]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/migrate.c
initramfs: cleanup incomplete rootfs
[thirdparty/kernel/stable.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
df6ad698 41#include <linux/pfn_t.h>
a5430dda 42#include <linux/memremap.h>
8315ada7 43#include <linux/userfaultfd_k.h>
bf6bddf1 44#include <linux/balloon_compaction.h>
f714f4f2 45#include <linux/mmu_notifier.h>
33c3fc71 46#include <linux/page_idle.h>
d435edca 47#include <linux/page_owner.h>
6e84f315 48#include <linux/sched/mm.h>
197e7e52 49#include <linux/ptrace.h>
b20a3503 50
0d1836c3
MN
51#include <asm/tlbflush.h>
52
7b2a2d4a
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/migrate.h>
55
b20a3503
CL
56#include "internal.h"
57
b20a3503 58/*
742755a1 59 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
b20a3503
CL
62 */
63int migrate_prep(void)
64{
b20a3503
CL
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74}
75
748446bb
MG
76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
77int migrate_prep_local(void)
78{
79 lru_add_drain();
80
81 return 0;
82}
83
9e5bcd61 84int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
85{
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
9e5bcd61 135 return 0;
bda807d4
MK
136
137out_no_isolated:
138 unlock_page(page);
139out_putpage:
140 put_page(page);
141out:
9e5bcd61 142 return -EBUSY;
bda807d4
MK
143}
144
145/* It should be called on page which is PG_movable */
146void putback_movable_page(struct page *page)
147{
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157}
158
5733c7d1
RA
159/*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
59c82b70
JK
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
5733c7d1
RA
166 */
167void putback_movable_pages(struct list_head *l)
168{
169 struct page *page;
170 struct page *page2;
171
b20a3503 172 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
e24f0b8f 177 list_del(&page->lru);
bda807d4
MK
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
b1123ea6 183 if (unlikely(__PageMovable(page))) {
bda807d4
MK
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
e8db67eb
NH
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 195 putback_lru_page(page);
bda807d4 196 }
b20a3503 197 }
b20a3503
CL
198}
199
0697212a
CL
200/*
201 * Restore a potential migration pte to a working pte entry
202 */
e4b82222 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 204 unsigned long addr, void *old)
0697212a 205{
3fe87967
KS
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
0697212a 214 swp_entry_t entry;
0697212a 215
3fe87967
KS
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
0697212a 223
616b8371
ZY
224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231#endif
232
3fe87967
KS
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
0697212a 237
3fe87967
KS
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 244
df6ad698
JG
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
252 }
a5430dda
JG
253 } else
254 flush_dcache_page(new);
255
3ef8fd7f 256#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
383321ab
AK
265 } else
266#endif
267 {
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 269
383321ab
AK
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
274 }
3fe87967
KS
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
277
e125fe40
KS
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
280
3fe87967
KS
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 }
51afb12b 284
e4b82222 285 return true;
0697212a
CL
286}
287
04e62a29
CL
288/*
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
291 */
e388466d 292void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 293{
051ac83a
JK
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
296 .arg = old,
297 };
298
e388466d
KS
299 if (locked)
300 rmap_walk_locked(new, &rwc);
301 else
302 rmap_walk(new, &rwc);
04e62a29
CL
303}
304
0697212a
CL
305/*
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
0697212a 309 */
e66f17ff 310void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 311 spinlock_t *ptl)
0697212a 312{
30dad309 313 pte_t pte;
0697212a
CL
314 swp_entry_t entry;
315 struct page *page;
316
30dad309 317 spin_lock(ptl);
0697212a
CL
318 pte = *ptep;
319 if (!is_swap_pte(pte))
320 goto out;
321
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
324 goto out;
325
326 page = migration_entry_to_page(entry);
327
e286781d 328 /*
89eb946a 329 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
330 * is zero; but we must not call put_and_wait_on_page_locked() without
331 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
332 */
333 if (!get_page_unless_zero(page))
334 goto out;
0697212a 335 pte_unmap_unlock(ptep, ptl);
9a1ea439 336 put_and_wait_on_page_locked(page);
0697212a
CL
337 return;
338out:
339 pte_unmap_unlock(ptep, ptl);
340}
341
30dad309
NH
342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
344{
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
348}
349
cb900f41
KS
350void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
30dad309 352{
cb900f41 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
354 __migration_entry_wait(mm, pte, ptl);
355}
356
616b8371
ZY
357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359{
360 spinlock_t *ptl;
361 struct page *page;
362
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
9a1ea439 370 put_and_wait_on_page_locked(page);
616b8371
ZY
371 return;
372unlock:
373 spin_unlock(ptl);
374}
375#endif
376
0b3901b3
JK
377static int expected_page_refs(struct page *page)
378{
379 int expected_count = 1;
380
381 /*
382 * Device public or private pages have an extra refcount as they are
383 * ZONE_DEVICE pages.
384 */
385 expected_count += is_device_private_page(page);
386 expected_count += is_device_public_page(page);
387 if (page_mapping(page))
388 expected_count += hpage_nr_pages(page) + page_has_private(page);
389
390 return expected_count;
391}
392
b20a3503 393/*
c3fcf8a5 394 * Replace the page in the mapping.
5b5c7120
CL
395 *
396 * The number of remaining references must be:
397 * 1 for anonymous pages without a mapping
398 * 2 for pages with a mapping
266cf658 399 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 400 */
36bc08cc 401int migrate_page_move_mapping(struct address_space *mapping,
ab41ee68 402 struct page *newpage, struct page *page, enum migrate_mode mode,
8e321fef 403 int extra_count)
b20a3503 404{
89eb946a 405 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
406 struct zone *oldzone, *newzone;
407 int dirty;
0b3901b3 408 int expected_count = expected_page_refs(page) + extra_count;
8763cb45 409
6c5240ae 410 if (!mapping) {
0e8c7d0f 411 /* Anonymous page without mapping */
8e321fef 412 if (page_count(page) != expected_count)
6c5240ae 413 return -EAGAIN;
cf4b769a
HD
414
415 /* No turning back from here */
cf4b769a
HD
416 newpage->index = page->index;
417 newpage->mapping = page->mapping;
418 if (PageSwapBacked(page))
fa9949da 419 __SetPageSwapBacked(newpage);
cf4b769a 420
78bd5209 421 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
422 }
423
42cb14b1
HD
424 oldzone = page_zone(page);
425 newzone = page_zone(newpage);
426
89eb946a 427 xas_lock_irq(&xas);
89eb946a
MW
428 if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 xas_unlock_irq(&xas);
e23ca00b 430 return -EAGAIN;
b20a3503
CL
431 }
432
fe896d18 433 if (!page_ref_freeze(page, expected_count)) {
89eb946a 434 xas_unlock_irq(&xas);
e286781d
NP
435 return -EAGAIN;
436 }
437
b20a3503 438 /*
cf4b769a
HD
439 * Now we know that no one else is looking at the page:
440 * no turning back from here.
b20a3503 441 */
cf4b769a
HD
442 newpage->index = page->index;
443 newpage->mapping = page->mapping;
e71769ae 444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
6326fec1
NP
445 if (PageSwapBacked(page)) {
446 __SetPageSwapBacked(newpage);
447 if (PageSwapCache(page)) {
448 SetPageSwapCache(newpage);
449 set_page_private(newpage, page_private(page));
450 }
451 } else {
452 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
453 }
454
42cb14b1
HD
455 /* Move dirty while page refs frozen and newpage not yet exposed */
456 dirty = PageDirty(page);
457 if (dirty) {
458 ClearPageDirty(page);
459 SetPageDirty(newpage);
460 }
461
89eb946a 462 xas_store(&xas, newpage);
e71769ae
NH
463 if (PageTransHuge(page)) {
464 int i;
e71769ae 465
013567be 466 for (i = 1; i < HPAGE_PMD_NR; i++) {
89eb946a
MW
467 xas_next(&xas);
468 xas_store(&xas, newpage + i);
e71769ae 469 }
e71769ae 470 }
7cf9c2c7
NP
471
472 /*
937a94c9
JG
473 * Drop cache reference from old page by unfreezing
474 * to one less reference.
7cf9c2c7
NP
475 * We know this isn't the last reference.
476 */
e71769ae 477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
7cf9c2c7 478
89eb946a 479 xas_unlock(&xas);
42cb14b1
HD
480 /* Leave irq disabled to prevent preemption while updating stats */
481
0e8c7d0f
CL
482 /*
483 * If moved to a different zone then also account
484 * the page for that zone. Other VM counters will be
485 * taken care of when we establish references to the
486 * new page and drop references to the old page.
487 *
488 * Note that anonymous pages are accounted for
4b9d0fab 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
490 * are mapped to swap space.
491 */
42cb14b1 492 if (newzone != oldzone) {
11fb9989
MG
493 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 495 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
496 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
498 }
499 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 500 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 501 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 502 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 503 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 504 }
4b02108a 505 }
42cb14b1 506 local_irq_enable();
b20a3503 507
78bd5209 508 return MIGRATEPAGE_SUCCESS;
b20a3503 509}
1118dce7 510EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 511
290408d4
NH
512/*
513 * The expected number of remaining references is the same as that
514 * of migrate_page_move_mapping().
515 */
516int migrate_huge_page_move_mapping(struct address_space *mapping,
517 struct page *newpage, struct page *page)
518{
89eb946a 519 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 520 int expected_count;
290408d4 521
89eb946a 522 xas_lock_irq(&xas);
290408d4 523 expected_count = 2 + page_has_private(page);
89eb946a
MW
524 if (page_count(page) != expected_count || xas_load(&xas) != page) {
525 xas_unlock_irq(&xas);
290408d4
NH
526 return -EAGAIN;
527 }
528
fe896d18 529 if (!page_ref_freeze(page, expected_count)) {
89eb946a 530 xas_unlock_irq(&xas);
290408d4
NH
531 return -EAGAIN;
532 }
533
cf4b769a
HD
534 newpage->index = page->index;
535 newpage->mapping = page->mapping;
6a93ca8f 536
290408d4
NH
537 get_page(newpage);
538
89eb946a 539 xas_store(&xas, newpage);
290408d4 540
fe896d18 541 page_ref_unfreeze(page, expected_count - 1);
290408d4 542
89eb946a 543 xas_unlock_irq(&xas);
6a93ca8f 544
78bd5209 545 return MIGRATEPAGE_SUCCESS;
290408d4
NH
546}
547
30b0a105
DH
548/*
549 * Gigantic pages are so large that we do not guarantee that page++ pointer
550 * arithmetic will work across the entire page. We need something more
551 * specialized.
