]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/migrate.c
mm, numa: rework do_pages_move
[thirdparty/kernel/stable.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
df6ad698 41#include <linux/pfn_t.h>
a5430dda 42#include <linux/memremap.h>
8315ada7 43#include <linux/userfaultfd_k.h>
bf6bddf1 44#include <linux/balloon_compaction.h>
f714f4f2 45#include <linux/mmu_notifier.h>
33c3fc71 46#include <linux/page_idle.h>
d435edca 47#include <linux/page_owner.h>
6e84f315 48#include <linux/sched/mm.h>
197e7e52 49#include <linux/ptrace.h>
b20a3503 50
0d1836c3
MN
51#include <asm/tlbflush.h>
52
7b2a2d4a
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/migrate.h>
55
b20a3503
CL
56#include "internal.h"
57
b20a3503 58/*
742755a1 59 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
b20a3503
CL
62 */
63int migrate_prep(void)
64{
b20a3503
CL
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74}
75
748446bb
MG
76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
77int migrate_prep_local(void)
78{
79 lru_add_drain();
80
81 return 0;
82}
83
9e5bcd61 84int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
85{
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
9e5bcd61 135 return 0;
bda807d4
MK
136
137out_no_isolated:
138 unlock_page(page);
139out_putpage:
140 put_page(page);
141out:
9e5bcd61 142 return -EBUSY;
bda807d4
MK
143}
144
145/* It should be called on page which is PG_movable */
146void putback_movable_page(struct page *page)
147{
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157}
158
5733c7d1
RA
159/*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
59c82b70
JK
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
5733c7d1
RA
166 */
167void putback_movable_pages(struct list_head *l)
168{
169 struct page *page;
170 struct page *page2;
171
b20a3503 172 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
e24f0b8f 177 list_del(&page->lru);
bda807d4
MK
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
b1123ea6 183 if (unlikely(__PageMovable(page))) {
bda807d4
MK
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
e8db67eb
NH
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 195 putback_lru_page(page);
bda807d4 196 }
b20a3503 197 }
b20a3503
CL
198}
199
0697212a
CL
200/*
201 * Restore a potential migration pte to a working pte entry
202 */
e4b82222 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 204 unsigned long addr, void *old)
0697212a 205{
3fe87967
KS
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
0697212a 214 swp_entry_t entry;
0697212a 215
3fe87967
KS
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
0697212a 223
616b8371
ZY
224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231#endif
232
3fe87967
KS
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
0697212a 237
3fe87967
KS
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 244
df6ad698
JG
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
252 }
a5430dda
JG
253 } else
254 flush_dcache_page(new);
255
3ef8fd7f 256#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
383321ab
AK
265 } else
266#endif
267 {
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 269
383321ab
AK
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
274 }
3fe87967
KS
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
277
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 }
51afb12b 281
e4b82222 282 return true;
0697212a
CL
283}
284
04e62a29
CL
285/*
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
288 */
e388466d 289void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 290{
051ac83a
JK
291 struct rmap_walk_control rwc = {
292 .rmap_one = remove_migration_pte,
293 .arg = old,
294 };
295
e388466d
KS
296 if (locked)
297 rmap_walk_locked(new, &rwc);
298 else
299 rmap_walk(new, &rwc);
04e62a29
CL
300}
301
0697212a
CL
302/*
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
0697212a 306 */
e66f17ff 307void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 308 spinlock_t *ptl)
0697212a 309{
30dad309 310 pte_t pte;
0697212a
CL
311 swp_entry_t entry;
312 struct page *page;
313
30dad309 314 spin_lock(ptl);
0697212a
CL
315 pte = *ptep;
316 if (!is_swap_pte(pte))
317 goto out;
318
319 entry = pte_to_swp_entry(pte);
320 if (!is_migration_entry(entry))
321 goto out;
322
323 page = migration_entry_to_page(entry);
324
e286781d
NP
325 /*
326 * Once radix-tree replacement of page migration started, page_count
327 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 * against a page without get_page().
329 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 * will occur again.
331 */
332 if (!get_page_unless_zero(page))
333 goto out;
0697212a
CL
334 pte_unmap_unlock(ptep, ptl);
335 wait_on_page_locked(page);
336 put_page(page);
337 return;
338out:
339 pte_unmap_unlock(ptep, ptl);
340}
341
30dad309
NH
342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
344{
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
348}
349
cb900f41
KS
350void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
30dad309 352{
cb900f41 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
354 __migration_entry_wait(mm, pte, ptl);
355}
356
616b8371
ZY
357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359{
360 spinlock_t *ptl;
361 struct page *page;
362
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
370 wait_on_page_locked(page);
371 put_page(page);
372 return;
373unlock:
374 spin_unlock(ptl);
375}
376#endif
377
b969c4ab
MG
378#ifdef CONFIG_BLOCK
379/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
380static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 enum migrate_mode mode)
b969c4ab
MG
382{
383 struct buffer_head *bh = head;
384
385 /* Simple case, sync compaction */
a6bc32b8 386 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
387 do {
388 get_bh(bh);
389 lock_buffer(bh);
390 bh = bh->b_this_page;
391
392 } while (bh != head);
393
394 return true;
395 }
396
397 /* async case, we cannot block on lock_buffer so use trylock_buffer */
398 do {
399 get_bh(bh);
400 if (!trylock_buffer(bh)) {
401 /*
402 * We failed to lock the buffer and cannot stall in
403 * async migration. Release the taken locks
404 */
405 struct buffer_head *failed_bh = bh;
406 put_bh(failed_bh);
407 bh = head;
408 while (bh != failed_bh) {
409 unlock_buffer(bh);
410 put_bh(bh);
411 bh = bh->b_this_page;
412 }
413 return false;
414 }
415
416 bh = bh->b_this_page;
417 } while (bh != head);
418 return true;
419}
420#else
421static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 422 enum migrate_mode mode)
b969c4ab
MG
423{
424 return true;
425}
426#endif /* CONFIG_BLOCK */
427
b20a3503 428/*
c3fcf8a5 429 * Replace the page in the mapping.
5b5c7120
CL
430 *
431 * The number of remaining references must be:
432 * 1 for anonymous pages without a mapping
433 * 2 for pages with a mapping
266cf658 434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 435 */
36bc08cc 436int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 437 struct page *newpage, struct page *page,
8e321fef
BL
438 struct buffer_head *head, enum migrate_mode mode,
439 int extra_count)
b20a3503 440{
42cb14b1
HD
441 struct zone *oldzone, *newzone;
442 int dirty;
8e321fef 443 int expected_count = 1 + extra_count;
7cf9c2c7 444 void **pslot;
b20a3503 445
8763cb45 446 /*
df6ad698
JG
447 * Device public or private pages have an extra refcount as they are
448 * ZONE_DEVICE pages.
8763cb45 449 */
df6ad698
JG
450 expected_count += is_device_private_page(page);
451 expected_count += is_device_public_page(page);
8763cb45 452
6c5240ae 453 if (!mapping) {
0e8c7d0f 454 /* Anonymous page without mapping */
8e321fef 455 if (page_count(page) != expected_count)
6c5240ae 456 return -EAGAIN;
cf4b769a
HD
457
458 /* No turning back from here */
cf4b769a
HD
459 newpage->index = page->index;
460 newpage->mapping = page->mapping;
461 if (PageSwapBacked(page))
fa9949da 462 __SetPageSwapBacked(newpage);
cf4b769a 463
78bd5209 464 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
465 }
466
42cb14b1
HD
467 oldzone = page_zone(page);
468 newzone = page_zone(newpage);
469
19fd6231 470 spin_lock_irq(&mapping->tree_lock);
b20a3503 471
7cf9c2c7
NP
472 pslot = radix_tree_lookup_slot(&mapping->page_tree,
473 page_index(page));
b20a3503 474
8e321fef 475 expected_count += 1 + page_has_private(page);
e286781d 476 if (page_count(page) != expected_count ||
29c1f677 477 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 478 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 479 return -EAGAIN;
b20a3503
CL
480 }
481
fe896d18 482 if (!page_ref_freeze(page, expected_count)) {
19fd6231 483 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
484 return -EAGAIN;
485 }
486
b969c4ab
MG
487 /*
488 * In the async migration case of moving a page with buffers, lock the
489 * buffers using trylock before the mapping is moved. If the mapping
490 * was moved, we later failed to lock the buffers and could not move
491 * the mapping back due to an elevated page count, we would have to
492 * block waiting on other references to be dropped.
493 */
a6bc32b8
MG
494 if (mode == MIGRATE_ASYNC && head &&
495 !buffer_migrate_lock_buffers(head, mode)) {
fe896d18 496 page_ref_unfreeze(page, expected_count);
b969c4ab
MG
497 spin_unlock_irq(&mapping->tree_lock);
498 return -EAGAIN;
499 }
500
b20a3503 501 /*
cf4b769a
HD
502 * Now we know that no one else is looking at the page:
503 * no turning back from here.
b20a3503 504 */
cf4b769a
HD
505 newpage->index = page->index;
506 newpage->mapping = page->mapping;
7cf9c2c7 507 get_page(newpage); /* add cache reference */
6326fec1
NP
508 if (PageSwapBacked(page)) {
509 __SetPageSwapBacked(newpage);
510 if (PageSwapCache(page)) {
511 SetPageSwapCache(newpage);
512 set_page_private(newpage, page_private(page));
513 }
514 } else {
515 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
516 }
517
42cb14b1
HD
518 /* Move dirty while page refs frozen and newpage not yet exposed */
519 dirty = PageDirty(page);
520 if (dirty) {
521 ClearPageDirty(page);
522 SetPageDirty(newpage);
523 }
524
6d75f366 525 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
7cf9c2c7
NP
526
527 /*
937a94c9
JG
528 * Drop cache reference from old page by unfreezing
529 * to one less reference.
7cf9c2c7
NP
530 * We know this isn't the last reference.
531 */
fe896d18 532 page_ref_unfreeze(page, expected_count - 1);
7cf9c2c7 533
42cb14b1
HD
534 spin_unlock(&mapping->tree_lock);
535 /* Leave irq disabled to prevent preemption while updating stats */
536
0e8c7d0f
CL
537 /*
538 * If moved to a different zone then also account
539 * the page for that zone. Other VM counters will be
540 * taken care of when we establish references to the
541 * new page and drop references to the old page.
542 *
543 * Note that anonymous pages are accounted for
4b9d0fab 544 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
545 * are mapped to swap space.
546 */
42cb14b1 547 if (newzone != oldzone) {
11fb9989
MG
548 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
549 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 550 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
551 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
552 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
553 }
554 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 555 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 556 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 557 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 558 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 559 }
4b02108a 560 }
42cb14b1 561 local_irq_enable();
b20a3503 562
78bd5209 563 return MIGRATEPAGE_SUCCESS;
b20a3503 564}
1118dce7 565EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 566
290408d4
NH
567/*
568 * The expected number of remaining references is the same as that
569 * of migrate_page_move_mapping().
