]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/mm/mempool.c | |
4 | * | |
5 | * memory buffer pool support. Such pools are mostly used | |
6 | * for guaranteed, deadlock-free memory allocations during | |
7 | * extreme VM load. | |
8 | * | |
9 | * started by Ingo Molnar, Copyright (C) 2001 | |
bdfedb76 | 10 | * debugging by David Rientjes, Copyright (C) 2015 |
1da177e4 LT |
11 | */ |
12 | ||
13 | #include <linux/mm.h> | |
14 | #include <linux/slab.h> | |
bdfedb76 | 15 | #include <linux/highmem.h> |
92393615 | 16 | #include <linux/kasan.h> |
17411962 | 17 | #include <linux/kmemleak.h> |
b95f1b31 | 18 | #include <linux/export.h> |
1da177e4 LT |
19 | #include <linux/mempool.h> |
20 | #include <linux/blkdev.h> | |
21 | #include <linux/writeback.h> | |
e244c9e6 | 22 | #include "slab.h" |
1da177e4 | 23 | |
bdfedb76 DR |
24 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) |
25 | static void poison_error(mempool_t *pool, void *element, size_t size, | |
26 | size_t byte) | |
27 | { | |
28 | const int nr = pool->curr_nr; | |
29 | const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0); | |
30 | const int end = min_t(int, byte + (BITS_PER_LONG / 8), size); | |
31 | int i; | |
32 | ||
33 | pr_err("BUG: mempool element poison mismatch\n"); | |
34 | pr_err("Mempool %p size %zu\n", pool, size); | |
35 | pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : ""); | |
36 | for (i = start; i < end; i++) | |
37 | pr_cont("%x ", *(u8 *)(element + i)); | |
38 | pr_cont("%s\n", end < size ? "..." : ""); | |
39 | dump_stack(); | |
40 | } | |
41 | ||
42 | static void __check_element(mempool_t *pool, void *element, size_t size) | |
43 | { | |
44 | u8 *obj = element; | |
45 | size_t i; | |
46 | ||
47 | for (i = 0; i < size; i++) { | |
48 | u8 exp = (i < size - 1) ? POISON_FREE : POISON_END; | |
49 | ||
50 | if (obj[i] != exp) { | |
51 | poison_error(pool, element, size, i); | |
52 | return; | |
53 | } | |
54 | } | |
55 | memset(obj, POISON_INUSE, size); | |
56 | } | |
57 | ||
58 | static void check_element(mempool_t *pool, void *element) | |
59 | { | |
60 | /* Mempools backed by slab allocator */ | |
61 | if (pool->free == mempool_free_slab || pool->free == mempool_kfree) | |
62 | __check_element(pool, element, ksize(element)); | |
63 | ||
64 | /* Mempools backed by page allocator */ | |
65 | if (pool->free == mempool_free_pages) { | |
66 | int order = (int)(long)pool->pool_data; | |
67 | void *addr = kmap_atomic((struct page *)element); | |
68 | ||
69 | __check_element(pool, addr, 1UL << (PAGE_SHIFT + order)); | |
70 | kunmap_atomic(addr); | |
71 | } | |
72 | } | |
73 | ||
74 | static void __poison_element(void *element, size_t size) | |
75 | { | |
76 | u8 *obj = element; | |
77 | ||
78 | memset(obj, POISON_FREE, size - 1); | |
79 | obj[size - 1] = POISON_END; | |
80 | } | |
81 | ||
82 | static void poison_element(mempool_t *pool, void *element) | |
83 | { | |
84 | /* Mempools backed by slab allocator */ | |
85 | if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) | |
86 | __poison_element(element, ksize(element)); | |
87 | ||
88 | /* Mempools backed by page allocator */ | |
89 | if (pool->alloc == mempool_alloc_pages) { | |
90 | int order = (int)(long)pool->pool_data; | |
91 | void *addr = kmap_atomic((struct page *)element); | |
92 | ||
93 | __poison_element(addr, 1UL << (PAGE_SHIFT + order)); | |
94 | kunmap_atomic(addr); | |
95 | } | |
96 | } | |
97 | #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ | |
98 | static inline void check_element(mempool_t *pool, void *element) | |
99 | { | |
100 | } | |
101 | static inline void poison_element(mempool_t *pool, void *element) | |
102 | { | |
103 | } | |
