]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/migrate.c
mm/migrate: correct failure handling if !hugepage_migration_support()
[thirdparty/kernel/stable.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
8e6ac7fa 36#include <linux/hugetlb_cgroup.h>
5a0e3ad6 37#include <linux/gfp.h>
bf6bddf1 38#include <linux/balloon_compaction.h>
f714f4f2 39#include <linux/mmu_notifier.h>
b20a3503 40
0d1836c3
MN
41#include <asm/tlbflush.h>
42
7b2a2d4a
MG
43#define CREATE_TRACE_POINTS
44#include <trace/events/migrate.h>
45
b20a3503
CL
46#include "internal.h"
47
b20a3503 48/*
742755a1 49 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
b20a3503
CL
52 */
53int migrate_prep(void)
54{
b20a3503
CL
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64}
65
748446bb
MG
66/* Do the necessary work of migrate_prep but not if it involves other CPUs */
67int migrate_prep_local(void)
68{
69 lru_add_drain();
70
71 return 0;
72}
73
b20a3503 74/*
894bc310
LS
75 * Add isolated pages on the list back to the LRU under page lock
76 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 77 */
e13861d8 78void putback_lru_pages(struct list_head *l)
b20a3503
CL
79{
80 struct page *page;
81 struct page *page2;
b20a3503 82
5733c7d1
RA
83 list_for_each_entry_safe(page, page2, l, lru) {
84 list_del(&page->lru);
85 dec_zone_page_state(page, NR_ISOLATED_ANON +
86 page_is_file_cache(page));
87 putback_lru_page(page);
88 }
89}
90
91/*
92 * Put previously isolated pages back onto the appropriate lists
93 * from where they were once taken off for compaction/migration.
94 *
95 * This function shall be used instead of putback_lru_pages(),
96 * whenever the isolated pageset has been built by isolate_migratepages_range()
97 */
98void putback_movable_pages(struct list_head *l)
99{
100 struct page *page;
101 struct page *page2;
102
b20a3503 103 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
104 if (unlikely(PageHuge(page))) {
105 putback_active_hugepage(page);
106 continue;
107 }
e24f0b8f 108 list_del(&page->lru);
a731286d 109 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 110 page_is_file_cache(page));
117aad1e 111 if (unlikely(isolated_balloon_page(page)))
bf6bddf1
RA
112 balloon_page_putback(page);
113 else
114 putback_lru_page(page);
b20a3503 115 }
b20a3503
CL
116}
117
0697212a
CL
118/*
119 * Restore a potential migration pte to a working pte entry
120 */
e9995ef9
HD
121static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
122 unsigned long addr, void *old)
0697212a
CL
123{
124 struct mm_struct *mm = vma->vm_mm;
125 swp_entry_t entry;
0697212a
CL
126 pmd_t *pmd;
127 pte_t *ptep, pte;
128 spinlock_t *ptl;
129
290408d4
NH
130 if (unlikely(PageHuge(new))) {
131 ptep = huge_pte_offset(mm, addr);
132 if (!ptep)
133 goto out;
cb900f41 134 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
290408d4 135 } else {
6219049a
BL
136 pmd = mm_find_pmd(mm, addr);
137 if (!pmd)
290408d4 138 goto out;
500d65d4
AA
139 if (pmd_trans_huge(*pmd))
140 goto out;
0697212a 141
290408d4 142 ptep = pte_offset_map(pmd, addr);
0697212a 143
486cf46f
HD
144 /*
145 * Peek to check is_swap_pte() before taking ptlock? No, we
146 * can race mremap's move_ptes(), which skips anon_vma lock.
147 */
290408d4
NH
148
149 ptl = pte_lockptr(mm, pmd);
150 }
0697212a 151
0697212a
CL
152 spin_lock(ptl);
153 pte = *ptep;
154 if (!is_swap_pte(pte))
e9995ef9 155 goto unlock;
0697212a
CL
156
157 entry = pte_to_swp_entry(pte);
158
e9995ef9
HD
159 if (!is_migration_entry(entry) ||
160 migration_entry_to_page(entry) != old)
161 goto unlock;
0697212a 162
0697212a
CL
163 get_page(new);
164 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
c3d16e16
CG
165 if (pte_swp_soft_dirty(*ptep))
166 pte = pte_mksoft_dirty(pte);
0697212a
CL
167 if (is_write_migration_entry(entry))
168 pte = pte_mkwrite(pte);
3ef8fd7f 169#ifdef CONFIG_HUGETLB_PAGE
be7517d6 170 if (PageHuge(new)) {
290408d4 171 pte = pte_mkhuge(pte);
be7517d6
TL
172 pte = arch_make_huge_pte(pte, vma, new, 0);
173 }
3ef8fd7f 174#endif
c2cc499c 175 flush_dcache_page(new);
0697212a 176 set_pte_at(mm, addr, ptep, pte);
04e62a29 177
290408d4
NH
178 if (PageHuge(new)) {
179 if (PageAnon(new))
180 hugepage_add_anon_rmap(new, vma, addr);
181 else
182 page_dup_rmap(new);
183 } else if (PageAnon(new))
04e62a29
CL
184 page_add_anon_rmap(new, vma, addr);
185 else
186 page_add_file_rmap(new);
187
188 /* No need to invalidate - it was non-present before */
4b3073e1 189 update_mmu_cache(vma, addr, ptep);
e9995ef9 190unlock:
0697212a 191 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
192out:
193 return SWAP_AGAIN;
0697212a
CL
194}
195
04e62a29
CL
196/*
197 * Get rid of all migration entries and replace them by
198 * references to the indicated page.
199 */
200static void remove_migration_ptes(struct page *old, struct page *new)
201{
051ac83a
JK
202 struct rmap_walk_control rwc = {
203 .rmap_one = remove_migration_pte,
204 .arg = old,
205 };
206
207 rmap_walk(new, &rwc);
04e62a29
CL
208}
209
0697212a
CL
210/*
211 * Something used the pte of a page under migration. We need to
212 * get to the page and wait until migration is finished.
213 * When we return from this function the fault will be retried.
0697212a 214 */
30dad309
NH
215static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
216 spinlock_t *ptl)
0697212a 217{
30dad309 218 pte_t pte;
0697212a
CL
219 swp_entry_t entry;
220 struct page *page;
221
30dad309 222 spin_lock(ptl);
0697212a
CL
223 pte = *ptep;
224 if (!is_swap_pte(pte))
225 goto out;
226
227 entry = pte_to_swp_entry(pte);
228 if (!is_migration_entry(entry))
229 goto out;
230
231 page = migration_entry_to_page(entry);
232
e286781d
NP
233 /*
234 * Once radix-tree replacement of page migration started, page_count
235 * *must* be zero. And, we don't want to call wait_on_page_locked()
236 * against a page without get_page().
237 * So, we use get_page_unless_zero(), here. Even failed, page fault
238 * will occur again.
239 */
240 if (!get_page_unless_zero(page))
241 goto out;
0697212a
CL
242 pte_unmap_unlock(ptep, ptl);
243 wait_on_page_locked(page);
244 put_page(page);
245 return;
246out:
247 pte_unmap_unlock(ptep, ptl);
248}
249
30dad309
NH
250void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
251 unsigned long address)
252{
253 spinlock_t *ptl = pte_lockptr(mm, pmd);
254 pte_t *ptep = pte_offset_map(pmd, address);
255 __migration_entry_wait(mm, ptep, ptl);
256}
257
cb900f41
KS
258void migration_entry_wait_huge(struct vm_area_struct *vma,
259 struct mm_struct *mm, pte_t *pte)
30dad309 260{
cb900f41 261 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
262 __migration_entry_wait(mm, pte, ptl);
263}
264
b969c4ab
MG
265#ifdef CONFIG_BLOCK
266/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
267static bool buffer_migrate_lock_buffers(struct buffer_head *head,
268 enum migrate_mode mode)
b969c4ab
MG
269{
270 struct buffer_head *bh = head;
271
272 /* Simple case, sync compaction */
a6bc32b8 273 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
274 do {
275 get_bh(bh);
276 lock_buffer(bh);
277 bh = bh->b_this_page;
278
279 } while (bh != head);
280
281 return true;
282 }
283
284 /* async case, we cannot block on lock_buffer so use trylock_buffer */
285 do {
286 get_bh(bh);
287 if (!trylock_buffer(bh)) {
288 /*
289 * We failed to lock the buffer and cannot stall in
290 * async migration. Release the taken locks
291 */
292 struct buffer_head *failed_bh = bh;
293 put_bh(failed_bh);
294 bh = head;
295 while (bh != failed_bh) {
296 unlock_buffer(bh);
297 put_bh(bh);
298 bh = bh->b_this_page;
299 }
300 return false;
301 }
302
303 bh = bh->b_this_page;
304 } while (bh != head);
305 return true;
306}
307#else
308static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 309 enum migrate_mode mode)
b969c4ab
MG
310{
311 return true;
312}
313#endif /* CONFIG_BLOCK */
314
b20a3503 315/*
c3fcf8a5 316 * Replace the page in the mapping.
