]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/migrate.c
mm/migrate: add comment about permanent failure path
[thirdparty/kernel/stable.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
8e6ac7fa 36#include <linux/hugetlb_cgroup.h>
5a0e3ad6 37#include <linux/gfp.h>
bf6bddf1 38#include <linux/balloon_compaction.h>
f714f4f2 39#include <linux/mmu_notifier.h>
b20a3503 40
0d1836c3
MN
41#include <asm/tlbflush.h>
42
7b2a2d4a
MG
43#define CREATE_TRACE_POINTS
44#include <trace/events/migrate.h>
45
b20a3503
CL
46#include "internal.h"
47
b20a3503 48/*
742755a1 49 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
b20a3503
CL
52 */
53int migrate_prep(void)
54{
b20a3503
CL
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64}
65
748446bb
MG
66/* Do the necessary work of migrate_prep but not if it involves other CPUs */
67int migrate_prep_local(void)
68{
69 lru_add_drain();
70
71 return 0;
72}
73
b20a3503 74/*
894bc310
LS
75 * Add isolated pages on the list back to the LRU under page lock
76 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 77 */
e13861d8 78void putback_lru_pages(struct list_head *l)
b20a3503
CL
79{
80 struct page *page;
81 struct page *page2;
b20a3503 82
5733c7d1
RA
83 list_for_each_entry_safe(page, page2, l, lru) {
84 list_del(&page->lru);
85 dec_zone_page_state(page, NR_ISOLATED_ANON +
86 page_is_file_cache(page));
87 putback_lru_page(page);
88 }
89}
90
91/*
92 * Put previously isolated pages back onto the appropriate lists
93 * from where they were once taken off for compaction/migration.
94 *
95 * This function shall be used instead of putback_lru_pages(),
96 * whenever the isolated pageset has been built by isolate_migratepages_range()
97 */
98void putback_movable_pages(struct list_head *l)
99{
100 struct page *page;
101 struct page *page2;
102
b20a3503 103 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
104 if (unlikely(PageHuge(page))) {
105 putback_active_hugepage(page);
106 continue;
107 }
e24f0b8f 108 list_del(&page->lru);
a731286d 109 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 110 page_is_file_cache(page));
117aad1e 111 if (unlikely(isolated_balloon_page(page)))
bf6bddf1
RA
112 balloon_page_putback(page);
113 else
114 putback_lru_page(page);
b20a3503 115 }
b20a3503
CL
116}
117
0697212a
CL
118/*
119 * Restore a potential migration pte to a working pte entry
120 */
e9995ef9
HD
121static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
122 unsigned long addr, void *old)
0697212a
CL
123{
124 struct mm_struct *mm = vma->vm_mm;
125 swp_entry_t entry;
0697212a
CL
126 pmd_t *pmd;
127 pte_t *ptep, pte;
128 spinlock_t *ptl;
129
290408d4
NH
130 if (unlikely(PageHuge(new))) {
131 ptep = huge_pte_offset(mm, addr);
132 if (!ptep)
133 goto out;
cb900f41 134 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
290408d4 135 } else {
6219049a
BL
136 pmd = mm_find_pmd(mm, addr);
137 if (!pmd)
290408d4 138 goto out;
500d65d4
AA
139 if (pmd_trans_huge(*pmd))
140 goto out;
0697212a 141
290408d4 142 ptep = pte_offset_map(pmd, addr);
0697212a 143
486cf46f
HD
144 /*
145 * Peek to check is_swap_pte() before taking ptlock? No, we
146 * can race mremap's move_ptes(), which skips anon_vma lock.
147 */
290408d4
NH
148
149 ptl = pte_lockptr(mm, pmd);
150 }
0697212a 151
0697212a
CL
152 spin_lock(ptl);
153 pte = *ptep;
154 if (!is_swap_pte(pte))
e9995ef9 155 goto unlock;
0697212a
CL
156
157 entry = pte_to_swp_entry(pte);
158
e9995ef9
HD
159 if (!is_migration_entry(entry) ||
160 migration_entry_to_page(entry) != old)
161 goto unlock;
0697212a 162
0697212a
CL
163 get_page(new);
164 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
c3d16e16
CG
165 if (pte_swp_soft_dirty(*ptep))
166 pte = pte_mksoft_dirty(pte);
0697212a
CL
167 if (is_write_migration_entry(entry))
168 pte = pte_mkwrite(pte);
3ef8fd7f 169#ifdef CONFIG_HUGETLB_PAGE
be7517d6 170 if (PageHuge(new)) {
290408d4 171 pte = pte_mkhuge(pte);
be7517d6
TL
172 pte = arch_make_huge_pte(pte, vma, new, 0);
173 }
3ef8fd7f 174#endif
c2cc499c 175 flush_dcache_page(new);
0697212a 176 set_pte_at(mm, addr, ptep, pte);
04e62a29 177
290408d4
NH
178 if (PageHuge(new)) {
179 if (PageAnon(new))
180 hugepage_add_anon_rmap(new, vma, addr);
181 else
182 page_dup_rmap(new);
183 } else if (PageAnon(new))
04e62a29
CL
184 page_add_anon_rmap(new, vma, addr);
185 else
186 page_add_file_rmap(new);
187
188 /* No need to invalidate - it was non-present before */
4b3073e1 189 update_mmu_cache(vma, addr, ptep);
e9995ef9 190unlock:
0697212a 191 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
192out:
193 return SWAP_AGAIN;
0697212a
CL
194}
195
04e62a29
CL
196/*
197 * Get rid of all migration entries and replace them by
198 * references to the indicated page.
199 */
200static void remove_migration_ptes(struct page *old, struct page *new)
201{
051ac83a
JK
202 struct rmap_walk_control rwc = {
203 .rmap_one = remove_migration_pte,
204 .arg = old,
205 };
206
207 rmap_walk(new, &rwc);
04e62a29
CL
208}
209
0697212a
CL
210/*
211 * Something used the pte of a page under migration. We need to
212 * get to the page and wait until migration is finished.
213 * When we return from this function the fault will be retried.
0697212a 214 */
30dad309
NH
215static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
216 spinlock_t *ptl)
0697212a 217{
30dad309 218 pte_t pte;
0697212a
CL
219 swp_entry_t entry;
220 struct page *page;
221
30dad309 222 spin_lock(ptl);
0697212a
CL
223 pte = *ptep;
224 if (!is_swap_pte(pte))
225 goto out;
226
227 entry = pte_to_swp_entry(pte);
228 if (!is_migration_entry(entry))
229 goto out;
230
231 page = migration_entry_to_page(entry);
232
e286781d
NP
233 /*
234 * Once radix-tree replacement of page migration started, page_count
235 * *must* be zero. And, we don't want to call wait_on_page_locked()
236 * against a page without get_page().
237 * So, we use get_page_unless_zero(), here. Even failed, page fault
238 * will occur again.
239 */
240 if (!get_page_unless_zero(page))
241 goto out;
0697212a
CL
242 pte_unmap_unlock(ptep, ptl);
243 wait_on_page_locked(page);
244 put_page(page);
245 return;
246out:
247 pte_unmap_unlock(ptep, ptl);
248}
249
30dad309
NH
250void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
251 unsigned long address)
252{
253 spinlock_t *ptl = pte_lockptr(mm, pmd);
254 pte_t *ptep = pte_offset_map(pmd, address);
255 __migration_entry_wait(mm, ptep, ptl);
256}
257
cb900f41
KS
258void migration_entry_wait_huge(struct vm_area_struct *vma,
259 struct mm_struct *mm, pte_t *pte)
30dad309 260{
cb900f41 261 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
262 __migration_entry_wait(mm, pte, ptl);
263}
264
b969c4ab
MG
265#ifdef CONFIG_BLOCK
266/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
267static bool buffer_migrate_lock_buffers(struct buffer_head *head,
268 enum migrate_mode mode)
b969c4ab
MG
269{
270 struct buffer_head *bh = head;
271
272 /* Simple case, sync compaction */
a6bc32b8 273 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
274 do {
275 get_bh(bh);
276 lock_buffer(bh);
277 bh = bh->b_this_page;
278
279 } while (bh != head);
280
281 return true;
282 }
283
284 /* async case, we cannot block on lock_buffer so use trylock_buffer */
285 do {
286 get_bh(bh);
287 if (!trylock_buffer(bh)) {
288 /*
289 * We failed to lock the buffer and cannot stall in
290 * async migration. Release the taken locks
291 */
292 struct buffer_head *failed_bh = bh;
293 put_bh(failed_bh);
294 bh = head;
295 while (bh != failed_bh) {
296 unlock_buffer(bh);
297 put_bh(bh);
298 bh = bh->b_this_page;
299 }
300 return false;
301 }
302
303 bh = bh->b_this_page;
304 } while (bh != head);
305 return true;
306}
307#else
308static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 309 enum migrate_mode mode)
b969c4ab
MG
310{
311 return true;
312}
313#endif /* CONFIG_BLOCK */
314
b20a3503 315/*
c3fcf8a5 316 * Replace the page in the mapping.