570 */
571int migrate_huge_page_move_mapping(struct address_space *mapping,
572 struct page *newpage, struct page *page)
573{
574 int expected_count;
575 void **pslot;
576
290408d4
NH
577 spin_lock_irq(&mapping->tree_lock);
578
579 pslot = radix_tree_lookup_slot(&mapping->page_tree,
580 page_index(page));
581
582 expected_count = 2 + page_has_private(page);
583 if (page_count(page) != expected_count ||
29c1f677 584 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
585 spin_unlock_irq(&mapping->tree_lock);
586 return -EAGAIN;
587 }
588
fe896d18 589 if (!page_ref_freeze(page, expected_count)) {
290408d4
NH
590 spin_unlock_irq(&mapping->tree_lock);
591 return -EAGAIN;
592 }
593
cf4b769a
HD
594 newpage->index = page->index;
595 newpage->mapping = page->mapping;
6a93ca8f 596
290408d4
NH
597 get_page(newpage);
598
6d75f366 599 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
290408d4 600
fe896d18 601 page_ref_unfreeze(page, expected_count - 1);
290408d4
NH
602
603 spin_unlock_irq(&mapping->tree_lock);
6a93ca8f 604
78bd5209 605 return MIGRATEPAGE_SUCCESS;
290408d4
NH
606}
607
30b0a105
DH
608/*
609 * Gigantic pages are so large that we do not guarantee that page++ pointer
610 * arithmetic will work across the entire page. We need something more
611 * specialized.
612 */
613static void __copy_gigantic_page(struct page *dst, struct page *src,
614 int nr_pages)
615{
616 int i;
617 struct page *dst_base = dst;
618 struct page *src_base = src;
619
620 for (i = 0; i < nr_pages; ) {
621 cond_resched();
622 copy_highpage(dst, src);
623
624 i++;
625 dst = mem_map_next(dst, dst_base, i);
626 src = mem_map_next(src, src_base, i);
627 }
628}
629
630static void copy_huge_page(struct page *dst, struct page *src)
631{
632 int i;
633 int nr_pages;
634
635 if (PageHuge(src)) {
636 /* hugetlbfs page */
637 struct hstate *h = page_hstate(src);
638 nr_pages = pages_per_huge_page(h);
639
640 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
641 __copy_gigantic_page(dst, src, nr_pages);
642 return;
643 }
644 } else {
645 /* thp page */
646 BUG_ON(!PageTransHuge(src));
647 nr_pages = hpage_nr_pages(src);
648 }
649
650 for (i = 0; i < nr_pages; i++) {
651 cond_resched();
652 copy_highpage(dst + i, src + i);
653 }
654}
655
b20a3503
CL
656/*
657 * Copy the page to its new location
658 */
2916ecc0 659void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 660{
7851a45c
RR
661 int cpupid;
662
b20a3503
CL
663 if (PageError(page))
664 SetPageError(newpage);
665 if (PageReferenced(page))
666 SetPageReferenced(newpage);
667 if (PageUptodate(page))
668 SetPageUptodate(newpage);
894bc310 669 if (TestClearPageActive(page)) {
309381fe 670 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 671 SetPageActive(newpage);
418b27ef
LS
672 } else if (TestClearPageUnevictable(page))
673 SetPageUnevictable(newpage);
b20a3503
CL
674 if (PageChecked(page))
675 SetPageChecked(newpage);
676 if (PageMappedToDisk(page))
677 SetPageMappedToDisk(newpage);
678
42cb14b1
HD
679 /* Move dirty on pages not done by migrate_page_move_mapping() */
680 if (PageDirty(page))
681 SetPageDirty(newpage);
b20a3503 682
33c3fc71
VD
683 if (page_is_young(page))
684 set_page_young(newpage);
685 if (page_is_idle(page))
686 set_page_idle(newpage);
687
7851a45c
RR
688 /*
689 * Copy NUMA information to the new page, to prevent over-eager
690 * future migrations of this same page.
691 */
692 cpupid = page_cpupid_xchg_last(page, -1);
693 page_cpupid_xchg_last(newpage, cpupid);
694
e9995ef9 695 ksm_migrate_page(newpage, page);
c8d6553b
HD
696 /*
697 * Please do not reorder this without considering how mm/ksm.c's
698 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
699 */
b3b3a99c
NH
700 if (PageSwapCache(page))
701 ClearPageSwapCache(page);
b20a3503
CL
702 ClearPagePrivate(page);
703 set_page_private(page, 0);
b20a3503
CL
704
705 /*
706 * If any waiters have accumulated on the new page then
707 * wake them up.
708 */
709 if (PageWriteback(newpage))
710 end_page_writeback(newpage);
d435edca
VB
711
712 copy_page_owner(page, newpage);
74485cf2
JW
713
714 mem_cgroup_migrate(page, newpage);
b20a3503 715}
2916ecc0
JG
716EXPORT_SYMBOL(migrate_page_states);
717
718void migrate_page_copy(struct page *newpage, struct page *page)
719{
720 if (PageHuge(page) || PageTransHuge(page))
721 copy_huge_page(newpage, page);
722 else
723 copy_highpage(newpage, page);
724
725 migrate_page_states(newpage, page);
726}
1118dce7 727EXPORT_SYMBOL(migrate_page_copy);
b20a3503 728
1d8b85cc
CL
729/************************************************************
730 * Migration functions
731 ***********************************************************/
732
b20a3503 733/*
bda807d4 734 * Common logic to directly migrate a single LRU page suitable for
266cf658 735 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
736 *
737 * Pages are locked upon entry and exit.
738 */
2d1db3b1 739int migrate_page(struct address_space *mapping,
a6bc32b8
MG
740 struct page *newpage, struct page *page,
741 enum migrate_mode mode)
b20a3503
CL
742{
743 int rc;
744
745 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
746
8e321fef 747 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 748
78bd5209 749 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
750 return rc;
751
2916ecc0
JG
752 if (mode != MIGRATE_SYNC_NO_COPY)
753 migrate_page_copy(newpage, page);
754 else
755 migrate_page_states(newpage, page);
78bd5209 756 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
757}
758EXPORT_SYMBOL(migrate_page);
759
9361401e 760#ifdef CONFIG_BLOCK
1d8b85cc
CL
761/*
762 * Migration function for pages with buffers. This function can only be used
763 * if the underlying filesystem guarantees that no other references to "page"
764 * exist.
765 */
2d1db3b1 766int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 767 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 768{
1d8b85cc
CL
769 struct buffer_head *bh, *head;
770 int rc;
771
1d8b85cc 772 if (!page_has_buffers(page))
a6bc32b8 773 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
774
775 head = page_buffers(page);
776
8e321fef 777 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
1d8b85cc 778
78bd5209 779 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
780 return rc;
781
b969c4ab
MG
782 /*
783 * In the async case, migrate_page_move_mapping locked the buffers
784 * with an IRQ-safe spinlock held. In the sync case, the buffers
785 * need to be locked now
786 */
a6bc32b8
MG
787 if (mode != MIGRATE_ASYNC)
788 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
789
790 ClearPagePrivate(page);
791 set_page_private(newpage, page_private(page));
792 set_page_private(page, 0);
793 put_page(page);
794 get_page(newpage);
795
796 bh = head;
797 do {
798 set_bh_page(bh, newpage, bh_offset(bh));
799 bh = bh->b_this_page;
800
801 } while (bh != head);
802
803 SetPagePrivate(newpage);
804
2916ecc0
JG
805 if (mode != MIGRATE_SYNC_NO_COPY)
806 migrate_page_copy(newpage, page);
807 else
808 migrate_page_states(newpage, page);
1d8b85cc
CL
809
810 bh = head;
811 do {
812 unlock_buffer(bh);
2916ecc0 813 put_bh(bh);
1d8b85cc
CL
814 bh = bh->b_this_page;
815
816 } while (bh != head);
817
78bd5209 818 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
819}
820EXPORT_SYMBOL(buffer_migrate_page);
9361401e 821#endif
1d8b85cc 822
04e62a29
CL
823/*
824 * Writeback a page to clean the dirty state
825 */
826static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 827{
04e62a29
CL
828 struct writeback_control wbc = {
829 .sync_mode = WB_SYNC_NONE,
830 .nr_to_write = 1,
831 .range_start = 0,
832 .range_end = LLONG_MAX,
04e62a29
CL
833 .for_reclaim = 1
834 };
835 int rc;
836
837 if (!mapping->a_ops->writepage)
838 /* No write method for the address space */
839 return -EINVAL;
840
841 if (!clear_page_dirty_for_io(page))
842 /* Someone else already triggered a write */
843 return -EAGAIN;
844
8351a6e4 845 /*
04e62a29
CL
846 * A dirty page may imply that the underlying filesystem has
847 * the page on some queue. So the page must be clean for
848 * migration. Writeout may mean we loose the lock and the
849 * page state is no longer what we checked for earlier.
850 * At this point we know that the migration attempt cannot
851 * be successful.
8351a6e4 852 */
e388466d 853 remove_migration_ptes(page, page, false);
8351a6e4 854
04e62a29 855 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 856
04e62a29
CL
857 if (rc != AOP_WRITEPAGE_ACTIVATE)
858 /* unlocked. Relock */
859 lock_page(page);
860
bda8550d 861 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
862}
863
864/*
865 * Default handling if a filesystem does not provide a migration function.
866 */
867static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 868 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 869{
b969c4ab 870 if (PageDirty(page)) {
a6bc32b8 871 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
872 switch (mode) {
873 case MIGRATE_SYNC:
874 case MIGRATE_SYNC_NO_COPY:
875 break;
876 default:
b969c4ab 877 return -EBUSY;
2916ecc0 878 }
04e62a29 879 return writeout(mapping, page);
b969c4ab 880 }
8351a6e4
CL
881
882 /*
883 * Buffers may be managed in a filesystem specific way.
884 * We must have no buffers or drop them.
885 */
266cf658 886 if (page_has_private(page) &&
8351a6e4
CL
887 !try_to_release_page(page, GFP_KERNEL))
888 return -EAGAIN;
889
a6bc32b8 890 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
891}
892
e24f0b8f
CL
893/*
894 * Move a page to a newly allocated page
895 * The page is locked and all ptes have been successfully removed.
896 *
897 * The new page will have replaced the old page if this function
898 * is successful.
894bc310
LS
899 *
900 * Return value:
901 * < 0 - error code
78bd5209 902 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 903 */
3fe2011f 904static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 905 enum migrate_mode mode)
e24f0b8f
CL
906{
907 struct address_space *mapping;
bda807d4
MK
908 int rc = -EAGAIN;
909 bool is_lru = !__PageMovable(page);
e24f0b8f 910
7db7671f
HD
911 VM_BUG_ON_PAGE(!PageLocked(page), page);
912 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 913
e24f0b8f 914 mapping = page_mapping(page);
bda807d4
MK
915
916 if (likely(is_lru)) {
917 if (!mapping)
918 rc = migrate_page(mapping, newpage, page, mode);
919 else if (mapping->a_ops->migratepage)
920 /*
921 * Most pages have a mapping and most filesystems
922 * provide a migratepage callback. Anonymous pages
923 * are part of swap space which also has its own
924 * migratepage callback. This is the most common path
925 * for page migration.
926 */
927 rc = mapping->a_ops->migratepage(mapping, newpage,
928 page, mode);
929 else
930 rc = fallback_migrate_page(mapping, newpage,
931 page, mode);
932 } else {
e24f0b8f 933 /*
bda807d4
MK
934 * In case of non-lru page, it could be released after
935 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 936 */
bda807d4
MK
937 VM_BUG_ON_PAGE(!PageIsolated(page), page);
938 if (!PageMovable(page)) {
939 rc = MIGRATEPAGE_SUCCESS;
940 __ClearPageIsolated(page);
941 goto out;
942 }
943
944 rc = mapping->a_ops->migratepage(mapping, newpage,
945 page, mode);
946 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
947 !PageIsolated(page));
948 }
e24f0b8f 949
5c3f9a67
HD
950 /*
951 * When successful, old pagecache page->mapping must be cleared before
952 * page is freed; but stats require that PageAnon be left as PageAnon.