5b5c7120
CL
317 *
318 * The number of remaining references must be:
319 * 1 for anonymous pages without a mapping
320 * 2 for pages with a mapping
266cf658 321 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 322 */
36bc08cc 323int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 324 struct page *newpage, struct page *page,
8e321fef
BL
325 struct buffer_head *head, enum migrate_mode mode,
326 int extra_count)
b20a3503 327{
8e321fef 328 int expected_count = 1 + extra_count;
7cf9c2c7 329 void **pslot;
b20a3503 330
6c5240ae 331 if (!mapping) {
0e8c7d0f 332 /* Anonymous page without mapping */
8e321fef 333 if (page_count(page) != expected_count)
6c5240ae 334 return -EAGAIN;
78bd5209 335 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
336 }
337
19fd6231 338 spin_lock_irq(&mapping->tree_lock);
b20a3503 339
7cf9c2c7
NP
340 pslot = radix_tree_lookup_slot(&mapping->page_tree,
341 page_index(page));
b20a3503 342
8e321fef 343 expected_count += 1 + page_has_private(page);
e286781d 344 if (page_count(page) != expected_count ||
29c1f677 345 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 346 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 347 return -EAGAIN;
b20a3503
CL
348 }
349
e286781d 350 if (!page_freeze_refs(page, expected_count)) {
19fd6231 351 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
352 return -EAGAIN;
353 }
354
b969c4ab
MG
355 /*
356 * In the async migration case of moving a page with buffers, lock the
357 * buffers using trylock before the mapping is moved. If the mapping
358 * was moved, we later failed to lock the buffers and could not move
359 * the mapping back due to an elevated page count, we would have to
360 * block waiting on other references to be dropped.
361 */
a6bc32b8
MG
362 if (mode == MIGRATE_ASYNC && head &&
363 !buffer_migrate_lock_buffers(head, mode)) {
b969c4ab
MG
364 page_unfreeze_refs(page, expected_count);
365 spin_unlock_irq(&mapping->tree_lock);
366 return -EAGAIN;
367 }
368
b20a3503
CL
369 /*
370 * Now we know that no one else is looking at the page.
b20a3503 371 */
7cf9c2c7 372 get_page(newpage); /* add cache reference */
b20a3503
CL
373 if (PageSwapCache(page)) {
374 SetPageSwapCache(newpage);
375 set_page_private(newpage, page_private(page));
376 }
377
7cf9c2c7
NP
378 radix_tree_replace_slot(pslot, newpage);
379
380 /*
937a94c9
JG
381 * Drop cache reference from old page by unfreezing
382 * to one less reference.
7cf9c2c7
NP
383 * We know this isn't the last reference.
384 */
937a94c9 385 page_unfreeze_refs(page, expected_count - 1);
7cf9c2c7 386
0e8c7d0f
CL
387 /*
388 * If moved to a different zone then also account
389 * the page for that zone. Other VM counters will be
390 * taken care of when we establish references to the
391 * new page and drop references to the old page.
392 *
393 * Note that anonymous pages are accounted for
394 * via NR_FILE_PAGES and NR_ANON_PAGES if they
395 * are mapped to swap space.
396 */
397 __dec_zone_page_state(page, NR_FILE_PAGES);
398 __inc_zone_page_state(newpage, NR_FILE_PAGES);
99a15e21 399 if (!PageSwapCache(page) && PageSwapBacked(page)) {
4b02108a
KM
400 __dec_zone_page_state(page, NR_SHMEM);
401 __inc_zone_page_state(newpage, NR_SHMEM);
402 }
19fd6231 403 spin_unlock_irq(&mapping->tree_lock);
b20a3503 404
78bd5209 405 return MIGRATEPAGE_SUCCESS;
b20a3503 406}
b20a3503 407
290408d4
NH
408/*
409 * The expected number of remaining references is the same as that
410 * of migrate_page_move_mapping().
411 */
412int migrate_huge_page_move_mapping(struct address_space *mapping,
413 struct page *newpage, struct page *page)
414{
415 int expected_count;
416 void **pslot;
417
418 if (!mapping) {
419 if (page_count(page) != 1)
420 return -EAGAIN;
78bd5209 421 return MIGRATEPAGE_SUCCESS;
290408d4
NH
422 }
423
424 spin_lock_irq(&mapping->tree_lock);
425
426 pslot = radix_tree_lookup_slot(&mapping->page_tree,
427 page_index(page));
428
429 expected_count = 2 + page_has_private(page);
430 if (page_count(page) != expected_count ||
29c1f677 431 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
432 spin_unlock_irq(&mapping->tree_lock);
433 return -EAGAIN;
434 }
435
436 if (!page_freeze_refs(page, expected_count)) {
437 spin_unlock_irq(&mapping->tree_lock);
438 return -EAGAIN;
439 }
440
441 get_page(newpage);
442
443 radix_tree_replace_slot(pslot, newpage);
444
937a94c9 445 page_unfreeze_refs(page, expected_count - 1);
290408d4
NH
446
447 spin_unlock_irq(&mapping->tree_lock);
78bd5209 448 return MIGRATEPAGE_SUCCESS;
290408d4
NH
449}
450
30b0a105
DH
451/*
452 * Gigantic pages are so large that we do not guarantee that page++ pointer
453 * arithmetic will work across the entire page. We need something more
454 * specialized.
455 */
456static void __copy_gigantic_page(struct page *dst, struct page *src,
457 int nr_pages)
458{
459 int i;
460 struct page *dst_base = dst;
461 struct page *src_base = src;
462
463 for (i = 0; i < nr_pages; ) {
464 cond_resched();
465 copy_highpage(dst, src);
466
467 i++;
468 dst = mem_map_next(dst, dst_base, i);
469 src = mem_map_next(src, src_base, i);
470 }
471}
472
473static void copy_huge_page(struct page *dst, struct page *src)
474{
475 int i;
476 int nr_pages;
477
478 if (PageHuge(src)) {
479 /* hugetlbfs page */
480 struct hstate *h = page_hstate(src);
481 nr_pages = pages_per_huge_page(h);
482
483 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
484 __copy_gigantic_page(dst, src, nr_pages);
485 return;
486 }
487 } else {
488 /* thp page */
489 BUG_ON(!PageTransHuge(src));
490 nr_pages = hpage_nr_pages(src);
491 }
492
493 for (i = 0; i < nr_pages; i++) {
494 cond_resched();
495 copy_highpage(dst + i, src + i);
496 }
497}
498
b20a3503
CL
499/*
500 * Copy the page to its new location
501 */
290408d4 502void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 503{
7851a45c
RR
504 int cpupid;
505
b32967ff 506 if (PageHuge(page) || PageTransHuge(page))
290408d4
NH
507 copy_huge_page(newpage, page);
508 else
509 copy_highpage(newpage, page);
b20a3503
CL
510
511 if (PageError(page))
512 SetPageError(newpage);
513 if (PageReferenced(page))
514 SetPageReferenced(newpage);
515 if (PageUptodate(page))
516 SetPageUptodate(newpage);
894bc310
LS
517 if (TestClearPageActive(page)) {
518 VM_BUG_ON(PageUnevictable(page));
b20a3503 519 SetPageActive(newpage);
418b27ef
LS
520 } else if (TestClearPageUnevictable(page))
521 SetPageUnevictable(newpage);
b20a3503
CL
522 if (PageChecked(page))
523 SetPageChecked(newpage);
524 if (PageMappedToDisk(page))
525 SetPageMappedToDisk(newpage);
526
527 if (PageDirty(page)) {
528 clear_page_dirty_for_io(page);
3a902c5f
NP
529 /*
530 * Want to mark the page and the radix tree as dirty, and
531 * redo the accounting that clear_page_dirty_for_io undid,
532 * but we can't use set_page_dirty because that function
533 * is actually a signal that all of the page has become dirty.
