]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/migrate.c
mm: introduce a common interface for balloon pages mobility
[thirdparty/kernel/linux.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
8e6ac7fa 36#include <linux/hugetlb_cgroup.h>
5a0e3ad6 37#include <linux/gfp.h>
b20a3503 38
0d1836c3
MN
39#include <asm/tlbflush.h>
40
b20a3503
CL
41#include "internal.h"
42
b20a3503 43/*
742755a1 44 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
45 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
46 * undesirable, use migrate_prep_local()
b20a3503
CL
47 */
48int migrate_prep(void)
49{
b20a3503
CL
50 /*
51 * Clear the LRU lists so pages can be isolated.
52 * Note that pages may be moved off the LRU after we have
53 * drained them. Those pages will fail to migrate like other
54 * pages that may be busy.
55 */
56 lru_add_drain_all();
57
58 return 0;
59}
60
748446bb
MG
61/* Do the necessary work of migrate_prep but not if it involves other CPUs */
62int migrate_prep_local(void)
63{
64 lru_add_drain();
65
66 return 0;
67}
68
b20a3503 69/*
894bc310
LS
70 * Add isolated pages on the list back to the LRU under page lock
71 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 72 */
e13861d8 73void putback_lru_pages(struct list_head *l)
b20a3503
CL
74{
75 struct page *page;
76 struct page *page2;
b20a3503
CL
77
78 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 79 list_del(&page->lru);
a731286d 80 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 81 page_is_file_cache(page));
894bc310 82 putback_lru_page(page);
b20a3503 83 }
b20a3503
CL
84}
85
0697212a
CL
86/*
87 * Restore a potential migration pte to a working pte entry
88 */
e9995ef9
HD
89static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
90 unsigned long addr, void *old)
0697212a
CL
91{
92 struct mm_struct *mm = vma->vm_mm;
93 swp_entry_t entry;
0697212a
CL
94 pmd_t *pmd;
95 pte_t *ptep, pte;
96 spinlock_t *ptl;
97
290408d4
NH
98 if (unlikely(PageHuge(new))) {
99 ptep = huge_pte_offset(mm, addr);
100 if (!ptep)
101 goto out;
102 ptl = &mm->page_table_lock;
103 } else {
6219049a
BL
104 pmd = mm_find_pmd(mm, addr);
105 if (!pmd)
290408d4 106 goto out;
500d65d4
AA
107 if (pmd_trans_huge(*pmd))
108 goto out;
0697212a 109
290408d4 110 ptep = pte_offset_map(pmd, addr);
0697212a 111
486cf46f
HD
112 /*
113 * Peek to check is_swap_pte() before taking ptlock? No, we
114 * can race mremap's move_ptes(), which skips anon_vma lock.
115 */
290408d4
NH
116
117 ptl = pte_lockptr(mm, pmd);
118 }
0697212a 119
0697212a
CL
120 spin_lock(ptl);
121 pte = *ptep;
122 if (!is_swap_pte(pte))
e9995ef9 123 goto unlock;
0697212a
CL
124
125 entry = pte_to_swp_entry(pte);
126
e9995ef9
HD
127 if (!is_migration_entry(entry) ||
128 migration_entry_to_page(entry) != old)
129 goto unlock;
0697212a 130
0697212a
CL
131 get_page(new);
132 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
133 if (is_write_migration_entry(entry))
134 pte = pte_mkwrite(pte);
3ef8fd7f 135#ifdef CONFIG_HUGETLB_PAGE
290408d4
NH
136 if (PageHuge(new))
137 pte = pte_mkhuge(pte);
3ef8fd7f 138#endif
97ee0524 139 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 140 set_pte_at(mm, addr, ptep, pte);
04e62a29 141
290408d4
NH
142 if (PageHuge(new)) {
143 if (PageAnon(new))
144 hugepage_add_anon_rmap(new, vma, addr);
145 else
146 page_dup_rmap(new);
147 } else if (PageAnon(new))
04e62a29
CL
148 page_add_anon_rmap(new, vma, addr);
149 else
150 page_add_file_rmap(new);
151
152 /* No need to invalidate - it was non-present before */
4b3073e1 153 update_mmu_cache(vma, addr, ptep);
e9995ef9 154unlock:
0697212a 155 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
156out:
157 return SWAP_AGAIN;
0697212a
CL
158}
159
04e62a29
CL
160/*
161 * Get rid of all migration entries and replace them by
162 * references to the indicated page.
163 */
164static void remove_migration_ptes(struct page *old, struct page *new)
165{
e9995ef9 166 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
167}
168
0697212a
CL
169/*
170 * Something used the pte of a page under migration. We need to
171 * get to the page and wait until migration is finished.
172 * When we return from this function the fault will be retried.
0697212a
CL
173 */
174void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
175 unsigned long address)
176{
177 pte_t *ptep, pte;
178 spinlock_t *ptl;
179 swp_entry_t entry;
180 struct page *page;
181
182 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
183 pte = *ptep;
184 if (!is_swap_pte(pte))
185 goto out;
186
187 entry = pte_to_swp_entry(pte);
188 if (!is_migration_entry(entry))
189 goto out;
190
191 page = migration_entry_to_page(entry);
192
e286781d
NP
193 /*
194 * Once radix-tree replacement of page migration started, page_count
195 * *must* be zero. And, we don't want to call wait_on_page_locked()
196 * against a page without get_page().
197 * So, we use get_page_unless_zero(), here. Even failed, page fault
198 * will occur again.
