641{
3642 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3643 unsigned long marker = pte_marker_get(entry);
3644
3645 /*
ca92ea3d
PX
3646 * PTE markers should never be empty. If anything weird happened,
3647 * the best thing to do is to kill the process along with its mm.
5c041f5d 3648 */
ca92ea3d 3649 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3650 return VM_FAULT_SIGBUS;
3651
15520a3f
PX
3652 /* Higher priority than uffd-wp when data corrupted */
3653 if (marker & PTE_MARKER_SWAPIN_ERROR)
3654 return VM_FAULT_SIGBUS;
3655
9c28a205
PX
3656 if (pte_marker_entry_uffd_wp(entry))
3657 return pte_marker_handle_uffd_wp(vmf);
3658
3659 /* This is an unknown pte marker */
3660 return VM_FAULT_SIGBUS;
5c041f5d
PX
3661}
3662
1da177e4 3663/*
c1e8d7c6 3664 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3665 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3666 * We return with pte unmapped and unlocked.
3667 *
c1e8d7c6 3668 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3669 * as does filemap_fault().
1da177e4 3670 */
2b740303 3671vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3672{
82b0f8c3 3673 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3674 struct folio *swapcache, *folio = NULL;
3675 struct page *page;
2799e775 3676 struct swap_info_struct *si = NULL;
14f9135d 3677 rmap_t rmap_flags = RMAP_NONE;
1493a191 3678 bool exclusive = false;
65500d23 3679 swp_entry_t entry;
1da177e4 3680 pte_t pte;
d065bd81 3681 int locked;
2b740303 3682 vm_fault_t ret = 0;
aae466b0 3683 void *shadow = NULL;
1da177e4 3684
2ca99358 3685 if (!pte_unmap_same(vmf))
8f4e2101 3686 goto out;
65500d23 3687
2994302b 3688 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3689 if (unlikely(non_swap_entry(entry))) {
3690 if (is_migration_entry(entry)) {
82b0f8c3
JK
3691 migration_entry_wait(vma->vm_mm, vmf->pmd,
3692 vmf->address);
b756a3b5
AP
3693 } else if (is_device_exclusive_entry(entry)) {
3694 vmf->page = pfn_swap_entry_to_page(entry);
3695 ret = remove_device_exclusive_entry(vmf);
5042db43 3696 } else if (is_device_private_entry(entry)) {
af5cdaf8 3697 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3698 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3699 vmf->address, &vmf->ptl);
3700 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3701 spin_unlock(vmf->ptl);
3702 goto out;
3703 }
3704
3705 /*
3706 * Get a page reference while we know the page can't be
3707 * freed.
3708 */
3709 get_page(vmf->page);
3710 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 3711 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 3712 put_page(vmf->page);
d1737fdb
AK
3713 } else if (is_hwpoison_entry(entry)) {
3714 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
3715 } else if (is_pte_marker_entry(entry)) {
3716 ret = handle_pte_marker(vmf);
d1737fdb 3717 } else {
2994302b 3718 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3719 ret = VM_FAULT_SIGBUS;
d1737fdb 3720 }
0697212a
CL
3721 goto out;
3722 }
0bcac06f 3723
2799e775
ML
3724 /* Prevent swapoff from happening to us. */
3725 si = get_swap_device(entry);
3726 if (unlikely(!si))
3727 goto out;
0bcac06f 3728
5a423081
MWO
3729 folio = swap_cache_get_folio(entry, vma, vmf->address);
3730 if (folio)
3731 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3732 swapcache = folio;
f8020772 3733
d4f9565a 3734 if (!folio) {
a449bf58
QC
3735 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3736 __swap_count(entry) == 1) {
0bcac06f 3737 /* skip swapcache */
63ad4add
MWO
3738 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3739 vma, vmf->address, false);
3740 page = &folio->page;
3741 if (folio) {
3742 __folio_set_locked(folio);
3743 __folio_set_swapbacked(folio);
4c6355b2 3744
65995918 3745 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
3746 vma->vm_mm, GFP_KERNEL,
3747 entry)) {
545b1b07 3748 ret = VM_FAULT_OOM;
4c6355b2 3749 goto out_page;
545b1b07 3750 }
0add0c77 3751 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3752
aae466b0
JK
3753 shadow = get_shadow_from_swap_cache(entry);
3754 if (shadow)
63ad4add 3755 workingset_refault(folio, shadow);
0076f029 3756
63ad4add 3757 folio_add_lru(folio);
0add0c77
SB
3758
3759 /* To provide entry to swap_readpage() */
63ad4add 3760 folio_set_swap_entry(folio, entry);
5169b844 3761 swap_readpage(page, true, NULL);
63ad4add 3762 folio->private = NULL;
0bcac06f 3763 }
aa8d22a1 3764 } else {
e9e9b7ec
MK
3765 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3766 vmf);
63ad4add
MWO
3767 if (page)
3768 folio = page_folio(page);
d4f9565a 3769 swapcache = folio;
0bcac06f
MK
3770 }
3771
d4f9565a 3772 if (!folio) {
1da177e4 3773 /*
8f4e2101
HD
3774 * Back out if somebody else faulted in this pte
3775 * while we released the pte lock.
1da177e4 3776 */
82b0f8c3
JK
3777 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3778 vmf->address, &vmf->ptl);
2994302b 3779 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3780 ret = VM_FAULT_OOM;
65500d23 3781 goto unlock;
1da177e4
LT
3782 }
3783
3784 /* Had to read the page from swap area: Major fault */
3785 ret = VM_FAULT_MAJOR;
f8891e5e 3786 count_vm_event(PGMAJFAULT);
2262185c 3787 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3788 } else if (PageHWPoison(page)) {
71f72525
WF
3789 /*
3790 * hwpoisoned dirty swapcache pages are kept for killing
3791 * owner processes (which may be unknown at hwpoison time)
3792 */
d1737fdb 3793 ret = VM_FAULT_HWPOISON;
4779cb31 3794 goto out_release;
1da177e4
LT
3795 }
3796
19672a9e 3797 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
e709ffd6 3798
d065bd81
ML
3799 if (!locked) {
3800 ret |= VM_FAULT_RETRY;
3801 goto out_release;
3802 }
073e587e 3803
84d60fdd
DH
3804 if (swapcache) {
3805 /*
3b344157 3806 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
3807 * swapcache from under us. The page pin, and pte_same test
3808 * below, are not enough to exclude that. Even if it is still
3809 * swapcache, we need to check that the page's swap has not
3810 * changed.
3811 */
63ad4add 3812 if (unlikely(!folio_test_swapcache(folio) ||
84d60fdd
DH
3813 page_private(page) != entry.val))
3814 goto out_page;
3815
3816 /*
3817 * KSM sometimes has to copy on read faults, for example, if
3818 * page->index of !PageKSM() pages would be nonlinear inside the
3819 * anon VMA -- PageKSM() is lost on actual swapout.
3820 */
3821 page = ksm_might_need_to_copy(page, vma, vmf->address);
3822 if (unlikely(!page)) {
3823 ret = VM_FAULT_OOM;
84d60fdd 3824 goto out_page;
6b970599
KW
3825 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3826 ret = VM_FAULT_HWPOISON;
3827 goto out_page;
84d60fdd 3828 }
63ad4add 3829 folio = page_folio(page);
c145e0b4
DH
3830
3831 /*
3832 * If we want to map a page that's in the swapcache writable, we
3833 * have to detect via the refcount if we're really the exclusive
3834 * owner. Try removing the extra reference from the local LRU
3835 * pagevecs if required.
3836 */
d4f9565a 3837 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 3838 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 3839 lru_add_drain();
5ad64688
HD
3840 }
3841
4231f842 3842 folio_throttle_swaprate(folio, GFP_KERNEL);
8a9f3ccd 3843
1da177e4 3844 /*
8f4e2101 3845 * Back out if somebody else already faulted in this pte.
1da177e4 3846 */
82b0f8c3
JK
3847 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3848 &vmf->ptl);
2994302b 3849 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3850 goto out_nomap;
b8107480 3851
63ad4add 3852 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
3853 ret = VM_FAULT_SIGBUS;
3854 goto out_nomap;
1da177e4
LT
3855 }
3856
78fbe906
DH
3857 /*
3858 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3859 * must never point at an anonymous page in the swapcache that is
3860 * PG_anon_exclusive. Sanity check that this holds and especially, that
3861 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3862 * check after taking the PT lock and making sure that nobody
3863 * concurrently faulted in this page and set PG_anon_exclusive.
3864 */
63ad4add
MWO
3865 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3866 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 3867
1493a191
DH
3868 /*
3869 * Check under PT lock (to protect against concurrent fork() sharing
3870 * the swap entry concurrently) for certainly exclusive pages.
3871 */
63ad4add 3872 if (!folio_test_ksm(folio)) {
1493a191 3873 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 3874 if (folio != swapcache) {
1493a191
DH
3875 /*
3876 * We have a fresh page that is not exposed to the
3877 * swapcache -> certainly exclusive.
3878 */
3879 exclusive = true;
63ad4add 3880 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 3881 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3882 /*
3883 * This is tricky: not all swap backends support
3884 * concurrent page modifications while under writeback.
3885 *
3886 * So if we stumble over such a page in the swapcache
3887 * we must not set the page exclusive, otherwise we can
3888 * map it writable without further checks and modify it
3889 * while still under writeback.