104 | #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ | |
105 | ||
6860f634 | 106 | static __always_inline void kasan_poison_element(mempool_t *pool, void *element) |
92393615 | 107 | { |
9b75a867 | 108 | if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) |
6860f634 | 109 | kasan_poison_kfree(element, _RET_IP_); |
92393615 AR |
110 | if (pool->alloc == mempool_alloc_pages) |
111 | kasan_free_pages(element, (unsigned long)pool->pool_data); | |
112 | } | |
113 | ||
8cded866 | 114 | static void kasan_unpoison_element(mempool_t *pool, void *element) |
92393615 | 115 | { |
9b75a867 AR |
116 | if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) |
117 | kasan_unpoison_slab(element); | |
92393615 AR |
118 | if (pool->alloc == mempool_alloc_pages) |
119 | kasan_alloc_pages(element, (unsigned long)pool->pool_data); | |
120 | } | |
121 | ||
6860f634 | 122 | static __always_inline void add_element(mempool_t *pool, void *element) |
1da177e4 LT |
123 | { |
124 | BUG_ON(pool->curr_nr >= pool->min_nr); | |
bdfedb76 | 125 | poison_element(pool, element); |
92393615 | 126 | kasan_poison_element(pool, element); |
1da177e4 LT |
127 | pool->elements[pool->curr_nr++] = element; |
128 | } | |
129 | ||
8cded866 | 130 | static void *remove_element(mempool_t *pool) |
1da177e4 | 131 | { |
bdfedb76 DR |
132 | void *element = pool->elements[--pool->curr_nr]; |
133 | ||
134 | BUG_ON(pool->curr_nr < 0); | |
8cded866 | 135 | kasan_unpoison_element(pool, element); |
76401310 | 136 | check_element(pool, element); |
bdfedb76 | 137 | return element; |
1da177e4 LT |
138 | } |
139 | ||
c1a67fef KO |
140 | /** |
141 | * mempool_exit - exit a mempool initialized with mempool_init() | |
142 | * @pool: pointer to the memory pool which was initialized with | |
143 | * mempool_init(). | |
144 | * | |
145 | * Free all reserved elements in @pool and @pool itself. This function | |
146 | * only sleeps if the free_fn() function sleeps. | |
147 | * | |
148 | * May be called on a zeroed but uninitialized mempool (i.e. allocated with | |
149 | * kzalloc()). | |
150 | */ | |
151 | void mempool_exit(mempool_t *pool) | |
152 | { | |
153 | while (pool->curr_nr) { | |
8cded866 | 154 | void *element = remove_element(pool); |
c1a67fef KO |
155 | pool->free(element, pool->pool_data); |
156 | } | |
157 | kfree(pool->elements); | |
158 | pool->elements = NULL; | |
159 | } | |
160 | EXPORT_SYMBOL(mempool_exit); | |
161 | ||
0565d317 TH |
162 | /** |
163 | * mempool_destroy - deallocate a memory pool | |
164 | * @pool: pointer to the memory pool which was allocated via | |
165 | * mempool_create(). | |
166 | * | |
167 | * Free all reserved elements in @pool and @pool itself. This function | |
168 | * only sleeps if the free_fn() function sleeps. | |
169 | */ | |
170 | void mempool_destroy(mempool_t *pool) | |
1da177e4 | 171 | { |
4e3ca3e0 SS |
172 | if (unlikely(!pool)) |
173 | return; | |
174 | ||
c1a67fef | 175 | mempool_exit(pool); |
1da177e4 LT |
176 | kfree(pool); |
177 | } | |
0565d317 | 178 | EXPORT_SYMBOL(mempool_destroy); |
1da177e4 | 179 | |
c1a67fef KO |
180 | int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, |
181 | mempool_free_t *free_fn, void *pool_data, | |
182 | gfp_t gfp_mask, int node_id) | |
183 | { | |
184 | spin_lock_init(&pool->lock); | |
185 | pool->min_nr = min_nr; | |
186 | pool->pool_data = pool_data; | |
187 | pool->alloc = alloc_fn; | |
188 | pool->free = free_fn; | |
189 | init_waitqueue_head(&pool->wait); | |
190 | ||
191 | pool->elements = kmalloc_array_node(min_nr, sizeof(void *), | |
192 | gfp_mask, node_id); | |
193 | if (!pool->elements) | |
194 | return -ENOMEM; | |
195 | ||
196 | /* | |
197 | * First pre-allocate the guaranteed number of buffers. | |
