]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/migrate.c
blkdev: avoid migration stalls for blkdev pages
[thirdparty/kernel/stable.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
df6ad698 41#include <linux/pfn_t.h>
a5430dda 42#include <linux/memremap.h>
8315ada7 43#include <linux/userfaultfd_k.h>
bf6bddf1 44#include <linux/balloon_compaction.h>
f714f4f2 45#include <linux/mmu_notifier.h>
33c3fc71 46#include <linux/page_idle.h>
d435edca 47#include <linux/page_owner.h>
6e84f315 48#include <linux/sched/mm.h>
197e7e52 49#include <linux/ptrace.h>
b20a3503 50
0d1836c3
MN
51#include <asm/tlbflush.h>
52
7b2a2d4a
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/migrate.h>
55
b20a3503
CL
56#include "internal.h"
57
b20a3503 58/*
742755a1 59 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
b20a3503
CL
62 */
63int migrate_prep(void)
64{
b20a3503
CL
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74}
75
748446bb
MG
76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
77int migrate_prep_local(void)
78{
79 lru_add_drain();
80
81 return 0;
82}
83
9e5bcd61 84int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
85{
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
9e5bcd61 135 return 0;
bda807d4
MK
136
137out_no_isolated:
138 unlock_page(page);
139out_putpage:
140 put_page(page);
141out:
9e5bcd61 142 return -EBUSY;
bda807d4
MK
143}
144
145/* It should be called on page which is PG_movable */
146void putback_movable_page(struct page *page)
147{
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157}
158
5733c7d1
RA
159/*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
59c82b70
JK
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
5733c7d1
RA
166 */
167void putback_movable_pages(struct list_head *l)
168{
169 struct page *page;
170 struct page *page2;
171
b20a3503 172 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
e24f0b8f 177 list_del(&page->lru);
bda807d4
MK
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
b1123ea6 183 if (unlikely(__PageMovable(page))) {
bda807d4
MK
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
e8db67eb
NH
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 195 putback_lru_page(page);
bda807d4 196 }
b20a3503 197 }
b20a3503
CL
198}
199
0697212a
CL
200/*
201 * Restore a potential migration pte to a working pte entry
202 */
e4b82222 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 204 unsigned long addr, void *old)
0697212a 205{
3fe87967
KS
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
0697212a 214 swp_entry_t entry;
0697212a 215
3fe87967
KS
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
0697212a 223
616b8371
ZY
224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231#endif
232
3fe87967
KS
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
0697212a 237
3fe87967
KS
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 244
df6ad698
JG
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
252 }
a5430dda
JG
253 } else
254 flush_dcache_page(new);
255
3ef8fd7f 256#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
383321ab
AK
265 } else
266#endif
267 {
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 269
383321ab
AK
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
274 }
3fe87967
KS
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
277
e125fe40
KS
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
280
3fe87967
KS
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 }
51afb12b 284
e4b82222 285 return true;
0697212a
CL
286}
287
04e62a29
CL
288/*
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
291 */
e388466d 292void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 293{
051ac83a
JK
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
296 .arg = old,
297 };
298
e388466d
KS
299 if (locked)
300 rmap_walk_locked(new, &rwc);
301 else
302 rmap_walk(new, &rwc);
04e62a29
CL
303}
304
0697212a
CL
305/*
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
0697212a 309 */
e66f17ff 310void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 311 spinlock_t *ptl)
0697212a 312{
30dad309 313 pte_t pte;
0697212a
CL
314 swp_entry_t entry;
315 struct page *page;
316
30dad309 317 spin_lock(ptl);
0697212a
CL
318 pte = *ptep;
319 if (!is_swap_pte(pte))
320 goto out;
321
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
324 goto out;
325
326 page = migration_entry_to_page(entry);
327
e286781d 328 /*
89eb946a 329 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
330 * is zero; but we must not call put_and_wait_on_page_locked() without
331 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
332 */
333 if (!get_page_unless_zero(page))
334 goto out;
0697212a 335 pte_unmap_unlock(ptep, ptl);
9a1ea439 336 put_and_wait_on_page_locked(page);
0697212a
CL
337 return;
338out:
339 pte_unmap_unlock(ptep, ptl);
340}
341
30dad309
NH
342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
344{
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
348}
349
cb900f41
KS
350void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
30dad309 352{
cb900f41 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
354 __migration_entry_wait(mm, pte, ptl);
355}
356
616b8371
ZY
357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359{
360 spinlock_t *ptl;
361 struct page *page;
362
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
9a1ea439 370 put_and_wait_on_page_locked(page);
616b8371
ZY
371 return;
372unlock:
373 spin_unlock(ptl);
374}
375#endif
376
0b3901b3
JK
377static int expected_page_refs(struct page *page)
378{
379 int expected_count = 1;
380
381 /*
382 * Device public or private pages have an extra refcount as they are
383 * ZONE_DEVICE pages.
384 */
385 expected_count += is_device_private_page(page);
386 expected_count += is_device_public_page(page);
387 if (page_mapping(page))
388 expected_count += hpage_nr_pages(page) + page_has_private(page);
389
390 return expected_count;
391}
392
b20a3503 393/*
c3fcf8a5 394 * Replace the page in the mapping.
5b5c7120
CL
395 *
396 * The number of remaining references must be:
397 * 1 for anonymous pages without a mapping
398 * 2 for pages with a mapping
266cf658 399 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 400 */
36bc08cc 401int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 402 struct page *newpage, struct page *page,
8e321fef
BL
403 struct buffer_head *head, enum migrate_mode mode,
404 int extra_count)
b20a3503 405{
89eb946a 406 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
407 struct zone *oldzone, *newzone;
408 int dirty;
0b3901b3 409 int expected_count = expected_page_refs(page) + extra_count;
8763cb45 410
6c5240ae 411 if (!mapping) {
0e8c7d0f 412 /* Anonymous page without mapping */
8e321fef 413 if (page_count(page) != expected_count)
6c5240ae 414 return -EAGAIN;
cf4b769a
HD
415
416 /* No turning back from here */
cf4b769a
HD
417 newpage->index = page->index;
418 newpage->mapping = page->mapping;
419 if (PageSwapBacked(page))
fa9949da 420 __SetPageSwapBacked(newpage);
cf4b769a 421
78bd5209 422 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
423 }
424
42cb14b1
HD
425 oldzone = page_zone(page);
426 newzone = page_zone(newpage);
427
89eb946a 428 xas_lock_irq(&xas);
89eb946a
MW
429 if (page_count(page) != expected_count || xas_load(&xas) != page) {
430 xas_unlock_irq(&xas);
e23ca00b 431 return -EAGAIN;
b20a3503
CL
432 }
433
fe896d18 434 if (!page_ref_freeze(page, expected_count)) {
89eb946a 435 xas_unlock_irq(&xas);
e286781d
NP
436 return -EAGAIN;
437 }
438
b20a3503 439 /*
cf4b769a
HD
440 * Now we know that no one else is looking at the page:
441 * no turning back from here.
b20a3503 442 */
cf4b769a
HD
443 newpage->index = page->index;
444 newpage->mapping = page->mapping;
e71769ae 445 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
6326fec1
NP
446 if (PageSwapBacked(page)) {
447 __SetPageSwapBacked(newpage);
448 if (PageSwapCache(page)) {
449 SetPageSwapCache(newpage);
450 set_page_private(newpage, page_private(page));
451 }
452 } else {
453 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
454 }
455
42cb14b1
HD
456 /* Move dirty while page refs frozen and newpage not yet exposed */
457 dirty = PageDirty(page);
458 if (dirty) {
459 ClearPageDirty(page);
460 SetPageDirty(newpage);
461 }
462
89eb946a 463 xas_store(&xas, newpage);
e71769ae
NH
464 if (PageTransHuge(page)) {
465 int i;
e71769ae 466
013567be 467 for (i = 1; i < HPAGE_PMD_NR; i++) {
89eb946a
MW
468 xas_next(&xas);
469 xas_store(&xas, newpage + i);
e71769ae 470 }
e71769ae 471 }
7cf9c2c7
NP
472
473 /*
937a94c9
JG
474 * Drop cache reference from old page by unfreezing
475 * to one less reference.
7cf9c2c7
NP
476 * We know this isn't the last reference.
477 */
e71769ae 478 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
7cf9c2c7 479
89eb946a 480 xas_unlock(&xas);
42cb14b1
HD
481 /* Leave irq disabled to prevent preemption while updating stats */
482
0e8c7d0f
CL
483 /*
484 * If moved to a different zone then also account
485 * the page for that zone. Other VM counters will be
486 * taken care of when we establish references to the
487 * new page and drop references to the old page.
488 *
489 * Note that anonymous pages are accounted for
4b9d0fab 490 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
491 * are mapped to swap space.
492 */
42cb14b1 493 if (newzone != oldzone) {
11fb9989
MG
494 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
495 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 496 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
497 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
498 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
499 }
500 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 501 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 502 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 503 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 504 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 505 }
4b02108a 506 }
42cb14b1 507 local_irq_enable();
b20a3503 508
78bd5209 509 return MIGRATEPAGE_SUCCESS;
b20a3503 510}
1118dce7 511EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 512
290408d4
NH
513/*
514 * The expected number of remaining references is the same as that
515 * of migrate_page_move_mapping().
516 */
517int migrate_huge_page_move_mapping(struct address_space *mapping,
518 struct page *newpage, struct page *page)
519{
89eb946a 520 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 521 int expected_count;
290408d4 522
89eb946a 523 xas_lock_irq(&xas);
290408d4 524 expected_count = 2 + page_has_private(page);
89eb946a
MW
525 if (page_count(page) != expected_count || xas_load(&xas) != page) {
526 xas_unlock_irq(&xas);
290408d4
NH
527 return -EAGAIN;
528 }
529
fe896d18 530 if (!page_ref_freeze(page, expected_count)) {
89eb946a 531 xas_unlock_irq(&xas);
290408d4
NH
532 return -EAGAIN;
533 }
534
cf4b769a
HD
535 newpage->index = page->index;
536 newpage->mapping = page->mapping;
6a93ca8f 537
290408d4
NH
538 get_page(newpage);
539
89eb946a 540 xas_store(&xas, newpage);
290408d4 541
fe896d18 542 page_ref_unfreeze(page, expected_count - 1);
290408d4 543
89eb946a 544 xas_unlock_irq(&xas);
6a93ca8f 545
78bd5209 546 return MIGRATEPAGE_SUCCESS;
290408d4
NH
547}
548
30b0a105
DH
549/*
550 * Gigantic pages are so large that we do not guarantee that page++ pointer
551 * arithmetic will work across the entire page. We need something more
552 * specialized.