3890 *
3891 * For these problematic swap backends, simply drop the
3892 * exclusive marker: this is perfectly fine as we start
3893 * writeback only if we fully unmapped the page and
3894 * there are no unexpected references on the page after
3895 * unmapping succeeded. After fully unmapped, no
3896 * further GUP references (FOLL_GET and FOLL_PIN) can
3897 * appear, so dropping the exclusive marker and mapping
3898 * it only R/O is fine.
3899 */
3900 exclusive = false;
3901 }
3902 }
3903
8c7c6e34 3904 /*
c145e0b4
DH
3905 * Remove the swap entry and conditionally try to free up the swapcache.
3906 * We're already holding a reference on the page but haven't mapped it
3907 * yet.
8c7c6e34 3908 */
c145e0b4 3909 swap_free(entry);
a160e537
MWO
3910 if (should_try_to_free_swap(folio, vma, vmf->flags))
3911 folio_free_swap(folio);
1da177e4 3912
f1a79412
SB
3913 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3914 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 3915 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3916
3917 /*
1493a191
DH
3918 * Same logic as in do_wp_page(); however, optimize for pages that are
3919 * certainly not shared either because we just allocated them without
3920 * exposing them to the swapcache or because the swap entry indicates
3921 * exclusivity.
c145e0b4 3922 */
63ad4add
MWO
3923 if (!folio_test_ksm(folio) &&
3924 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
3925 if (vmf->flags & FAULT_FLAG_WRITE) {
3926 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3927 vmf->flags &= ~FAULT_FLAG_WRITE;
6c287605 3928 }
14f9135d 3929 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3930 }
1da177e4 3931 flush_icache_page(vma, page);
2994302b 3932 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3933 pte = pte_mksoft_dirty(pte);
f1eb1bac 3934 if (pte_swp_uffd_wp(vmf->orig_pte))
f45ec5ff 3935 pte = pte_mkuffd_wp(pte);
2994302b 3936 vmf->orig_pte = pte;
0bcac06f
MK
3937
3938 /* ksm created a completely new copy */
d4f9565a 3939 if (unlikely(folio != swapcache && swapcache)) {
40f2bbf7 3940 page_add_new_anon_rmap(page, vma, vmf->address);
63ad4add 3941 folio_add_lru_vma(folio, vma);
0bcac06f 3942 } else {
f1e2db12 3943 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 3944 }
1da177e4 3945
63ad4add
MWO
3946 VM_BUG_ON(!folio_test_anon(folio) ||
3947 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
3948 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3949 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3950
63ad4add 3951 folio_unlock(folio);
d4f9565a 3952 if (folio != swapcache && swapcache) {
4969c119
AA
3953 /*
3954 * Hold the lock to avoid the swap entry to be reused
3955 * until we take the PT lock for the pte_same() check
3956 * (to avoid false positives from pte_same). For
3957 * further safety release the lock after the swap_free
3958 * so that the swap count won't change under a
3959 * parallel locked swapcache.
3960 */
d4f9565a
MWO
3961 folio_unlock(swapcache);
3962 folio_put(swapcache);
4969c119 3963 }
c475a8ab 3964
82b0f8c3 3965 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3966 ret |= do_wp_page(vmf);
61469f1d
HD
3967 if (ret & VM_FAULT_ERROR)
3968 ret &= VM_FAULT_ERROR;
1da177e4
LT
3969 goto out;
3970 }
3971
3972 /* No need to invalidate - it was non-present before */
82b0f8c3 3973 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3974unlock:
82b0f8c3 3975 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3976out:
2799e775
ML
3977 if (si)
3978 put_swap_device(si);
1da177e4 3979 return ret;
b8107480 3980out_nomap:
82b0f8c3 3981 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3982out_page:
63ad4add 3983 folio_unlock(folio);
4779cb31 3984out_release:
63ad4add 3985 folio_put(folio);
d4f9565a
MWO
3986 if (folio != swapcache && swapcache) {
3987 folio_unlock(swapcache);
3988 folio_put(swapcache);
4969c119 3989 }
2799e775
ML
3990 if (si)
3991 put_swap_device(si);
65500d23 3992 return ret;
1da177e4
LT
3993}
3994
3995/*
c1e8d7c6 3996 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3997 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3998 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3999 */
2b740303 4000static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4001{
82b0f8c3 4002 struct vm_area_struct *vma = vmf->vma;
6bc56a4d 4003 struct folio *folio;
2b740303 4004 vm_fault_t ret = 0;
1da177e4 4005 pte_t entry;
1da177e4 4006
6b7339f4
KS
4007 /* File mapping without ->vm_ops ? */
4008 if (vma->vm_flags & VM_SHARED)
4009 return VM_FAULT_SIGBUS;
4010
7267ec00
KS
4011 /*
4012 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4013 * pte_offset_map() on pmds where a huge pmd might be created
4014 * from a different thread.
4015 *
3e4e28c5 4016 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
4017 * parallel threads are excluded by other means.
4018 *
3e4e28c5 4019 * Here we only have mmap_read_lock(mm).
7267ec00 4020 */
4cf58924 4021 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4022 return VM_FAULT_OOM;
4023
f9ce0be7 4024 /* See comment in handle_pte_fault() */
82b0f8c3 4025 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
4026 return 0;
4027
11ac5524 4028 /* Use the zero-page for reads */
82b0f8c3 4029 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4030 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4031 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4032 vma->vm_page_prot));
82b0f8c3
JK
4033 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4034 vmf->address, &vmf->ptl);
7df67697
BM
4035 if (!pte_none(*vmf->pte)) {
4036 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4037 goto unlock;
7df67697 4038 }
6b31d595
MH
4039 ret = check_stable_address_space(vma->vm_mm);
4040 if (ret)
4041 goto unlock;
6b251fc9
AA
4042 /* Deliver the page fault to userland, check inside PT lock */
4043 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4044 pte_unmap_unlock(vmf->pte, vmf->ptl);
4045 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4046 }
a13ea5b7
HD
4047 goto setpte;
4048 }
4049
557ed1fa 4050 /* Allocate our own private page. */
557ed1fa
NP
4051 if (unlikely(anon_vma_prepare(vma)))
4052 goto oom;
6bc56a4d
MWO
4053 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4054 if (!folio)
557ed1fa 4055 goto oom;
eb3c24f3 4056
6bc56a4d 4057 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
eb3c24f3 4058 goto oom_free_page;
cb3184de 4059 cgroup_throttle_swaprate(&folio->page, GFP_KERNEL);
eb3c24f3 4060
52f37629 4061 /*
cb3184de 4062 * The memory barrier inside __folio_mark_uptodate makes sure that
f4f5329d 4063 * preceding stores to the page contents become visible before
52f37629
MK
4064 * the set_pte_at() write.
4065 */
cb3184de 4066 __folio_mark_uptodate(folio);
8f4e2101 4067
cb3184de 4068 entry = mk_pte(&folio->page, vma->vm_page_prot);
50c25ee9 4069 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4070 if (vma->vm_flags & VM_WRITE)
4071 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4072
82b0f8c3
JK
4073 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4074 &vmf->ptl);
7df67697 4075 if (!pte_none(*vmf->pte)) {
bce8cb3c 4076 update_mmu_tlb(vma, vmf->address, vmf->pte);
557ed1fa 4077 goto release;
7df67697 4078 }
9ba69294 4079
6b31d595
MH
4080 ret = check_stable_address_space(vma->vm_mm);
4081 if (ret)
4082 goto release;
4083
6b251fc9
AA
4084 /* Deliver the page fault to userland, check inside PT lock */
4085 if (userfaultfd_missing(vma)) {
82b0f8c3 4086 pte_unmap_unlock(vmf->pte, vmf->ptl);
cb3184de 4087 folio_put(folio);
82b0f8c3 4088 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4089 }
4090
f1a79412 4091 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
cb3184de
MWO
4092 folio_add_new_anon_rmap(folio, vma, vmf->address);
4093 folio_add_lru_vma(folio, vma);
a13ea5b7 4094setpte:
82b0f8c3 4095 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4096
4097 /* No need to invalidate - it was non-present before */
82b0f8c3 4098 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4099unlock:
82b0f8c3 4100 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4101 return ret;
8f4e2101 4102release:
cb3184de 4103 folio_put(folio);
8f4e2101 4104 goto unlock;
8a9f3ccd 4105oom_free_page:
cb3184de 4106 folio_put(folio);
65500d23 4107oom:
1da177e4
LT
4108 return VM_FAULT_OOM;
4109}
4110
9a95f3cf 4111/*
c1e8d7c6 4112 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4113 * released depending on flags and vma->vm_ops->fault() return value.
4114 * See filemap_fault() and __lock_page_retry().