199 */
200 if (!get_page_unless_zero(page))
201 goto out;
0697212a
CL
202 pte_unmap_unlock(ptep, ptl);
203 wait_on_page_locked(page);
204 put_page(page);
205 return;
206out:
207 pte_unmap_unlock(ptep, ptl);
208}
209
b969c4ab
MG
210#ifdef CONFIG_BLOCK
211/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
212static bool buffer_migrate_lock_buffers(struct buffer_head *head,
213 enum migrate_mode mode)
b969c4ab
MG
214{
215 struct buffer_head *bh = head;
216
217 /* Simple case, sync compaction */
a6bc32b8 218 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
219 do {
220 get_bh(bh);
221 lock_buffer(bh);
222 bh = bh->b_this_page;
223
224 } while (bh != head);
225
226 return true;
227 }
228
229 /* async case, we cannot block on lock_buffer so use trylock_buffer */
230 do {
231 get_bh(bh);
232 if (!trylock_buffer(bh)) {
233 /*
234 * We failed to lock the buffer and cannot stall in
235 * async migration. Release the taken locks
236 */
237 struct buffer_head *failed_bh = bh;
238 put_bh(failed_bh);
239 bh = head;
240 while (bh != failed_bh) {
241 unlock_buffer(bh);
242 put_bh(bh);
243 bh = bh->b_this_page;
244 }
245 return false;
246 }
247
248 bh = bh->b_this_page;
249 } while (bh != head);
250 return true;
251}
252#else
253static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 254 enum migrate_mode mode)
b969c4ab
MG
255{
256 return true;
257}
258#endif /* CONFIG_BLOCK */
259
b20a3503 260/*
c3fcf8a5 261 * Replace the page in the mapping.
5b5c7120
CL
262 *
263 * The number of remaining references must be:
264 * 1 for anonymous pages without a mapping
265 * 2 for pages with a mapping
266cf658 266 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 267 */
2d1db3b1 268static int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 269 struct page *newpage, struct page *page,
a6bc32b8 270 struct buffer_head *head, enum migrate_mode mode)
b20a3503 271{
e286781d 272 int expected_count;
7cf9c2c7 273 void **pslot;
b20a3503 274
6c5240ae 275 if (!mapping) {
0e8c7d0f 276 /* Anonymous page without mapping */
6c5240ae
CL
277 if (page_count(page) != 1)
278 return -EAGAIN;
78bd5209 279 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
280 }
281
19fd6231 282 spin_lock_irq(&mapping->tree_lock);
b20a3503 283
7cf9c2c7
NP
284 pslot = radix_tree_lookup_slot(&mapping->page_tree,
285 page_index(page));
b20a3503 286
edcf4748 287 expected_count = 2 + page_has_private(page);
e286781d 288 if (page_count(page) != expected_count ||
29c1f677 289 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 290 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 291 return -EAGAIN;
b20a3503
CL
292 }
293
e286781d 294 if (!page_freeze_refs(page, expected_count)) {
19fd6231 295 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
296 return -EAGAIN;
297 }
298
b969c4ab
MG
299 /*
300 * In the async migration case of moving a page with buffers, lock the
301 * buffers using trylock before the mapping is moved. If the mapping
302 * was moved, we later failed to lock the buffers and could not move
303 * the mapping back due to an elevated page count, we would have to
304 * block waiting on other references to be dropped.
305 */
a6bc32b8
MG
306 if (mode == MIGRATE_ASYNC && head &&
307 !buffer_migrate_lock_buffers(head, mode)) {
b969c4ab
MG
308 page_unfreeze_refs(page, expected_count);
309 spin_unlock_irq(&mapping->tree_lock);
310 return -EAGAIN;
311 }
312
b20a3503
CL
313 /*
314 * Now we know that no one else is looking at the page.
b20a3503 315 */
7cf9c2c7 316 get_page(newpage); /* add cache reference */
b20a3503
CL
317 if (PageSwapCache(page)) {
318 SetPageSwapCache(newpage);
319 set_page_private(newpage, page_private(page));
320 }
321
7cf9c2c7
NP
322 radix_tree_replace_slot(pslot, newpage);
323
324 /*
937a94c9
JG
325 * Drop cache reference from old page by unfreezing
326 * to one less reference.
7cf9c2c7
NP
327 * We know this isn't the last reference.
328 */
937a94c9 329 page_unfreeze_refs(page, expected_count - 1);
7cf9c2c7 330
0e8c7d0f
CL
331 /*
332 * If moved to a different zone then also account
333 * the page for that zone. Other VM counters will be
334 * taken care of when we establish references to the
335 * new page and drop references to the old page.
336 *
337 * Note that anonymous pages are accounted for
338 * via NR_FILE_PAGES and NR_ANON_PAGES if they
339 * are mapped to swap space.
340 */
341 __dec_zone_page_state(page, NR_FILE_PAGES);
342 __inc_zone_page_state(newpage, NR_FILE_PAGES);
99a15e21 343 if (!PageSwapCache(page) && PageSwapBacked(page)) {
4b02108a
KM
344 __dec_zone_page_state(page, NR_SHMEM);
345 __inc_zone_page_state(newpage, NR_SHMEM);
346 }
19fd6231 347 spin_unlock_irq(&mapping->tree_lock);
b20a3503 348
78bd5209 349 return MIGRATEPAGE_SUCCESS;
b20a3503 350}
b20a3503 351
290408d4
NH
352/*
353 * The expected number of remaining references is the same as that
354 * of migrate_page_move_mapping().