25985edc 534 * Whereas only part of our page may be dirty.
3a902c5f 535 */
752dc185
HD
536 if (PageSwapBacked(page))
537 SetPageDirty(newpage);
538 else
539 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
540 }
541
7851a45c
RR
542 /*
543 * Copy NUMA information to the new page, to prevent over-eager
544 * future migrations of this same page.
545 */
546 cpupid = page_cpupid_xchg_last(page, -1);
547 page_cpupid_xchg_last(newpage, cpupid);
548
b291f000 549 mlock_migrate_page(newpage, page);
e9995ef9 550 ksm_migrate_page(newpage, page);
c8d6553b
HD
551 /*
552 * Please do not reorder this without considering how mm/ksm.c's
553 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
554 */
b20a3503 555 ClearPageSwapCache(page);
b20a3503
CL
556 ClearPagePrivate(page);
557 set_page_private(page, 0);
b20a3503
CL
558
559 /*
560 * If any waiters have accumulated on the new page then
561 * wake them up.
562 */
563 if (PageWriteback(newpage))
564 end_page_writeback(newpage);
565}
b20a3503 566
1d8b85cc
CL
567/************************************************************
568 * Migration functions
569 ***********************************************************/
570
571/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
572int fail_migrate_page(struct address_space *mapping,
573 struct page *newpage, struct page *page)
1d8b85cc
CL
574{
575 return -EIO;
576}
577EXPORT_SYMBOL(fail_migrate_page);
578
b20a3503
CL
579/*
580 * Common logic to directly migrate a single page suitable for
266cf658 581 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
582 *
583 * Pages are locked upon entry and exit.
584 */
2d1db3b1 585int migrate_page(struct address_space *mapping,
a6bc32b8
MG
586 struct page *newpage, struct page *page,
587 enum migrate_mode mode)
b20a3503
CL
588{
589 int rc;
590
591 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
592
8e321fef 593 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 594
78bd5209 595 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
596 return rc;
597
598 migrate_page_copy(newpage, page);
78bd5209 599 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
600}
601EXPORT_SYMBOL(migrate_page);
602
9361401e 603#ifdef CONFIG_BLOCK
1d8b85cc
CL
604/*
605 * Migration function for pages with buffers. This function can only be used
606 * if the underlying filesystem guarantees that no other references to "page"
607 * exist.
608 */
2d1db3b1 609int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 610 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 611{
1d8b85cc
CL
612 struct buffer_head *bh, *head;
613 int rc;
614
1d8b85cc 615 if (!page_has_buffers(page))
a6bc32b8 616 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
617
618 head = page_buffers(page);
619
8e321fef 620 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
1d8b85cc 621
78bd5209 622 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
623 return rc;
624
b969c4ab
MG
625 /*
626 * In the async case, migrate_page_move_mapping locked the buffers
627 * with an IRQ-safe spinlock held. In the sync case, the buffers
628 * need to be locked now
629 */
a6bc32b8
MG
630 if (mode != MIGRATE_ASYNC)
631 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
632
633 ClearPagePrivate(page);
634 set_page_private(newpage, page_private(page));
635 set_page_private(page, 0);
636 put_page(page);
637 get_page(newpage);
638
639 bh = head;
640 do {
641 set_bh_page(bh, newpage, bh_offset(bh));
642 bh = bh->b_this_page;
643
644 } while (bh != head);
645
646 SetPagePrivate(newpage);
647
648 migrate_page_copy(newpage, page);
649
650 bh = head;
651 do {
652 unlock_buffer(bh);
653 put_bh(bh);
654 bh = bh->b_this_page;
655
656 } while (bh != head);
657
78bd5209 658 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
659}
660EXPORT_SYMBOL(buffer_migrate_page);
9361401e 661#endif
1d8b85cc 662
04e62a29
CL
663/*
664 * Writeback a page to clean the dirty state
665 */
666static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 667{
04e62a29
CL
668 struct writeback_control wbc = {
669 .sync_mode = WB_SYNC_NONE,
670 .nr_to_write = 1,
671 .range_start = 0,
672 .range_end = LLONG_MAX,
04e62a29
CL
673 .for_reclaim = 1
674 };
675 int rc;
676
677 if (!mapping->a_ops->writepage)
678 /* No write method for the address space */
679 return -EINVAL;
680
681 if (!clear_page_dirty_for_io(page))
682 /* Someone else already triggered a write */
683 return -EAGAIN;
684
8351a6e4 685 /*
04e62a29
CL
686 * A dirty page may imply that the underlying filesystem has
687 * the page on some queue. So the page must be clean for
688 * migration. Writeout may mean we loose the lock and the
689 * page state is no longer what we checked for earlier.
690 * At this point we know that the migration attempt cannot
691 * be successful.
8351a6e4 692 */
04e62a29 693 remove_migration_ptes(page, page);
8351a6e4 694
04e62a29 695 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 696
04e62a29
CL
697 if (rc != AOP_WRITEPAGE_ACTIVATE)
698 /* unlocked. Relock */
699 lock_page(page);
700
bda8550d 701 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
702}
703
704/*
705 * Default handling if a filesystem does not provide a migration function.
706 */
707static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 708 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 709{
b969c4ab 710 if (PageDirty(page)) {
a6bc32b8
MG
711 /* Only writeback pages in full synchronous migration */
712 if (mode != MIGRATE_SYNC)
b969c4ab 713 return -EBUSY;
04e62a29 714 return writeout(mapping, page);
b969c4ab 715 }
8351a6e4
CL
716
717 /*
718 * Buffers may be managed in a filesystem specific way.
719 * We must have no buffers or drop them.
720 */
266cf658 721 if (page_has_private(page) &&
8351a6e4
CL
722 !try_to_release_page(page, GFP_KERNEL))
723 return -EAGAIN;
724
a6bc32b8 725 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
726}
727
e24f0b8f
CL
728/*
729 * Move a page to a newly allocated page
730 * The page is locked and all ptes have been successfully removed.
731 *
732 * The new page will have replaced the old page if this function
733 * is successful.
894bc310
LS
734 *
735 * Return value:
736 * < 0 - error code
78bd5209 737 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 738 */
3fe2011f 739static int move_to_new_page(struct page *newpage, struct page *page,
a6bc32b8 740 int remap_swapcache, enum migrate_mode mode)
e24f0b8f
CL
741{
742 struct address_space *mapping;
743 int rc;
744
745 /*
746 * Block others from accessing the page when we get around to
747 * establishing additional references. We are the only one
748 * holding a reference to the new page at this point.
