]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/migrate.c
proc/kcore: don't bounds check against address 0
[thirdparty/kernel/stable.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
df6ad698 41#include <linux/pfn_t.h>
a5430dda 42#include <linux/memremap.h>
8315ada7 43#include <linux/userfaultfd_k.h>
bf6bddf1 44#include <linux/balloon_compaction.h>
f714f4f2 45#include <linux/mmu_notifier.h>
33c3fc71 46#include <linux/page_idle.h>
d435edca 47#include <linux/page_owner.h>
6e84f315 48#include <linux/sched/mm.h>
197e7e52 49#include <linux/ptrace.h>
b20a3503 50
0d1836c3
MN
51#include <asm/tlbflush.h>
52
7b2a2d4a
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/migrate.h>
55
b20a3503
CL
56#include "internal.h"
57
b20a3503 58/*
742755a1 59 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
b20a3503
CL
62 */
63int migrate_prep(void)
64{
b20a3503
CL
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74}
75
748446bb
MG
76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
77int migrate_prep_local(void)
78{
79 lru_add_drain();
80
81 return 0;
82}
83
9e5bcd61 84int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
85{
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
9e5bcd61 135 return 0;
bda807d4
MK
136
137out_no_isolated:
138 unlock_page(page);
139out_putpage:
140 put_page(page);
141out:
9e5bcd61 142 return -EBUSY;
bda807d4
MK
143}
144
145/* It should be called on page which is PG_movable */
146void putback_movable_page(struct page *page)
147{
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157}
158
5733c7d1
RA
159/*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
59c82b70
JK
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
5733c7d1
RA
166 */
167void putback_movable_pages(struct list_head *l)
168{
169 struct page *page;
170 struct page *page2;
171
b20a3503 172 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
e24f0b8f 177 list_del(&page->lru);
bda807d4
MK
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
b1123ea6 183 if (unlikely(__PageMovable(page))) {
bda807d4
MK
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
e8db67eb
NH
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 195 putback_lru_page(page);
bda807d4 196 }
b20a3503 197 }
b20a3503
CL
198}
199
0697212a
CL
200/*
201 * Restore a potential migration pte to a working pte entry
202 */
e4b82222 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 204 unsigned long addr, void *old)
0697212a 205{
3fe87967
KS
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
0697212a 214 swp_entry_t entry;
0697212a 215
3fe87967
KS
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
0697212a 223
616b8371
ZY
224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231#endif
232
3fe87967
KS
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
0697212a 237
3fe87967
KS
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 244
df6ad698
JG
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
252 }
a5430dda
JG
253 } else
254 flush_dcache_page(new);
255
3ef8fd7f 256#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
383321ab
AK
265 } else
266#endif
267 {
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 269
383321ab
AK
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
274 }
3fe87967
KS
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
277
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 }
51afb12b 281
e4b82222 282 return true;
0697212a
CL
283}
284
04e62a29
CL
285/*
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
288 */
e388466d 289void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 290{
051ac83a
JK
291 struct rmap_walk_control rwc = {
292 .rmap_one = remove_migration_pte,
293 .arg = old,
294 };
295
e388466d
KS
296 if (locked)
297 rmap_walk_locked(new, &rwc);
298 else
299 rmap_walk(new, &rwc);
04e62a29
CL
300}
301
0697212a
CL
302/*
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
0697212a 306 */
e66f17ff 307void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 308 spinlock_t *ptl)
0697212a 309{
30dad309 310 pte_t pte;
0697212a
CL
311 swp_entry_t entry;
312 struct page *page;
313
30dad309 314 spin_lock(ptl);
0697212a
CL
315 pte = *ptep;
316 if (!is_swap_pte(pte))
317 goto out;
318
319 entry = pte_to_swp_entry(pte);
320 if (!is_migration_entry(entry))
321 goto out;
322
323 page = migration_entry_to_page(entry);
324
e286781d
NP
325 /*
326 * Once radix-tree replacement of page migration started, page_count
327 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 * against a page without get_page().
329 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 * will occur again.
331 */
332 if (!get_page_unless_zero(page))
333 goto out;
0697212a
CL
334 pte_unmap_unlock(ptep, ptl);
335 wait_on_page_locked(page);
336 put_page(page);
337 return;
338out:
339 pte_unmap_unlock(ptep, ptl);
340}
341
30dad309
NH
342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
344{
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
348}
349
cb900f41
KS
350void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
30dad309 352{
cb900f41 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
354 __migration_entry_wait(mm, pte, ptl);
355}
356
616b8371
ZY
357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359{
360 spinlock_t *ptl;
361 struct page *page;
362
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
370 wait_on_page_locked(page);
371 put_page(page);
372 return;
373unlock:
374 spin_unlock(ptl);
375}
376#endif
377
b969c4ab
MG
378#ifdef CONFIG_BLOCK
379/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
380static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 enum migrate_mode mode)
b969c4ab
MG
382{
383 struct buffer_head *bh = head;
384
385 /* Simple case, sync compaction */
a6bc32b8 386 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
387 do {
388 get_bh(bh);
389 lock_buffer(bh);
390 bh = bh->b_this_page;
391
392 } while (bh != head);
393
394 return true;
395 }
396
397 /* async case, we cannot block on lock_buffer so use trylock_buffer */
398 do {
399 get_bh(bh);
400 if (!trylock_buffer(bh)) {
401 /*
402 * We failed to lock the buffer and cannot stall in
403 * async migration. Release the taken locks
404 */
405 struct buffer_head *failed_bh = bh;
406 put_bh(failed_bh);
407 bh = head;
408 while (bh != failed_bh) {
409 unlock_buffer(bh);
410 put_bh(bh);
411 bh = bh->b_this_page;
412 }
413 return false;
414 }
415
416 bh = bh->b_this_page;
417 } while (bh != head);
418 return true;
419}
420#else
421static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 422 enum migrate_mode mode)
b969c4ab
MG
423{
424 return true;
425}
426#endif /* CONFIG_BLOCK */
427
b20a3503 428/*
c3fcf8a5 429 * Replace the page in the mapping.
5b5c7120
CL
430 *
431 * The number of remaining references must be:
432 * 1 for anonymous pages without a mapping
433 * 2 for pages with a mapping
266cf658 434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 435 */
36bc08cc 436int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 437 struct page *newpage, struct page *page,
8e321fef
BL
438 struct buffer_head *head, enum migrate_mode mode,
439 int extra_count)
b20a3503 440{
42cb14b1
HD
441 struct zone *oldzone, *newzone;
442 int dirty;
8e321fef 443 int expected_count = 1 + extra_count;
7cf9c2c7 444 void **pslot;
b20a3503 445
8763cb45 446 /*
df6ad698
JG
447 * Device public or private pages have an extra refcount as they are
448 * ZONE_DEVICE pages.
8763cb45 449 */
df6ad698
JG
450 expected_count += is_device_private_page(page);
451 expected_count += is_device_public_page(page);
8763cb45 452
6c5240ae 453 if (!mapping) {
0e8c7d0f 454 /* Anonymous page without mapping */
8e321fef 455 if (page_count(page) != expected_count)
6c5240ae 456 return -EAGAIN;
cf4b769a
HD
457
458 /* No turning back from here */
cf4b769a
HD
459 newpage->index = page->index;
460 newpage->mapping = page->mapping;
461 if (PageSwapBacked(page))
fa9949da 462 __SetPageSwapBacked(newpage);
cf4b769a 463
78bd5209 464 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
465 }
466
42cb14b1
HD
467 oldzone = page_zone(page);
468 newzone = page_zone(newpage);
469
b93b0163 470 xa_lock_irq(&mapping->i_pages);
b20a3503 471
b93b0163 472 pslot = radix_tree_lookup_slot(&mapping->i_pages,
7cf9c2c7 473 page_index(page));
b20a3503 474
e71769ae 475 expected_count += hpage_nr_pages(page) + page_has_private(page);
e286781d 476 if (page_count(page) != expected_count ||
b93b0163
MW
477 radix_tree_deref_slot_protected(pslot,
478 &mapping->i_pages.xa_lock) != page) {
479 xa_unlock_irq(&mapping->i_pages);
e23ca00b 480 return -EAGAIN;
b20a3503
CL
481 }
482
fe896d18 483 if (!page_ref_freeze(page, expected_count)) {
b93b0163 484 xa_unlock_irq(&mapping->i_pages);
e286781d
NP
485 return -EAGAIN;
486 }
487
b969c4ab
MG
488 /*
489 * In the async migration case of moving a page with buffers, lock the
490 * buffers using trylock before the mapping is moved. If the mapping
491 * was moved, we later failed to lock the buffers and could not move
492 * the mapping back due to an elevated page count, we would have to
493 * block waiting on other references to be dropped.
494 */
a6bc32b8
MG
495 if (mode == MIGRATE_ASYNC && head &&
496 !buffer_migrate_lock_buffers(head, mode)) {
fe896d18 497 page_ref_unfreeze(page, expected_count);
b93b0163 498 xa_unlock_irq(&mapping->i_pages);
b969c4ab
MG
499 return -EAGAIN;
500 }
501
b20a3503 502 /*
cf4b769a
HD
503 * Now we know that no one else is looking at the page:
504 * no turning back from here.
b20a3503 505 */
cf4b769a
HD
506 newpage->index = page->index;
507 newpage->mapping = page->mapping;
e71769ae 508 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
6326fec1
NP
509 if (PageSwapBacked(page)) {
510 __SetPageSwapBacked(newpage);
511 if (PageSwapCache(page)) {
512 SetPageSwapCache(newpage);
513 set_page_private(newpage, page_private(page));
514 }
515 } else {
516 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
517 }
518
42cb14b1
HD
519 /* Move dirty while page refs frozen and newpage not yet exposed */
520 dirty = PageDirty(page);
521 if (dirty) {
522 ClearPageDirty(page);
523 SetPageDirty(newpage);
524 }
525
b93b0163 526 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
e71769ae
NH
527 if (PageTransHuge(page)) {
528 int i;
529 int index = page_index(page);
530
531 for (i = 0; i < HPAGE_PMD_NR; i++) {
532 pslot = radix_tree_lookup_slot(&mapping->i_pages,
533 index + i);
534 radix_tree_replace_slot(&mapping->i_pages, pslot,
535 newpage + i);
536 }
537 } else {
538 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
539 }
7cf9c2c7
NP
540
541 /*
937a94c9
JG
542 * Drop cache reference from old page by unfreezing
543 * to one less reference.
7cf9c2c7
NP
544 * We know this isn't the last reference.
545 */
e71769ae 546 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
7cf9c2c7 547
b93b0163 548 xa_unlock(&mapping->i_pages);
42cb14b1
HD
549 /* Leave irq disabled to prevent preemption while updating stats */
550
0e8c7d0f
CL
551 /*
552 * If moved to a different zone then also account
553 * the page for that zone. Other VM counters will be
554 * taken care of when we establish references to the
555 * new page and drop references to the old page.
556 *
557 * Note that anonymous pages are accounted for
4b9d0fab 558 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
559 * are mapped to swap space.
560 */
42cb14b1 561 if (newzone != oldzone) {
11fb9989
MG
562 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
563 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 564 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
565 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
566 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
567 }
568 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 569 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 570 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 571 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 572 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 573 }
4b02108a 574 }
42cb14b1 575 local_irq_enable();
b20a3503 576
78bd5209 577 return MIGRATEPAGE_SUCCESS;
b20a3503 578}
1118dce7 579EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 580
290408d4
NH
581/*
582 * The expected number of remaining references is the same as that
583 * of migrate_page_move_mapping().