355 */
356int migrate_huge_page_move_mapping(struct address_space *mapping,
357 struct page *newpage, struct page *page)
358{
359 int expected_count;
360 void **pslot;
361
362 if (!mapping) {
363 if (page_count(page) != 1)
364 return -EAGAIN;
78bd5209 365 return MIGRATEPAGE_SUCCESS;
290408d4
NH
366 }
367
368 spin_lock_irq(&mapping->tree_lock);
369
370 pslot = radix_tree_lookup_slot(&mapping->page_tree,
371 page_index(page));
372
373 expected_count = 2 + page_has_private(page);
374 if (page_count(page) != expected_count ||
29c1f677 375 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
376 spin_unlock_irq(&mapping->tree_lock);
377 return -EAGAIN;
378 }
379
380 if (!page_freeze_refs(page, expected_count)) {
381 spin_unlock_irq(&mapping->tree_lock);
382 return -EAGAIN;
383 }
384
385 get_page(newpage);
386
387 radix_tree_replace_slot(pslot, newpage);
388
937a94c9 389 page_unfreeze_refs(page, expected_count - 1);
290408d4
NH
390
391 spin_unlock_irq(&mapping->tree_lock);
78bd5209 392 return MIGRATEPAGE_SUCCESS;
290408d4
NH
393}
394
b20a3503
CL
395/*
396 * Copy the page to its new location
397 */
290408d4 398void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 399{
290408d4
NH
400 if (PageHuge(page))
401 copy_huge_page(newpage, page);
402 else
403 copy_highpage(newpage, page);
b20a3503
CL
404
405 if (PageError(page))
406 SetPageError(newpage);
407 if (PageReferenced(page))
408 SetPageReferenced(newpage);
409 if (PageUptodate(page))
410 SetPageUptodate(newpage);
894bc310
LS
411 if (TestClearPageActive(page)) {
412 VM_BUG_ON(PageUnevictable(page));
b20a3503 413 SetPageActive(newpage);
418b27ef
LS
414 } else if (TestClearPageUnevictable(page))
415 SetPageUnevictable(newpage);
b20a3503
CL
416 if (PageChecked(page))
417 SetPageChecked(newpage);
418 if (PageMappedToDisk(page))
419 SetPageMappedToDisk(newpage);
420
421 if (PageDirty(page)) {
422 clear_page_dirty_for_io(page);
3a902c5f
NP
423 /*
424 * Want to mark the page and the radix tree as dirty, and
425 * redo the accounting that clear_page_dirty_for_io undid,
426 * but we can't use set_page_dirty because that function
427 * is actually a signal that all of the page has become dirty.
25985edc 428 * Whereas only part of our page may be dirty.
3a902c5f 429 */
752dc185
HD
430 if (PageSwapBacked(page))
431 SetPageDirty(newpage);
432 else
433 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
434 }
435
b291f000 436 mlock_migrate_page(newpage, page);
e9995ef9 437 ksm_migrate_page(newpage, page);
b291f000 438
b20a3503 439 ClearPageSwapCache(page);
b20a3503
CL
440 ClearPagePrivate(page);
441 set_page_private(page, 0);
b20a3503
CL
442
443 /*
444 * If any waiters have accumulated on the new page then
445 * wake them up.
446 */
447 if (PageWriteback(newpage))
448 end_page_writeback(newpage);
449}
b20a3503 450
1d8b85cc
CL
451/************************************************************
452 * Migration functions
453 ***********************************************************/
454
455/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
456int fail_migrate_page(struct address_space *mapping,
457 struct page *newpage, struct page *page)
1d8b85cc
CL
458{
459 return -EIO;
460}
461EXPORT_SYMBOL(fail_migrate_page);
462
b20a3503
CL
463/*
464 * Common logic to directly migrate a single page suitable for
266cf658 465 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
466 *
467 * Pages are locked upon entry and exit.
468 */
2d1db3b1 469int migrate_page(struct address_space *mapping,
a6bc32b8
MG
470 struct page *newpage, struct page *page,
471 enum migrate_mode mode)
b20a3503
CL
472{
473 int rc;
474
475 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
476
a6bc32b8 477 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
b20a3503 478
78bd5209 479 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
480 return rc;
481
482 migrate_page_copy(newpage, page);
78bd5209 483 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
484}
485EXPORT_SYMBOL(migrate_page);
486
9361401e 487#ifdef CONFIG_BLOCK
1d8b85cc
CL
488/*
489 * Migration function for pages with buffers. This function can only be used
490 * if the underlying filesystem guarantees that no other references to "page"
491 * exist.
492 */
2d1db3b1 493int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 494 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 495{
1d8b85cc
CL
496 struct buffer_head *bh, *head;
497 int rc;
498
1d8b85cc 499 if (!page_has_buffers(page))
a6bc32b8 500 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
501
502 head = page_buffers(page);
503
a6bc32b8 504 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
1d8b85cc 505
78bd5209 506 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
507 return rc;
508
b969c4ab
MG
509 /*
510 * In the async case, migrate_page_move_mapping locked the buffers
511 * with an IRQ-safe spinlock held. In the sync case, the buffers
512 * need to be locked now
513 */
a6bc32b8
MG
514 if (mode != MIGRATE_ASYNC)
515 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
516
517 ClearPagePrivate(page);
518 set_page_private(newpage, page_private(page));
519 set_page_private(page, 0);
520 put_page(page);
521 get_page(newpage);
522
523 bh = head;
524 do {
525 set_bh_page(bh, newpage, bh_offset(bh));
526 bh = bh->b_this_page;
527
528 } while (bh != head);
529
530 SetPagePrivate(newpage);
531
532 migrate_page_copy(newpage, page);
533
534 bh = head;
535 do {
536 unlock_buffer(bh);
537 put_bh(bh);
538 bh = bh->b_this_page;
539
540 } while (bh != head);
541
78bd5209 542 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
543}
544EXPORT_SYMBOL(buffer_migrate_page);
9361401e 545#endif
1d8b85cc 546
04e62a29
CL
547/*
548 * Writeback a page to clean the dirty state
549 */
550static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 551{
04e62a29
CL
552 struct writeback_control wbc = {
553 .sync_mode = WB_SYNC_NONE,
554 .nr_to_write = 1,
555 .range_start = 0,
556 .range_end = LLONG_MAX,
04e62a29
CL
557 .for_reclaim = 1
558 };
559 int rc;
560
561 if (!mapping->a_ops->writepage)
562 /* No write method for the address space */
563 return -EINVAL;
564
565 if (!clear_page_dirty_for_io(page))
566 /* Someone else already triggered a write */
567 return -EAGAIN;
568
8351a6e4 569 /*
04e62a29
CL
570 * A dirty page may imply that the underlying filesystem has
571 * the page on some queue. So the page must be clean for
572 * migration. Writeout may mean we loose the lock and the
573 * page state is no longer what we checked for earlier.