953 */
954 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
955 if (__PageMovable(page)) {
956 VM_BUG_ON_PAGE(!PageIsolated(page), page);
957
958 /*
959 * We clear PG_movable under page_lock so any compactor
960 * cannot try to migrate this page.
961 */
962 __ClearPageIsolated(page);
963 }
964
965 /*
966 * Anonymous and movable page->mapping will be cleard by
967 * free_pages_prepare so don't reset it here for keeping
968 * the type to work PageAnon, for example.
969 */
970 if (!PageMappingFlags(page))
5c3f9a67 971 page->mapping = NULL;
3fe2011f 972 }
bda807d4 973out:
e24f0b8f
CL
974 return rc;
975}
976
0dabec93 977static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 978 int force, enum migrate_mode mode)
e24f0b8f 979{
0dabec93 980 int rc = -EAGAIN;
2ebba6b7 981 int page_was_mapped = 0;
3f6c8272 982 struct anon_vma *anon_vma = NULL;
bda807d4 983 bool is_lru = !__PageMovable(page);
95a402c3 984
529ae9aa 985 if (!trylock_page(page)) {
a6bc32b8 986 if (!force || mode == MIGRATE_ASYNC)
0dabec93 987 goto out;
3e7d3449
MG
988
989 /*
990 * It's not safe for direct compaction to call lock_page.
991 * For example, during page readahead pages are added locked
992 * to the LRU. Later, when the IO completes the pages are
993 * marked uptodate and unlocked. However, the queueing
994 * could be merging multiple pages for one bio (e.g.
995 * mpage_readpages). If an allocation happens for the
996 * second or third page, the process can end up locking
997 * the same page twice and deadlocking. Rather than
998 * trying to be clever about what pages can be locked,
999 * avoid the use of lock_page for direct compaction
1000 * altogether.
1001 */
1002 if (current->flags & PF_MEMALLOC)
0dabec93 1003 goto out;
3e7d3449 1004
e24f0b8f
CL
1005 lock_page(page);
1006 }
1007
1008 if (PageWriteback(page)) {
11bc82d6 1009 /*
fed5b64a 1010 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1011 * necessary to wait for PageWriteback. In the async case,
1012 * the retry loop is too short and in the sync-light case,
1013 * the overhead of stalling is too much
11bc82d6 1014 */
2916ecc0
JG
1015 switch (mode) {
1016 case MIGRATE_SYNC:
1017 case MIGRATE_SYNC_NO_COPY:
1018 break;
1019 default:
11bc82d6 1020 rc = -EBUSY;
0a31bc97 1021 goto out_unlock;
11bc82d6
AA
1022 }
1023 if (!force)
0a31bc97 1024 goto out_unlock;
e24f0b8f
CL
1025 wait_on_page_writeback(page);
1026 }
03f15c86 1027
e24f0b8f 1028 /*
dc386d4d
KH
1029 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1030 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1031 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1032 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1033 * File Caches may use write_page() or lock_page() in migration, then,
1034 * just care Anon page here.
03f15c86
HD
1035 *
1036 * Only page_get_anon_vma() understands the subtleties of
1037 * getting a hold on an anon_vma from outside one of its mms.
1038 * But if we cannot get anon_vma, then we won't need it anyway,
1039 * because that implies that the anon page is no longer mapped
1040 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1041 */
03f15c86 1042 if (PageAnon(page) && !PageKsm(page))
746b18d4 1043 anon_vma = page_get_anon_vma(page);
62e1c553 1044
7db7671f
HD
1045 /*
1046 * Block others from accessing the new page when we get around to
1047 * establishing additional references. We are usually the only one
1048 * holding a reference to newpage at this point. We used to have a BUG
1049 * here if trylock_page(newpage) fails, but would like to allow for
1050 * cases where there might be a race with the previous use of newpage.
1051 * This is much like races on refcount of oldpage: just don't BUG().
1052 */
1053 if (unlikely(!trylock_page(newpage)))
1054 goto out_unlock;
1055
bda807d4
MK
1056 if (unlikely(!is_lru)) {
1057 rc = move_to_new_page(newpage, page, mode);
1058 goto out_unlock_both;
1059 }
1060
dc386d4d 1061 /*
62e1c553
SL
1062 * Corner case handling:
1063 * 1. When a new swap-cache page is read into, it is added to the LRU
1064 * and treated as swapcache but it has no rmap yet.
1065 * Calling try_to_unmap() against a page->mapping==NULL page will
1066 * trigger a BUG. So handle it here.
1067 * 2. An orphaned page (see truncate_complete_page) might have
1068 * fs-private metadata. The page can be picked up due to memory
1069 * offlining. Everywhere else except page reclaim, the page is
1070 * invisible to the vm, so the page can not be migrated. So try to
1071 * free the metadata, so the page can be freed.
e24f0b8f 1072 */
62e1c553 1073 if (!page->mapping) {
309381fe 1074 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1075 if (page_has_private(page)) {
62e1c553 1076 try_to_free_buffers(page);
7db7671f 1077 goto out_unlock_both;
62e1c553 1078 }
7db7671f
HD
1079 } else if (page_mapped(page)) {
1080 /* Establish migration ptes */
03f15c86
HD
1081 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1082 page);
2ebba6b7 1083 try_to_unmap(page,
da1b13cc 1084 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1085 page_was_mapped = 1;
1086 }
dc386d4d 1087
e6a1530d 1088 if (!page_mapped(page))
5c3f9a67 1089 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1090
5c3f9a67
HD
1091 if (page_was_mapped)
1092 remove_migration_ptes(page,
e388466d 1093 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1094
7db7671f
HD
1095out_unlock_both:
1096 unlock_page(newpage);
1097out_unlock:
3f6c8272 1098 /* Drop an anon_vma reference if we took one */
76545066 1099 if (anon_vma)
9e60109f 1100 put_anon_vma(anon_vma);
e24f0b8f 1101 unlock_page(page);
0dabec93 1102out:
c6c919eb
MK
1103 /*
1104 * If migration is successful, decrease refcount of the newpage
1105 * which will not free the page because new page owner increased
1106 * refcounter. As well, if it is LRU page, add the page to LRU
1107 * list in here.
1108 */
1109 if (rc == MIGRATEPAGE_SUCCESS) {
b1123ea6 1110 if (unlikely(__PageMovable(newpage)))
c6c919eb
MK
1111 put_page(newpage);
1112 else
1113 putback_lru_page(newpage);
1114 }
1115
0dabec93
MK
1116 return rc;
1117}
95a402c3 1118
ef2a5153
GU
1119/*
1120 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1121 * around it.
1122 */
1123#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1124#define ICE_noinline noinline
1125#else
1126#define ICE_noinline
1127#endif
1128
0dabec93
MK
1129/*
1130 * Obtain the lock on page, remove all ptes and migrate the page
1131 * to the newly allocated page in newpage.
1132 */
ef2a5153
GU
1133static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1134 free_page_t put_new_page,
1135 unsigned long private, struct page *page,
add05cec
NH
1136 int force, enum migrate_mode mode,
1137 enum migrate_reason reason)
0dabec93 1138{
2def7424 1139 int rc = MIGRATEPAGE_SUCCESS;
0dabec93 1140 int *result = NULL;
2def7424 1141 struct page *newpage;
0dabec93 1142
2def7424 1143 newpage = get_new_page(page, private, &result);
0dabec93
MK
1144 if (!newpage)
1145 return -ENOMEM;
1146
1147 if (page_count(page) == 1) {
1148 /* page was freed from under us. So we are done. */
c6c919eb
MK
1149 ClearPageActive(page);
1150 ClearPageUnevictable(page);
bda807d4
MK
1151 if (unlikely(__PageMovable(page))) {
1152 lock_page(page);
1153 if (!PageMovable(page))
1154 __ClearPageIsolated(page);
1155 unlock_page(page);
1156 }
c6c919eb
MK
1157 if (put_new_page)
1158 put_new_page(newpage, private);
1159 else
1160 put_page(newpage);
0dabec93
MK
1161 goto out;
1162 }
1163
616b8371 1164 if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
4d2fa965
KS
1165 lock_page(page);
1166 rc = split_huge_page(page);
1167 unlock_page(page);
1168 if (rc)
0dabec93 1169 goto out;
4d2fa965 1170 }
0dabec93 1171
9c620e2b 1172 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1173 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1174 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1175
0dabec93 1176out:
e24f0b8f 1177 if (rc != -EAGAIN) {
0dabec93
MK
1178 /*
1179 * A page that has been migrated has all references
1180 * removed and will be freed. A page that has not been
1181 * migrated will have kepts its references and be
1182 * restored.
1183 */
1184 list_del(&page->lru);
6afcf8ef
ML
1185
1186 /*
1187 * Compaction can migrate also non-LRU pages which are
1188 * not accounted to NR_ISOLATED_*. They can be recognized
1189 * as __PageMovable
1190 */
1191 if (likely(!__PageMovable(page)))
e8db67eb
NH
1192 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1193 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1194 }
1195
1196 /*
1197 * If migration is successful, releases reference grabbed during
1198 * isolation. Otherwise, restore the page to right list unless
1199 * we want to retry.
1200 */
1201 if (rc == MIGRATEPAGE_SUCCESS) {
1202 put_page(page);
1203 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1204 /*
c6c919eb
MK
1205 * Set PG_HWPoison on just freed page
1206 * intentionally. Although it's rather weird,
1207 * it's how HWPoison flag works at the moment.
d7e69488 1208 */
da1b13cc
WL
1209 if (!test_set_page_hwpoison(page))
1210 num_poisoned_pages_inc();
c6c919eb
MK
1211 }
1212 } else {
bda807d4
MK
1213 if (rc != -EAGAIN) {
1214 if (likely(!__PageMovable(page))) {
1215 putback_lru_page(page);
1216 goto put_new;
1217 }
1218
1219 lock_page(page);
1220 if (PageMovable(page))
1221 putback_movable_page(page);
1222 else
1223 __ClearPageIsolated(page);
1224 unlock_page(page);
1225 put_page(page);
1226 }
1227put_new:
c6c919eb
MK
1228 if (put_new_page)
1229 put_new_page(newpage, private);
1230 else
1231 put_page(newpage);
e24f0b8f 1232 }
68711a74 1233
742755a1
CL
1234 if (result) {
1235 if (rc)
1236 *result = rc;
1237 else
1238 *result = page_to_nid(newpage);
1239 }
e24f0b8f
CL
1240 return rc;
1241}
1242
290408d4
NH
1243/*
1244 * Counterpart of unmap_and_move_page() for hugepage migration.
1245 *
1246 * This function doesn't wait the completion of hugepage I/O
1247 * because there is no race between I/O and migration for hugepage.
1248 * Note that currently hugepage I/O occurs only in direct I/O
1249 * where no lock is held and PG_writeback is irrelevant,
1250 * and writeback status of all subpages are counted in the reference
1251 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252 * under direct I/O, the reference of the head page is 512 and a bit more.)
1253 * This means that when we try to migrate hugepage whose subpages are
1254 * doing direct I/O, some references remain after try_to_unmap() and
1255 * hugepage migration fails without data corruption.
1256 *
1257 * There is also no race when direct I/O is issued on the page under migration,
1258 * because then pte is replaced with migration swap entry and direct I/O code
1259 * will wait in the page fault for migration to complete.
1260 */
1261static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1262 free_page_t put_new_page, unsigned long private,
1263 struct page *hpage, int force,
7cd12b4a 1264 enum migrate_mode mode, int reason)
290408d4 1265{
2def7424 1266 int rc = -EAGAIN;
290408d4 1267 int *result = NULL;
2ebba6b7 1268 int page_was_mapped = 0;
32665f2b 1269 struct page *new_hpage;
290408d4
NH
1270 struct anon_vma *anon_vma = NULL;
1271
83467efb
NH
1272 /*
1273 * Movability of hugepages depends on architectures and hugepage size.