198 | */ | |
199 | while (pool->curr_nr < pool->min_nr) { | |
200 | void *element; | |
201 | ||
202 | element = pool->alloc(gfp_mask, pool->pool_data); | |
203 | if (unlikely(!element)) { | |
204 | mempool_exit(pool); | |
205 | return -ENOMEM; | |
206 | } | |
207 | add_element(pool, element); | |
208 | } | |
209 | ||
210 | return 0; | |
211 | } | |
212 | EXPORT_SYMBOL(mempool_init_node); | |
213 | ||
214 | /** | |
215 | * mempool_init - initialize a memory pool | |
a3bf6ce3 | 216 | * @pool: pointer to the memory pool that should be initialized |
c1a67fef KO |
217 | * @min_nr: the minimum number of elements guaranteed to be |
218 | * allocated for this pool. | |
219 | * @alloc_fn: user-defined element-allocation function. | |
220 | * @free_fn: user-defined element-freeing function. | |
221 | * @pool_data: optional private data available to the user-defined functions. | |
222 | * | |
223 | * Like mempool_create(), but initializes the pool in (i.e. embedded in another | |
224 | * structure). | |
a862f68a MR |
225 | * |
226 | * Return: %0 on success, negative error code otherwise. | |
c1a67fef KO |
227 | */ |
228 | int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, | |
229 | mempool_free_t *free_fn, void *pool_data) | |
230 | { | |
231 | return mempool_init_node(pool, min_nr, alloc_fn, free_fn, | |
232 | pool_data, GFP_KERNEL, NUMA_NO_NODE); | |
233 | ||
234 | } | |
235 | EXPORT_SYMBOL(mempool_init); | |
236 | ||
1da177e4 LT |
237 | /** |
238 | * mempool_create - create a memory pool | |
239 | * @min_nr: the minimum number of elements guaranteed to be | |
240 | * allocated for this pool. | |
241 | * @alloc_fn: user-defined element-allocation function. | |
242 | * @free_fn: user-defined element-freeing function. | |
243 | * @pool_data: optional private data available to the user-defined functions. | |
244 | * | |
245 | * this function creates and allocates a guaranteed size, preallocated | |
72fd4a35 | 246 | * memory pool. The pool can be used from the mempool_alloc() and mempool_free() |
1da177e4 | 247 | * functions. This function might sleep. Both the alloc_fn() and the free_fn() |
72fd4a35 | 248 | * functions might sleep - as long as the mempool_alloc() function is not called |
1da177e4 | 249 | * from IRQ contexts. |
a862f68a MR |
250 | * |
251 | * Return: pointer to the created memory pool object or %NULL on error. | |
1da177e4 | 252 | */ |
1946089a | 253 | mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, |
1da177e4 LT |
254 | mempool_free_t *free_fn, void *pool_data) |
255 | { | |
a91a5ac6 TH |
256 | return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data, |
257 | GFP_KERNEL, NUMA_NO_NODE); | |
1946089a CL |
258 | } |
259 | EXPORT_SYMBOL(mempool_create); | |
1da177e4 | 260 | |
1946089a | 261 | mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, |
a91a5ac6 TH |
262 | mempool_free_t *free_fn, void *pool_data, |
263 | gfp_t gfp_mask, int node_id) | |
1946089a CL |
264 | { |
265 | mempool_t *pool; | |
c1a67fef | 266 | |
7b5219db | 267 | pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id); |
1da177e4 LT |
268 | if (!pool) |
269 | return NULL; | |
c1a67fef KO |
270 | |
271 | if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data, | |
272 | gfp_mask, node_id)) { | |
1da177e4 LT |
273 | kfree(pool); |
274 | return NULL; | |
275 | } | |
1da177e4 | 276 | |
1da177e4 LT |
277 | return pool; |
278 | } | |
1946089a | 279 | EXPORT_SYMBOL(mempool_create_node); |
1da177e4 LT |
280 | |
281 | /** | |
282 | * mempool_resize - resize an existing memory pool | |
283 | * @pool: pointer to the memory pool which was allocated via | |
284 | * mempool_create(). | |
285 | * @new_min_nr: the new minimum number of elements guaranteed to be | |