574 * At this point we know that the migration attempt cannot
575 * be successful.
8351a6e4 576 */
04e62a29 577 remove_migration_ptes(page, page);
8351a6e4 578
04e62a29 579 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 580
04e62a29
CL
581 if (rc != AOP_WRITEPAGE_ACTIVATE)
582 /* unlocked. Relock */
583 lock_page(page);
584
bda8550d 585 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
586}
587
588/*
589 * Default handling if a filesystem does not provide a migration function.
590 */
591static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 592 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 593{
b969c4ab 594 if (PageDirty(page)) {
a6bc32b8
MG
595 /* Only writeback pages in full synchronous migration */
596 if (mode != MIGRATE_SYNC)
b969c4ab 597 return -EBUSY;
04e62a29 598 return writeout(mapping, page);
b969c4ab 599 }
8351a6e4
CL
600
601 /*
602 * Buffers may be managed in a filesystem specific way.
603 * We must have no buffers or drop them.
604 */
266cf658 605 if (page_has_private(page) &&
8351a6e4
CL
606 !try_to_release_page(page, GFP_KERNEL))
607 return -EAGAIN;
608
a6bc32b8 609 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
610}
611
e24f0b8f
CL
612/*
613 * Move a page to a newly allocated page
614 * The page is locked and all ptes have been successfully removed.
615 *
616 * The new page will have replaced the old page if this function
617 * is successful.
894bc310
LS
618 *
619 * Return value:
620 * < 0 - error code
78bd5209 621 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 622 */
3fe2011f 623static int move_to_new_page(struct page *newpage, struct page *page,
a6bc32b8 624 int remap_swapcache, enum migrate_mode mode)
e24f0b8f
CL
625{
626 struct address_space *mapping;
627 int rc;
628
629 /*
630 * Block others from accessing the page when we get around to
631 * establishing additional references. We are the only one
632 * holding a reference to the new page at this point.
633 */
529ae9aa 634 if (!trylock_page(newpage))
e24f0b8f
CL
635 BUG();
636
637 /* Prepare mapping for the new page.*/
638 newpage->index = page->index;
639 newpage->mapping = page->mapping;
b2e18538
RR
640 if (PageSwapBacked(page))
641 SetPageSwapBacked(newpage);
e24f0b8f
CL
642
643 mapping = page_mapping(page);
644 if (!mapping)
a6bc32b8 645 rc = migrate_page(mapping, newpage, page, mode);
b969c4ab 646 else if (mapping->a_ops->migratepage)
e24f0b8f 647 /*
b969c4ab
MG
648 * Most pages have a mapping and most filesystems provide a
649 * migratepage callback. Anonymous pages are part of swap
650 * space which also has its own migratepage callback. This
651 * is the most common path for page migration.
e24f0b8f 652 */
b969c4ab 653 rc = mapping->a_ops->migratepage(mapping,
a6bc32b8 654 newpage, page, mode);
b969c4ab 655 else
a6bc32b8 656 rc = fallback_migrate_page(mapping, newpage, page, mode);
e24f0b8f 657
78bd5209 658 if (rc != MIGRATEPAGE_SUCCESS) {
e24f0b8f 659 newpage->mapping = NULL;
3fe2011f
MG
660 } else {
661 if (remap_swapcache)
662 remove_migration_ptes(page, newpage);
35512eca 663 page->mapping = NULL;
3fe2011f 664 }
e24f0b8f
CL
665
666 unlock_page(newpage);
667
668 return rc;
669}
670
0dabec93 671static int __unmap_and_move(struct page *page, struct page *newpage,
a6bc32b8 672 int force, bool offlining, enum migrate_mode mode)
e24f0b8f 673{
0dabec93 674 int rc = -EAGAIN;
3fe2011f 675 int remap_swapcache = 1;
56039efa 676 struct mem_cgroup *mem;
3f6c8272 677 struct anon_vma *anon_vma = NULL;
95a402c3 678
529ae9aa 679 if (!trylock_page(page)) {
a6bc32b8 680 if (!force || mode == MIGRATE_ASYNC)
0dabec93 681 goto out;
3e7d3449
MG
682
683 /*
684 * It's not safe for direct compaction to call lock_page.
685 * For example, during page readahead pages are added locked
686 * to the LRU. Later, when the IO completes the pages are
687 * marked uptodate and unlocked. However, the queueing
688 * could be merging multiple pages for one bio (e.g.
689 * mpage_readpages). If an allocation happens for the
690 * second or third page, the process can end up locking
691 * the same page twice and deadlocking. Rather than
692 * trying to be clever about what pages can be locked,
693 * avoid the use of lock_page for direct compaction
694 * altogether.
695 */
696 if (current->flags & PF_MEMALLOC)
0dabec93 697 goto out;
3e7d3449 698
e24f0b8f
CL
699 lock_page(page);
700 }
701
62b61f61
HD
702 /*
703 * Only memory hotplug's offline_pages() caller has locked out KSM,
704 * and can safely migrate a KSM page. The other cases have skipped
705 * PageKsm along with PageReserved - but it is only now when we have
706 * the page lock that we can be certain it will not go KSM beneath us
707 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
708 * its pagecount raised, but only here do we take the page lock which
709 * serializes that).