5b5c7120
CL
317 *
318 * The number of remaining references must be:
319 * 1 for anonymous pages without a mapping
320 * 2 for pages with a mapping
266cf658 321 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 322 */
36bc08cc 323int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 324 struct page *newpage, struct page *page,
8e321fef
BL
325 struct buffer_head *head, enum migrate_mode mode,
326 int extra_count)
b20a3503 327{
8e321fef 328 int expected_count = 1 + extra_count;
7cf9c2c7 329 void **pslot;
b20a3503 330
6c5240ae 331 if (!mapping) {
0e8c7d0f 332 /* Anonymous page without mapping */
8e321fef 333 if (page_count(page) != expected_count)
6c5240ae 334 return -EAGAIN;
78bd5209 335 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
336 }
337
19fd6231 338 spin_lock_irq(&mapping->tree_lock);
b20a3503 339
7cf9c2c7
NP
340 pslot = radix_tree_lookup_slot(&mapping->page_tree,
341 page_index(page));
b20a3503 342
8e321fef 343 expected_count += 1 + page_has_private(page);
e286781d 344 if (page_count(page) != expected_count ||
29c1f677 345 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 346 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 347 return -EAGAIN;
b20a3503
CL
348 }
349
e286781d 350 if (!page_freeze_refs(page, expected_count)) {
19fd6231 351 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
352 return -EAGAIN;
353 }
354
b969c4ab
MG
355 /*
356 * In the async migration case of moving a page with buffers, lock the
357 * buffers using trylock before the mapping is moved. If the mapping
358 * was moved, we later failed to lock the buffers and could not move
359 * the mapping back due to an elevated page count, we would have to
360 * block waiting on other references to be dropped.
361 */
a6bc32b8
MG
362 if (mode == MIGRATE_ASYNC && head &&
363 !buffer_migrate_lock_buffers(head, mode)) {
b969c4ab
MG
364 page_unfreeze_refs(page, expected_count);
365 spin_unlock_irq(&mapping->tree_lock);
366 return -EAGAIN;
367 }
368
b20a3503
CL
369 /*
370 * Now we know that no one else is looking at the page.
b20a3503 371 */
7cf9c2c7 372 get_page(newpage); /* add cache reference */
b20a3503
CL
373 if (PageSwapCache(page)) {
374 SetPageSwapCache(newpage);
375 set_page_private(newpage, page_private(page));
376 }
377
7cf9c2c7
NP
378 radix_tree_replace_slot(pslot, newpage);
379
380 /*
937a94c9
JG
381 * Drop cache reference from old page by unfreezing
382 * to one less reference.
7cf9c2c7
NP
383 * We know this isn't the last reference.
384 */
937a94c9 385 page_unfreeze_refs(page, expected_count - 1);
7cf9c2c7 386
0e8c7d0f
CL
387 /*
388 * If moved to a different zone then also account
389 * the page for that zone. Other VM counters will be
390 * taken care of when we establish references to the
391 * new page and drop references to the old page.
392 *
393 * Note that anonymous pages are accounted for
394 * via NR_FILE_PAGES and NR_ANON_PAGES if they
395 * are mapped to swap space.
396 */
397 __dec_zone_page_state(page, NR_FILE_PAGES);
398 __inc_zone_page_state(newpage, NR_FILE_PAGES);
99a15e21 399 if (!PageSwapCache(page) && PageSwapBacked(page)) {
4b02108a
KM
400 __dec_zone_page_state(page, NR_SHMEM);
401 __inc_zone_page_state(newpage, NR_SHMEM);
402 }
19fd6231 403 spin_unlock_irq(&mapping->tree_lock);
b20a3503 404
78bd5209 405 return MIGRATEPAGE_SUCCESS;
b20a3503 406}
b20a3503 407
290408d4
NH
408/*
409 * The expected number of remaining references is the same as that
410 * of migrate_page_move_mapping().
411 */
412int migrate_huge_page_move_mapping(struct address_space *mapping,
413 struct page *newpage, struct page *page)
414{
415 int expected_count;
416 void **pslot;
417
418 if (!mapping) {
419 if (page_count(page) != 1)
420 return -EAGAIN;
78bd5209 421 return MIGRATEPAGE_SUCCESS;
290408d4
NH
422 }
423
424 spin_lock_irq(&mapping->tree_lock);
425
426 pslot = radix_tree_lookup_slot(&mapping->page_tree,
427 page_index(page));
428
429 expected_count = 2 + page_has_private(page);
430 if (page_count(page) != expected_count ||
29c1f677 431 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
432 spin_unlock_irq(&mapping->tree_lock);
433 return -EAGAIN;
434 }
435
436 if (!page_freeze_refs(page, expected_count)) {
437 spin_unlock_irq(&mapping->tree_lock);
438 return -EAGAIN;
439 }
440
441 get_page(newpage);
442
443 radix_tree_replace_slot(pslot, newpage);
444
937a94c9 445 page_unfreeze_refs(page, expected_count - 1);
290408d4
NH
446
447 spin_unlock_irq(&mapping->tree_lock);
78bd5209 448 return MIGRATEPAGE_SUCCESS;
290408d4
NH
449}
450
30b0a105
DH
451/*
452 * Gigantic pages are so large that we do not guarantee that page++ pointer
453 * arithmetic will work across the entire page. We need something more
454 * specialized.
455 */
456static void __copy_gigantic_page(struct page *dst, struct page *src,
457 int nr_pages)
458{
459 int i;
460 struct page *dst_base = dst;
461 struct page *src_base = src;
462
463 for (i = 0; i < nr_pages; ) {
464 cond_resched();
465 copy_highpage(dst, src);
466
467 i++;
468 dst = mem_map_next(dst, dst_base, i);
469 src = mem_map_next(src, src_base, i);
470 }
471}
472
473static void copy_huge_page(struct page *dst, struct page *src)
474{
475 int i;
476 int nr_pages;
477
478 if (PageHuge(src)) {
479 /* hugetlbfs page */
480 struct hstate *h = page_hstate(src);
481 nr_pages = pages_per_huge_page(h);
482
483 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
484 __copy_gigantic_page(dst, src, nr_pages);
485 return;
486 }
487 } else {
488 /* thp page */
489 BUG_ON(!PageTransHuge(src));
490 nr_pages = hpage_nr_pages(src);
491 }
492
493 for (i = 0; i < nr_pages; i++) {
494 cond_resched();
495 copy_highpage(dst + i, src + i);
496 }
497}
498
b20a3503
CL
499/*
500 * Copy the page to its new location
501 */
290408d4 502void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 503{
7851a45c
RR
504 int cpupid;
505
b32967ff 506 if (PageHuge(page) || PageTransHuge(page))
290408d4
NH
507 copy_huge_page(newpage, page);
508 else
509 copy_highpage(newpage, page);
b20a3503
CL
510
511 if (PageError(page))
512 SetPageError(newpage);
513 if (PageReferenced(page))
514 SetPageReferenced(newpage);
515 if (PageUptodate(page))
516 SetPageUptodate(newpage);
894bc310
LS
517 if (TestClearPageActive(page)) {
518 VM_BUG_ON(PageUnevictable(page));
b20a3503 519 SetPageActive(newpage);
418b27ef
LS
520 } else if (TestClearPageUnevictable(page))
521 SetPageUnevictable(newpage);
b20a3503
CL
522 if (PageChecked(page))
523 SetPageChecked(newpage);
524 if (PageMappedToDisk(page))
525 SetPageMappedToDisk(newpage);
526
527 if (PageDirty(page)) {
528 clear_page_dirty_for_io(page);
3a902c5f
NP
529 /*
530 * Want to mark the page and the radix tree as dirty, and
531 * redo the accounting that clear_page_dirty_for_io undid,
532 * but we can't use set_page_dirty because that function
533 * is actually a signal that all of the page has become dirty.
