]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/migrate.c
mm: debug-pagealloc: fix kconfig dependency warning
[thirdparty/kernel/stable.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
5a0e3ad6 36#include <linux/gfp.h>
b20a3503 37
0d1836c3
MN
38#include <asm/tlbflush.h>
39
b20a3503
CL
40#include "internal.h"
41
b20a3503
CL
42#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
43
b20a3503 44/*
742755a1 45 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47 * undesirable, use migrate_prep_local()
b20a3503
CL
48 */
49int migrate_prep(void)
50{
b20a3503
CL
51 /*
52 * Clear the LRU lists so pages can be isolated.
53 * Note that pages may be moved off the LRU after we have
54 * drained them. Those pages will fail to migrate like other
55 * pages that may be busy.
56 */
57 lru_add_drain_all();
58
59 return 0;
60}
61
748446bb
MG
62/* Do the necessary work of migrate_prep but not if it involves other CPUs */
63int migrate_prep_local(void)
64{
65 lru_add_drain();
66
67 return 0;
68}
69
b20a3503 70/*
894bc310
LS
71 * Add isolated pages on the list back to the LRU under page lock
72 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 73 */
e13861d8 74void putback_lru_pages(struct list_head *l)
b20a3503
CL
75{
76 struct page *page;
77 struct page *page2;
b20a3503
CL
78
79 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 80 list_del(&page->lru);
a731286d 81 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 82 page_is_file_cache(page));
894bc310 83 putback_lru_page(page);
b20a3503 84 }
b20a3503
CL
85}
86
0697212a
CL
87/*
88 * Restore a potential migration pte to a working pte entry
89 */
e9995ef9
HD
90static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
91 unsigned long addr, void *old)
0697212a
CL
92{
93 struct mm_struct *mm = vma->vm_mm;
94 swp_entry_t entry;
95 pgd_t *pgd;
96 pud_t *pud;
97 pmd_t *pmd;
98 pte_t *ptep, pte;
99 spinlock_t *ptl;
100
290408d4
NH
101 if (unlikely(PageHuge(new))) {
102 ptep = huge_pte_offset(mm, addr);
103 if (!ptep)
104 goto out;
105 ptl = &mm->page_table_lock;
106 } else {
107 pgd = pgd_offset(mm, addr);
108 if (!pgd_present(*pgd))
109 goto out;
0697212a 110
290408d4
NH
111 pud = pud_offset(pgd, addr);
112 if (!pud_present(*pud))
113 goto out;
0697212a 114
290408d4 115 pmd = pmd_offset(pud, addr);
500d65d4
AA
116 if (pmd_trans_huge(*pmd))
117 goto out;
290408d4
NH
118 if (!pmd_present(*pmd))
119 goto out;
0697212a 120
290408d4 121 ptep = pte_offset_map(pmd, addr);
0697212a 122
290408d4
NH
123 if (!is_swap_pte(*ptep)) {
124 pte_unmap(ptep);
125 goto out;
126 }
127
128 ptl = pte_lockptr(mm, pmd);
129 }
0697212a 130
0697212a
CL
131 spin_lock(ptl);
132 pte = *ptep;
133 if (!is_swap_pte(pte))
e9995ef9 134 goto unlock;
0697212a
CL
135
136 entry = pte_to_swp_entry(pte);
137
e9995ef9
HD
138 if (!is_migration_entry(entry) ||
139 migration_entry_to_page(entry) != old)
140 goto unlock;
0697212a 141
0697212a
CL
142 get_page(new);
143 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
144 if (is_write_migration_entry(entry))
145 pte = pte_mkwrite(pte);
3ef8fd7f 146#ifdef CONFIG_HUGETLB_PAGE
290408d4
NH
147 if (PageHuge(new))
148 pte = pte_mkhuge(pte);
3ef8fd7f 149#endif
97ee0524 150 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 151 set_pte_at(mm, addr, ptep, pte);
04e62a29 152
290408d4
NH
153 if (PageHuge(new)) {
154 if (PageAnon(new))
155 hugepage_add_anon_rmap(new, vma, addr);
156 else
157 page_dup_rmap(new);
158 } else if (PageAnon(new))
04e62a29
CL
159 page_add_anon_rmap(new, vma, addr);
160 else
161 page_add_file_rmap(new);
162
163 /* No need to invalidate - it was non-present before */
4b3073e1 164 update_mmu_cache(vma, addr, ptep);
e9995ef9 165unlock:
0697212a 166 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
167out:
168 return SWAP_AGAIN;
0697212a
CL
169}
170
04e62a29
CL
171/*
172 * Get rid of all migration entries and replace them by
173 * references to the indicated page.
174 */
175static void remove_migration_ptes(struct page *old, struct page *new)
176{
e9995ef9 177 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
178}
179
0697212a
CL
180/*
181 * Something used the pte of a page under migration. We need to
182 * get to the page and wait until migration is finished.
183 * When we return from this function the fault will be retried.
184 *
185 * This function is called from do_swap_page().
186 */
187void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
188 unsigned long address)
189{
190 pte_t *ptep, pte;
191 spinlock_t *ptl;
192 swp_entry_t entry;
193 struct page *page;
194
195 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
196 pte = *ptep;
197 if (!is_swap_pte(pte))
198 goto out;
199
200 entry = pte_to_swp_entry(pte);
201 if (!is_migration_entry(entry))
202 goto out;
203
204 page = migration_entry_to_page(entry);
205
e286781d
NP
206 /*
207 * Once radix-tree replacement of page migration started, page_count
208 * *must* be zero. And, we don't want to call wait_on_page_locked()
209 * against a page without get_page().