552 */
553static void __copy_gigantic_page(struct page *dst, struct page *src,
554 int nr_pages)
555{
556 int i;
557 struct page *dst_base = dst;
558 struct page *src_base = src;
559
560 for (i = 0; i < nr_pages; ) {
561 cond_resched();
562 copy_highpage(dst, src);
563
564 i++;
565 dst = mem_map_next(dst, dst_base, i);
566 src = mem_map_next(src, src_base, i);
567 }
568}
569
570static void copy_huge_page(struct page *dst, struct page *src)
571{
572 int i;
573 int nr_pages;
574
575 if (PageHuge(src)) {
576 /* hugetlbfs page */
577 struct hstate *h = page_hstate(src);
578 nr_pages = pages_per_huge_page(h);
579
580 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581 __copy_gigantic_page(dst, src, nr_pages);
582 return;
583 }
584 } else {
585 /* thp page */
586 BUG_ON(!PageTransHuge(src));
587 nr_pages = hpage_nr_pages(src);
588 }
589
590 for (i = 0; i < nr_pages; i++) {
591 cond_resched();
592 copy_highpage(dst + i, src + i);
593 }
594}
595
b20a3503
CL
596/*
597 * Copy the page to its new location
598 */
2916ecc0 599void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 600{
7851a45c
RR
601 int cpupid;
602
b20a3503
CL
603 if (PageError(page))
604 SetPageError(newpage);
605 if (PageReferenced(page))
606 SetPageReferenced(newpage);
607 if (PageUptodate(page))
608 SetPageUptodate(newpage);
894bc310 609 if (TestClearPageActive(page)) {
309381fe 610 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 611 SetPageActive(newpage);
418b27ef
LS
612 } else if (TestClearPageUnevictable(page))
613 SetPageUnevictable(newpage);
1899ad18
JW
614 if (PageWorkingset(page))
615 SetPageWorkingset(newpage);
b20a3503
CL
616 if (PageChecked(page))
617 SetPageChecked(newpage);
618 if (PageMappedToDisk(page))
619 SetPageMappedToDisk(newpage);
620
42cb14b1
HD
621 /* Move dirty on pages not done by migrate_page_move_mapping() */
622 if (PageDirty(page))
623 SetPageDirty(newpage);
b20a3503 624
33c3fc71
VD
625 if (page_is_young(page))
626 set_page_young(newpage);
627 if (page_is_idle(page))
628 set_page_idle(newpage);
629
7851a45c
RR
630 /*
631 * Copy NUMA information to the new page, to prevent over-eager
632 * future migrations of this same page.
633 */
634 cpupid = page_cpupid_xchg_last(page, -1);
635 page_cpupid_xchg_last(newpage, cpupid);
636
e9995ef9 637 ksm_migrate_page(newpage, page);
c8d6553b
HD
638 /*
639 * Please do not reorder this without considering how mm/ksm.c's
640 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641 */
b3b3a99c
NH
642 if (PageSwapCache(page))
643 ClearPageSwapCache(page);
b20a3503
CL
644 ClearPagePrivate(page);
645 set_page_private(page, 0);
b20a3503
CL
646
647 /*
648 * If any waiters have accumulated on the new page then
649 * wake them up.
650 */
651 if (PageWriteback(newpage))
652 end_page_writeback(newpage);
d435edca
VB
653
654 copy_page_owner(page, newpage);
74485cf2
JW
655
656 mem_cgroup_migrate(page, newpage);
b20a3503 657}
2916ecc0
JG
658EXPORT_SYMBOL(migrate_page_states);
659
660void migrate_page_copy(struct page *newpage, struct page *page)
661{
662 if (PageHuge(page) || PageTransHuge(page))
663 copy_huge_page(newpage, page);
664 else
665 copy_highpage(newpage, page);
666
667 migrate_page_states(newpage, page);
668}
1118dce7 669EXPORT_SYMBOL(migrate_page_copy);
b20a3503 670
1d8b85cc
CL
671/************************************************************
672 * Migration functions
673 ***********************************************************/
674
b20a3503 675/*
bda807d4 676 * Common logic to directly migrate a single LRU page suitable for
266cf658 677 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
678 *
679 * Pages are locked upon entry and exit.
680 */
2d1db3b1 681int migrate_page(struct address_space *mapping,
a6bc32b8
MG
682 struct page *newpage, struct page *page,
683 enum migrate_mode mode)
b20a3503
CL
684{
685 int rc;
686
687 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
688
ab41ee68 689 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
b20a3503 690
78bd5209 691 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
692 return rc;
693
2916ecc0
JG
694 if (mode != MIGRATE_SYNC_NO_COPY)
695 migrate_page_copy(newpage, page);
696 else
697 migrate_page_states(newpage, page);
78bd5209 698 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
699}
700EXPORT_SYMBOL(migrate_page);
701
9361401e 702#ifdef CONFIG_BLOCK
84ade7c1
JK
703/* Returns true if all buffers are successfully locked */
704static bool buffer_migrate_lock_buffers(struct buffer_head *head,
705 enum migrate_mode mode)
706{
707 struct buffer_head *bh = head;
708
709 /* Simple case, sync compaction */
710 if (mode != MIGRATE_ASYNC) {
711 do {
712 get_bh(bh);
713 lock_buffer(bh);
714 bh = bh->b_this_page;
715
716 } while (bh != head);
717
718 return true;
719 }
720
721 /* async case, we cannot block on lock_buffer so use trylock_buffer */
722 do {
723 get_bh(bh);
724 if (!trylock_buffer(bh)) {
725 /*
726 * We failed to lock the buffer and cannot stall in
727 * async migration. Release the taken locks
728 */
729 struct buffer_head *failed_bh = bh;
730 put_bh(failed_bh);
731 bh = head;
732 while (bh != failed_bh) {
733 unlock_buffer(bh);
734 put_bh(bh);
735 bh = bh->b_this_page;
736 }
737 return false;
738 }
739
740 bh = bh->b_this_page;
741 } while (bh != head);
742 return true;
743}
744
89cb0888
JK
745static int __buffer_migrate_page(struct address_space *mapping,
746 struct page *newpage, struct page *page, enum migrate_mode mode,
747 bool check_refs)
1d8b85cc 748{
1d8b85cc
CL
749 struct buffer_head *bh, *head;
750 int rc;
cc4f11e6 751 int expected_count;
1d8b85cc 752
1d8b85cc 753 if (!page_has_buffers(page))
a6bc32b8 754 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 755
cc4f11e6
JK
756 /* Check whether page does not have extra refs before we do more work */
757 expected_count = expected_page_refs(page);
758 if (page_count(page) != expected_count)
759 return -EAGAIN;
1d8b85cc 760
cc4f11e6
JK
761 head = page_buffers(page);
762 if (!buffer_migrate_lock_buffers(head, mode))
763 return -EAGAIN;
1d8b85cc 764
89cb0888
JK
765 if (check_refs) {
766 bool busy;
767 bool invalidated = false;
768
769recheck_buffers:
770 busy = false;
771 spin_lock(&mapping->private_lock);
772 bh = head;
773 do {
774 if (atomic_read(&bh->b_count)) {
775 busy = true;
776 break;
777 }
778 bh = bh->b_this_page;
779 } while (bh != head);
780 spin_unlock(&mapping->private_lock);
781 if (busy) {
782 if (invalidated) {
783 rc = -EAGAIN;
784 goto unlock_buffers;
785 }
786 invalidate_bh_lrus();
787 invalidated = true;
788 goto recheck_buffers;
789 }
790 }
791
ab41ee68 792 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
78bd5209 793 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 794 goto unlock_buffers;
1d8b85cc
CL
795
796 ClearPagePrivate(page);
797 set_page_private(newpage, page_private(page));
798 set_page_private(page, 0);
799 put_page(page);
800 get_page(newpage);
801
802 bh = head;
803 do {
804 set_bh_page(bh, newpage, bh_offset(bh));
805 bh = bh->b_this_page;
806
807 } while (bh != head);
808
809 SetPagePrivate(newpage);
810
2916ecc0
JG
811 if (mode != MIGRATE_SYNC_NO_COPY)
812 migrate_page_copy(newpage, page);
813 else
814 migrate_page_states(newpage, page);
1d8b85cc 815
cc4f11e6
JK
816 rc = MIGRATEPAGE_SUCCESS;
817unlock_buffers:
1d8b85cc
CL
818 bh = head;
819 do {
820 unlock_buffer(bh);
2916ecc0 821 put_bh(bh);
1d8b85cc
CL
822 bh = bh->b_this_page;
823
824 } while (bh != head);
825
cc4f11e6 826 return rc;
1d8b85cc 827}
89cb0888
JK
828
829/*
830 * Migration function for pages with buffers. This function can only be used
831 * if the underlying filesystem guarantees that no other references to "page"
832 * exist. For example attached buffer heads are accessed only under page lock.
833 */
834int buffer_migrate_page(struct address_space *mapping,
835 struct page *newpage, struct page *page, enum migrate_mode mode)
836{
837 return __buffer_migrate_page(mapping, newpage, page, mode, false);
838}
1d8b85cc 839EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
840
841/*
842 * Same as above except that this variant is more careful and checks that there
843 * are also no buffer head references. This function is the right one for
844 * mappings where buffer heads are directly looked up and referenced (such as
845 * block device mappings).