4115 */
2b740303 4116static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4117{
82b0f8c3 4118 struct vm_area_struct *vma = vmf->vma;
2b740303 4119 vm_fault_t ret;
7eae74af 4120
63f3655f
MH
4121 /*
4122 * Preallocate pte before we take page_lock because this might lead to
4123 * deadlocks for memcg reclaim which waits for pages under writeback:
4124 * lock_page(A)
4125 * SetPageWriteback(A)
4126 * unlock_page(A)
4127 * lock_page(B)
4128 * lock_page(B)
d383807a 4129 * pte_alloc_one
63f3655f
MH
4130 * shrink_page_list
4131 * wait_on_page_writeback(A)
4132 * SetPageWriteback(B)
4133 * unlock_page(B)
4134 * # flush A, B to clear the writeback
4135 */
4136 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4137 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4138 if (!vmf->prealloc_pte)
4139 return VM_FAULT_OOM;
63f3655f
MH
4140 }
4141
11bac800 4142 ret = vma->vm_ops->fault(vmf);
3917048d 4143 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4144 VM_FAULT_DONE_COW)))
bc2466e4 4145 return ret;
7eae74af 4146
667240e0 4147 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4148 struct page *page = vmf->page;
e53ac737
RR
4149 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4150 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4151 if (page_mapped(page))
4152 unmap_mapping_pages(page_mapping(page),
4153 page->index, 1, false);
e53ac737 4154 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4155 if (invalidate_inode_page(page))
4156 poisonret = VM_FAULT_NOPAGE;
4157 unlock_page(page);
e53ac737 4158 }
3149c79f 4159 put_page(page);
936ca80d 4160 vmf->page = NULL;
e53ac737 4161 return poisonret;
7eae74af
KS
4162 }
4163
4164 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4165 lock_page(vmf->page);
7eae74af 4166 else
667240e0 4167 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4168
7eae74af
KS
4169 return ret;
4170}
4171
396bcc52 4172#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4173static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4174{
82b0f8c3 4175 struct vm_area_struct *vma = vmf->vma;
953c66c2 4176
82b0f8c3 4177 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4178 /*
4179 * We are going to consume the prealloc table,
4180 * count that as nr_ptes.
4181 */
c4812909 4182 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4183 vmf->prealloc_pte = NULL;
953c66c2
AK
4184}
4185
f9ce0be7 4186vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4187{
82b0f8c3
JK
4188 struct vm_area_struct *vma = vmf->vma;
4189 bool write = vmf->flags & FAULT_FLAG_WRITE;
4190 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4191 pmd_t entry;
2b740303 4192 int i;
d01ac3c3 4193 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4194
4195 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4196 return ret;
10102459 4197
10102459 4198 page = compound_head(page);
d01ac3c3
MWO
4199 if (compound_order(page) != HPAGE_PMD_ORDER)
4200 return ret;
10102459 4201
eac96c3e
YS
4202 /*
4203 * Just backoff if any subpage of a THP is corrupted otherwise
4204 * the corrupted page may mapped by PMD silently to escape the
4205 * check. This kind of THP just can be PTE mapped. Access to
4206 * the corrupted subpage should trigger SIGBUS as expected.
4207 */
4208 if (unlikely(PageHasHWPoisoned(page)))
4209 return ret;
4210
953c66c2 4211 /*
f0953a1b 4212 * Archs like ppc64 need additional space to store information
953c66c2
AK
4213 * related to pte entry. Use the preallocated table for that.
4214 */
82b0f8c3 4215 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4216 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4217 if (!vmf->prealloc_pte)
953c66c2 4218 return VM_FAULT_OOM;
953c66c2
AK
4219 }
4220
82b0f8c3
JK
4221 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4222 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4223 goto out;
4224
4225 for (i = 0; i < HPAGE_PMD_NR; i++)
4226 flush_icache_page(vma, page + i);
4227
4228 entry = mk_huge_pmd(page, vma->vm_page_prot);
4229 if (write)
f55e1014 4230 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4231
fadae295 4232 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4233 page_add_file_rmap(page, vma, true);
4234
953c66c2
AK
4235 /*
4236 * deposit and withdraw with pmd lock held
4237 */
4238 if (arch_needs_pgtable_deposit())
82b0f8c3 4239 deposit_prealloc_pte(vmf);
10102459 4240
82b0f8c3 4241 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4242
82b0f8c3 4243 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4244
4245 /* fault is handled */
4246 ret = 0;
95ecedcd 4247 count_vm_event(THP_FILE_MAPPED);
10102459 4248out:
82b0f8c3 4249 spin_unlock(vmf->ptl);
10102459
KS
4250 return ret;
4251}
4252#else
f9ce0be7 4253vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4254{
f9ce0be7 4255 return VM_FAULT_FALLBACK;
10102459
KS
4256}
4257#endif
4258
9d3af4b4 4259void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4260{
82b0f8c3 4261 struct vm_area_struct *vma = vmf->vma;
9c28a205 4262 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
82b0f8c3 4263 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4264 bool prefault = vmf->address != addr;
3bb97794 4265 pte_t entry;
7267ec00 4266
3bb97794
KS
4267 flush_icache_page(vma, page);
4268 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4269
4270 if (prefault && arch_wants_old_prefaulted_pte())
4271 entry = pte_mkold(entry);
50c25ee9
TB
4272 else
4273 entry = pte_sw_mkyoung(entry);
46bdb427 4274
3bb97794
KS
4275 if (write)
4276 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205 4277 if (unlikely(uffd_wp))
f1eb1bac 4278 entry = pte_mkuffd_wp(entry);
bae473a4
KS
4279 /* copy-on-write page */
4280 if (write && !(vma->vm_flags & VM_SHARED)) {
f1a79412 4281 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4282 page_add_new_anon_rmap(page, vma, addr);
b518154e 4283 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4284 } else {
f1a79412 4285 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2 4286 page_add_file_rmap(page, vma, false);
3bb97794 4287 }
9d3af4b4 4288 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4289}
4290
f46f2ade
PX
4291static bool vmf_pte_changed(struct vm_fault *vmf)
4292{
4293 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4294 return !pte_same(*vmf->pte, vmf->orig_pte);
4295
4296 return !pte_none(*vmf->pte);
4297}
4298
9118c0cb
JK
4299/**
4300 * finish_fault - finish page fault once we have prepared the page to fault
4301 *
4302 * @vmf: structure describing the fault
4303 *
4304 * This function handles all that is needed to finish a page fault once the
4305 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4306 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4307 * addition.
9118c0cb
JK
4308 *
4309 * The function expects the page to be locked and on success it consumes a
4310 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4311 *
4312 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4313 */
2b740303 4314vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4315{
f9ce0be7 4316 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4317 struct page *page;
f9ce0be7 4318 vm_fault_t ret;
9118c0cb
JK
4319
4320 /* Did we COW the page? */
f9ce0be7 4321 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4322 page = vmf->cow_page;
4323 else
4324 page = vmf->page;
6b31d595
MH
4325
4326 /*
4327 * check even for read faults because we might have lost our CoWed
4328 * page
4329 */
f9ce0be7
KS
4330 if (!(vma->vm_flags & VM_SHARED)) {
4331 ret = check_stable_address_space(vma->vm_mm);
4332 if (ret)
4333 return ret;
4334 }
4335
4336 if (pmd_none(*vmf->pmd)) {
4337 if (PageTransCompound(page)) {
4338 ret = do_set_pmd(vmf, page);
4339 if (ret != VM_FAULT_FALLBACK)
4340 return ret;
4341 }
4342
03c4f204
QZ
4343 if (vmf->prealloc_pte)
4344 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4345 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4346 return VM_FAULT_OOM;
4347 }
4348
3fe2895c
JB
4349 /*
4350 * See comment in handle_pte_fault() for how this scenario happens, we
4351 * need to return NOPAGE so that we drop this page.
4352 */
f9ce0be7 4353 if (pmd_devmap_trans_unstable(vmf->pmd))
3fe2895c 4354 return VM_FAULT_NOPAGE;
f9ce0be7
KS
4355
4356 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4357 vmf->address, &vmf->ptl);
70427f6e 4358
f9ce0be7 4359 /* Re-check under ptl */
70427f6e 4360 if (likely(!vmf_pte_changed(vmf))) {
9d3af4b4 4361 do_set_pte(vmf, page, vmf->address);
70427f6e
SA
4362
4363 /* no need to invalidate: a not-present page won't be cached */
4364 update_mmu_cache(vma, vmf->address, vmf->pte);
4365
4366 ret = 0;
4367 } else {
4368 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4369 ret = VM_FAULT_NOPAGE;
70427f6e 4370 }
f9ce0be7 4371
f9ce0be7 4372 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4373 return ret;
4374}
4375
3a91053a
KS
4376static unsigned long fault_around_bytes __read_mostly =
4377 rounddown_pow_of_two(65536);
a9b0f861 4378
a9b0f861
KS
4379#ifdef CONFIG_DEBUG_FS
4380static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4381{
a9b0f861 4382 *val = fault_around_bytes;
1592eef0
KS
4383 return 0;
4384}
4385
b4903d6e 4386/*
da391d64
WK
4387 * fault_around_bytes must be rounded down to the nearest page order as it's
4388 * what do_fault_around() expects to see.
b4903d6e 4389 */
a9b0f861 4390static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4391{
a9b0f861 4392 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4393 return -EINVAL;
b4903d6e
AR
4394 if (val > PAGE_SIZE)
4395 fault_around_bytes = rounddown_pow_of_two(val);
4396 else
4397 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4398 return 0;
4399}
0a1345f8 4400DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4401 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4402
4403static int __init fault_around_debugfs(void)
4404{
d9f7979c
GKH
4405 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4406 &fault_around_bytes_fops);
1592eef0
KS
4407 return 0;
4408}
4409late_initcall(fault_around_debugfs);
1592eef0 4410#endif
8c6e50b0 4411
1fdb412b
KS
4412/*
4413 * do_fault_around() tries to map few pages around the fault address. The hope
4414 * is that the pages will be needed soon and this will lower the number of
4415 * faults to handle.
4416 *
4417 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4418 * not ready to be mapped: not up-to-date, locked, etc.
4419 *
1fdb412b
KS
4420 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4421 * only once.
4422 *
da391d64
WK
4423 * fault_around_bytes defines how many bytes we'll try to map.