25985edc 534 * Whereas only part of our page may be dirty.
3a902c5f 535 */
752dc185
HD
536 if (PageSwapBacked(page))
537 SetPageDirty(newpage);
538 else
539 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
540 }
541
7851a45c
RR
542 /*
543 * Copy NUMA information to the new page, to prevent over-eager
544 * future migrations of this same page.
545 */
546 cpupid = page_cpupid_xchg_last(page, -1);
547 page_cpupid_xchg_last(newpage, cpupid);
548
b291f000 549 mlock_migrate_page(newpage, page);
e9995ef9 550 ksm_migrate_page(newpage, page);
c8d6553b
HD
551 /*
552 * Please do not reorder this without considering how mm/ksm.c's
553 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
554 */
b20a3503 555 ClearPageSwapCache(page);
b20a3503
CL
556 ClearPagePrivate(page);
557 set_page_private(page, 0);
b20a3503
CL
558
559 /*
560 * If any waiters have accumulated on the new page then
561 * wake them up.
562 */
563 if (PageWriteback(newpage))
564 end_page_writeback(newpage);
565}
b20a3503 566
1d8b85cc
CL
567/************************************************************
568 * Migration functions
569 ***********************************************************/
570
571/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
572int fail_migrate_page(struct address_space *mapping,
573 struct page *newpage, struct page *page)
1d8b85cc
CL
574{
575 return -EIO;
576}
577EXPORT_SYMBOL(fail_migrate_page);
578
b20a3503
CL
579/*
580 * Common logic to directly migrate a single page suitable for
266cf658 581 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
582 *
583 * Pages are locked upon entry and exit.
584 */
2d1db3b1 585int migrate_page(struct address_space *mapping,
a6bc32b8
MG
586 struct page *newpage, struct page *page,
587 enum migrate_mode mode)
b20a3503
CL
588{
589 int rc;
590
591 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
592
8e321fef 593 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 594
78bd5209 595 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
596 return rc;
597
598 migrate_page_copy(newpage, page);
78bd5209 599 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
600}
601EXPORT_SYMBOL(migrate_page);
602
9361401e 603#ifdef CONFIG_BLOCK
1d8b85cc
CL
604/*
605 * Migration function for pages with buffers. This function can only be used
606 * if the underlying filesystem guarantees that no other references to "page"
607 * exist.
608 */
2d1db3b1 609int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 610 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 611{
1d8b85cc
CL
612 struct buffer_head *bh, *head;
613 int rc;
614
1d8b85cc 615 if (!page_has_buffers(page))
a6bc32b8 616 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
617
618 head = page_buffers(page);
619
8e321fef 620 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
1d8b85cc 621
78bd5209 622 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
623 return rc;
624
b969c4ab
MG
625 /*
626 * In the async case, migrate_page_move_mapping locked the buffers
627 * with an IRQ-safe spinlock held. In the sync case, the buffers
628 * need to be locked now
629 */
a6bc32b8
MG
630 if (mode != MIGRATE_ASYNC)
631 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
632
633 ClearPagePrivate(page);
634 set_page_private(newpage, page_private(page));
635 set_page_private(page, 0);
636 put_page(page);
637 get_page(newpage);
638
639 bh = head;
640 do {
641 set_bh_page(bh, newpage, bh_offset(bh));
642 bh = bh->b_this_page;
643
644 } while (bh != head);
645
646 SetPagePrivate(newpage);
647
648 migrate_page_copy(newpage, page);
649
650 bh = head;
651 do {
652 unlock_buffer(bh);
653 put_bh(bh);
654 bh = bh->b_this_page;
655
656 } while (bh != head);
657
78bd5209 658 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
659}
660EXPORT_SYMBOL(buffer_migrate_page);
9361401e 661#endif
1d8b85cc 662
04e62a29
CL
663/*
664 * Writeback a page to clean the dirty state
665 */
666static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 667{
04e62a29
CL
668 struct writeback_control wbc = {
669 .sync_mode = WB_SYNC_NONE,
670 .nr_to_write = 1,
671 .range_start = 0,
672 .range_end = LLONG_MAX,
04e62a29
CL
673 .for_reclaim = 1
674 };
675 int rc;
676
677 if (!mapping->a_ops->writepage)
678 /* No write method for the address space */
679 return -EINVAL;
680
681 if (!clear_page_dirty_for_io(page))
682 /* Someone else already triggered a write */
683 return -EAGAIN;
684
8351a6e4 685 /*
04e62a29
CL
686 * A dirty page may imply that the underlying filesystem has
687 * the page on some queue. So the page must be clean for
688 * migration. Writeout may mean we loose the lock and the
689 * page state is no longer what we checked for earlier.
690 * At this point we know that the migration attempt cannot
691 * be successful.
8351a6e4 692 */
04e62a29 693 remove_migration_ptes(page, page);
8351a6e4 694
04e62a29 695 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 696
04e62a29
CL
697 if (rc != AOP_WRITEPAGE_ACTIVATE)
698 /* unlocked. Relock */
699 lock_page(page);
700
bda8550d 701 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
702}
703
704/*
705 * Default handling if a filesystem does not provide a migration function.
706 */
707static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 708 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 709{
b969c4ab 710 if (PageDirty(page)) {
a6bc32b8
MG
711 /* Only writeback pages in full synchronous migration */
712 if (mode != MIGRATE_SYNC)
b969c4ab 713 return -EBUSY;
04e62a29 714 return writeout(mapping, page);
b969c4ab 715 }
8351a6e4
CL
716
717 /*
718 * Buffers may be managed in a filesystem specific way.
719 * We must have no buffers or drop them.
720 */
266cf658 721 if (page_has_private(page) &&
8351a6e4
CL
722 !try_to_release_page(page, GFP_KERNEL))
723 return -EAGAIN;
724
a6bc32b8 725 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
726}
727
e24f0b8f
CL
728/*
729 * Move a page to a newly allocated page
730 * The page is locked and all ptes have been successfully removed.
731 *
732 * The new page will have replaced the old page if this function
733 * is successful.
894bc310
LS
734 *
735 * Return value:
736 * < 0 - error code
78bd5209 737 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 738 */
3fe2011f 739static int move_to_new_page(struct page *newpage, struct page *page,
a6bc32b8 740 int remap_swapcache, enum migrate_mode mode)
e24f0b8f
CL
741{
742 struct address_space *mapping;
743 int rc;
744
745 /*
746 * Block others from accessing the page when we get around to
747 * establishing additional references. We are the only one
748 * holding a reference to the new page at this point.