1274 * This check is necessary because some callers of hugepage migration
1275 * like soft offline and memory hotremove don't walk through page
1276 * tables or check whether the hugepage is pmd-based or not before
1277 * kicking migration.
1278 */
100873d7 1279 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1280 putback_active_hugepage(hpage);
83467efb 1281 return -ENOSYS;
32665f2b 1282 }
83467efb 1283
32665f2b 1284 new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
1285 if (!new_hpage)
1286 return -ENOMEM;
1287
290408d4 1288 if (!trylock_page(hpage)) {
2916ecc0 1289 if (!force)
290408d4 1290 goto out;
2916ecc0
JG
1291 switch (mode) {
1292 case MIGRATE_SYNC:
1293 case MIGRATE_SYNC_NO_COPY:
1294 break;
1295 default:
1296 goto out;
1297 }
290408d4
NH
1298 lock_page(hpage);
1299 }
1300
746b18d4
PZ
1301 if (PageAnon(hpage))
1302 anon_vma = page_get_anon_vma(hpage);
290408d4 1303
7db7671f
HD
1304 if (unlikely(!trylock_page(new_hpage)))
1305 goto put_anon;
1306
2ebba6b7
HD
1307 if (page_mapped(hpage)) {
1308 try_to_unmap(hpage,
1309 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1310 page_was_mapped = 1;
1311 }
290408d4
NH
1312
1313 if (!page_mapped(hpage))
5c3f9a67 1314 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1315
5c3f9a67
HD
1316 if (page_was_mapped)
1317 remove_migration_ptes(hpage,
e388466d 1318 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1319
7db7671f
HD
1320 unlock_page(new_hpage);
1321
1322put_anon:
fd4a4663 1323 if (anon_vma)
9e60109f 1324 put_anon_vma(anon_vma);
8e6ac7fa 1325
2def7424 1326 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1327 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1328 put_new_page = NULL;
1329 }
8e6ac7fa 1330
290408d4 1331 unlock_page(hpage);
09761333 1332out:
b8ec1cee
NH
1333 if (rc != -EAGAIN)
1334 putback_active_hugepage(hpage);
c3114a84
AK
1335 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1336 num_poisoned_pages_inc();
68711a74
DR
1337
1338 /*
1339 * If migration was not successful and there's a freeing callback, use
1340 * it. Otherwise, put_page() will drop the reference grabbed during
1341 * isolation.
1342 */
2def7424 1343 if (put_new_page)
68711a74
DR
1344 put_new_page(new_hpage, private);
1345 else
3aaa76e1 1346 putback_active_hugepage(new_hpage);
68711a74 1347
290408d4
NH
1348 if (result) {
1349 if (rc)
1350 *result = rc;
1351 else
1352 *result = page_to_nid(new_hpage);
1353 }
1354 return rc;
1355}
1356
b20a3503 1357/*
c73e5c9c
SB
1358 * migrate_pages - migrate the pages specified in a list, to the free pages
1359 * supplied as the target for the page migration
b20a3503 1360 *
c73e5c9c
SB
1361 * @from: The list of pages to be migrated.
1362 * @get_new_page: The function used to allocate free pages to be used
1363 * as the target of the page migration.
68711a74
DR
1364 * @put_new_page: The function used to free target pages if migration
1365 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1366 * @private: Private data to be passed on to get_new_page()
1367 * @mode: The migration mode that specifies the constraints for
1368 * page migration, if any.
1369 * @reason: The reason for page migration.
b20a3503 1370 *
c73e5c9c
SB
1371 * The function returns after 10 attempts or if no pages are movable any more
1372 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1373 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1374 * or free list only if ret != 0.
b20a3503 1375 *
c73e5c9c 1376 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1377 */
9c620e2b 1378int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1379 free_page_t put_new_page, unsigned long private,
1380 enum migrate_mode mode, int reason)
b20a3503 1381{
e24f0b8f 1382 int retry = 1;
b20a3503 1383 int nr_failed = 0;
5647bc29 1384 int nr_succeeded = 0;
b20a3503
CL
1385 int pass = 0;
1386 struct page *page;
1387 struct page *page2;
1388 int swapwrite = current->flags & PF_SWAPWRITE;
1389 int rc;
1390
1391 if (!swapwrite)
1392 current->flags |= PF_SWAPWRITE;
1393
e24f0b8f
CL
1394 for(pass = 0; pass < 10 && retry; pass++) {
1395 retry = 0;
b20a3503 1396
e24f0b8f 1397 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 1398 cond_resched();
2d1db3b1 1399
31caf665
NH
1400 if (PageHuge(page))
1401 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1402 put_new_page, private, page,
7cd12b4a 1403 pass > 2, mode, reason);
31caf665 1404 else
68711a74 1405 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1406 private, page, pass > 2, mode,
1407 reason);
2d1db3b1 1408
e24f0b8f 1409 switch(rc) {
95a402c3 1410 case -ENOMEM:
dfef2ef4 1411 nr_failed++;
95a402c3 1412 goto out;
e24f0b8f 1413 case -EAGAIN:
2d1db3b1 1414 retry++;
e24f0b8f 1415 break;
78bd5209 1416 case MIGRATEPAGE_SUCCESS:
5647bc29 1417 nr_succeeded++;
e24f0b8f
CL
1418 break;
1419 default:
354a3363
NH
1420 /*
1421 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1422 * unlike -EAGAIN case, the failed page is
1423 * removed from migration page list and not
1424 * retried in the next outer loop.
1425 */
2d1db3b1 1426 nr_failed++;
e24f0b8f 1427 break;
2d1db3b1 1428 }
b20a3503
CL
1429 }
1430 }
f2f81fb2
VB
1431 nr_failed += retry;
1432 rc = nr_failed;
95a402c3 1433out:
5647bc29
MG
1434 if (nr_succeeded)
1435 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1436 if (nr_failed)
1437 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1438 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1439
b20a3503
CL
1440 if (!swapwrite)
1441 current->flags &= ~PF_SWAPWRITE;
1442
78bd5209 1443 return rc;
b20a3503 1444}
95a402c3 1445
742755a1 1446#ifdef CONFIG_NUMA
742755a1 1447
a49bd4d7 1448static int store_status(int __user *status, int start, int value, int nr)
742755a1 1449{
a49bd4d7
MH
1450 while (nr-- > 0) {
1451 if (put_user(value, status + start))
1452 return -EFAULT;
1453 start++;
1454 }
1455
1456 return 0;
1457}
1458
1459static int do_move_pages_to_node(struct mm_struct *mm,
1460 struct list_head *pagelist, int node)
1461{
1462 int err;
1463
1464 if (list_empty(pagelist))
1465 return 0;
1466
1467 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1468 MIGRATE_SYNC, MR_SYSCALL);
1469 if (err)
1470 putback_movable_pages(pagelist);
1471 return err;
742755a1
CL
1472}
1473
1474/*
a49bd4d7
MH
1475 * Resolves the given address to a struct page, isolates it from the LRU and
1476 * puts it to the given pagelist.
1477 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1478 * queued or the page doesn't need to be migrated because it is already on
1479 * the target node
742755a1 1480 */
a49bd4d7
MH
1481static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1482 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1483{
a49bd4d7
MH
1484 struct vm_area_struct *vma;
1485 struct page *page;
1486 unsigned int follflags;
742755a1 1487 int err;
742755a1
CL
1488
1489 down_read(&mm->mmap_sem);
a49bd4d7
MH
1490 err = -EFAULT;
1491 vma = find_vma(mm, addr);
1492 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1493 goto out;
742755a1 1494
a49bd4d7
MH
1495 /* FOLL_DUMP to ignore special (like zero) pages */
1496 follflags = FOLL_GET | FOLL_DUMP;
1497 if (!thp_migration_supported())
1498 follflags |= FOLL_SPLIT;
1499 page = follow_page(vma, addr, follflags);
89f5b7da 1500
a49bd4d7
MH
1501 err = PTR_ERR(page);
1502 if (IS_ERR(page))
1503 goto out;
89f5b7da 1504
a49bd4d7
MH
1505 err = -ENOENT;
1506 if (!page)
1507 goto out;
742755a1 1508
a49bd4d7
MH
1509 err = 0;
1510 if (page_to_nid(page) == node)
1511 goto out_putpage;
742755a1 1512
a49bd4d7
MH
1513 err = -EACCES;
1514 if (page_mapcount(page) > 1 && !migrate_all)
1515 goto out_putpage;
742755a1 1516
a49bd4d7
MH
1517 if (PageHuge(page)) {
1518 if (PageHead(page)) {
1519 isolate_huge_page(page, pagelist);
1520 err = 0;
e632a938 1521 }
a49bd4d7
MH
1522 } else {
1523 struct page *head;
e632a938 1524
e8db67eb
NH
1525 head = compound_head(page);
1526 err = isolate_lru_page(head);
cf608ac1 1527 if (err)
a49bd4d7 1528 goto out_putpage;
742755a1 1529
a49bd4d7
MH
1530 err = 0;
1531 list_add_tail(&head->lru, pagelist);
1532 mod_node_page_state(page_pgdat(head),
1533 NR_ISOLATED_ANON + page_is_file_cache(head),
1534 hpage_nr_pages(head));
1535 }
1536out_putpage:
1537 /*
1538 * Either remove the duplicate refcount from
1539 * isolate_lru_page() or drop the page ref if it was
1540 * not isolated.
1541 */
1542 put_page(page);
1543out:
742755a1
CL
1544 up_read(&mm->mmap_sem);
1545 return err;
1546}
1547
5e9a0f02
BG
1548/*
1549 * Migrate an array of page address onto an array of nodes and fill
1550 * the corresponding array of status.