584 */
585int migrate_huge_page_move_mapping(struct address_space *mapping,
586 struct page *newpage, struct page *page)
587{
588 int expected_count;
589 void **pslot;
590
b93b0163 591 xa_lock_irq(&mapping->i_pages);
290408d4 592
b93b0163 593 pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
290408d4
NH
594
595 expected_count = 2 + page_has_private(page);
596 if (page_count(page) != expected_count ||
b93b0163
MW
597 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
598 xa_unlock_irq(&mapping->i_pages);
290408d4
NH
599 return -EAGAIN;
600 }
601
fe896d18 602 if (!page_ref_freeze(page, expected_count)) {
b93b0163 603 xa_unlock_irq(&mapping->i_pages);
290408d4
NH
604 return -EAGAIN;
605 }
606
cf4b769a
HD
607 newpage->index = page->index;
608 newpage->mapping = page->mapping;
6a93ca8f 609
290408d4
NH
610 get_page(newpage);
611
b93b0163 612 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
290408d4 613
fe896d18 614 page_ref_unfreeze(page, expected_count - 1);
290408d4 615
b93b0163 616 xa_unlock_irq(&mapping->i_pages);
6a93ca8f 617
78bd5209 618 return MIGRATEPAGE_SUCCESS;
290408d4
NH
619}
620
30b0a105
DH
621/*
622 * Gigantic pages are so large that we do not guarantee that page++ pointer
623 * arithmetic will work across the entire page. We need something more
624 * specialized.
625 */
626static void __copy_gigantic_page(struct page *dst, struct page *src,
627 int nr_pages)
628{
629 int i;
630 struct page *dst_base = dst;
631 struct page *src_base = src;
632
633 for (i = 0; i < nr_pages; ) {
634 cond_resched();
635 copy_highpage(dst, src);
636
637 i++;
638 dst = mem_map_next(dst, dst_base, i);
639 src = mem_map_next(src, src_base, i);
640 }
641}
642
643static void copy_huge_page(struct page *dst, struct page *src)
644{
645 int i;
646 int nr_pages;
647
648 if (PageHuge(src)) {
649 /* hugetlbfs page */
650 struct hstate *h = page_hstate(src);
651 nr_pages = pages_per_huge_page(h);
652
653 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
654 __copy_gigantic_page(dst, src, nr_pages);
655 return;
656 }
657 } else {
658 /* thp page */
659 BUG_ON(!PageTransHuge(src));
660 nr_pages = hpage_nr_pages(src);
661 }
662
663 for (i = 0; i < nr_pages; i++) {
664 cond_resched();
665 copy_highpage(dst + i, src + i);
666 }
667}
668
b20a3503
CL
669/*
670 * Copy the page to its new location
671 */
2916ecc0 672void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 673{
7851a45c
RR
674 int cpupid;
675
b20a3503
CL
676 if (PageError(page))
677 SetPageError(newpage);
678 if (PageReferenced(page))
679 SetPageReferenced(newpage);
680 if (PageUptodate(page))
681 SetPageUptodate(newpage);
894bc310 682 if (TestClearPageActive(page)) {
309381fe 683 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 684 SetPageActive(newpage);
418b27ef
LS
685 } else if (TestClearPageUnevictable(page))
686 SetPageUnevictable(newpage);
b20a3503
CL
687 if (PageChecked(page))
688 SetPageChecked(newpage);
689 if (PageMappedToDisk(page))
690 SetPageMappedToDisk(newpage);
691
42cb14b1
HD
692 /* Move dirty on pages not done by migrate_page_move_mapping() */
693 if (PageDirty(page))
694 SetPageDirty(newpage);
b20a3503 695
33c3fc71
VD
696 if (page_is_young(page))
697 set_page_young(newpage);
698 if (page_is_idle(page))
699 set_page_idle(newpage);
700
7851a45c
RR
701 /*
702 * Copy NUMA information to the new page, to prevent over-eager
703 * future migrations of this same page.
704 */
705 cpupid = page_cpupid_xchg_last(page, -1);
706 page_cpupid_xchg_last(newpage, cpupid);
707
e9995ef9 708 ksm_migrate_page(newpage, page);
c8d6553b
HD
709 /*
710 * Please do not reorder this without considering how mm/ksm.c's
711 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
712 */
b3b3a99c
NH
713 if (PageSwapCache(page))
714 ClearPageSwapCache(page);
b20a3503
CL
715 ClearPagePrivate(page);
716 set_page_private(page, 0);
b20a3503
CL
717
718 /*
719 * If any waiters have accumulated on the new page then
720 * wake them up.
721 */
722 if (PageWriteback(newpage))
723 end_page_writeback(newpage);
d435edca
VB
724
725 copy_page_owner(page, newpage);
74485cf2
JW
726
727 mem_cgroup_migrate(page, newpage);
b20a3503 728}
2916ecc0
JG
729EXPORT_SYMBOL(migrate_page_states);
730
731void migrate_page_copy(struct page *newpage, struct page *page)
732{
733 if (PageHuge(page) || PageTransHuge(page))
734 copy_huge_page(newpage, page);
735 else
736 copy_highpage(newpage, page);
737
738 migrate_page_states(newpage, page);
739}
1118dce7 740EXPORT_SYMBOL(migrate_page_copy);
b20a3503 741
1d8b85cc
CL
742/************************************************************
743 * Migration functions
744 ***********************************************************/
745
b20a3503 746/*
bda807d4 747 * Common logic to directly migrate a single LRU page suitable for
266cf658 748 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
749 *
750 * Pages are locked upon entry and exit.
751 */
2d1db3b1 752int migrate_page(struct address_space *mapping,
a6bc32b8
MG
753 struct page *newpage, struct page *page,
754 enum migrate_mode mode)
b20a3503
CL
755{
756 int rc;
757
758 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
759
8e321fef 760 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 761
78bd5209 762 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
763 return rc;
764
2916ecc0
JG
765 if (mode != MIGRATE_SYNC_NO_COPY)
766 migrate_page_copy(newpage, page);
767 else
768 migrate_page_states(newpage, page);
78bd5209 769 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
770}
771EXPORT_SYMBOL(migrate_page);
772
9361401e 773#ifdef CONFIG_BLOCK
1d8b85cc
CL
774/*
775 * Migration function for pages with buffers. This function can only be used
776 * if the underlying filesystem guarantees that no other references to "page"
777 * exist.
778 */
2d1db3b1 779int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 780 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 781{
1d8b85cc
CL
782 struct buffer_head *bh, *head;
783 int rc;
784
1d8b85cc 785 if (!page_has_buffers(page))
a6bc32b8 786 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
787
788 head = page_buffers(page);
789
8e321fef 790 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
1d8b85cc 791
78bd5209 792 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
793 return rc;
794
b969c4ab
MG
795 /*
796 * In the async case, migrate_page_move_mapping locked the buffers
797 * with an IRQ-safe spinlock held. In the sync case, the buffers
798 * need to be locked now
799 */
a6bc32b8
MG
800 if (mode != MIGRATE_ASYNC)
801 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
802
803 ClearPagePrivate(page);
804 set_page_private(newpage, page_private(page));
805 set_page_private(page, 0);
806 put_page(page);
807 get_page(newpage);
808
809 bh = head;
810 do {
811 set_bh_page(bh, newpage, bh_offset(bh));
812 bh = bh->b_this_page;
813
814 } while (bh != head);
815
816 SetPagePrivate(newpage);
817
2916ecc0
JG
818 if (mode != MIGRATE_SYNC_NO_COPY)
819 migrate_page_copy(newpage, page);
820 else
821 migrate_page_states(newpage, page);
1d8b85cc
CL
822
823 bh = head;
824 do {
825 unlock_buffer(bh);
2916ecc0 826 put_bh(bh);
1d8b85cc
CL
827 bh = bh->b_this_page;
828
829 } while (bh != head);
830
78bd5209 831 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
832}
833EXPORT_SYMBOL(buffer_migrate_page);
9361401e 834#endif
1d8b85cc 835
04e62a29
CL
836/*
837 * Writeback a page to clean the dirty state
838 */
839static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 840{
04e62a29
CL
841 struct writeback_control wbc = {
842 .sync_mode = WB_SYNC_NONE,
843 .nr_to_write = 1,
844 .range_start = 0,
845 .range_end = LLONG_MAX,
04e62a29
CL
846 .for_reclaim = 1
847 };
848 int rc;
849
850 if (!mapping->a_ops->writepage)
851 /* No write method for the address space */
852 return -EINVAL;
853
854 if (!clear_page_dirty_for_io(page))
855 /* Someone else already triggered a write */
856 return -EAGAIN;
857
8351a6e4 858 /*
04e62a29
CL
859 * A dirty page may imply that the underlying filesystem has
860 * the page on some queue. So the page must be clean for
861 * migration. Writeout may mean we loose the lock and the
862 * page state is no longer what we checked for earlier.
863 * At this point we know that the migration attempt cannot
864 * be successful.
8351a6e4 865 */
e388466d 866 remove_migration_ptes(page, page, false);
8351a6e4 867
04e62a29 868 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 869
04e62a29
CL
870 if (rc != AOP_WRITEPAGE_ACTIVATE)
871 /* unlocked. Relock */
872 lock_page(page);
873
bda8550d 874 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
875}
876
877/*
878 * Default handling if a filesystem does not provide a migration function.
879 */
880static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 881 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 882{
b969c4ab 883 if (PageDirty(page)) {
a6bc32b8 884 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
885 switch (mode) {
886 case MIGRATE_SYNC:
887 case MIGRATE_SYNC_NO_COPY:
888 break;
889 default:
b969c4ab 890 return -EBUSY;
2916ecc0 891 }
04e62a29 892 return writeout(mapping, page);
b969c4ab 893 }
8351a6e4
CL
894
895 /*
896 * Buffers may be managed in a filesystem specific way.
897 * We must have no buffers or drop them.
898 */
266cf658 899 if (page_has_private(page) &&
8351a6e4
CL
900 !try_to_release_page(page, GFP_KERNEL))
901 return -EAGAIN;
902
a6bc32b8 903 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
904}
905
e24f0b8f
CL
906/*
907 * Move a page to a newly allocated page
908 * The page is locked and all ptes have been successfully removed.
909 *
910 * The new page will have replaced the old page if this function
911 * is successful.
894bc310
LS
912 *
913 * Return value:
914 * < 0 - error code
78bd5209 915 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 916 */
3fe2011f 917static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 918 enum migrate_mode mode)
e24f0b8f
CL
919{
920 struct address_space *mapping;
bda807d4
MK
921 int rc = -EAGAIN;
922 bool is_lru = !__PageMovable(page);
e24f0b8f 923
7db7671f
HD
924 VM_BUG_ON_PAGE(!PageLocked(page), page);
925 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 926
e24f0b8f 927 mapping = page_mapping(page);
bda807d4
MK
928
929 if (likely(is_lru)) {
930 if (!mapping)
931 rc = migrate_page(mapping, newpage, page, mode);
932 else if (mapping->a_ops->migratepage)
933 /*
934 * Most pages have a mapping and most filesystems
935 * provide a migratepage callback. Anonymous pages
936 * are part of swap space which also has its own
937 * migratepage callback. This is the most common path
938 * for page migration.
939 */
940 rc = mapping->a_ops->migratepage(mapping, newpage,
941 page, mode);
942 else
943 rc = fallback_migrate_page(mapping, newpage,
944 page, mode);
945 } else {
e24f0b8f 946 /*
bda807d4
MK
947 * In case of non-lru page, it could be released after
948 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 949 */
bda807d4
MK
950 VM_BUG_ON_PAGE(!PageIsolated(page), page);
951 if (!PageMovable(page)) {
952 rc = MIGRATEPAGE_SUCCESS;
953 __ClearPageIsolated(page);
954 goto out;
955 }
956
957 rc = mapping->a_ops->migratepage(mapping, newpage,
958 page, mode);
959 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
960 !PageIsolated(page));
961 }
e24f0b8f 962
5c3f9a67
HD
963 /*
964 * When successful, old pagecache page->mapping must be cleared before
965 * page is freed; but stats require that PageAnon be left as PageAnon.