846 */
847int buffer_migrate_page_norefs(struct address_space *mapping,
848 struct page *newpage, struct page *page, enum migrate_mode mode)
849{
850 return __buffer_migrate_page(mapping, newpage, page, mode, true);
851}
9361401e 852#endif
1d8b85cc 853
04e62a29
CL
854/*
855 * Writeback a page to clean the dirty state
856 */
857static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 858{
04e62a29
CL
859 struct writeback_control wbc = {
860 .sync_mode = WB_SYNC_NONE,
861 .nr_to_write = 1,
862 .range_start = 0,
863 .range_end = LLONG_MAX,
04e62a29
CL
864 .for_reclaim = 1
865 };
866 int rc;
867
868 if (!mapping->a_ops->writepage)
869 /* No write method for the address space */
870 return -EINVAL;
871
872 if (!clear_page_dirty_for_io(page))
873 /* Someone else already triggered a write */
874 return -EAGAIN;
875
8351a6e4 876 /*
04e62a29
CL
877 * A dirty page may imply that the underlying filesystem has
878 * the page on some queue. So the page must be clean for
879 * migration. Writeout may mean we loose the lock and the
880 * page state is no longer what we checked for earlier.
881 * At this point we know that the migration attempt cannot
882 * be successful.
8351a6e4 883 */
e388466d 884 remove_migration_ptes(page, page, false);
8351a6e4 885
04e62a29 886 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 887
04e62a29
CL
888 if (rc != AOP_WRITEPAGE_ACTIVATE)
889 /* unlocked. Relock */
890 lock_page(page);
891
bda8550d 892 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
893}
894
895/*
896 * Default handling if a filesystem does not provide a migration function.
897 */
898static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 899 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 900{
b969c4ab 901 if (PageDirty(page)) {
a6bc32b8 902 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
903 switch (mode) {
904 case MIGRATE_SYNC:
905 case MIGRATE_SYNC_NO_COPY:
906 break;
907 default:
b969c4ab 908 return -EBUSY;
2916ecc0 909 }
04e62a29 910 return writeout(mapping, page);
b969c4ab 911 }
8351a6e4
CL
912
913 /*
914 * Buffers may be managed in a filesystem specific way.
915 * We must have no buffers or drop them.
916 */
266cf658 917 if (page_has_private(page) &&
8351a6e4
CL
918 !try_to_release_page(page, GFP_KERNEL))
919 return -EAGAIN;
920
a6bc32b8 921 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
922}
923
e24f0b8f
CL
924/*
925 * Move a page to a newly allocated page
926 * The page is locked and all ptes have been successfully removed.
927 *
928 * The new page will have replaced the old page if this function
929 * is successful.
894bc310
LS
930 *
931 * Return value:
932 * < 0 - error code
78bd5209 933 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 934 */
3fe2011f 935static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 936 enum migrate_mode mode)
e24f0b8f
CL
937{
938 struct address_space *mapping;
bda807d4
MK
939 int rc = -EAGAIN;
940 bool is_lru = !__PageMovable(page);
e24f0b8f 941
7db7671f
HD
942 VM_BUG_ON_PAGE(!PageLocked(page), page);
943 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 944
e24f0b8f 945 mapping = page_mapping(page);
bda807d4
MK
946
947 if (likely(is_lru)) {
948 if (!mapping)
949 rc = migrate_page(mapping, newpage, page, mode);
950 else if (mapping->a_ops->migratepage)
951 /*
952 * Most pages have a mapping and most filesystems
953 * provide a migratepage callback. Anonymous pages
954 * are part of swap space which also has its own
955 * migratepage callback. This is the most common path
956 * for page migration.
957 */
958 rc = mapping->a_ops->migratepage(mapping, newpage,
959 page, mode);
960 else
961 rc = fallback_migrate_page(mapping, newpage,
962 page, mode);
963 } else {
e24f0b8f 964 /*
bda807d4
MK
965 * In case of non-lru page, it could be released after
966 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 967 */
bda807d4
MK
968 VM_BUG_ON_PAGE(!PageIsolated(page), page);
969 if (!PageMovable(page)) {
970 rc = MIGRATEPAGE_SUCCESS;
971 __ClearPageIsolated(page);
972 goto out;
973 }
974
975 rc = mapping->a_ops->migratepage(mapping, newpage,
976 page, mode);
977 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
978 !PageIsolated(page));
979 }
e24f0b8f 980
5c3f9a67
HD
981 /*
982 * When successful, old pagecache page->mapping must be cleared before
983 * page is freed; but stats require that PageAnon be left as PageAnon.
984 */
985 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
986 if (__PageMovable(page)) {
987 VM_BUG_ON_PAGE(!PageIsolated(page), page);
988
989 /*
990 * We clear PG_movable under page_lock so any compactor
991 * cannot try to migrate this page.
992 */
993 __ClearPageIsolated(page);
994 }
995
996 /*
997 * Anonymous and movable page->mapping will be cleard by
998 * free_pages_prepare so don't reset it here for keeping
999 * the type to work PageAnon, for example.
1000 */
1001 if (!PageMappingFlags(page))
5c3f9a67 1002 page->mapping = NULL;
3fe2011f 1003 }
bda807d4 1004out:
e24f0b8f
CL
1005 return rc;
1006}
1007
0dabec93 1008static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1009 int force, enum migrate_mode mode)
e24f0b8f 1010{
0dabec93 1011 int rc = -EAGAIN;
2ebba6b7 1012 int page_was_mapped = 0;
3f6c8272 1013 struct anon_vma *anon_vma = NULL;
bda807d4 1014 bool is_lru = !__PageMovable(page);
95a402c3 1015
529ae9aa 1016 if (!trylock_page(page)) {
a6bc32b8 1017 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1018 goto out;
3e7d3449
MG
1019
1020 /*
1021 * It's not safe for direct compaction to call lock_page.
1022 * For example, during page readahead pages are added locked
1023 * to the LRU. Later, when the IO completes the pages are
1024 * marked uptodate and unlocked. However, the queueing
1025 * could be merging multiple pages for one bio (e.g.
1026 * mpage_readpages). If an allocation happens for the
1027 * second or third page, the process can end up locking
1028 * the same page twice and deadlocking. Rather than
1029 * trying to be clever about what pages can be locked,
1030 * avoid the use of lock_page for direct compaction
1031 * altogether.
1032 */
1033 if (current->flags & PF_MEMALLOC)
0dabec93 1034 goto out;
3e7d3449 1035
e24f0b8f
CL
1036 lock_page(page);
1037 }
1038
1039 if (PageWriteback(page)) {
11bc82d6 1040 /*
fed5b64a 1041 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1042 * necessary to wait for PageWriteback. In the async case,
1043 * the retry loop is too short and in the sync-light case,
1044 * the overhead of stalling is too much
11bc82d6 1045 */
2916ecc0
JG
1046 switch (mode) {
1047 case MIGRATE_SYNC:
1048 case MIGRATE_SYNC_NO_COPY:
1049 break;
1050 default:
11bc82d6 1051 rc = -EBUSY;
0a31bc97 1052 goto out_unlock;
11bc82d6
AA
1053 }
1054 if (!force)
0a31bc97 1055 goto out_unlock;
e24f0b8f
CL
1056 wait_on_page_writeback(page);
1057 }
03f15c86 1058
e24f0b8f 1059 /*
dc386d4d
KH
1060 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1061 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1062 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1063 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1064 * File Caches may use write_page() or lock_page() in migration, then,
1065 * just care Anon page here.
03f15c86
HD
1066 *
1067 * Only page_get_anon_vma() understands the subtleties of
1068 * getting a hold on an anon_vma from outside one of its mms.
1069 * But if we cannot get anon_vma, then we won't need it anyway,
1070 * because that implies that the anon page is no longer mapped
1071 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1072 */
03f15c86 1073 if (PageAnon(page) && !PageKsm(page))
746b18d4 1074 anon_vma = page_get_anon_vma(page);
62e1c553 1075
7db7671f
HD
1076 /*
1077 * Block others from accessing the new page when we get around to
1078 * establishing additional references. We are usually the only one
1079 * holding a reference to newpage at this point. We used to have a BUG
1080 * here if trylock_page(newpage) fails, but would like to allow for
1081 * cases where there might be a race with the previous use of newpage.
1082 * This is much like races on refcount of oldpage: just don't BUG().
1083 */
1084 if (unlikely(!trylock_page(newpage)))
1085 goto out_unlock;
1086
bda807d4
MK
1087 if (unlikely(!is_lru)) {
1088 rc = move_to_new_page(newpage, page, mode);
1089 goto out_unlock_both;
1090 }
1091
dc386d4d 1092 /*
62e1c553
SL
1093 * Corner case handling:
1094 * 1. When a new swap-cache page is read into, it is added to the LRU
1095 * and treated as swapcache but it has no rmap yet.
1096 * Calling try_to_unmap() against a page->mapping==NULL page will
1097 * trigger a BUG. So handle it here.
1098 * 2. An orphaned page (see truncate_complete_page) might have
1099 * fs-private metadata. The page can be picked up due to memory
1100 * offlining. Everywhere else except page reclaim, the page is
1101 * invisible to the vm, so the page can not be migrated. So try to
1102 * free the metadata, so the page can be freed.
e24f0b8f 1103 */
62e1c553 1104 if (!page->mapping) {
309381fe 1105 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1106 if (page_has_private(page)) {
62e1c553 1107 try_to_free_buffers(page);
7db7671f 1108 goto out_unlock_both;
62e1c553 1109 }
7db7671f
HD
1110 } else if (page_mapped(page)) {
1111 /* Establish migration ptes */
03f15c86
HD
1112 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1113 page);
2ebba6b7 1114 try_to_unmap(page,
da1b13cc 1115 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1116 page_was_mapped = 1;
1117 }
dc386d4d 1118
e6a1530d 1119 if (!page_mapped(page))
5c3f9a67 1120 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1121
5c3f9a67
HD
1122 if (page_was_mapped)
1123 remove_migration_ptes(page,
e388466d 1124 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1125
7db7671f
HD
1126out_unlock_both:
1127 unlock_page(newpage);
1128out_unlock:
3f6c8272 1129 /* Drop an anon_vma reference if we took one */
76545066 1130 if (anon_vma)
9e60109f 1131 put_anon_vma(anon_vma);
e24f0b8f 1132 unlock_page(page);
0dabec93 1133out:
c6c919eb
MK
1134 /*
1135 * If migration is successful, decrease refcount of the newpage
1136 * which will not free the page because new page owner increased
1137 * refcounter. As well, if it is LRU page, add the page to LRU
1138 * list in here.