286 | * allocated for this pool. | |
1da177e4 LT |
287 | * |
288 | * This function shrinks/grows the pool. In the case of growing, | |
289 | * it cannot be guaranteed that the pool will be grown to the new | |
290 | * size immediately, but new mempool_free() calls will refill it. | |
11d83360 | 291 | * This function may sleep. |
1da177e4 LT |
292 | * |
293 | * Note, the caller must guarantee that no mempool_destroy is called | |
294 | * while this function is running. mempool_alloc() & mempool_free() | |
295 | * might be called (eg. from IRQ contexts) while this function executes. | |
a862f68a MR |
296 | * |
297 | * Return: %0 on success, negative error code otherwise. | |
1da177e4 | 298 | */ |
11d83360 | 299 | int mempool_resize(mempool_t *pool, int new_min_nr) |
1da177e4 LT |
300 | { |
301 | void *element; | |
302 | void **new_elements; | |
303 | unsigned long flags; | |
304 | ||
305 | BUG_ON(new_min_nr <= 0); | |
11d83360 | 306 | might_sleep(); |
1da177e4 LT |
307 | |
308 | spin_lock_irqsave(&pool->lock, flags); | |
309 | if (new_min_nr <= pool->min_nr) { | |
310 | while (new_min_nr < pool->curr_nr) { | |
8cded866 | 311 | element = remove_element(pool); |
1da177e4 LT |
312 | spin_unlock_irqrestore(&pool->lock, flags); |
313 | pool->free(element, pool->pool_data); | |
314 | spin_lock_irqsave(&pool->lock, flags); | |
315 | } | |
316 | pool->min_nr = new_min_nr; | |
317 | goto out_unlock; | |
318 | } | |
319 | spin_unlock_irqrestore(&pool->lock, flags); | |
320 | ||
321 | /* Grow the pool */ | |
11d83360 DR |
322 | new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements), |
323 | GFP_KERNEL); | |
1da177e4 LT |
324 | if (!new_elements) |
325 | return -ENOMEM; | |
326 | ||
327 | spin_lock_irqsave(&pool->lock, flags); | |
328 | if (unlikely(new_min_nr <= pool->min_nr)) { | |
329 | /* Raced, other resize will do our work */ | |
330 | spin_unlock_irqrestore(&pool->lock, flags); | |
331 | kfree(new_elements); | |
332 | goto out; | |
333 | } | |
334 | memcpy(new_elements, pool->elements, | |
335 | pool->curr_nr * sizeof(*new_elements)); | |
336 | kfree(pool->elements); | |
337 | pool->elements = new_elements; | |
338 | pool->min_nr = new_min_nr; | |
339 | ||
340 | while (pool->curr_nr < pool->min_nr) { | |
341 | spin_unlock_irqrestore(&pool->lock, flags); | |
11d83360 | 342 | element = pool->alloc(GFP_KERNEL, pool->pool_data); |
1da177e4 LT |
343 | if (!element) |
344 | goto out; | |
345 | spin_lock_irqsave(&pool->lock, flags); | |
346 | if (pool->curr_nr < pool->min_nr) { | |
347 | add_element(pool, element); | |
348 | } else { | |
349 | spin_unlock_irqrestore(&pool->lock, flags); | |
350 | pool->free(element, pool->pool_data); /* Raced */ | |
351 | goto out; | |
352 | } | |
353 | } | |
354 | out_unlock: | |
355 | spin_unlock_irqrestore(&pool->lock, flags); | |
356 | out: | |
357 | return 0; | |
358 | } | |
359 | EXPORT_SYMBOL(mempool_resize); | |
360 | ||
1da177e4 LT |
361 | /** |
362 | * mempool_alloc - allocate an element from a specific memory pool | |
363 | * @pool: pointer to the memory pool which was allocated via | |
364 | * mempool_create(). | |
365 | * @gfp_mask: the usual allocation bitmask. | |
366 | * | |
72fd4a35 | 367 | * this function only sleeps if the alloc_fn() function sleeps or |
1da177e4 LT |
368 | * returns NULL. Note that due to preallocation, this function |
369 | * *never* fails when called from process contexts. (it might | |
370 | * fail if called from an IRQ context.) | |
4e390b2b | 371 | * Note: using __GFP_ZERO is not supported. |
a862f68a MR |
372 | * |
373 | * Return: pointer to the allocated element or %NULL on error. | |
1da177e4 | 374 | */ |