749 */
529ae9aa 750 if (!trylock_page(newpage))
e24f0b8f
CL
751 BUG();
752
753 /* Prepare mapping for the new page.*/
754 newpage->index = page->index;
755 newpage->mapping = page->mapping;
b2e18538
RR
756 if (PageSwapBacked(page))
757 SetPageSwapBacked(newpage);
e24f0b8f
CL
758
759 mapping = page_mapping(page);
760 if (!mapping)
a6bc32b8 761 rc = migrate_page(mapping, newpage, page, mode);
b969c4ab 762 else if (mapping->a_ops->migratepage)
e24f0b8f 763 /*
b969c4ab
MG
764 * Most pages have a mapping and most filesystems provide a
765 * migratepage callback. Anonymous pages are part of swap
766 * space which also has its own migratepage callback. This
767 * is the most common path for page migration.
e24f0b8f 768 */
b969c4ab 769 rc = mapping->a_ops->migratepage(mapping,
a6bc32b8 770 newpage, page, mode);
b969c4ab 771 else
a6bc32b8 772 rc = fallback_migrate_page(mapping, newpage, page, mode);
e24f0b8f 773
78bd5209 774 if (rc != MIGRATEPAGE_SUCCESS) {
e24f0b8f 775 newpage->mapping = NULL;
3fe2011f
MG
776 } else {
777 if (remap_swapcache)
778 remove_migration_ptes(page, newpage);
35512eca 779 page->mapping = NULL;
3fe2011f 780 }
e24f0b8f
CL
781
782 unlock_page(newpage);
783
784 return rc;
785}
786
0dabec93 787static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 788 int force, enum migrate_mode mode)
e24f0b8f 789{
0dabec93 790 int rc = -EAGAIN;
3fe2011f 791 int remap_swapcache = 1;
56039efa 792 struct mem_cgroup *mem;
3f6c8272 793 struct anon_vma *anon_vma = NULL;
95a402c3 794
529ae9aa 795 if (!trylock_page(page)) {
a6bc32b8 796 if (!force || mode == MIGRATE_ASYNC)
0dabec93 797 goto out;
3e7d3449
MG
798
799 /*
800 * It's not safe for direct compaction to call lock_page.
801 * For example, during page readahead pages are added locked
802 * to the LRU. Later, when the IO completes the pages are
803 * marked uptodate and unlocked. However, the queueing
804 * could be merging multiple pages for one bio (e.g.
805 * mpage_readpages). If an allocation happens for the
806 * second or third page, the process can end up locking
807 * the same page twice and deadlocking. Rather than
808 * trying to be clever about what pages can be locked,
809 * avoid the use of lock_page for direct compaction
810 * altogether.
811 */
812 if (current->flags & PF_MEMALLOC)
0dabec93 813 goto out;
3e7d3449 814
e24f0b8f
CL
815 lock_page(page);
816 }
817
01b1ae63 818 /* charge against new page */
0030f535 819 mem_cgroup_prepare_migration(page, newpage, &mem);
01b1ae63 820
e24f0b8f 821 if (PageWriteback(page)) {
11bc82d6 822 /*
fed5b64a 823 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
824 * necessary to wait for PageWriteback. In the async case,
825 * the retry loop is too short and in the sync-light case,
826 * the overhead of stalling is too much
11bc82d6 827 */
a6bc32b8 828 if (mode != MIGRATE_SYNC) {
11bc82d6
AA
829 rc = -EBUSY;
830 goto uncharge;
831 }
832 if (!force)
01b1ae63 833 goto uncharge;
e24f0b8f
CL
834 wait_on_page_writeback(page);
835 }
e24f0b8f 836 /*
dc386d4d
KH
837 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
838 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 839 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 840 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
841 * File Caches may use write_page() or lock_page() in migration, then,
842 * just care Anon page here.
dc386d4d 843 */
b79bc0a0 844 if (PageAnon(page) && !PageKsm(page)) {
1ce82b69 845 /*
4fc3f1d6 846 * Only page_lock_anon_vma_read() understands the subtleties of
1ce82b69
HD
847 * getting a hold on an anon_vma from outside one of its mms.
848 */
746b18d4 849 anon_vma = page_get_anon_vma(page);
1ce82b69
HD
850 if (anon_vma) {
851 /*
746b18d4 852 * Anon page
1ce82b69 853 */
1ce82b69 854 } else if (PageSwapCache(page)) {
3fe2011f
MG
855 /*
856 * We cannot be sure that the anon_vma of an unmapped
857 * swapcache page is safe to use because we don't
858 * know in advance if the VMA that this page belonged
859 * to still exists. If the VMA and others sharing the
860 * data have been freed, then the anon_vma could
861 * already be invalid.
862 *
863 * To avoid this possibility, swapcache pages get
864 * migrated but are not remapped when migration
865 * completes
866 */
867 remap_swapcache = 0;
868 } else {
1ce82b69 869 goto uncharge;
3fe2011f 870 }
989f89c5 871 }
62e1c553 872
bf6bddf1
RA
873 if (unlikely(balloon_page_movable(page))) {
874 /*
875 * A ballooned page does not need any special attention from
876 * physical to virtual reverse mapping procedures.
877 * Skip any attempt to unmap PTEs or to remap swap cache,
878 * in order to avoid burning cycles at rmap level, and perform
879 * the page migration right away (proteced by page lock).
880 */
881 rc = balloon_page_migrate(newpage, page, mode);
882 goto uncharge;
883 }
884
dc386d4d 885 /*
62e1c553
SL
886 * Corner case handling:
887 * 1. When a new swap-cache page is read into, it is added to the LRU
888 * and treated as swapcache but it has no rmap yet.
889 * Calling try_to_unmap() against a page->mapping==NULL page will
890 * trigger a BUG. So handle it here.
891 * 2. An orphaned page (see truncate_complete_page) might have
892 * fs-private metadata. The page can be picked up due to memory
893 * offlining. Everywhere else except page reclaim, the page is
894 * invisible to the vm, so the page can not be migrated. So try to
895 * free the metadata, so the page can be freed.
e24f0b8f 896 */
62e1c553 897 if (!page->mapping) {
1ce82b69
HD
898 VM_BUG_ON(PageAnon(page));
899 if (page_has_private(page)) {
62e1c553 900 try_to_free_buffers(page);
1ce82b69 901 goto uncharge;
62e1c553 902 }
abfc3488 903 goto skip_unmap;
62e1c553
SL
904 }
905
dc386d4d 906 /* Establish migration ptes or remove ptes */
14fa31b8 907 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 908
abfc3488 909skip_unmap:
e6a1530d 910 if (!page_mapped(page))
a6bc32b8 911 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
e24f0b8f 912
3fe2011f 913 if (rc && remap_swapcache)
e24f0b8f 914 remove_migration_ptes(page, page);
3f6c8272
MG
915
916 /* Drop an anon_vma reference if we took one */
76545066 917 if (anon_vma)
9e60109f 918 put_anon_vma(anon_vma);
3f6c8272 919
01b1ae63 920uncharge:
bf6bddf1
RA
921 mem_cgroup_end_migration(mem, page, newpage,
922 (rc == MIGRATEPAGE_SUCCESS ||
923 rc == MIGRATEPAGE_BALLOON_SUCCESS));
e24f0b8f 924 unlock_page(page);
0dabec93
MK
925out:
926 return rc;
927}
95a402c3 928
0dabec93
MK
929/*
930 * Obtain the lock on page, remove all ptes and migrate the page
931 * to the newly allocated page in newpage.
932 */
933static int unmap_and_move(new_page_t get_new_page, unsigned long private,
9c620e2b 934 struct page *page, int force, enum migrate_mode mode)
0dabec93
MK
935{
936 int rc = 0;
937 int *result = NULL;
938 struct page *newpage = get_new_page(page, private, &result);
939
940 if (!newpage)
941 return -ENOMEM;
942
943 if (page_count(page) == 1) {
944 /* page was freed from under us. So we are done. */
945 goto out;
946 }
947
948 if (unlikely(PageTransHuge(page)))
949 if (unlikely(split_huge_page(page)))
950 goto out;
951
9c620e2b 952 rc = __unmap_and_move(page, newpage, force, mode);
bf6bddf1
RA
953
954 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
955 /*
956 * A ballooned page has been migrated already.
957 * Now, it's the time to wrap-up counters,
958 * handle the page back to Buddy and return.
959 */
960 dec_zone_page_state(page, NR_ISOLATED_ANON +
961 page_is_file_cache(page));
962 balloon_page_free(page);
963 return MIGRATEPAGE_SUCCESS;
964 }
0dabec93 965out:
e24f0b8f 966 if (rc != -EAGAIN) {
0dabec93
MK
967 /*
968 * A page that has been migrated has all references
969 * removed and will be freed. A page that has not been
970 * migrated will have kepts its references and be
971 * restored.