966 */
967 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
968 if (__PageMovable(page)) {
969 VM_BUG_ON_PAGE(!PageIsolated(page), page);
970
971 /*
972 * We clear PG_movable under page_lock so any compactor
973 * cannot try to migrate this page.
974 */
975 __ClearPageIsolated(page);
976 }
977
978 /*
979 * Anonymous and movable page->mapping will be cleard by
980 * free_pages_prepare so don't reset it here for keeping
981 * the type to work PageAnon, for example.
982 */
983 if (!PageMappingFlags(page))
5c3f9a67 984 page->mapping = NULL;
3fe2011f 985 }
bda807d4 986out:
e24f0b8f
CL
987 return rc;
988}
989
0dabec93 990static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 991 int force, enum migrate_mode mode)
e24f0b8f 992{
0dabec93 993 int rc = -EAGAIN;
2ebba6b7 994 int page_was_mapped = 0;
3f6c8272 995 struct anon_vma *anon_vma = NULL;
bda807d4 996 bool is_lru = !__PageMovable(page);
95a402c3 997
529ae9aa 998 if (!trylock_page(page)) {
a6bc32b8 999 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1000 goto out;
3e7d3449
MG
1001
1002 /*
1003 * It's not safe for direct compaction to call lock_page.
1004 * For example, during page readahead pages are added locked
1005 * to the LRU. Later, when the IO completes the pages are
1006 * marked uptodate and unlocked. However, the queueing
1007 * could be merging multiple pages for one bio (e.g.
1008 * mpage_readpages). If an allocation happens for the
1009 * second or third page, the process can end up locking
1010 * the same page twice and deadlocking. Rather than
1011 * trying to be clever about what pages can be locked,
1012 * avoid the use of lock_page for direct compaction
1013 * altogether.
1014 */
1015 if (current->flags & PF_MEMALLOC)
0dabec93 1016 goto out;
3e7d3449 1017
e24f0b8f
CL
1018 lock_page(page);
1019 }
1020
1021 if (PageWriteback(page)) {
11bc82d6 1022 /*
fed5b64a 1023 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1024 * necessary to wait for PageWriteback. In the async case,
1025 * the retry loop is too short and in the sync-light case,
1026 * the overhead of stalling is too much
11bc82d6 1027 */
2916ecc0
JG
1028 switch (mode) {
1029 case MIGRATE_SYNC:
1030 case MIGRATE_SYNC_NO_COPY:
1031 break;
1032 default:
11bc82d6 1033 rc = -EBUSY;
0a31bc97 1034 goto out_unlock;
11bc82d6
AA
1035 }
1036 if (!force)
0a31bc97 1037 goto out_unlock;
e24f0b8f
CL
1038 wait_on_page_writeback(page);
1039 }
03f15c86 1040
e24f0b8f 1041 /*
dc386d4d
KH
1042 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1043 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1044 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1045 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1046 * File Caches may use write_page() or lock_page() in migration, then,
1047 * just care Anon page here.
03f15c86
HD
1048 *
1049 * Only page_get_anon_vma() understands the subtleties of
1050 * getting a hold on an anon_vma from outside one of its mms.
1051 * But if we cannot get anon_vma, then we won't need it anyway,
1052 * because that implies that the anon page is no longer mapped
1053 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1054 */
03f15c86 1055 if (PageAnon(page) && !PageKsm(page))
746b18d4 1056 anon_vma = page_get_anon_vma(page);
62e1c553 1057
7db7671f
HD
1058 /*
1059 * Block others from accessing the new page when we get around to
1060 * establishing additional references. We are usually the only one
1061 * holding a reference to newpage at this point. We used to have a BUG
1062 * here if trylock_page(newpage) fails, but would like to allow for
1063 * cases where there might be a race with the previous use of newpage.
1064 * This is much like races on refcount of oldpage: just don't BUG().
1065 */
1066 if (unlikely(!trylock_page(newpage)))
1067 goto out_unlock;
1068
bda807d4
MK
1069 if (unlikely(!is_lru)) {
1070 rc = move_to_new_page(newpage, page, mode);
1071 goto out_unlock_both;
1072 }
1073
dc386d4d 1074 /*
62e1c553
SL
1075 * Corner case handling:
1076 * 1. When a new swap-cache page is read into, it is added to the LRU
1077 * and treated as swapcache but it has no rmap yet.
1078 * Calling try_to_unmap() against a page->mapping==NULL page will
1079 * trigger a BUG. So handle it here.
1080 * 2. An orphaned page (see truncate_complete_page) might have
1081 * fs-private metadata. The page can be picked up due to memory
1082 * offlining. Everywhere else except page reclaim, the page is
1083 * invisible to the vm, so the page can not be migrated. So try to
1084 * free the metadata, so the page can be freed.
e24f0b8f 1085 */
62e1c553 1086 if (!page->mapping) {
309381fe 1087 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1088 if (page_has_private(page)) {
62e1c553 1089 try_to_free_buffers(page);
7db7671f 1090 goto out_unlock_both;
62e1c553 1091 }
7db7671f
HD
1092 } else if (page_mapped(page)) {
1093 /* Establish migration ptes */
03f15c86
HD
1094 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1095 page);
2ebba6b7 1096 try_to_unmap(page,
da1b13cc 1097 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1098 page_was_mapped = 1;
1099 }
dc386d4d 1100
e6a1530d 1101 if (!page_mapped(page))
5c3f9a67 1102 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1103
5c3f9a67
HD
1104 if (page_was_mapped)
1105 remove_migration_ptes(page,
e388466d 1106 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1107
7db7671f
HD
1108out_unlock_both:
1109 unlock_page(newpage);
1110out_unlock:
3f6c8272 1111 /* Drop an anon_vma reference if we took one */
76545066 1112 if (anon_vma)
9e60109f 1113 put_anon_vma(anon_vma);
e24f0b8f 1114 unlock_page(page);
0dabec93 1115out:
c6c919eb
MK
1116 /*
1117 * If migration is successful, decrease refcount of the newpage
1118 * which will not free the page because new page owner increased
1119 * refcounter. As well, if it is LRU page, add the page to LRU
1120 * list in here.
1121 */
1122 if (rc == MIGRATEPAGE_SUCCESS) {
b1123ea6 1123 if (unlikely(__PageMovable(newpage)))
c6c919eb
MK
1124 put_page(newpage);
1125 else
1126 putback_lru_page(newpage);
1127 }
1128
0dabec93
MK
1129 return rc;
1130}
95a402c3 1131
ef2a5153
GU
1132/*
1133 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1134 * around it.
1135 */
1136#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1137#define ICE_noinline noinline
1138#else
1139#define ICE_noinline
1140#endif
1141
0dabec93
MK
1142/*
1143 * Obtain the lock on page, remove all ptes and migrate the page
1144 * to the newly allocated page in newpage.
1145 */
ef2a5153
GU
1146static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1147 free_page_t put_new_page,
1148 unsigned long private, struct page *page,
add05cec
NH
1149 int force, enum migrate_mode mode,
1150 enum migrate_reason reason)
0dabec93 1151{
2def7424 1152 int rc = MIGRATEPAGE_SUCCESS;
2def7424 1153 struct page *newpage;
0dabec93 1154
94723aaf
MH
1155 if (!thp_migration_supported() && PageTransHuge(page))
1156 return -ENOMEM;
1157
666feb21 1158 newpage = get_new_page(page, private);
0dabec93
MK
1159 if (!newpage)
1160 return -ENOMEM;
1161
1162 if (page_count(page) == 1) {
1163 /* page was freed from under us. So we are done. */
c6c919eb
MK
1164 ClearPageActive(page);
1165 ClearPageUnevictable(page);
bda807d4
MK
1166 if (unlikely(__PageMovable(page))) {
1167 lock_page(page);
1168 if (!PageMovable(page))
1169 __ClearPageIsolated(page);
1170 unlock_page(page);
1171 }
c6c919eb
MK
1172 if (put_new_page)
1173 put_new_page(newpage, private);
1174 else
1175 put_page(newpage);
0dabec93
MK
1176 goto out;
1177 }
1178
9c620e2b 1179 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1180 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1181 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1182
0dabec93 1183out:
e24f0b8f 1184 if (rc != -EAGAIN) {
0dabec93
MK
1185 /*
1186 * A page that has been migrated has all references
1187 * removed and will be freed. A page that has not been
1188 * migrated will have kepts its references and be
1189 * restored.
1190 */
1191 list_del(&page->lru);
6afcf8ef
ML
1192
1193 /*
1194 * Compaction can migrate also non-LRU pages which are
1195 * not accounted to NR_ISOLATED_*. They can be recognized
1196 * as __PageMovable
1197 */
1198 if (likely(!__PageMovable(page)))
e8db67eb
NH
1199 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1200 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1201 }
1202
1203 /*
1204 * If migration is successful, releases reference grabbed during
1205 * isolation. Otherwise, restore the page to right list unless
1206 * we want to retry.
1207 */
1208 if (rc == MIGRATEPAGE_SUCCESS) {
1209 put_page(page);
1210 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1211 /*
c6c919eb
MK
1212 * Set PG_HWPoison on just freed page
1213 * intentionally. Although it's rather weird,
1214 * it's how HWPoison flag works at the moment.
d7e69488 1215 */
da1b13cc
WL
1216 if (!test_set_page_hwpoison(page))
1217 num_poisoned_pages_inc();
c6c919eb
MK
1218 }
1219 } else {
bda807d4
MK
1220 if (rc != -EAGAIN) {
1221 if (likely(!__PageMovable(page))) {
1222 putback_lru_page(page);
1223 goto put_new;
1224 }
1225
1226 lock_page(page);
1227 if (PageMovable(page))
1228 putback_movable_page(page);
1229 else
1230 __ClearPageIsolated(page);
1231 unlock_page(page);
1232 put_page(page);
1233 }
1234put_new:
c6c919eb
MK
1235 if (put_new_page)
1236 put_new_page(newpage, private);
1237 else
1238 put_page(newpage);
e24f0b8f 1239 }
68711a74 1240
e24f0b8f
CL
1241 return rc;
1242}
1243
290408d4
NH
1244/*
1245 * Counterpart of unmap_and_move_page() for hugepage migration.
1246 *
1247 * This function doesn't wait the completion of hugepage I/O
1248 * because there is no race between I/O and migration for hugepage.
1249 * Note that currently hugepage I/O occurs only in direct I/O
1250 * where no lock is held and PG_writeback is irrelevant,
1251 * and writeback status of all subpages are counted in the reference
1252 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1253 * under direct I/O, the reference of the head page is 512 and a bit more.)
1254 * This means that when we try to migrate hugepage whose subpages are
1255 * doing direct I/O, some references remain after try_to_unmap() and
1256 * hugepage migration fails without data corruption.
1257 *
1258 * There is also no race when direct I/O is issued on the page under migration,
1259 * because then pte is replaced with migration swap entry and direct I/O code
1260 * will wait in the page fault for migration to complete.
1261 */
1262static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1263 free_page_t put_new_page, unsigned long private,
1264 struct page *hpage, int force,
7cd12b4a 1265 enum migrate_mode mode, int reason)
290408d4 1266{
2def7424 1267 int rc = -EAGAIN;
2ebba6b7 1268 int page_was_mapped = 0;
32665f2b 1269 struct page *new_hpage;
290408d4
NH
1270 struct anon_vma *anon_vma = NULL;
1271
83467efb
NH
1272 /*
1273 * Movability of hugepages depends on architectures and hugepage size.
