]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/migrate.c
[PATCH] page migration cleanup: extract try_to_unmap from migration functions
[thirdparty/kernel/stable.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
18#include <linux/pagemap.h>
e23ca00b 19#include <linux/buffer_head.h>
b20a3503
CL
20#include <linux/mm_inline.h>
21#include <linux/pagevec.h>
22#include <linux/rmap.h>
23#include <linux/topology.h>
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/swapops.h>
27
28#include "internal.h"
29
b20a3503
CL
30/* The maximum number of pages to take off the LRU for migration */
31#define MIGRATE_CHUNK_SIZE 256
32
33#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
34
35/*
36 * Isolate one page from the LRU lists. If successful put it onto
37 * the indicated list with elevated page count.
38 *
39 * Result:
40 * -EBUSY: page not on LRU list
41 * 0: page removed from LRU list and added to the specified list.
42 */
43int isolate_lru_page(struct page *page, struct list_head *pagelist)
44{
45 int ret = -EBUSY;
46
47 if (PageLRU(page)) {
48 struct zone *zone = page_zone(page);
49
50 spin_lock_irq(&zone->lru_lock);
51 if (PageLRU(page)) {
52 ret = 0;
53 get_page(page);
54 ClearPageLRU(page);
55 if (PageActive(page))
56 del_page_from_active_list(zone, page);
57 else
58 del_page_from_inactive_list(zone, page);
59 list_add_tail(&page->lru, pagelist);
60 }
61 spin_unlock_irq(&zone->lru_lock);
62 }
63 return ret;
64}
65
66/*
67 * migrate_prep() needs to be called after we have compiled the list of pages
68 * to be migrated using isolate_lru_page() but before we begin a series of calls
69 * to migrate_pages().
70 */
71int migrate_prep(void)
72{
73 /* Must have swap device for migration */
74 if (nr_swap_pages <= 0)
75 return -ENODEV;
76
77 /*
78 * Clear the LRU lists so pages can be isolated.
79 * Note that pages may be moved off the LRU after we have
80 * drained them. Those pages will fail to migrate like other
81 * pages that may be busy.
82 */
83 lru_add_drain_all();
84
85 return 0;
86}
87
88static inline void move_to_lru(struct page *page)
89{
90 list_del(&page->lru);
91 if (PageActive(page)) {
92 /*
93 * lru_cache_add_active checks that
94 * the PG_active bit is off.
95 */
96 ClearPageActive(page);
97 lru_cache_add_active(page);
98 } else {
99 lru_cache_add(page);
100 }
101 put_page(page);
102}
103
104/*
105 * Add isolated pages on the list back to the LRU.
106 *
107 * returns the number of pages put back.
108 */
109int putback_lru_pages(struct list_head *l)
110{
111 struct page *page;
112 struct page *page2;
113 int count = 0;
114
115 list_for_each_entry_safe(page, page2, l, lru) {
116 move_to_lru(page);
117 count++;
118 }
119 return count;
120}
121
b20a3503
CL
122/*
123 * swapout a single page
124 * page is locked upon entry, unlocked on exit
125 */
126static int swap_page(struct page *page)
127{
128 struct address_space *mapping = page_mapping(page);
129
130 if (page_mapped(page) && mapping)
131 if (try_to_unmap(page, 1) != SWAP_SUCCESS)
132 goto unlock_retry;
133
134 if (PageDirty(page)) {
135 /* Page is dirty, try to write it out here */
136 switch(pageout(page, mapping)) {
137 case PAGE_KEEP:
138 case PAGE_ACTIVATE:
139 goto unlock_retry;
140
141 case PAGE_SUCCESS:
142 goto retry;
143
144 case PAGE_CLEAN:
145 ; /* try to free the page below */
146 }
147 }
148
149 if (PagePrivate(page)) {
150 if (!try_to_release_page(page, GFP_KERNEL) ||
151 (!mapping && page_count(page) == 1))
152 goto unlock_retry;
153 }
154
155 if (remove_mapping(mapping, page)) {
156 /* Success */
157 unlock_page(page);
158 return 0;
159 }
160
161unlock_retry:
162 unlock_page(page);
163
164retry:
165 return -EAGAIN;
166}
b20a3503
CL
167
168/*
c3fcf8a5 169 * Replace the page in the mapping.