749 */
529ae9aa 750 if (!trylock_page(newpage))
e24f0b8f
CL
751 BUG();
752
753 /* Prepare mapping for the new page.*/
754 newpage->index = page->index;
755 newpage->mapping = page->mapping;
b2e18538
RR
756 if (PageSwapBacked(page))
757 SetPageSwapBacked(newpage);
e24f0b8f
CL
758
759 mapping = page_mapping(page);
760 if (!mapping)
a6bc32b8 761 rc = migrate_page(mapping, newpage, page, mode);
b969c4ab 762 else if (mapping->a_ops->migratepage)
e24f0b8f 763 /*
b969c4ab
MG
764 * Most pages have a mapping and most filesystems provide a
765 * migratepage callback. Anonymous pages are part of swap
766 * space which also has its own migratepage callback. This
767 * is the most common path for page migration.
e24f0b8f 768 */
b969c4ab 769 rc = mapping->a_ops->migratepage(mapping,
a6bc32b8 770 newpage, page, mode);
b969c4ab 771 else
a6bc32b8 772 rc = fallback_migrate_page(mapping, newpage, page, mode);
e24f0b8f 773
78bd5209 774 if (rc != MIGRATEPAGE_SUCCESS) {
e24f0b8f 775 newpage->mapping = NULL;
3fe2011f
MG
776 } else {
777 if (remap_swapcache)
778 remove_migration_ptes(page, newpage);
35512eca 779 page->mapping = NULL;
3fe2011f 780 }
e24f0b8f
CL
781
782 unlock_page(newpage);
783
784 return rc;
785}
786
0dabec93 787static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 788 int force, enum migrate_mode mode)
e24f0b8f 789{
0dabec93 790 int rc = -EAGAIN;
3fe2011f 791 int remap_swapcache = 1;
56039efa 792 struct mem_cgroup *mem;
3f6c8272 793 struct anon_vma *anon_vma = NULL;
95a402c3 794
529ae9aa 795 if (!trylock_page(page)) {
a6bc32b8 796 if (!force || mode == MIGRATE_ASYNC)
0dabec93 797 goto out;
3e7d3449
MG
798
799 /*
800 * It's not safe for direct compaction to call lock_page.
801 * For example, during page readahead pages are added locked
802 * to the LRU. Later, when the IO completes the pages are
803 * marked uptodate and unlocked. However, the queueing
804 * could be merging multiple pages for one bio (e.g.
805 * mpage_readpages). If an allocation happens for the
806 * second or third page, the process can end up locking
807 * the same page twice and deadlocking. Rather than
808 * trying to be clever about what pages can be locked,
809 * avoid the use of lock_page for direct compaction
810 * altogether.
811 */
812 if (current->flags & PF_MEMALLOC)
0dabec93 813 goto out;
3e7d3449 814
e24f0b8f
CL
815 lock_page(page);
816 }
817
01b1ae63 818 /* charge against new page */
0030f535 819 mem_cgroup_prepare_migration(page, newpage, &mem);
01b1ae63 820
e24f0b8f 821 if (PageWriteback(page)) {
11bc82d6 822 /*
fed5b64a 823 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
824 * necessary to wait for PageWriteback. In the async case,
825 * the retry loop is too short and in the sync-light case,
826 * the overhead of stalling is too much
11bc82d6 827 */
a6bc32b8 828 if (mode != MIGRATE_SYNC) {
11bc82d6
AA
829 rc = -EBUSY;
830 goto uncharge;
831 }
832 if (!force)
01b1ae63 833 goto uncharge;
e24f0b8f
CL
834 wait_on_page_writeback(page);
835 }
e24f0b8f 836 /*
dc386d4d
KH
837 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
838 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 839 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 840 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
841 * File Caches may use write_page() or lock_page() in migration, then,
842 * just care Anon page here.
dc386d4d 843 */
b79bc0a0 844 if (PageAnon(page) && !PageKsm(page)) {
1ce82b69 845 /*
4fc3f1d6 846 * Only page_lock_anon_vma_read() understands the subtleties of
1ce82b69
HD
847 * getting a hold on an anon_vma from outside one of its mms.
848 */
746b18d4 849 anon_vma = page_get_anon_vma(page);
1ce82b69
HD
850 if (anon_vma) {
851 /*
746b18d4 852 * Anon page
1ce82b69 853 */
1ce82b69 854 } else if (PageSwapCache(page)) {
3fe2011f
MG
855 /*
856 * We cannot be sure that the anon_vma of an unmapped
857 * swapcache page is safe to use because we don't
858 * know in advance if the VMA that this page belonged
859 * to still exists. If the VMA and others sharing the
860 * data have been freed, then the anon_vma could
861 * already be invalid.
862 *
863 * To avoid this possibility, swapcache pages get
864 * migrated but are not remapped when migration
865 * completes
866 */
867 remap_swapcache = 0;
868 } else {
1ce82b69 869 goto uncharge;
3fe2011f 870 }
989f89c5 871 }
62e1c553 872
bf6bddf1
RA
873 if (unlikely(balloon_page_movable(page))) {
874 /*
875 * A ballooned page does not need any special attention from
876 * physical to virtual reverse mapping procedures.
877 * Skip any attempt to unmap PTEs or to remap swap cache,
878 * in order to avoid burning cycles at rmap level, and perform
879 * the page migration right away (proteced by page lock).
880 */
881 rc = balloon_page_migrate(newpage, page, mode);
882 goto uncharge;
883 }
884
dc386d4d 885 /*
62e1c553
SL
886 * Corner case handling:
887 * 1. When a new swap-cache page is read into, it is added to the LRU
888 * and treated as swapcache but it has no rmap yet.
889 * Calling try_to_unmap() against a page->mapping==NULL page will
890 * trigger a BUG. So handle it here.
891 * 2. An orphaned page (see truncate_complete_page) might have
892 * fs-private metadata. The page can be picked up due to memory
893 * offlining. Everywhere else except page reclaim, the page is
894 * invisible to the vm, so the page can not be migrated. So try to
895 * free the metadata, so the page can be freed.
e24f0b8f 896 */
62e1c553 897 if (!page->mapping) {
1ce82b69
HD
898 VM_BUG_ON(PageAnon(page));
899 if (page_has_private(page)) {
62e1c553 900 try_to_free_buffers(page);
1ce82b69 901 goto uncharge;
62e1c553 902 }
abfc3488 903 goto skip_unmap;
62e1c553
SL
904 }
905
dc386d4d 906 /* Establish migration ptes or remove ptes */
14fa31b8 907 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 908
abfc3488 909skip_unmap:
e6a1530d 910 if (!page_mapped(page))
a6bc32b8 911 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
e24f0b8f 912
3fe2011f 913 if (rc && remap_swapcache)
e24f0b8f 914 remove_migration_ptes(page, page);
3f6c8272
MG
915
916 /* Drop an anon_vma reference if we took one */
76545066 917 if (anon_vma)
9e60109f 918 put_anon_vma(anon_vma);
3f6c8272 919
01b1ae63 920uncharge:
bf6bddf1
RA
921 mem_cgroup_end_migration(mem, page, newpage,
922 (rc == MIGRATEPAGE_SUCCESS ||
923 rc == MIGRATEPAGE_BALLOON_SUCCESS));
e24f0b8f 924 unlock_page(page);
0dabec93
MK
925out:
926 return rc;
927}
95a402c3 928
0dabec93
MK
929/*
930 * Obtain the lock on page, remove all ptes and migrate the page
931 * to the newly allocated page in newpage.
932 */
933static int unmap_and_move(new_page_t get_new_page, unsigned long private,
9c620e2b 934 struct page *page, int force, enum migrate_mode mode)
0dabec93
MK
935{
936 int rc = 0;
937 int *result = NULL;
938 struct page *newpage = get_new_page(page, private, &result);
939
940 if (!newpage)
941 return -ENOMEM;
942
943 if (page_count(page) == 1) {
944 /* page was freed from under us. So we are done. */
945 goto out;
946 }
947
948 if (unlikely(PageTransHuge(page)))
949 if (unlikely(split_huge_page(page)))
950 goto out;
951
9c620e2b 952 rc = __unmap_and_move(page, newpage, force, mode);
bf6bddf1
RA
953
954 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
955 /*
956 * A ballooned page has been migrated already.
957 * Now, it's the time to wrap-up counters,
958 * handle the page back to Buddy and return.
959 */
960 dec_zone_page_state(page, NR_ISOLATED_ANON +
961 page_is_file_cache(page));
962 balloon_page_free(page);
963 return MIGRATEPAGE_SUCCESS;
964 }
0dabec93 965out:
e24f0b8f 966 if (rc != -EAGAIN) {
0dabec93
MK
967 /*
968 * A page that has been migrated has all references
969 * removed and will be freed. A page that has not been
970 * migrated will have kepts its references and be
971 * restored.