1274 * This check is necessary because some callers of hugepage migration
1275 * like soft offline and memory hotremove don't walk through page
1276 * tables or check whether the hugepage is pmd-based or not before
1277 * kicking migration.
1278 */
100873d7 1279 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1280 putback_active_hugepage(hpage);
83467efb 1281 return -ENOSYS;
32665f2b 1282 }
83467efb 1283
666feb21 1284 new_hpage = get_new_page(hpage, private);
290408d4
NH
1285 if (!new_hpage)
1286 return -ENOMEM;
1287
290408d4 1288 if (!trylock_page(hpage)) {
2916ecc0 1289 if (!force)
290408d4 1290 goto out;
2916ecc0
JG
1291 switch (mode) {
1292 case MIGRATE_SYNC:
1293 case MIGRATE_SYNC_NO_COPY:
1294 break;
1295 default:
1296 goto out;
1297 }
290408d4
NH
1298 lock_page(hpage);
1299 }
1300
746b18d4
PZ
1301 if (PageAnon(hpage))
1302 anon_vma = page_get_anon_vma(hpage);
290408d4 1303
7db7671f
HD
1304 if (unlikely(!trylock_page(new_hpage)))
1305 goto put_anon;
1306
2ebba6b7
HD
1307 if (page_mapped(hpage)) {
1308 try_to_unmap(hpage,
1309 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1310 page_was_mapped = 1;
1311 }
290408d4
NH
1312
1313 if (!page_mapped(hpage))
5c3f9a67 1314 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1315
5c3f9a67
HD
1316 if (page_was_mapped)
1317 remove_migration_ptes(hpage,
e388466d 1318 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1319
7db7671f
HD
1320 unlock_page(new_hpage);
1321
1322put_anon:
fd4a4663 1323 if (anon_vma)
9e60109f 1324 put_anon_vma(anon_vma);
8e6ac7fa 1325
2def7424 1326 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1327 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1328 put_new_page = NULL;
1329 }
8e6ac7fa 1330
290408d4 1331 unlock_page(hpage);
09761333 1332out:
b8ec1cee
NH
1333 if (rc != -EAGAIN)
1334 putback_active_hugepage(hpage);
c3114a84
AK
1335 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1336 num_poisoned_pages_inc();
68711a74
DR
1337
1338 /*
1339 * If migration was not successful and there's a freeing callback, use
1340 * it. Otherwise, put_page() will drop the reference grabbed during
1341 * isolation.
1342 */
2def7424 1343 if (put_new_page)
68711a74
DR
1344 put_new_page(new_hpage, private);
1345 else
3aaa76e1 1346 putback_active_hugepage(new_hpage);
68711a74 1347
290408d4
NH
1348 return rc;
1349}
1350
b20a3503 1351/*
c73e5c9c
SB
1352 * migrate_pages - migrate the pages specified in a list, to the free pages
1353 * supplied as the target for the page migration
b20a3503 1354 *
c73e5c9c
SB
1355 * @from: The list of pages to be migrated.
1356 * @get_new_page: The function used to allocate free pages to be used
1357 * as the target of the page migration.
68711a74
DR
1358 * @put_new_page: The function used to free target pages if migration
1359 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1360 * @private: Private data to be passed on to get_new_page()
1361 * @mode: The migration mode that specifies the constraints for
1362 * page migration, if any.
1363 * @reason: The reason for page migration.
b20a3503 1364 *
c73e5c9c
SB
1365 * The function returns after 10 attempts or if no pages are movable any more
1366 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1367 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1368 * or free list only if ret != 0.
b20a3503 1369 *
c73e5c9c 1370 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1371 */
9c620e2b 1372int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1373 free_page_t put_new_page, unsigned long private,
1374 enum migrate_mode mode, int reason)
b20a3503 1375{
e24f0b8f 1376 int retry = 1;
b20a3503 1377 int nr_failed = 0;
5647bc29 1378 int nr_succeeded = 0;
b20a3503
CL
1379 int pass = 0;
1380 struct page *page;
1381 struct page *page2;
1382 int swapwrite = current->flags & PF_SWAPWRITE;
1383 int rc;
1384
1385 if (!swapwrite)
1386 current->flags |= PF_SWAPWRITE;
1387
e24f0b8f
CL
1388 for(pass = 0; pass < 10 && retry; pass++) {
1389 retry = 0;
b20a3503 1390
e24f0b8f 1391 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1392retry:
e24f0b8f 1393 cond_resched();
2d1db3b1 1394
31caf665
NH
1395 if (PageHuge(page))
1396 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1397 put_new_page, private, page,
7cd12b4a 1398 pass > 2, mode, reason);
31caf665 1399 else
68711a74 1400 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1401 private, page, pass > 2, mode,
1402 reason);
2d1db3b1 1403
e24f0b8f 1404 switch(rc) {
95a402c3 1405 case -ENOMEM:
94723aaf
MH
1406 /*
1407 * THP migration might be unsupported or the
1408 * allocation could've failed so we should
1409 * retry on the same page with the THP split
1410 * to base pages.
1411 *
1412 * Head page is retried immediately and tail
1413 * pages are added to the tail of the list so
1414 * we encounter them after the rest of the list
1415 * is processed.
1416 */
1417 if (PageTransHuge(page)) {
1418 lock_page(page);
1419 rc = split_huge_page_to_list(page, from);
1420 unlock_page(page);
1421 if (!rc) {
1422 list_safe_reset_next(page, page2, lru);
1423 goto retry;
1424 }
1425 }
dfef2ef4 1426 nr_failed++;
95a402c3 1427 goto out;
e24f0b8f 1428 case -EAGAIN:
2d1db3b1 1429 retry++;
e24f0b8f 1430 break;
78bd5209 1431 case MIGRATEPAGE_SUCCESS:
5647bc29 1432 nr_succeeded++;
e24f0b8f
CL
1433 break;
1434 default:
354a3363
NH
1435 /*
1436 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1437 * unlike -EAGAIN case, the failed page is
1438 * removed from migration page list and not
1439 * retried in the next outer loop.
1440 */
2d1db3b1 1441 nr_failed++;
e24f0b8f 1442 break;
2d1db3b1 1443 }
b20a3503
CL
1444 }
1445 }
f2f81fb2
VB
1446 nr_failed += retry;
1447 rc = nr_failed;
95a402c3 1448out:
5647bc29
MG
1449 if (nr_succeeded)
1450 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1451 if (nr_failed)
1452 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1453 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1454
b20a3503
CL
1455 if (!swapwrite)
1456 current->flags &= ~PF_SWAPWRITE;
1457
78bd5209 1458 return rc;
b20a3503 1459}
95a402c3 1460
742755a1 1461#ifdef CONFIG_NUMA
742755a1 1462
a49bd4d7 1463static int store_status(int __user *status, int start, int value, int nr)
742755a1 1464{
a49bd4d7
MH
1465 while (nr-- > 0) {
1466 if (put_user(value, status + start))
1467 return -EFAULT;
1468 start++;
1469 }
1470
1471 return 0;
1472}
1473
1474static int do_move_pages_to_node(struct mm_struct *mm,
1475 struct list_head *pagelist, int node)
1476{
1477 int err;
1478
1479 if (list_empty(pagelist))
1480 return 0;
1481
1482 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1483 MIGRATE_SYNC, MR_SYSCALL);
1484 if (err)
1485 putback_movable_pages(pagelist);
1486 return err;
742755a1
CL
1487}
1488
1489/*
a49bd4d7
MH
1490 * Resolves the given address to a struct page, isolates it from the LRU and
1491 * puts it to the given pagelist.
1492 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1493 * queued or the page doesn't need to be migrated because it is already on
1494 * the target node
742755a1 1495 */
a49bd4d7
MH
1496static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1497 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1498{
a49bd4d7
MH
1499 struct vm_area_struct *vma;
1500 struct page *page;
1501 unsigned int follflags;
742755a1 1502 int err;
742755a1
CL
1503
1504 down_read(&mm->mmap_sem);
a49bd4d7
MH
1505 err = -EFAULT;
1506 vma = find_vma(mm, addr);
1507 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1508 goto out;
742755a1 1509
a49bd4d7
MH
1510 /* FOLL_DUMP to ignore special (like zero) pages */
1511 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1512 page = follow_page(vma, addr, follflags);
89f5b7da 1513
a49bd4d7
MH
1514 err = PTR_ERR(page);
1515 if (IS_ERR(page))
1516 goto out;
89f5b7da 1517
a49bd4d7
MH
1518 err = -ENOENT;
1519 if (!page)
1520 goto out;
742755a1 1521
a49bd4d7
MH
1522 err = 0;
1523 if (page_to_nid(page) == node)
1524 goto out_putpage;
742755a1 1525
a49bd4d7
MH
1526 err = -EACCES;
1527 if (page_mapcount(page) > 1 && !migrate_all)
1528 goto out_putpage;
742755a1 1529
a49bd4d7
MH
1530 if (PageHuge(page)) {
1531 if (PageHead(page)) {
1532 isolate_huge_page(page, pagelist);
1533 err = 0;
e632a938 1534 }
a49bd4d7
MH
1535 } else {
1536 struct page *head;
e632a938 1537
e8db67eb
NH
1538 head = compound_head(page);
1539 err = isolate_lru_page(head);
cf608ac1 1540 if (err)
a49bd4d7 1541 goto out_putpage;
742755a1 1542
a49bd4d7
MH
1543 err = 0;
1544 list_add_tail(&head->lru, pagelist);
1545 mod_node_page_state(page_pgdat(head),
1546 NR_ISOLATED_ANON + page_is_file_cache(head),
1547 hpage_nr_pages(head));
1548 }
1549out_putpage:
1550 /*
1551 * Either remove the duplicate refcount from
1552 * isolate_lru_page() or drop the page ref if it was
1553 * not isolated.
1554 */
1555 put_page(page);
1556out:
742755a1
CL
1557 up_read(&mm->mmap_sem);
1558 return err;
1559}
1560
5e9a0f02
BG
1561/*
1562 * Migrate an array of page address onto an array of nodes and fill
1563 * the corresponding array of status.