1551 */
3268c63e 1552static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1553 unsigned long nr_pages,
1554 const void __user * __user *pages,
1555 const int __user *nodes,
1556 int __user *status, int flags)
1557{
a49bd4d7
MH
1558 int current_node = NUMA_NO_NODE;
1559 LIST_HEAD(pagelist);
1560 int start, i;
1561 int err = 0, err1;
35282a2d
BG
1562
1563 migrate_prep();
1564
a49bd4d7
MH
1565 for (i = start = 0; i < nr_pages; i++) {
1566 const void __user *p;
1567 unsigned long addr;
1568 int node;
3140a227 1569
a49bd4d7
MH
1570 err = -EFAULT;
1571 if (get_user(p, pages + i))
1572 goto out_flush;
1573 if (get_user(node, nodes + i))
1574 goto out_flush;
1575 addr = (unsigned long)p;
1576
1577 err = -ENODEV;
1578 if (node < 0 || node >= MAX_NUMNODES)
1579 goto out_flush;
1580 if (!node_state(node, N_MEMORY))
1581 goto out_flush;
5e9a0f02 1582
a49bd4d7
MH
1583 err = -EACCES;
1584 if (!node_isset(node, task_nodes))
1585 goto out_flush;
1586
1587 if (current_node == NUMA_NO_NODE) {
1588 current_node = node;
1589 start = i;
1590 } else if (node != current_node) {
1591 err = do_move_pages_to_node(mm, &pagelist, current_node);
1592 if (err)
1593 goto out;
1594 err = store_status(status, start, current_node, i - start);
1595 if (err)
1596 goto out;
1597 start = i;
1598 current_node = node;
3140a227
BG
1599 }
1600
a49bd4d7
MH
1601 /*
1602 * Errors in the page lookup or isolation are not fatal and we simply
1603 * report them via status
1604 */
1605 err = add_page_for_migration(mm, addr, current_node,
1606 &pagelist, flags & MPOL_MF_MOVE_ALL);
1607 if (!err)
1608 continue;
3140a227 1609
a49bd4d7
MH
1610 err = store_status(status, i, err, 1);
1611 if (err)
1612 goto out_flush;
5e9a0f02 1613
a49bd4d7
MH
1614 err = do_move_pages_to_node(mm, &pagelist, current_node);
1615 if (err)
1616 goto out;
1617 if (i > start) {
1618 err = store_status(status, start, current_node, i - start);
1619 if (err)
1620 goto out;
1621 }
1622 current_node = NUMA_NO_NODE;
3140a227 1623 }
a49bd4d7
MH
1624out_flush:
1625 /* Make sure we do not overwrite the existing error */
1626 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1627 if (!err1)
1628 err1 = store_status(status, start, current_node, i - start);
1629 if (!err)
1630 err = err1;
5e9a0f02
BG
1631out:
1632 return err;
1633}
1634
742755a1 1635/*
2f007e74 1636 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1637 */
80bba129
BG
1638static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1639 const void __user **pages, int *status)
742755a1 1640{
2f007e74 1641 unsigned long i;
2f007e74 1642
742755a1
CL
1643 down_read(&mm->mmap_sem);
1644
2f007e74 1645 for (i = 0; i < nr_pages; i++) {
80bba129 1646 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1647 struct vm_area_struct *vma;
1648 struct page *page;
c095adbc 1649 int err = -EFAULT;
2f007e74
BG
1650
1651 vma = find_vma(mm, addr);
70384dc6 1652 if (!vma || addr < vma->vm_start)
742755a1
CL
1653 goto set_status;
1654
d899844e
KS
1655 /* FOLL_DUMP to ignore special (like zero) pages */
1656 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1657
1658 err = PTR_ERR(page);
1659 if (IS_ERR(page))
1660 goto set_status;
1661
d899844e 1662 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1663set_status:
80bba129
BG
1664 *status = err;
1665
1666 pages++;
1667 status++;
1668 }
1669
1670 up_read(&mm->mmap_sem);
1671}
1672
1673/*
1674 * Determine the nodes of a user array of pages and store it in
1675 * a user array of status.
1676 */
1677static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1678 const void __user * __user *pages,
1679 int __user *status)
1680{
1681#define DO_PAGES_STAT_CHUNK_NR 16
1682 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1683 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1684
87b8d1ad
PA
1685 while (nr_pages) {
1686 unsigned long chunk_nr;
80bba129 1687
87b8d1ad
PA
1688 chunk_nr = nr_pages;
1689 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1690 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1691
1692 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1693 break;
80bba129
BG
1694
1695 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1696
87b8d1ad
PA
1697 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1698 break;
742755a1 1699
87b8d1ad
PA
1700 pages += chunk_nr;
1701 status += chunk_nr;
1702 nr_pages -= chunk_nr;
1703 }
1704 return nr_pages ? -EFAULT : 0;
742755a1
CL
1705}
1706
1707/*
1708 * Move a list of pages in the address space of the currently executing
1709 * process.
1710 */
7addf443
DB
1711static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1712 const void __user * __user *pages,
1713 const int __user *nodes,
1714 int __user *status, int flags)
742755a1 1715{
742755a1 1716 struct task_struct *task;
742755a1 1717 struct mm_struct *mm;
5e9a0f02 1718 int err;
3268c63e 1719 nodemask_t task_nodes;
742755a1
CL
1720
1721 /* Check flags */
1722 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1723 return -EINVAL;
1724
1725 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1726 return -EPERM;
1727
1728 /* Find the mm_struct */
a879bf58 1729 rcu_read_lock();
228ebcbe 1730 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1731 if (!task) {
a879bf58 1732 rcu_read_unlock();
742755a1
CL
1733 return -ESRCH;
1734 }
3268c63e 1735 get_task_struct(task);
742755a1
CL
1736
1737 /*
1738 * Check if this process has the right to modify the specified
197e7e52 1739 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1740 */
197e7e52 1741 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1742 rcu_read_unlock();
742755a1 1743 err = -EPERM;
5e9a0f02 1744 goto out;
742755a1 1745 }
c69e8d9c 1746 rcu_read_unlock();
742755a1 1747
86c3a764
DQ
1748 err = security_task_movememory(task);
1749 if (err)
5e9a0f02 1750 goto out;
86c3a764 1751
3268c63e
CL
1752 task_nodes = cpuset_mems_allowed(task);
1753 mm = get_task_mm(task);
1754 put_task_struct(task);
1755
6e8b09ea
SL
1756 if (!mm)
1757 return -EINVAL;
1758
1759 if (nodes)
1760 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1761 nodes, status, flags);
1762 else
1763 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1764
742755a1
CL
1765 mmput(mm);
1766 return err;
3268c63e
CL
1767
1768out:
1769 put_task_struct(task);
1770 return err;
742755a1 1771}
742755a1 1772
7addf443
DB
1773SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1774 const void __user * __user *, pages,
1775 const int __user *, nodes,
1776 int __user *, status, int, flags)
1777{
1778 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1779}
1780
1781#ifdef CONFIG_COMPAT
1782COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1783 compat_uptr_t __user *, pages32,
1784 const int __user *, nodes,
1785 int __user *, status,
1786 int, flags)
1787{
1788 const void __user * __user *pages;
1789 int i;
1790
1791 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1792 for (i = 0; i < nr_pages; i++) {
1793 compat_uptr_t p;
1794
1795 if (get_user(p, pages32 + i) ||
1796 put_user(compat_ptr(p), pages + i))
1797 return -EFAULT;
1798 }
1799 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1800}
1801#endif /* CONFIG_COMPAT */
1802
7039e1db
PZ
1803#ifdef CONFIG_NUMA_BALANCING
1804/*
1805 * Returns true if this is a safe migration target node for misplaced NUMA
1806 * pages. Currently it only checks the watermarks which crude
1807 */
1808static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1809 unsigned long nr_migrate_pages)
7039e1db
PZ
1810{
1811 int z;
599d0c95 1812
7039e1db
PZ
1813 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1814 struct zone *zone = pgdat->node_zones + z;
1815
1816 if (!populated_zone(zone))
1817 continue;
1818
7039e1db
PZ
1819 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1820 if (!zone_watermark_ok(zone, 0,
1821 high_wmark_pages(zone) +
1822 nr_migrate_pages,
1823 0, 0))
1824 continue;
1825 return true;
1826 }
1827 return false;
1828}
1829
1830static struct page *alloc_misplaced_dst_page(struct page *page,
1831 unsigned long data,
1832 int **result)
1833{
1834 int nid = (int) data;
1835 struct page *newpage;
1836
96db800f 1837 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1838 (GFP_HIGHUSER_MOVABLE |
1839 __GFP_THISNODE | __GFP_NOMEMALLOC |
1840 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1841 ~__GFP_RECLAIM, 0);
bac0382c 1842
7039e1db
PZ
1843 return newpage;
1844}
1845
a8f60772
MG
1846/*
1847 * page migration rate limiting control.
1848 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1849 * window of time. Default here says do not migrate more than 1280M per second.
1850 */
1851static unsigned int migrate_interval_millisecs __read_mostly = 100;
1852static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1853
b32967ff 1854/* Returns true if the node is migrate rate-limited after the update */
1c30e017
MG
1855static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1856 unsigned long nr_pages)
7039e1db 1857{
a8f60772
MG
1858 /*
1859 * Rate-limit the amount of data that is being migrated to a node.
1860 * Optimal placement is no good if the memory bus is saturated and
1861 * all the time is being spent migrating!
1862 */
a8f60772 1863 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1c5e9c27 1864 spin_lock(&pgdat->numabalancing_migrate_lock);
a8f60772
MG
1865 pgdat->numabalancing_migrate_nr_pages = 0;
1866 pgdat->numabalancing_migrate_next_window = jiffies +
1867 msecs_to_jiffies(migrate_interval_millisecs);
1c5e9c27 1868 spin_unlock(&pgdat->numabalancing_migrate_lock);
a8f60772 1869 }
af1839d7
MG
1870 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1871 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1872 nr_pages);
1c5e9c27 1873 return true;
af1839d7 1874 }
1c5e9c27
MG
1875
1876 /*
1877 * This is an unlocked non-atomic update so errors are possible.
1878 * The consequences are failing to migrate when we potentiall should
1879 * have which is not severe enough to warrant locking. If it is ever
1880 * a problem, it can be converted to a per-cpu counter.
1881 */
1882 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1883 return false;
b32967ff
MG
1884}
1885
1c30e017 1886static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1887{
340ef390 1888 int page_lru;
a8f60772 1889
309381fe 1890 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1891
7039e1db 1892 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1893 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1894 return 0;
7039e1db 1895
340ef390
HD
1896 if (isolate_lru_page(page))
1897 return 0;
7039e1db 1898
340ef390
HD
1899 /*
1900 * migrate_misplaced_transhuge_page() skips page migration's usual
1901 * check on page_count(), so we must do it here, now that the page
1902 * has been isolated: a GUP pin, or any other pin, prevents migration.
1903 * The expected page count is 3: 1 for page's mapcount and 1 for the
1904 * caller's pin and 1 for the reference taken by isolate_lru_page().
1905 */
1906 if (PageTransHuge(page) && page_count(page) != 3) {
1907 putback_lru_page(page);
1908 return 0;
7039e1db
PZ
1909 }
1910
340ef390 1911 page_lru = page_is_file_cache(page);
599d0c95 1912 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1913 hpage_nr_pages(page));
1914
149c33e1 1915 /*
340ef390
HD
1916 * Isolating the page has taken another reference, so the
1917 * caller's reference can be safely dropped without the page
1918 * disappearing underneath us during migration.
149c33e1
MG
1919 */
1920 put_page(page);
340ef390 1921 return 1;
b32967ff
MG
1922}
1923
de466bd6
MG
1924bool pmd_trans_migrating(pmd_t pmd)
1925{
1926 struct page *page = pmd_page(pmd);
1927 return PageLocked(page);
1928}
1929
b32967ff
MG
1930/*
1931 * Attempt to migrate a misplaced page to the specified destination
1932 * node. Caller is expected to have an elevated reference count on
1933 * the page that will be dropped by this function before returning.
1934 */
1bc115d8
MG
1935int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1936 int node)
b32967ff
MG
1937{
1938 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1939 int isolated;
b32967ff
MG
1940 int nr_remaining;
1941 LIST_HEAD(migratepages);
1942
1943 /*
1bc115d8
MG
1944 * Don't migrate file pages that are mapped in multiple processes
1945 * with execute permissions as they are probably shared libraries.
b32967ff 1946 */
1bc115d8
MG
1947 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1948 (vma->vm_flags & VM_EXEC))
b32967ff 1949 goto out;
b32967ff 1950
09a913a7
MG
1951 /*
1952 * Also do not migrate dirty pages as not all filesystems can move
1953 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1954 */
1955 if (page_is_file_cache(page) && PageDirty(page))
1956 goto out;
1957
b32967ff
MG
1958 /*
1959 * Rate-limit the amount of data that is being migrated to a node.
1960 * Optimal placement is no good if the memory bus is saturated and
1961 * all the time is being spent migrating!