210 * So, we use get_page_unless_zero(), here. Even failed, page fault
211 * will occur again.
212 */
213 if (!get_page_unless_zero(page))
214 goto out;
0697212a
CL
215 pte_unmap_unlock(ptep, ptl);
216 wait_on_page_locked(page);
217 put_page(page);
218 return;
219out:
220 pte_unmap_unlock(ptep, ptl);
221}
222
b20a3503 223/*
c3fcf8a5 224 * Replace the page in the mapping.
5b5c7120
CL
225 *
226 * The number of remaining references must be:
227 * 1 for anonymous pages without a mapping
228 * 2 for pages with a mapping
266cf658 229 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 230 */
2d1db3b1
CL
231static int migrate_page_move_mapping(struct address_space *mapping,
232 struct page *newpage, struct page *page)
b20a3503 233{
e286781d 234 int expected_count;
7cf9c2c7 235 void **pslot;
b20a3503 236
6c5240ae 237 if (!mapping) {
0e8c7d0f 238 /* Anonymous page without mapping */
6c5240ae
CL
239 if (page_count(page) != 1)
240 return -EAGAIN;
241 return 0;
242 }
243
19fd6231 244 spin_lock_irq(&mapping->tree_lock);
b20a3503 245
7cf9c2c7
NP
246 pslot = radix_tree_lookup_slot(&mapping->page_tree,
247 page_index(page));
b20a3503 248
edcf4748 249 expected_count = 2 + page_has_private(page);
e286781d 250 if (page_count(page) != expected_count ||
29c1f677 251 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 252 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 253 return -EAGAIN;
b20a3503
CL
254 }
255
e286781d 256 if (!page_freeze_refs(page, expected_count)) {
19fd6231 257 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
258 return -EAGAIN;
259 }
260
b20a3503
CL
261 /*
262 * Now we know that no one else is looking at the page.
b20a3503 263 */
7cf9c2c7 264 get_page(newpage); /* add cache reference */
b20a3503
CL
265 if (PageSwapCache(page)) {
266 SetPageSwapCache(newpage);
267 set_page_private(newpage, page_private(page));
268 }
269
7cf9c2c7
NP
270 radix_tree_replace_slot(pslot, newpage);
271
e286781d 272 page_unfreeze_refs(page, expected_count);
7cf9c2c7
NP
273 /*
274 * Drop cache reference from old page.
275 * We know this isn't the last reference.
276 */
b20a3503 277 __put_page(page);
7cf9c2c7 278
0e8c7d0f
CL
279 /*
280 * If moved to a different zone then also account
281 * the page for that zone. Other VM counters will be
282 * taken care of when we establish references to the
283 * new page and drop references to the old page.
284 *
285 * Note that anonymous pages are accounted for
286 * via NR_FILE_PAGES and NR_ANON_PAGES if they
287 * are mapped to swap space.
288 */
289 __dec_zone_page_state(page, NR_FILE_PAGES);
290 __inc_zone_page_state(newpage, NR_FILE_PAGES);
4b02108a
KM
291 if (PageSwapBacked(page)) {
292 __dec_zone_page_state(page, NR_SHMEM);
293 __inc_zone_page_state(newpage, NR_SHMEM);
294 }
19fd6231 295 spin_unlock_irq(&mapping->tree_lock);
b20a3503
CL
296
297 return 0;
298}
b20a3503 299
290408d4
NH
300/*
301 * The expected number of remaining references is the same as that
302 * of migrate_page_move_mapping().
303 */
304int migrate_huge_page_move_mapping(struct address_space *mapping,
305 struct page *newpage, struct page *page)
306{
307 int expected_count;
308 void **pslot;
309
310 if (!mapping) {
311 if (page_count(page) != 1)
312 return -EAGAIN;
313 return 0;
314 }
315
316 spin_lock_irq(&mapping->tree_lock);
317
318 pslot = radix_tree_lookup_slot(&mapping->page_tree,
319 page_index(page));
320
321 expected_count = 2 + page_has_private(page);
322 if (page_count(page) != expected_count ||
29c1f677 323 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
324 spin_unlock_irq(&mapping->tree_lock);
325 return -EAGAIN;
326 }
327
328 if (!page_freeze_refs(page, expected_count)) {
329 spin_unlock_irq(&mapping->tree_lock);
330 return -EAGAIN;
331 }
332
333 get_page(newpage);
334
335 radix_tree_replace_slot(pslot, newpage);
336
337 page_unfreeze_refs(page, expected_count);
338
339 __put_page(page);
340
341 spin_unlock_irq(&mapping->tree_lock);
342 return 0;
343}
344
b20a3503
CL
345/*
346 * Copy the page to its new location
347 */
290408d4 348void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 349{
290408d4
NH
350 if (PageHuge(page))
351 copy_huge_page(newpage, page);
352 else
353 copy_highpage(newpage, page);
b20a3503
CL
354
355 if (PageError(page))
356 SetPageError(newpage);
357 if (PageReferenced(page))
358 SetPageReferenced(newpage);
359 if (PageUptodate(page))
360 SetPageUptodate(newpage);
894bc310
LS
361 if (TestClearPageActive(page)) {
362 VM_BUG_ON(PageUnevictable(page));
b20a3503 363 SetPageActive(newpage);
418b27ef
LS
364 } else if (TestClearPageUnevictable(page))
365 SetPageUnevictable(newpage);
b20a3503
CL
366 if (PageChecked(page))
367 SetPageChecked(newpage);
368 if (PageMappedToDisk(page))
369 SetPageMappedToDisk(newpage);
370
371 if (PageDirty(page)) {
372 clear_page_dirty_for_io(page);
3a902c5f
NP
373 /*
374 * Want to mark the page and the radix tree as dirty, and
375 * redo the accounting that clear_page_dirty_for_io undid,
376 * but we can't use set_page_dirty because that function
377 * is actually a signal that all of the page has become dirty.