f9054c70 | 375 | void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask) |
1da177e4 LT |
376 | { |
377 | void *element; | |
378 | unsigned long flags; | |
ac6424b9 | 379 | wait_queue_entry_t wait; |
6daa0e28 | 380 | gfp_t gfp_temp; |
20a77776 | 381 | |
8bf8fcb0 | 382 | VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO); |
d0164adc | 383 | might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); |
b84a35be | 384 | |
4e390b2b | 385 | gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */ |
b84a35be NP |
386 | gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */ |
387 | gfp_mask |= __GFP_NOWARN; /* failures are OK */ | |
1da177e4 | 388 | |
d0164adc | 389 | gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO); |
20a77776 | 390 | |
1da177e4 | 391 | repeat_alloc: |
20a77776 NP |
392 | |
393 | element = pool->alloc(gfp_temp, pool->pool_data); | |
1da177e4 LT |
394 | if (likely(element != NULL)) |
395 | return element; | |
396 | ||
1da177e4 LT |
397 | spin_lock_irqsave(&pool->lock, flags); |
398 | if (likely(pool->curr_nr)) { | |
8cded866 | 399 | element = remove_element(pool); |
1da177e4 | 400 | spin_unlock_irqrestore(&pool->lock, flags); |
5b990546 TH |
401 | /* paired with rmb in mempool_free(), read comment there */ |
402 | smp_wmb(); | |
17411962 CM |
403 | /* |
404 | * Update the allocation stack trace as this is more useful | |
405 | * for debugging. | |
406 | */ | |
407 | kmemleak_update_trace(element); | |
1da177e4 LT |
408 | return element; |
409 | } | |
1da177e4 | 410 | |
1ebb7044 | 411 | /* |
d0164adc | 412 | * We use gfp mask w/o direct reclaim or IO for the first round. If |
1ebb7044 TH |
413 | * alloc failed with that and @pool was empty, retry immediately. |
414 | */ | |
4e390b2b | 415 | if (gfp_temp != gfp_mask) { |
1ebb7044 TH |
416 | spin_unlock_irqrestore(&pool->lock, flags); |
417 | gfp_temp = gfp_mask; | |
418 | goto repeat_alloc; | |
419 | } | |
420 | ||
d0164adc MG |
421 | /* We must not sleep if !__GFP_DIRECT_RECLAIM */ |
422 | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { | |
5b990546 | 423 | spin_unlock_irqrestore(&pool->lock, flags); |
1da177e4 | 424 | return NULL; |
5b990546 | 425 | } |
1da177e4 | 426 | |
5b990546 | 427 | /* Let's wait for someone else to return an element to @pool */ |
01890a4c | 428 | init_wait(&wait); |
1da177e4 | 429 | prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE); |
1da177e4 | 430 | |
5b990546 TH |
431 | spin_unlock_irqrestore(&pool->lock, flags); |
432 | ||
433 | /* | |
434 | * FIXME: this should be io_schedule(). The timeout is there as a | |
435 | * workaround for some DM problems in 2.6.18. | |
436 | */ | |
437 | io_schedule_timeout(5*HZ); | |
438 | ||
439 | finish_wait(&pool->wait, &wait); | |
1da177e4 LT |
440 | goto repeat_alloc; |
441 | } | |
442 | EXPORT_SYMBOL(mempool_alloc); | |
443 | ||
444 | /** | |
445 | * mempool_free - return an element to the pool. | |
446 | * @element: pool element pointer. | |
447 | * @pool: pointer to the memory pool which was allocated via | |
448 | * mempool_create(). | |
449 | * | |
450 | * this function only sleeps if the free_fn() function sleeps. | |
451 | */ | |
452 | void mempool_free(void *element, mempool_t *pool) | |
453 | { | |
454 | unsigned long flags; | |
455 | ||
c80e7a82 RR |
456 | if (unlikely(element == NULL)) |
457 | return; | |
458 | ||
5b990546 TH |
459 | /* |
460 | * Paired with the wmb in mempool_alloc(). The preceding read is | |
461 | * for @element and the following @pool->curr_nr. This ensures | |
462 | * that the visible value of @pool->curr_nr is from after the | |
463 | * allocation of @element. This is necessary for fringe cases | |
464 | * where @element was passed to this task without going through | |