972 */
973 list_del(&page->lru);
a731286d 974 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 975 page_is_file_cache(page));
894bc310 976 putback_lru_page(page);
e24f0b8f 977 }
95a402c3
CL
978 /*
979 * Move the new page to the LRU. If migration was not successful
980 * then this will free the page.
981 */
894bc310 982 putback_lru_page(newpage);
742755a1
CL
983 if (result) {
984 if (rc)
985 *result = rc;
986 else
987 *result = page_to_nid(newpage);
988 }
e24f0b8f
CL
989 return rc;
990}
991
290408d4
NH
992/*
993 * Counterpart of unmap_and_move_page() for hugepage migration.
994 *
995 * This function doesn't wait the completion of hugepage I/O
996 * because there is no race between I/O and migration for hugepage.
997 * Note that currently hugepage I/O occurs only in direct I/O
998 * where no lock is held and PG_writeback is irrelevant,
999 * and writeback status of all subpages are counted in the reference
1000 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1001 * under direct I/O, the reference of the head page is 512 and a bit more.)
1002 * This means that when we try to migrate hugepage whose subpages are
1003 * doing direct I/O, some references remain after try_to_unmap() and
1004 * hugepage migration fails without data corruption.
1005 *
1006 * There is also no race when direct I/O is issued on the page under migration,
1007 * because then pte is replaced with migration swap entry and direct I/O code
1008 * will wait in the page fault for migration to complete.
1009 */
1010static int unmap_and_move_huge_page(new_page_t get_new_page,
1011 unsigned long private, struct page *hpage,
9c620e2b 1012 int force, enum migrate_mode mode)
290408d4
NH
1013{
1014 int rc = 0;
1015 int *result = NULL;
32665f2b 1016 struct page *new_hpage;
290408d4
NH
1017 struct anon_vma *anon_vma = NULL;
1018
83467efb
NH
1019 /*
1020 * Movability of hugepages depends on architectures and hugepage size.
1021 * This check is necessary because some callers of hugepage migration
1022 * like soft offline and memory hotremove don't walk through page
1023 * tables or check whether the hugepage is pmd-based or not before
1024 * kicking migration.
1025 */
32665f2b
JK
1026 if (!hugepage_migration_support(page_hstate(hpage))) {
1027 putback_active_hugepage(hpage);
83467efb 1028 return -ENOSYS;
32665f2b 1029 }
83467efb 1030
32665f2b 1031 new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
1032 if (!new_hpage)
1033 return -ENOMEM;
1034
1035 rc = -EAGAIN;
1036
1037 if (!trylock_page(hpage)) {
a6bc32b8 1038 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
1039 goto out;
1040 lock_page(hpage);
1041 }
1042
746b18d4
PZ
1043 if (PageAnon(hpage))
1044 anon_vma = page_get_anon_vma(hpage);
290408d4
NH
1045
1046 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1047
1048 if (!page_mapped(hpage))
a6bc32b8 1049 rc = move_to_new_page(new_hpage, hpage, 1, mode);
290408d4
NH
1050
1051 if (rc)
1052 remove_migration_ptes(hpage, hpage);
1053
fd4a4663 1054 if (anon_vma)
9e60109f 1055 put_anon_vma(anon_vma);
8e6ac7fa
AK
1056
1057 if (!rc)
1058 hugetlb_cgroup_migrate(hpage, new_hpage);
1059
290408d4 1060 unlock_page(hpage);
09761333 1061out:
b8ec1cee
NH
1062 if (rc != -EAGAIN)
1063 putback_active_hugepage(hpage);
290408d4 1064 put_page(new_hpage);
290408d4
NH
1065 if (result) {
1066 if (rc)
1067 *result = rc;
1068 else
1069 *result = page_to_nid(new_hpage);
1070 }
1071 return rc;
1072}
1073
b20a3503 1074/*
c73e5c9c
SB
1075 * migrate_pages - migrate the pages specified in a list, to the free pages
1076 * supplied as the target for the page migration
b20a3503 1077 *
c73e5c9c
SB
1078 * @from: The list of pages to be migrated.
1079 * @get_new_page: The function used to allocate free pages to be used
1080 * as the target of the page migration.
1081 * @private: Private data to be passed on to get_new_page()
1082 * @mode: The migration mode that specifies the constraints for
1083 * page migration, if any.
1084 * @reason: The reason for page migration.
b20a3503 1085 *
c73e5c9c
SB
1086 * The function returns after 10 attempts or if no pages are movable any more
1087 * because the list has become empty or no retryable pages exist any more.
1088 * The caller should call putback_lru_pages() to return pages to the LRU
28bd6578 1089 * or free list only if ret != 0.
b20a3503 1090 *
c73e5c9c 1091 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1092 */
9c620e2b
HD
1093int migrate_pages(struct list_head *from, new_page_t get_new_page,
1094 unsigned long private, enum migrate_mode mode, int reason)
b20a3503 1095{
e24f0b8f 1096 int retry = 1;
b20a3503 1097 int nr_failed = 0;
5647bc29 1098 int nr_succeeded = 0;
b20a3503
CL
1099 int pass = 0;
1100 struct page *page;
1101 struct page *page2;
1102 int swapwrite = current->flags & PF_SWAPWRITE;
1103 int rc;
1104
1105 if (!swapwrite)
1106 current->flags |= PF_SWAPWRITE;
1107
e24f0b8f
CL
1108 for(pass = 0; pass < 10 && retry; pass++) {
1109 retry = 0;
b20a3503 1110
e24f0b8f 1111 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 1112 cond_resched();
2d1db3b1 1113
31caf665
NH
1114 if (PageHuge(page))
1115 rc = unmap_and_move_huge_page(get_new_page,
1116 private, page, pass > 2, mode);
1117 else
1118 rc = unmap_and_move(get_new_page, private,
9c620e2b 1119 page, pass > 2, mode);
2d1db3b1 1120
e24f0b8f 1121 switch(rc) {
95a402c3
CL
1122 case -ENOMEM:
1123 goto out;
e24f0b8f 1124 case -EAGAIN:
2d1db3b1 1125 retry++;
e24f0b8f 1126 break;
78bd5209 1127 case MIGRATEPAGE_SUCCESS:
5647bc29 1128 nr_succeeded++;
e24f0b8f
CL
1129 break;
1130 default:
354a3363
NH
1131 /*
1132 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1133 * unlike -EAGAIN case, the failed page is
1134 * removed from migration page list and not
1135 * retried in the next outer loop.
1136 */
2d1db3b1 1137 nr_failed++;
e24f0b8f 1138 break;
2d1db3b1 1139 }
b20a3503
CL
1140 }
1141 }
78bd5209 1142 rc = nr_failed + retry;
95a402c3 1143out:
5647bc29
MG
1144 if (nr_succeeded)
1145 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1146 if (nr_failed)
1147 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1148 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1149
b20a3503
CL
1150 if (!swapwrite)
1151 current->flags &= ~PF_SWAPWRITE;
1152
78bd5209 1153 return rc;
b20a3503 1154}
95a402c3 1155
742755a1
CL
1156#ifdef CONFIG_NUMA
1157/*
1158 * Move a list of individual pages
1159 */
1160struct page_to_node {
1161 unsigned long addr;
1162 struct page *page;
1163 int node;
1164 int status;
1165};
1166
1167static struct page *new_page_node(struct page *p, unsigned long private,
1168 int **result)
1169{
1170 struct page_to_node *pm = (struct page_to_node *)private;
1171
1172 while (pm->node != MAX_NUMNODES && pm->page != p)
1173 pm++;
1174
1175 if (pm->node == MAX_NUMNODES)
1176 return NULL;
1177
1178 *result = &pm->status;
1179
e632a938
NH
1180 if (PageHuge(p))
1181 return alloc_huge_page_node(page_hstate(compound_head(p)),
1182 pm->node);
1183 else
1184 return alloc_pages_exact_node(pm->node,
769848c0 1185 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1186}
1187
1188/*
1189 * Move a set of pages as indicated in the pm array. The addr
1190 * field must be set to the virtual address of the page to be moved
1191 * and the node number must contain a valid target node.
5e9a0f02 1192 * The pm array ends with node = MAX_NUMNODES.