972 */
973 list_del(&page->lru);
a731286d 974 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 975 page_is_file_cache(page));
894bc310 976 putback_lru_page(page);
e24f0b8f 977 }
95a402c3
CL
978 /*
979 * Move the new page to the LRU. If migration was not successful
980 * then this will free the page.
981 */
894bc310 982 putback_lru_page(newpage);
742755a1
CL
983 if (result) {
984 if (rc)
985 *result = rc;
986 else
987 *result = page_to_nid(newpage);
988 }
e24f0b8f
CL
989 return rc;
990}
991
290408d4
NH
992/*
993 * Counterpart of unmap_and_move_page() for hugepage migration.
994 *
995 * This function doesn't wait the completion of hugepage I/O
996 * because there is no race between I/O and migration for hugepage.
997 * Note that currently hugepage I/O occurs only in direct I/O
998 * where no lock is held and PG_writeback is irrelevant,
999 * and writeback status of all subpages are counted in the reference
1000 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1001 * under direct I/O, the reference of the head page is 512 and a bit more.)
1002 * This means that when we try to migrate hugepage whose subpages are
1003 * doing direct I/O, some references remain after try_to_unmap() and
1004 * hugepage migration fails without data corruption.
1005 *
1006 * There is also no race when direct I/O is issued on the page under migration,
1007 * because then pte is replaced with migration swap entry and direct I/O code
1008 * will wait in the page fault for migration to complete.
1009 */
1010static int unmap_and_move_huge_page(new_page_t get_new_page,
1011 unsigned long private, struct page *hpage,
9c620e2b 1012 int force, enum migrate_mode mode)
290408d4
NH
1013{
1014 int rc = 0;
1015 int *result = NULL;
1016 struct page *new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
1017 struct anon_vma *anon_vma = NULL;
1018
83467efb
NH
1019 /*
1020 * Movability of hugepages depends on architectures and hugepage size.
1021 * This check is necessary because some callers of hugepage migration
1022 * like soft offline and memory hotremove don't walk through page
1023 * tables or check whether the hugepage is pmd-based or not before
1024 * kicking migration.
1025 */
1026 if (!hugepage_migration_support(page_hstate(hpage)))
1027 return -ENOSYS;
1028
290408d4
NH
1029 if (!new_hpage)
1030 return -ENOMEM;
1031
1032 rc = -EAGAIN;
1033
1034 if (!trylock_page(hpage)) {
a6bc32b8 1035 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
1036 goto out;
1037 lock_page(hpage);
1038 }
1039
746b18d4
PZ
1040 if (PageAnon(hpage))
1041 anon_vma = page_get_anon_vma(hpage);
290408d4
NH
1042
1043 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1044
1045 if (!page_mapped(hpage))
a6bc32b8 1046 rc = move_to_new_page(new_hpage, hpage, 1, mode);
290408d4
NH
1047
1048 if (rc)
1049 remove_migration_ptes(hpage, hpage);
1050
fd4a4663 1051 if (anon_vma)
9e60109f 1052 put_anon_vma(anon_vma);
8e6ac7fa
AK
1053
1054 if (!rc)
1055 hugetlb_cgroup_migrate(hpage, new_hpage);
1056
290408d4 1057 unlock_page(hpage);
09761333 1058out:
b8ec1cee
NH
1059 if (rc != -EAGAIN)
1060 putback_active_hugepage(hpage);
290408d4 1061 put_page(new_hpage);
290408d4
NH
1062 if (result) {
1063 if (rc)
1064 *result = rc;
1065 else
1066 *result = page_to_nid(new_hpage);
1067 }
1068 return rc;
1069}
1070
b20a3503 1071/*
c73e5c9c
SB
1072 * migrate_pages - migrate the pages specified in a list, to the free pages
1073 * supplied as the target for the page migration
b20a3503 1074 *
c73e5c9c
SB
1075 * @from: The list of pages to be migrated.
1076 * @get_new_page: The function used to allocate free pages to be used
1077 * as the target of the page migration.
1078 * @private: Private data to be passed on to get_new_page()
1079 * @mode: The migration mode that specifies the constraints for
1080 * page migration, if any.
1081 * @reason: The reason for page migration.
b20a3503 1082 *
c73e5c9c
SB
1083 * The function returns after 10 attempts or if no pages are movable any more
1084 * because the list has become empty or no retryable pages exist any more.
1085 * The caller should call putback_lru_pages() to return pages to the LRU
28bd6578 1086 * or free list only if ret != 0.
b20a3503 1087 *
c73e5c9c 1088 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1089 */
9c620e2b
HD
1090int migrate_pages(struct list_head *from, new_page_t get_new_page,
1091 unsigned long private, enum migrate_mode mode, int reason)
b20a3503 1092{
e24f0b8f 1093 int retry = 1;
b20a3503 1094 int nr_failed = 0;
5647bc29 1095 int nr_succeeded = 0;
b20a3503
CL
1096 int pass = 0;
1097 struct page *page;
1098 struct page *page2;
1099 int swapwrite = current->flags & PF_SWAPWRITE;
1100 int rc;
1101
1102 if (!swapwrite)
1103 current->flags |= PF_SWAPWRITE;
1104
e24f0b8f
CL
1105 for(pass = 0; pass < 10 && retry; pass++) {
1106 retry = 0;
b20a3503 1107
e24f0b8f 1108 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 1109 cond_resched();
2d1db3b1 1110
31caf665
NH
1111 if (PageHuge(page))
1112 rc = unmap_and_move_huge_page(get_new_page,
1113 private, page, pass > 2, mode);
1114 else
1115 rc = unmap_and_move(get_new_page, private,
9c620e2b 1116 page, pass > 2, mode);
2d1db3b1 1117
e24f0b8f 1118 switch(rc) {
95a402c3
CL
1119 case -ENOMEM:
1120 goto out;
e24f0b8f 1121 case -EAGAIN:
2d1db3b1 1122 retry++;
e24f0b8f 1123 break;
78bd5209 1124 case MIGRATEPAGE_SUCCESS:
5647bc29 1125 nr_succeeded++;
e24f0b8f
CL
1126 break;
1127 default:
354a3363
NH
1128 /*
1129 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1130 * unlike -EAGAIN case, the failed page is
1131 * removed from migration page list and not
1132 * retried in the next outer loop.
1133 */
2d1db3b1 1134 nr_failed++;
e24f0b8f 1135 break;
2d1db3b1 1136 }
b20a3503
CL
1137 }
1138 }
78bd5209 1139 rc = nr_failed + retry;
95a402c3 1140out:
5647bc29
MG
1141 if (nr_succeeded)
1142 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1143 if (nr_failed)
1144 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1145 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1146
b20a3503
CL
1147 if (!swapwrite)
1148 current->flags &= ~PF_SWAPWRITE;
1149
78bd5209 1150 return rc;
b20a3503 1151}
95a402c3 1152
742755a1
CL
1153#ifdef CONFIG_NUMA
1154/*
1155 * Move a list of individual pages
1156 */
1157struct page_to_node {
1158 unsigned long addr;
1159 struct page *page;
1160 int node;
1161 int status;
1162};
1163
1164static struct page *new_page_node(struct page *p, unsigned long private,
1165 int **result)
1166{
1167 struct page_to_node *pm = (struct page_to_node *)private;
1168
1169 while (pm->node != MAX_NUMNODES && pm->page != p)
1170 pm++;
1171
1172 if (pm->node == MAX_NUMNODES)
1173 return NULL;
1174
1175 *result = &pm->status;
1176
e632a938
NH
1177 if (PageHuge(p))
1178 return alloc_huge_page_node(page_hstate(compound_head(p)),
1179 pm->node);
1180 else
1181 return alloc_pages_exact_node(pm->node,
769848c0 1182 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1183}
1184
1185/*
1186 * Move a set of pages as indicated in the pm array. The addr
1187 * field must be set to the virtual address of the page to be moved
1188 * and the node number must contain a valid target node.
5e9a0f02 1189 * The pm array ends with node = MAX_NUMNODES.