5b5c7120
CL
170 *
171 * The number of remaining references must be:
172 * 1 for anonymous pages without a mapping
173 * 2 for pages with a mapping
174 * 3 for pages with a mapping and PagePrivate set.
b20a3503 175 */
c3fcf8a5 176static int migrate_page_move_mapping(struct page *newpage,
5b5c7120 177 struct page *page)
b20a3503
CL
178{
179 struct address_space *mapping = page_mapping(page);
180 struct page **radix_pointer;
181
5b5c7120 182 if (!mapping)
b20a3503
CL
183 return -EAGAIN;
184
b20a3503
CL
185 write_lock_irq(&mapping->tree_lock);
186
187 radix_pointer = (struct page **)radix_tree_lookup_slot(
188 &mapping->page_tree,
189 page_index(page));
190
5b5c7120
CL
191 if (!page_mapping(page) ||
192 page_count(page) != 2 + !!PagePrivate(page) ||
b20a3503
CL
193 *radix_pointer != page) {
194 write_unlock_irq(&mapping->tree_lock);
e23ca00b 195 return -EAGAIN;
b20a3503
CL
196 }
197
198 /*
199 * Now we know that no one else is looking at the page.
200 *
201 * Certain minimal information about a page must be available
202 * in order for other subsystems to properly handle the page if they
203 * find it through the radix tree update before we are finished
204 * copying the page.
205 */
206 get_page(newpage);
207 newpage->index = page->index;
208 newpage->mapping = page->mapping;
209 if (PageSwapCache(page)) {
210 SetPageSwapCache(newpage);
211 set_page_private(newpage, page_private(page));
212 }
213
214 *radix_pointer = newpage;
215 __put_page(page);
216 write_unlock_irq(&mapping->tree_lock);
217
218 return 0;
219}
b20a3503
CL
220
221/*
222 * Copy the page to its new location
223 */
e7340f73 224static void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503
CL
225{
226 copy_highpage(newpage, page);
227
228 if (PageError(page))
229 SetPageError(newpage);
230 if (PageReferenced(page))
231 SetPageReferenced(newpage);
232 if (PageUptodate(page))
233 SetPageUptodate(newpage);
234 if (PageActive(page))
235 SetPageActive(newpage);
236 if (PageChecked(page))
237 SetPageChecked(newpage);
238 if (PageMappedToDisk(page))
239 SetPageMappedToDisk(newpage);
240
241 if (PageDirty(page)) {
242 clear_page_dirty_for_io(page);
243 set_page_dirty(newpage);
244 }
245
246 ClearPageSwapCache(page);
247 ClearPageActive(page);
248 ClearPagePrivate(page);
249 set_page_private(page, 0);
250 page->mapping = NULL;
251
252 /*
253 * If any waiters have accumulated on the new page then
254 * wake them up.
255 */
256 if (PageWriteback(newpage))
257 end_page_writeback(newpage);
258}
b20a3503 259
1d8b85cc
CL
260/************************************************************
261 * Migration functions
262 ***********************************************************/
263
264/* Always fail migration. Used for mappings that are not movable */
265int fail_migrate_page(struct page *newpage, struct page *page)
266{
267 return -EIO;
268}
269EXPORT_SYMBOL(fail_migrate_page);
270
b20a3503
CL
271/*
272 * Common logic to directly migrate a single page suitable for
273 * pages that do not use PagePrivate.
274 *
275 * Pages are locked upon entry and exit.
276 */
277int migrate_page(struct page *newpage, struct page *page)
278{
279 int rc;
280
281 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
282
c3fcf8a5 283 rc = migrate_page_move_mapping(newpage, page);
b20a3503
CL
284
285 if (rc)
286 return rc;
287
288 migrate_page_copy(newpage, page);
289
290 /*
291 * Remove auxiliary swap entries and replace
292 * them with real ptes.
293 *
294 * Note that a real pte entry will allow processes that are not
295 * waiting on the page lock to use the new page via the page tables
296 * before the new page is unlocked.
297 */
298 remove_from_swap(newpage);
299 return 0;
300}
301EXPORT_SYMBOL(migrate_page);
302
1d8b85cc
CL
303/*
304 * Migration function for pages with buffers. This function can only be used
305 * if the underlying filesystem guarantees that no other references to "page"
306 * exist.