378 * Wheras only part of our page may be dirty.
379 */
380 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
381 }
382
b291f000 383 mlock_migrate_page(newpage, page);
e9995ef9 384 ksm_migrate_page(newpage, page);
b291f000 385
b20a3503 386 ClearPageSwapCache(page);
b20a3503
CL
387 ClearPagePrivate(page);
388 set_page_private(page, 0);
389 page->mapping = NULL;
390
391 /*
392 * If any waiters have accumulated on the new page then
393 * wake them up.
394 */
395 if (PageWriteback(newpage))
396 end_page_writeback(newpage);
397}
b20a3503 398
1d8b85cc
CL
399/************************************************************
400 * Migration functions
401 ***********************************************************/
402
403/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
404int fail_migrate_page(struct address_space *mapping,
405 struct page *newpage, struct page *page)
1d8b85cc
CL
406{
407 return -EIO;
408}
409EXPORT_SYMBOL(fail_migrate_page);
410
b20a3503
CL
411/*
412 * Common logic to directly migrate a single page suitable for
266cf658 413 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
414 *
415 * Pages are locked upon entry and exit.
416 */
2d1db3b1
CL
417int migrate_page(struct address_space *mapping,
418 struct page *newpage, struct page *page)
b20a3503
CL
419{
420 int rc;
421
422 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
423
2d1db3b1 424 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
425
426 if (rc)
427 return rc;
428
429 migrate_page_copy(newpage, page);
b20a3503
CL
430 return 0;
431}
432EXPORT_SYMBOL(migrate_page);
433
9361401e 434#ifdef CONFIG_BLOCK
1d8b85cc
CL
435/*
436 * Migration function for pages with buffers. This function can only be used
437 * if the underlying filesystem guarantees that no other references to "page"
438 * exist.
439 */
2d1db3b1
CL
440int buffer_migrate_page(struct address_space *mapping,
441 struct page *newpage, struct page *page)
1d8b85cc 442{
1d8b85cc
CL
443 struct buffer_head *bh, *head;
444 int rc;
445
1d8b85cc 446 if (!page_has_buffers(page))
2d1db3b1 447 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
448
449 head = page_buffers(page);
450
2d1db3b1 451 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
452
453 if (rc)
454 return rc;
455
456 bh = head;
457 do {
458 get_bh(bh);
459 lock_buffer(bh);
460 bh = bh->b_this_page;
461
462 } while (bh != head);
463
464 ClearPagePrivate(page);
465 set_page_private(newpage, page_private(page));
466 set_page_private(page, 0);
467 put_page(page);
468 get_page(newpage);
469
470 bh = head;
471 do {
472 set_bh_page(bh, newpage, bh_offset(bh));
473 bh = bh->b_this_page;
474
475 } while (bh != head);
476
477 SetPagePrivate(newpage);
478
479 migrate_page_copy(newpage, page);
480
481 bh = head;
482 do {
483 unlock_buffer(bh);
484 put_bh(bh);
485 bh = bh->b_this_page;
486
487 } while (bh != head);
488
489 return 0;
490}
491EXPORT_SYMBOL(buffer_migrate_page);
9361401e 492#endif
1d8b85cc 493
04e62a29
CL
494/*
495 * Writeback a page to clean the dirty state
496 */
497static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 498{
04e62a29
CL
499 struct writeback_control wbc = {
500 .sync_mode = WB_SYNC_NONE,
501 .nr_to_write = 1,
502 .range_start = 0,
503 .range_end = LLONG_MAX,
04e62a29
CL
504 .for_reclaim = 1
505 };
506 int rc;
507
508 if (!mapping->a_ops->writepage)
509 /* No write method for the address space */
510 return -EINVAL;
511
512 if (!clear_page_dirty_for_io(page))
513 /* Someone else already triggered a write */
514 return -EAGAIN;
515
8351a6e4 516 /*
04e62a29
CL
517 * A dirty page may imply that the underlying filesystem has
518 * the page on some queue. So the page must be clean for
519 * migration. Writeout may mean we loose the lock and the
520 * page state is no longer what we checked for earlier.
521 * At this point we know that the migration attempt cannot
522 * be successful.
8351a6e4 523 */
04e62a29 524 remove_migration_ptes(page, page);
8351a6e4 525
04e62a29 526 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 527
04e62a29
CL
528 if (rc != AOP_WRITEPAGE_ACTIVATE)
529 /* unlocked. Relock */
530 lock_page(page);
531
bda8550d 532 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
533}
534
535/*
536 * Default handling if a filesystem does not provide a migration function.
537 */
538static int fallback_migrate_page(struct address_space *mapping,
539 struct page *newpage, struct page *page)
540{
541 if (PageDirty(page))
542 return writeout(mapping, page);
8351a6e4
CL
543
544 /*
545 * Buffers may be managed in a filesystem specific way.
546 * We must have no buffers or drop them.