742755a1 1190 */
5e9a0f02
BG
1191static int do_move_page_to_node_array(struct mm_struct *mm,
1192 struct page_to_node *pm,
1193 int migrate_all)
742755a1
CL
1194{
1195 int err;
1196 struct page_to_node *pp;
1197 LIST_HEAD(pagelist);
1198
1199 down_read(&mm->mmap_sem);
1200
1201 /*
1202 * Build a list of pages to migrate
1203 */
742755a1
CL
1204 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1205 struct vm_area_struct *vma;
1206 struct page *page;
1207
742755a1
CL
1208 err = -EFAULT;
1209 vma = find_vma(mm, pp->addr);
70384dc6 1210 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1211 goto set_status;
1212
500d65d4 1213 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1214
1215 err = PTR_ERR(page);
1216 if (IS_ERR(page))
1217 goto set_status;
1218
742755a1
CL
1219 err = -ENOENT;
1220 if (!page)
1221 goto set_status;
1222
62b61f61 1223 /* Use PageReserved to check for zero page */
b79bc0a0 1224 if (PageReserved(page))
742755a1
CL
1225 goto put_and_set;
1226
1227 pp->page = page;
1228 err = page_to_nid(page);
1229
1230 if (err == pp->node)
1231 /*
1232 * Node already in the right place
1233 */
1234 goto put_and_set;
1235
1236 err = -EACCES;
1237 if (page_mapcount(page) > 1 &&
1238 !migrate_all)
1239 goto put_and_set;
1240
e632a938
NH
1241 if (PageHuge(page)) {
1242 isolate_huge_page(page, &pagelist);
1243 goto put_and_set;
1244 }
1245
62695a84 1246 err = isolate_lru_page(page);
6d9c285a 1247 if (!err) {
62695a84 1248 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1249 inc_zone_page_state(page, NR_ISOLATED_ANON +
1250 page_is_file_cache(page));
1251 }
742755a1
CL
1252put_and_set:
1253 /*
1254 * Either remove the duplicate refcount from
1255 * isolate_lru_page() or drop the page ref if it was
1256 * not isolated.
1257 */
1258 put_page(page);
1259set_status:
1260 pp->status = err;
1261 }
1262
e78bbfa8 1263 err = 0;
cf608ac1 1264 if (!list_empty(&pagelist)) {
742755a1 1265 err = migrate_pages(&pagelist, new_page_node,
9c620e2b 1266 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
cf608ac1 1267 if (err)
e632a938 1268 putback_movable_pages(&pagelist);
cf608ac1 1269 }
742755a1
CL
1270
1271 up_read(&mm->mmap_sem);
1272 return err;
1273}
1274
5e9a0f02
BG
1275/*
1276 * Migrate an array of page address onto an array of nodes and fill
1277 * the corresponding array of status.
1278 */
3268c63e 1279static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1280 unsigned long nr_pages,
1281 const void __user * __user *pages,
1282 const int __user *nodes,
1283 int __user *status, int flags)
1284{
3140a227 1285 struct page_to_node *pm;
3140a227
BG
1286 unsigned long chunk_nr_pages;
1287 unsigned long chunk_start;
1288 int err;
5e9a0f02 1289
3140a227
BG
1290 err = -ENOMEM;
1291 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1292 if (!pm)
5e9a0f02 1293 goto out;
35282a2d
BG
1294
1295 migrate_prep();
1296
5e9a0f02 1297 /*
3140a227
BG
1298 * Store a chunk of page_to_node array in a page,
1299 * but keep the last one as a marker
5e9a0f02 1300 */
3140a227 1301 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1302
3140a227
BG
1303 for (chunk_start = 0;
1304 chunk_start < nr_pages;
1305 chunk_start += chunk_nr_pages) {
1306 int j;
5e9a0f02 1307
3140a227
BG
1308 if (chunk_start + chunk_nr_pages > nr_pages)
1309 chunk_nr_pages = nr_pages - chunk_start;
1310
1311 /* fill the chunk pm with addrs and nodes from user-space */
1312 for (j = 0; j < chunk_nr_pages; j++) {
1313 const void __user *p;
5e9a0f02
BG
1314 int node;
1315
3140a227
BG
1316 err = -EFAULT;
1317 if (get_user(p, pages + j + chunk_start))
1318 goto out_pm;
1319 pm[j].addr = (unsigned long) p;
1320
1321 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1322 goto out_pm;
1323
1324 err = -ENODEV;
6f5a55f1
LT
1325 if (node < 0 || node >= MAX_NUMNODES)
1326 goto out_pm;
1327
389162c2 1328 if (!node_state(node, N_MEMORY))
5e9a0f02
BG
1329 goto out_pm;
1330
1331 err = -EACCES;
1332 if (!node_isset(node, task_nodes))
1333 goto out_pm;
1334
3140a227
BG
1335 pm[j].node = node;
1336 }
1337
1338 /* End marker for this chunk */
1339 pm[chunk_nr_pages].node = MAX_NUMNODES;
1340
1341 /* Migrate this chunk */
1342 err = do_move_page_to_node_array(mm, pm,
1343 flags & MPOL_MF_MOVE_ALL);
1344 if (err < 0)
1345 goto out_pm;
5e9a0f02 1346
5e9a0f02 1347 /* Return status information */
3140a227
BG
1348 for (j = 0; j < chunk_nr_pages; j++)
1349 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1350 err = -EFAULT;
3140a227
BG
1351 goto out_pm;
1352 }
1353 }
1354 err = 0;
5e9a0f02
BG
1355
1356out_pm:
3140a227 1357 free_page((unsigned long)pm);
5e9a0f02
BG
1358out:
1359 return err;
1360}
1361
742755a1 1362/*
2f007e74 1363 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1364 */
80bba129
BG
1365static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1366 const void __user **pages, int *status)
742755a1 1367{
2f007e74 1368 unsigned long i;
2f007e74 1369
742755a1
CL
1370 down_read(&mm->mmap_sem);
1371
2f007e74 1372 for (i = 0; i < nr_pages; i++) {
80bba129 1373 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1374 struct vm_area_struct *vma;
1375 struct page *page;
c095adbc 1376 int err = -EFAULT;
2f007e74
BG
1377
1378 vma = find_vma(mm, addr);
70384dc6 1379 if (!vma || addr < vma->vm_start)
742755a1
CL
1380 goto set_status;
1381
2f007e74 1382 page = follow_page(vma, addr, 0);
89f5b7da
LT
1383
1384 err = PTR_ERR(page);
1385 if (IS_ERR(page))
1386 goto set_status;
1387
742755a1
CL
1388 err = -ENOENT;
1389 /* Use PageReserved to check for zero page */
b79bc0a0 1390 if (!page || PageReserved(page))
742755a1
CL
1391 goto set_status;
1392
1393 err = page_to_nid(page);
1394set_status:
80bba129
BG
1395 *status = err;
1396
1397 pages++;
1398 status++;
1399 }
1400
1401 up_read(&mm->mmap_sem);
1402}
1403
1404/*
1405 * Determine the nodes of a user array of pages and store it in
1406 * a user array of status.
1407 */
1408static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1409 const void __user * __user *pages,
1410 int __user *status)
1411{
1412#define DO_PAGES_STAT_CHUNK_NR 16
1413 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1414 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1415
87b8d1ad
PA
1416 while (nr_pages) {
1417 unsigned long chunk_nr;
80bba129 1418
87b8d1ad
PA
1419 chunk_nr = nr_pages;
1420 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1421 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1422
1423 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1424 break;
80bba129
BG
1425
1426 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1427
87b8d1ad
PA
1428 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1429 break;
742755a1 1430
87b8d1ad
PA
1431 pages += chunk_nr;
1432 status += chunk_nr;
1433 nr_pages -= chunk_nr;
1434 }
1435 return nr_pages ? -EFAULT : 0;
742755a1
CL
1436}
1437
1438/*
1439 * Move a list of pages in the address space of the currently executing
1440 * process.