307 */
308int buffer_migrate_page(struct page *newpage, struct page *page)
309{
310 struct address_space *mapping = page->mapping;
311 struct buffer_head *bh, *head;
312 int rc;
313
314 if (!mapping)
315 return -EAGAIN;
316
317 if (!page_has_buffers(page))
318 return migrate_page(newpage, page);
319
320 head = page_buffers(page);
321
c3fcf8a5 322 rc = migrate_page_move_mapping(newpage, page);
1d8b85cc
CL
323
324 if (rc)
325 return rc;
326
327 bh = head;
328 do {
329 get_bh(bh);
330 lock_buffer(bh);
331 bh = bh->b_this_page;
332
333 } while (bh != head);
334
335 ClearPagePrivate(page);
336 set_page_private(newpage, page_private(page));
337 set_page_private(page, 0);
338 put_page(page);
339 get_page(newpage);
340
341 bh = head;
342 do {
343 set_bh_page(bh, newpage, bh_offset(bh));
344 bh = bh->b_this_page;
345
346 } while (bh != head);
347
348 SetPagePrivate(newpage);
349
350 migrate_page_copy(newpage, page);
351
352 bh = head;
353 do {
354 unlock_buffer(bh);
355 put_bh(bh);
356 bh = bh->b_this_page;
357
358 } while (bh != head);
359
360 return 0;
361}
362EXPORT_SYMBOL(buffer_migrate_page);
363
b20a3503
CL
364/*
365 * migrate_pages
366 *
367 * Two lists are passed to this function. The first list
368 * contains the pages isolated from the LRU to be migrated.
369 * The second list contains new pages that the pages isolated
370 * can be moved to. If the second list is NULL then all
371 * pages are swapped out.
372 *
373 * The function returns after 10 attempts or if no pages
374 * are movable anymore because to has become empty
375 * or no retryable pages exist anymore.
376 *
377 * Return: Number of pages not migrated when "to" ran empty.
378 */
379int migrate_pages(struct list_head *from, struct list_head *to,
380 struct list_head *moved, struct list_head *failed)
381{
382 int retry;
383 int nr_failed = 0;
384 int pass = 0;
385 struct page *page;
386 struct page *page2;
387 int swapwrite = current->flags & PF_SWAPWRITE;
388 int rc;
389
390 if (!swapwrite)
391 current->flags |= PF_SWAPWRITE;
392
393redo:
394 retry = 0;
395
396 list_for_each_entry_safe(page, page2, from, lru) {
397 struct page *newpage = NULL;
398 struct address_space *mapping;
399
400 cond_resched();
401
402 rc = 0;
403 if (page_count(page) == 1)
404 /* page was freed from under us. So we are done. */
405 goto next;
406
407 if (to && list_empty(to))
408 break;
409
410 /*
411 * Skip locked pages during the first two passes to give the
412 * functions holding the lock time to release the page. Later we
413 * use lock_page() to have a higher chance of acquiring the
414 * lock.
415 */
416 rc = -EAGAIN;
417 if (pass > 2)
418 lock_page(page);
419 else
420 if (TestSetPageLocked(page))
421 goto next;
422
423 /*
424 * Only wait on writeback if we have already done a pass where
425 * we we may have triggered writeouts for lots of pages.
426 */
427 if (pass > 0) {
428 wait_on_page_writeback(page);
429 } else {
430 if (PageWriteback(page))
431 goto unlock_page;
432 }
433
434 /*
435 * Anonymous pages must have swap cache references otherwise
436 * the information contained in the page maps cannot be
437 * preserved.
438 */
439 if (PageAnon(page) && !PageSwapCache(page)) {
440 if (!add_to_swap(page, GFP_KERNEL)) {
441 rc = -ENOMEM;
442 goto unlock_page;
443 }
444 }
445
446 if (!to) {
447 rc = swap_page(page);
448 goto next;
449 }
450
451 newpage = lru_to_page(to);
452 lock_page(newpage);
453
c3fcf8a5
CL
454 /*
455 * Establish swap ptes for anonymous pages or destroy pte
456 * maps for files.
457 *
458 * In order to reestablish file backed mappings the fault handlers
459 * will take the radix tree_lock which may then be used to stop
460 * processses from accessing this page until the new page is ready.
461 *
462 * A process accessing via a swap pte (an anonymous page) will take a
463 * page_lock on the old page which will block the process until the
464 * migration attempt is complete. At that time the PageSwapCache bit
465 * will be examined. If the page was migrated then the PageSwapCache
466 * bit will be clear and the operation to retrieve the page will be
467 * retried which will find the new page in the radix tree. Then a new
468 * direct mapping may be generated based on the radix tree contents.
469 *
470 * If the page was not migrated then the PageSwapCache bit
471 * is still set and the operation may continue.
472 */
473 rc = -EPERM;
474 if (try_to_unmap(page, 1) == SWAP_FAIL)
475 /* A vma has VM_LOCKED set -> permanent failure */
476 goto unlock_both;
477
478 rc = -EAGAIN;
479 if (page_mapped(page))
480 goto unlock_both;
b20a3503
CL
481 /*
482 * Pages are properly locked and writeback is complete.
483 * Try to migrate the page.