742755a1 1193 */
5e9a0f02
BG
1194static int do_move_page_to_node_array(struct mm_struct *mm,
1195 struct page_to_node *pm,
1196 int migrate_all)
742755a1
CL
1197{
1198 int err;
1199 struct page_to_node *pp;
1200 LIST_HEAD(pagelist);
1201
1202 down_read(&mm->mmap_sem);
1203
1204 /*
1205 * Build a list of pages to migrate
1206 */
742755a1
CL
1207 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1208 struct vm_area_struct *vma;
1209 struct page *page;
1210
742755a1
CL
1211 err = -EFAULT;
1212 vma = find_vma(mm, pp->addr);
70384dc6 1213 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1214 goto set_status;
1215
500d65d4 1216 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1217
1218 err = PTR_ERR(page);
1219 if (IS_ERR(page))
1220 goto set_status;
1221
742755a1
CL
1222 err = -ENOENT;
1223 if (!page)
1224 goto set_status;
1225
62b61f61 1226 /* Use PageReserved to check for zero page */
b79bc0a0 1227 if (PageReserved(page))
742755a1
CL
1228 goto put_and_set;
1229
1230 pp->page = page;
1231 err = page_to_nid(page);
1232
1233 if (err == pp->node)
1234 /*
1235 * Node already in the right place
1236 */
1237 goto put_and_set;
1238
1239 err = -EACCES;
1240 if (page_mapcount(page) > 1 &&
1241 !migrate_all)
1242 goto put_and_set;
1243
e632a938
NH
1244 if (PageHuge(page)) {
1245 isolate_huge_page(page, &pagelist);
1246 goto put_and_set;
1247 }
1248
62695a84 1249 err = isolate_lru_page(page);
6d9c285a 1250 if (!err) {
62695a84 1251 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1252 inc_zone_page_state(page, NR_ISOLATED_ANON +
1253 page_is_file_cache(page));
1254 }
742755a1
CL
1255put_and_set:
1256 /*
1257 * Either remove the duplicate refcount from
1258 * isolate_lru_page() or drop the page ref if it was
1259 * not isolated.
1260 */
1261 put_page(page);
1262set_status:
1263 pp->status = err;
1264 }
1265
e78bbfa8 1266 err = 0;
cf608ac1 1267 if (!list_empty(&pagelist)) {
742755a1 1268 err = migrate_pages(&pagelist, new_page_node,
9c620e2b 1269 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
cf608ac1 1270 if (err)
e632a938 1271 putback_movable_pages(&pagelist);
cf608ac1 1272 }
742755a1
CL
1273
1274 up_read(&mm->mmap_sem);
1275 return err;
1276}
1277
5e9a0f02
BG
1278/*
1279 * Migrate an array of page address onto an array of nodes and fill
1280 * the corresponding array of status.
1281 */
3268c63e 1282static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1283 unsigned long nr_pages,
1284 const void __user * __user *pages,
1285 const int __user *nodes,
1286 int __user *status, int flags)
1287{
3140a227 1288 struct page_to_node *pm;
3140a227
BG
1289 unsigned long chunk_nr_pages;
1290 unsigned long chunk_start;
1291 int err;
5e9a0f02 1292
3140a227
BG
1293 err = -ENOMEM;
1294 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1295 if (!pm)
5e9a0f02 1296 goto out;
35282a2d
BG
1297
1298 migrate_prep();
1299
5e9a0f02 1300 /*
3140a227
BG
1301 * Store a chunk of page_to_node array in a page,
1302 * but keep the last one as a marker
5e9a0f02 1303 */
3140a227 1304 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1305
3140a227
BG
1306 for (chunk_start = 0;
1307 chunk_start < nr_pages;
1308 chunk_start += chunk_nr_pages) {
1309 int j;
5e9a0f02 1310
3140a227
BG
1311 if (chunk_start + chunk_nr_pages > nr_pages)
1312 chunk_nr_pages = nr_pages - chunk_start;
1313
1314 /* fill the chunk pm with addrs and nodes from user-space */
1315 for (j = 0; j < chunk_nr_pages; j++) {
1316 const void __user *p;
5e9a0f02
BG
1317 int node;
1318
3140a227
BG
1319 err = -EFAULT;
1320 if (get_user(p, pages + j + chunk_start))
1321 goto out_pm;
1322 pm[j].addr = (unsigned long) p;
1323
1324 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1325 goto out_pm;
1326
1327 err = -ENODEV;
6f5a55f1
LT
1328 if (node < 0 || node >= MAX_NUMNODES)
1329 goto out_pm;
1330
389162c2 1331 if (!node_state(node, N_MEMORY))
5e9a0f02
BG
1332 goto out_pm;
1333
1334 err = -EACCES;
1335 if (!node_isset(node, task_nodes))
1336 goto out_pm;
1337
3140a227
BG
1338 pm[j].node = node;
1339 }
1340
1341 /* End marker for this chunk */
1342 pm[chunk_nr_pages].node = MAX_NUMNODES;
1343
1344 /* Migrate this chunk */
1345 err = do_move_page_to_node_array(mm, pm,
1346 flags & MPOL_MF_MOVE_ALL);
1347 if (err < 0)
1348 goto out_pm;
5e9a0f02 1349
5e9a0f02 1350 /* Return status information */
3140a227
BG
1351 for (j = 0; j < chunk_nr_pages; j++)
1352 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1353 err = -EFAULT;
3140a227
BG
1354 goto out_pm;
1355 }
1356 }
1357 err = 0;
5e9a0f02
BG
1358
1359out_pm:
3140a227 1360 free_page((unsigned long)pm);
5e9a0f02
BG
1361out:
1362 return err;
1363}
1364
742755a1 1365/*
2f007e74 1366 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1367 */
80bba129
BG
1368static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1369 const void __user **pages, int *status)
742755a1 1370{
2f007e74 1371 unsigned long i;
2f007e74 1372
742755a1
CL
1373 down_read(&mm->mmap_sem);
1374
2f007e74 1375 for (i = 0; i < nr_pages; i++) {
80bba129 1376 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1377 struct vm_area_struct *vma;
1378 struct page *page;
c095adbc 1379 int err = -EFAULT;
2f007e74
BG
1380
1381 vma = find_vma(mm, addr);
70384dc6 1382 if (!vma || addr < vma->vm_start)
742755a1
CL
1383 goto set_status;
1384
2f007e74 1385 page = follow_page(vma, addr, 0);
89f5b7da
LT
1386
1387 err = PTR_ERR(page);
1388 if (IS_ERR(page))
1389 goto set_status;
1390
742755a1
CL
1391 err = -ENOENT;
1392 /* Use PageReserved to check for zero page */
b79bc0a0 1393 if (!page || PageReserved(page))
742755a1
CL
1394 goto set_status;
1395
1396 err = page_to_nid(page);
1397set_status:
80bba129
BG
1398 *status = err;
1399
1400 pages++;
1401 status++;
1402 }
1403
1404 up_read(&mm->mmap_sem);
1405}
1406
1407/*
1408 * Determine the nodes of a user array of pages and store it in
1409 * a user array of status.
1410 */
1411static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1412 const void __user * __user *pages,
1413 int __user *status)
1414{
1415#define DO_PAGES_STAT_CHUNK_NR 16
1416 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1417 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1418
87b8d1ad
PA
1419 while (nr_pages) {
1420 unsigned long chunk_nr;
80bba129 1421
87b8d1ad
PA
1422 chunk_nr = nr_pages;
1423 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1424 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1425
1426 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1427 break;
80bba129
BG
1428
1429 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1430
87b8d1ad
PA
1431 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1432 break;
742755a1 1433
87b8d1ad
PA
1434 pages += chunk_nr;
1435 status += chunk_nr;
1436 nr_pages -= chunk_nr;
1437 }
1438 return nr_pages ? -EFAULT : 0;
742755a1
CL
1439}
1440
1441/*
1442 * Move a list of pages in the address space of the currently executing
1443 * process.