1139 */
1140 if (rc == MIGRATEPAGE_SUCCESS) {
b1123ea6 1141 if (unlikely(__PageMovable(newpage)))
c6c919eb
MK
1142 put_page(newpage);
1143 else
1144 putback_lru_page(newpage);
1145 }
1146
0dabec93
MK
1147 return rc;
1148}
95a402c3 1149
ef2a5153
GU
1150/*
1151 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1152 * around it.
1153 */
815f0ddb
ND
1154#if defined(CONFIG_ARM) && \
1155 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
ef2a5153
GU
1156#define ICE_noinline noinline
1157#else
1158#define ICE_noinline
1159#endif
1160
0dabec93
MK
1161/*
1162 * Obtain the lock on page, remove all ptes and migrate the page
1163 * to the newly allocated page in newpage.
1164 */
ef2a5153
GU
1165static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166 free_page_t put_new_page,
1167 unsigned long private, struct page *page,
add05cec
NH
1168 int force, enum migrate_mode mode,
1169 enum migrate_reason reason)
0dabec93 1170{
2def7424 1171 int rc = MIGRATEPAGE_SUCCESS;
2def7424 1172 struct page *newpage;
0dabec93 1173
94723aaf
MH
1174 if (!thp_migration_supported() && PageTransHuge(page))
1175 return -ENOMEM;
1176
666feb21 1177 newpage = get_new_page(page, private);
0dabec93
MK
1178 if (!newpage)
1179 return -ENOMEM;
1180
1181 if (page_count(page) == 1) {
1182 /* page was freed from under us. So we are done. */
c6c919eb
MK
1183 ClearPageActive(page);
1184 ClearPageUnevictable(page);
bda807d4
MK
1185 if (unlikely(__PageMovable(page))) {
1186 lock_page(page);
1187 if (!PageMovable(page))
1188 __ClearPageIsolated(page);
1189 unlock_page(page);
1190 }
c6c919eb
MK
1191 if (put_new_page)
1192 put_new_page(newpage, private);
1193 else
1194 put_page(newpage);
0dabec93
MK
1195 goto out;
1196 }
1197
9c620e2b 1198 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1199 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1200 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1201
0dabec93 1202out:
e24f0b8f 1203 if (rc != -EAGAIN) {
0dabec93
MK
1204 /*
1205 * A page that has been migrated has all references
1206 * removed and will be freed. A page that has not been
1207 * migrated will have kepts its references and be
1208 * restored.
1209 */
1210 list_del(&page->lru);
6afcf8ef
ML
1211
1212 /*
1213 * Compaction can migrate also non-LRU pages which are
1214 * not accounted to NR_ISOLATED_*. They can be recognized
1215 * as __PageMovable
1216 */
1217 if (likely(!__PageMovable(page)))
e8db67eb
NH
1218 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1219 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1220 }
1221
1222 /*
1223 * If migration is successful, releases reference grabbed during
1224 * isolation. Otherwise, restore the page to right list unless
1225 * we want to retry.
1226 */
1227 if (rc == MIGRATEPAGE_SUCCESS) {
1228 put_page(page);
1229 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1230 /*
c6c919eb
MK
1231 * Set PG_HWPoison on just freed page
1232 * intentionally. Although it's rather weird,
1233 * it's how HWPoison flag works at the moment.
d7e69488 1234 */
d4ae9916 1235 if (set_hwpoison_free_buddy_page(page))
da1b13cc 1236 num_poisoned_pages_inc();
c6c919eb
MK
1237 }
1238 } else {
bda807d4
MK
1239 if (rc != -EAGAIN) {
1240 if (likely(!__PageMovable(page))) {
1241 putback_lru_page(page);
1242 goto put_new;
1243 }
1244
1245 lock_page(page);
1246 if (PageMovable(page))
1247 putback_movable_page(page);
1248 else
1249 __ClearPageIsolated(page);
1250 unlock_page(page);
1251 put_page(page);
1252 }
1253put_new:
c6c919eb
MK
1254 if (put_new_page)
1255 put_new_page(newpage, private);
1256 else
1257 put_page(newpage);
e24f0b8f 1258 }
68711a74 1259
e24f0b8f
CL
1260 return rc;
1261}
1262
290408d4
NH
1263/*
1264 * Counterpart of unmap_and_move_page() for hugepage migration.
1265 *
1266 * This function doesn't wait the completion of hugepage I/O
1267 * because there is no race between I/O and migration for hugepage.
1268 * Note that currently hugepage I/O occurs only in direct I/O
1269 * where no lock is held and PG_writeback is irrelevant,
1270 * and writeback status of all subpages are counted in the reference
1271 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1272 * under direct I/O, the reference of the head page is 512 and a bit more.)
1273 * This means that when we try to migrate hugepage whose subpages are
1274 * doing direct I/O, some references remain after try_to_unmap() and
1275 * hugepage migration fails without data corruption.
1276 *
1277 * There is also no race when direct I/O is issued on the page under migration,
1278 * because then pte is replaced with migration swap entry and direct I/O code
1279 * will wait in the page fault for migration to complete.
1280 */
1281static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1282 free_page_t put_new_page, unsigned long private,
1283 struct page *hpage, int force,
7cd12b4a 1284 enum migrate_mode mode, int reason)
290408d4 1285{
2def7424 1286 int rc = -EAGAIN;
2ebba6b7 1287 int page_was_mapped = 0;
32665f2b 1288 struct page *new_hpage;
290408d4
NH
1289 struct anon_vma *anon_vma = NULL;
1290
83467efb
NH
1291 /*
1292 * Movability of hugepages depends on architectures and hugepage size.
1293 * This check is necessary because some callers of hugepage migration
1294 * like soft offline and memory hotremove don't walk through page
1295 * tables or check whether the hugepage is pmd-based or not before
1296 * kicking migration.
1297 */
100873d7 1298 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1299 putback_active_hugepage(hpage);
83467efb 1300 return -ENOSYS;
32665f2b 1301 }
83467efb 1302
666feb21 1303 new_hpage = get_new_page(hpage, private);
290408d4
NH
1304 if (!new_hpage)
1305 return -ENOMEM;
1306
290408d4 1307 if (!trylock_page(hpage)) {
2916ecc0 1308 if (!force)
290408d4 1309 goto out;
2916ecc0
JG
1310 switch (mode) {
1311 case MIGRATE_SYNC:
1312 case MIGRATE_SYNC_NO_COPY:
1313 break;
1314 default:
1315 goto out;
1316 }
290408d4
NH
1317 lock_page(hpage);
1318 }
1319
746b18d4
PZ
1320 if (PageAnon(hpage))
1321 anon_vma = page_get_anon_vma(hpage);
290408d4 1322
7db7671f
HD
1323 if (unlikely(!trylock_page(new_hpage)))
1324 goto put_anon;
1325
2ebba6b7 1326 if (page_mapped(hpage)) {
b43a9990
MK
1327 struct address_space *mapping = page_mapping(hpage);
1328
1329 /*
1330 * try_to_unmap could potentially call huge_pmd_unshare.
1331 * Because of this, take semaphore in write mode here and
1332 * set TTU_RMAP_LOCKED to let lower levels know we have
1333 * taken the lock.
1334 */
1335 i_mmap_lock_write(mapping);
2ebba6b7 1336 try_to_unmap(hpage,
b43a9990
MK
1337 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1338 TTU_RMAP_LOCKED);
1339 i_mmap_unlock_write(mapping);
2ebba6b7
HD
1340 page_was_mapped = 1;
1341 }
290408d4
NH
1342
1343 if (!page_mapped(hpage))
5c3f9a67 1344 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1345
5c3f9a67
HD
1346 if (page_was_mapped)
1347 remove_migration_ptes(hpage,
e388466d 1348 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1349
7db7671f
HD
1350 unlock_page(new_hpage);
1351
1352put_anon:
fd4a4663 1353 if (anon_vma)
9e60109f 1354 put_anon_vma(anon_vma);
8e6ac7fa 1355
2def7424 1356 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1357 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1358 put_new_page = NULL;
1359 }
8e6ac7fa 1360
290408d4 1361 unlock_page(hpage);
09761333 1362out:
b8ec1cee
NH
1363 if (rc != -EAGAIN)
1364 putback_active_hugepage(hpage);
68711a74
DR
1365
1366 /*
1367 * If migration was not successful and there's a freeing callback, use
1368 * it. Otherwise, put_page() will drop the reference grabbed during
1369 * isolation.
1370 */
2def7424 1371 if (put_new_page)
68711a74
DR
1372 put_new_page(new_hpage, private);
1373 else
3aaa76e1 1374 putback_active_hugepage(new_hpage);
68711a74 1375
290408d4
NH
1376 return rc;
1377}
1378
b20a3503 1379/*
c73e5c9c
SB
1380 * migrate_pages - migrate the pages specified in a list, to the free pages
1381 * supplied as the target for the page migration
b20a3503 1382 *
c73e5c9c
SB
1383 * @from: The list of pages to be migrated.
1384 * @get_new_page: The function used to allocate free pages to be used
1385 * as the target of the page migration.
68711a74
DR
1386 * @put_new_page: The function used to free target pages if migration
1387 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1388 * @private: Private data to be passed on to get_new_page()
1389 * @mode: The migration mode that specifies the constraints for
1390 * page migration, if any.