1564 */
3268c63e 1565static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1566 unsigned long nr_pages,
1567 const void __user * __user *pages,
1568 const int __user *nodes,
1569 int __user *status, int flags)
1570{
a49bd4d7
MH
1571 int current_node = NUMA_NO_NODE;
1572 LIST_HEAD(pagelist);
1573 int start, i;
1574 int err = 0, err1;
35282a2d
BG
1575
1576 migrate_prep();
1577
a49bd4d7
MH
1578 for (i = start = 0; i < nr_pages; i++) {
1579 const void __user *p;
1580 unsigned long addr;
1581 int node;
3140a227 1582
a49bd4d7
MH
1583 err = -EFAULT;
1584 if (get_user(p, pages + i))
1585 goto out_flush;
1586 if (get_user(node, nodes + i))
1587 goto out_flush;
1588 addr = (unsigned long)p;
1589
1590 err = -ENODEV;
1591 if (node < 0 || node >= MAX_NUMNODES)
1592 goto out_flush;
1593 if (!node_state(node, N_MEMORY))
1594 goto out_flush;
5e9a0f02 1595
a49bd4d7
MH
1596 err = -EACCES;
1597 if (!node_isset(node, task_nodes))
1598 goto out_flush;
1599
1600 if (current_node == NUMA_NO_NODE) {
1601 current_node = node;
1602 start = i;
1603 } else if (node != current_node) {
1604 err = do_move_pages_to_node(mm, &pagelist, current_node);
1605 if (err)
1606 goto out;
1607 err = store_status(status, start, current_node, i - start);
1608 if (err)
1609 goto out;
1610 start = i;
1611 current_node = node;
3140a227
BG
1612 }
1613
a49bd4d7
MH
1614 /*
1615 * Errors in the page lookup or isolation are not fatal and we simply
1616 * report them via status
1617 */
1618 err = add_page_for_migration(mm, addr, current_node,
1619 &pagelist, flags & MPOL_MF_MOVE_ALL);
1620 if (!err)
1621 continue;
3140a227 1622
a49bd4d7
MH
1623 err = store_status(status, i, err, 1);
1624 if (err)
1625 goto out_flush;
5e9a0f02 1626
a49bd4d7
MH
1627 err = do_move_pages_to_node(mm, &pagelist, current_node);
1628 if (err)
1629 goto out;
1630 if (i > start) {
1631 err = store_status(status, start, current_node, i - start);
1632 if (err)
1633 goto out;
1634 }
1635 current_node = NUMA_NO_NODE;
3140a227 1636 }
a49bd4d7 1637out_flush:
8f175cf5
MH
1638 if (list_empty(&pagelist))
1639 return err;
1640
a49bd4d7
MH
1641 /* Make sure we do not overwrite the existing error */
1642 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1643 if (!err1)
1644 err1 = store_status(status, start, current_node, i - start);
1645 if (!err)
1646 err = err1;
5e9a0f02
BG
1647out:
1648 return err;
1649}
1650
742755a1 1651/*
2f007e74 1652 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1653 */
80bba129
BG
1654static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1655 const void __user **pages, int *status)
742755a1 1656{
2f007e74 1657 unsigned long i;
2f007e74 1658
742755a1
CL
1659 down_read(&mm->mmap_sem);
1660
2f007e74 1661 for (i = 0; i < nr_pages; i++) {
80bba129 1662 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1663 struct vm_area_struct *vma;
1664 struct page *page;
c095adbc 1665 int err = -EFAULT;
2f007e74
BG
1666
1667 vma = find_vma(mm, addr);
70384dc6 1668 if (!vma || addr < vma->vm_start)
742755a1
CL
1669 goto set_status;
1670
d899844e
KS
1671 /* FOLL_DUMP to ignore special (like zero) pages */
1672 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1673
1674 err = PTR_ERR(page);
1675 if (IS_ERR(page))
1676 goto set_status;
1677
d899844e 1678 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1679set_status:
80bba129
BG
1680 *status = err;
1681
1682 pages++;
1683 status++;
1684 }
1685
1686 up_read(&mm->mmap_sem);
1687}
1688
1689/*
1690 * Determine the nodes of a user array of pages and store it in
1691 * a user array of status.
1692 */
1693static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1694 const void __user * __user *pages,
1695 int __user *status)
1696{
1697#define DO_PAGES_STAT_CHUNK_NR 16
1698 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1699 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1700
87b8d1ad
PA
1701 while (nr_pages) {
1702 unsigned long chunk_nr;
80bba129 1703
87b8d1ad
PA
1704 chunk_nr = nr_pages;
1705 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1706 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1707
1708 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1709 break;
80bba129
BG
1710
1711 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1712
87b8d1ad
PA
1713 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1714 break;
742755a1 1715
87b8d1ad
PA
1716 pages += chunk_nr;
1717 status += chunk_nr;
1718 nr_pages -= chunk_nr;
1719 }
1720 return nr_pages ? -EFAULT : 0;
742755a1
CL
1721}
1722
1723/*
1724 * Move a list of pages in the address space of the currently executing
1725 * process.
1726 */
7addf443
DB
1727static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1728 const void __user * __user *pages,
1729 const int __user *nodes,
1730 int __user *status, int flags)
742755a1 1731{
742755a1 1732 struct task_struct *task;
742755a1 1733 struct mm_struct *mm;
5e9a0f02 1734 int err;
3268c63e 1735 nodemask_t task_nodes;
742755a1
CL
1736
1737 /* Check flags */
1738 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1739 return -EINVAL;
1740
1741 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1742 return -EPERM;
1743
1744 /* Find the mm_struct */
a879bf58 1745 rcu_read_lock();
228ebcbe 1746 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1747 if (!task) {
a879bf58 1748 rcu_read_unlock();
742755a1
CL
1749 return -ESRCH;
1750 }
3268c63e 1751 get_task_struct(task);
742755a1
CL
1752
1753 /*
1754 * Check if this process has the right to modify the specified
197e7e52 1755 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1756 */
197e7e52 1757 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1758 rcu_read_unlock();
742755a1 1759 err = -EPERM;
5e9a0f02 1760 goto out;
742755a1 1761 }
c69e8d9c 1762 rcu_read_unlock();
742755a1 1763
86c3a764
DQ
1764 err = security_task_movememory(task);
1765 if (err)
5e9a0f02 1766 goto out;
86c3a764 1767
3268c63e
CL
1768 task_nodes = cpuset_mems_allowed(task);
1769 mm = get_task_mm(task);
1770 put_task_struct(task);
1771
6e8b09ea
SL
1772 if (!mm)
1773 return -EINVAL;
1774
1775 if (nodes)
1776 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1777 nodes, status, flags);
1778 else
1779 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1780
742755a1
CL
1781 mmput(mm);
1782 return err;
3268c63e
CL
1783
1784out:
1785 put_task_struct(task);
1786 return err;
742755a1 1787}
742755a1 1788
7addf443
DB
1789SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1790 const void __user * __user *, pages,
1791 const int __user *, nodes,
1792 int __user *, status, int, flags)
1793{
1794 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1795}
1796
1797#ifdef CONFIG_COMPAT
1798COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1799 compat_uptr_t __user *, pages32,
1800 const int __user *, nodes,
1801 int __user *, status,
1802 int, flags)
1803{
1804 const void __user * __user *pages;
1805 int i;
1806
1807 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1808 for (i = 0; i < nr_pages; i++) {
1809 compat_uptr_t p;
1810
1811 if (get_user(p, pages32 + i) ||
1812 put_user(compat_ptr(p), pages + i))
1813 return -EFAULT;
1814 }
1815 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1816}
1817#endif /* CONFIG_COMPAT */
1818
7039e1db
PZ
1819#ifdef CONFIG_NUMA_BALANCING
1820/*
1821 * Returns true if this is a safe migration target node for misplaced NUMA
1822 * pages. Currently it only checks the watermarks which crude
1823 */
1824static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1825 unsigned long nr_migrate_pages)
7039e1db
PZ
1826{
1827 int z;
599d0c95 1828
7039e1db
PZ
1829 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1830 struct zone *zone = pgdat->node_zones + z;
1831
1832 if (!populated_zone(zone))
1833 continue;
1834
7039e1db
PZ
1835 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1836 if (!zone_watermark_ok(zone, 0,
1837 high_wmark_pages(zone) +
1838 nr_migrate_pages,
1839 0, 0))
1840 continue;
1841 return true;
1842 }
1843 return false;
1844}
1845
1846static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 1847 unsigned long data)
7039e1db
PZ
1848{
1849 int nid = (int) data;
1850 struct page *newpage;
1851
96db800f 1852 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1853 (GFP_HIGHUSER_MOVABLE |
1854 __GFP_THISNODE | __GFP_NOMEMALLOC |
1855 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1856 ~__GFP_RECLAIM, 0);
bac0382c 1857
7039e1db
PZ
1858 return newpage;
1859}
1860
a8f60772
MG
1861/*
1862 * page migration rate limiting control.
1863 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1864 * window of time. Default here says do not migrate more than 1280M per second.
1865 */
1866static unsigned int migrate_interval_millisecs __read_mostly = 100;
1867static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1868
b32967ff 1869/* Returns true if the node is migrate rate-limited after the update */
1c30e017
MG
1870static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1871 unsigned long nr_pages)
7039e1db 1872{
a8f60772
MG
1873 /*
1874 * Rate-limit the amount of data that is being migrated to a node.
1875 * Optimal placement is no good if the memory bus is saturated and
1876 * all the time is being spent migrating!
1877 */
a8f60772 1878 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1c5e9c27 1879 spin_lock(&pgdat->numabalancing_migrate_lock);
a8f60772
MG
1880 pgdat->numabalancing_migrate_nr_pages = 0;
1881 pgdat->numabalancing_migrate_next_window = jiffies +
1882 msecs_to_jiffies(migrate_interval_millisecs);
1c5e9c27 1883 spin_unlock(&pgdat->numabalancing_migrate_lock);
a8f60772 1884 }
af1839d7
MG
1885 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1886 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1887 nr_pages);
1c5e9c27 1888 return true;
af1839d7 1889 }
1c5e9c27
MG
1890
1891 /*
1892 * This is an unlocked non-atomic update so errors are possible.
1893 * The consequences are failing to migrate when we potentiall should
1894 * have which is not severe enough to warrant locking. If it is ever
1895 * a problem, it can be converted to a per-cpu counter.
1896 */
1897 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1898 return false;
b32967ff
MG
1899}
1900
1c30e017 1901static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1902{
340ef390 1903 int page_lru;
a8f60772 1904
309381fe 1905 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1906
7039e1db 1907 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1908 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1909 return 0;
7039e1db 1910
340ef390
HD
1911 if (isolate_lru_page(page))
1912 return 0;
7039e1db 1913
340ef390
HD
1914 /*
1915 * migrate_misplaced_transhuge_page() skips page migration's usual
1916 * check on page_count(), so we must do it here, now that the page
1917 * has been isolated: a GUP pin, or any other pin, prevents migration.
1918 * The expected page count is 3: 1 for page's mapcount and 1 for the
1919 * caller's pin and 1 for the reference taken by isolate_lru_page().
1920 */
1921 if (PageTransHuge(page) && page_count(page) != 3) {
1922 putback_lru_page(page);
1923 return 0;
7039e1db
PZ
1924 }
1925
340ef390 1926 page_lru = page_is_file_cache(page);
599d0c95 1927 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1928 hpage_nr_pages(page));
1929
149c33e1 1930 /*
340ef390
HD
1931 * Isolating the page has taken another reference, so the
1932 * caller's reference can be safely dropped without the page
1933 * disappearing underneath us during migration.
149c33e1
MG
1934 */
1935 put_page(page);
340ef390 1936 return 1;
b32967ff
MG
1937}
1938
de466bd6
MG
1939bool pmd_trans_migrating(pmd_t pmd)
1940{
1941 struct page *page = pmd_page(pmd);
1942 return PageLocked(page);
1943}
1944
b32967ff
MG
1945/*
1946 * Attempt to migrate a misplaced page to the specified destination
1947 * node. Caller is expected to have an elevated reference count on
1948 * the page that will be dropped by this function before returning.
1949 */
1bc115d8
MG
1950int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1951 int node)
b32967ff
MG
1952{
1953 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1954 int isolated;
b32967ff
MG
1955 int nr_remaining;
1956 LIST_HEAD(migratepages);
1957
1958 /*
1bc115d8
MG
1959 * Don't migrate file pages that are mapped in multiple processes
1960 * with execute permissions as they are probably shared libraries.
b32967ff 1961 */
1bc115d8
MG
1962 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1963 (vma->vm_flags & VM_EXEC))
b32967ff 1964 goto out;
b32967ff 1965
09a913a7
MG
1966 /*
1967 * Also do not migrate dirty pages as not all filesystems can move
1968 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1969 */
1970 if (page_is_file_cache(page) && PageDirty(page))
1971 goto out;
1972
b32967ff
MG
1973 /*
1974 * Rate-limit the amount of data that is being migrated to a node.
1975 * Optimal placement is no good if the memory bus is saturated and
1976 * all the time is being spent migrating!