1441 */
938bb9f5
HC
1442SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1443 const void __user * __user *, pages,
1444 const int __user *, nodes,
1445 int __user *, status, int, flags)
742755a1 1446{
c69e8d9c 1447 const struct cred *cred = current_cred(), *tcred;
742755a1 1448 struct task_struct *task;
742755a1 1449 struct mm_struct *mm;
5e9a0f02 1450 int err;
3268c63e 1451 nodemask_t task_nodes;
742755a1
CL
1452
1453 /* Check flags */
1454 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1455 return -EINVAL;
1456
1457 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1458 return -EPERM;
1459
1460 /* Find the mm_struct */
a879bf58 1461 rcu_read_lock();
228ebcbe 1462 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1463 if (!task) {
a879bf58 1464 rcu_read_unlock();
742755a1
CL
1465 return -ESRCH;
1466 }
3268c63e 1467 get_task_struct(task);
742755a1
CL
1468
1469 /*
1470 * Check if this process has the right to modify the specified
1471 * process. The right exists if the process has administrative
1472 * capabilities, superuser privileges or the same
1473 * userid as the target process.
1474 */
c69e8d9c 1475 tcred = __task_cred(task);
b38a86eb
EB
1476 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1477 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
742755a1 1478 !capable(CAP_SYS_NICE)) {
c69e8d9c 1479 rcu_read_unlock();
742755a1 1480 err = -EPERM;
5e9a0f02 1481 goto out;
742755a1 1482 }
c69e8d9c 1483 rcu_read_unlock();
742755a1 1484
86c3a764
DQ
1485 err = security_task_movememory(task);
1486 if (err)
5e9a0f02 1487 goto out;
86c3a764 1488
3268c63e
CL
1489 task_nodes = cpuset_mems_allowed(task);
1490 mm = get_task_mm(task);
1491 put_task_struct(task);
1492
6e8b09ea
SL
1493 if (!mm)
1494 return -EINVAL;
1495
1496 if (nodes)
1497 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1498 nodes, status, flags);
1499 else
1500 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1501
742755a1
CL
1502 mmput(mm);
1503 return err;
3268c63e
CL
1504
1505out:
1506 put_task_struct(task);
1507 return err;
742755a1 1508}
742755a1 1509
7b2259b3
CL
1510/*
1511 * Call migration functions in the vma_ops that may prepare
1512 * memory in a vm for migration. migration functions may perform
1513 * the migration for vmas that do not have an underlying page struct.
1514 */
1515int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1516 const nodemask_t *from, unsigned long flags)
1517{
1518 struct vm_area_struct *vma;
1519 int err = 0;
1520
1001c9fb 1521 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1522 if (vma->vm_ops && vma->vm_ops->migrate) {
1523 err = vma->vm_ops->migrate(vma, to, from, flags);
1524 if (err)
1525 break;
1526 }
1527 }
1528 return err;
1529}
7039e1db
PZ
1530
1531#ifdef CONFIG_NUMA_BALANCING
1532/*
1533 * Returns true if this is a safe migration target node for misplaced NUMA
1534 * pages. Currently it only checks the watermarks which crude
1535 */
1536static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1537 unsigned long nr_migrate_pages)
7039e1db
PZ
1538{
1539 int z;
1540 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1541 struct zone *zone = pgdat->node_zones + z;
1542
1543 if (!populated_zone(zone))
1544 continue;
1545
6e543d57 1546 if (!zone_reclaimable(zone))
7039e1db
PZ
1547 continue;
1548
1549 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1550 if (!zone_watermark_ok(zone, 0,
1551 high_wmark_pages(zone) +
1552 nr_migrate_pages,
1553 0, 0))
1554 continue;
1555 return true;
1556 }
1557 return false;
1558}
1559
1560static struct page *alloc_misplaced_dst_page(struct page *page,
1561 unsigned long data,
1562 int **result)
1563{
1564 int nid = (int) data;
1565 struct page *newpage;
1566
1567 newpage = alloc_pages_exact_node(nid,
1568 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1569 __GFP_NOMEMALLOC | __GFP_NORETRY |
1570 __GFP_NOWARN) &
1571 ~GFP_IOFS, 0);
bac0382c 1572 if (newpage)
90572890 1573 page_cpupid_xchg_last(newpage, page_cpupid_last(page));
bac0382c 1574
7039e1db
PZ
1575 return newpage;
1576}
1577
a8f60772
MG
1578/*
1579 * page migration rate limiting control.
1580 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1581 * window of time. Default here says do not migrate more than 1280M per second.
e14808b4
MG
1582 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1583 * as it is faults that reset the window, pte updates will happen unconditionally
1584 * if there has not been a fault since @pteupdate_interval_millisecs after the
1585 * throttle window closed.
a8f60772
MG
1586 */
1587static unsigned int migrate_interval_millisecs __read_mostly = 100;
e14808b4 1588static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
a8f60772
MG
1589static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1590
e14808b4
MG
1591/* Returns true if NUMA migration is currently rate limited */
1592bool migrate_ratelimited(int node)
1593{
1594 pg_data_t *pgdat = NODE_DATA(node);
1595
1596 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1597 msecs_to_jiffies(pteupdate_interval_millisecs)))
1598 return false;
1599
1600 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1601 return false;
1602
1603 return true;
1604}
1605
b32967ff 1606/* Returns true if the node is migrate rate-limited after the update */
1c30e017
MG
1607static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1608 unsigned long nr_pages)
7039e1db 1609{
a8f60772
MG
1610 /*
1611 * Rate-limit the amount of data that is being migrated to a node.
1612 * Optimal placement is no good if the memory bus is saturated and
1613 * all the time is being spent migrating!
1614 */
a8f60772 1615 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1c5e9c27 1616 spin_lock(&pgdat->numabalancing_migrate_lock);
a8f60772
MG
1617 pgdat->numabalancing_migrate_nr_pages = 0;
1618 pgdat->numabalancing_migrate_next_window = jiffies +
1619 msecs_to_jiffies(migrate_interval_millisecs);
1c5e9c27 1620 spin_unlock(&pgdat->numabalancing_migrate_lock);
a8f60772 1621 }
af1839d7
MG
1622 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1623 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1624 nr_pages);
1c5e9c27 1625 return true;
af1839d7 1626 }
1c5e9c27
MG
1627
1628 /*
1629 * This is an unlocked non-atomic update so errors are possible.
1630 * The consequences are failing to migrate when we potentiall should
1631 * have which is not severe enough to warrant locking. If it is ever
1632 * a problem, it can be converted to a per-cpu counter.
1633 */
1634 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1635 return false;
b32967ff
MG
1636}
1637
1c30e017 1638static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1639{
340ef390 1640 int page_lru;
a8f60772 1641
3abef4e6
MG
1642 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1643
7039e1db 1644 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1645 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1646 return 0;
7039e1db 1647
340ef390
HD
1648 if (isolate_lru_page(page))
1649 return 0;
7039e1db 1650
340ef390
HD
1651 /*
1652 * migrate_misplaced_transhuge_page() skips page migration's usual
1653 * check on page_count(), so we must do it here, now that the page
1654 * has been isolated: a GUP pin, or any other pin, prevents migration.
1655 * The expected page count is 3: 1 for page's mapcount and 1 for the
1656 * caller's pin and 1 for the reference taken by isolate_lru_page().
1657 */
1658 if (PageTransHuge(page) && page_count(page) != 3) {
1659 putback_lru_page(page);
1660 return 0;
7039e1db
PZ
1661 }
1662
340ef390
HD
1663 page_lru = page_is_file_cache(page);
1664 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1665 hpage_nr_pages(page));
1666
149c33e1 1667 /*
340ef390
HD
1668 * Isolating the page has taken another reference, so the
1669 * caller's reference can be safely dropped without the page
1670 * disappearing underneath us during migration.
149c33e1
MG
1671 */
1672 put_page(page);
340ef390 1673 return 1;
b32967ff
MG
1674}
1675
de466bd6
MG
1676bool pmd_trans_migrating(pmd_t pmd)
1677{
1678 struct page *page = pmd_page(pmd);
1679 return PageLocked(page);
1680}
1681
1682void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1683{
1684 struct page *page = pmd_page(*pmd);
1685 wait_on_page_locked(page);
1686}
1687
b32967ff
MG
1688/*
1689 * Attempt to migrate a misplaced page to the specified destination
1690 * node. Caller is expected to have an elevated reference count on
1691 * the page that will be dropped by this function before returning.