547 */
266cf658 548 if (page_has_private(page) &&
8351a6e4
CL
549 !try_to_release_page(page, GFP_KERNEL))
550 return -EAGAIN;
551
552 return migrate_page(mapping, newpage, page);
553}
554
e24f0b8f
CL
555/*
556 * Move a page to a newly allocated page
557 * The page is locked and all ptes have been successfully removed.
558 *
559 * The new page will have replaced the old page if this function
560 * is successful.
894bc310
LS
561 *
562 * Return value:
563 * < 0 - error code
564 * == 0 - success
e24f0b8f 565 */
3fe2011f
MG
566static int move_to_new_page(struct page *newpage, struct page *page,
567 int remap_swapcache)
e24f0b8f
CL
568{
569 struct address_space *mapping;
570 int rc;
571
572 /*
573 * Block others from accessing the page when we get around to
574 * establishing additional references. We are the only one
575 * holding a reference to the new page at this point.
576 */
529ae9aa 577 if (!trylock_page(newpage))
e24f0b8f
CL
578 BUG();
579
580 /* Prepare mapping for the new page.*/
581 newpage->index = page->index;
582 newpage->mapping = page->mapping;
b2e18538
RR
583 if (PageSwapBacked(page))
584 SetPageSwapBacked(newpage);
e24f0b8f
CL
585
586 mapping = page_mapping(page);
587 if (!mapping)
588 rc = migrate_page(mapping, newpage, page);
589 else if (mapping->a_ops->migratepage)
590 /*
591 * Most pages have a mapping and most filesystems
592 * should provide a migration function. Anonymous
593 * pages are part of swap space which also has its
594 * own migration function. This is the most common
595 * path for page migration.
596 */
597 rc = mapping->a_ops->migratepage(mapping,
598 newpage, page);
599 else
600 rc = fallback_migrate_page(mapping, newpage, page);
601
3fe2011f 602 if (rc) {
e24f0b8f 603 newpage->mapping = NULL;
3fe2011f
MG
604 } else {
605 if (remap_swapcache)
606 remove_migration_ptes(page, newpage);
607 }
e24f0b8f
CL
608
609 unlock_page(newpage);
610
611 return rc;
612}
613
614/*
615 * Obtain the lock on page, remove all ptes and migrate the page
616 * to the newly allocated page in newpage.
617 */
95a402c3 618static int unmap_and_move(new_page_t get_new_page, unsigned long private,
7f0f2496 619 struct page *page, int force, bool offlining, bool sync)
e24f0b8f
CL
620{
621 int rc = 0;
742755a1
CL
622 int *result = NULL;
623 struct page *newpage = get_new_page(page, private, &result);
3fe2011f 624 int remap_swapcache = 1;
ae41be37 625 int charge = 0;
e00e4316 626 struct mem_cgroup *mem = NULL;
3f6c8272 627 struct anon_vma *anon_vma = NULL;
95a402c3
CL
628
629 if (!newpage)
630 return -ENOMEM;
e24f0b8f 631
894bc310 632 if (page_count(page) == 1) {
e24f0b8f 633 /* page was freed from under us. So we are done. */
95a402c3 634 goto move_newpage;
894bc310 635 }
500d65d4
AA
636 if (unlikely(PageTransHuge(page)))
637 if (unlikely(split_huge_page(page)))
638 goto move_newpage;
e24f0b8f 639
e8589cc1 640 /* prepare cgroup just returns 0 or -ENOMEM */
e24f0b8f 641 rc = -EAGAIN;
01b1ae63 642
529ae9aa 643 if (!trylock_page(page)) {
e24f0b8f 644 if (!force)
95a402c3 645 goto move_newpage;
3e7d3449
MG
646
647 /*
648 * It's not safe for direct compaction to call lock_page.
649 * For example, during page readahead pages are added locked
650 * to the LRU. Later, when the IO completes the pages are
651 * marked uptodate and unlocked. However, the queueing
652 * could be merging multiple pages for one bio (e.g.
653 * mpage_readpages). If an allocation happens for the
654 * second or third page, the process can end up locking
655 * the same page twice and deadlocking. Rather than
656 * trying to be clever about what pages can be locked,
657 * avoid the use of lock_page for direct compaction
658 * altogether.
659 */
660 if (current->flags & PF_MEMALLOC)
661 goto move_newpage;
662
e24f0b8f
CL
663 lock_page(page);
664 }
665
62b61f61
HD
666 /*
667 * Only memory hotplug's offline_pages() caller has locked out KSM,
668 * and can safely migrate a KSM page. The other cases have skipped
669 * PageKsm along with PageReserved - but it is only now when we have
670 * the page lock that we can be certain it will not go KSM beneath us
671 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
672 * its pagecount raised, but only here do we take the page lock which
673 * serializes that).
674 */
675 if (PageKsm(page) && !offlining) {
676 rc = -EBUSY;
677 goto unlock;
678 }
679
01b1ae63 680 /* charge against new page */
ef6a3c63 681 charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
01b1ae63
KH
682 if (charge == -ENOMEM) {
683 rc = -ENOMEM;
684 goto unlock;
685 }
686 BUG_ON(charge);
687
e24f0b8f 688 if (PageWriteback(page)) {
77f1fe6b 689 if (!force || !sync)
01b1ae63 690 goto uncharge;
e24f0b8f
CL
691 wait_on_page_writeback(page);
692 }
e24f0b8f 693 /*
dc386d4d
KH
694 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
695 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 696 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 697 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
698 * File Caches may use write_page() or lock_page() in migration, then,
699 * just care Anon page here.
dc386d4d 700 */
989f89c5 701 if (PageAnon(page)) {
1ce82b69
HD
702 /*
703 * Only page_lock_anon_vma() understands the subtleties of
704 * getting a hold on an anon_vma from outside one of its mms.