1977 */
340ef390 1978 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1979 goto out;
b32967ff
MG
1980
1981 isolated = numamigrate_isolate_page(pgdat, page);
1982 if (!isolated)
1983 goto out;
1984
1985 list_add(&page->lru, &migratepages);
9c620e2b 1986 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1987 NULL, node, MIGRATE_ASYNC,
1988 MR_NUMA_MISPLACED);
b32967ff 1989 if (nr_remaining) {
59c82b70
JK
1990 if (!list_empty(&migratepages)) {
1991 list_del(&page->lru);
599d0c95 1992 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1993 page_is_file_cache(page));
1994 putback_lru_page(page);
1995 }
b32967ff
MG
1996 isolated = 0;
1997 } else
1998 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1999 BUG_ON(!list_empty(&migratepages));
7039e1db 2000 return isolated;
340ef390
HD
2001
2002out:
2003 put_page(page);
2004 return 0;
7039e1db 2005}
220018d3 2006#endif /* CONFIG_NUMA_BALANCING */
b32967ff 2007
220018d3 2008#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
2009/*
2010 * Migrates a THP to a given target node. page must be locked and is unlocked
2011 * before returning.
2012 */
b32967ff
MG
2013int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2014 struct vm_area_struct *vma,
2015 pmd_t *pmd, pmd_t entry,
2016 unsigned long address,
2017 struct page *page, int node)
2018{
c4088ebd 2019 spinlock_t *ptl;
b32967ff
MG
2020 pg_data_t *pgdat = NODE_DATA(node);
2021 int isolated = 0;
2022 struct page *new_page = NULL;
b32967ff 2023 int page_lru = page_is_file_cache(page);
f714f4f2
MG
2024 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2025 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
b32967ff 2026
b32967ff
MG
2027 /*
2028 * Rate-limit the amount of data that is being migrated to a node.
2029 * Optimal placement is no good if the memory bus is saturated and
2030 * all the time is being spent migrating!
2031 */
d28d4335 2032 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
2033 goto out_dropref;
2034
2035 new_page = alloc_pages_node(node,
25160354 2036 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2037 HPAGE_PMD_ORDER);
340ef390
HD
2038 if (!new_page)
2039 goto out_fail;
9a982250 2040 prep_transhuge_page(new_page);
340ef390 2041
b32967ff 2042 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2043 if (!isolated) {
b32967ff 2044 put_page(new_page);
340ef390 2045 goto out_fail;
b32967ff 2046 }
b0943d61 2047
b32967ff 2048 /* Prepare a page as a migration target */
48c935ad 2049 __SetPageLocked(new_page);
d44d363f
SL
2050 if (PageSwapBacked(page))
2051 __SetPageSwapBacked(new_page);
b32967ff
MG
2052
2053 /* anon mapping, we can simply copy page->mapping to the new page: */
2054 new_page->mapping = page->mapping;
2055 new_page->index = page->index;
2056 migrate_page_copy(new_page, page);
2057 WARN_ON(PageLRU(new_page));
2058
2059 /* Recheck the target PMD */
f714f4f2 2060 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2061 ptl = pmd_lock(mm, pmd);
f4e177d1 2062 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2063 spin_unlock(ptl);
f714f4f2 2064 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
2065
2066 /* Reverse changes made by migrate_page_copy() */
2067 if (TestClearPageActive(new_page))
2068 SetPageActive(page);
2069 if (TestClearPageUnevictable(new_page))
2070 SetPageUnevictable(page);
b32967ff
MG
2071
2072 unlock_page(new_page);
2073 put_page(new_page); /* Free it */
2074
a54a407f
MG
2075 /* Retake the callers reference and putback on LRU */
2076 get_page(page);
b32967ff 2077 putback_lru_page(page);
599d0c95 2078 mod_node_page_state(page_pgdat(page),
a54a407f 2079 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2080
2081 goto out_unlock;
b32967ff
MG
2082 }
2083
10102459 2084 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2085 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2086
2b4847e7
MG
2087 /*
2088 * Clear the old entry under pagetable lock and establish the new PTE.
2089 * Any parallel GUP will either observe the old page blocking on the
2090 * page lock, block on the page table lock or observe the new page.
2091 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2092 * guarantee the copy is visible before the pagetable update.
2093 */
f714f4f2 2094 flush_cache_range(vma, mmun_start, mmun_end);
d281ee61 2095 page_add_anon_rmap(new_page, vma, mmun_start, true);
8809aa2d 2096 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
f714f4f2 2097 set_pmd_at(mm, mmun_start, pmd, entry);
ce4a9cc5 2098 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2099
f4e177d1 2100 page_ref_unfreeze(page, 2);
51afb12b 2101 mlock_migrate_page(new_page, page);
d281ee61 2102 page_remove_rmap(page, true);
7cd12b4a 2103 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2104
c4088ebd 2105 spin_unlock(ptl);
4645b9fe
JG
2106 /*
2107 * No need to double call mmu_notifier->invalidate_range() callback as
2108 * the above pmdp_huge_clear_flush_notify() did already call it.
2109 */
2110 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
b32967ff 2111
11de9927
MG
2112 /* Take an "isolate" reference and put new page on the LRU. */
2113 get_page(new_page);
2114 putback_lru_page(new_page);
2115
b32967ff
MG
2116 unlock_page(new_page);
2117 unlock_page(page);
2118 put_page(page); /* Drop the rmap reference */
2119 put_page(page); /* Drop the LRU isolation reference */
2120
2121 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2122 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2123
599d0c95 2124 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2125 NR_ISOLATED_ANON + page_lru,
2126 -HPAGE_PMD_NR);
2127 return isolated;
2128
340ef390
HD
2129out_fail:
2130 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 2131out_dropref:
2b4847e7
MG
2132 ptl = pmd_lock(mm, pmd);
2133 if (pmd_same(*pmd, entry)) {
4d942466 2134 entry = pmd_modify(entry, vma->vm_page_prot);
f714f4f2 2135 set_pmd_at(mm, mmun_start, pmd, entry);
2b4847e7
MG
2136 update_mmu_cache_pmd(vma, address, &entry);
2137 }
2138 spin_unlock(ptl);
a54a407f 2139
eb4489f6 2140out_unlock:
340ef390 2141 unlock_page(page);
b32967ff 2142 put_page(page);
b32967ff
MG
2143 return 0;
2144}
7039e1db
PZ
2145#endif /* CONFIG_NUMA_BALANCING */
2146
2147#endif /* CONFIG_NUMA */
8763cb45 2148
6b368cd4 2149#if defined(CONFIG_MIGRATE_VMA_HELPER)
8763cb45
JG
2150struct migrate_vma {
2151 struct vm_area_struct *vma;
2152 unsigned long *dst;
2153 unsigned long *src;
2154 unsigned long cpages;
2155 unsigned long npages;
2156 unsigned long start;
2157 unsigned long end;
2158};
2159
2160static int migrate_vma_collect_hole(unsigned long start,
2161 unsigned long end,
2162 struct mm_walk *walk)
2163{
2164 struct migrate_vma *migrate = walk->private;
2165 unsigned long addr;
2166
8315ada7 2167 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
e20d103b 2168 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2169 migrate->dst[migrate->npages] = 0;
e20d103b 2170 migrate->npages++;
8315ada7
JG
2171 migrate->cpages++;
2172 }
2173
2174 return 0;
2175}
2176
2177static int migrate_vma_collect_skip(unsigned long start,
2178 unsigned long end,
2179 struct mm_walk *walk)
2180{
2181 struct migrate_vma *migrate = walk->private;
2182 unsigned long addr;
2183
8763cb45
JG
2184 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2185 migrate->dst[migrate->npages] = 0;
2186 migrate->src[migrate->npages++] = 0;
2187 }
2188
2189 return 0;
2190}
2191
2192static int migrate_vma_collect_pmd(pmd_t *pmdp,
2193 unsigned long start,
2194 unsigned long end,
2195 struct mm_walk *walk)
2196{
2197 struct migrate_vma *migrate = walk->private;
2198 struct vm_area_struct *vma = walk->vma;
2199 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2200 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2201 spinlock_t *ptl;
2202 pte_t *ptep;
2203
2204again:
2205 if (pmd_none(*pmdp))
2206 return migrate_vma_collect_hole(start, end, walk);
2207
2208 if (pmd_trans_huge(*pmdp)) {
2209 struct page *page;
2210
2211 ptl = pmd_lock(mm, pmdp);
2212 if (unlikely(!pmd_trans_huge(*pmdp))) {
2213 spin_unlock(ptl);
2214 goto again;
2215 }
2216
2217 page = pmd_page(*pmdp);
2218 if (is_huge_zero_page(page)) {
2219 spin_unlock(ptl);
2220 split_huge_pmd(vma, pmdp, addr);
2221 if (pmd_trans_unstable(pmdp))
8315ada7 2222 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2223 walk);
2224 } else {
2225 int ret;
2226
2227 get_page(page);
2228 spin_unlock(ptl);
2229 if (unlikely(!trylock_page(page)))
8315ada7 2230 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2231 walk);
2232 ret = split_huge_page(page);
2233 unlock_page(page);
2234 put_page(page);
8315ada7
JG
2235 if (ret)
2236 return migrate_vma_collect_skip(start, end,
2237 walk);
2238 if (pmd_none(*pmdp))
8763cb45
JG
2239 return migrate_vma_collect_hole(start, end,
2240 walk);
2241 }
2242 }
2243
2244 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2245 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2246
2247 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2248 arch_enter_lazy_mmu_mode();
2249
8763cb45
JG
2250 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2251 unsigned long mpfn, pfn;
2252 struct page *page;
8c3328f1 2253 swp_entry_t entry;
8763cb45
JG
2254 pte_t pte;
2255
2256 pte = *ptep;
2257 pfn = pte_pfn(pte);
2258
a5430dda 2259 if (pte_none(pte)) {
8315ada7
JG
2260 mpfn = MIGRATE_PFN_MIGRATE;
2261 migrate->cpages++;
2262 pfn = 0;
8763cb45
JG
2263 goto next;
2264 }
2265
a5430dda
JG
2266 if (!pte_present(pte)) {
2267 mpfn = pfn = 0;
2268
2269 /*
2270 * Only care about unaddressable device page special
2271 * page table entry. Other special swap entries are not
2272 * migratable, and we ignore regular swapped page.
2273 */
2274 entry = pte_to_swp_entry(pte);
2275 if (!is_device_private_entry(entry))
2276 goto next;
2277
2278 page = device_private_entry_to_page(entry);
2279 mpfn = migrate_pfn(page_to_pfn(page))|
2280 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2281 if (is_write_device_private_entry(entry))
2282 mpfn |= MIGRATE_PFN_WRITE;
2283 } else {
8315ada7
JG
2284 if (is_zero_pfn(pfn)) {
2285 mpfn = MIGRATE_PFN_MIGRATE;
2286 migrate->cpages++;
2287 pfn = 0;
2288 goto next;
2289 }
df6ad698 2290 page = _vm_normal_page(migrate->vma, addr, pte, true);
a5430dda
JG
2291 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2292 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2293 }
2294
8763cb45 2295 /* FIXME support THP */
8763cb45
JG
2296 if (!page || !page->mapping || PageTransCompound(page)) {
2297 mpfn = pfn = 0;
2298 goto next;
2299 }
a5430dda 2300 pfn = page_to_pfn(page);
8763cb45
JG
2301
2302 /*
2303 * By getting a reference on the page we pin it and that blocks
2304 * any kind of migration. Side effect is that it "freezes" the
2305 * pte.
2306 *
2307 * We drop this reference after isolating the page from the lru
2308 * for non device page (device page are not on the lru and thus
2309 * can't be dropped from it).