553 */
554static void __copy_gigantic_page(struct page *dst, struct page *src,
555 int nr_pages)
556{
557 int i;
558 struct page *dst_base = dst;
559 struct page *src_base = src;
560
561 for (i = 0; i < nr_pages; ) {
562 cond_resched();
563 copy_highpage(dst, src);
564
565 i++;
566 dst = mem_map_next(dst, dst_base, i);
567 src = mem_map_next(src, src_base, i);
568 }
569}
570
571static void copy_huge_page(struct page *dst, struct page *src)
572{
573 int i;
574 int nr_pages;
575
576 if (PageHuge(src)) {
577 /* hugetlbfs page */
578 struct hstate *h = page_hstate(src);
579 nr_pages = pages_per_huge_page(h);
580
581 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
582 __copy_gigantic_page(dst, src, nr_pages);
583 return;
584 }
585 } else {
586 /* thp page */
587 BUG_ON(!PageTransHuge(src));
588 nr_pages = hpage_nr_pages(src);
589 }
590
591 for (i = 0; i < nr_pages; i++) {
592 cond_resched();
593 copy_highpage(dst + i, src + i);
594 }
595}
596
b20a3503
CL
597/*
598 * Copy the page to its new location
599 */
2916ecc0 600void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 601{
7851a45c
RR
602 int cpupid;
603
b20a3503
CL
604 if (PageError(page))
605 SetPageError(newpage);
606 if (PageReferenced(page))
607 SetPageReferenced(newpage);
608 if (PageUptodate(page))
609 SetPageUptodate(newpage);
894bc310 610 if (TestClearPageActive(page)) {
309381fe 611 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 612 SetPageActive(newpage);
418b27ef
LS
613 } else if (TestClearPageUnevictable(page))
614 SetPageUnevictable(newpage);
1899ad18
JW
615 if (PageWorkingset(page))
616 SetPageWorkingset(newpage);
b20a3503
CL
617 if (PageChecked(page))
618 SetPageChecked(newpage);
619 if (PageMappedToDisk(page))
620 SetPageMappedToDisk(newpage);
621
42cb14b1
HD
622 /* Move dirty on pages not done by migrate_page_move_mapping() */
623 if (PageDirty(page))
624 SetPageDirty(newpage);
b20a3503 625
33c3fc71
VD
626 if (page_is_young(page))
627 set_page_young(newpage);
628 if (page_is_idle(page))
629 set_page_idle(newpage);
630
7851a45c
RR
631 /*
632 * Copy NUMA information to the new page, to prevent over-eager
633 * future migrations of this same page.
634 */
635 cpupid = page_cpupid_xchg_last(page, -1);
636 page_cpupid_xchg_last(newpage, cpupid);
637
e9995ef9 638 ksm_migrate_page(newpage, page);
c8d6553b
HD
639 /*
640 * Please do not reorder this without considering how mm/ksm.c's
641 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
642 */
b3b3a99c
NH
643 if (PageSwapCache(page))
644 ClearPageSwapCache(page);
b20a3503
CL
645 ClearPagePrivate(page);
646 set_page_private(page, 0);
b20a3503
CL
647
648 /*
649 * If any waiters have accumulated on the new page then
650 * wake them up.
651 */
652 if (PageWriteback(newpage))
653 end_page_writeback(newpage);
d435edca
VB
654
655 copy_page_owner(page, newpage);
74485cf2
JW
656
657 mem_cgroup_migrate(page, newpage);
b20a3503 658}
2916ecc0
JG
659EXPORT_SYMBOL(migrate_page_states);
660
661void migrate_page_copy(struct page *newpage, struct page *page)
662{
663 if (PageHuge(page) || PageTransHuge(page))
664 copy_huge_page(newpage, page);
665 else
666 copy_highpage(newpage, page);
667
668 migrate_page_states(newpage, page);
669}
1118dce7 670EXPORT_SYMBOL(migrate_page_copy);
b20a3503 671
1d8b85cc
CL
672/************************************************************
673 * Migration functions
674 ***********************************************************/
675
b20a3503 676/*
bda807d4 677 * Common logic to directly migrate a single LRU page suitable for
266cf658 678 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
679 *
680 * Pages are locked upon entry and exit.
681 */
2d1db3b1 682int migrate_page(struct address_space *mapping,
a6bc32b8
MG
683 struct page *newpage, struct page *page,
684 enum migrate_mode mode)
b20a3503
CL
685{
686 int rc;
687
688 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
689
8e321fef 690 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 691
78bd5209 692 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
693 return rc;
694
2916ecc0
JG
695 if (mode != MIGRATE_SYNC_NO_COPY)
696 migrate_page_copy(newpage, page);
697 else
698 migrate_page_states(newpage, page);
78bd5209 699 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
700}
701EXPORT_SYMBOL(migrate_page);
702
9361401e 703#ifdef CONFIG_BLOCK
84ade7c1
JK
704/* Returns true if all buffers are successfully locked */
705static bool buffer_migrate_lock_buffers(struct buffer_head *head,
706 enum migrate_mode mode)
707{
708 struct buffer_head *bh = head;
709
710 /* Simple case, sync compaction */
711 if (mode != MIGRATE_ASYNC) {
712 do {
713 get_bh(bh);
714 lock_buffer(bh);
715 bh = bh->b_this_page;
716
717 } while (bh != head);
718
719 return true;
720 }
721
722 /* async case, we cannot block on lock_buffer so use trylock_buffer */
723 do {
724 get_bh(bh);
725 if (!trylock_buffer(bh)) {
726 /*
727 * We failed to lock the buffer and cannot stall in
728 * async migration. Release the taken locks
729 */
730 struct buffer_head *failed_bh = bh;
731 put_bh(failed_bh);
732 bh = head;
733 while (bh != failed_bh) {
734 unlock_buffer(bh);
735 put_bh(bh);
736 bh = bh->b_this_page;
737 }
738 return false;
739 }
740
741 bh = bh->b_this_page;
742 } while (bh != head);
743 return true;
744}
745
89cb0888
JK
746static int __buffer_migrate_page(struct address_space *mapping,
747 struct page *newpage, struct page *page, enum migrate_mode mode,
748 bool check_refs)
1d8b85cc 749{
1d8b85cc
CL
750 struct buffer_head *bh, *head;
751 int rc;
cc4f11e6 752 int expected_count;
1d8b85cc 753
1d8b85cc 754 if (!page_has_buffers(page))
a6bc32b8 755 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 756
cc4f11e6
JK
757 /* Check whether page does not have extra refs before we do more work */
758 expected_count = expected_page_refs(page);
759 if (page_count(page) != expected_count)
760 return -EAGAIN;
1d8b85cc 761
cc4f11e6
JK
762 head = page_buffers(page);
763 if (!buffer_migrate_lock_buffers(head, mode))
764 return -EAGAIN;
1d8b85cc 765
89cb0888
JK
766 if (check_refs) {
767 bool busy;
768 bool invalidated = false;
769
770recheck_buffers:
771 busy = false;
772 spin_lock(&mapping->private_lock);
773 bh = head;
774 do {
775 if (atomic_read(&bh->b_count)) {
776 busy = true;
777 break;
778 }
779 bh = bh->b_this_page;
780 } while (bh != head);
781 spin_unlock(&mapping->private_lock);
782 if (busy) {
783 if (invalidated) {
784 rc = -EAGAIN;
785 goto unlock_buffers;
786 }
787 invalidate_bh_lrus();
788 invalidated = true;
789 goto recheck_buffers;
790 }
791 }
792
cc4f11e6 793 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
78bd5209 794 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 795 goto unlock_buffers;
1d8b85cc
CL
796
797 ClearPagePrivate(page);
798 set_page_private(newpage, page_private(page));
799 set_page_private(page, 0);
800 put_page(page);
801 get_page(newpage);
802
803 bh = head;
804 do {
805 set_bh_page(bh, newpage, bh_offset(bh));
806 bh = bh->b_this_page;
807
808 } while (bh != head);
809
810 SetPagePrivate(newpage);
811
2916ecc0
JG
812 if (mode != MIGRATE_SYNC_NO_COPY)
813 migrate_page_copy(newpage, page);
814 else
815 migrate_page_states(newpage, page);
1d8b85cc 816
cc4f11e6
JK
817 rc = MIGRATEPAGE_SUCCESS;
818unlock_buffers:
1d8b85cc
CL
819 bh = head;
820 do {
821 unlock_buffer(bh);
2916ecc0 822 put_bh(bh);
1d8b85cc
CL
823 bh = bh->b_this_page;
824
825 } while (bh != head);
826
cc4f11e6 827 return rc;
1d8b85cc 828}
89cb0888
JK
829
830/*
831 * Migration function for pages with buffers. This function can only be used
832 * if the underlying filesystem guarantees that no other references to "page"
833 * exist. For example attached buffer heads are accessed only under page lock.
834 */
835int buffer_migrate_page(struct address_space *mapping,
836 struct page *newpage, struct page *page, enum migrate_mode mode)
837{
838 return __buffer_migrate_page(mapping, newpage, page, mode, false);
839}
1d8b85cc 840EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
841
842/*
843 * Same as above except that this variant is more careful and checks that there
844 * are also no buffer head references. This function is the right one for
845 * mappings where buffer heads are directly looked up and referenced (such as
846 * block device mappings).
847 */
848int buffer_migrate_page_norefs(struct address_space *mapping,
849 struct page *newpage, struct page *page, enum migrate_mode mode)
850{
851 return __buffer_migrate_page(mapping, newpage, page, mode, true);
852}
9361401e 853#endif
1d8b85cc 854
04e62a29
CL
855/*
856 * Writeback a page to clean the dirty state
857 */
858static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 859{
04e62a29
CL
860 struct writeback_control wbc = {
861 .sync_mode = WB_SYNC_NONE,
862 .nr_to_write = 1,
863 .range_start = 0,
864 .range_end = LLONG_MAX,
04e62a29
CL
865 .for_reclaim = 1
866 };
867 int rc;
868
869 if (!mapping->a_ops->writepage)
870 /* No write method for the address space */
871 return -EINVAL;
872
873 if (!clear_page_dirty_for_io(page))
874 /* Someone else already triggered a write */
875 return -EAGAIN;
876
8351a6e4 877 /*
04e62a29
CL
878 * A dirty page may imply that the underlying filesystem has
879 * the page on some queue. So the page must be clean for
880 * migration. Writeout may mean we loose the lock and the
881 * page state is no longer what we checked for earlier.
882 * At this point we know that the migration attempt cannot
883 * be successful.
8351a6e4 884 */
e388466d 885 remove_migration_ptes(page, page, false);
8351a6e4 886
04e62a29 887 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 888
04e62a29
CL
889 if (rc != AOP_WRITEPAGE_ACTIVATE)
890 /* unlocked. Relock */
891 lock_page(page);
892
bda8550d 893 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
894}
895
896/*
897 * Default handling if a filesystem does not provide a migration function.
898 */
899static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 900 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 901{
b969c4ab 902 if (PageDirty(page)) {
a6bc32b8 903 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
904 switch (mode) {
905 case MIGRATE_SYNC:
906 case MIGRATE_SYNC_NO_COPY:
907 break;
908 default:
b969c4ab 909 return -EBUSY;
2916ecc0 910 }
04e62a29 911 return writeout(mapping, page);
b969c4ab 912 }
8351a6e4
CL
913
914 /*
915 * Buffers may be managed in a filesystem specific way.
916 * We must have no buffers or drop them.
917 */
266cf658 918 if (page_has_private(page) &&
8351a6e4
CL
919 !try_to_release_page(page, GFP_KERNEL))
920 return -EAGAIN;
921
a6bc32b8 922 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
923}
924
e24f0b8f
CL
925/*
926 * Move a page to a newly allocated page
927 * The page is locked and all ptes have been successfully removed.
928 *
929 * The new page will have replaced the old page if this function
930 * is successful.