705 */
706 anon_vma = page_lock_anon_vma(page);
707 if (anon_vma) {
708 /*
709 * Take a reference count on the anon_vma if the
710 * page is mapped so that it is guaranteed to
711 * exist when the page is remapped later
712 */
713 get_anon_vma(anon_vma);
714 page_unlock_anon_vma(anon_vma);
715 } else if (PageSwapCache(page)) {
3fe2011f
MG
716 /*
717 * We cannot be sure that the anon_vma of an unmapped
718 * swapcache page is safe to use because we don't
719 * know in advance if the VMA that this page belonged
720 * to still exists. If the VMA and others sharing the
721 * data have been freed, then the anon_vma could
722 * already be invalid.
723 *
724 * To avoid this possibility, swapcache pages get
725 * migrated but are not remapped when migration
726 * completes
727 */
728 remap_swapcache = 0;
729 } else {
1ce82b69 730 goto uncharge;
3fe2011f 731 }
989f89c5 732 }
62e1c553 733
dc386d4d 734 /*
62e1c553
SL
735 * Corner case handling:
736 * 1. When a new swap-cache page is read into, it is added to the LRU
737 * and treated as swapcache but it has no rmap yet.
738 * Calling try_to_unmap() against a page->mapping==NULL page will
739 * trigger a BUG. So handle it here.
740 * 2. An orphaned page (see truncate_complete_page) might have
741 * fs-private metadata. The page can be picked up due to memory
742 * offlining. Everywhere else except page reclaim, the page is
743 * invisible to the vm, so the page can not be migrated. So try to
744 * free the metadata, so the page can be freed.
e24f0b8f 745 */
62e1c553 746 if (!page->mapping) {
1ce82b69
HD
747 VM_BUG_ON(PageAnon(page));
748 if (page_has_private(page)) {
62e1c553 749 try_to_free_buffers(page);
1ce82b69 750 goto uncharge;
62e1c553 751 }
abfc3488 752 goto skip_unmap;
62e1c553
SL
753 }
754
dc386d4d 755 /* Establish migration ptes or remove ptes */
14fa31b8 756 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 757
abfc3488 758skip_unmap:
e6a1530d 759 if (!page_mapped(page))
3fe2011f 760 rc = move_to_new_page(newpage, page, remap_swapcache);
e24f0b8f 761
3fe2011f 762 if (rc && remap_swapcache)
e24f0b8f 763 remove_migration_ptes(page, page);
3f6c8272
MG
764
765 /* Drop an anon_vma reference if we took one */
76545066
RR
766 if (anon_vma)
767 drop_anon_vma(anon_vma);
3f6c8272 768
01b1ae63
KH
769uncharge:
770 if (!charge)
50de1dd9 771 mem_cgroup_end_migration(mem, page, newpage, rc == 0);
e24f0b8f
CL
772unlock:
773 unlock_page(page);
95a402c3 774
57fc4a5e 775move_newpage:
e24f0b8f 776 if (rc != -EAGAIN) {
aaa994b3
CL
777 /*
778 * A page that has been migrated has all references
779 * removed and will be freed. A page that has not been
780 * migrated will have kepts its references and be
781 * restored.
782 */
783 list_del(&page->lru);
a731286d 784 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 785 page_is_file_cache(page));
894bc310 786 putback_lru_page(page);
e24f0b8f 787 }
95a402c3 788
95a402c3
CL
789 /*
790 * Move the new page to the LRU. If migration was not successful
791 * then this will free the page.
792 */
894bc310
LS
793 putback_lru_page(newpage);
794
742755a1
CL
795 if (result) {
796 if (rc)
797 *result = rc;
798 else
799 *result = page_to_nid(newpage);
800 }
e24f0b8f
CL
801 return rc;
802}
803
290408d4
NH
804/*
805 * Counterpart of unmap_and_move_page() for hugepage migration.
806 *
807 * This function doesn't wait the completion of hugepage I/O
808 * because there is no race between I/O and migration for hugepage.
809 * Note that currently hugepage I/O occurs only in direct I/O
810 * where no lock is held and PG_writeback is irrelevant,
811 * and writeback status of all subpages are counted in the reference
812 * count of the head page (i.e. if all subpages of a 2MB hugepage are
813 * under direct I/O, the reference of the head page is 512 and a bit more.)
814 * This means that when we try to migrate hugepage whose subpages are
815 * doing direct I/O, some references remain after try_to_unmap() and
816 * hugepage migration fails without data corruption.
817 *
818 * There is also no race when direct I/O is issued on the page under migration,
819 * because then pte is replaced with migration swap entry and direct I/O code
820 * will wait in the page fault for migration to complete.