2310 */
2311 get_page(page);
2312 migrate->cpages++;
8763cb45 2313
8c3328f1
JG
2314 /*
2315 * Optimize for the common case where page is only mapped once
2316 * in one process. If we can lock the page, then we can safely
2317 * set up a special migration page table entry now.
2318 */
2319 if (trylock_page(page)) {
2320 pte_t swp_pte;
2321
2322 mpfn |= MIGRATE_PFN_LOCKED;
2323 ptep_get_and_clear(mm, addr, ptep);
2324
2325 /* Setup special migration page table entry */
07707125
RC
2326 entry = make_migration_entry(page, mpfn &
2327 MIGRATE_PFN_WRITE);
8c3328f1
JG
2328 swp_pte = swp_entry_to_pte(entry);
2329 if (pte_soft_dirty(pte))
2330 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2331 set_pte_at(mm, addr, ptep, swp_pte);
2332
2333 /*
2334 * This is like regular unmap: we remove the rmap and
2335 * drop page refcount. Page won't be freed, as we took
2336 * a reference just above.
2337 */
2338 page_remove_rmap(page, false);
2339 put_page(page);
a5430dda
JG
2340
2341 if (pte_present(pte))
2342 unmapped++;
8c3328f1
JG
2343 }
2344
8763cb45 2345next:
a5430dda 2346 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2347 migrate->src[migrate->npages++] = mpfn;
2348 }
8c3328f1 2349 arch_leave_lazy_mmu_mode();
8763cb45
JG
2350 pte_unmap_unlock(ptep - 1, ptl);
2351
8c3328f1
JG
2352 /* Only flush the TLB if we actually modified any entries */
2353 if (unmapped)
2354 flush_tlb_range(walk->vma, start, end);
2355
8763cb45
JG
2356 return 0;
2357}
2358
2359/*
2360 * migrate_vma_collect() - collect pages over a range of virtual addresses
2361 * @migrate: migrate struct containing all migration information
2362 *
2363 * This will walk the CPU page table. For each virtual address backed by a
2364 * valid page, it updates the src array and takes a reference on the page, in
2365 * order to pin the page until we lock it and unmap it.
2366 */
2367static void migrate_vma_collect(struct migrate_vma *migrate)
2368{
2369 struct mm_walk mm_walk;
2370
2371 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2372 mm_walk.pte_entry = NULL;
2373 mm_walk.pte_hole = migrate_vma_collect_hole;
2374 mm_walk.hugetlb_entry = NULL;
2375 mm_walk.test_walk = NULL;
2376 mm_walk.vma = migrate->vma;
2377 mm_walk.mm = migrate->vma->vm_mm;
2378 mm_walk.private = migrate;
2379
8c3328f1
JG
2380 mmu_notifier_invalidate_range_start(mm_walk.mm,
2381 migrate->start,
2382 migrate->end);
8763cb45 2383 walk_page_range(migrate->start, migrate->end, &mm_walk);
8c3328f1
JG
2384 mmu_notifier_invalidate_range_end(mm_walk.mm,
2385 migrate->start,
2386 migrate->end);
8763cb45
JG
2387
2388 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2389}
2390
2391/*
2392 * migrate_vma_check_page() - check if page is pinned or not
2393 * @page: struct page to check
2394 *
2395 * Pinned pages cannot be migrated. This is the same test as in
2396 * migrate_page_move_mapping(), except that here we allow migration of a
2397 * ZONE_DEVICE page.
2398 */
2399static bool migrate_vma_check_page(struct page *page)
2400{
2401 /*
2402 * One extra ref because caller holds an extra reference, either from
2403 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2404 * a device page.
2405 */
2406 int extra = 1;
2407
2408 /*
2409 * FIXME support THP (transparent huge page), it is bit more complex to
2410 * check them than regular pages, because they can be mapped with a pmd
2411 * or with a pte (split pte mapping).
2412 */
2413 if (PageCompound(page))
2414 return false;
2415
a5430dda
JG
2416 /* Page from ZONE_DEVICE have one extra reference */
2417 if (is_zone_device_page(page)) {
2418 /*
2419 * Private page can never be pin as they have no valid pte and
2420 * GUP will fail for those. Yet if there is a pending migration
2421 * a thread might try to wait on the pte migration entry and
2422 * will bump the page reference count. Sadly there is no way to
2423 * differentiate a regular pin from migration wait. Hence to
2424 * avoid 2 racing thread trying to migrate back to CPU to enter
2425 * infinite loop (one stoping migration because the other is
2426 * waiting on pte migration entry). We always return true here.
2427 *
2428 * FIXME proper solution is to rework migration_entry_wait() so
2429 * it does not need to take a reference on page.
2430 */
2431 if (is_device_private_page(page))
2432 return true;
2433
df6ad698
JG
2434 /*
2435 * Only allow device public page to be migrated and account for
2436 * the extra reference count imply by ZONE_DEVICE pages.
2437 */
2438 if (!is_device_public_page(page))
2439 return false;
2440 extra++;
a5430dda
JG
2441 }
2442
df6ad698
JG
2443 /* For file back page */
2444 if (page_mapping(page))
2445 extra += 1 + page_has_private(page);
2446
8763cb45
JG
2447 if ((page_count(page) - extra) > page_mapcount(page))
2448 return false;
2449
2450 return true;
2451}
2452
2453/*
2454 * migrate_vma_prepare() - lock pages and isolate them from the lru
2455 * @migrate: migrate struct containing all migration information
2456 *
2457 * This locks pages that have been collected by migrate_vma_collect(). Once each
2458 * page is locked it is isolated from the lru (for non-device pages). Finally,
2459 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2460 * migrated by concurrent kernel threads.
2461 */
2462static void migrate_vma_prepare(struct migrate_vma *migrate)
2463{
2464 const unsigned long npages = migrate->npages;
8c3328f1
JG
2465 const unsigned long start = migrate->start;
2466 unsigned long addr, i, restore = 0;
8763cb45 2467 bool allow_drain = true;
8763cb45
JG
2468
2469 lru_add_drain();
2470
2471 for (i = 0; (i < npages) && migrate->cpages; i++) {
2472 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2473 bool remap = true;
8763cb45
JG
2474
2475 if (!page)
2476 continue;
2477
8c3328f1
JG
2478 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2479 /*
2480 * Because we are migrating several pages there can be
2481 * a deadlock between 2 concurrent migration where each
2482 * are waiting on each other page lock.
2483 *
2484 * Make migrate_vma() a best effort thing and backoff
2485 * for any page we can not lock right away.
2486 */
2487 if (!trylock_page(page)) {
2488 migrate->src[i] = 0;
2489 migrate->cpages--;
2490 put_page(page);
2491 continue;
2492 }
2493 remap = false;
2494 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2495 }
8763cb45 2496
a5430dda
JG
2497 /* ZONE_DEVICE pages are not on LRU */
2498 if (!is_zone_device_page(page)) {
2499 if (!PageLRU(page) && allow_drain) {
2500 /* Drain CPU's pagevec */
2501 lru_add_drain_all();
2502 allow_drain = false;
2503 }
8763cb45 2504
a5430dda
JG
2505 if (isolate_lru_page(page)) {
2506 if (remap) {
2507 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2508 migrate->cpages--;
2509 restore++;
2510 } else {
2511 migrate->src[i] = 0;
2512 unlock_page(page);
2513 migrate->cpages--;
2514 put_page(page);
2515 }
2516 continue;
8c3328f1 2517 }
a5430dda
JG
2518
2519 /* Drop the reference we took in collect */
2520 put_page(page);
8763cb45
JG
2521 }
2522
2523 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2524 if (remap) {
2525 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2526 migrate->cpages--;
2527 restore++;
8763cb45 2528
a5430dda
JG
2529 if (!is_zone_device_page(page)) {
2530 get_page(page);
2531 putback_lru_page(page);
2532 }
8c3328f1
JG
2533 } else {
2534 migrate->src[i] = 0;
2535 unlock_page(page);
2536 migrate->cpages--;
2537
a5430dda
JG
2538 if (!is_zone_device_page(page))
2539 putback_lru_page(page);
2540 else
2541 put_page(page);
8c3328f1 2542 }
8763cb45
JG
2543 }
2544 }
8c3328f1
JG
2545
2546 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2547 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2548
2549 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2550 continue;
2551
2552 remove_migration_pte(page, migrate->vma, addr, page);
2553
2554 migrate->src[i] = 0;
2555 unlock_page(page);
2556 put_page(page);
2557 restore--;
2558 }
8763cb45
JG
2559}
2560
2561/*
2562 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2563 * @migrate: migrate struct containing all migration information
2564 *
2565 * Replace page mapping (CPU page table pte) with a special migration pte entry
2566 * and check again if it has been pinned. Pinned pages are restored because we
2567 * cannot migrate them.
2568 *
2569 * This is the last step before we call the device driver callback to allocate
2570 * destination memory and copy contents of original page over to new page.
2571 */
2572static void migrate_vma_unmap(struct migrate_vma *migrate)
2573{
2574 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2575 const unsigned long npages = migrate->npages;
2576 const unsigned long start = migrate->start;
2577 unsigned long addr, i, restore = 0;
2578
2579 for (i = 0; i < npages; i++) {
2580 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2581
2582 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2583 continue;
2584
8c3328f1
JG
2585 if (page_mapped(page)) {
2586 try_to_unmap(page, flags);
2587 if (page_mapped(page))
2588 goto restore;
8763cb45 2589 }
8c3328f1
JG
2590
2591 if (migrate_vma_check_page(page))
2592 continue;
2593
2594restore:
2595 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2596 migrate->cpages--;
2597 restore++;
8763cb45
JG
2598 }
2599
2600 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2601 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2602
2603 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2604 continue;
2605
2606 remove_migration_ptes(page, page, false);
2607
2608 migrate->src[i] = 0;
2609 unlock_page(page);
2610 restore--;
2611
a5430dda
JG
2612 if (is_zone_device_page(page))
2613 put_page(page);
2614 else
2615 putback_lru_page(page);
8763cb45
JG
2616 }
2617}
2618
8315ada7
JG
2619static void migrate_vma_insert_page(struct migrate_vma *migrate,
2620 unsigned long addr,
2621 struct page *page,
2622 unsigned long *src,
2623 unsigned long *dst)
2624{
2625 struct vm_area_struct *vma = migrate->vma;
2626 struct mm_struct *mm = vma->vm_mm;
2627 struct mem_cgroup *memcg;
2628 bool flush = false;
2629 spinlock_t *ptl;
2630 pte_t entry;
2631 pgd_t *pgdp;
2632 p4d_t *p4dp;
2633 pud_t *pudp;
2634 pmd_t *pmdp;
2635 pte_t *ptep;
2636
2637 /* Only allow populating anonymous memory */
2638 if (!vma_is_anonymous(vma))
2639 goto abort;
2640
2641 pgdp = pgd_offset(mm, addr);
2642 p4dp = p4d_alloc(mm, pgdp, addr);
2643 if (!p4dp)
2644 goto abort;
2645 pudp = pud_alloc(mm, p4dp, addr);
2646 if (!pudp)
2647 goto abort;
2648 pmdp = pmd_alloc(mm, pudp, addr);
2649 if (!pmdp)
2650 goto abort;
2651
2652 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2653 goto abort;
2654
2655 /*
2656 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2657 * pte_offset_map() on pmds where a huge pmd might be created
2658 * from a different thread.
2659 *
2660 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2661 * parallel threads are excluded by other means.
2662 *
2663 * Here we only have down_read(mmap_sem).