1962 */
340ef390 1963 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1964 goto out;
b32967ff
MG
1965
1966 isolated = numamigrate_isolate_page(pgdat, page);
1967 if (!isolated)
1968 goto out;
1969
1970 list_add(&page->lru, &migratepages);
9c620e2b 1971 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1972 NULL, node, MIGRATE_ASYNC,
1973 MR_NUMA_MISPLACED);
b32967ff 1974 if (nr_remaining) {
59c82b70
JK
1975 if (!list_empty(&migratepages)) {
1976 list_del(&page->lru);
599d0c95 1977 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1978 page_is_file_cache(page));
1979 putback_lru_page(page);
1980 }
b32967ff
MG
1981 isolated = 0;
1982 } else
1983 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1984 BUG_ON(!list_empty(&migratepages));
7039e1db 1985 return isolated;
340ef390
HD
1986
1987out:
1988 put_page(page);
1989 return 0;
7039e1db 1990}
220018d3 1991#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1992
220018d3 1993#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1994/*
1995 * Migrates a THP to a given target node. page must be locked and is unlocked
1996 * before returning.
1997 */
b32967ff
MG
1998int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1999 struct vm_area_struct *vma,
2000 pmd_t *pmd, pmd_t entry,
2001 unsigned long address,
2002 struct page *page, int node)
2003{
c4088ebd 2004 spinlock_t *ptl;
b32967ff
MG
2005 pg_data_t *pgdat = NODE_DATA(node);
2006 int isolated = 0;
2007 struct page *new_page = NULL;
b32967ff 2008 int page_lru = page_is_file_cache(page);
f714f4f2
MG
2009 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2010 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
b32967ff 2011
b32967ff
MG
2012 /*
2013 * Rate-limit the amount of data that is being migrated to a node.
2014 * Optimal placement is no good if the memory bus is saturated and
2015 * all the time is being spent migrating!
2016 */
d28d4335 2017 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
2018 goto out_dropref;
2019
2020 new_page = alloc_pages_node(node,
25160354 2021 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2022 HPAGE_PMD_ORDER);
340ef390
HD
2023 if (!new_page)
2024 goto out_fail;
9a982250 2025 prep_transhuge_page(new_page);
340ef390 2026
b32967ff 2027 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2028 if (!isolated) {
b32967ff 2029 put_page(new_page);
340ef390 2030 goto out_fail;
b32967ff 2031 }
b0943d61 2032
b32967ff 2033 /* Prepare a page as a migration target */
48c935ad 2034 __SetPageLocked(new_page);
d44d363f
SL
2035 if (PageSwapBacked(page))
2036 __SetPageSwapBacked(new_page);
b32967ff
MG
2037
2038 /* anon mapping, we can simply copy page->mapping to the new page: */
2039 new_page->mapping = page->mapping;
2040 new_page->index = page->index;
2041 migrate_page_copy(new_page, page);
2042 WARN_ON(PageLRU(new_page));
2043
2044 /* Recheck the target PMD */
f714f4f2 2045 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2046 ptl = pmd_lock(mm, pmd);
f4e177d1 2047 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2048 spin_unlock(ptl);
f714f4f2 2049 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
2050
2051 /* Reverse changes made by migrate_page_copy() */
2052 if (TestClearPageActive(new_page))
2053 SetPageActive(page);
2054 if (TestClearPageUnevictable(new_page))
2055 SetPageUnevictable(page);
b32967ff
MG
2056
2057 unlock_page(new_page);
2058 put_page(new_page); /* Free it */
2059
a54a407f
MG
2060 /* Retake the callers reference and putback on LRU */
2061 get_page(page);
b32967ff 2062 putback_lru_page(page);
599d0c95 2063 mod_node_page_state(page_pgdat(page),
a54a407f 2064 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2065
2066 goto out_unlock;
b32967ff
MG
2067 }
2068
10102459 2069 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2070 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2071
2b4847e7
MG
2072 /*
2073 * Clear the old entry under pagetable lock and establish the new PTE.
2074 * Any parallel GUP will either observe the old page blocking on the
2075 * page lock, block on the page table lock or observe the new page.
2076 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2077 * guarantee the copy is visible before the pagetable update.
2078 */
f714f4f2 2079 flush_cache_range(vma, mmun_start, mmun_end);
d281ee61 2080 page_add_anon_rmap(new_page, vma, mmun_start, true);
8809aa2d 2081 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
f714f4f2 2082 set_pmd_at(mm, mmun_start, pmd, entry);
ce4a9cc5 2083 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2084
f4e177d1 2085 page_ref_unfreeze(page, 2);
51afb12b 2086 mlock_migrate_page(new_page, page);
d281ee61 2087 page_remove_rmap(page, true);
7cd12b4a 2088 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2089
c4088ebd 2090 spin_unlock(ptl);
4645b9fe
JG
2091 /*
2092 * No need to double call mmu_notifier->invalidate_range() callback as
2093 * the above pmdp_huge_clear_flush_notify() did already call it.
2094 */
2095 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
b32967ff 2096
11de9927
MG
2097 /* Take an "isolate" reference and put new page on the LRU. */
2098 get_page(new_page);
2099 putback_lru_page(new_page);
2100
b32967ff
MG
2101 unlock_page(new_page);
2102 unlock_page(page);
2103 put_page(page); /* Drop the rmap reference */
2104 put_page(page); /* Drop the LRU isolation reference */
2105
2106 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2107 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2108
599d0c95 2109 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2110 NR_ISOLATED_ANON + page_lru,
2111 -HPAGE_PMD_NR);
2112 return isolated;
2113
340ef390
HD
2114out_fail:
2115 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 2116out_dropref:
2b4847e7
MG
2117 ptl = pmd_lock(mm, pmd);
2118 if (pmd_same(*pmd, entry)) {
4d942466 2119 entry = pmd_modify(entry, vma->vm_page_prot);
f714f4f2 2120 set_pmd_at(mm, mmun_start, pmd, entry);
2b4847e7
MG
2121 update_mmu_cache_pmd(vma, address, &entry);
2122 }
2123 spin_unlock(ptl);
a54a407f 2124
eb4489f6 2125out_unlock:
340ef390 2126 unlock_page(page);
b32967ff 2127 put_page(page);
b32967ff
MG
2128 return 0;
2129}
7039e1db
PZ
2130#endif /* CONFIG_NUMA_BALANCING */
2131
2132#endif /* CONFIG_NUMA */
8763cb45 2133
6b368cd4 2134#if defined(CONFIG_MIGRATE_VMA_HELPER)
8763cb45
JG
2135struct migrate_vma {
2136 struct vm_area_struct *vma;
2137 unsigned long *dst;
2138 unsigned long *src;
2139 unsigned long cpages;
2140 unsigned long npages;
2141 unsigned long start;
2142 unsigned long end;
2143};
2144
2145static int migrate_vma_collect_hole(unsigned long start,
2146 unsigned long end,
2147 struct mm_walk *walk)
2148{
2149 struct migrate_vma *migrate = walk->private;
2150 unsigned long addr;
2151
8315ada7 2152 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
e20d103b 2153 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2154 migrate->dst[migrate->npages] = 0;
e20d103b 2155 migrate->npages++;
8315ada7
JG
2156 migrate->cpages++;
2157 }
2158
2159 return 0;
2160}
2161
2162static int migrate_vma_collect_skip(unsigned long start,
2163 unsigned long end,
2164 struct mm_walk *walk)
2165{
2166 struct migrate_vma *migrate = walk->private;
2167 unsigned long addr;
2168
8763cb45
JG
2169 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2170 migrate->dst[migrate->npages] = 0;
2171 migrate->src[migrate->npages++] = 0;
2172 }
2173
2174 return 0;
2175}
2176
2177static int migrate_vma_collect_pmd(pmd_t *pmdp,
2178 unsigned long start,
2179 unsigned long end,
2180 struct mm_walk *walk)
2181{
2182 struct migrate_vma *migrate = walk->private;
2183 struct vm_area_struct *vma = walk->vma;
2184 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2185 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2186 spinlock_t *ptl;
2187 pte_t *ptep;
2188
2189again:
2190 if (pmd_none(*pmdp))
2191 return migrate_vma_collect_hole(start, end, walk);
2192
2193 if (pmd_trans_huge(*pmdp)) {
2194 struct page *page;
2195
2196 ptl = pmd_lock(mm, pmdp);
2197 if (unlikely(!pmd_trans_huge(*pmdp))) {
2198 spin_unlock(ptl);
2199 goto again;
2200 }
2201
2202 page = pmd_page(*pmdp);
2203 if (is_huge_zero_page(page)) {
2204 spin_unlock(ptl);
2205 split_huge_pmd(vma, pmdp, addr);
2206 if (pmd_trans_unstable(pmdp))
8315ada7 2207 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2208 walk);
2209 } else {
2210 int ret;
2211
2212 get_page(page);
2213 spin_unlock(ptl);
2214 if (unlikely(!trylock_page(page)))
8315ada7 2215 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2216 walk);
2217 ret = split_huge_page(page);
2218 unlock_page(page);
2219 put_page(page);
8315ada7
JG
2220 if (ret)
2221 return migrate_vma_collect_skip(start, end,
2222 walk);
2223 if (pmd_none(*pmdp))
8763cb45
JG
2224 return migrate_vma_collect_hole(start, end,
2225 walk);
2226 }
2227 }
2228
2229 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2230 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2231
2232 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2233 arch_enter_lazy_mmu_mode();
2234
8763cb45
JG
2235 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2236 unsigned long mpfn, pfn;
2237 struct page *page;
8c3328f1 2238 swp_entry_t entry;
8763cb45
JG
2239 pte_t pte;
2240
2241 pte = *ptep;
2242 pfn = pte_pfn(pte);
2243
a5430dda 2244 if (pte_none(pte)) {
8315ada7
JG
2245 mpfn = MIGRATE_PFN_MIGRATE;
2246 migrate->cpages++;
2247 pfn = 0;
8763cb45
JG
2248 goto next;
2249 }
2250
a5430dda
JG
2251 if (!pte_present(pte)) {
2252 mpfn = pfn = 0;
2253
2254 /*
2255 * Only care about unaddressable device page special
2256 * page table entry. Other special swap entries are not
2257 * migratable, and we ignore regular swapped page.
2258 */
2259 entry = pte_to_swp_entry(pte);
2260 if (!is_device_private_entry(entry))
2261 goto next;
2262
2263 page = device_private_entry_to_page(entry);
2264 mpfn = migrate_pfn(page_to_pfn(page))|
2265 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2266 if (is_write_device_private_entry(entry))
2267 mpfn |= MIGRATE_PFN_WRITE;
2268 } else {
8315ada7
JG
2269 if (is_zero_pfn(pfn)) {
2270 mpfn = MIGRATE_PFN_MIGRATE;
2271 migrate->cpages++;
2272 pfn = 0;
2273 goto next;
2274 }
df6ad698 2275 page = _vm_normal_page(migrate->vma, addr, pte, true);
a5430dda
JG
2276 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2277 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2278 }
2279
8763cb45 2280 /* FIXME support THP */
8763cb45
JG
2281 if (!page || !page->mapping || PageTransCompound(page)) {
2282 mpfn = pfn = 0;
2283 goto next;
2284 }
a5430dda 2285 pfn = page_to_pfn(page);
8763cb45
JG
2286
2287 /*
2288 * By getting a reference on the page we pin it and that blocks
2289 * any kind of migration. Side effect is that it "freezes" the
2290 * pte.
2291 *
2292 * We drop this reference after isolating the page from the lru
2293 * for non device page (device page are not on the lru and thus
2294 * can't be dropped from it).