465 | * barriers. | |
466 | * | |
467 | * For example, assume @p is %NULL at the beginning and one task | |
468 | * performs "p = mempool_alloc(...);" while another task is doing | |
469 | * "while (!p) cpu_relax(); mempool_free(p, ...);". This function | |
470 | * may end up using curr_nr value which is from before allocation | |
471 | * of @p without the following rmb. | |
472 | */ | |
473 | smp_rmb(); | |
474 | ||
475 | /* | |
476 | * For correctness, we need a test which is guaranteed to trigger | |
477 | * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr | |
478 | * without locking achieves that and refilling as soon as possible | |
479 | * is desirable. | |
480 | * | |
481 | * Because curr_nr visible here is always a value after the | |
482 | * allocation of @element, any task which decremented curr_nr below | |
483 | * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets | |
484 | * incremented to min_nr afterwards. If curr_nr gets incremented | |
485 | * to min_nr after the allocation of @element, the elements | |
486 | * allocated after that are subject to the same guarantee. | |
487 | * | |
488 | * Waiters happen iff curr_nr is 0 and the above guarantee also | |
489 | * ensures that there will be frees which return elements to the | |
490 | * pool waking up the waiters. | |
491 | */ | |
eb9a3c62 | 492 | if (unlikely(pool->curr_nr < pool->min_nr)) { |
1da177e4 | 493 | spin_lock_irqsave(&pool->lock, flags); |
eb9a3c62 | 494 | if (likely(pool->curr_nr < pool->min_nr)) { |
1da177e4 LT |
495 | add_element(pool, element); |
496 | spin_unlock_irqrestore(&pool->lock, flags); | |
497 | wake_up(&pool->wait); | |
498 | return; | |
499 | } | |
500 | spin_unlock_irqrestore(&pool->lock, flags); | |
501 | } | |
502 | pool->free(element, pool->pool_data); | |
503 | } | |
504 | EXPORT_SYMBOL(mempool_free); | |
505 | ||
506 | /* | |
507 | * A commonly used alloc and free fn. | |
508 | */ | |
dd0fc66f | 509 | void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data) |
1da177e4 | 510 | { |
fcc234f8 | 511 | struct kmem_cache *mem = pool_data; |
e244c9e6 | 512 | VM_BUG_ON(mem->ctor); |
1da177e4 LT |
513 | return kmem_cache_alloc(mem, gfp_mask); |
514 | } | |
515 | EXPORT_SYMBOL(mempool_alloc_slab); | |
516 | ||
517 | void mempool_free_slab(void *element, void *pool_data) | |
518 | { | |
fcc234f8 | 519 | struct kmem_cache *mem = pool_data; |
1da177e4 LT |
520 | kmem_cache_free(mem, element); |
521 | } | |
522 | EXPORT_SYMBOL(mempool_free_slab); | |
6e0678f3 | 523 | |
53184082 MD |
524 | /* |
525 | * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory | |
183ff22b | 526 | * specified by pool_data |
53184082 MD |
527 | */ |
528 | void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data) | |
529 | { | |
5e2f89b5 | 530 | size_t size = (size_t)pool_data; |
53184082 MD |
531 | return kmalloc(size, gfp_mask); |
532 | } | |
533 | EXPORT_SYMBOL(mempool_kmalloc); | |
534 | ||
535 | void mempool_kfree(void *element, void *pool_data) | |
536 | { | |
537 | kfree(element); | |
538 | } | |
539 | EXPORT_SYMBOL(mempool_kfree); | |
540 | ||
6e0678f3 MD |
541 | /* |
542 | * A simple mempool-backed page allocator that allocates pages | |
543 | * of the order specified by pool_data. | |
544 | */ | |
545 | void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data) | |
546 | { | |
547 | int order = (int)(long)pool_data; | |
548 | return alloc_pages(gfp_mask, order); | |
549 | } | |
550 | EXPORT_SYMBOL(mempool_alloc_pages); | |
551 | ||
552 | void mempool_free_pages(void *element, void *pool_data) | |
553 | { | |
554 | int order = (int)(long)pool_data; | |
555 | __free_pages(element, order); | |
556 | } | |
557 | EXPORT_SYMBOL(mempool_free_pages); |