4424 * do_fault_around() expects it to be set to a power of two less than or equal
4425 * to PTRS_PER_PTE.
1fdb412b 4426 *
da391d64
WK
4427 * The virtual address of the area that we map is naturally aligned to
4428 * fault_around_bytes rounded down to the machine page size
4429 * (and therefore to page order). This way it's easier to guarantee
4430 * that we don't cross page table boundaries.
1fdb412b 4431 */
2b740303 4432static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4433{
82b0f8c3 4434 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4435 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4436 pgoff_t end_pgoff;
2b740303 4437 int off;
8c6e50b0 4438
4db0c3c2 4439 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4440 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4441
f9ce0be7
KS
4442 address = max(address & mask, vmf->vma->vm_start);
4443 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4444 start_pgoff -= off;
8c6e50b0
KS
4445
4446 /*
da391d64
WK
4447 * end_pgoff is either the end of the page table, the end of
4448 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4449 */
bae473a4 4450 end_pgoff = start_pgoff -
f9ce0be7 4451 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4452 PTRS_PER_PTE - 1;
82b0f8c3 4453 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4454 start_pgoff + nr_pages - 1);
8c6e50b0 4455
82b0f8c3 4456 if (pmd_none(*vmf->pmd)) {
4cf58924 4457 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4458 if (!vmf->prealloc_pte)
f9ce0be7 4459 return VM_FAULT_OOM;
8c6e50b0
KS
4460 }
4461
f9ce0be7 4462 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4463}
4464
9c28a205
PX
4465/* Return true if we should do read fault-around, false otherwise */
4466static inline bool should_fault_around(struct vm_fault *vmf)
4467{
4468 /* No ->map_pages? No way to fault around... */
4469 if (!vmf->vma->vm_ops->map_pages)
4470 return false;
4471
4472 if (uffd_disable_fault_around(vmf->vma))
4473 return false;
4474
4475 return fault_around_bytes >> PAGE_SHIFT > 1;
4476}
4477
2b740303 4478static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4479{
2b740303 4480 vm_fault_t ret = 0;
8c6e50b0
KS
4481
4482 /*
4483 * Let's call ->map_pages() first and use ->fault() as fallback
4484 * if page by the offset is not ready to be mapped (cold cache or
4485 * something).
4486 */
9c28a205
PX
4487 if (should_fault_around(vmf)) {
4488 ret = do_fault_around(vmf);
4489 if (ret)
4490 return ret;
8c6e50b0 4491 }
e655fb29 4492
936ca80d 4493 ret = __do_fault(vmf);
e655fb29
KS
4494 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4495 return ret;
4496
9118c0cb 4497 ret |= finish_fault(vmf);
936ca80d 4498 unlock_page(vmf->page);
7267ec00 4499 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4500 put_page(vmf->page);
e655fb29
KS
4501 return ret;
4502}
4503
2b740303 4504static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4505{
82b0f8c3 4506 struct vm_area_struct *vma = vmf->vma;
2b740303 4507 vm_fault_t ret;
ec47c3b9
KS
4508
4509 if (unlikely(anon_vma_prepare(vma)))
4510 return VM_FAULT_OOM;
4511
936ca80d
JK
4512 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4513 if (!vmf->cow_page)
ec47c3b9
KS
4514 return VM_FAULT_OOM;
4515
8f425e4e
MWO
4516 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4517 GFP_KERNEL)) {
936ca80d 4518 put_page(vmf->cow_page);
ec47c3b9
KS
4519 return VM_FAULT_OOM;
4520 }
9d82c694 4521 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4522
936ca80d 4523 ret = __do_fault(vmf);
ec47c3b9
KS
4524 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4525 goto uncharge_out;
3917048d
JK
4526 if (ret & VM_FAULT_DONE_COW)
4527 return ret;
ec47c3b9 4528
b1aa812b 4529 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4530 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4531
9118c0cb 4532 ret |= finish_fault(vmf);
b1aa812b
JK
4533 unlock_page(vmf->page);
4534 put_page(vmf->page);
7267ec00
KS
4535 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4536 goto uncharge_out;
ec47c3b9
KS
4537 return ret;
4538uncharge_out:
936ca80d 4539 put_page(vmf->cow_page);
ec47c3b9
KS
4540 return ret;
4541}
4542
2b740303 4543static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4544{
82b0f8c3 4545 struct vm_area_struct *vma = vmf->vma;
2b740303 4546 vm_fault_t ret, tmp;
1d65f86d 4547
936ca80d 4548 ret = __do_fault(vmf);
7eae74af 4549 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4550 return ret;
1da177e4
LT
4551
4552 /*
f0c6d4d2
KS
4553 * Check if the backing address space wants to know that the page is
4554 * about to become writable
1da177e4 4555 */
fb09a464 4556 if (vma->vm_ops->page_mkwrite) {
936ca80d 4557 unlock_page(vmf->page);
38b8cb7f 4558 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4559 if (unlikely(!tmp ||
4560 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4561 put_page(vmf->page);
fb09a464 4562 return tmp;
4294621f 4563 }
fb09a464
KS
4564 }
4565
9118c0cb 4566 ret |= finish_fault(vmf);
7267ec00
KS
4567 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4568 VM_FAULT_RETRY))) {
936ca80d
JK
4569 unlock_page(vmf->page);
4570 put_page(vmf->page);
f0c6d4d2 4571 return ret;
1da177e4 4572 }
b827e496 4573
89b15332 4574 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4575 return ret;
54cb8821 4576}
d00806b1 4577
9a95f3cf 4578/*
c1e8d7c6 4579 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4580 * but allow concurrent faults).
c1e8d7c6 4581 * The mmap_lock may have been released depending on flags and our
9138e47e 4582 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4583 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4584 * by other thread calling munmap()).
9a95f3cf 4585 */
2b740303 4586static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4587{
82b0f8c3 4588 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4589 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4590 vm_fault_t ret;
54cb8821 4591
ff09d7ec
AK
4592 /*
4593 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4594 */
4595 if (!vma->vm_ops->fault) {
4596 /*
4597 * If we find a migration pmd entry or a none pmd entry, which
4598 * should never happen, return SIGBUS
4599 */
4600 if (unlikely(!pmd_present(*vmf->pmd)))
4601 ret = VM_FAULT_SIGBUS;
4602 else {
4603 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4604 vmf->pmd,
4605 vmf->address,
4606 &vmf->ptl);
4607 /*
4608 * Make sure this is not a temporary clearing of pte
4609 * by holding ptl and checking again. A R/M/W update
4610 * of pte involves: take ptl, clearing the pte so that
4611 * we don't have concurrent modification by hardware
4612 * followed by an update.
4613 */
4614 if (unlikely(pte_none(*vmf->pte)))
4615 ret = VM_FAULT_SIGBUS;
4616 else
4617 ret = VM_FAULT_NOPAGE;
4618
4619 pte_unmap_unlock(vmf->pte, vmf->ptl);
4620 }
4621 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4622 ret = do_read_fault(vmf);
4623 else if (!(vma->vm_flags & VM_SHARED))
4624 ret = do_cow_fault(vmf);
4625 else
4626 ret = do_shared_fault(vmf);
4627
4628 /* preallocated pagetable is unused: free it */
4629 if (vmf->prealloc_pte) {
fc8efd2d 4630 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4631 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4632 }
4633 return ret;
54cb8821
NP
4634}
4635
f4c0d836
YS
4636int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4637 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4638{
4639 get_page(page);
4640
4641 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4642 if (page_nid == numa_node_id()) {
9532fec1 4643 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4644 *flags |= TNF_FAULT_LOCAL;
4645 }
9532fec1
MG
4646
4647 return mpol_misplaced(page, vma, addr);
4648}
4649
2b740303 4650static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4651{
82b0f8c3 4652 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4653 struct page *page = NULL;
98fa15f3 4654 int page_nid = NUMA_NO_NODE;
6a56ccbc 4655 bool writable = false;
90572890 4656 int last_cpupid;
cbee9f88 4657 int target_nid;
04a86453 4658 pte_t pte, old_pte;
6688cc05 4659 int flags = 0;
d10e63f2
MG
4660
4661 /*
166f61b9
TH
4662 * The "pte" at this point cannot be used safely without
4663 * validation through pte_unmap_same(). It's of NUMA type but
4664 * the pfn may be screwed if the read is non atomic.
166f61b9 4665 */
82b0f8c3
JK
4666 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4667 spin_lock(vmf->ptl);
cee216a6 4668 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4669 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4670 goto out;
4671 }
4672
b99a342d
HY
4673 /* Get the normal PTE */
4674 old_pte = ptep_get(vmf->pte);
04a86453 4675 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4676
6a56ccbc
DH
4677 /*
4678 * Detect now whether the PTE could be writable; this information
4679 * is only valid while holding the PT lock.
4680 */
4681 writable = pte_write(pte);
4682 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4683 can_change_pte_writable(vma, vmf->address, pte))
4684 writable = true;
4685
82b0f8c3 4686 page = vm_normal_page(vma, vmf->address, pte);
3218f871 4687 if (!page || is_zone_device_page(page))
b99a342d 4688 goto out_map;
d10e63f2 4689
e81c4802 4690 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4691 if (PageCompound(page))
4692 goto out_map;
e81c4802 4693
6688cc05 4694 /*
bea66fbd
MG
4695 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4696 * much anyway since they can be in shared cache state. This misses
4697 * the case where a mapping is writable but the process never writes
4698 * to it but pte_write gets cleared during protection updates and
4699 * pte_dirty has unpredictable behaviour between PTE scan updates,
4700 * background writeback, dirty balancing and application behaviour.