710 */
711 if (PageKsm(page) && !offlining) {
712 rc = -EBUSY;
713 goto unlock;
714 }
715
01b1ae63 716 /* charge against new page */
0030f535 717 mem_cgroup_prepare_migration(page, newpage, &mem);
01b1ae63 718
e24f0b8f 719 if (PageWriteback(page)) {
11bc82d6 720 /*
a6bc32b8
MG
721 * Only in the case of a full syncronous migration is it
722 * necessary to wait for PageWriteback. In the async case,
723 * the retry loop is too short and in the sync-light case,
724 * the overhead of stalling is too much
11bc82d6 725 */
a6bc32b8 726 if (mode != MIGRATE_SYNC) {
11bc82d6
AA
727 rc = -EBUSY;
728 goto uncharge;
729 }
730 if (!force)
01b1ae63 731 goto uncharge;
e24f0b8f
CL
732 wait_on_page_writeback(page);
733 }
e24f0b8f 734 /*
dc386d4d
KH
735 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
736 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 737 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 738 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
739 * File Caches may use write_page() or lock_page() in migration, then,
740 * just care Anon page here.
dc386d4d 741 */
989f89c5 742 if (PageAnon(page)) {
1ce82b69
HD
743 /*
744 * Only page_lock_anon_vma() understands the subtleties of
745 * getting a hold on an anon_vma from outside one of its mms.
746 */
746b18d4 747 anon_vma = page_get_anon_vma(page);
1ce82b69
HD
748 if (anon_vma) {
749 /*
746b18d4 750 * Anon page
1ce82b69 751 */
1ce82b69 752 } else if (PageSwapCache(page)) {
3fe2011f
MG
753 /*
754 * We cannot be sure that the anon_vma of an unmapped
755 * swapcache page is safe to use because we don't
756 * know in advance if the VMA that this page belonged
757 * to still exists. If the VMA and others sharing the
758 * data have been freed, then the anon_vma could
759 * already be invalid.
760 *
761 * To avoid this possibility, swapcache pages get
762 * migrated but are not remapped when migration
763 * completes
764 */
765 remap_swapcache = 0;
766 } else {
1ce82b69 767 goto uncharge;
3fe2011f 768 }
989f89c5 769 }
62e1c553 770
dc386d4d 771 /*
62e1c553
SL
772 * Corner case handling:
773 * 1. When a new swap-cache page is read into, it is added to the LRU
774 * and treated as swapcache but it has no rmap yet.
775 * Calling try_to_unmap() against a page->mapping==NULL page will
776 * trigger a BUG. So handle it here.
777 * 2. An orphaned page (see truncate_complete_page) might have
778 * fs-private metadata. The page can be picked up due to memory
779 * offlining. Everywhere else except page reclaim, the page is
780 * invisible to the vm, so the page can not be migrated. So try to
781 * free the metadata, so the page can be freed.
e24f0b8f 782 */
62e1c553 783 if (!page->mapping) {
1ce82b69
HD
784 VM_BUG_ON(PageAnon(page));
785 if (page_has_private(page)) {
62e1c553 786 try_to_free_buffers(page);
1ce82b69 787 goto uncharge;
62e1c553 788 }
abfc3488 789 goto skip_unmap;
62e1c553
SL
790 }
791
dc386d4d 792 /* Establish migration ptes or remove ptes */
14fa31b8 793 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 794
abfc3488 795skip_unmap:
e6a1530d 796 if (!page_mapped(page))
a6bc32b8 797 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
e24f0b8f 798
3fe2011f 799 if (rc && remap_swapcache)
e24f0b8f 800 remove_migration_ptes(page, page);
3f6c8272
MG
801
802 /* Drop an anon_vma reference if we took one */
76545066 803 if (anon_vma)
9e60109f 804 put_anon_vma(anon_vma);
3f6c8272 805
01b1ae63 806uncharge:
78bd5209 807 mem_cgroup_end_migration(mem, page, newpage, rc == MIGRATEPAGE_SUCCESS);
e24f0b8f
CL
808unlock:
809 unlock_page(page);
0dabec93
MK
810out:
811 return rc;
812}
95a402c3 813
0dabec93
MK
814/*
815 * Obtain the lock on page, remove all ptes and migrate the page
816 * to the newly allocated page in newpage.
817 */
818static int unmap_and_move(new_page_t get_new_page, unsigned long private,
a6bc32b8
MG
819 struct page *page, int force, bool offlining,
820 enum migrate_mode mode)
0dabec93
MK
821{
822 int rc = 0;
823 int *result = NULL;
824 struct page *newpage = get_new_page(page, private, &result);
825
826 if (!newpage)
827 return -ENOMEM;
828
829 if (page_count(page) == 1) {
830 /* page was freed from under us. So we are done. */
831 goto out;
832 }
833
834 if (unlikely(PageTransHuge(page)))
835 if (unlikely(split_huge_page(page)))
836 goto out;
837
a6bc32b8 838 rc = __unmap_and_move(page, newpage, force, offlining, mode);
0dabec93 839out:
e24f0b8f 840 if (rc != -EAGAIN) {
0dabec93
MK
841 /*
842 * A page that has been migrated has all references
843 * removed and will be freed. A page that has not been
844 * migrated will have kepts its references and be
845 * restored.
846 */
847 list_del(&page->lru);
a731286d 848 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 849 page_is_file_cache(page));
894bc310 850 putback_lru_page(page);
e24f0b8f 851 }
95a402c3
CL
852 /*
853 * Move the new page to the LRU. If migration was not successful
854 * then this will free the page.
855 */
894bc310 856 putback_lru_page(newpage);
742755a1
CL
857 if (result) {
858 if (rc)
859 *result = rc;
860 else
861 *result = page_to_nid(newpage);
862 }
e24f0b8f
CL
863 return rc;
864}
865
290408d4
NH
866/*
867 * Counterpart of unmap_and_move_page() for hugepage migration.
868 *
869 * This function doesn't wait the completion of hugepage I/O
870 * because there is no race between I/O and migration for hugepage.