1391 * @reason: The reason for page migration.
b20a3503 1392 *
c73e5c9c
SB
1393 * The function returns after 10 attempts or if no pages are movable any more
1394 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1395 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1396 * or free list only if ret != 0.
b20a3503 1397 *
c73e5c9c 1398 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1399 */
9c620e2b 1400int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1401 free_page_t put_new_page, unsigned long private,
1402 enum migrate_mode mode, int reason)
b20a3503 1403{
e24f0b8f 1404 int retry = 1;
b20a3503 1405 int nr_failed = 0;
5647bc29 1406 int nr_succeeded = 0;
b20a3503
CL
1407 int pass = 0;
1408 struct page *page;
1409 struct page *page2;
1410 int swapwrite = current->flags & PF_SWAPWRITE;
1411 int rc;
1412
1413 if (!swapwrite)
1414 current->flags |= PF_SWAPWRITE;
1415
e24f0b8f
CL
1416 for(pass = 0; pass < 10 && retry; pass++) {
1417 retry = 0;
b20a3503 1418
e24f0b8f 1419 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1420retry:
e24f0b8f 1421 cond_resched();
2d1db3b1 1422
31caf665
NH
1423 if (PageHuge(page))
1424 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1425 put_new_page, private, page,
7cd12b4a 1426 pass > 2, mode, reason);
31caf665 1427 else
68711a74 1428 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1429 private, page, pass > 2, mode,
1430 reason);
2d1db3b1 1431
e24f0b8f 1432 switch(rc) {
95a402c3 1433 case -ENOMEM:
94723aaf
MH
1434 /*
1435 * THP migration might be unsupported or the
1436 * allocation could've failed so we should
1437 * retry on the same page with the THP split
1438 * to base pages.
1439 *
1440 * Head page is retried immediately and tail
1441 * pages are added to the tail of the list so
1442 * we encounter them after the rest of the list
1443 * is processed.
1444 */
e6112fc3 1445 if (PageTransHuge(page) && !PageHuge(page)) {
94723aaf
MH
1446 lock_page(page);
1447 rc = split_huge_page_to_list(page, from);
1448 unlock_page(page);
1449 if (!rc) {
1450 list_safe_reset_next(page, page2, lru);
1451 goto retry;
1452 }
1453 }
dfef2ef4 1454 nr_failed++;
95a402c3 1455 goto out;
e24f0b8f 1456 case -EAGAIN:
2d1db3b1 1457 retry++;
e24f0b8f 1458 break;
78bd5209 1459 case MIGRATEPAGE_SUCCESS:
5647bc29 1460 nr_succeeded++;
e24f0b8f
CL
1461 break;
1462 default:
354a3363
NH
1463 /*
1464 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1465 * unlike -EAGAIN case, the failed page is
1466 * removed from migration page list and not
1467 * retried in the next outer loop.
1468 */
2d1db3b1 1469 nr_failed++;
e24f0b8f 1470 break;
2d1db3b1 1471 }
b20a3503
CL
1472 }
1473 }
f2f81fb2
VB
1474 nr_failed += retry;
1475 rc = nr_failed;
95a402c3 1476out:
5647bc29
MG
1477 if (nr_succeeded)
1478 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1479 if (nr_failed)
1480 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1481 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1482
b20a3503
CL
1483 if (!swapwrite)
1484 current->flags &= ~PF_SWAPWRITE;
1485
78bd5209 1486 return rc;
b20a3503 1487}
95a402c3 1488
742755a1 1489#ifdef CONFIG_NUMA
742755a1 1490
a49bd4d7 1491static int store_status(int __user *status, int start, int value, int nr)
742755a1 1492{
a49bd4d7
MH
1493 while (nr-- > 0) {
1494 if (put_user(value, status + start))
1495 return -EFAULT;
1496 start++;
1497 }
1498
1499 return 0;
1500}
1501
1502static int do_move_pages_to_node(struct mm_struct *mm,
1503 struct list_head *pagelist, int node)
1504{
1505 int err;
1506
1507 if (list_empty(pagelist))
1508 return 0;
1509
1510 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1511 MIGRATE_SYNC, MR_SYSCALL);
1512 if (err)
1513 putback_movable_pages(pagelist);
1514 return err;
742755a1
CL
1515}
1516
1517/*
a49bd4d7
MH
1518 * Resolves the given address to a struct page, isolates it from the LRU and
1519 * puts it to the given pagelist.
1520 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1521 * queued or the page doesn't need to be migrated because it is already on
1522 * the target node
742755a1 1523 */
a49bd4d7
MH
1524static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1525 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1526{
a49bd4d7
MH
1527 struct vm_area_struct *vma;
1528 struct page *page;
1529 unsigned int follflags;
742755a1 1530 int err;
742755a1
CL
1531
1532 down_read(&mm->mmap_sem);
a49bd4d7
MH
1533 err = -EFAULT;
1534 vma = find_vma(mm, addr);
1535 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1536 goto out;
742755a1 1537
a49bd4d7
MH
1538 /* FOLL_DUMP to ignore special (like zero) pages */
1539 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1540 page = follow_page(vma, addr, follflags);
89f5b7da 1541
a49bd4d7
MH
1542 err = PTR_ERR(page);
1543 if (IS_ERR(page))
1544 goto out;
89f5b7da 1545
a49bd4d7
MH
1546 err = -ENOENT;
1547 if (!page)
1548 goto out;
742755a1 1549
a49bd4d7
MH
1550 err = 0;
1551 if (page_to_nid(page) == node)
1552 goto out_putpage;
742755a1 1553
a49bd4d7
MH
1554 err = -EACCES;
1555 if (page_mapcount(page) > 1 && !migrate_all)
1556 goto out_putpage;
742755a1 1557
a49bd4d7
MH
1558 if (PageHuge(page)) {
1559 if (PageHead(page)) {
1560 isolate_huge_page(page, pagelist);
1561 err = 0;
e632a938 1562 }
a49bd4d7
MH
1563 } else {
1564 struct page *head;
e632a938 1565
e8db67eb
NH
1566 head = compound_head(page);
1567 err = isolate_lru_page(head);
cf608ac1 1568 if (err)
a49bd4d7 1569 goto out_putpage;
742755a1 1570
a49bd4d7
MH
1571 err = 0;
1572 list_add_tail(&head->lru, pagelist);
1573 mod_node_page_state(page_pgdat(head),
1574 NR_ISOLATED_ANON + page_is_file_cache(head),
1575 hpage_nr_pages(head));
1576 }
1577out_putpage:
1578 /*
1579 * Either remove the duplicate refcount from
1580 * isolate_lru_page() or drop the page ref if it was
1581 * not isolated.
1582 */
1583 put_page(page);
1584out:
742755a1
CL
1585 up_read(&mm->mmap_sem);
1586 return err;
1587}
1588
5e9a0f02
BG
1589/*
1590 * Migrate an array of page address onto an array of nodes and fill
1591 * the corresponding array of status.
1592 */
3268c63e 1593static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1594 unsigned long nr_pages,
1595 const void __user * __user *pages,
1596 const int __user *nodes,
1597 int __user *status, int flags)
1598{
a49bd4d7
MH
1599 int current_node = NUMA_NO_NODE;
1600 LIST_HEAD(pagelist);
1601 int start, i;
1602 int err = 0, err1;
35282a2d
BG
1603
1604 migrate_prep();
1605
a49bd4d7
MH
1606 for (i = start = 0; i < nr_pages; i++) {
1607 const void __user *p;
1608 unsigned long addr;
1609 int node;
3140a227 1610
a49bd4d7
MH
1611 err = -EFAULT;
1612 if (get_user(p, pages + i))
1613 goto out_flush;
1614 if (get_user(node, nodes + i))
1615 goto out_flush;
1616 addr = (unsigned long)p;
1617
1618 err = -ENODEV;
1619 if (node < 0 || node >= MAX_NUMNODES)
1620 goto out_flush;
1621 if (!node_state(node, N_MEMORY))
1622 goto out_flush;
5e9a0f02 1623
a49bd4d7
MH
1624 err = -EACCES;
1625 if (!node_isset(node, task_nodes))
1626 goto out_flush;
1627
1628 if (current_node == NUMA_NO_NODE) {
1629 current_node = node;
1630 start = i;
1631 } else if (node != current_node) {
1632 err = do_move_pages_to_node(mm, &pagelist, current_node);
1633 if (err)
1634 goto out;
1635 err = store_status(status, start, current_node, i - start);
1636 if (err)
1637 goto out;
1638 start = i;
1639 current_node = node;
3140a227
BG
1640 }
1641
a49bd4d7
MH
1642 /*
1643 * Errors in the page lookup or isolation are not fatal and we simply
1644 * report them via status
1645 */
1646 err = add_page_for_migration(mm, addr, current_node,
1647 &pagelist, flags & MPOL_MF_MOVE_ALL);
1648 if (!err)
1649 continue;
3140a227 1650
a49bd4d7
MH
1651 err = store_status(status, i, err, 1);
1652 if (err)
1653 goto out_flush;
5e9a0f02 1654
a49bd4d7
MH
1655 err = do_move_pages_to_node(mm, &pagelist, current_node);
1656 if (err)
1657 goto out;
1658 if (i > start) {
1659 err = store_status(status, start, current_node, i - start);
1660 if (err)
1661 goto out;
1662 }
1663 current_node = NUMA_NO_NODE;
3140a227 1664 }
a49bd4d7 1665out_flush:
8f175cf5
MH
1666 if (list_empty(&pagelist))
1667 return err;
1668
a49bd4d7
MH
1669 /* Make sure we do not overwrite the existing error */
1670 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1671 if (!err1)
1672 err1 = store_status(status, start, current_node, i - start);
1673 if (!err)
1674 err = err1;
5e9a0f02
BG
1675out:
1676 return err;
1677}
1678
742755a1 1679/*
2f007e74 1680 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1681 */
80bba129
BG
1682static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1683 const void __user **pages, int *status)
742755a1 1684{
2f007e74 1685 unsigned long i;
2f007e74 1686
742755a1
CL
1687 down_read(&mm->mmap_sem);
1688
2f007e74 1689 for (i = 0; i < nr_pages; i++) {
80bba129 1690 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1691 struct vm_area_struct *vma;
1692 struct page *page;
c095adbc 1693 int err = -EFAULT;
2f007e74
BG
1694
1695 vma = find_vma(mm, addr);
70384dc6 1696 if (!vma || addr < vma->vm_start)
742755a1
CL
1697 goto set_status;
1698
d899844e
KS
1699 /* FOLL_DUMP to ignore special (like zero) pages */
1700 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1701
1702 err = PTR_ERR(page);
1703 if (IS_ERR(page))
1704 goto set_status;
1705
d899844e 1706 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1707set_status:
80bba129
BG
1708 *status = err;
1709
1710 pages++;
1711 status++;
1712 }
1713
1714 up_read(&mm->mmap_sem);
1715}
1716
1717/*
1718 * Determine the nodes of a user array of pages and store it in
1719 * a user array of status.