6688cc05 4701 */
6a56ccbc 4702 if (!writable)
6688cc05
PZ
4703 flags |= TNF_NO_GROUP;
4704
dabe1d99
RR
4705 /*
4706 * Flag if the page is shared between multiple address spaces. This
4707 * is later used when determining whether to group tasks together
4708 */
4709 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4710 flags |= TNF_SHARED;
4711
8191acbd 4712 page_nid = page_to_nid(page);
33024536
HY
4713 /*
4714 * For memory tiering mode, cpupid of slow memory page is used
4715 * to record page access time. So use default value.
4716 */
4717 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4718 !node_is_toptier(page_nid))
4719 last_cpupid = (-1 & LAST_CPUPID_MASK);
4720 else
4721 last_cpupid = page_cpupid_last(page);
82b0f8c3 4722 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4723 &flags);
98fa15f3 4724 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4725 put_page(page);
b99a342d 4726 goto out_map;
4daae3b4 4727 }
b99a342d 4728 pte_unmap_unlock(vmf->pte, vmf->ptl);
6a56ccbc 4729 writable = false;
4daae3b4
MG
4730
4731 /* Migrate to the requested node */
bf90ac19 4732 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4733 page_nid = target_nid;
6688cc05 4734 flags |= TNF_MIGRATED;
b99a342d 4735 } else {
074c2381 4736 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4737 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4738 spin_lock(vmf->ptl);
4739 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4740 pte_unmap_unlock(vmf->pte, vmf->ptl);
4741 goto out;
4742 }
4743 goto out_map;
4744 }
4daae3b4
MG
4745
4746out:
98fa15f3 4747 if (page_nid != NUMA_NO_NODE)
6688cc05 4748 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4749 return 0;
b99a342d
HY
4750out_map:
4751 /*
4752 * Make it present again, depending on how arch implements
4753 * non-accessible ptes, some can allow access by kernel mode.
4754 */
4755 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4756 pte = pte_modify(old_pte, vma->vm_page_prot);
4757 pte = pte_mkyoung(pte);
6a56ccbc 4758 if (writable)
b99a342d
HY
4759 pte = pte_mkwrite(pte);
4760 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4761 update_mmu_cache(vma, vmf->address, vmf->pte);
4762 pte_unmap_unlock(vmf->pte, vmf->ptl);
4763 goto out;
d10e63f2
MG
4764}
4765
2b740303 4766static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4767{
f4200391 4768 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4769 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4770 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4771 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4772 return VM_FAULT_FALLBACK;
4773}
4774
183f24aa 4775/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4776static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4777{
c89357e2 4778 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
aea06577 4779 vm_fault_t ret;
c89357e2 4780
529b930b 4781 if (vma_is_anonymous(vmf->vma)) {
c89357e2
DH
4782 if (likely(!unshare) &&
4783 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4784 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4785 return do_huge_pmd_wp_page(vmf);
529b930b 4786 }
327e9fd4 4787
aea06577
DH
4788 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4789 if (vmf->vma->vm_ops->huge_fault) {
4790 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4791 if (!(ret & VM_FAULT_FALLBACK))
4792 return ret;
4793 }
327e9fd4 4794 }
af9e4d5f 4795
327e9fd4 4796 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4797 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4798
b96375f7
MW
4799 return VM_FAULT_FALLBACK;
4800}
4801
2b740303 4802static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4803{
14c99d65
GJ
4804#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4805 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4806 /* No support for anonymous transparent PUD pages yet */
4807 if (vma_is_anonymous(vmf->vma))
4808 return VM_FAULT_FALLBACK;
4809 if (vmf->vma->vm_ops->huge_fault)
4810 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4811#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4812 return VM_FAULT_FALLBACK;
4813}
4814
4815static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4816{
327e9fd4
THV
4817#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4818 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
aea06577
DH
4819 vm_fault_t ret;
4820
a00cc7d9
MW
4821 /* No support for anonymous transparent PUD pages yet */
4822 if (vma_is_anonymous(vmf->vma))
327e9fd4 4823 goto split;
aea06577
DH
4824 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4825 if (vmf->vma->vm_ops->huge_fault) {
4826 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4827 if (!(ret & VM_FAULT_FALLBACK))
4828 return ret;
4829 }
327e9fd4
THV
4830 }
4831split:
4832 /* COW or write-notify not handled on PUD level: split pud.*/
4833 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
14c99d65 4834#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4835 return VM_FAULT_FALLBACK;
4836}
4837
1da177e4
LT
4838/*
4839 * These routines also need to handle stuff like marking pages dirty
4840 * and/or accessed for architectures that don't do it in hardware (most
4841 * RISC architectures). The early dirtying is also good on the i386.
4842 *
4843 * There is also a hook called "update_mmu_cache()" that architectures
4844 * with external mmu caches can use to update those (ie the Sparc or
4845 * PowerPC hashed page tables that act as extended TLBs).
4846 *
c1e8d7c6 4847 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4848 * concurrent faults).
9a95f3cf 4849 *
c1e8d7c6 4850 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4851 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4852 */
2b740303 4853static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4854{
4855 pte_t entry;
4856
82b0f8c3 4857 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4858 /*
4859 * Leave __pte_alloc() until later: because vm_ops->fault may
4860 * want to allocate huge page, and if we expose page table
4861 * for an instant, it will be difficult to retract from
4862 * concurrent faults and from rmap lookups.
4863 */
82b0f8c3 4864 vmf->pte = NULL;
f46f2ade 4865 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4866 } else {
f9ce0be7
KS
4867 /*
4868 * If a huge pmd materialized under us just retry later. Use
4869 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4870 * of pmd_trans_huge() to ensure the pmd didn't become
4871 * pmd_trans_huge under us and then back to pmd_none, as a
4872 * result of MADV_DONTNEED running immediately after a huge pmd
4873 * fault in a different thread of this mm, in turn leading to a
4874 * misleading pmd_trans_huge() retval. All we have to ensure is
4875 * that it is a regular pmd that we can walk with
4876 * pte_offset_map() and we can do that through an atomic read
4877 * in C, which is what pmd_trans_unstable() provides.
4878 */
d0f0931d 4879 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4880 return 0;
4881 /*
4882 * A regular pmd is established and it can't morph into a huge
4883 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4884 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4885 * So now it's safe to run pte_offset_map().
4886 */
82b0f8c3 4887 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4888 vmf->orig_pte = *vmf->pte;
f46f2ade 4889 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00
KS
4890
4891 /*
4892 * some architectures can have larger ptes than wordsize,
4893 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4894 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4895 * accesses. The code below just needs a consistent view
4896 * for the ifs and we later double check anyway with the
7267ec00
KS
4897 * ptl lock held. So here a barrier will do.
4898 */
4899 barrier();
2994302b 4900 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4901 pte_unmap(vmf->pte);
4902 vmf->pte = NULL;
65500d23 4903 }
1da177e4
LT
4904 }
4905
82b0f8c3
JK
4906 if (!vmf->pte) {
4907 if (vma_is_anonymous(vmf->vma))
4908 return do_anonymous_page(vmf);
7267ec00 4909 else
82b0f8c3 4910 return do_fault(vmf);
7267ec00
KS
4911 }
4912
2994302b
JK
4913 if (!pte_present(vmf->orig_pte))
4914 return do_swap_page(vmf);
7267ec00 4915
2994302b
JK
4916 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4917 return do_numa_page(vmf);
d10e63f2 4918
82b0f8c3
JK
4919 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4920 spin_lock(vmf->ptl);
2994302b 4921 entry = vmf->orig_pte;
7df67697
BM
4922 if (unlikely(!pte_same(*vmf->pte, entry))) {
4923 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4924 goto unlock;
7df67697 4925 }
c89357e2 4926 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 4927 if (!pte_write(entry))
2994302b 4928 return do_wp_page(vmf);
c89357e2
DH
4929 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4930 entry = pte_mkdirty(entry);
1da177e4
LT
4931 }
4932 entry = pte_mkyoung(entry);
82b0f8c3
JK
4933 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4934 vmf->flags & FAULT_FLAG_WRITE)) {
4935 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4936 } else {
b7333b58
YS
4937 /* Skip spurious TLB flush for retried page fault */
4938 if (vmf->flags & FAULT_FLAG_TRIED)
4939 goto unlock;
1a44e149
AA
4940 /*
4941 * This is needed only for protection faults but the arch code
4942 * is not yet telling us if this is a protection fault or not.
4943 * This still avoids useless tlb flushes for .text page faults
4944 * with threads.