484 */
485 mapping = page_mapping(page);
486 if (!mapping)
487 goto unlock_both;
488
489 if (mapping->a_ops->migratepage) {
490 /*
491 * Most pages have a mapping and most filesystems
492 * should provide a migration function. Anonymous
493 * pages are part of swap space which also has its
494 * own migration function. This is the most common
495 * path for page migration.
496 */
497 rc = mapping->a_ops->migratepage(newpage, page);
498 goto unlock_both;
499 }
500
501 /*
502 * Default handling if a filesystem does not provide
503 * a migration function. We can only migrate clean
504 * pages so try to write out any dirty pages first.
505 */
506 if (PageDirty(page)) {
507 switch (pageout(page, mapping)) {
508 case PAGE_KEEP:
509 case PAGE_ACTIVATE:
510 goto unlock_both;
511
512 case PAGE_SUCCESS:
513 unlock_page(newpage);
514 goto next;
515
516 case PAGE_CLEAN:
517 ; /* try to migrate the page below */
518 }
519 }
520
521 /*
522 * Buffers are managed in a filesystem specific way.
523 * We must have no buffers or drop them.
524 */
525 if (!page_has_buffers(page) ||
526 try_to_release_page(page, GFP_KERNEL)) {
527 rc = migrate_page(newpage, page);
528 goto unlock_both;
529 }
530
531 /*
532 * On early passes with mapped pages simply
533 * retry. There may be a lock held for some
534 * buffers that may go away. Later
535 * swap them out.
536 */
537 if (pass > 4) {
538 /*
539 * Persistently unable to drop buffers..... As a
540 * measure of last resort we fall back to
541 * swap_page().
542 */
543 unlock_page(newpage);
544 newpage = NULL;
545 rc = swap_page(page);
546 goto next;
547 }
548
549unlock_both:
550 unlock_page(newpage);
551
552unlock_page:
553 unlock_page(page);
554
555next:
556 if (rc == -EAGAIN) {
557 retry++;
558 } else if (rc) {
559 /* Permanent failure */
560 list_move(&page->lru, failed);
561 nr_failed++;
562 } else {
563 if (newpage) {
564 /* Successful migration. Return page to LRU */
565 move_to_lru(newpage);
566 }
567 list_move(&page->lru, moved);
568 }
569 }
570 if (retry && pass++ < 10)
571 goto redo;
572
573 if (!swapwrite)
574 current->flags &= ~PF_SWAPWRITE;
575
576 return nr_failed + retry;
577}
578
b20a3503
CL
579/*
580 * Migrate the list 'pagelist' of pages to a certain destination.
581 *
582 * Specify destination with either non-NULL vma or dest_node >= 0
583 * Return the number of pages not migrated or error code
584 */
585int migrate_pages_to(struct list_head *pagelist,
586 struct vm_area_struct *vma, int dest)
587{
588 LIST_HEAD(newlist);
589 LIST_HEAD(moved);
590 LIST_HEAD(failed);
591 int err = 0;
592 unsigned long offset = 0;
593 int nr_pages;
594 struct page *page;
595 struct list_head *p;
596
597redo:
598 nr_pages = 0;
599 list_for_each(p, pagelist) {
600 if (vma) {
601 /*
602 * The address passed to alloc_page_vma is used to
603 * generate the proper interleave behavior. We fake
604 * the address here by an increasing offset in order
605 * to get the proper distribution of pages.
606 *
607 * No decision has been made as to which page
608 * a certain old page is moved to so we cannot
609 * specify the correct address.
610 */
611 page = alloc_page_vma(GFP_HIGHUSER, vma,
612 offset + vma->vm_start);
613 offset += PAGE_SIZE;
614 }
615 else
616 page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
617
618 if (!page) {
619 err = -ENOMEM;
620 goto out;
621 }
622 list_add_tail(&page->lru, &newlist);
623 nr_pages++;
624 if (nr_pages > MIGRATE_CHUNK_SIZE)
625 break;
626 }
627 err = migrate_pages(pagelist, &newlist, &moved, &failed);
628
629 putback_lru_pages(&moved); /* Call release pages instead ?? */
630
631 if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
632 goto redo;
633out:
634 /* Return leftover allocated pages */
635 while (!list_empty(&newlist)) {
636 page = list_entry(newlist.next, struct page, lru);
637 list_del(&page->lru);
638 __free_page(page);
639 }
640 list_splice(&failed, pagelist);
641 if (err < 0)
642 return err;
643
644 /* Calculate number of leftover pages */
645 nr_pages = 0;
646 list_for_each(p, pagelist)
647 nr_pages++;
648 return nr_pages;
649}