2295 */
2296 get_page(page);
2297 migrate->cpages++;
8763cb45 2298
8c3328f1
JG
2299 /*
2300 * Optimize for the common case where page is only mapped once
2301 * in one process. If we can lock the page, then we can safely
2302 * set up a special migration page table entry now.
2303 */
2304 if (trylock_page(page)) {
2305 pte_t swp_pte;
2306
2307 mpfn |= MIGRATE_PFN_LOCKED;
2308 ptep_get_and_clear(mm, addr, ptep);
2309
2310 /* Setup special migration page table entry */
07707125
RC
2311 entry = make_migration_entry(page, mpfn &
2312 MIGRATE_PFN_WRITE);
8c3328f1
JG
2313 swp_pte = swp_entry_to_pte(entry);
2314 if (pte_soft_dirty(pte))
2315 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2316 set_pte_at(mm, addr, ptep, swp_pte);
2317
2318 /*
2319 * This is like regular unmap: we remove the rmap and
2320 * drop page refcount. Page won't be freed, as we took
2321 * a reference just above.
2322 */
2323 page_remove_rmap(page, false);
2324 put_page(page);
a5430dda
JG
2325
2326 if (pte_present(pte))
2327 unmapped++;
8c3328f1
JG
2328 }
2329
8763cb45 2330next:
a5430dda 2331 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2332 migrate->src[migrate->npages++] = mpfn;
2333 }
8c3328f1 2334 arch_leave_lazy_mmu_mode();
8763cb45
JG
2335 pte_unmap_unlock(ptep - 1, ptl);
2336
8c3328f1
JG
2337 /* Only flush the TLB if we actually modified any entries */
2338 if (unmapped)
2339 flush_tlb_range(walk->vma, start, end);
2340
8763cb45
JG
2341 return 0;
2342}
2343
2344/*
2345 * migrate_vma_collect() - collect pages over a range of virtual addresses
2346 * @migrate: migrate struct containing all migration information
2347 *
2348 * This will walk the CPU page table. For each virtual address backed by a
2349 * valid page, it updates the src array and takes a reference on the page, in
2350 * order to pin the page until we lock it and unmap it.
2351 */
2352static void migrate_vma_collect(struct migrate_vma *migrate)
2353{
2354 struct mm_walk mm_walk;
2355
2356 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2357 mm_walk.pte_entry = NULL;
2358 mm_walk.pte_hole = migrate_vma_collect_hole;
2359 mm_walk.hugetlb_entry = NULL;
2360 mm_walk.test_walk = NULL;
2361 mm_walk.vma = migrate->vma;
2362 mm_walk.mm = migrate->vma->vm_mm;
2363 mm_walk.private = migrate;
2364
8c3328f1
JG
2365 mmu_notifier_invalidate_range_start(mm_walk.mm,
2366 migrate->start,
2367 migrate->end);
8763cb45 2368 walk_page_range(migrate->start, migrate->end, &mm_walk);
8c3328f1
JG
2369 mmu_notifier_invalidate_range_end(mm_walk.mm,
2370 migrate->start,
2371 migrate->end);
8763cb45
JG
2372
2373 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2374}
2375
2376/*
2377 * migrate_vma_check_page() - check if page is pinned or not
2378 * @page: struct page to check
2379 *
2380 * Pinned pages cannot be migrated. This is the same test as in
2381 * migrate_page_move_mapping(), except that here we allow migration of a
2382 * ZONE_DEVICE page.
2383 */
2384static bool migrate_vma_check_page(struct page *page)
2385{
2386 /*
2387 * One extra ref because caller holds an extra reference, either from
2388 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2389 * a device page.
2390 */
2391 int extra = 1;
2392
2393 /*
2394 * FIXME support THP (transparent huge page), it is bit more complex to
2395 * check them than regular pages, because they can be mapped with a pmd
2396 * or with a pte (split pte mapping).
2397 */
2398 if (PageCompound(page))
2399 return false;
2400
a5430dda
JG
2401 /* Page from ZONE_DEVICE have one extra reference */
2402 if (is_zone_device_page(page)) {
2403 /*
2404 * Private page can never be pin as they have no valid pte and
2405 * GUP will fail for those. Yet if there is a pending migration
2406 * a thread might try to wait on the pte migration entry and
2407 * will bump the page reference count. Sadly there is no way to
2408 * differentiate a regular pin from migration wait. Hence to
2409 * avoid 2 racing thread trying to migrate back to CPU to enter
2410 * infinite loop (one stoping migration because the other is
2411 * waiting on pte migration entry). We always return true here.
2412 *
2413 * FIXME proper solution is to rework migration_entry_wait() so
2414 * it does not need to take a reference on page.
2415 */
2416 if (is_device_private_page(page))
2417 return true;
2418
df6ad698
JG
2419 /*
2420 * Only allow device public page to be migrated and account for
2421 * the extra reference count imply by ZONE_DEVICE pages.
2422 */
2423 if (!is_device_public_page(page))
2424 return false;
2425 extra++;
a5430dda
JG
2426 }
2427
df6ad698
JG
2428 /* For file back page */
2429 if (page_mapping(page))
2430 extra += 1 + page_has_private(page);
2431
8763cb45
JG
2432 if ((page_count(page) - extra) > page_mapcount(page))
2433 return false;
2434
2435 return true;
2436}
2437
2438/*
2439 * migrate_vma_prepare() - lock pages and isolate them from the lru
2440 * @migrate: migrate struct containing all migration information
2441 *
2442 * This locks pages that have been collected by migrate_vma_collect(). Once each
2443 * page is locked it is isolated from the lru (for non-device pages). Finally,
2444 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2445 * migrated by concurrent kernel threads.
2446 */
2447static void migrate_vma_prepare(struct migrate_vma *migrate)
2448{
2449 const unsigned long npages = migrate->npages;
8c3328f1
JG
2450 const unsigned long start = migrate->start;
2451 unsigned long addr, i, restore = 0;
8763cb45 2452 bool allow_drain = true;
8763cb45
JG
2453
2454 lru_add_drain();
2455
2456 for (i = 0; (i < npages) && migrate->cpages; i++) {
2457 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2458 bool remap = true;
8763cb45
JG
2459
2460 if (!page)
2461 continue;
2462
8c3328f1
JG
2463 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2464 /*
2465 * Because we are migrating several pages there can be
2466 * a deadlock between 2 concurrent migration where each
2467 * are waiting on each other page lock.
2468 *
2469 * Make migrate_vma() a best effort thing and backoff
2470 * for any page we can not lock right away.
2471 */
2472 if (!trylock_page(page)) {
2473 migrate->src[i] = 0;
2474 migrate->cpages--;
2475 put_page(page);
2476 continue;
2477 }
2478 remap = false;
2479 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2480 }
8763cb45 2481
a5430dda
JG
2482 /* ZONE_DEVICE pages are not on LRU */
2483 if (!is_zone_device_page(page)) {
2484 if (!PageLRU(page) && allow_drain) {
2485 /* Drain CPU's pagevec */
2486 lru_add_drain_all();
2487 allow_drain = false;
2488 }
8763cb45 2489
a5430dda
JG
2490 if (isolate_lru_page(page)) {
2491 if (remap) {
2492 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2493 migrate->cpages--;
2494 restore++;
2495 } else {
2496 migrate->src[i] = 0;
2497 unlock_page(page);
2498 migrate->cpages--;
2499 put_page(page);
2500 }
2501 continue;
8c3328f1 2502 }
a5430dda
JG
2503
2504 /* Drop the reference we took in collect */
2505 put_page(page);
8763cb45
JG
2506 }
2507
2508 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2509 if (remap) {
2510 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2511 migrate->cpages--;
2512 restore++;
8763cb45 2513
a5430dda
JG
2514 if (!is_zone_device_page(page)) {
2515 get_page(page);
2516 putback_lru_page(page);
2517 }
8c3328f1
JG
2518 } else {
2519 migrate->src[i] = 0;
2520 unlock_page(page);
2521 migrate->cpages--;
2522
a5430dda
JG
2523 if (!is_zone_device_page(page))
2524 putback_lru_page(page);
2525 else
2526 put_page(page);
8c3328f1 2527 }
8763cb45
JG
2528 }
2529 }
8c3328f1
JG
2530
2531 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2532 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2533
2534 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2535 continue;
2536
2537 remove_migration_pte(page, migrate->vma, addr, page);
2538
2539 migrate->src[i] = 0;
2540 unlock_page(page);
2541 put_page(page);
2542 restore--;
2543 }
8763cb45
JG
2544}
2545
2546/*
2547 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2548 * @migrate: migrate struct containing all migration information
2549 *
2550 * Replace page mapping (CPU page table pte) with a special migration pte entry
2551 * and check again if it has been pinned. Pinned pages are restored because we
2552 * cannot migrate them.
2553 *
2554 * This is the last step before we call the device driver callback to allocate
2555 * destination memory and copy contents of original page over to new page.
2556 */
2557static void migrate_vma_unmap(struct migrate_vma *migrate)
2558{
2559 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2560 const unsigned long npages = migrate->npages;
2561 const unsigned long start = migrate->start;
2562 unsigned long addr, i, restore = 0;
2563
2564 for (i = 0; i < npages; i++) {
2565 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2566
2567 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2568 continue;
2569
8c3328f1
JG
2570 if (page_mapped(page)) {
2571 try_to_unmap(page, flags);
2572 if (page_mapped(page))
2573 goto restore;
8763cb45 2574 }
8c3328f1
JG
2575
2576 if (migrate_vma_check_page(page))
2577 continue;
2578
2579restore:
2580 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2581 migrate->cpages--;
2582 restore++;
8763cb45
JG
2583 }
2584
2585 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2586 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2587
2588 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2589 continue;
2590
2591 remove_migration_ptes(page, page, false);
2592
2593 migrate->src[i] = 0;
2594 unlock_page(page);
2595 restore--;
2596
a5430dda
JG
2597 if (is_zone_device_page(page))
2598 put_page(page);
2599 else
2600 putback_lru_page(page);
8763cb45
JG
2601 }
2602}
2603
8315ada7
JG
2604static void migrate_vma_insert_page(struct migrate_vma *migrate,
2605 unsigned long addr,
2606 struct page *page,
2607 unsigned long *src,
2608 unsigned long *dst)
2609{
2610 struct vm_area_struct *vma = migrate->vma;
2611 struct mm_struct *mm = vma->vm_mm;
2612 struct mem_cgroup *memcg;
2613 bool flush = false;
2614 spinlock_t *ptl;
2615 pte_t entry;
2616 pgd_t *pgdp;
2617 p4d_t *p4dp;
2618 pud_t *pudp;
2619 pmd_t *pmdp;
2620 pte_t *ptep;
2621
2622 /* Only allow populating anonymous memory */
2623 if (!vma_is_anonymous(vma))
2624 goto abort;
2625
2626 pgdp = pgd_offset(mm, addr);
2627 p4dp = p4d_alloc(mm, pgdp, addr);
2628 if (!p4dp)
2629 goto abort;
2630 pudp = pud_alloc(mm, p4dp, addr);
2631 if (!pudp)
2632 goto abort;
2633 pmdp = pmd_alloc(mm, pudp, addr);
2634 if (!pmdp)
2635 goto abort;
2636
2637 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2638 goto abort;
2639
2640 /*
2641 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2642 * pte_offset_map() on pmds where a huge pmd might be created
2643 * from a different thread.
2644 *
2645 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2646 * parallel threads are excluded by other means.
2647 *
2648 * Here we only have down_read(mmap_sem).