871 * Note that currently hugepage I/O occurs only in direct I/O
872 * where no lock is held and PG_writeback is irrelevant,
873 * and writeback status of all subpages are counted in the reference
874 * count of the head page (i.e. if all subpages of a 2MB hugepage are
875 * under direct I/O, the reference of the head page is 512 and a bit more.)
876 * This means that when we try to migrate hugepage whose subpages are
877 * doing direct I/O, some references remain after try_to_unmap() and
878 * hugepage migration fails without data corruption.
879 *
880 * There is also no race when direct I/O is issued on the page under migration,
881 * because then pte is replaced with migration swap entry and direct I/O code
882 * will wait in the page fault for migration to complete.
883 */
884static int unmap_and_move_huge_page(new_page_t get_new_page,
885 unsigned long private, struct page *hpage,
a6bc32b8
MG
886 int force, bool offlining,
887 enum migrate_mode mode)
290408d4
NH
888{
889 int rc = 0;
890 int *result = NULL;
891 struct page *new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
892 struct anon_vma *anon_vma = NULL;
893
894 if (!new_hpage)
895 return -ENOMEM;
896
897 rc = -EAGAIN;
898
899 if (!trylock_page(hpage)) {
a6bc32b8 900 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
901 goto out;
902 lock_page(hpage);
903 }
904
746b18d4
PZ
905 if (PageAnon(hpage))
906 anon_vma = page_get_anon_vma(hpage);
290408d4
NH
907
908 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
909
910 if (!page_mapped(hpage))
a6bc32b8 911 rc = move_to_new_page(new_hpage, hpage, 1, mode);
290408d4
NH
912
913 if (rc)
914 remove_migration_ptes(hpage, hpage);
915
fd4a4663 916 if (anon_vma)
9e60109f 917 put_anon_vma(anon_vma);
8e6ac7fa
AK
918
919 if (!rc)
920 hugetlb_cgroup_migrate(hpage, new_hpage);
921
290408d4 922 unlock_page(hpage);
09761333 923out:
290408d4 924 put_page(new_hpage);
290408d4
NH
925 if (result) {
926 if (rc)
927 *result = rc;
928 else
929 *result = page_to_nid(new_hpage);
930 }
931 return rc;
932}
933
b20a3503
CL
934/*
935 * migrate_pages
936 *
95a402c3
CL
937 * The function takes one list of pages to migrate and a function
938 * that determines from the page to be migrated and the private data
939 * the target of the move and allocates the page.
b20a3503
CL
940 *
941 * The function returns after 10 attempts or if no pages
942 * are movable anymore because to has become empty
cf608ac1
MK
943 * or no retryable pages exist anymore.
944 * Caller should call putback_lru_pages to return pages to the LRU
28bd6578 945 * or free list only if ret != 0.
b20a3503 946 *
95a402c3 947 * Return: Number of pages not migrated or error code.
b20a3503 948 */
95a402c3 949int migrate_pages(struct list_head *from,
7f0f2496 950 new_page_t get_new_page, unsigned long private, bool offlining,
a6bc32b8 951 enum migrate_mode mode)
b20a3503 952{
e24f0b8f 953 int retry = 1;
b20a3503
CL
954 int nr_failed = 0;
955 int pass = 0;
956 struct page *page;
957 struct page *page2;
958 int swapwrite = current->flags & PF_SWAPWRITE;
959 int rc;
960
961 if (!swapwrite)
962 current->flags |= PF_SWAPWRITE;
963
e24f0b8f
CL
964 for(pass = 0; pass < 10 && retry; pass++) {
965 retry = 0;
b20a3503 966
e24f0b8f 967 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 968 cond_resched();
2d1db3b1 969
95a402c3 970 rc = unmap_and_move(get_new_page, private,
77f1fe6b 971 page, pass > 2, offlining,
a6bc32b8 972 mode);
2d1db3b1 973
e24f0b8f 974 switch(rc) {
95a402c3
CL
975 case -ENOMEM:
976 goto out;
e24f0b8f 977 case -EAGAIN:
2d1db3b1 978 retry++;
e24f0b8f 979 break;
78bd5209 980 case MIGRATEPAGE_SUCCESS:
e24f0b8f
CL
981 break;
982 default:
2d1db3b1 983 /* Permanent failure */
2d1db3b1 984 nr_failed++;
e24f0b8f 985 break;
2d1db3b1 986 }
b20a3503
CL
987 }
988 }
78bd5209 989 rc = nr_failed + retry;
95a402c3 990out:
b20a3503
CL
991 if (!swapwrite)
992 current->flags &= ~PF_SWAPWRITE;
993
78bd5209 994 return rc;
b20a3503 995}
95a402c3 996
189ebff2
AK
997int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
998 unsigned long private, bool offlining,
999 enum migrate_mode mode)
290408d4 1000{
189ebff2
AK
1001 int pass, rc;
1002
1003 for (pass = 0; pass < 10; pass++) {
1004 rc = unmap_and_move_huge_page(get_new_page,
1005 private, hpage, pass > 2, offlining,
1006 mode);
1007 switch (rc) {
1008 case -ENOMEM:
1009 goto out;
1010 case -EAGAIN:
1011 /* try again */
290408d4 1012 cond_resched();
189ebff2 1013 break;
78bd5209 1014 case MIGRATEPAGE_SUCCESS:
189ebff2
AK
1015 goto out;
1016 default:
1017 rc = -EIO;
1018 goto out;
290408d4
NH
1019 }
1020 }
290408d4 1021out:
189ebff2 1022 return rc;
290408d4
NH
1023}
1024
742755a1
CL
1025#ifdef CONFIG_NUMA
1026/*
1027 * Move a list of individual pages
1028 */
1029struct page_to_node {
1030 unsigned long addr;
1031 struct page *page;
1032 int node;
1033 int status;
1034};
1035
1036static struct page *new_page_node(struct page *p, unsigned long private,
1037 int **result)
1038{
1039 struct page_to_node *pm = (struct page_to_node *)private;
1040
1041 while (pm->node != MAX_NUMNODES && pm->page != p)
1042 pm++;
1043
1044 if (pm->node == MAX_NUMNODES)
1045 return NULL;
1046
1047 *result = &pm->status;
1048
6484eb3e 1049 return alloc_pages_exact_node(pm->node,
769848c0 1050 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1051}
1052
1053/*
1054 * Move a set of pages as indicated in the pm array. The addr
1055 * field must be set to the virtual address of the page to be moved
1056 * and the node number must contain a valid target node.