4945 */
82b0f8c3
JK
4946 if (vmf->flags & FAULT_FLAG_WRITE)
4947 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4948 }
8f4e2101 4949unlock:
82b0f8c3 4950 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4951 return 0;
1da177e4
LT
4952}
4953
4954/*
4955 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4956 *
c1e8d7c6 4957 * The mmap_lock may have been released depending on flags and our
9138e47e 4958 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4959 */
2b740303
SJ
4960static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4961 unsigned long address, unsigned int flags)
1da177e4 4962{
82b0f8c3 4963 struct vm_fault vmf = {
bae473a4 4964 .vma = vma,
1a29d85e 4965 .address = address & PAGE_MASK,
824ddc60 4966 .real_address = address,
bae473a4 4967 .flags = flags,
0721ec8b 4968 .pgoff = linear_page_index(vma, address),
667240e0 4969 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4970 };
dcddffd4 4971 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 4972 unsigned long vm_flags = vma->vm_flags;
1da177e4 4973 pgd_t *pgd;
c2febafc 4974 p4d_t *p4d;
2b740303 4975 vm_fault_t ret;
1da177e4 4976
1da177e4 4977 pgd = pgd_offset(mm, address);
c2febafc
KS
4978 p4d = p4d_alloc(mm, pgd, address);
4979 if (!p4d)
4980 return VM_FAULT_OOM;
a00cc7d9 4981
c2febafc 4982 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4983 if (!vmf.pud)
c74df32c 4984 return VM_FAULT_OOM;
625110b5 4985retry_pud:
7da4e2cb 4986 if (pud_none(*vmf.pud) &&
a7f4e6e4 4987 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
4988 ret = create_huge_pud(&vmf);
4989 if (!(ret & VM_FAULT_FALLBACK))
4990 return ret;
4991 } else {
4992 pud_t orig_pud = *vmf.pud;
4993
4994 barrier();
4995 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4996
c89357e2
DH
4997 /*
4998 * TODO once we support anonymous PUDs: NUMA case and
4999 * FAULT_FLAG_UNSHARE handling.
5000 */
5001 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5002 ret = wp_huge_pud(&vmf, orig_pud);
5003 if (!(ret & VM_FAULT_FALLBACK))
5004 return ret;
5005 } else {
5006 huge_pud_set_accessed(&vmf, orig_pud);
5007 return 0;
5008 }
5009 }
5010 }
5011
5012 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5013 if (!vmf.pmd)
c74df32c 5014 return VM_FAULT_OOM;
625110b5
TH
5015
5016 /* Huge pud page fault raced with pmd_alloc? */
5017 if (pud_trans_unstable(vmf.pud))
5018 goto retry_pud;
5019
7da4e2cb 5020 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5021 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5022 ret = create_huge_pmd(&vmf);
c0292554
KS
5023 if (!(ret & VM_FAULT_FALLBACK))
5024 return ret;
71e3aac0 5025 } else {
5db4f15c 5026 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 5027
71e3aac0 5028 barrier();
5db4f15c 5029 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5030 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5031 !is_pmd_migration_entry(vmf.orig_pmd));
5032 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5033 pmd_migration_entry_wait(mm, vmf.pmd);
5034 return 0;
5035 }
5db4f15c
YS
5036 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5037 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5038 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5039
c89357e2
DH
5040 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5041 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5042 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5043 if (!(ret & VM_FAULT_FALLBACK))
5044 return ret;
a1dd450b 5045 } else {
5db4f15c 5046 huge_pmd_set_accessed(&vmf);
9845cbbd 5047 return 0;
1f1d06c3 5048 }
71e3aac0
AA
5049 }
5050 }
5051
82b0f8c3 5052 return handle_pte_fault(&vmf);
1da177e4
LT
5053}
5054
bce617ed 5055/**
f0953a1b 5056 * mm_account_fault - Do page fault accounting
bce617ed
PX
5057 *
5058 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5059 * of perf event counters, but we'll still do the per-task accounting to
5060 * the task who triggered this page fault.
5061 * @address: the faulted address.
5062 * @flags: the fault flags.
5063 * @ret: the fault retcode.
5064 *
f0953a1b 5065 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5066 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5067 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5068 * still be in per-arch page fault handlers at the entry of page fault.
5069 */
5070static inline void mm_account_fault(struct pt_regs *regs,
5071 unsigned long address, unsigned int flags,
5072 vm_fault_t ret)
5073{
5074 bool major;
5075
5076 /*
5077 * We don't do accounting for some specific faults:
5078 *
5079 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5080 * includes arch_vma_access_permitted() failing before reaching here.
5081 * So this is not a "this many hardware page faults" counter. We
5082 * should use the hw profiling for that.
5083 *
5084 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5085 * once they're completed.
5086 */
5087 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5088 return;
5089
5090 /*
5091 * We define the fault as a major fault when the final successful fault
5092 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5093 * handle it immediately previously).
5094 */
5095 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5096
a2beb5f1
PX
5097 if (major)
5098 current->maj_flt++;
5099 else
5100 current->min_flt++;
5101
bce617ed 5102 /*
a2beb5f1
PX
5103 * If the fault is done for GUP, regs will be NULL. We only do the
5104 * accounting for the per thread fault counters who triggered the
5105 * fault, and we skip the perf event updates.
bce617ed
PX
5106 */
5107 if (!regs)
5108 return;
5109
a2beb5f1 5110 if (major)
bce617ed 5111 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5112 else
bce617ed 5113 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5114}
5115
ec1c86b2
YZ
5116#ifdef CONFIG_LRU_GEN
5117static void lru_gen_enter_fault(struct vm_area_struct *vma)
5118{
8788f678
YZ
5119 /* the LRU algorithm only applies to accesses with recency */
5120 current->in_lru_fault = vma_has_recency(vma);
ec1c86b2
YZ
5121}
5122
5123static void lru_gen_exit_fault(void)
5124{
5125 current->in_lru_fault = false;
5126}
5127#else
5128static void lru_gen_enter_fault(struct vm_area_struct *vma)
5129{
5130}
5131
5132static void lru_gen_exit_fault(void)
5133{
5134}
5135#endif /* CONFIG_LRU_GEN */
5136
cdc5021c
DH
5137static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5138 unsigned int *flags)
5139{
5140 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5141 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5142 return VM_FAULT_SIGSEGV;
5143 /*
5144 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5145 * just treat it like an ordinary read-fault otherwise.
5146 */
5147 if (!is_cow_mapping(vma->vm_flags))
5148 *flags &= ~FAULT_FLAG_UNSHARE;
79881fed
DH
5149 } else if (*flags & FAULT_FLAG_WRITE) {
5150 /* Write faults on read-only mappings are impossible ... */
5151 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5152 return VM_FAULT_SIGSEGV;
5153 /* ... and FOLL_FORCE only applies to COW mappings. */
5154 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5155 !is_cow_mapping(vma->vm_flags)))
5156 return VM_FAULT_SIGSEGV;
cdc5021c
DH
5157 }
5158 return 0;
5159}
5160
9a95f3cf
PC
5161/*
5162 * By the time we get here, we already hold the mm semaphore
5163 *
c1e8d7c6 5164 * The mmap_lock may have been released depending on flags and our
9138e47e 5165 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5166 */
2b740303 5167vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5168 unsigned int flags, struct pt_regs *regs)
519e5247 5169{
2b740303 5170 vm_fault_t ret;
519e5247
JW
5171
5172 __set_current_state(TASK_RUNNING);
5173
5174 count_vm_event(PGFAULT);
2262185c 5175 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247 5176
cdc5021c
DH
5177 ret = sanitize_fault_flags(vma, &flags);
5178 if (ret)
5179 return ret;
5180
de0c799b
LD
5181 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5182 flags & FAULT_FLAG_INSTRUCTION,
5183 flags & FAULT_FLAG_REMOTE))
5184 return VM_FAULT_SIGSEGV;
5185
519e5247
JW
5186 /*
5187 * Enable the memcg OOM handling for faults triggered in user
5188 * space. Kernel faults are handled more gracefully.
5189 */
5190 if (flags & FAULT_FLAG_USER)
29ef680a 5191 mem_cgroup_enter_user_fault();
519e5247 5192
ec1c86b2
YZ
5193 lru_gen_enter_fault(vma);
5194
bae473a4
KS
5195 if (unlikely(is_vm_hugetlb_page(vma)))
5196 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5197 else
5198 ret = __handle_mm_fault(vma, address, flags);
519e5247 5199
ec1c86b2
YZ
5200 lru_gen_exit_fault();
5201
49426420 5202 if (flags & FAULT_FLAG_USER) {
29ef680a 5203 mem_cgroup_exit_user_fault();
166f61b9
TH
5204 /*
5205 * The task may have entered a memcg OOM situation but
5206 * if the allocation error was handled gracefully (no
5207 * VM_FAULT_OOM), there is no need to kill anything.
5208 * Just clean up the OOM state peacefully.
5209 */
5210 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5211 mem_cgroup_oom_synchronize(false);
49426420 5212 }
3812c8c8 5213
bce617ed
PX
5214 mm_account_fault(regs, address, flags, ret);
5215
519e5247
JW
5216 return ret;
5217}
e1d6d01a 5218EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5219
90eceff1
KS
5220#ifndef __PAGETABLE_P4D_FOLDED
5221/*
5222 * Allocate p4d page table.
5223 * We've already handled the fast-path in-line.
5224 */
5225int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5226{
5227 p4d_t *new = p4d_alloc_one(mm, address);
5228 if (!new)
5229 return -ENOMEM;
5230
90eceff1 5231 spin_lock(&mm->page_table_lock);
ed33b5a6 5232 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5233 p4d_free(mm, new);
ed33b5a6
QZ
5234 } else {
5235 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5236 pgd_populate(mm, pgd, new);
ed33b5a6 5237 }
90eceff1
KS
5238 spin_unlock(&mm->page_table_lock);
5239 return 0;
5240}
5241#endif /* __PAGETABLE_P4D_FOLDED */
5242
1da177e4
LT
5243#ifndef __PAGETABLE_PUD_FOLDED
5244/*
5245 * Allocate page upper directory.
872fec16 5246 * We've already handled the fast-path in-line.