821 */
822static int unmap_and_move_huge_page(new_page_t get_new_page,
823 unsigned long private, struct page *hpage,
7f0f2496 824 int force, bool offlining, bool sync)
290408d4
NH
825{
826 int rc = 0;
827 int *result = NULL;
828 struct page *new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
829 struct anon_vma *anon_vma = NULL;
830
831 if (!new_hpage)
832 return -ENOMEM;
833
834 rc = -EAGAIN;
835
836 if (!trylock_page(hpage)) {
77f1fe6b 837 if (!force || !sync)
290408d4
NH
838 goto out;
839 lock_page(hpage);
840 }
841
842 if (PageAnon(hpage)) {
fd4a4663
HD
843 anon_vma = page_lock_anon_vma(hpage);
844 if (anon_vma) {
845 get_anon_vma(anon_vma);
846 page_unlock_anon_vma(anon_vma);
290408d4
NH
847 }
848 }
849
850 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
851
852 if (!page_mapped(hpage))
853 rc = move_to_new_page(new_hpage, hpage, 1);
854
855 if (rc)
856 remove_migration_ptes(hpage, hpage);
857
fd4a4663
HD
858 if (anon_vma)
859 drop_anon_vma(anon_vma);
290408d4
NH
860out:
861 unlock_page(hpage);
862
863 if (rc != -EAGAIN) {
864 list_del(&hpage->lru);
865 put_page(hpage);
866 }
867
868 put_page(new_hpage);
869
870 if (result) {
871 if (rc)
872 *result = rc;
873 else
874 *result = page_to_nid(new_hpage);
875 }
876 return rc;
877}
878
b20a3503
CL
879/*
880 * migrate_pages
881 *
95a402c3
CL
882 * The function takes one list of pages to migrate and a function
883 * that determines from the page to be migrated and the private data
884 * the target of the move and allocates the page.
b20a3503
CL
885 *
886 * The function returns after 10 attempts or if no pages
887 * are movable anymore because to has become empty
cf608ac1
MK
888 * or no retryable pages exist anymore.
889 * Caller should call putback_lru_pages to return pages to the LRU
28bd6578 890 * or free list only if ret != 0.
b20a3503 891 *
95a402c3 892 * Return: Number of pages not migrated or error code.
b20a3503 893 */
95a402c3 894int migrate_pages(struct list_head *from,
7f0f2496 895 new_page_t get_new_page, unsigned long private, bool offlining,
77f1fe6b 896 bool sync)
b20a3503 897{
e24f0b8f 898 int retry = 1;
b20a3503
CL
899 int nr_failed = 0;
900 int pass = 0;
901 struct page *page;
902 struct page *page2;
903 int swapwrite = current->flags & PF_SWAPWRITE;
904 int rc;
905
906 if (!swapwrite)
907 current->flags |= PF_SWAPWRITE;
908
e24f0b8f
CL
909 for(pass = 0; pass < 10 && retry; pass++) {
910 retry = 0;
b20a3503 911
e24f0b8f 912 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 913 cond_resched();
2d1db3b1 914
95a402c3 915 rc = unmap_and_move(get_new_page, private,
77f1fe6b
MG
916 page, pass > 2, offlining,
917 sync);
2d1db3b1 918
e24f0b8f 919 switch(rc) {
95a402c3
CL
920 case -ENOMEM:
921 goto out;
e24f0b8f 922 case -EAGAIN:
2d1db3b1 923 retry++;
e24f0b8f
CL
924 break;
925 case 0:
e24f0b8f
CL
926 break;
927 default:
2d1db3b1 928 /* Permanent failure */
2d1db3b1 929 nr_failed++;
e24f0b8f 930 break;
2d1db3b1 931 }
b20a3503
CL
932 }
933 }
95a402c3
CL
934 rc = 0;
935out:
b20a3503
CL
936 if (!swapwrite)
937 current->flags &= ~PF_SWAPWRITE;
938
95a402c3
CL
939 if (rc)
940 return rc;
b20a3503 941
95a402c3 942 return nr_failed + retry;
b20a3503 943}
95a402c3 944
290408d4 945int migrate_huge_pages(struct list_head *from,
7f0f2496 946 new_page_t get_new_page, unsigned long private, bool offlining,
77f1fe6b 947 bool sync)
290408d4
NH
948{
949 int retry = 1;
950 int nr_failed = 0;
951 int pass = 0;
952 struct page *page;
953 struct page *page2;
954 int rc;
955
956 for (pass = 0; pass < 10 && retry; pass++) {
957 retry = 0;
958
959 list_for_each_entry_safe(page, page2, from, lru) {
960 cond_resched();
961
962 rc = unmap_and_move_huge_page(get_new_page,
77f1fe6b
MG
963 private, page, pass > 2, offlining,
964 sync);
290408d4
NH
965
966 switch(rc) {
967 case -ENOMEM:
968 goto out;
969 case -EAGAIN:
970 retry++;
971 break;
972 case 0:
973 break;
974 default:
975 /* Permanent failure */
976 nr_failed++;
977 break;
978 }
979 }
980 }
981 rc = 0;
982out:
290408d4
NH
983 if (rc)
984 return rc;
985
986 return nr_failed + retry;
987}
988
742755a1
CL
989#ifdef CONFIG_NUMA
990/*
991 * Move a list of individual pages
992 */
993struct page_to_node {
994 unsigned long addr;
995 struct page *page;
996 int node;
997 int status;
998};
999
1000static struct page *new_page_node(struct page *p, unsigned long private,
1001 int **result)
1002{
1003 struct page_to_node *pm = (struct page_to_node *)private;
1004
1005 while (pm->node != MAX_NUMNODES && pm->page != p)
1006 pm++;
1007
1008 if (pm->node == MAX_NUMNODES)
1009 return NULL;
1010
1011 *result = &pm->status;
1012
6484eb3e 1013 return alloc_pages_exact_node(pm->node,
769848c0 1014 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1015}
1016
1017/*
1018 * Move a set of pages as indicated in the pm array. The addr
1019 * field must be set to the virtual address of the page to be moved
1020 * and the node number must contain a valid target node.