5e9a0f02 1057 * The pm array ends with node = MAX_NUMNODES.
742755a1 1058 */
5e9a0f02
BG
1059static int do_move_page_to_node_array(struct mm_struct *mm,
1060 struct page_to_node *pm,
1061 int migrate_all)
742755a1
CL
1062{
1063 int err;
1064 struct page_to_node *pp;
1065 LIST_HEAD(pagelist);
1066
1067 down_read(&mm->mmap_sem);
1068
1069 /*
1070 * Build a list of pages to migrate
1071 */
742755a1
CL
1072 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1073 struct vm_area_struct *vma;
1074 struct page *page;
1075
742755a1
CL
1076 err = -EFAULT;
1077 vma = find_vma(mm, pp->addr);
70384dc6 1078 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1079 goto set_status;
1080
500d65d4 1081 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1082
1083 err = PTR_ERR(page);
1084 if (IS_ERR(page))
1085 goto set_status;
1086
742755a1
CL
1087 err = -ENOENT;
1088 if (!page)
1089 goto set_status;
1090
62b61f61
HD
1091 /* Use PageReserved to check for zero page */
1092 if (PageReserved(page) || PageKsm(page))
742755a1
CL
1093 goto put_and_set;
1094
1095 pp->page = page;
1096 err = page_to_nid(page);
1097
1098 if (err == pp->node)
1099 /*
1100 * Node already in the right place
1101 */
1102 goto put_and_set;
1103
1104 err = -EACCES;
1105 if (page_mapcount(page) > 1 &&
1106 !migrate_all)
1107 goto put_and_set;
1108
62695a84 1109 err = isolate_lru_page(page);
6d9c285a 1110 if (!err) {
62695a84 1111 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1112 inc_zone_page_state(page, NR_ISOLATED_ANON +
1113 page_is_file_cache(page));
1114 }
742755a1
CL
1115put_and_set:
1116 /*
1117 * Either remove the duplicate refcount from
1118 * isolate_lru_page() or drop the page ref if it was
1119 * not isolated.
1120 */
1121 put_page(page);
1122set_status:
1123 pp->status = err;
1124 }
1125
e78bbfa8 1126 err = 0;
cf608ac1 1127 if (!list_empty(&pagelist)) {
742755a1 1128 err = migrate_pages(&pagelist, new_page_node,
a6bc32b8 1129 (unsigned long)pm, 0, MIGRATE_SYNC);
cf608ac1
MK
1130 if (err)
1131 putback_lru_pages(&pagelist);
1132 }
742755a1
CL
1133
1134 up_read(&mm->mmap_sem);
1135 return err;
1136}
1137
5e9a0f02
BG
1138/*
1139 * Migrate an array of page address onto an array of nodes and fill
1140 * the corresponding array of status.
1141 */
3268c63e 1142static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1143 unsigned long nr_pages,
1144 const void __user * __user *pages,
1145 const int __user *nodes,
1146 int __user *status, int flags)
1147{
3140a227 1148 struct page_to_node *pm;
3140a227
BG
1149 unsigned long chunk_nr_pages;
1150 unsigned long chunk_start;
1151 int err;
5e9a0f02 1152
3140a227
BG
1153 err = -ENOMEM;
1154 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1155 if (!pm)
5e9a0f02 1156 goto out;
35282a2d
BG
1157
1158 migrate_prep();
1159
5e9a0f02 1160 /*
3140a227
BG
1161 * Store a chunk of page_to_node array in a page,
1162 * but keep the last one as a marker
5e9a0f02 1163 */
3140a227 1164 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1165
3140a227
BG
1166 for (chunk_start = 0;
1167 chunk_start < nr_pages;
1168 chunk_start += chunk_nr_pages) {
1169 int j;
5e9a0f02 1170
3140a227
BG
1171 if (chunk_start + chunk_nr_pages > nr_pages)
1172 chunk_nr_pages = nr_pages - chunk_start;
1173
1174 /* fill the chunk pm with addrs and nodes from user-space */
1175 for (j = 0; j < chunk_nr_pages; j++) {
1176 const void __user *p;
5e9a0f02
BG
1177 int node;
1178
3140a227
BG
1179 err = -EFAULT;
1180 if (get_user(p, pages + j + chunk_start))
1181 goto out_pm;
1182 pm[j].addr = (unsigned long) p;
1183
1184 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1185 goto out_pm;
1186
1187 err = -ENODEV;
6f5a55f1
LT
1188 if (node < 0 || node >= MAX_NUMNODES)
1189 goto out_pm;
1190
5e9a0f02
BG
1191 if (!node_state(node, N_HIGH_MEMORY))
1192 goto out_pm;
1193
1194 err = -EACCES;
1195 if (!node_isset(node, task_nodes))
1196 goto out_pm;
1197
3140a227
BG
1198 pm[j].node = node;
1199 }
1200
1201 /* End marker for this chunk */
1202 pm[chunk_nr_pages].node = MAX_NUMNODES;
1203
1204 /* Migrate this chunk */
1205 err = do_move_page_to_node_array(mm, pm,
1206 flags & MPOL_MF_MOVE_ALL);
1207 if (err < 0)
1208 goto out_pm;
5e9a0f02 1209
5e9a0f02 1210 /* Return status information */
3140a227
BG
1211 for (j = 0; j < chunk_nr_pages; j++)
1212 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1213 err = -EFAULT;
3140a227
BG
1214 goto out_pm;
1215 }
1216 }
1217 err = 0;
5e9a0f02
BG
1218
1219out_pm:
3140a227 1220 free_page((unsigned long)pm);
5e9a0f02
BG
1221out:
1222 return err;
1223}
1224
742755a1 1225/*
2f007e74 1226 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1227 */
80bba129
BG
1228static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1229 const void __user **pages, int *status)
742755a1 1230{
2f007e74 1231 unsigned long i;