1da177e4 5247 */
c2febafc 5248int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5249{
c74df32c
HD
5250 pud_t *new = pud_alloc_one(mm, address);
5251 if (!new)
1bb3630e 5252 return -ENOMEM;
1da177e4 5253
872fec16 5254 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5255 if (!p4d_present(*p4d)) {
5256 mm_inc_nr_puds(mm);
ed33b5a6 5257 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5258 p4d_populate(mm, p4d, new);
b4e98d9a 5259 } else /* Another has populated it */
5e541973 5260 pud_free(mm, new);
c74df32c 5261 spin_unlock(&mm->page_table_lock);
1bb3630e 5262 return 0;
1da177e4
LT
5263}
5264#endif /* __PAGETABLE_PUD_FOLDED */
5265
5266#ifndef __PAGETABLE_PMD_FOLDED
5267/*
5268 * Allocate page middle directory.
872fec16 5269 * We've already handled the fast-path in-line.
1da177e4 5270 */
1bb3630e 5271int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5272{
a00cc7d9 5273 spinlock_t *ptl;
c74df32c
HD
5274 pmd_t *new = pmd_alloc_one(mm, address);
5275 if (!new)
1bb3630e 5276 return -ENOMEM;
1da177e4 5277
a00cc7d9 5278 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5279 if (!pud_present(*pud)) {
5280 mm_inc_nr_pmds(mm);
ed33b5a6 5281 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5282 pud_populate(mm, pud, new);
ed33b5a6 5283 } else { /* Another has populated it */
5e541973 5284 pmd_free(mm, new);
ed33b5a6 5285 }
a00cc7d9 5286 spin_unlock(ptl);
1bb3630e 5287 return 0;
e0f39591 5288}
1da177e4
LT
5289#endif /* __PAGETABLE_PMD_FOLDED */
5290
0e5e64c0
MS
5291/**
5292 * follow_pte - look up PTE at a user virtual address
5293 * @mm: the mm_struct of the target address space
5294 * @address: user virtual address
5295 * @ptepp: location to store found PTE
5296 * @ptlp: location to store the lock for the PTE
5297 *
5298 * On a successful return, the pointer to the PTE is stored in @ptepp;
5299 * the corresponding lock is taken and its location is stored in @ptlp.
5300 * The contents of the PTE are only stable until @ptlp is released;
5301 * any further use, if any, must be protected against invalidation
5302 * with MMU notifiers.
5303 *
5304 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5305 * should be taken for read.
5306 *
5307 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5308 * it is not a good general-purpose API.
5309 *
5310 * Return: zero on success, -ve otherwise.
5311 */
5312int follow_pte(struct mm_struct *mm, unsigned long address,
5313 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5314{
5315 pgd_t *pgd;
c2febafc 5316 p4d_t *p4d;
f8ad0f49
JW
5317 pud_t *pud;
5318 pmd_t *pmd;
5319 pte_t *ptep;
5320
5321 pgd = pgd_offset(mm, address);
5322 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5323 goto out;
5324
c2febafc
KS
5325 p4d = p4d_offset(pgd, address);
5326 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5327 goto out;
5328
5329 pud = pud_offset(p4d, address);
f8ad0f49
JW
5330 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5331 goto out;
5332
5333 pmd = pmd_offset(pud, address);
f66055ab 5334 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5335
09796395 5336 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
5337 goto out;
5338
5339 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
5340 if (!pte_present(*ptep))
5341 goto unlock;
5342 *ptepp = ptep;
5343 return 0;
5344unlock:
5345 pte_unmap_unlock(ptep, *ptlp);
5346out:
5347 return -EINVAL;
5348}
9fd6dad1
PB
5349EXPORT_SYMBOL_GPL(follow_pte);
5350
3b6748e2
JW
5351/**
5352 * follow_pfn - look up PFN at a user virtual address
5353 * @vma: memory mapping
5354 * @address: user virtual address
5355 * @pfn: location to store found PFN
5356 *
5357 * Only IO mappings and raw PFN mappings are allowed.
5358 *
9fd6dad1
PB
5359 * This function does not allow the caller to read the permissions
5360 * of the PTE. Do not use it.
5361 *
a862f68a 5362 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5363 */
5364int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5365 unsigned long *pfn)
5366{
5367 int ret = -EINVAL;
5368 spinlock_t *ptl;
5369 pte_t *ptep;
5370
5371 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5372 return ret;
5373
9fd6dad1 5374 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5375 if (ret)
5376 return ret;
5377 *pfn = pte_pfn(*ptep);
5378 pte_unmap_unlock(ptep, ptl);
5379 return 0;
5380}
5381EXPORT_SYMBOL(follow_pfn);
5382
28b2ee20 5383#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5384int follow_phys(struct vm_area_struct *vma,
5385 unsigned long address, unsigned int flags,
5386 unsigned long *prot, resource_size_t *phys)
28b2ee20 5387{
03668a4d 5388 int ret = -EINVAL;
28b2ee20
RR
5389 pte_t *ptep, pte;
5390 spinlock_t *ptl;
28b2ee20 5391
d87fe660 5392 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5393 goto out;
28b2ee20 5394
9fd6dad1 5395 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5396 goto out;
28b2ee20 5397 pte = *ptep;
03668a4d 5398
f6f37321 5399 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5400 goto unlock;
28b2ee20
RR
5401
5402 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5403 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5404
03668a4d 5405 ret = 0;
28b2ee20
RR
5406unlock:
5407 pte_unmap_unlock(ptep, ptl);
5408out:
d87fe660 5409 return ret;
28b2ee20
RR
5410}
5411
96667f8a
SV
5412/**
5413 * generic_access_phys - generic implementation for iomem mmap access
5414 * @vma: the vma to access
f0953a1b 5415 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
5416 * @buf: buffer to read/write
5417 * @len: length of transfer
5418 * @write: set to FOLL_WRITE when writing, otherwise reading
5419 *
5420 * This is a generic implementation for &vm_operations_struct.access for an
5421 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5422 * not page based.
5423 */
28b2ee20
RR
5424int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5425 void *buf, int len, int write)
5426{
5427 resource_size_t phys_addr;
5428 unsigned long prot = 0;
2bc7273b 5429 void __iomem *maddr;
96667f8a
SV
5430 pte_t *ptep, pte;
5431 spinlock_t *ptl;
5432 int offset = offset_in_page(addr);
5433 int ret = -EINVAL;
5434
5435 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5436 return -EINVAL;
5437
5438retry:
e913a8cd 5439 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5440 return -EINVAL;
5441 pte = *ptep;
5442 pte_unmap_unlock(ptep, ptl);
28b2ee20 5443
96667f8a
SV
5444 prot = pgprot_val(pte_pgprot(pte));
5445 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5446
5447 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5448 return -EINVAL;
5449
9cb12d7b 5450 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5451 if (!maddr)
5452 return -ENOMEM;
5453
e913a8cd 5454 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5455 goto out_unmap;
5456
5457 if (!pte_same(pte, *ptep)) {
5458 pte_unmap_unlock(ptep, ptl);
5459 iounmap(maddr);
5460
5461 goto retry;
5462 }
5463
28b2ee20
RR
5464 if (write)
5465 memcpy_toio(maddr + offset, buf, len);
5466 else
5467 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
5468 ret = len;
5469 pte_unmap_unlock(ptep, ptl);
5470out_unmap:
28b2ee20
RR
5471 iounmap(maddr);
5472
96667f8a 5473 return ret;
28b2ee20 5474}
5a73633e 5475EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5476#endif
5477
0ec76a11 5478/*
d3f5ffca 5479 * Access another process' address space as given in mm.
0ec76a11 5480 */
d3f5ffca
JH
5481int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5482 int len, unsigned int gup_flags)
0ec76a11 5483{
0ec76a11 5484 struct vm_area_struct *vma;
0ec76a11 5485 void *old_buf = buf;
442486ec 5486 int write = gup_flags & FOLL_WRITE;
0ec76a11 5487
d8ed45c5 5488 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5489 return 0;
5490
183ff22b 5491 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5492 while (len) {
5493 int bytes, ret, offset;
5494 void *maddr;
28b2ee20 5495 struct page *page = NULL;
0ec76a11 5496
64019a2e 5497 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5498 gup_flags, &page, &vma, NULL);
28b2ee20 5499 if (ret <= 0) {
dbffcd03
RR
5500#ifndef CONFIG_HAVE_IOREMAP_PROT
5501 break;
5502#else
28b2ee20
RR
5503 /*
5504 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5505 * we can access using slightly different code.
5506 */
3e418f98
LH
5507 vma = vma_lookup(mm, addr);
5508 if (!vma)
28b2ee20
RR
5509 break;
5510 if (vma->vm_ops && vma->vm_ops->access)
5511 ret = vma->vm_ops->access(vma, addr, buf,
5512 len, write);
5513 if (ret <= 0)
28b2ee20
RR
5514 break;
5515 bytes = ret;
dbffcd03 5516#endif
0ec76a11 5517 } else {
28b2ee20
RR
5518 bytes = len;
5519 offset = addr & (PAGE_SIZE-1);
5520 if (bytes > PAGE_SIZE-offset)
5521 bytes = PAGE_SIZE-offset;
5522
5523 maddr = kmap(page);
5524 if (write) {
5525 copy_to_user_page(vma, page, addr,
5526 maddr + offset, buf, bytes);
5527 set_page_dirty_lock(page);
5528 } else {
5529 copy_from_user_page(vma, page, addr,
5530 buf, maddr + offset, bytes);
5531 }
5532 kunmap(page);
09cbfeaf 5533 put_page(page);
0ec76a11 5534 }
0ec76a11
DH
5535 len -= bytes;
5536 buf += bytes;
5537 addr += bytes;
5538 }
d8ed45c5 5539 mmap_read_unlock(mm);
0ec76a11
DH
5540
5541 return buf - old_buf;
5542}
03252919 5543
5ddd36b9 5544/**
ae91dbfc 5545 * access_remote_vm - access another process' address space
5ddd36b9
SW
5546 * @mm: the mm_struct of the target address space
5547 * @addr: start address to access
5548 * @buf: source or destination buffer
5549 * @len: number of bytes to transfer
6347e8d5 5550 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5551 *
5552 * The caller must hold a reference on @mm.
a862f68a
MR
5553 *
5554 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5555 */
5556int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5557 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5558{
d3f5ffca 5559 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5560}
5561
206cb636
SW
5562/*
5563 * Access another process' address space.