894bc310
LS
931 *
932 * Return value:
933 * < 0 - error code
78bd5209 934 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 935 */
3fe2011f 936static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 937 enum migrate_mode mode)
e24f0b8f
CL
938{
939 struct address_space *mapping;
bda807d4
MK
940 int rc = -EAGAIN;
941 bool is_lru = !__PageMovable(page);
e24f0b8f 942
7db7671f
HD
943 VM_BUG_ON_PAGE(!PageLocked(page), page);
944 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 945
e24f0b8f 946 mapping = page_mapping(page);
bda807d4
MK
947
948 if (likely(is_lru)) {
949 if (!mapping)
950 rc = migrate_page(mapping, newpage, page, mode);
951 else if (mapping->a_ops->migratepage)
952 /*
953 * Most pages have a mapping and most filesystems
954 * provide a migratepage callback. Anonymous pages
955 * are part of swap space which also has its own
956 * migratepage callback. This is the most common path
957 * for page migration.
958 */
959 rc = mapping->a_ops->migratepage(mapping, newpage,
960 page, mode);
961 else
962 rc = fallback_migrate_page(mapping, newpage,
963 page, mode);
964 } else {
e24f0b8f 965 /*
bda807d4
MK
966 * In case of non-lru page, it could be released after
967 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 968 */
bda807d4
MK
969 VM_BUG_ON_PAGE(!PageIsolated(page), page);
970 if (!PageMovable(page)) {
971 rc = MIGRATEPAGE_SUCCESS;
972 __ClearPageIsolated(page);
973 goto out;
974 }
975
976 rc = mapping->a_ops->migratepage(mapping, newpage,
977 page, mode);
978 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
979 !PageIsolated(page));
980 }
e24f0b8f 981
5c3f9a67
HD
982 /*
983 * When successful, old pagecache page->mapping must be cleared before
984 * page is freed; but stats require that PageAnon be left as PageAnon.
985 */
986 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
987 if (__PageMovable(page)) {
988 VM_BUG_ON_PAGE(!PageIsolated(page), page);
989
990 /*
991 * We clear PG_movable under page_lock so any compactor
992 * cannot try to migrate this page.
993 */
994 __ClearPageIsolated(page);
995 }
996
997 /*
998 * Anonymous and movable page->mapping will be cleard by
999 * free_pages_prepare so don't reset it here for keeping
1000 * the type to work PageAnon, for example.
1001 */
1002 if (!PageMappingFlags(page))
5c3f9a67 1003 page->mapping = NULL;
3fe2011f 1004 }
bda807d4 1005out:
e24f0b8f
CL
1006 return rc;
1007}
1008
0dabec93 1009static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1010 int force, enum migrate_mode mode)
e24f0b8f 1011{
0dabec93 1012 int rc = -EAGAIN;
2ebba6b7 1013 int page_was_mapped = 0;
3f6c8272 1014 struct anon_vma *anon_vma = NULL;
bda807d4 1015 bool is_lru = !__PageMovable(page);
95a402c3 1016
529ae9aa 1017 if (!trylock_page(page)) {
a6bc32b8 1018 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1019 goto out;
3e7d3449
MG
1020
1021 /*
1022 * It's not safe for direct compaction to call lock_page.
1023 * For example, during page readahead pages are added locked
1024 * to the LRU. Later, when the IO completes the pages are
1025 * marked uptodate and unlocked. However, the queueing
1026 * could be merging multiple pages for one bio (e.g.
1027 * mpage_readpages). If an allocation happens for the
1028 * second or third page, the process can end up locking
1029 * the same page twice and deadlocking. Rather than
1030 * trying to be clever about what pages can be locked,
1031 * avoid the use of lock_page for direct compaction
1032 * altogether.
1033 */
1034 if (current->flags & PF_MEMALLOC)
0dabec93 1035 goto out;
3e7d3449 1036
e24f0b8f
CL
1037 lock_page(page);
1038 }
1039
1040 if (PageWriteback(page)) {
11bc82d6 1041 /*
fed5b64a 1042 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1043 * necessary to wait for PageWriteback. In the async case,
1044 * the retry loop is too short and in the sync-light case,
1045 * the overhead of stalling is too much
11bc82d6 1046 */
2916ecc0
JG
1047 switch (mode) {
1048 case MIGRATE_SYNC:
1049 case MIGRATE_SYNC_NO_COPY:
1050 break;
1051 default:
11bc82d6 1052 rc = -EBUSY;
0a31bc97 1053 goto out_unlock;
11bc82d6
AA
1054 }
1055 if (!force)
0a31bc97 1056 goto out_unlock;
e24f0b8f
CL
1057 wait_on_page_writeback(page);
1058 }
03f15c86 1059
e24f0b8f 1060 /*
dc386d4d
KH
1061 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1062 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1063 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1064 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1065 * File Caches may use write_page() or lock_page() in migration, then,
1066 * just care Anon page here.
03f15c86
HD
1067 *
1068 * Only page_get_anon_vma() understands the subtleties of
1069 * getting a hold on an anon_vma from outside one of its mms.
1070 * But if we cannot get anon_vma, then we won't need it anyway,
1071 * because that implies that the anon page is no longer mapped
1072 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1073 */
03f15c86 1074 if (PageAnon(page) && !PageKsm(page))
746b18d4 1075 anon_vma = page_get_anon_vma(page);
62e1c553 1076
7db7671f
HD
1077 /*
1078 * Block others from accessing the new page when we get around to
1079 * establishing additional references. We are usually the only one
1080 * holding a reference to newpage at this point. We used to have a BUG
1081 * here if trylock_page(newpage) fails, but would like to allow for
1082 * cases where there might be a race with the previous use of newpage.
1083 * This is much like races on refcount of oldpage: just don't BUG().
1084 */
1085 if (unlikely(!trylock_page(newpage)))
1086 goto out_unlock;
1087
bda807d4
MK
1088 if (unlikely(!is_lru)) {
1089 rc = move_to_new_page(newpage, page, mode);
1090 goto out_unlock_both;
1091 }
1092
dc386d4d 1093 /*
62e1c553
SL
1094 * Corner case handling:
1095 * 1. When a new swap-cache page is read into, it is added to the LRU
1096 * and treated as swapcache but it has no rmap yet.
1097 * Calling try_to_unmap() against a page->mapping==NULL page will
1098 * trigger a BUG. So handle it here.
1099 * 2. An orphaned page (see truncate_complete_page) might have
1100 * fs-private metadata. The page can be picked up due to memory
1101 * offlining. Everywhere else except page reclaim, the page is
1102 * invisible to the vm, so the page can not be migrated. So try to
1103 * free the metadata, so the page can be freed.
e24f0b8f 1104 */
62e1c553 1105 if (!page->mapping) {
309381fe 1106 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1107 if (page_has_private(page)) {
62e1c553 1108 try_to_free_buffers(page);
7db7671f 1109 goto out_unlock_both;
62e1c553 1110 }
7db7671f
HD
1111 } else if (page_mapped(page)) {
1112 /* Establish migration ptes */
03f15c86
HD
1113 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1114 page);
2ebba6b7 1115 try_to_unmap(page,
da1b13cc 1116 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1117 page_was_mapped = 1;
1118 }
dc386d4d 1119
e6a1530d 1120 if (!page_mapped(page))
5c3f9a67 1121 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1122
5c3f9a67
HD
1123 if (page_was_mapped)
1124 remove_migration_ptes(page,
e388466d 1125 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1126
7db7671f
HD
1127out_unlock_both:
1128 unlock_page(newpage);
1129out_unlock:
3f6c8272 1130 /* Drop an anon_vma reference if we took one */
76545066 1131 if (anon_vma)
9e60109f 1132 put_anon_vma(anon_vma);
e24f0b8f 1133 unlock_page(page);
0dabec93 1134out:
c6c919eb
MK
1135 /*
1136 * If migration is successful, decrease refcount of the newpage
1137 * which will not free the page because new page owner increased
1138 * refcounter. As well, if it is LRU page, add the page to LRU
1139 * list in here.
1140 */
1141 if (rc == MIGRATEPAGE_SUCCESS) {
b1123ea6 1142 if (unlikely(__PageMovable(newpage)))
c6c919eb
MK
1143 put_page(newpage);
1144 else
1145 putback_lru_page(newpage);
1146 }
1147
0dabec93
MK
1148 return rc;
1149}
95a402c3 1150
ef2a5153
GU
1151/*
1152 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1153 * around it.
1154 */
815f0ddb
ND
1155#if defined(CONFIG_ARM) && \
1156 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
ef2a5153
GU
1157#define ICE_noinline noinline
1158#else
1159#define ICE_noinline
1160#endif
1161
0dabec93
MK
1162/*
1163 * Obtain the lock on page, remove all ptes and migrate the page
1164 * to the newly allocated page in newpage.
1165 */
ef2a5153
GU
1166static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1167 free_page_t put_new_page,
1168 unsigned long private, struct page *page,
add05cec
NH
1169 int force, enum migrate_mode mode,
1170 enum migrate_reason reason)
0dabec93 1171{
2def7424 1172 int rc = MIGRATEPAGE_SUCCESS;
2def7424 1173 struct page *newpage;
0dabec93 1174
94723aaf
MH
1175 if (!thp_migration_supported() && PageTransHuge(page))
1176 return -ENOMEM;
1177
666feb21 1178 newpage = get_new_page(page, private);
0dabec93
MK
1179 if (!newpage)
1180 return -ENOMEM;
1181
1182 if (page_count(page) == 1) {
1183 /* page was freed from under us. So we are done. */
c6c919eb
MK
1184 ClearPageActive(page);
1185 ClearPageUnevictable(page);
bda807d4
MK
1186 if (unlikely(__PageMovable(page))) {
1187 lock_page(page);
1188 if (!PageMovable(page))
1189 __ClearPageIsolated(page);
1190 unlock_page(page);
1191 }
c6c919eb
MK
1192 if (put_new_page)
1193 put_new_page(newpage, private);
1194 else
1195 put_page(newpage);
0dabec93
MK
1196 goto out;
1197 }
1198
9c620e2b 1199 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1200 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1201 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1202
0dabec93 1203out:
e24f0b8f 1204 if (rc != -EAGAIN) {
0dabec93
MK
1205 /*
1206 * A page that has been migrated has all references
1207 * removed and will be freed. A page that has not been
1208 * migrated will have kepts its references and be
1209 * restored.
1210 */
1211 list_del(&page->lru);
6afcf8ef
ML
1212
1213 /*
1214 * Compaction can migrate also non-LRU pages which are
1215 * not accounted to NR_ISOLATED_*. They can be recognized
1216 * as __PageMovable
1217 */
1218 if (likely(!__PageMovable(page)))
e8db67eb
NH
1219 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1220 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1221 }
1222
1223 /*
1224 * If migration is successful, releases reference grabbed during
1225 * isolation. Otherwise, restore the page to right list unless
1226 * we want to retry.
1227 */
1228 if (rc == MIGRATEPAGE_SUCCESS) {
1229 put_page(page);
1230 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1231 /*
c6c919eb
MK
1232 * Set PG_HWPoison on just freed page
1233 * intentionally. Although it's rather weird,
1234 * it's how HWPoison flag works at the moment.
d7e69488 1235 */
d4ae9916 1236 if (set_hwpoison_free_buddy_page(page))
da1b13cc 1237 num_poisoned_pages_inc();
c6c919eb
MK
1238 }
1239 } else {
bda807d4
MK
1240 if (rc != -EAGAIN) {
1241 if (likely(!__PageMovable(page))) {
1242 putback_lru_page(page);
1243 goto put_new;
1244 }
1245
1246 lock_page(page);
1247 if (PageMovable(page))
1248 putback_movable_page(page);
1249 else
1250 __ClearPageIsolated(page);
1251 unlock_page(page);
1252 put_page(page);
1253 }
1254put_new:
c6c919eb
MK
1255 if (put_new_page)
1256 put_new_page(newpage, private);
1257 else
1258 put_page(newpage);
e24f0b8f 1259 }
68711a74 1260
e24f0b8f
CL
1261 return rc;
1262}
1263
290408d4
NH
1264/*
1265 * Counterpart of unmap_and_move_page() for hugepage migration.