5e9a0f02 1021 * The pm array ends with node = MAX_NUMNODES.
742755a1 1022 */
5e9a0f02
BG
1023static int do_move_page_to_node_array(struct mm_struct *mm,
1024 struct page_to_node *pm,
1025 int migrate_all)
742755a1
CL
1026{
1027 int err;
1028 struct page_to_node *pp;
1029 LIST_HEAD(pagelist);
1030
1031 down_read(&mm->mmap_sem);
1032
1033 /*
1034 * Build a list of pages to migrate
1035 */
742755a1
CL
1036 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1037 struct vm_area_struct *vma;
1038 struct page *page;
1039
742755a1
CL
1040 err = -EFAULT;
1041 vma = find_vma(mm, pp->addr);
70384dc6 1042 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1043 goto set_status;
1044
500d65d4 1045 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1046
1047 err = PTR_ERR(page);
1048 if (IS_ERR(page))
1049 goto set_status;
1050
742755a1
CL
1051 err = -ENOENT;
1052 if (!page)
1053 goto set_status;
1054
62b61f61
HD
1055 /* Use PageReserved to check for zero page */
1056 if (PageReserved(page) || PageKsm(page))
742755a1
CL
1057 goto put_and_set;
1058
1059 pp->page = page;
1060 err = page_to_nid(page);
1061
1062 if (err == pp->node)
1063 /*
1064 * Node already in the right place
1065 */
1066 goto put_and_set;
1067
1068 err = -EACCES;
1069 if (page_mapcount(page) > 1 &&
1070 !migrate_all)
1071 goto put_and_set;
1072
62695a84 1073 err = isolate_lru_page(page);
6d9c285a 1074 if (!err) {
62695a84 1075 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1076 inc_zone_page_state(page, NR_ISOLATED_ANON +
1077 page_is_file_cache(page));
1078 }
742755a1
CL
1079put_and_set:
1080 /*
1081 * Either remove the duplicate refcount from
1082 * isolate_lru_page() or drop the page ref if it was
1083 * not isolated.
1084 */
1085 put_page(page);
1086set_status:
1087 pp->status = err;
1088 }
1089
e78bbfa8 1090 err = 0;
cf608ac1 1091 if (!list_empty(&pagelist)) {
742755a1 1092 err = migrate_pages(&pagelist, new_page_node,
77f1fe6b 1093 (unsigned long)pm, 0, true);
cf608ac1
MK
1094 if (err)
1095 putback_lru_pages(&pagelist);
1096 }
742755a1
CL
1097
1098 up_read(&mm->mmap_sem);
1099 return err;
1100}
1101
5e9a0f02
BG
1102/*
1103 * Migrate an array of page address onto an array of nodes and fill
1104 * the corresponding array of status.
1105 */
1106static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1107 unsigned long nr_pages,
1108 const void __user * __user *pages,
1109 const int __user *nodes,
1110 int __user *status, int flags)
1111{
3140a227 1112 struct page_to_node *pm;
5e9a0f02 1113 nodemask_t task_nodes;
3140a227
BG
1114 unsigned long chunk_nr_pages;
1115 unsigned long chunk_start;
1116 int err;
5e9a0f02
BG
1117
1118 task_nodes = cpuset_mems_allowed(task);
1119
3140a227
BG
1120 err = -ENOMEM;
1121 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1122 if (!pm)
5e9a0f02 1123 goto out;
35282a2d
BG
1124
1125 migrate_prep();
1126
5e9a0f02 1127 /*
3140a227
BG
1128 * Store a chunk of page_to_node array in a page,
1129 * but keep the last one as a marker
5e9a0f02 1130 */
3140a227 1131 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1132
3140a227
BG
1133 for (chunk_start = 0;
1134 chunk_start < nr_pages;
1135 chunk_start += chunk_nr_pages) {
1136 int j;
5e9a0f02 1137
3140a227
BG
1138 if (chunk_start + chunk_nr_pages > nr_pages)
1139 chunk_nr_pages = nr_pages - chunk_start;
1140
1141 /* fill the chunk pm with addrs and nodes from user-space */
1142 for (j = 0; j < chunk_nr_pages; j++) {
1143 const void __user *p;
5e9a0f02
BG
1144 int node;
1145
3140a227
BG
1146 err = -EFAULT;
1147 if (get_user(p, pages + j + chunk_start))
1148 goto out_pm;
1149 pm[j].addr = (unsigned long) p;
1150
1151 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1152 goto out_pm;
1153
1154 err = -ENODEV;
6f5a55f1
LT
1155 if (node < 0 || node >= MAX_NUMNODES)
1156 goto out_pm;
1157
5e9a0f02
BG
1158 if (!node_state(node, N_HIGH_MEMORY))
1159 goto out_pm;
1160
1161 err = -EACCES;
1162 if (!node_isset(node, task_nodes))
1163 goto out_pm;
1164
3140a227
BG
1165 pm[j].node = node;
1166 }
1167
1168 /* End marker for this chunk */
1169 pm[chunk_nr_pages].node = MAX_NUMNODES;
1170
1171 /* Migrate this chunk */
1172 err = do_move_page_to_node_array(mm, pm,
1173 flags & MPOL_MF_MOVE_ALL);
1174 if (err < 0)
1175 goto out_pm;
5e9a0f02 1176
5e9a0f02 1177 /* Return status information */
3140a227
BG
1178 for (j = 0; j < chunk_nr_pages; j++)
1179 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1180 err = -EFAULT;
3140a227
BG
1181 goto out_pm;
1182 }
1183 }
1184 err = 0;
5e9a0f02
BG
1185
1186out_pm:
3140a227 1187 free_page((unsigned long)pm);
5e9a0f02
BG
1188out:
1189 return err;
1190}
1191
742755a1 1192/*
2f007e74 1193 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1194 */
80bba129
BG