2649 */
2650 if (pte_alloc(mm, pmdp, addr))
2651 goto abort;
2652
2653 /* See the comment in pte_alloc_one_map() */
2654 if (unlikely(pmd_trans_unstable(pmdp)))
2655 goto abort;
2656
2657 if (unlikely(anon_vma_prepare(vma)))
2658 goto abort;
2659 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2660 goto abort;
2661
2662 /*
2663 * The memory barrier inside __SetPageUptodate makes sure that
2664 * preceding stores to the page contents become visible before
2665 * the set_pte_at() write.
2666 */
2667 __SetPageUptodate(page);
2668
df6ad698
JG
2669 if (is_zone_device_page(page)) {
2670 if (is_device_private_page(page)) {
2671 swp_entry_t swp_entry;
2672
2673 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2674 entry = swp_entry_to_pte(swp_entry);
2675 } else if (is_device_public_page(page)) {
2676 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2677 if (vma->vm_flags & VM_WRITE)
2678 entry = pte_mkwrite(pte_mkdirty(entry));
2679 entry = pte_mkdevmap(entry);
2680 }
8315ada7
JG
2681 } else {
2682 entry = mk_pte(page, vma->vm_page_prot);
2683 if (vma->vm_flags & VM_WRITE)
2684 entry = pte_mkwrite(pte_mkdirty(entry));
2685 }
2686
2687 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2688
2689 if (pte_present(*ptep)) {
2690 unsigned long pfn = pte_pfn(*ptep);
2691
2692 if (!is_zero_pfn(pfn)) {
2693 pte_unmap_unlock(ptep, ptl);
2694 mem_cgroup_cancel_charge(page, memcg, false);
2695 goto abort;
2696 }
2697 flush = true;
2698 } else if (!pte_none(*ptep)) {
2699 pte_unmap_unlock(ptep, ptl);
2700 mem_cgroup_cancel_charge(page, memcg, false);
2701 goto abort;
2702 }
2703
2704 /*
2705 * Check for usefaultfd but do not deliver the fault. Instead,
2706 * just back off.
2707 */
2708 if (userfaultfd_missing(vma)) {
2709 pte_unmap_unlock(ptep, ptl);
2710 mem_cgroup_cancel_charge(page, memcg, false);
2711 goto abort;
2712 }
2713
2714 inc_mm_counter(mm, MM_ANONPAGES);
2715 page_add_new_anon_rmap(page, vma, addr, false);
2716 mem_cgroup_commit_charge(page, memcg, false, false);
2717 if (!is_zone_device_page(page))
2718 lru_cache_add_active_or_unevictable(page, vma);
2719 get_page(page);
2720
2721 if (flush) {
2722 flush_cache_page(vma, addr, pte_pfn(*ptep));
2723 ptep_clear_flush_notify(vma, addr, ptep);
2724 set_pte_at_notify(mm, addr, ptep, entry);
2725 update_mmu_cache(vma, addr, ptep);
2726 } else {
2727 /* No need to invalidate - it was non-present before */
2728 set_pte_at(mm, addr, ptep, entry);
2729 update_mmu_cache(vma, addr, ptep);
2730 }
2731
2732 pte_unmap_unlock(ptep, ptl);
2733 *src = MIGRATE_PFN_MIGRATE;
2734 return;
2735
2736abort:
2737 *src &= ~MIGRATE_PFN_MIGRATE;
2738}
2739
8763cb45
JG
2740/*
2741 * migrate_vma_pages() - migrate meta-data from src page to dst page
2742 * @migrate: migrate struct containing all migration information
2743 *
2744 * This migrates struct page meta-data from source struct page to destination
2745 * struct page. This effectively finishes the migration from source page to the
2746 * destination page.
2747 */
2748static void migrate_vma_pages(struct migrate_vma *migrate)
2749{
2750 const unsigned long npages = migrate->npages;
2751 const unsigned long start = migrate->start;
8315ada7
JG
2752 struct vm_area_struct *vma = migrate->vma;
2753 struct mm_struct *mm = vma->vm_mm;
2754 unsigned long addr, i, mmu_start;
2755 bool notified = false;
8763cb45
JG
2756
2757 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2758 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2759 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2760 struct address_space *mapping;
2761 int r;
2762
8315ada7
JG
2763 if (!newpage) {
2764 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2765 continue;
8315ada7
JG
2766 }
2767
2768 if (!page) {
2769 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2770 continue;
2771 }
2772 if (!notified) {
2773 mmu_start = addr;
2774 notified = true;
2775 mmu_notifier_invalidate_range_start(mm,
2776 mmu_start,
2777 migrate->end);
2778 }
2779 migrate_vma_insert_page(migrate, addr, newpage,
2780 &migrate->src[i],
2781 &migrate->dst[i]);
8763cb45 2782 continue;
8315ada7 2783 }
8763cb45
JG
2784
2785 mapping = page_mapping(page);
2786
a5430dda
JG
2787 if (is_zone_device_page(newpage)) {
2788 if (is_device_private_page(newpage)) {
2789 /*
2790 * For now only support private anonymous when
2791 * migrating to un-addressable device memory.
2792 */
2793 if (mapping) {
2794 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2795 continue;
2796 }
df6ad698 2797 } else if (!is_device_public_page(newpage)) {
a5430dda
JG
2798 /*
2799 * Other types of ZONE_DEVICE page are not
2800 * supported.
2801 */
2802 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2803 continue;
2804 }
2805 }
2806
8763cb45
JG
2807 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2808 if (r != MIGRATEPAGE_SUCCESS)
2809 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2810 }
8315ada7 2811
4645b9fe
JG
2812 /*
2813 * No need to double call mmu_notifier->invalidate_range() callback as
2814 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2815 * did already call it.
2816 */
8315ada7 2817 if (notified)
4645b9fe
JG
2818 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2819 migrate->end);
8763cb45
JG
2820}
2821
2822/*
2823 * migrate_vma_finalize() - restore CPU page table entry
2824 * @migrate: migrate struct containing all migration information
2825 *
2826 * This replaces the special migration pte entry with either a mapping to the
2827 * new page if migration was successful for that page, or to the original page
2828 * otherwise.
2829 *
2830 * This also unlocks the pages and puts them back on the lru, or drops the extra
2831 * refcount, for device pages.
2832 */
2833static void migrate_vma_finalize(struct migrate_vma *migrate)
2834{
2835 const unsigned long npages = migrate->npages;
2836 unsigned long i;
2837
2838 for (i = 0; i < npages; i++) {
2839 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2840 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2841
8315ada7
JG
2842 if (!page) {
2843 if (newpage) {
2844 unlock_page(newpage);
2845 put_page(newpage);
2846 }
8763cb45 2847 continue;
8315ada7
JG
2848 }
2849
8763cb45
JG
2850 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2851 if (newpage) {
2852 unlock_page(newpage);
2853 put_page(newpage);
2854 }
2855 newpage = page;
2856 }
2857
2858 remove_migration_ptes(page, newpage, false);
2859 unlock_page(page);
2860 migrate->cpages--;
2861
a5430dda
JG
2862 if (is_zone_device_page(page))
2863 put_page(page);
2864 else
2865 putback_lru_page(page);
8763cb45
JG
2866
2867 if (newpage != page) {
2868 unlock_page(newpage);
a5430dda
JG
2869 if (is_zone_device_page(newpage))
2870 put_page(newpage);
2871 else
2872 putback_lru_page(newpage);
8763cb45
JG
2873 }
2874 }
2875}
2876
2877/*
2878 * migrate_vma() - migrate a range of memory inside vma
2879 *
2880 * @ops: migration callback for allocating destination memory and copying
2881 * @vma: virtual memory area containing the range to be migrated
2882 * @start: start address of the range to migrate (inclusive)
2883 * @end: end address of the range to migrate (exclusive)
2884 * @src: array of hmm_pfn_t containing source pfns
2885 * @dst: array of hmm_pfn_t containing destination pfns
2886 * @private: pointer passed back to each of the callback
2887 * Returns: 0 on success, error code otherwise
2888 *
2889 * This function tries to migrate a range of memory virtual address range, using
2890 * callbacks to allocate and copy memory from source to destination. First it
2891 * collects all the pages backing each virtual address in the range, saving this
2892 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2893 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2894 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2895 * in the corresponding src array entry. It then restores any pages that are
2896 * pinned, by remapping and unlocking those pages.
2897 *
2898 * At this point it calls the alloc_and_copy() callback. For documentation on
2899 * what is expected from that callback, see struct migrate_vma_ops comments in
2900 * include/linux/migrate.h
2901 *
2902 * After the alloc_and_copy() callback, this function goes over each entry in
2903 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2904 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2905 * then the function tries to migrate struct page information from the source
2906 * struct page to the destination struct page. If it fails to migrate the struct
2907 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2908 * array.
2909 *
2910 * At this point all successfully migrated pages have an entry in the src
2911 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2912 * array entry with MIGRATE_PFN_VALID flag set.
2913 *
2914 * It then calls the finalize_and_map() callback. See comments for "struct
2915 * migrate_vma_ops", in include/linux/migrate.h for details about
2916 * finalize_and_map() behavior.
2917 *
2918 * After the finalize_and_map() callback, for successfully migrated pages, this
2919 * function updates the CPU page table to point to new pages, otherwise it
2920 * restores the CPU page table to point to the original source pages.
2921 *
2922 * Function returns 0 after the above steps, even if no pages were migrated
2923 * (The function only returns an error if any of the arguments are invalid.)
2924 *
2925 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2926 * unsigned long entries.
2927 */
2928int migrate_vma(const struct migrate_vma_ops *ops,
2929 struct vm_area_struct *vma,
2930 unsigned long start,
2931 unsigned long end,
2932 unsigned long *src,
2933 unsigned long *dst,
2934 void *private)
2935{
2936 struct migrate_vma migrate;
2937
2938 /* Sanity check the arguments */
2939 start &= PAGE_MASK;
2940 end &= PAGE_MASK;
2941 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2942 return -EINVAL;
2943 if (start < vma->vm_start || start >= vma->vm_end)
2944 return -EINVAL;
2945 if (end <= vma->vm_start || end > vma->vm_end)
2946 return -EINVAL;
2947 if (!ops || !src || !dst || start >= end)
2948 return -EINVAL;
2949
2950 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2951 migrate.src = src;
2952 migrate.dst = dst;
2953 migrate.start = start;
2954 migrate.npages = 0;
2955 migrate.cpages = 0;
2956 migrate.end = end;
2957 migrate.vma = vma;
2958
2959 /* Collect, and try to unmap source pages */
2960 migrate_vma_collect(&migrate);
2961 if (!migrate.cpages)
2962 return 0;
2963
2964 /* Lock and isolate page */
2965 migrate_vma_prepare(&migrate);
2966 if (!migrate.cpages)
2967 return 0;
2968
2969 /* Unmap pages */
2970 migrate_vma_unmap(&migrate);
2971 if (!migrate.cpages)
2972 return 0;
2973
2974 /*
2975 * At this point pages are locked and unmapped, and thus they have
2976 * stable content and can safely be copied to destination memory that
2977 * is allocated by the callback.
2978 *
2979 * Note that migration can fail in migrate_vma_struct_page() for each
2980 * individual page.
2981 */
2982 ops->alloc_and_copy(vma, src, dst, start, end, private);
2983
2984 /* This does the real migration of struct page */
2985 migrate_vma_pages(&migrate);
2986
2987 ops->finalize_and_map(vma, src, dst, start, end, private);
2988
2989 /* Unlock and remap pages */
2990 migrate_vma_finalize(&migrate);
2991
2992 return 0;
2993}
2994EXPORT_SYMBOL(migrate_vma);
6b368cd4 2995#endif /* defined(MIGRATE_VMA_HELPER) */