1266 *
1267 * This function doesn't wait the completion of hugepage I/O
1268 * because there is no race between I/O and migration for hugepage.
1269 * Note that currently hugepage I/O occurs only in direct I/O
1270 * where no lock is held and PG_writeback is irrelevant,
1271 * and writeback status of all subpages are counted in the reference
1272 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1273 * under direct I/O, the reference of the head page is 512 and a bit more.)
1274 * This means that when we try to migrate hugepage whose subpages are
1275 * doing direct I/O, some references remain after try_to_unmap() and
1276 * hugepage migration fails without data corruption.
1277 *
1278 * There is also no race when direct I/O is issued on the page under migration,
1279 * because then pte is replaced with migration swap entry and direct I/O code
1280 * will wait in the page fault for migration to complete.
1281 */
1282static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1283 free_page_t put_new_page, unsigned long private,
1284 struct page *hpage, int force,
7cd12b4a 1285 enum migrate_mode mode, int reason)
290408d4 1286{
2def7424 1287 int rc = -EAGAIN;
2ebba6b7 1288 int page_was_mapped = 0;
32665f2b 1289 struct page *new_hpage;
290408d4
NH
1290 struct anon_vma *anon_vma = NULL;
1291
83467efb
NH
1292 /*
1293 * Movability of hugepages depends on architectures and hugepage size.
1294 * This check is necessary because some callers of hugepage migration
1295 * like soft offline and memory hotremove don't walk through page
1296 * tables or check whether the hugepage is pmd-based or not before
1297 * kicking migration.
1298 */
100873d7 1299 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1300 putback_active_hugepage(hpage);
83467efb 1301 return -ENOSYS;
32665f2b 1302 }
83467efb 1303
666feb21 1304 new_hpage = get_new_page(hpage, private);
290408d4
NH
1305 if (!new_hpage)
1306 return -ENOMEM;
1307
290408d4 1308 if (!trylock_page(hpage)) {
2916ecc0 1309 if (!force)
290408d4 1310 goto out;
2916ecc0
JG
1311 switch (mode) {
1312 case MIGRATE_SYNC:
1313 case MIGRATE_SYNC_NO_COPY:
1314 break;
1315 default:
1316 goto out;
1317 }
290408d4
NH
1318 lock_page(hpage);
1319 }
1320
746b18d4
PZ
1321 if (PageAnon(hpage))
1322 anon_vma = page_get_anon_vma(hpage);
290408d4 1323
7db7671f
HD
1324 if (unlikely(!trylock_page(new_hpage)))
1325 goto put_anon;
1326
2ebba6b7
HD
1327 if (page_mapped(hpage)) {
1328 try_to_unmap(hpage,
1329 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1330 page_was_mapped = 1;
1331 }
290408d4
NH
1332
1333 if (!page_mapped(hpage))
5c3f9a67 1334 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1335
5c3f9a67
HD
1336 if (page_was_mapped)
1337 remove_migration_ptes(hpage,
e388466d 1338 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1339
7db7671f
HD
1340 unlock_page(new_hpage);
1341
1342put_anon:
fd4a4663 1343 if (anon_vma)
9e60109f 1344 put_anon_vma(anon_vma);
8e6ac7fa 1345
2def7424 1346 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1347 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1348 put_new_page = NULL;
1349 }
8e6ac7fa 1350
290408d4 1351 unlock_page(hpage);
09761333 1352out:
b8ec1cee
NH
1353 if (rc != -EAGAIN)
1354 putback_active_hugepage(hpage);
68711a74
DR
1355
1356 /*
1357 * If migration was not successful and there's a freeing callback, use
1358 * it. Otherwise, put_page() will drop the reference grabbed during
1359 * isolation.
1360 */
2def7424 1361 if (put_new_page)
68711a74
DR
1362 put_new_page(new_hpage, private);
1363 else
3aaa76e1 1364 putback_active_hugepage(new_hpage);
68711a74 1365
290408d4
NH
1366 return rc;
1367}
1368
b20a3503 1369/*
c73e5c9c
SB
1370 * migrate_pages - migrate the pages specified in a list, to the free pages
1371 * supplied as the target for the page migration
b20a3503 1372 *
c73e5c9c
SB
1373 * @from: The list of pages to be migrated.
1374 * @get_new_page: The function used to allocate free pages to be used
1375 * as the target of the page migration.
68711a74
DR
1376 * @put_new_page: The function used to free target pages if migration
1377 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1378 * @private: Private data to be passed on to get_new_page()
1379 * @mode: The migration mode that specifies the constraints for
1380 * page migration, if any.
1381 * @reason: The reason for page migration.
b20a3503 1382 *
c73e5c9c
SB
1383 * The function returns after 10 attempts or if no pages are movable any more
1384 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1385 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1386 * or free list only if ret != 0.
b20a3503 1387 *
c73e5c9c 1388 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1389 */
9c620e2b 1390int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1391 free_page_t put_new_page, unsigned long private,
1392 enum migrate_mode mode, int reason)
b20a3503 1393{
e24f0b8f 1394 int retry = 1;
b20a3503 1395 int nr_failed = 0;
5647bc29 1396 int nr_succeeded = 0;
b20a3503
CL
1397 int pass = 0;
1398 struct page *page;
1399 struct page *page2;
1400 int swapwrite = current->flags & PF_SWAPWRITE;
1401 int rc;
1402
1403 if (!swapwrite)
1404 current->flags |= PF_SWAPWRITE;
1405
e24f0b8f
CL
1406 for(pass = 0; pass < 10 && retry; pass++) {
1407 retry = 0;
b20a3503 1408
e24f0b8f 1409 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1410retry:
e24f0b8f 1411 cond_resched();
2d1db3b1 1412
31caf665
NH
1413 if (PageHuge(page))
1414 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1415 put_new_page, private, page,
7cd12b4a 1416 pass > 2, mode, reason);
31caf665 1417 else
68711a74 1418 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1419 private, page, pass > 2, mode,
1420 reason);
2d1db3b1 1421
e24f0b8f 1422 switch(rc) {
95a402c3 1423 case -ENOMEM:
94723aaf
MH
1424 /*
1425 * THP migration might be unsupported or the
1426 * allocation could've failed so we should
1427 * retry on the same page with the THP split
1428 * to base pages.
1429 *
1430 * Head page is retried immediately and tail
1431 * pages are added to the tail of the list so
1432 * we encounter them after the rest of the list
1433 * is processed.
1434 */
e6112fc3 1435 if (PageTransHuge(page) && !PageHuge(page)) {
94723aaf
MH
1436 lock_page(page);
1437 rc = split_huge_page_to_list(page, from);
1438 unlock_page(page);
1439 if (!rc) {
1440 list_safe_reset_next(page, page2, lru);
1441 goto retry;
1442 }
1443 }
dfef2ef4 1444 nr_failed++;
95a402c3 1445 goto out;
e24f0b8f 1446 case -EAGAIN:
2d1db3b1 1447 retry++;
e24f0b8f 1448 break;
78bd5209 1449 case MIGRATEPAGE_SUCCESS:
5647bc29 1450 nr_succeeded++;
e24f0b8f
CL
1451 break;
1452 default:
354a3363
NH
1453 /*
1454 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1455 * unlike -EAGAIN case, the failed page is
1456 * removed from migration page list and not
1457 * retried in the next outer loop.
1458 */
2d1db3b1 1459 nr_failed++;
e24f0b8f 1460 break;
2d1db3b1 1461 }
b20a3503
CL
1462 }
1463 }
f2f81fb2
VB
1464 nr_failed += retry;
1465 rc = nr_failed;
95a402c3 1466out:
5647bc29
MG
1467 if (nr_succeeded)
1468 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1469 if (nr_failed)
1470 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1471 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1472
b20a3503
CL
1473 if (!swapwrite)
1474 current->flags &= ~PF_SWAPWRITE;
1475
78bd5209 1476 return rc;
b20a3503 1477}
95a402c3 1478
742755a1 1479#ifdef CONFIG_NUMA
742755a1 1480
a49bd4d7 1481static int store_status(int __user *status, int start, int value, int nr)
742755a1 1482{
a49bd4d7
MH
1483 while (nr-- > 0) {
1484 if (put_user(value, status + start))
1485 return -EFAULT;
1486 start++;
1487 }
1488
1489 return 0;
1490}
1491
1492static int do_move_pages_to_node(struct mm_struct *mm,
1493 struct list_head *pagelist, int node)
1494{
1495 int err;
1496
1497 if (list_empty(pagelist))
1498 return 0;
1499
1500 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1501 MIGRATE_SYNC, MR_SYSCALL);
1502 if (err)
1503 putback_movable_pages(pagelist);
1504 return err;
742755a1
CL
1505}
1506
1507/*
a49bd4d7
MH
1508 * Resolves the given address to a struct page, isolates it from the LRU and
1509 * puts it to the given pagelist.
1510 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1511 * queued or the page doesn't need to be migrated because it is already on
1512 * the target node
742755a1 1513 */
a49bd4d7
MH
1514static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1515 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1516{
a49bd4d7
MH
1517 struct vm_area_struct *vma;
1518 struct page *page;
1519 unsigned int follflags;
742755a1 1520 int err;
742755a1
CL
1521
1522 down_read(&mm->mmap_sem);
a49bd4d7
MH
1523 err = -EFAULT;
1524 vma = find_vma(mm, addr);
1525 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1526 goto out;
742755a1 1527
a49bd4d7
MH
1528 /* FOLL_DUMP to ignore special (like zero) pages */
1529 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1530 page = follow_page(vma, addr, follflags);
89f5b7da 1531
a49bd4d7
MH
1532 err = PTR_ERR(page);
1533 if (IS_ERR(page))
1534 goto out;
89f5b7da 1535
a49bd4d7
MH
1536 err = -ENOENT;
1537 if (!page)
1538 goto out;
742755a1 1539
a49bd4d7
MH
1540 err = 0;
1541 if (page_to_nid(page) == node)
1542 goto out_putpage;
742755a1 1543
a49bd4d7
MH
1544 err = -EACCES;
1545 if (page_mapcount(page) > 1 && !migrate_all)
1546 goto out_putpage;
742755a1 1547
a49bd4d7
MH
1548 if (PageHuge(page)) {
1549 if (PageHead(page)) {
1550 isolate_huge_page(page, pagelist);
1551 err = 0;
e632a938 1552 }
a49bd4d7
MH
1553 } else {
1554 struct page *head;
e632a938 1555
e8db67eb
NH
1556 head = compound_head(page);
1557 err = isolate_lru_page(head);
cf608ac1 1558 if (err)
a49bd4d7 1559 goto out_putpage;
742755a1 1560
a49bd4d7
MH
1561 err = 0;
1562 list_add_tail(&head->lru, pagelist);
1563 mod_node_page_state(page_pgdat(head),
1564 NR_ISOLATED_ANON + page_is_file_cache(head),
1565 hpage_nr_pages(head));
1566 }
1567out_putpage:
1568 /*
1569 * Either remove the duplicate refcount from
1570 * isolate_lru_page() or drop the page ref if it was
1571 * not isolated.