1720 */
1721static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1722 const void __user * __user *pages,
1723 int __user *status)
1724{
1725#define DO_PAGES_STAT_CHUNK_NR 16
1726 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1727 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1728
87b8d1ad
PA
1729 while (nr_pages) {
1730 unsigned long chunk_nr;
80bba129 1731
87b8d1ad
PA
1732 chunk_nr = nr_pages;
1733 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1734 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1735
1736 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1737 break;
80bba129
BG
1738
1739 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1740
87b8d1ad
PA
1741 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1742 break;
742755a1 1743
87b8d1ad
PA
1744 pages += chunk_nr;
1745 status += chunk_nr;
1746 nr_pages -= chunk_nr;
1747 }
1748 return nr_pages ? -EFAULT : 0;
742755a1
CL
1749}
1750
1751/*
1752 * Move a list of pages in the address space of the currently executing
1753 * process.
1754 */
7addf443
DB
1755static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1756 const void __user * __user *pages,
1757 const int __user *nodes,
1758 int __user *status, int flags)
742755a1 1759{
742755a1 1760 struct task_struct *task;
742755a1 1761 struct mm_struct *mm;
5e9a0f02 1762 int err;
3268c63e 1763 nodemask_t task_nodes;
742755a1
CL
1764
1765 /* Check flags */
1766 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1767 return -EINVAL;
1768
1769 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1770 return -EPERM;
1771
1772 /* Find the mm_struct */
a879bf58 1773 rcu_read_lock();
228ebcbe 1774 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1775 if (!task) {
a879bf58 1776 rcu_read_unlock();
742755a1
CL
1777 return -ESRCH;
1778 }
3268c63e 1779 get_task_struct(task);
742755a1
CL
1780
1781 /*
1782 * Check if this process has the right to modify the specified
197e7e52 1783 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1784 */
197e7e52 1785 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1786 rcu_read_unlock();
742755a1 1787 err = -EPERM;
5e9a0f02 1788 goto out;
742755a1 1789 }
c69e8d9c 1790 rcu_read_unlock();
742755a1 1791
86c3a764
DQ
1792 err = security_task_movememory(task);
1793 if (err)
5e9a0f02 1794 goto out;
86c3a764 1795
3268c63e
CL
1796 task_nodes = cpuset_mems_allowed(task);
1797 mm = get_task_mm(task);
1798 put_task_struct(task);
1799
6e8b09ea
SL
1800 if (!mm)
1801 return -EINVAL;
1802
1803 if (nodes)
1804 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1805 nodes, status, flags);
1806 else
1807 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1808
742755a1
CL
1809 mmput(mm);
1810 return err;
3268c63e
CL
1811
1812out:
1813 put_task_struct(task);
1814 return err;
742755a1 1815}
742755a1 1816
7addf443
DB
1817SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1818 const void __user * __user *, pages,
1819 const int __user *, nodes,
1820 int __user *, status, int, flags)
1821{
1822 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1823}
1824
1825#ifdef CONFIG_COMPAT
1826COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1827 compat_uptr_t __user *, pages32,
1828 const int __user *, nodes,
1829 int __user *, status,
1830 int, flags)
1831{
1832 const void __user * __user *pages;
1833 int i;
1834
1835 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1836 for (i = 0; i < nr_pages; i++) {
1837 compat_uptr_t p;
1838
1839 if (get_user(p, pages32 + i) ||
1840 put_user(compat_ptr(p), pages + i))
1841 return -EFAULT;
1842 }
1843 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1844}
1845#endif /* CONFIG_COMPAT */
1846
7039e1db
PZ
1847#ifdef CONFIG_NUMA_BALANCING
1848/*
1849 * Returns true if this is a safe migration target node for misplaced NUMA
1850 * pages. Currently it only checks the watermarks which crude
1851 */
1852static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1853 unsigned long nr_migrate_pages)
7039e1db
PZ
1854{
1855 int z;
599d0c95 1856
7039e1db
PZ
1857 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1858 struct zone *zone = pgdat->node_zones + z;
1859
1860 if (!populated_zone(zone))
1861 continue;
1862
7039e1db
PZ
1863 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1864 if (!zone_watermark_ok(zone, 0,
1865 high_wmark_pages(zone) +
1866 nr_migrate_pages,
1867 0, 0))
1868 continue;
1869 return true;
1870 }
1871 return false;
1872}
1873
1874static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 1875 unsigned long data)
7039e1db
PZ
1876{
1877 int nid = (int) data;
1878 struct page *newpage;
1879
96db800f 1880 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1881 (GFP_HIGHUSER_MOVABLE |
1882 __GFP_THISNODE | __GFP_NOMEMALLOC |
1883 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1884 ~__GFP_RECLAIM, 0);
bac0382c 1885
7039e1db
PZ
1886 return newpage;
1887}
1888
1c30e017 1889static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1890{
340ef390 1891 int page_lru;
a8f60772 1892
309381fe 1893 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1894
7039e1db 1895 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1896 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1897 return 0;
7039e1db 1898
340ef390
HD
1899 if (isolate_lru_page(page))
1900 return 0;
7039e1db 1901
340ef390
HD
1902 /*
1903 * migrate_misplaced_transhuge_page() skips page migration's usual
1904 * check on page_count(), so we must do it here, now that the page
1905 * has been isolated: a GUP pin, or any other pin, prevents migration.
1906 * The expected page count is 3: 1 for page's mapcount and 1 for the
1907 * caller's pin and 1 for the reference taken by isolate_lru_page().
1908 */
1909 if (PageTransHuge(page) && page_count(page) != 3) {
1910 putback_lru_page(page);
1911 return 0;
7039e1db
PZ
1912 }
1913
340ef390 1914 page_lru = page_is_file_cache(page);
599d0c95 1915 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1916 hpage_nr_pages(page));
1917
149c33e1 1918 /*
340ef390
HD
1919 * Isolating the page has taken another reference, so the
1920 * caller's reference can be safely dropped without the page
1921 * disappearing underneath us during migration.
149c33e1
MG
1922 */
1923 put_page(page);
340ef390 1924 return 1;
b32967ff
MG
1925}
1926
de466bd6
MG
1927bool pmd_trans_migrating(pmd_t pmd)
1928{
1929 struct page *page = pmd_page(pmd);
1930 return PageLocked(page);
1931}
1932
b32967ff
MG
1933/*
1934 * Attempt to migrate a misplaced page to the specified destination
1935 * node. Caller is expected to have an elevated reference count on
1936 * the page that will be dropped by this function before returning.
1937 */
1bc115d8
MG
1938int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1939 int node)
b32967ff
MG
1940{
1941 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1942 int isolated;
b32967ff
MG
1943 int nr_remaining;
1944 LIST_HEAD(migratepages);
1945
1946 /*
1bc115d8
MG
1947 * Don't migrate file pages that are mapped in multiple processes
1948 * with execute permissions as they are probably shared libraries.
b32967ff 1949 */
1bc115d8
MG
1950 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1951 (vma->vm_flags & VM_EXEC))
b32967ff 1952 goto out;
b32967ff 1953
09a913a7
MG
1954 /*
1955 * Also do not migrate dirty pages as not all filesystems can move
1956 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1957 */
1958 if (page_is_file_cache(page) && PageDirty(page))
1959 goto out;
1960
b32967ff
MG
1961 isolated = numamigrate_isolate_page(pgdat, page);
1962 if (!isolated)
1963 goto out;
1964
1965 list_add(&page->lru, &migratepages);
9c620e2b 1966 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1967 NULL, node, MIGRATE_ASYNC,
1968 MR_NUMA_MISPLACED);
b32967ff 1969 if (nr_remaining) {
59c82b70
JK
1970 if (!list_empty(&migratepages)) {
1971 list_del(&page->lru);
599d0c95 1972 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1973 page_is_file_cache(page));
1974 putback_lru_page(page);
1975 }
b32967ff
MG
1976 isolated = 0;
1977 } else
1978 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1979 BUG_ON(!list_empty(&migratepages));
7039e1db 1980 return isolated;
340ef390
HD
1981
1982out:
1983 put_page(page);
1984 return 0;
7039e1db 1985}
220018d3 1986#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1987
220018d3 1988#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1989/*
1990 * Migrates a THP to a given target node. page must be locked and is unlocked
1991 * before returning.