1444 */
938bb9f5
HC
1445SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1446 const void __user * __user *, pages,
1447 const int __user *, nodes,
1448 int __user *, status, int, flags)
742755a1 1449{
c69e8d9c 1450 const struct cred *cred = current_cred(), *tcred;
742755a1 1451 struct task_struct *task;
742755a1 1452 struct mm_struct *mm;
5e9a0f02 1453 int err;
3268c63e 1454 nodemask_t task_nodes;
742755a1
CL
1455
1456 /* Check flags */
1457 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1458 return -EINVAL;
1459
1460 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1461 return -EPERM;
1462
1463 /* Find the mm_struct */
a879bf58 1464 rcu_read_lock();
228ebcbe 1465 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1466 if (!task) {
a879bf58 1467 rcu_read_unlock();
742755a1
CL
1468 return -ESRCH;
1469 }
3268c63e 1470 get_task_struct(task);
742755a1
CL
1471
1472 /*
1473 * Check if this process has the right to modify the specified
1474 * process. The right exists if the process has administrative
1475 * capabilities, superuser privileges or the same
1476 * userid as the target process.
1477 */
c69e8d9c 1478 tcred = __task_cred(task);
b38a86eb
EB
1479 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1480 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
742755a1 1481 !capable(CAP_SYS_NICE)) {
c69e8d9c 1482 rcu_read_unlock();
742755a1 1483 err = -EPERM;
5e9a0f02 1484 goto out;
742755a1 1485 }
c69e8d9c 1486 rcu_read_unlock();
742755a1 1487
86c3a764
DQ
1488 err = security_task_movememory(task);
1489 if (err)
5e9a0f02 1490 goto out;
86c3a764 1491
3268c63e
CL
1492 task_nodes = cpuset_mems_allowed(task);
1493 mm = get_task_mm(task);
1494 put_task_struct(task);
1495
6e8b09ea
SL
1496 if (!mm)
1497 return -EINVAL;
1498
1499 if (nodes)
1500 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1501 nodes, status, flags);
1502 else
1503 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1504
742755a1
CL
1505 mmput(mm);
1506 return err;
3268c63e
CL
1507
1508out:
1509 put_task_struct(task);
1510 return err;
742755a1 1511}
742755a1 1512
7b2259b3
CL
1513/*
1514 * Call migration functions in the vma_ops that may prepare
1515 * memory in a vm for migration. migration functions may perform
1516 * the migration for vmas that do not have an underlying page struct.
1517 */
1518int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1519 const nodemask_t *from, unsigned long flags)
1520{
1521 struct vm_area_struct *vma;
1522 int err = 0;
1523
1001c9fb 1524 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1525 if (vma->vm_ops && vma->vm_ops->migrate) {
1526 err = vma->vm_ops->migrate(vma, to, from, flags);
1527 if (err)
1528 break;
1529 }
1530 }
1531 return err;
1532}
7039e1db
PZ
1533
1534#ifdef CONFIG_NUMA_BALANCING
1535/*
1536 * Returns true if this is a safe migration target node for misplaced NUMA
1537 * pages. Currently it only checks the watermarks which crude
1538 */
1539static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1540 unsigned long nr_migrate_pages)
7039e1db
PZ
1541{
1542 int z;
1543 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1544 struct zone *zone = pgdat->node_zones + z;
1545
1546 if (!populated_zone(zone))
1547 continue;
1548
6e543d57 1549 if (!zone_reclaimable(zone))
7039e1db
PZ
1550 continue;
1551
1552 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1553 if (!zone_watermark_ok(zone, 0,
1554 high_wmark_pages(zone) +
1555 nr_migrate_pages,
1556 0, 0))
1557 continue;
1558 return true;
1559 }
1560 return false;
1561}
1562
1563static struct page *alloc_misplaced_dst_page(struct page *page,
1564 unsigned long data,
1565 int **result)
1566{
1567 int nid = (int) data;
1568 struct page *newpage;
1569
1570 newpage = alloc_pages_exact_node(nid,
1571 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1572 __GFP_NOMEMALLOC | __GFP_NORETRY |
1573 __GFP_NOWARN) &
1574 ~GFP_IOFS, 0);
bac0382c 1575 if (newpage)
90572890 1576 page_cpupid_xchg_last(newpage, page_cpupid_last(page));
bac0382c 1577
7039e1db
PZ
1578 return newpage;
1579}
1580
a8f60772
MG
1581/*
1582 * page migration rate limiting control.
1583 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1584 * window of time. Default here says do not migrate more than 1280M per second.
e14808b4
MG
1585 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1586 * as it is faults that reset the window, pte updates will happen unconditionally
1587 * if there has not been a fault since @pteupdate_interval_millisecs after the
1588 * throttle window closed.
a8f60772
MG
1589 */
1590static unsigned int migrate_interval_millisecs __read_mostly = 100;
e14808b4 1591static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
a8f60772
MG
1592static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1593
e14808b4
MG
1594/* Returns true if NUMA migration is currently rate limited */
1595bool migrate_ratelimited(int node)
1596{
1597 pg_data_t *pgdat = NODE_DATA(node);
1598
1599 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1600 msecs_to_jiffies(pteupdate_interval_millisecs)))
1601 return false;
1602
1603 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1604 return false;
1605
1606 return true;
1607}
1608
b32967ff 1609/* Returns true if the node is migrate rate-limited after the update */
1c30e017
MG
1610static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1611 unsigned long nr_pages)
7039e1db 1612{
a8f60772
MG
1613 /*
1614 * Rate-limit the amount of data that is being migrated to a node.
1615 * Optimal placement is no good if the memory bus is saturated and
1616 * all the time is being spent migrating!
1617 */
a8f60772 1618 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1c5e9c27 1619 spin_lock(&pgdat->numabalancing_migrate_lock);
a8f60772
MG
1620 pgdat->numabalancing_migrate_nr_pages = 0;
1621 pgdat->numabalancing_migrate_next_window = jiffies +
1622 msecs_to_jiffies(migrate_interval_millisecs);
1c5e9c27 1623 spin_unlock(&pgdat->numabalancing_migrate_lock);
a8f60772 1624 }
af1839d7
MG
1625 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1626 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1627 nr_pages);
1c5e9c27 1628 return true;
af1839d7 1629 }
1c5e9c27
MG
1630
1631 /*
1632 * This is an unlocked non-atomic update so errors are possible.
1633 * The consequences are failing to migrate when we potentiall should
1634 * have which is not severe enough to warrant locking. If it is ever
1635 * a problem, it can be converted to a per-cpu counter.
1636 */
1637 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1638 return false;
b32967ff
MG
1639}
1640
1c30e017 1641static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1642{
340ef390 1643 int page_lru;
a8f60772 1644
3abef4e6
MG
1645 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1646
7039e1db 1647 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1648 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1649 return 0;
7039e1db 1650
340ef390
HD
1651 if (isolate_lru_page(page))
1652 return 0;
7039e1db 1653
340ef390
HD
1654 /*
1655 * migrate_misplaced_transhuge_page() skips page migration's usual
1656 * check on page_count(), so we must do it here, now that the page
1657 * has been isolated: a GUP pin, or any other pin, prevents migration.
1658 * The expected page count is 3: 1 for page's mapcount and 1 for the
1659 * caller's pin and 1 for the reference taken by isolate_lru_page().
1660 */
1661 if (PageTransHuge(page) && page_count(page) != 3) {
1662 putback_lru_page(page);
1663 return 0;
7039e1db
PZ
1664 }
1665
340ef390
HD
1666 page_lru = page_is_file_cache(page);
1667 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1668 hpage_nr_pages(page));
1669
149c33e1 1670 /*
340ef390
HD
1671 * Isolating the page has taken another reference, so the
1672 * caller's reference can be safely dropped without the page
1673 * disappearing underneath us during migration.
149c33e1
MG
1674 */
1675 put_page(page);
340ef390 1676 return 1;
b32967ff
MG
1677}
1678
de466bd6
MG
1679bool pmd_trans_migrating(pmd_t pmd)
1680{
1681 struct page *page = pmd_page(pmd);
1682 return PageLocked(page);
1683}
1684
1685void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1686{
1687 struct page *page = pmd_page(*pmd);
1688 wait_on_page_locked(page);
1689}
1690
b32967ff
MG
1691/*
1692 * Attempt to migrate a misplaced page to the specified destination
1693 * node. Caller is expected to have an elevated reference count on
1694 * the page that will be dropped by this function before returning.