1572 */
1573 put_page(page);
1574out:
742755a1
CL
1575 up_read(&mm->mmap_sem);
1576 return err;
1577}
1578
5e9a0f02
BG
1579/*
1580 * Migrate an array of page address onto an array of nodes and fill
1581 * the corresponding array of status.
1582 */
3268c63e 1583static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1584 unsigned long nr_pages,
1585 const void __user * __user *pages,
1586 const int __user *nodes,
1587 int __user *status, int flags)
1588{
a49bd4d7
MH
1589 int current_node = NUMA_NO_NODE;
1590 LIST_HEAD(pagelist);
1591 int start, i;
1592 int err = 0, err1;
35282a2d
BG
1593
1594 migrate_prep();
1595
a49bd4d7
MH
1596 for (i = start = 0; i < nr_pages; i++) {
1597 const void __user *p;
1598 unsigned long addr;
1599 int node;
3140a227 1600
a49bd4d7
MH
1601 err = -EFAULT;
1602 if (get_user(p, pages + i))
1603 goto out_flush;
1604 if (get_user(node, nodes + i))
1605 goto out_flush;
1606 addr = (unsigned long)p;
1607
1608 err = -ENODEV;
1609 if (node < 0 || node >= MAX_NUMNODES)
1610 goto out_flush;
1611 if (!node_state(node, N_MEMORY))
1612 goto out_flush;
5e9a0f02 1613
a49bd4d7
MH
1614 err = -EACCES;
1615 if (!node_isset(node, task_nodes))
1616 goto out_flush;
1617
1618 if (current_node == NUMA_NO_NODE) {
1619 current_node = node;
1620 start = i;
1621 } else if (node != current_node) {
1622 err = do_move_pages_to_node(mm, &pagelist, current_node);
1623 if (err)
1624 goto out;
1625 err = store_status(status, start, current_node, i - start);
1626 if (err)
1627 goto out;
1628 start = i;
1629 current_node = node;
3140a227
BG
1630 }
1631
a49bd4d7
MH
1632 /*
1633 * Errors in the page lookup or isolation are not fatal and we simply
1634 * report them via status
1635 */
1636 err = add_page_for_migration(mm, addr, current_node,
1637 &pagelist, flags & MPOL_MF_MOVE_ALL);
1638 if (!err)
1639 continue;
3140a227 1640
a49bd4d7
MH
1641 err = store_status(status, i, err, 1);
1642 if (err)
1643 goto out_flush;
5e9a0f02 1644
a49bd4d7
MH
1645 err = do_move_pages_to_node(mm, &pagelist, current_node);
1646 if (err)
1647 goto out;
1648 if (i > start) {
1649 err = store_status(status, start, current_node, i - start);
1650 if (err)
1651 goto out;
1652 }
1653 current_node = NUMA_NO_NODE;
3140a227 1654 }
a49bd4d7 1655out_flush:
8f175cf5
MH
1656 if (list_empty(&pagelist))
1657 return err;
1658
a49bd4d7
MH
1659 /* Make sure we do not overwrite the existing error */
1660 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1661 if (!err1)
1662 err1 = store_status(status, start, current_node, i - start);
1663 if (!err)
1664 err = err1;
5e9a0f02
BG
1665out:
1666 return err;
1667}
1668
742755a1 1669/*
2f007e74 1670 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1671 */
80bba129
BG
1672static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1673 const void __user **pages, int *status)
742755a1 1674{
2f007e74 1675 unsigned long i;
2f007e74 1676
742755a1
CL
1677 down_read(&mm->mmap_sem);
1678
2f007e74 1679 for (i = 0; i < nr_pages; i++) {
80bba129 1680 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1681 struct vm_area_struct *vma;
1682 struct page *page;
c095adbc 1683 int err = -EFAULT;
2f007e74
BG
1684
1685 vma = find_vma(mm, addr);
70384dc6 1686 if (!vma || addr < vma->vm_start)
742755a1
CL
1687 goto set_status;
1688
d899844e
KS
1689 /* FOLL_DUMP to ignore special (like zero) pages */
1690 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1691
1692 err = PTR_ERR(page);
1693 if (IS_ERR(page))
1694 goto set_status;
1695
d899844e 1696 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1697set_status:
80bba129
BG
1698 *status = err;
1699
1700 pages++;
1701 status++;
1702 }
1703
1704 up_read(&mm->mmap_sem);
1705}
1706
1707/*
1708 * Determine the nodes of a user array of pages and store it in
1709 * a user array of status.
1710 */
1711static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1712 const void __user * __user *pages,
1713 int __user *status)
1714{
1715#define DO_PAGES_STAT_CHUNK_NR 16
1716 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1717 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1718
87b8d1ad
PA
1719 while (nr_pages) {
1720 unsigned long chunk_nr;
80bba129 1721
87b8d1ad
PA
1722 chunk_nr = nr_pages;
1723 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1724 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1725
1726 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1727 break;
80bba129
BG
1728
1729 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1730
87b8d1ad
PA
1731 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1732 break;
742755a1 1733
87b8d1ad
PA
1734 pages += chunk_nr;
1735 status += chunk_nr;
1736 nr_pages -= chunk_nr;
1737 }
1738 return nr_pages ? -EFAULT : 0;
742755a1
CL
1739}
1740
1741/*
1742 * Move a list of pages in the address space of the currently executing
1743 * process.
1744 */
7addf443
DB
1745static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1746 const void __user * __user *pages,
1747 const int __user *nodes,
1748 int __user *status, int flags)
742755a1 1749{
742755a1 1750 struct task_struct *task;
742755a1 1751 struct mm_struct *mm;
5e9a0f02 1752 int err;
3268c63e 1753 nodemask_t task_nodes;
742755a1
CL
1754
1755 /* Check flags */
1756 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1757 return -EINVAL;
1758
1759 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1760 return -EPERM;
1761
1762 /* Find the mm_struct */
a879bf58 1763 rcu_read_lock();
228ebcbe 1764 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1765 if (!task) {
a879bf58 1766 rcu_read_unlock();
742755a1
CL
1767 return -ESRCH;
1768 }
3268c63e 1769 get_task_struct(task);
742755a1
CL
1770
1771 /*
1772 * Check if this process has the right to modify the specified
197e7e52 1773 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1774 */
197e7e52 1775 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1776 rcu_read_unlock();
742755a1 1777 err = -EPERM;
5e9a0f02 1778 goto out;
742755a1 1779 }
c69e8d9c 1780 rcu_read_unlock();
742755a1 1781
86c3a764
DQ
1782 err = security_task_movememory(task);
1783 if (err)
5e9a0f02 1784 goto out;
86c3a764 1785
3268c63e
CL
1786 task_nodes = cpuset_mems_allowed(task);
1787 mm = get_task_mm(task);
1788 put_task_struct(task);
1789
6e8b09ea
SL
1790 if (!mm)
1791 return -EINVAL;
1792
1793 if (nodes)
1794 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1795 nodes, status, flags);
1796 else
1797 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1798
742755a1
CL
1799 mmput(mm);
1800 return err;
3268c63e
CL
1801
1802out:
1803 put_task_struct(task);
1804 return err;
742755a1 1805}
742755a1 1806
7addf443
DB
1807SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1808 const void __user * __user *, pages,
1809 const int __user *, nodes,
1810 int __user *, status, int, flags)
1811{
1812 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1813}
1814
1815#ifdef CONFIG_COMPAT
1816COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1817 compat_uptr_t __user *, pages32,
1818 const int __user *, nodes,
1819 int __user *, status,
1820 int, flags)
1821{
1822 const void __user * __user *pages;
1823 int i;
1824
1825 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1826 for (i = 0; i < nr_pages; i++) {
1827 compat_uptr_t p;
1828
1829 if (get_user(p, pages32 + i) ||
1830 put_user(compat_ptr(p), pages + i))
1831 return -EFAULT;
1832 }
1833 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1834}
1835#endif /* CONFIG_COMPAT */
1836
7039e1db
PZ
1837#ifdef CONFIG_NUMA_BALANCING
1838/*
1839 * Returns true if this is a safe migration target node for misplaced NUMA
1840 * pages. Currently it only checks the watermarks which crude
1841 */
1842static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1843 unsigned long nr_migrate_pages)
7039e1db
PZ
1844{
1845 int z;
599d0c95 1846
7039e1db
PZ
1847 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1848 struct zone *zone = pgdat->node_zones + z;
1849
1850 if (!populated_zone(zone))
1851 continue;
1852
7039e1db
PZ
1853 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1854 if (!zone_watermark_ok(zone, 0,
1855 high_wmark_pages(zone) +
1856 nr_migrate_pages,
1857 0, 0))
1858 continue;
1859 return true;
1860 }
1861 return false;
1862}
1863
1864static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 1865 unsigned long data)
7039e1db
PZ
1866{
1867 int nid = (int) data;
1868 struct page *newpage;
1869
96db800f 1870 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1871 (GFP_HIGHUSER_MOVABLE |
1872 __GFP_THISNODE | __GFP_NOMEMALLOC |
1873 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1874 ~__GFP_RECLAIM, 0);
bac0382c 1875
7039e1db
PZ
1876 return newpage;
1877}
1878
1c30e017 1879static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1880{
340ef390 1881 int page_lru;
a8f60772 1882
309381fe 1883 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1884
7039e1db 1885 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1886 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1887 return 0;
7039e1db 1888
340ef390
HD
1889 if (isolate_lru_page(page))
1890 return 0;
7039e1db 1891
340ef390
HD
1892 /*
1893 * migrate_misplaced_transhuge_page() skips page migration's usual
1894 * check on page_count(), so we must do it here, now that the page
1895 * has been isolated: a GUP pin, or any other pin, prevents migration.
1896 * The expected page count is 3: 1 for page's mapcount and 1 for the
1897 * caller's pin and 1 for the reference taken by isolate_lru_page().
1898 */
1899 if (PageTransHuge(page) && page_count(page) != 3) {
1900 putback_lru_page(page);
1901 return 0;
7039e1db
PZ
1902 }
1903
340ef390 1904 page_lru = page_is_file_cache(page);
599d0c95 1905 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1906 hpage_nr_pages(page));
1907
149c33e1 1908 /*
340ef390
HD
1909 * Isolating the page has taken another reference, so the
1910 * caller's reference can be safely dropped without the page
1911 * disappearing underneath us during migration.
149c33e1
MG
1912 */
1913 put_page(page);
340ef390 1914 return 1;
b32967ff
MG
1915}
1916
de466bd6
MG
1917bool pmd_trans_migrating(pmd_t pmd)
1918{
1919 struct page *page = pmd_page(pmd);
1920 return PageLocked(page);
1921}
1922
b32967ff
MG
1923/*
1924 * Attempt to migrate a misplaced page to the specified destination
1925 * node. Caller is expected to have an elevated reference count on
1926 * the page that will be dropped by this function before returning.