2664 */
2665 if (pte_alloc(mm, pmdp, addr))
2666 goto abort;
2667
2668 /* See the comment in pte_alloc_one_map() */
2669 if (unlikely(pmd_trans_unstable(pmdp)))
2670 goto abort;
2671
2672 if (unlikely(anon_vma_prepare(vma)))
2673 goto abort;
2674 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2675 goto abort;
2676
2677 /*
2678 * The memory barrier inside __SetPageUptodate makes sure that
2679 * preceding stores to the page contents become visible before
2680 * the set_pte_at() write.
2681 */
2682 __SetPageUptodate(page);
2683
df6ad698
JG
2684 if (is_zone_device_page(page)) {
2685 if (is_device_private_page(page)) {
2686 swp_entry_t swp_entry;
2687
2688 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2689 entry = swp_entry_to_pte(swp_entry);
2690 } else if (is_device_public_page(page)) {
2691 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2692 if (vma->vm_flags & VM_WRITE)
2693 entry = pte_mkwrite(pte_mkdirty(entry));
2694 entry = pte_mkdevmap(entry);
2695 }
8315ada7
JG
2696 } else {
2697 entry = mk_pte(page, vma->vm_page_prot);
2698 if (vma->vm_flags & VM_WRITE)
2699 entry = pte_mkwrite(pte_mkdirty(entry));
2700 }
2701
2702 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2703
2704 if (pte_present(*ptep)) {
2705 unsigned long pfn = pte_pfn(*ptep);
2706
2707 if (!is_zero_pfn(pfn)) {
2708 pte_unmap_unlock(ptep, ptl);
2709 mem_cgroup_cancel_charge(page, memcg, false);
2710 goto abort;
2711 }
2712 flush = true;
2713 } else if (!pte_none(*ptep)) {
2714 pte_unmap_unlock(ptep, ptl);
2715 mem_cgroup_cancel_charge(page, memcg, false);
2716 goto abort;
2717 }
2718
2719 /*
2720 * Check for usefaultfd but do not deliver the fault. Instead,
2721 * just back off.
2722 */
2723 if (userfaultfd_missing(vma)) {
2724 pte_unmap_unlock(ptep, ptl);
2725 mem_cgroup_cancel_charge(page, memcg, false);
2726 goto abort;
2727 }
2728
2729 inc_mm_counter(mm, MM_ANONPAGES);
2730 page_add_new_anon_rmap(page, vma, addr, false);
2731 mem_cgroup_commit_charge(page, memcg, false, false);
2732 if (!is_zone_device_page(page))
2733 lru_cache_add_active_or_unevictable(page, vma);
2734 get_page(page);
2735
2736 if (flush) {
2737 flush_cache_page(vma, addr, pte_pfn(*ptep));
2738 ptep_clear_flush_notify(vma, addr, ptep);
2739 set_pte_at_notify(mm, addr, ptep, entry);
2740 update_mmu_cache(vma, addr, ptep);
2741 } else {
2742 /* No need to invalidate - it was non-present before */
2743 set_pte_at(mm, addr, ptep, entry);
2744 update_mmu_cache(vma, addr, ptep);
2745 }
2746
2747 pte_unmap_unlock(ptep, ptl);
2748 *src = MIGRATE_PFN_MIGRATE;
2749 return;
2750
2751abort:
2752 *src &= ~MIGRATE_PFN_MIGRATE;
2753}
2754
8763cb45
JG
2755/*
2756 * migrate_vma_pages() - migrate meta-data from src page to dst page
2757 * @migrate: migrate struct containing all migration information
2758 *
2759 * This migrates struct page meta-data from source struct page to destination
2760 * struct page. This effectively finishes the migration from source page to the
2761 * destination page.
2762 */
2763static void migrate_vma_pages(struct migrate_vma *migrate)
2764{
2765 const unsigned long npages = migrate->npages;
2766 const unsigned long start = migrate->start;
8315ada7
JG
2767 struct vm_area_struct *vma = migrate->vma;
2768 struct mm_struct *mm = vma->vm_mm;
2769 unsigned long addr, i, mmu_start;
2770 bool notified = false;
8763cb45
JG
2771
2772 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2773 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2774 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2775 struct address_space *mapping;
2776 int r;
2777
8315ada7
JG
2778 if (!newpage) {
2779 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2780 continue;
8315ada7
JG
2781 }
2782
2783 if (!page) {
2784 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2785 continue;
2786 }
2787 if (!notified) {
2788 mmu_start = addr;
2789 notified = true;
2790 mmu_notifier_invalidate_range_start(mm,
2791 mmu_start,
2792 migrate->end);
2793 }
2794 migrate_vma_insert_page(migrate, addr, newpage,
2795 &migrate->src[i],
2796 &migrate->dst[i]);
8763cb45 2797 continue;
8315ada7 2798 }
8763cb45
JG
2799
2800 mapping = page_mapping(page);
2801
a5430dda
JG
2802 if (is_zone_device_page(newpage)) {
2803 if (is_device_private_page(newpage)) {
2804 /*
2805 * For now only support private anonymous when
2806 * migrating to un-addressable device memory.
2807 */
2808 if (mapping) {
2809 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2810 continue;
2811 }
df6ad698 2812 } else if (!is_device_public_page(newpage)) {
a5430dda
JG
2813 /*
2814 * Other types of ZONE_DEVICE page are not
2815 * supported.
2816 */
2817 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2818 continue;
2819 }
2820 }
2821
8763cb45
JG
2822 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2823 if (r != MIGRATEPAGE_SUCCESS)
2824 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2825 }
8315ada7 2826
4645b9fe
JG
2827 /*
2828 * No need to double call mmu_notifier->invalidate_range() callback as
2829 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2830 * did already call it.
2831 */
8315ada7 2832 if (notified)
4645b9fe
JG
2833 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2834 migrate->end);
8763cb45
JG
2835}
2836
2837/*
2838 * migrate_vma_finalize() - restore CPU page table entry
2839 * @migrate: migrate struct containing all migration information
2840 *
2841 * This replaces the special migration pte entry with either a mapping to the
2842 * new page if migration was successful for that page, or to the original page
2843 * otherwise.
2844 *
2845 * This also unlocks the pages and puts them back on the lru, or drops the extra
2846 * refcount, for device pages.
2847 */
2848static void migrate_vma_finalize(struct migrate_vma *migrate)
2849{
2850 const unsigned long npages = migrate->npages;
2851 unsigned long i;
2852
2853 for (i = 0; i < npages; i++) {
2854 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2855 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2856
8315ada7
JG
2857 if (!page) {
2858 if (newpage) {
2859 unlock_page(newpage);
2860 put_page(newpage);
2861 }
8763cb45 2862 continue;
8315ada7
JG
2863 }
2864
8763cb45
JG
2865 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2866 if (newpage) {
2867 unlock_page(newpage);
2868 put_page(newpage);
2869 }
2870 newpage = page;
2871 }
2872
2873 remove_migration_ptes(page, newpage, false);
2874 unlock_page(page);
2875 migrate->cpages--;
2876
a5430dda
JG
2877 if (is_zone_device_page(page))
2878 put_page(page);
2879 else
2880 putback_lru_page(page);
8763cb45
JG
2881
2882 if (newpage != page) {
2883 unlock_page(newpage);
a5430dda
JG
2884 if (is_zone_device_page(newpage))
2885 put_page(newpage);
2886 else
2887 putback_lru_page(newpage);
8763cb45
JG
2888 }
2889 }
2890}
2891
2892/*
2893 * migrate_vma() - migrate a range of memory inside vma
2894 *
2895 * @ops: migration callback for allocating destination memory and copying
2896 * @vma: virtual memory area containing the range to be migrated
2897 * @start: start address of the range to migrate (inclusive)
2898 * @end: end address of the range to migrate (exclusive)
2899 * @src: array of hmm_pfn_t containing source pfns
2900 * @dst: array of hmm_pfn_t containing destination pfns
2901 * @private: pointer passed back to each of the callback
2902 * Returns: 0 on success, error code otherwise
2903 *
2904 * This function tries to migrate a range of memory virtual address range, using
2905 * callbacks to allocate and copy memory from source to destination. First it
2906 * collects all the pages backing each virtual address in the range, saving this
2907 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2908 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2909 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2910 * in the corresponding src array entry. It then restores any pages that are
2911 * pinned, by remapping and unlocking those pages.
2912 *
2913 * At this point it calls the alloc_and_copy() callback. For documentation on
2914 * what is expected from that callback, see struct migrate_vma_ops comments in
2915 * include/linux/migrate.h
2916 *
2917 * After the alloc_and_copy() callback, this function goes over each entry in
2918 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2919 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2920 * then the function tries to migrate struct page information from the source
2921 * struct page to the destination struct page. If it fails to migrate the struct
2922 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2923 * array.
2924 *
2925 * At this point all successfully migrated pages have an entry in the src
2926 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2927 * array entry with MIGRATE_PFN_VALID flag set.
2928 *
2929 * It then calls the finalize_and_map() callback. See comments for "struct
2930 * migrate_vma_ops", in include/linux/migrate.h for details about
2931 * finalize_and_map() behavior.
2932 *
2933 * After the finalize_and_map() callback, for successfully migrated pages, this
2934 * function updates the CPU page table to point to new pages, otherwise it
2935 * restores the CPU page table to point to the original source pages.
2936 *
2937 * Function returns 0 after the above steps, even if no pages were migrated
2938 * (The function only returns an error if any of the arguments are invalid.)
2939 *
2940 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2941 * unsigned long entries.
2942 */
2943int migrate_vma(const struct migrate_vma_ops *ops,
2944 struct vm_area_struct *vma,
2945 unsigned long start,
2946 unsigned long end,
2947 unsigned long *src,
2948 unsigned long *dst,
2949 void *private)
2950{
2951 struct migrate_vma migrate;
2952
2953 /* Sanity check the arguments */
2954 start &= PAGE_MASK;
2955 end &= PAGE_MASK;
2956 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2957 return -EINVAL;
2958 if (start < vma->vm_start || start >= vma->vm_end)
2959 return -EINVAL;
2960 if (end <= vma->vm_start || end > vma->vm_end)
2961 return -EINVAL;
2962 if (!ops || !src || !dst || start >= end)
2963 return -EINVAL;
2964
2965 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2966 migrate.src = src;
2967 migrate.dst = dst;
2968 migrate.start = start;
2969 migrate.npages = 0;
2970 migrate.cpages = 0;
2971 migrate.end = end;
2972 migrate.vma = vma;
2973
2974 /* Collect, and try to unmap source pages */
2975 migrate_vma_collect(&migrate);
2976 if (!migrate.cpages)
2977 return 0;
2978
2979 /* Lock and isolate page */
2980 migrate_vma_prepare(&migrate);
2981 if (!migrate.cpages)
2982 return 0;
2983
2984 /* Unmap pages */
2985 migrate_vma_unmap(&migrate);
2986 if (!migrate.cpages)
2987 return 0;
2988
2989 /*
2990 * At this point pages are locked and unmapped, and thus they have
2991 * stable content and can safely be copied to destination memory that
2992 * is allocated by the callback.
2993 *
2994 * Note that migration can fail in migrate_vma_struct_page() for each
2995 * individual page.
2996 */
2997 ops->alloc_and_copy(vma, src, dst, start, end, private);
2998
2999 /* This does the real migration of struct page */
3000 migrate_vma_pages(&migrate);
3001
3002 ops->finalize_and_map(vma, src, dst, start, end, private);
3003
3004 /* Unlock and remap pages */
3005 migrate_vma_finalize(&migrate);
3006
3007 return 0;
3008}
3009EXPORT_SYMBOL(migrate_vma);
6b368cd4 3010#endif /* defined(MIGRATE_VMA_HELPER) */