1992 */
b32967ff
MG
1993int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1994 struct vm_area_struct *vma,
1995 pmd_t *pmd, pmd_t entry,
1996 unsigned long address,
1997 struct page *page, int node)
1998{
c4088ebd 1999 spinlock_t *ptl;
b32967ff
MG
2000 pg_data_t *pgdat = NODE_DATA(node);
2001 int isolated = 0;
2002 struct page *new_page = NULL;
b32967ff 2003 int page_lru = page_is_file_cache(page);
7066f0f9 2004 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 2005
b32967ff 2006 new_page = alloc_pages_node(node,
25160354 2007 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2008 HPAGE_PMD_ORDER);
340ef390
HD
2009 if (!new_page)
2010 goto out_fail;
9a982250 2011 prep_transhuge_page(new_page);
340ef390 2012
b32967ff 2013 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2014 if (!isolated) {
b32967ff 2015 put_page(new_page);
340ef390 2016 goto out_fail;
b32967ff 2017 }
b0943d61 2018
b32967ff 2019 /* Prepare a page as a migration target */
48c935ad 2020 __SetPageLocked(new_page);
d44d363f
SL
2021 if (PageSwapBacked(page))
2022 __SetPageSwapBacked(new_page);
b32967ff
MG
2023
2024 /* anon mapping, we can simply copy page->mapping to the new page: */
2025 new_page->mapping = page->mapping;
2026 new_page->index = page->index;
7eef5f97
AA
2027 /* flush the cache before copying using the kernel virtual address */
2028 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2029 migrate_page_copy(new_page, page);
2030 WARN_ON(PageLRU(new_page));
2031
2032 /* Recheck the target PMD */
c4088ebd 2033 ptl = pmd_lock(mm, pmd);
f4e177d1 2034 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2035 spin_unlock(ptl);
b32967ff
MG
2036
2037 /* Reverse changes made by migrate_page_copy() */
2038 if (TestClearPageActive(new_page))
2039 SetPageActive(page);
2040 if (TestClearPageUnevictable(new_page))
2041 SetPageUnevictable(page);
b32967ff
MG
2042
2043 unlock_page(new_page);
2044 put_page(new_page); /* Free it */
2045
a54a407f
MG
2046 /* Retake the callers reference and putback on LRU */
2047 get_page(page);
b32967ff 2048 putback_lru_page(page);
599d0c95 2049 mod_node_page_state(page_pgdat(page),
a54a407f 2050 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2051
2052 goto out_unlock;
b32967ff
MG
2053 }
2054
10102459 2055 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2056 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2057
2b4847e7 2058 /*
d7c33934
AA
2059 * Overwrite the old entry under pagetable lock and establish
2060 * the new PTE. Any parallel GUP will either observe the old
2061 * page blocking on the page lock, block on the page table
2062 * lock or observe the new page. The SetPageUptodate on the
2063 * new page and page_add_new_anon_rmap guarantee the copy is
2064 * visible before the pagetable update.
2b4847e7 2065 */
7066f0f9 2066 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2067 /*
2068 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2069 * has already been flushed globally. So no TLB can be currently
2070 * caching this non present pmd mapping. There's no need to clear the
2071 * pmd before doing set_pmd_at(), nor to flush the TLB after
2072 * set_pmd_at(). Clearing the pmd here would introduce a race
2073 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2074 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2075 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2076 * pmd.
2077 */
7066f0f9 2078 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2079 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2080
f4e177d1 2081 page_ref_unfreeze(page, 2);
51afb12b 2082 mlock_migrate_page(new_page, page);
d281ee61 2083 page_remove_rmap(page, true);
7cd12b4a 2084 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2085
c4088ebd 2086 spin_unlock(ptl);
b32967ff 2087
11de9927
MG
2088 /* Take an "isolate" reference and put new page on the LRU. */
2089 get_page(new_page);
2090 putback_lru_page(new_page);
2091
b32967ff
MG
2092 unlock_page(new_page);
2093 unlock_page(page);
2094 put_page(page); /* Drop the rmap reference */
2095 put_page(page); /* Drop the LRU isolation reference */
2096
2097 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2098 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2099
599d0c95 2100 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2101 NR_ISOLATED_ANON + page_lru,
2102 -HPAGE_PMD_NR);
2103 return isolated;
2104
340ef390
HD
2105out_fail:
2106 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2107 ptl = pmd_lock(mm, pmd);
2108 if (pmd_same(*pmd, entry)) {
4d942466 2109 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2110 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2111 update_mmu_cache_pmd(vma, address, &entry);
2112 }
2113 spin_unlock(ptl);
a54a407f 2114
eb4489f6 2115out_unlock:
340ef390 2116 unlock_page(page);
b32967ff 2117 put_page(page);
b32967ff
MG
2118 return 0;
2119}
7039e1db
PZ
2120#endif /* CONFIG_NUMA_BALANCING */
2121
2122#endif /* CONFIG_NUMA */
8763cb45 2123
6b368cd4 2124#if defined(CONFIG_MIGRATE_VMA_HELPER)
8763cb45
JG
2125struct migrate_vma {
2126 struct vm_area_struct *vma;
2127 unsigned long *dst;
2128 unsigned long *src;
2129 unsigned long cpages;
2130 unsigned long npages;
2131 unsigned long start;
2132 unsigned long end;
2133};
2134
2135static int migrate_vma_collect_hole(unsigned long start,
2136 unsigned long end,
2137 struct mm_walk *walk)
2138{
2139 struct migrate_vma *migrate = walk->private;
2140 unsigned long addr;
2141
8315ada7 2142 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
e20d103b 2143 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2144 migrate->dst[migrate->npages] = 0;
e20d103b 2145 migrate->npages++;
8315ada7
JG
2146 migrate->cpages++;
2147 }
2148
2149 return 0;
2150}
2151
2152static int migrate_vma_collect_skip(unsigned long start,
2153 unsigned long end,
2154 struct mm_walk *walk)
2155{
2156 struct migrate_vma *migrate = walk->private;
2157 unsigned long addr;
2158
8763cb45
JG
2159 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2160 migrate->dst[migrate->npages] = 0;
2161 migrate->src[migrate->npages++] = 0;
2162 }
2163
2164 return 0;
2165}
2166
2167static int migrate_vma_collect_pmd(pmd_t *pmdp,
2168 unsigned long start,
2169 unsigned long end,
2170 struct mm_walk *walk)
2171{
2172 struct migrate_vma *migrate = walk->private;
2173 struct vm_area_struct *vma = walk->vma;
2174 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2175 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2176 spinlock_t *ptl;
2177 pte_t *ptep;
2178
2179again:
2180 if (pmd_none(*pmdp))
2181 return migrate_vma_collect_hole(start, end, walk);
2182
2183 if (pmd_trans_huge(*pmdp)) {
2184 struct page *page;
2185
2186 ptl = pmd_lock(mm, pmdp);
2187 if (unlikely(!pmd_trans_huge(*pmdp))) {
2188 spin_unlock(ptl);
2189 goto again;
2190 }
2191
2192 page = pmd_page(*pmdp);
2193 if (is_huge_zero_page(page)) {
2194 spin_unlock(ptl);
2195 split_huge_pmd(vma, pmdp, addr);
2196 if (pmd_trans_unstable(pmdp))
8315ada7 2197 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2198 walk);
2199 } else {
2200 int ret;
2201
2202 get_page(page);
2203 spin_unlock(ptl);
2204 if (unlikely(!trylock_page(page)))
8315ada7 2205 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2206 walk);
2207 ret = split_huge_page(page);
2208 unlock_page(page);
2209 put_page(page);
8315ada7
JG
2210 if (ret)
2211 return migrate_vma_collect_skip(start, end,
2212 walk);
2213 if (pmd_none(*pmdp))
8763cb45
JG
2214 return migrate_vma_collect_hole(start, end,
2215 walk);
2216 }
2217 }
2218
2219 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2220 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2221
2222 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2223 arch_enter_lazy_mmu_mode();
2224
8763cb45
JG
2225 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2226 unsigned long mpfn, pfn;
2227 struct page *page;
8c3328f1 2228 swp_entry_t entry;
8763cb45
JG
2229 pte_t pte;
2230
2231 pte = *ptep;
2232 pfn = pte_pfn(pte);
2233
a5430dda 2234 if (pte_none(pte)) {
8315ada7
JG
2235 mpfn = MIGRATE_PFN_MIGRATE;
2236 migrate->cpages++;
2237 pfn = 0;
8763cb45
JG
2238 goto next;
2239 }
2240
a5430dda
JG
2241 if (!pte_present(pte)) {
2242 mpfn = pfn = 0;
2243
2244 /*
2245 * Only care about unaddressable device page special
2246 * page table entry. Other special swap entries are not
2247 * migratable, and we ignore regular swapped page.
2248 */
2249 entry = pte_to_swp_entry(pte);
2250 if (!is_device_private_entry(entry))
2251 goto next;
2252
2253 page = device_private_entry_to_page(entry);
2254 mpfn = migrate_pfn(page_to_pfn(page))|
2255 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2256 if (is_write_device_private_entry(entry))
2257 mpfn |= MIGRATE_PFN_WRITE;
2258 } else {
8315ada7
JG
2259 if (is_zero_pfn(pfn)) {
2260 mpfn = MIGRATE_PFN_MIGRATE;
2261 migrate->cpages++;
2262 pfn = 0;
2263 goto next;
2264 }
df6ad698 2265 page = _vm_normal_page(migrate->vma, addr, pte, true);
a5430dda
JG
2266 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2267 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2268 }
2269
8763cb45 2270 /* FIXME support THP */
8763cb45
JG
2271 if (!page || !page->mapping || PageTransCompound(page)) {
2272 mpfn = pfn = 0;
2273 goto next;
2274 }
a5430dda 2275 pfn = page_to_pfn(page);
8763cb45
JG
2276
2277 /*
2278 * By getting a reference on the page we pin it and that blocks
2279 * any kind of migration. Side effect is that it "freezes" the
2280 * pte.
2281 *
2282 * We drop this reference after isolating the page from the lru
2283 * for non device page (device page are not on the lru and thus
2284 * can't be dropped from it).
2285 */
2286 get_page(page);
2287 migrate->cpages++;
8763cb45 2288
8c3328f1
JG
2289 /*
2290 * Optimize for the common case where page is only mapped once
2291 * in one process. If we can lock the page, then we can safely
2292 * set up a special migration page table entry now.