1927 */
1bc115d8
MG
1928int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1929 int node)
b32967ff
MG
1930{
1931 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1932 int isolated;
b32967ff
MG
1933 int nr_remaining;
1934 LIST_HEAD(migratepages);
1935
1936 /*
1bc115d8
MG
1937 * Don't migrate file pages that are mapped in multiple processes
1938 * with execute permissions as they are probably shared libraries.
b32967ff 1939 */
1bc115d8
MG
1940 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1941 (vma->vm_flags & VM_EXEC))
b32967ff 1942 goto out;
b32967ff 1943
09a913a7
MG
1944 /*
1945 * Also do not migrate dirty pages as not all filesystems can move
1946 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1947 */
1948 if (page_is_file_cache(page) && PageDirty(page))
1949 goto out;
1950
b32967ff
MG
1951 isolated = numamigrate_isolate_page(pgdat, page);
1952 if (!isolated)
1953 goto out;
1954
1955 list_add(&page->lru, &migratepages);
9c620e2b 1956 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1957 NULL, node, MIGRATE_ASYNC,
1958 MR_NUMA_MISPLACED);
b32967ff 1959 if (nr_remaining) {
59c82b70
JK
1960 if (!list_empty(&migratepages)) {
1961 list_del(&page->lru);
599d0c95 1962 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1963 page_is_file_cache(page));
1964 putback_lru_page(page);
1965 }
b32967ff
MG
1966 isolated = 0;
1967 } else
1968 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1969 BUG_ON(!list_empty(&migratepages));
7039e1db 1970 return isolated;
340ef390
HD
1971
1972out:
1973 put_page(page);
1974 return 0;
7039e1db 1975}
220018d3 1976#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1977
220018d3 1978#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1979/*
1980 * Migrates a THP to a given target node. page must be locked and is unlocked
1981 * before returning.
1982 */
b32967ff
MG
1983int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1984 struct vm_area_struct *vma,
1985 pmd_t *pmd, pmd_t entry,
1986 unsigned long address,
1987 struct page *page, int node)
1988{
c4088ebd 1989 spinlock_t *ptl;
b32967ff
MG
1990 pg_data_t *pgdat = NODE_DATA(node);
1991 int isolated = 0;
1992 struct page *new_page = NULL;
b32967ff 1993 int page_lru = page_is_file_cache(page);
7066f0f9 1994 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 1995
b32967ff 1996 new_page = alloc_pages_node(node,
25160354 1997 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 1998 HPAGE_PMD_ORDER);
340ef390
HD
1999 if (!new_page)
2000 goto out_fail;
9a982250 2001 prep_transhuge_page(new_page);
340ef390 2002
b32967ff 2003 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2004 if (!isolated) {
b32967ff 2005 put_page(new_page);
340ef390 2006 goto out_fail;
b32967ff 2007 }
b0943d61 2008
b32967ff 2009 /* Prepare a page as a migration target */
48c935ad 2010 __SetPageLocked(new_page);
d44d363f
SL
2011 if (PageSwapBacked(page))
2012 __SetPageSwapBacked(new_page);
b32967ff
MG
2013
2014 /* anon mapping, we can simply copy page->mapping to the new page: */
2015 new_page->mapping = page->mapping;
2016 new_page->index = page->index;
7eef5f97
AA
2017 /* flush the cache before copying using the kernel virtual address */
2018 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2019 migrate_page_copy(new_page, page);
2020 WARN_ON(PageLRU(new_page));
2021
2022 /* Recheck the target PMD */
c4088ebd 2023 ptl = pmd_lock(mm, pmd);
f4e177d1 2024 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2025 spin_unlock(ptl);
b32967ff
MG
2026
2027 /* Reverse changes made by migrate_page_copy() */
2028 if (TestClearPageActive(new_page))
2029 SetPageActive(page);
2030 if (TestClearPageUnevictable(new_page))
2031 SetPageUnevictable(page);
b32967ff
MG
2032
2033 unlock_page(new_page);
2034 put_page(new_page); /* Free it */
2035
a54a407f
MG
2036 /* Retake the callers reference and putback on LRU */
2037 get_page(page);
b32967ff 2038 putback_lru_page(page);
599d0c95 2039 mod_node_page_state(page_pgdat(page),
a54a407f 2040 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2041
2042 goto out_unlock;
b32967ff
MG
2043 }
2044
10102459 2045 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2046 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2047
2b4847e7 2048 /*
d7c33934
AA
2049 * Overwrite the old entry under pagetable lock and establish
2050 * the new PTE. Any parallel GUP will either observe the old
2051 * page blocking on the page lock, block on the page table
2052 * lock or observe the new page. The SetPageUptodate on the
2053 * new page and page_add_new_anon_rmap guarantee the copy is
2054 * visible before the pagetable update.
2b4847e7 2055 */
7066f0f9 2056 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2057 /*
2058 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2059 * has already been flushed globally. So no TLB can be currently
2060 * caching this non present pmd mapping. There's no need to clear the
2061 * pmd before doing set_pmd_at(), nor to flush the TLB after
2062 * set_pmd_at(). Clearing the pmd here would introduce a race
2063 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2064 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2065 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2066 * pmd.
2067 */
7066f0f9 2068 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2069 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2070
f4e177d1 2071 page_ref_unfreeze(page, 2);
51afb12b 2072 mlock_migrate_page(new_page, page);
d281ee61 2073 page_remove_rmap(page, true);
7cd12b4a 2074 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2075
c4088ebd 2076 spin_unlock(ptl);
b32967ff 2077
11de9927
MG
2078 /* Take an "isolate" reference and put new page on the LRU. */
2079 get_page(new_page);
2080 putback_lru_page(new_page);
2081
b32967ff
MG
2082 unlock_page(new_page);
2083 unlock_page(page);
2084 put_page(page); /* Drop the rmap reference */
2085 put_page(page); /* Drop the LRU isolation reference */
2086
2087 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2088 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2089
599d0c95 2090 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2091 NR_ISOLATED_ANON + page_lru,
2092 -HPAGE_PMD_NR);
2093 return isolated;
2094
340ef390
HD
2095out_fail:
2096 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2097 ptl = pmd_lock(mm, pmd);
2098 if (pmd_same(*pmd, entry)) {
4d942466 2099 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2100 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2101 update_mmu_cache_pmd(vma, address, &entry);
2102 }
2103 spin_unlock(ptl);
a54a407f 2104
eb4489f6 2105out_unlock:
340ef390 2106 unlock_page(page);
b32967ff 2107 put_page(page);
b32967ff
MG
2108 return 0;
2109}
7039e1db
PZ
2110#endif /* CONFIG_NUMA_BALANCING */
2111
2112#endif /* CONFIG_NUMA */
8763cb45 2113
6b368cd4 2114#if defined(CONFIG_MIGRATE_VMA_HELPER)
8763cb45
JG
2115struct migrate_vma {
2116 struct vm_area_struct *vma;
2117 unsigned long *dst;
2118 unsigned long *src;
2119 unsigned long cpages;
2120 unsigned long npages;
2121 unsigned long start;
2122 unsigned long end;
2123};
2124
2125static int migrate_vma_collect_hole(unsigned long start,
2126 unsigned long end,
2127 struct mm_walk *walk)
2128{
2129 struct migrate_vma *migrate = walk->private;
2130 unsigned long addr;
2131
8315ada7 2132 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
e20d103b 2133 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2134 migrate->dst[migrate->npages] = 0;
e20d103b 2135 migrate->npages++;
8315ada7
JG
2136 migrate->cpages++;
2137 }
2138
2139 return 0;
2140}
2141
2142static int migrate_vma_collect_skip(unsigned long start,
2143 unsigned long end,
2144 struct mm_walk *walk)
2145{
2146 struct migrate_vma *migrate = walk->private;
2147 unsigned long addr;
2148
8763cb45
JG
2149 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2150 migrate->dst[migrate->npages] = 0;
2151 migrate->src[migrate->npages++] = 0;
2152 }
2153
2154 return 0;
2155}
2156
2157static int migrate_vma_collect_pmd(pmd_t *pmdp,
2158 unsigned long start,
2159 unsigned long end,
2160 struct mm_walk *walk)
2161{
2162 struct migrate_vma *migrate = walk->private;
2163 struct vm_area_struct *vma = walk->vma;
2164 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2165 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2166 spinlock_t *ptl;
2167 pte_t *ptep;
2168
2169again:
2170 if (pmd_none(*pmdp))
2171 return migrate_vma_collect_hole(start, end, walk);
2172
2173 if (pmd_trans_huge(*pmdp)) {
2174 struct page *page;
2175
2176 ptl = pmd_lock(mm, pmdp);
2177 if (unlikely(!pmd_trans_huge(*pmdp))) {
2178 spin_unlock(ptl);
2179 goto again;
2180 }
2181
2182 page = pmd_page(*pmdp);
2183 if (is_huge_zero_page(page)) {
2184 spin_unlock(ptl);
2185 split_huge_pmd(vma, pmdp, addr);
2186 if (pmd_trans_unstable(pmdp))
8315ada7 2187 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2188 walk);
2189 } else {
2190 int ret;
2191
2192 get_page(page);
2193 spin_unlock(ptl);
2194 if (unlikely(!trylock_page(page)))
8315ada7 2195 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2196 walk);
2197 ret = split_huge_page(page);
2198 unlock_page(page);
2199 put_page(page);
8315ada7
JG
2200 if (ret)
2201 return migrate_vma_collect_skip(start, end,
2202 walk);
2203 if (pmd_none(*pmdp))
8763cb45
JG
2204 return migrate_vma_collect_hole(start, end,
2205 walk);
2206 }
2207 }
2208
2209 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2210 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2211
2212 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2213 arch_enter_lazy_mmu_mode();
2214
8763cb45
JG
2215 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2216 unsigned long mpfn, pfn;
2217 struct page *page;
8c3328f1 2218 swp_entry_t entry;
8763cb45
JG
2219 pte_t pte;
2220
2221 pte = *ptep;
2222 pfn = pte_pfn(pte);
2223
a5430dda 2224 if (pte_none(pte)) {
8315ada7
JG
2225 mpfn = MIGRATE_PFN_MIGRATE;
2226 migrate->cpages++;
2227 pfn = 0;
8763cb45
JG
2228 goto next;
2229 }
2230
a5430dda
JG
2231 if (!pte_present(pte)) {
2232 mpfn = pfn = 0;
2233
2234 /*
2235 * Only care about unaddressable device page special
2236 * page table entry. Other special swap entries are not
2237 * migratable, and we ignore regular swapped page.
2238 */
2239 entry = pte_to_swp_entry(pte);
2240 if (!is_device_private_entry(entry))
2241 goto next;
2242
2243 page = device_private_entry_to_page(entry);
2244 mpfn = migrate_pfn(page_to_pfn(page))|
2245 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2246 if (is_write_device_private_entry(entry))
2247 mpfn |= MIGRATE_PFN_WRITE;
2248 } else {
8315ada7
JG
2249 if (is_zero_pfn(pfn)) {
2250 mpfn = MIGRATE_PFN_MIGRATE;
2251 migrate->cpages++;
2252 pfn = 0;
2253 goto next;
2254 }
df6ad698 2255 page = _vm_normal_page(migrate->vma, addr, pte, true);
a5430dda
JG
2256 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2257 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2258 }
2259
8763cb45 2260 /* FIXME support THP */
8763cb45
JG
2261 if (!page || !page->mapping || PageTransCompound(page)) {
2262 mpfn = pfn = 0;
2263 goto next;
2264 }
a5430dda 2265 pfn = page_to_pfn(page);
8763cb45
JG
2266
2267 /*
2268 * By getting a reference on the page we pin it and that blocks
2269 * any kind of migration. Side effect is that it "freezes" the
2270 * pte.
2271 *
2272 * We drop this reference after isolating the page from the lru
2273 * for non device page (device page are not on the lru and thus
2274 * can't be dropped from it).
2275 */
2276 get_page(page);
2277 migrate->cpages++;
8763cb45 2278
8c3328f1
JG
2279 /*
2280 * Optimize for the common case where page is only mapped once
2281 * in one process. If we can lock the page, then we can safely
2282 * set up a special migration page table entry now.