1692 */
1bc115d8
MG
1693int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1694 int node)
b32967ff
MG
1695{
1696 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1697 int isolated;
b32967ff
MG
1698 int nr_remaining;
1699 LIST_HEAD(migratepages);
1700
1701 /*
1bc115d8
MG
1702 * Don't migrate file pages that are mapped in multiple processes
1703 * with execute permissions as they are probably shared libraries.
b32967ff 1704 */
1bc115d8
MG
1705 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1706 (vma->vm_flags & VM_EXEC))
b32967ff 1707 goto out;
b32967ff
MG
1708
1709 /*
1710 * Rate-limit the amount of data that is being migrated to a node.
1711 * Optimal placement is no good if the memory bus is saturated and
1712 * all the time is being spent migrating!
1713 */
340ef390 1714 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1715 goto out;
b32967ff
MG
1716
1717 isolated = numamigrate_isolate_page(pgdat, page);
1718 if (!isolated)
1719 goto out;
1720
1721 list_add(&page->lru, &migratepages);
9c620e2b
HD
1722 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1723 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
b32967ff
MG
1724 if (nr_remaining) {
1725 putback_lru_pages(&migratepages);
1726 isolated = 0;
1727 } else
1728 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1729 BUG_ON(!list_empty(&migratepages));
7039e1db 1730 return isolated;
340ef390
HD
1731
1732out:
1733 put_page(page);
1734 return 0;
7039e1db 1735}
220018d3 1736#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1737
220018d3 1738#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1739/*
1740 * Migrates a THP to a given target node. page must be locked and is unlocked
1741 * before returning.
1742 */
b32967ff
MG
1743int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1744 struct vm_area_struct *vma,
1745 pmd_t *pmd, pmd_t entry,
1746 unsigned long address,
1747 struct page *page, int node)
1748{
c4088ebd 1749 spinlock_t *ptl;
b32967ff
MG
1750 pg_data_t *pgdat = NODE_DATA(node);
1751 int isolated = 0;
1752 struct page *new_page = NULL;
1753 struct mem_cgroup *memcg = NULL;
1754 int page_lru = page_is_file_cache(page);
f714f4f2
MG
1755 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1756 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2b4847e7 1757 pmd_t orig_entry;
b32967ff 1758
b32967ff
MG
1759 /*
1760 * Rate-limit the amount of data that is being migrated to a node.
1761 * Optimal placement is no good if the memory bus is saturated and
1762 * all the time is being spent migrating!
1763 */
d28d4335 1764 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
1765 goto out_dropref;
1766
1767 new_page = alloc_pages_node(node,
1768 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
340ef390
HD
1769 if (!new_page)
1770 goto out_fail;
1771
90572890 1772 page_cpupid_xchg_last(new_page, page_cpupid_last(page));
b32967ff
MG
1773
1774 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 1775 if (!isolated) {
b32967ff 1776 put_page(new_page);
340ef390 1777 goto out_fail;
b32967ff
MG
1778 }
1779
b0943d61
MG
1780 if (mm_tlb_flush_pending(mm))
1781 flush_tlb_range(vma, mmun_start, mmun_end);
1782
b32967ff
MG
1783 /* Prepare a page as a migration target */
1784 __set_page_locked(new_page);
1785 SetPageSwapBacked(new_page);
1786
1787 /* anon mapping, we can simply copy page->mapping to the new page: */
1788 new_page->mapping = page->mapping;
1789 new_page->index = page->index;
1790 migrate_page_copy(new_page, page);
1791 WARN_ON(PageLRU(new_page));
1792
1793 /* Recheck the target PMD */
f714f4f2 1794 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 1795 ptl = pmd_lock(mm, pmd);
2b4847e7
MG
1796 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1797fail_putback:
c4088ebd 1798 spin_unlock(ptl);
f714f4f2 1799 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
1800
1801 /* Reverse changes made by migrate_page_copy() */
1802 if (TestClearPageActive(new_page))
1803 SetPageActive(page);
1804 if (TestClearPageUnevictable(new_page))
1805 SetPageUnevictable(page);
1806 mlock_migrate_page(page, new_page);
1807
1808 unlock_page(new_page);
1809 put_page(new_page); /* Free it */
1810
a54a407f
MG
1811 /* Retake the callers reference and putback on LRU */
1812 get_page(page);
b32967ff 1813 putback_lru_page(page);
a54a407f
MG
1814 mod_zone_page_state(page_zone(page),
1815 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
1816
1817 goto out_unlock;
b32967ff
MG
1818 }
1819
1820 /*
1821 * Traditional migration needs to prepare the memcg charge
1822 * transaction early to prevent the old page from being
1823 * uncharged when installing migration entries. Here we can
1824 * save the potential rollback and start the charge transfer
1825 * only when migration is already known to end successfully.
1826 */
1827 mem_cgroup_prepare_migration(page, new_page, &memcg);
1828
2b4847e7 1829 orig_entry = *pmd;
b32967ff 1830 entry = mk_pmd(new_page, vma->vm_page_prot);
b32967ff 1831 entry = pmd_mkhuge(entry);
2b4847e7 1832 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 1833
2b4847e7
MG
1834 /*
1835 * Clear the old entry under pagetable lock and establish the new PTE.
1836 * Any parallel GUP will either observe the old page blocking on the
1837 * page lock, block on the page table lock or observe the new page.
1838 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1839 * guarantee the copy is visible before the pagetable update.
1840 */
f714f4f2
MG
1841 flush_cache_range(vma, mmun_start, mmun_end);
1842 page_add_new_anon_rmap(new_page, vma, mmun_start);
1843 pmdp_clear_flush(vma, mmun_start, pmd);
1844 set_pmd_at(mm, mmun_start, pmd, entry);
1845 flush_tlb_range(vma, mmun_start, mmun_end);
ce4a9cc5 1846 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7
MG
1847
1848 if (page_count(page) != 2) {
f714f4f2
MG
1849 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1850 flush_tlb_range(vma, mmun_start, mmun_end);
2b4847e7
MG
1851 update_mmu_cache_pmd(vma, address, &entry);
1852 page_remove_rmap(new_page);
1853 goto fail_putback;
1854 }
1855
b32967ff 1856 page_remove_rmap(page);
2b4847e7 1857
b32967ff
MG
1858 /*
1859 * Finish the charge transaction under the page table lock to
1860 * prevent split_huge_page() from dividing up the charge
1861 * before it's fully transferred to the new page.
1862 */
1863 mem_cgroup_end_migration(memcg, page, new_page, true);
c4088ebd 1864 spin_unlock(ptl);
f714f4f2 1865 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
1866
1867 unlock_page(new_page);
1868 unlock_page(page);
1869 put_page(page); /* Drop the rmap reference */
1870 put_page(page); /* Drop the LRU isolation reference */
1871
1872 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1873 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1874
b32967ff
MG
1875 mod_zone_page_state(page_zone(page),
1876 NR_ISOLATED_ANON + page_lru,
1877 -HPAGE_PMD_NR);
1878 return isolated;
1879
340ef390
HD
1880out_fail:
1881 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 1882out_dropref:
2b4847e7
MG
1883 ptl = pmd_lock(mm, pmd);
1884 if (pmd_same(*pmd, entry)) {
1885 entry = pmd_mknonnuma(entry);
f714f4f2 1886 set_pmd_at(mm, mmun_start, pmd, entry);
2b4847e7
MG
1887 update_mmu_cache_pmd(vma, address, &entry);
1888 }
1889 spin_unlock(ptl);
a54a407f 1890
eb4489f6 1891out_unlock:
340ef390 1892 unlock_page(page);
b32967ff 1893 put_page(page);
b32967ff
MG
1894 return 0;
1895}
7039e1db
PZ
1896#endif /* CONFIG_NUMA_BALANCING */
1897
1898#endif /* CONFIG_NUMA */