5564 * Source/target buffer must be kernel space,
5565 * Do not walk the page table directly, use get_user_pages
5566 */
5567int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5568 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5569{
5570 struct mm_struct *mm;
5571 int ret;
5572
5573 mm = get_task_mm(tsk);
5574 if (!mm)
5575 return 0;
5576
d3f5ffca 5577 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5578
206cb636
SW
5579 mmput(mm);
5580
5581 return ret;
5582}
fcd35857 5583EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5584
03252919
AK
5585/*
5586 * Print the name of a VMA.
5587 */
5588void print_vma_addr(char *prefix, unsigned long ip)
5589{
5590 struct mm_struct *mm = current->mm;
5591 struct vm_area_struct *vma;
5592
e8bff74a 5593 /*
0a7f682d 5594 * we might be running from an atomic context so we cannot sleep
e8bff74a 5595 */
d8ed45c5 5596 if (!mmap_read_trylock(mm))
e8bff74a
IM
5597 return;
5598
03252919
AK
5599 vma = find_vma(mm, ip);
5600 if (vma && vma->vm_file) {
5601 struct file *f = vma->vm_file;
0a7f682d 5602 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5603 if (buf) {
2fbc57c5 5604 char *p;
03252919 5605
9bf39ab2 5606 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5607 if (IS_ERR(p))
5608 p = "?";
2fbc57c5 5609 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5610 vma->vm_start,
5611 vma->vm_end - vma->vm_start);
5612 free_page((unsigned long)buf);
5613 }
5614 }
d8ed45c5 5615 mmap_read_unlock(mm);
03252919 5616}
3ee1afa3 5617
662bbcb2 5618#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5619void __might_fault(const char *file, int line)
3ee1afa3 5620{
9ec23531 5621 if (pagefault_disabled())
662bbcb2 5622 return;
42a38756 5623 __might_sleep(file, line);
9ec23531 5624#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5625 if (current->mm)
da1c55f1 5626 might_lock_read(&current->mm->mmap_lock);
9ec23531 5627#endif
3ee1afa3 5628}
9ec23531 5629EXPORT_SYMBOL(__might_fault);
3ee1afa3 5630#endif
47ad8475
AA
5631
5632#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5633/*
5634 * Process all subpages of the specified huge page with the specified
5635 * operation. The target subpage will be processed last to keep its
5636 * cache lines hot.
5637 */
5638static inline void process_huge_page(
5639 unsigned long addr_hint, unsigned int pages_per_huge_page,
5640 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5641 void *arg)
47ad8475 5642{
c79b57e4
HY
5643 int i, n, base, l;
5644 unsigned long addr = addr_hint &
5645 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5646
c6ddfb6c 5647 /* Process target subpage last to keep its cache lines hot */
47ad8475 5648 might_sleep();
c79b57e4
HY
5649 n = (addr_hint - addr) / PAGE_SIZE;
5650 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5651 /* If target subpage in first half of huge page */
c79b57e4
HY
5652 base = 0;
5653 l = n;
c6ddfb6c 5654 /* Process subpages at the end of huge page */
c79b57e4
HY
5655 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5656 cond_resched();
c6ddfb6c 5657 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5658 }
5659 } else {
c6ddfb6c 5660 /* If target subpage in second half of huge page */
c79b57e4
HY
5661 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5662 l = pages_per_huge_page - n;
c6ddfb6c 5663 /* Process subpages at the begin of huge page */
c79b57e4
HY
5664 for (i = 0; i < base; i++) {
5665 cond_resched();
c6ddfb6c 5666 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5667 }
5668 }
5669 /*
c6ddfb6c
HY
5670 * Process remaining subpages in left-right-left-right pattern
5671 * towards the target subpage
c79b57e4
HY
5672 */
5673 for (i = 0; i < l; i++) {
5674 int left_idx = base + i;
5675 int right_idx = base + 2 * l - 1 - i;
5676
5677 cond_resched();
c6ddfb6c 5678 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5679 cond_resched();
c6ddfb6c 5680 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5681 }
5682}
5683
c6ddfb6c
HY
5684static void clear_gigantic_page(struct page *page,
5685 unsigned long addr,
5686 unsigned int pages_per_huge_page)
5687{
5688 int i;
14455eab 5689 struct page *p;
c6ddfb6c
HY
5690
5691 might_sleep();
14455eab
CL
5692 for (i = 0; i < pages_per_huge_page; i++) {
5693 p = nth_page(page, i);
c6ddfb6c
HY
5694 cond_resched();
5695 clear_user_highpage(p, addr + i * PAGE_SIZE);
5696 }
5697}
5698
5699static void clear_subpage(unsigned long addr, int idx, void *arg)
5700{
5701 struct page *page = arg;
5702
5703 clear_user_highpage(page + idx, addr);
5704}
5705
5706void clear_huge_page(struct page *page,
5707 unsigned long addr_hint, unsigned int pages_per_huge_page)
5708{
5709 unsigned long addr = addr_hint &
5710 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5711
5712 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5713 clear_gigantic_page(page, addr, pages_per_huge_page);
5714 return;
5715 }
5716
5717 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5718}
5719
47ad8475
AA
5720static void copy_user_gigantic_page(struct page *dst, struct page *src,
5721 unsigned long addr,
5722 struct vm_area_struct *vma,
5723 unsigned int pages_per_huge_page)
5724{
5725 int i;
5726 struct page *dst_base = dst;
5727 struct page *src_base = src;
5728
14455eab
CL
5729 for (i = 0; i < pages_per_huge_page; i++) {
5730 dst = nth_page(dst_base, i);
5731 src = nth_page(src_base, i);
5732
47ad8475
AA
5733 cond_resched();
5734 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
47ad8475
AA
5735 }
5736}
5737
c9f4cd71
HY
5738struct copy_subpage_arg {
5739 struct page *dst;
5740 struct page *src;
5741 struct vm_area_struct *vma;
5742};
5743
5744static void copy_subpage(unsigned long addr, int idx, void *arg)
5745{
5746 struct copy_subpage_arg *copy_arg = arg;
5747
5748 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5749 addr, copy_arg->vma);
5750}
5751
47ad8475 5752void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5753 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5754 unsigned int pages_per_huge_page)
5755{
c9f4cd71
HY
5756 unsigned long addr = addr_hint &
5757 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5758 struct copy_subpage_arg arg = {
5759 .dst = dst,
5760 .src = src,
5761 .vma = vma,
5762 };
47ad8475
AA
5763
5764 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5765 copy_user_gigantic_page(dst, src, addr, vma,
5766 pages_per_huge_page);
5767 return;
5768 }
5769
c9f4cd71 5770 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5771}
fa4d75c1
MK
5772
5773long copy_huge_page_from_user(struct page *dst_page,
5774 const void __user *usr_src,
810a56b9
MK
5775 unsigned int pages_per_huge_page,
5776 bool allow_pagefault)
fa4d75c1 5777{
fa4d75c1
MK
5778 void *page_kaddr;
5779 unsigned long i, rc = 0;
5780 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
14455eab 5781 struct page *subpage;
fa4d75c1 5782
14455eab
CL
5783 for (i = 0; i < pages_per_huge_page; i++) {
5784 subpage = nth_page(dst_page, i);
810a56b9 5785 if (allow_pagefault)
3272cfc2 5786 page_kaddr = kmap(subpage);
810a56b9 5787 else
3272cfc2 5788 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5789 rc = copy_from_user(page_kaddr,
b063e374 5790 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5791 if (allow_pagefault)
3272cfc2 5792 kunmap(subpage);
810a56b9
MK
5793 else
5794 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5795
5796 ret_val -= (PAGE_SIZE - rc);
5797 if (rc)
5798 break;
5799
e763243c
MS
5800 flush_dcache_page(subpage);
5801
fa4d75c1
MK
5802 cond_resched();
5803 }
5804 return ret_val;
5805}
47ad8475 5806#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5807
40b64acd 5808#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5809
5810static struct kmem_cache *page_ptl_cachep;
5811
5812void __init ptlock_cache_init(void)
5813{
5814 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5815 SLAB_PANIC, NULL);
5816}
5817
539edb58 5818bool ptlock_alloc(struct page *page)
49076ec2
KS
5819{
5820 spinlock_t *ptl;
5821
b35f1819 5822 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5823 if (!ptl)
5824 return false;
539edb58 5825 page->ptl = ptl;
49076ec2
KS
5826 return true;
5827}
5828
539edb58 5829void ptlock_free(struct page *page)
49076ec2 5830{
b35f1819 5831 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5832}
5833#endif