2283 */
2284 if (trylock_page(page)) {
2285 pte_t swp_pte;
2286
2287 mpfn |= MIGRATE_PFN_LOCKED;
2288 ptep_get_and_clear(mm, addr, ptep);
2289
2290 /* Setup special migration page table entry */
07707125
RC
2291 entry = make_migration_entry(page, mpfn &
2292 MIGRATE_PFN_WRITE);
8c3328f1
JG
2293 swp_pte = swp_entry_to_pte(entry);
2294 if (pte_soft_dirty(pte))
2295 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2296 set_pte_at(mm, addr, ptep, swp_pte);
2297
2298 /*
2299 * This is like regular unmap: we remove the rmap and
2300 * drop page refcount. Page won't be freed, as we took
2301 * a reference just above.
2302 */
2303 page_remove_rmap(page, false);
2304 put_page(page);
a5430dda
JG
2305
2306 if (pte_present(pte))
2307 unmapped++;
8c3328f1
JG
2308 }
2309
8763cb45 2310next:
a5430dda 2311 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2312 migrate->src[migrate->npages++] = mpfn;
2313 }
8c3328f1 2314 arch_leave_lazy_mmu_mode();
8763cb45
JG
2315 pte_unmap_unlock(ptep - 1, ptl);
2316
8c3328f1
JG
2317 /* Only flush the TLB if we actually modified any entries */
2318 if (unmapped)
2319 flush_tlb_range(walk->vma, start, end);
2320
8763cb45
JG
2321 return 0;
2322}
2323
2324/*
2325 * migrate_vma_collect() - collect pages over a range of virtual addresses
2326 * @migrate: migrate struct containing all migration information
2327 *
2328 * This will walk the CPU page table. For each virtual address backed by a
2329 * valid page, it updates the src array and takes a reference on the page, in
2330 * order to pin the page until we lock it and unmap it.
2331 */
2332static void migrate_vma_collect(struct migrate_vma *migrate)
2333{
ac46d4f3 2334 struct mmu_notifier_range range;
8763cb45
JG
2335 struct mm_walk mm_walk;
2336
2337 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2338 mm_walk.pte_entry = NULL;
2339 mm_walk.pte_hole = migrate_vma_collect_hole;
2340 mm_walk.hugetlb_entry = NULL;
2341 mm_walk.test_walk = NULL;
2342 mm_walk.vma = migrate->vma;
2343 mm_walk.mm = migrate->vma->vm_mm;
2344 mm_walk.private = migrate;
2345
ac46d4f3
JG
2346 mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2347 migrate->end);
2348 mmu_notifier_invalidate_range_start(&range);
8763cb45 2349 walk_page_range(migrate->start, migrate->end, &mm_walk);
ac46d4f3 2350 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2351
2352 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2353}
2354
2355/*
2356 * migrate_vma_check_page() - check if page is pinned or not
2357 * @page: struct page to check
2358 *
2359 * Pinned pages cannot be migrated. This is the same test as in
2360 * migrate_page_move_mapping(), except that here we allow migration of a
2361 * ZONE_DEVICE page.
2362 */
2363static bool migrate_vma_check_page(struct page *page)
2364{
2365 /*
2366 * One extra ref because caller holds an extra reference, either from
2367 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2368 * a device page.
2369 */
2370 int extra = 1;
2371
2372 /*
2373 * FIXME support THP (transparent huge page), it is bit more complex to
2374 * check them than regular pages, because they can be mapped with a pmd
2375 * or with a pte (split pte mapping).
2376 */
2377 if (PageCompound(page))
2378 return false;
2379
a5430dda
JG
2380 /* Page from ZONE_DEVICE have one extra reference */
2381 if (is_zone_device_page(page)) {
2382 /*
2383 * Private page can never be pin as they have no valid pte and
2384 * GUP will fail for those. Yet if there is a pending migration
2385 * a thread might try to wait on the pte migration entry and
2386 * will bump the page reference count. Sadly there is no way to
2387 * differentiate a regular pin from migration wait. Hence to
2388 * avoid 2 racing thread trying to migrate back to CPU to enter
2389 * infinite loop (one stoping migration because the other is
2390 * waiting on pte migration entry). We always return true here.
2391 *
2392 * FIXME proper solution is to rework migration_entry_wait() so
2393 * it does not need to take a reference on page.
2394 */
2395 if (is_device_private_page(page))
2396 return true;
2397
df6ad698
JG
2398 /*
2399 * Only allow device public page to be migrated and account for
2400 * the extra reference count imply by ZONE_DEVICE pages.
2401 */
2402 if (!is_device_public_page(page))
2403 return false;
2404 extra++;
a5430dda
JG
2405 }
2406
df6ad698
JG
2407 /* For file back page */
2408 if (page_mapping(page))
2409 extra += 1 + page_has_private(page);
2410
8763cb45
JG
2411 if ((page_count(page) - extra) > page_mapcount(page))
2412 return false;
2413
2414 return true;
2415}
2416
2417/*
2418 * migrate_vma_prepare() - lock pages and isolate them from the lru
2419 * @migrate: migrate struct containing all migration information
2420 *
2421 * This locks pages that have been collected by migrate_vma_collect(). Once each
2422 * page is locked it is isolated from the lru (for non-device pages). Finally,
2423 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2424 * migrated by concurrent kernel threads.
2425 */
2426static void migrate_vma_prepare(struct migrate_vma *migrate)
2427{
2428 const unsigned long npages = migrate->npages;
8c3328f1
JG
2429 const unsigned long start = migrate->start;
2430 unsigned long addr, i, restore = 0;
8763cb45 2431 bool allow_drain = true;
8763cb45
JG
2432
2433 lru_add_drain();
2434
2435 for (i = 0; (i < npages) && migrate->cpages; i++) {
2436 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2437 bool remap = true;
8763cb45
JG
2438
2439 if (!page)
2440 continue;
2441
8c3328f1
JG
2442 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2443 /*
2444 * Because we are migrating several pages there can be
2445 * a deadlock between 2 concurrent migration where each
2446 * are waiting on each other page lock.
2447 *
2448 * Make migrate_vma() a best effort thing and backoff
2449 * for any page we can not lock right away.
2450 */
2451 if (!trylock_page(page)) {
2452 migrate->src[i] = 0;
2453 migrate->cpages--;
2454 put_page(page);
2455 continue;
2456 }
2457 remap = false;
2458 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2459 }
8763cb45 2460
a5430dda
JG
2461 /* ZONE_DEVICE pages are not on LRU */
2462 if (!is_zone_device_page(page)) {
2463 if (!PageLRU(page) && allow_drain) {
2464 /* Drain CPU's pagevec */
2465 lru_add_drain_all();
2466 allow_drain = false;
2467 }
8763cb45 2468
a5430dda
JG
2469 if (isolate_lru_page(page)) {
2470 if (remap) {
2471 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2472 migrate->cpages--;
2473 restore++;
2474 } else {
2475 migrate->src[i] = 0;
2476 unlock_page(page);
2477 migrate->cpages--;
2478 put_page(page);
2479 }
2480 continue;
8c3328f1 2481 }
a5430dda
JG
2482
2483 /* Drop the reference we took in collect */
2484 put_page(page);
8763cb45
JG
2485 }
2486
2487 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2488 if (remap) {
2489 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2490 migrate->cpages--;
2491 restore++;
8763cb45 2492
a5430dda
JG
2493 if (!is_zone_device_page(page)) {
2494 get_page(page);
2495 putback_lru_page(page);
2496 }
8c3328f1
JG
2497 } else {
2498 migrate->src[i] = 0;
2499 unlock_page(page);
2500 migrate->cpages--;
2501
a5430dda
JG
2502 if (!is_zone_device_page(page))
2503 putback_lru_page(page);
2504 else
2505 put_page(page);
8c3328f1 2506 }
8763cb45
JG
2507 }
2508 }
8c3328f1
JG
2509
2510 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2511 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2512
2513 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2514 continue;
2515
2516 remove_migration_pte(page, migrate->vma, addr, page);
2517
2518 migrate->src[i] = 0;
2519 unlock_page(page);
2520 put_page(page);
2521 restore--;
2522 }
8763cb45
JG
2523}
2524
2525/*
2526 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2527 * @migrate: migrate struct containing all migration information
2528 *
2529 * Replace page mapping (CPU page table pte) with a special migration pte entry
2530 * and check again if it has been pinned. Pinned pages are restored because we
2531 * cannot migrate them.
2532 *
2533 * This is the last step before we call the device driver callback to allocate
2534 * destination memory and copy contents of original page over to new page.
2535 */
2536static void migrate_vma_unmap(struct migrate_vma *migrate)
2537{
2538 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2539 const unsigned long npages = migrate->npages;
2540 const unsigned long start = migrate->start;
2541 unsigned long addr, i, restore = 0;
2542
2543 for (i = 0; i < npages; i++) {
2544 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2545
2546 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2547 continue;
2548
8c3328f1
JG
2549 if (page_mapped(page)) {
2550 try_to_unmap(page, flags);
2551 if (page_mapped(page))
2552 goto restore;
8763cb45 2553 }
8c3328f1
JG
2554
2555 if (migrate_vma_check_page(page))
2556 continue;
2557
2558restore:
2559 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2560 migrate->cpages--;
2561 restore++;
8763cb45
JG
2562 }
2563
2564 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2565 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2566
2567 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2568 continue;
2569
2570 remove_migration_ptes(page, page, false);
2571
2572 migrate->src[i] = 0;
2573 unlock_page(page);
2574 restore--;
2575
a5430dda
JG
2576 if (is_zone_device_page(page))
2577 put_page(page);
2578 else
2579 putback_lru_page(page);
8763cb45
JG
2580 }
2581}
2582
8315ada7
JG
2583static void migrate_vma_insert_page(struct migrate_vma *migrate,
2584 unsigned long addr,
2585 struct page *page,
2586 unsigned long *src,
2587 unsigned long *dst)
2588{
2589 struct vm_area_struct *vma = migrate->vma;
2590 struct mm_struct *mm = vma->vm_mm;
2591 struct mem_cgroup *memcg;
2592 bool flush = false;
2593 spinlock_t *ptl;
2594 pte_t entry;
2595 pgd_t *pgdp;
2596 p4d_t *p4dp;
2597 pud_t *pudp;
2598 pmd_t *pmdp;
2599 pte_t *ptep;
2600
2601 /* Only allow populating anonymous memory */
2602 if (!vma_is_anonymous(vma))
2603 goto abort;
2604
2605 pgdp = pgd_offset(mm, addr);
2606 p4dp = p4d_alloc(mm, pgdp, addr);
2607 if (!p4dp)
2608 goto abort;
2609 pudp = pud_alloc(mm, p4dp, addr);
2610 if (!pudp)
2611 goto abort;
2612 pmdp = pmd_alloc(mm, pudp, addr);
2613 if (!pmdp)
2614 goto abort;
2615
2616 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2617 goto abort;
2618
2619 /*
2620 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2621 * pte_offset_map() on pmds where a huge pmd might be created
2622 * from a different thread.
2623 *
2624 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2625 * parallel threads are excluded by other means.
2626 *
2627 * Here we only have down_read(mmap_sem).
2628 */
2629 if (pte_alloc(mm, pmdp, addr))
2630 goto abort;
2631
2632 /* See the comment in pte_alloc_one_map() */
2633 if (unlikely(pmd_trans_unstable(pmdp)))
2634 goto abort;
2635
2636 if (unlikely(anon_vma_prepare(vma)))
2637 goto abort;
2638 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2639 goto abort;
2640
2641 /*
2642 * The memory barrier inside __SetPageUptodate makes sure that
2643 * preceding stores to the page contents become visible before
2644 * the set_pte_at() write.