2f007e74 1232
742755a1
CL
1233 down_read(&mm->mmap_sem);
1234
2f007e74 1235 for (i = 0; i < nr_pages; i++) {
80bba129 1236 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1237 struct vm_area_struct *vma;
1238 struct page *page;
c095adbc 1239 int err = -EFAULT;
2f007e74
BG
1240
1241 vma = find_vma(mm, addr);
70384dc6 1242 if (!vma || addr < vma->vm_start)
742755a1
CL
1243 goto set_status;
1244
2f007e74 1245 page = follow_page(vma, addr, 0);
89f5b7da
LT
1246
1247 err = PTR_ERR(page);
1248 if (IS_ERR(page))
1249 goto set_status;
1250
742755a1
CL
1251 err = -ENOENT;
1252 /* Use PageReserved to check for zero page */
62b61f61 1253 if (!page || PageReserved(page) || PageKsm(page))
742755a1
CL
1254 goto set_status;
1255
1256 err = page_to_nid(page);
1257set_status:
80bba129
BG
1258 *status = err;
1259
1260 pages++;
1261 status++;
1262 }
1263
1264 up_read(&mm->mmap_sem);
1265}
1266
1267/*
1268 * Determine the nodes of a user array of pages and store it in
1269 * a user array of status.
1270 */
1271static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1272 const void __user * __user *pages,
1273 int __user *status)
1274{
1275#define DO_PAGES_STAT_CHUNK_NR 16
1276 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1277 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1278
87b8d1ad
PA
1279 while (nr_pages) {
1280 unsigned long chunk_nr;
80bba129 1281
87b8d1ad
PA
1282 chunk_nr = nr_pages;
1283 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1284 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1285
1286 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1287 break;
80bba129
BG
1288
1289 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1290
87b8d1ad
PA
1291 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1292 break;
742755a1 1293
87b8d1ad
PA
1294 pages += chunk_nr;
1295 status += chunk_nr;
1296 nr_pages -= chunk_nr;
1297 }
1298 return nr_pages ? -EFAULT : 0;
742755a1
CL
1299}
1300
1301/*
1302 * Move a list of pages in the address space of the currently executing
1303 * process.
1304 */
938bb9f5
HC
1305SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1306 const void __user * __user *, pages,
1307 const int __user *, nodes,
1308 int __user *, status, int, flags)
742755a1 1309{
c69e8d9c 1310 const struct cred *cred = current_cred(), *tcred;
742755a1 1311 struct task_struct *task;
742755a1 1312 struct mm_struct *mm;
5e9a0f02 1313 int err;
3268c63e 1314 nodemask_t task_nodes;
742755a1
CL
1315
1316 /* Check flags */
1317 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1318 return -EINVAL;
1319
1320 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1321 return -EPERM;
1322
1323 /* Find the mm_struct */
a879bf58 1324 rcu_read_lock();
228ebcbe 1325 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1326 if (!task) {
a879bf58 1327 rcu_read_unlock();
742755a1
CL
1328 return -ESRCH;
1329 }
3268c63e 1330 get_task_struct(task);
742755a1
CL
1331
1332 /*
1333 * Check if this process has the right to modify the specified
1334 * process. The right exists if the process has administrative
1335 * capabilities, superuser privileges or the same
1336 * userid as the target process.
1337 */
c69e8d9c 1338 tcred = __task_cred(task);
b38a86eb
EB
1339 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1340 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
742755a1 1341 !capable(CAP_SYS_NICE)) {
c69e8d9c 1342 rcu_read_unlock();
742755a1 1343 err = -EPERM;
5e9a0f02 1344 goto out;
742755a1 1345 }
c69e8d9c 1346 rcu_read_unlock();
742755a1 1347
86c3a764
DQ
1348 err = security_task_movememory(task);
1349 if (err)
5e9a0f02 1350 goto out;
86c3a764 1351
3268c63e
CL
1352 task_nodes = cpuset_mems_allowed(task);
1353 mm = get_task_mm(task);
1354 put_task_struct(task);
1355
6e8b09ea
SL
1356 if (!mm)
1357 return -EINVAL;
1358
1359 if (nodes)
1360 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1361 nodes, status, flags);
1362 else
1363 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1364
742755a1
CL
1365 mmput(mm);
1366 return err;
3268c63e
CL
1367
1368out:
1369 put_task_struct(task);
1370 return err;
742755a1 1371}
742755a1 1372
7b2259b3
CL
1373/*
1374 * Call migration functions in the vma_ops that may prepare
1375 * memory in a vm for migration. migration functions may perform
1376 * the migration for vmas that do not have an underlying page struct.
1377 */
1378int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1379 const nodemask_t *from, unsigned long flags)
1380{
1381 struct vm_area_struct *vma;
1382 int err = 0;
1383
1001c9fb 1384 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1385 if (vma->vm_ops && vma->vm_ops->migrate) {
1386 err = vma->vm_ops->migrate(vma, to, from, flags);
1387 if (err)
1388 break;
1389 }
1390 }
1391 return err;
1392}
83d1674a 1393#endif