1695 */
1bc115d8
MG
1696int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1697 int node)
b32967ff
MG
1698{
1699 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1700 int isolated;
b32967ff
MG
1701 int nr_remaining;
1702 LIST_HEAD(migratepages);
1703
1704 /*
1bc115d8
MG
1705 * Don't migrate file pages that are mapped in multiple processes
1706 * with execute permissions as they are probably shared libraries.
b32967ff 1707 */
1bc115d8
MG
1708 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1709 (vma->vm_flags & VM_EXEC))
b32967ff 1710 goto out;
b32967ff
MG
1711
1712 /*
1713 * Rate-limit the amount of data that is being migrated to a node.
1714 * Optimal placement is no good if the memory bus is saturated and
1715 * all the time is being spent migrating!
1716 */
340ef390 1717 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1718 goto out;
b32967ff
MG
1719
1720 isolated = numamigrate_isolate_page(pgdat, page);
1721 if (!isolated)
1722 goto out;
1723
1724 list_add(&page->lru, &migratepages);
9c620e2b
HD
1725 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1726 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
b32967ff
MG
1727 if (nr_remaining) {
1728 putback_lru_pages(&migratepages);
1729 isolated = 0;
1730 } else
1731 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1732 BUG_ON(!list_empty(&migratepages));
7039e1db 1733 return isolated;
340ef390
HD
1734
1735out:
1736 put_page(page);
1737 return 0;
7039e1db 1738}
220018d3 1739#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1740
220018d3 1741#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1742/*
1743 * Migrates a THP to a given target node. page must be locked and is unlocked
1744 * before returning.
1745 */
b32967ff
MG
1746int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1747 struct vm_area_struct *vma,
1748 pmd_t *pmd, pmd_t entry,
1749 unsigned long address,
1750 struct page *page, int node)
1751{
c4088ebd 1752 spinlock_t *ptl;
b32967ff
MG
1753 pg_data_t *pgdat = NODE_DATA(node);
1754 int isolated = 0;
1755 struct page *new_page = NULL;
1756 struct mem_cgroup *memcg = NULL;
1757 int page_lru = page_is_file_cache(page);
f714f4f2
MG
1758 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1759 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2b4847e7 1760 pmd_t orig_entry;
b32967ff 1761
b32967ff
MG
1762 /*
1763 * Rate-limit the amount of data that is being migrated to a node.
1764 * Optimal placement is no good if the memory bus is saturated and
1765 * all the time is being spent migrating!
1766 */
d28d4335 1767 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
1768 goto out_dropref;
1769
1770 new_page = alloc_pages_node(node,
1771 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
340ef390
HD
1772 if (!new_page)
1773 goto out_fail;
1774
90572890 1775 page_cpupid_xchg_last(new_page, page_cpupid_last(page));
b32967ff
MG
1776
1777 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 1778 if (!isolated) {
b32967ff 1779 put_page(new_page);
340ef390 1780 goto out_fail;
b32967ff
MG
1781 }
1782
b0943d61
MG
1783 if (mm_tlb_flush_pending(mm))
1784 flush_tlb_range(vma, mmun_start, mmun_end);
1785
b32967ff
MG
1786 /* Prepare a page as a migration target */
1787 __set_page_locked(new_page);
1788 SetPageSwapBacked(new_page);
1789
1790 /* anon mapping, we can simply copy page->mapping to the new page: */
1791 new_page->mapping = page->mapping;
1792 new_page->index = page->index;
1793 migrate_page_copy(new_page, page);
1794 WARN_ON(PageLRU(new_page));
1795
1796 /* Recheck the target PMD */
f714f4f2 1797 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 1798 ptl = pmd_lock(mm, pmd);
2b4847e7
MG
1799 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1800fail_putback:
c4088ebd 1801 spin_unlock(ptl);
f714f4f2 1802 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
1803
1804 /* Reverse changes made by migrate_page_copy() */
1805 if (TestClearPageActive(new_page))
1806 SetPageActive(page);
1807 if (TestClearPageUnevictable(new_page))
1808 SetPageUnevictable(page);
1809 mlock_migrate_page(page, new_page);
1810
1811 unlock_page(new_page);
1812 put_page(new_page); /* Free it */
1813
a54a407f
MG
1814 /* Retake the callers reference and putback on LRU */
1815 get_page(page);
b32967ff 1816 putback_lru_page(page);
a54a407f
MG
1817 mod_zone_page_state(page_zone(page),
1818 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
1819
1820 goto out_unlock;
b32967ff
MG
1821 }
1822
1823 /*
1824 * Traditional migration needs to prepare the memcg charge
1825 * transaction early to prevent the old page from being
1826 * uncharged when installing migration entries. Here we can
1827 * save the potential rollback and start the charge transfer
1828 * only when migration is already known to end successfully.
1829 */
1830 mem_cgroup_prepare_migration(page, new_page, &memcg);
1831
2b4847e7 1832 orig_entry = *pmd;
b32967ff 1833 entry = mk_pmd(new_page, vma->vm_page_prot);
b32967ff 1834 entry = pmd_mkhuge(entry);
2b4847e7 1835 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 1836
2b4847e7
MG
1837 /*
1838 * Clear the old entry under pagetable lock and establish the new PTE.
1839 * Any parallel GUP will either observe the old page blocking on the
1840 * page lock, block on the page table lock or observe the new page.
1841 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1842 * guarantee the copy is visible before the pagetable update.
1843 */
f714f4f2
MG
1844 flush_cache_range(vma, mmun_start, mmun_end);
1845 page_add_new_anon_rmap(new_page, vma, mmun_start);
1846 pmdp_clear_flush(vma, mmun_start, pmd);
1847 set_pmd_at(mm, mmun_start, pmd, entry);
1848 flush_tlb_range(vma, mmun_start, mmun_end);
ce4a9cc5 1849 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7
MG
1850
1851 if (page_count(page) != 2) {
f714f4f2
MG
1852 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1853 flush_tlb_range(vma, mmun_start, mmun_end);
2b4847e7
MG
1854 update_mmu_cache_pmd(vma, address, &entry);
1855 page_remove_rmap(new_page);
1856 goto fail_putback;
1857 }
1858
b32967ff 1859 page_remove_rmap(page);
2b4847e7 1860
b32967ff
MG
1861 /*
1862 * Finish the charge transaction under the page table lock to
1863 * prevent split_huge_page() from dividing up the charge
1864 * before it's fully transferred to the new page.
1865 */
1866 mem_cgroup_end_migration(memcg, page, new_page, true);
c4088ebd 1867 spin_unlock(ptl);
f714f4f2 1868 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
1869
1870 unlock_page(new_page);
1871 unlock_page(page);
1872 put_page(page); /* Drop the rmap reference */
1873 put_page(page); /* Drop the LRU isolation reference */
1874
1875 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1876 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1877
b32967ff
MG
1878 mod_zone_page_state(page_zone(page),
1879 NR_ISOLATED_ANON + page_lru,
1880 -HPAGE_PMD_NR);
1881 return isolated;
1882
340ef390
HD
1883out_fail:
1884 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 1885out_dropref:
2b4847e7
MG
1886 ptl = pmd_lock(mm, pmd);
1887 if (pmd_same(*pmd, entry)) {
1888 entry = pmd_mknonnuma(entry);
f714f4f2 1889 set_pmd_at(mm, mmun_start, pmd, entry);
2b4847e7
MG
1890 update_mmu_cache_pmd(vma, address, &entry);
1891 }
1892 spin_unlock(ptl);
a54a407f 1893
eb4489f6 1894out_unlock:
340ef390 1895 unlock_page(page);
b32967ff 1896 put_page(page);
b32967ff
MG
1897 return 0;
1898}
7039e1db
PZ
1899#endif /* CONFIG_NUMA_BALANCING */
1900
1901#endif /* CONFIG_NUMA */