2645 */
2646 __SetPageUptodate(page);
2647
df6ad698
JG
2648 if (is_zone_device_page(page)) {
2649 if (is_device_private_page(page)) {
2650 swp_entry_t swp_entry;
2651
2652 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2653 entry = swp_entry_to_pte(swp_entry);
2654 } else if (is_device_public_page(page)) {
2655 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2656 if (vma->vm_flags & VM_WRITE)
2657 entry = pte_mkwrite(pte_mkdirty(entry));
2658 entry = pte_mkdevmap(entry);
2659 }
8315ada7
JG
2660 } else {
2661 entry = mk_pte(page, vma->vm_page_prot);
2662 if (vma->vm_flags & VM_WRITE)
2663 entry = pte_mkwrite(pte_mkdirty(entry));
2664 }
2665
2666 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2667
2668 if (pte_present(*ptep)) {
2669 unsigned long pfn = pte_pfn(*ptep);
2670
2671 if (!is_zero_pfn(pfn)) {
2672 pte_unmap_unlock(ptep, ptl);
2673 mem_cgroup_cancel_charge(page, memcg, false);
2674 goto abort;
2675 }
2676 flush = true;
2677 } else if (!pte_none(*ptep)) {
2678 pte_unmap_unlock(ptep, ptl);
2679 mem_cgroup_cancel_charge(page, memcg, false);
2680 goto abort;
2681 }
2682
2683 /*
2684 * Check for usefaultfd but do not deliver the fault. Instead,
2685 * just back off.
2686 */
2687 if (userfaultfd_missing(vma)) {
2688 pte_unmap_unlock(ptep, ptl);
2689 mem_cgroup_cancel_charge(page, memcg, false);
2690 goto abort;
2691 }
2692
2693 inc_mm_counter(mm, MM_ANONPAGES);
2694 page_add_new_anon_rmap(page, vma, addr, false);
2695 mem_cgroup_commit_charge(page, memcg, false, false);
2696 if (!is_zone_device_page(page))
2697 lru_cache_add_active_or_unevictable(page, vma);
2698 get_page(page);
2699
2700 if (flush) {
2701 flush_cache_page(vma, addr, pte_pfn(*ptep));
2702 ptep_clear_flush_notify(vma, addr, ptep);
2703 set_pte_at_notify(mm, addr, ptep, entry);
2704 update_mmu_cache(vma, addr, ptep);
2705 } else {
2706 /* No need to invalidate - it was non-present before */
2707 set_pte_at(mm, addr, ptep, entry);
2708 update_mmu_cache(vma, addr, ptep);
2709 }
2710
2711 pte_unmap_unlock(ptep, ptl);
2712 *src = MIGRATE_PFN_MIGRATE;
2713 return;
2714
2715abort:
2716 *src &= ~MIGRATE_PFN_MIGRATE;
2717}
2718
8763cb45
JG
2719/*
2720 * migrate_vma_pages() - migrate meta-data from src page to dst page
2721 * @migrate: migrate struct containing all migration information
2722 *
2723 * This migrates struct page meta-data from source struct page to destination
2724 * struct page. This effectively finishes the migration from source page to the
2725 * destination page.
2726 */
2727static void migrate_vma_pages(struct migrate_vma *migrate)
2728{
2729 const unsigned long npages = migrate->npages;
2730 const unsigned long start = migrate->start;
ac46d4f3
JG
2731 struct mmu_notifier_range range;
2732 unsigned long addr, i;
8315ada7 2733 bool notified = false;
8763cb45
JG
2734
2735 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2736 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2737 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2738 struct address_space *mapping;
2739 int r;
2740
8315ada7
JG
2741 if (!newpage) {
2742 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2743 continue;
8315ada7
JG
2744 }
2745
2746 if (!page) {
2747 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2748 continue;
2749 }
2750 if (!notified) {
8315ada7 2751 notified = true;
ac46d4f3
JG
2752
2753 mmu_notifier_range_init(&range,
2754 migrate->vma->vm_mm,
2755 addr, migrate->end);
2756 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
2757 }
2758 migrate_vma_insert_page(migrate, addr, newpage,
2759 &migrate->src[i],
2760 &migrate->dst[i]);
8763cb45 2761 continue;
8315ada7 2762 }
8763cb45
JG
2763
2764 mapping = page_mapping(page);
2765
a5430dda
JG
2766 if (is_zone_device_page(newpage)) {
2767 if (is_device_private_page(newpage)) {
2768 /*
2769 * For now only support private anonymous when
2770 * migrating to un-addressable device memory.
2771 */
2772 if (mapping) {
2773 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2774 continue;
2775 }
df6ad698 2776 } else if (!is_device_public_page(newpage)) {
a5430dda
JG
2777 /*
2778 * Other types of ZONE_DEVICE page are not
2779 * supported.
2780 */
2781 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2782 continue;
2783 }
2784 }
2785
8763cb45
JG
2786 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2787 if (r != MIGRATEPAGE_SUCCESS)
2788 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2789 }
8315ada7 2790
4645b9fe
JG
2791 /*
2792 * No need to double call mmu_notifier->invalidate_range() callback as
2793 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2794 * did already call it.
2795 */
8315ada7 2796 if (notified)
ac46d4f3 2797 mmu_notifier_invalidate_range_only_end(&range);
8763cb45
JG
2798}
2799
2800/*
2801 * migrate_vma_finalize() - restore CPU page table entry
2802 * @migrate: migrate struct containing all migration information
2803 *
2804 * This replaces the special migration pte entry with either a mapping to the
2805 * new page if migration was successful for that page, or to the original page
2806 * otherwise.
2807 *
2808 * This also unlocks the pages and puts them back on the lru, or drops the extra
2809 * refcount, for device pages.
2810 */
2811static void migrate_vma_finalize(struct migrate_vma *migrate)
2812{
2813 const unsigned long npages = migrate->npages;
2814 unsigned long i;
2815
2816 for (i = 0; i < npages; i++) {
2817 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2818 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2819
8315ada7
JG
2820 if (!page) {
2821 if (newpage) {
2822 unlock_page(newpage);
2823 put_page(newpage);
2824 }
8763cb45 2825 continue;
8315ada7
JG
2826 }
2827
8763cb45
JG
2828 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2829 if (newpage) {
2830 unlock_page(newpage);
2831 put_page(newpage);
2832 }
2833 newpage = page;
2834 }
2835
2836 remove_migration_ptes(page, newpage, false);
2837 unlock_page(page);
2838 migrate->cpages--;
2839
a5430dda
JG
2840 if (is_zone_device_page(page))
2841 put_page(page);
2842 else
2843 putback_lru_page(page);
8763cb45
JG
2844
2845 if (newpage != page) {
2846 unlock_page(newpage);
a5430dda
JG
2847 if (is_zone_device_page(newpage))
2848 put_page(newpage);
2849 else
2850 putback_lru_page(newpage);
8763cb45
JG
2851 }
2852 }
2853}
2854
2855/*
2856 * migrate_vma() - migrate a range of memory inside vma
2857 *
2858 * @ops: migration callback for allocating destination memory and copying
2859 * @vma: virtual memory area containing the range to be migrated
2860 * @start: start address of the range to migrate (inclusive)
2861 * @end: end address of the range to migrate (exclusive)
2862 * @src: array of hmm_pfn_t containing source pfns
2863 * @dst: array of hmm_pfn_t containing destination pfns
2864 * @private: pointer passed back to each of the callback
2865 * Returns: 0 on success, error code otherwise
2866 *
2867 * This function tries to migrate a range of memory virtual address range, using
2868 * callbacks to allocate and copy memory from source to destination. First it
2869 * collects all the pages backing each virtual address in the range, saving this
2870 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2871 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2872 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2873 * in the corresponding src array entry. It then restores any pages that are
2874 * pinned, by remapping and unlocking those pages.
2875 *
2876 * At this point it calls the alloc_and_copy() callback. For documentation on
2877 * what is expected from that callback, see struct migrate_vma_ops comments in
2878 * include/linux/migrate.h
2879 *
2880 * After the alloc_and_copy() callback, this function goes over each entry in
2881 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2882 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2883 * then the function tries to migrate struct page information from the source
2884 * struct page to the destination struct page. If it fails to migrate the struct
2885 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2886 * array.
2887 *
2888 * At this point all successfully migrated pages have an entry in the src
2889 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2890 * array entry with MIGRATE_PFN_VALID flag set.
2891 *
2892 * It then calls the finalize_and_map() callback. See comments for "struct
2893 * migrate_vma_ops", in include/linux/migrate.h for details about
2894 * finalize_and_map() behavior.
2895 *
2896 * After the finalize_and_map() callback, for successfully migrated pages, this
2897 * function updates the CPU page table to point to new pages, otherwise it
2898 * restores the CPU page table to point to the original source pages.
2899 *
2900 * Function returns 0 after the above steps, even if no pages were migrated
2901 * (The function only returns an error if any of the arguments are invalid.)
2902 *
2903 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2904 * unsigned long entries.
2905 */
2906int migrate_vma(const struct migrate_vma_ops *ops,
2907 struct vm_area_struct *vma,
2908 unsigned long start,
2909 unsigned long end,
2910 unsigned long *src,
2911 unsigned long *dst,
2912 void *private)
2913{
2914 struct migrate_vma migrate;
2915
2916 /* Sanity check the arguments */
2917 start &= PAGE_MASK;
2918 end &= PAGE_MASK;
e1fb4a08
DJ
2919 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2920 vma_is_dax(vma))
8763cb45
JG
2921 return -EINVAL;
2922 if (start < vma->vm_start || start >= vma->vm_end)
2923 return -EINVAL;
2924 if (end <= vma->vm_start || end > vma->vm_end)
2925 return -EINVAL;
2926 if (!ops || !src || !dst || start >= end)
2927 return -EINVAL;
2928
2929 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2930 migrate.src = src;
2931 migrate.dst = dst;
2932 migrate.start = start;
2933 migrate.npages = 0;
2934 migrate.cpages = 0;
2935 migrate.end = end;
2936 migrate.vma = vma;
2937
2938 /* Collect, and try to unmap source pages */
2939 migrate_vma_collect(&migrate);
2940 if (!migrate.cpages)
2941 return 0;
2942
2943 /* Lock and isolate page */
2944 migrate_vma_prepare(&migrate);
2945 if (!migrate.cpages)
2946 return 0;
2947
2948 /* Unmap pages */
2949 migrate_vma_unmap(&migrate);
2950 if (!migrate.cpages)
2951 return 0;
2952
2953 /*
2954 * At this point pages are locked and unmapped, and thus they have
2955 * stable content and can safely be copied to destination memory that
2956 * is allocated by the callback.
2957 *
2958 * Note that migration can fail in migrate_vma_struct_page() for each
2959 * individual page.
2960 */
2961 ops->alloc_and_copy(vma, src, dst, start, end, private);
2962
2963 /* This does the real migration of struct page */
2964 migrate_vma_pages(&migrate);
2965
2966 ops->finalize_and_map(vma, src, dst, start, end, private);
2967
2968 /* Unlock and remap pages */
2969 migrate_vma_finalize(&migrate);
2970
2971 return 0;
2972}
2973EXPORT_SYMBOL(migrate_vma);
6b368cd4 2974#endif /* defined(MIGRATE_VMA_HELPER) */