1195static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1196 const void __user **pages, int *status)
742755a1 1197{
2f007e74 1198 unsigned long i;
2f007e74 1199
742755a1
CL
1200 down_read(&mm->mmap_sem);
1201
2f007e74 1202 for (i = 0; i < nr_pages; i++) {
80bba129 1203 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1204 struct vm_area_struct *vma;
1205 struct page *page;
c095adbc 1206 int err = -EFAULT;
2f007e74
BG
1207
1208 vma = find_vma(mm, addr);
70384dc6 1209 if (!vma || addr < vma->vm_start)
742755a1
CL
1210 goto set_status;
1211
2f007e74 1212 page = follow_page(vma, addr, 0);
89f5b7da
LT
1213
1214 err = PTR_ERR(page);
1215 if (IS_ERR(page))
1216 goto set_status;
1217
742755a1
CL
1218 err = -ENOENT;
1219 /* Use PageReserved to check for zero page */
62b61f61 1220 if (!page || PageReserved(page) || PageKsm(page))
742755a1
CL
1221 goto set_status;
1222
1223 err = page_to_nid(page);
1224set_status:
80bba129
BG
1225 *status = err;
1226
1227 pages++;
1228 status++;
1229 }
1230
1231 up_read(&mm->mmap_sem);
1232}
1233
1234/*
1235 * Determine the nodes of a user array of pages and store it in
1236 * a user array of status.
1237 */
1238static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1239 const void __user * __user *pages,
1240 int __user *status)
1241{
1242#define DO_PAGES_STAT_CHUNK_NR 16
1243 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1244 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1245
87b8d1ad
PA
1246 while (nr_pages) {
1247 unsigned long chunk_nr;
80bba129 1248
87b8d1ad
PA
1249 chunk_nr = nr_pages;
1250 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1251 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1252
1253 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1254 break;
80bba129
BG
1255
1256 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1257
87b8d1ad
PA
1258 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1259 break;
742755a1 1260
87b8d1ad
PA
1261 pages += chunk_nr;
1262 status += chunk_nr;
1263 nr_pages -= chunk_nr;
1264 }
1265 return nr_pages ? -EFAULT : 0;
742755a1
CL
1266}
1267
1268/*
1269 * Move a list of pages in the address space of the currently executing
1270 * process.
1271 */
938bb9f5
HC
1272SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1273 const void __user * __user *, pages,
1274 const int __user *, nodes,
1275 int __user *, status, int, flags)
742755a1 1276{
c69e8d9c 1277 const struct cred *cred = current_cred(), *tcred;
742755a1 1278 struct task_struct *task;
742755a1 1279 struct mm_struct *mm;
5e9a0f02 1280 int err;
742755a1
CL
1281
1282 /* Check flags */
1283 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1284 return -EINVAL;
1285
1286 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1287 return -EPERM;
1288
1289 /* Find the mm_struct */
a879bf58 1290 rcu_read_lock();
228ebcbe 1291 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1292 if (!task) {
a879bf58 1293 rcu_read_unlock();
742755a1
CL
1294 return -ESRCH;
1295 }
1296 mm = get_task_mm(task);
a879bf58 1297 rcu_read_unlock();
742755a1
CL
1298
1299 if (!mm)
1300 return -EINVAL;
1301
1302 /*
1303 * Check if this process has the right to modify the specified
1304 * process. The right exists if the process has administrative
1305 * capabilities, superuser privileges or the same
1306 * userid as the target process.
1307 */
c69e8d9c
DH
1308 rcu_read_lock();
1309 tcred = __task_cred(task);
b6dff3ec
DH
1310 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1311 cred->uid != tcred->suid && cred->uid != tcred->uid &&
742755a1 1312 !capable(CAP_SYS_NICE)) {
c69e8d9c 1313 rcu_read_unlock();
742755a1 1314 err = -EPERM;
5e9a0f02 1315 goto out;
742755a1 1316 }
c69e8d9c 1317 rcu_read_unlock();
742755a1 1318
86c3a764
DQ
1319 err = security_task_movememory(task);
1320 if (err)
5e9a0f02 1321 goto out;
86c3a764 1322
5e9a0f02
BG
1323 if (nodes) {
1324 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1325 flags);
1326 } else {
2f007e74 1327 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1
CL
1328 }
1329
742755a1 1330out:
742755a1
CL
1331 mmput(mm);
1332 return err;
1333}
742755a1 1334
7b2259b3
CL
1335/*
1336 * Call migration functions in the vma_ops that may prepare
1337 * memory in a vm for migration. migration functions may perform
1338 * the migration for vmas that do not have an underlying page struct.
1339 */
1340int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1341 const nodemask_t *from, unsigned long flags)
1342{
1343 struct vm_area_struct *vma;
1344 int err = 0;
1345
1001c9fb 1346 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1347 if (vma->vm_ops && vma->vm_ops->migrate) {
1348 err = vma->vm_ops->migrate(vma, to, from, flags);
1349 if (err)
1350 break;
1351 }
1352 }
1353 return err;
1354}
83d1674a 1355#endif