2293 */
2294 if (trylock_page(page)) {
2295 pte_t swp_pte;
2296
2297 mpfn |= MIGRATE_PFN_LOCKED;
2298 ptep_get_and_clear(mm, addr, ptep);
2299
2300 /* Setup special migration page table entry */
07707125
RC
2301 entry = make_migration_entry(page, mpfn &
2302 MIGRATE_PFN_WRITE);
8c3328f1
JG
2303 swp_pte = swp_entry_to_pte(entry);
2304 if (pte_soft_dirty(pte))
2305 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2306 set_pte_at(mm, addr, ptep, swp_pte);
2307
2308 /*
2309 * This is like regular unmap: we remove the rmap and
2310 * drop page refcount. Page won't be freed, as we took
2311 * a reference just above.
2312 */
2313 page_remove_rmap(page, false);
2314 put_page(page);
a5430dda
JG
2315
2316 if (pte_present(pte))
2317 unmapped++;
8c3328f1
JG
2318 }
2319
8763cb45 2320next:
a5430dda 2321 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2322 migrate->src[migrate->npages++] = mpfn;
2323 }
8c3328f1 2324 arch_leave_lazy_mmu_mode();
8763cb45
JG
2325 pte_unmap_unlock(ptep - 1, ptl);
2326
8c3328f1
JG
2327 /* Only flush the TLB if we actually modified any entries */
2328 if (unmapped)
2329 flush_tlb_range(walk->vma, start, end);
2330
8763cb45
JG
2331 return 0;
2332}
2333
2334/*
2335 * migrate_vma_collect() - collect pages over a range of virtual addresses
2336 * @migrate: migrate struct containing all migration information
2337 *
2338 * This will walk the CPU page table. For each virtual address backed by a
2339 * valid page, it updates the src array and takes a reference on the page, in
2340 * order to pin the page until we lock it and unmap it.
2341 */
2342static void migrate_vma_collect(struct migrate_vma *migrate)
2343{
ac46d4f3 2344 struct mmu_notifier_range range;
8763cb45
JG
2345 struct mm_walk mm_walk;
2346
2347 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2348 mm_walk.pte_entry = NULL;
2349 mm_walk.pte_hole = migrate_vma_collect_hole;
2350 mm_walk.hugetlb_entry = NULL;
2351 mm_walk.test_walk = NULL;
2352 mm_walk.vma = migrate->vma;
2353 mm_walk.mm = migrate->vma->vm_mm;
2354 mm_walk.private = migrate;
2355
ac46d4f3
JG
2356 mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2357 migrate->end);
2358 mmu_notifier_invalidate_range_start(&range);
8763cb45 2359 walk_page_range(migrate->start, migrate->end, &mm_walk);
ac46d4f3 2360 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2361
2362 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2363}
2364
2365/*
2366 * migrate_vma_check_page() - check if page is pinned or not
2367 * @page: struct page to check
2368 *
2369 * Pinned pages cannot be migrated. This is the same test as in
2370 * migrate_page_move_mapping(), except that here we allow migration of a
2371 * ZONE_DEVICE page.
2372 */
2373static bool migrate_vma_check_page(struct page *page)
2374{
2375 /*
2376 * One extra ref because caller holds an extra reference, either from
2377 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2378 * a device page.
2379 */
2380 int extra = 1;
2381
2382 /*
2383 * FIXME support THP (transparent huge page), it is bit more complex to
2384 * check them than regular pages, because they can be mapped with a pmd
2385 * or with a pte (split pte mapping).
2386 */
2387 if (PageCompound(page))
2388 return false;
2389
a5430dda
JG
2390 /* Page from ZONE_DEVICE have one extra reference */
2391 if (is_zone_device_page(page)) {
2392 /*
2393 * Private page can never be pin as they have no valid pte and
2394 * GUP will fail for those. Yet if there is a pending migration
2395 * a thread might try to wait on the pte migration entry and
2396 * will bump the page reference count. Sadly there is no way to
2397 * differentiate a regular pin from migration wait. Hence to
2398 * avoid 2 racing thread trying to migrate back to CPU to enter
2399 * infinite loop (one stoping migration because the other is
2400 * waiting on pte migration entry). We always return true here.
2401 *
2402 * FIXME proper solution is to rework migration_entry_wait() so
2403 * it does not need to take a reference on page.
2404 */
2405 if (is_device_private_page(page))
2406 return true;
2407
df6ad698
JG
2408 /*
2409 * Only allow device public page to be migrated and account for
2410 * the extra reference count imply by ZONE_DEVICE pages.
2411 */
2412 if (!is_device_public_page(page))
2413 return false;
2414 extra++;
a5430dda
JG
2415 }
2416
df6ad698
JG
2417 /* For file back page */
2418 if (page_mapping(page))
2419 extra += 1 + page_has_private(page);
2420
8763cb45
JG
2421 if ((page_count(page) - extra) > page_mapcount(page))
2422 return false;
2423
2424 return true;
2425}
2426
2427/*
2428 * migrate_vma_prepare() - lock pages and isolate them from the lru
2429 * @migrate: migrate struct containing all migration information
2430 *
2431 * This locks pages that have been collected by migrate_vma_collect(). Once each
2432 * page is locked it is isolated from the lru (for non-device pages). Finally,
2433 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2434 * migrated by concurrent kernel threads.
2435 */
2436static void migrate_vma_prepare(struct migrate_vma *migrate)
2437{
2438 const unsigned long npages = migrate->npages;
8c3328f1
JG
2439 const unsigned long start = migrate->start;
2440 unsigned long addr, i, restore = 0;
8763cb45 2441 bool allow_drain = true;
8763cb45
JG
2442
2443 lru_add_drain();
2444
2445 for (i = 0; (i < npages) && migrate->cpages; i++) {
2446 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2447 bool remap = true;
8763cb45
JG
2448
2449 if (!page)
2450 continue;
2451
8c3328f1
JG
2452 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2453 /*
2454 * Because we are migrating several pages there can be
2455 * a deadlock between 2 concurrent migration where each
2456 * are waiting on each other page lock.
2457 *
2458 * Make migrate_vma() a best effort thing and backoff
2459 * for any page we can not lock right away.
2460 */
2461 if (!trylock_page(page)) {
2462 migrate->src[i] = 0;
2463 migrate->cpages--;
2464 put_page(page);
2465 continue;
2466 }
2467 remap = false;
2468 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2469 }
8763cb45 2470
a5430dda
JG
2471 /* ZONE_DEVICE pages are not on LRU */
2472 if (!is_zone_device_page(page)) {
2473 if (!PageLRU(page) && allow_drain) {
2474 /* Drain CPU's pagevec */
2475 lru_add_drain_all();
2476 allow_drain = false;
2477 }
8763cb45 2478
a5430dda
JG
2479 if (isolate_lru_page(page)) {
2480 if (remap) {
2481 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2482 migrate->cpages--;
2483 restore++;
2484 } else {
2485 migrate->src[i] = 0;
2486 unlock_page(page);
2487 migrate->cpages--;
2488 put_page(page);
2489 }
2490 continue;
8c3328f1 2491 }
a5430dda
JG
2492
2493 /* Drop the reference we took in collect */
2494 put_page(page);
8763cb45
JG
2495 }
2496
2497 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2498 if (remap) {
2499 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2500 migrate->cpages--;
2501 restore++;
8763cb45 2502
a5430dda
JG
2503 if (!is_zone_device_page(page)) {
2504 get_page(page);
2505 putback_lru_page(page);
2506 }
8c3328f1
JG
2507 } else {
2508 migrate->src[i] = 0;
2509 unlock_page(page);
2510 migrate->cpages--;
2511
a5430dda
JG
2512 if (!is_zone_device_page(page))
2513 putback_lru_page(page);
2514 else
2515 put_page(page);
8c3328f1 2516 }
8763cb45
JG
2517 }
2518 }
8c3328f1
JG
2519
2520 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2521 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2522
2523 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2524 continue;
2525
2526 remove_migration_pte(page, migrate->vma, addr, page);
2527
2528 migrate->src[i] = 0;
2529 unlock_page(page);
2530 put_page(page);
2531 restore--;
2532 }
8763cb45
JG
2533}
2534
2535/*
2536 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2537 * @migrate: migrate struct containing all migration information
2538 *
2539 * Replace page mapping (CPU page table pte) with a special migration pte entry
2540 * and check again if it has been pinned. Pinned pages are restored because we
2541 * cannot migrate them.
2542 *
2543 * This is the last step before we call the device driver callback to allocate
2544 * destination memory and copy contents of original page over to new page.
2545 */
2546static void migrate_vma_unmap(struct migrate_vma *migrate)
2547{
2548 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2549 const unsigned long npages = migrate->npages;
2550 const unsigned long start = migrate->start;
2551 unsigned long addr, i, restore = 0;
2552
2553 for (i = 0; i < npages; i++) {
2554 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2555
2556 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2557 continue;
2558
8c3328f1
JG
2559 if (page_mapped(page)) {
2560 try_to_unmap(page, flags);
2561 if (page_mapped(page))
2562 goto restore;
8763cb45 2563 }
8c3328f1
JG
2564
2565 if (migrate_vma_check_page(page))
2566 continue;
2567
2568restore:
2569 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2570 migrate->cpages--;
2571 restore++;
8763cb45
JG
2572 }
2573
2574 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2575 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2576
2577 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2578 continue;
2579
2580 remove_migration_ptes(page, page, false);
2581
2582 migrate->src[i] = 0;
2583 unlock_page(page);
2584 restore--;
2585
a5430dda
JG
2586 if (is_zone_device_page(page))
2587 put_page(page);
2588 else
2589 putback_lru_page(page);
8763cb45
JG
2590 }
2591}
2592
8315ada7
JG
2593static void migrate_vma_insert_page(struct migrate_vma *migrate,
2594 unsigned long addr,
2595 struct page *page,
2596 unsigned long *src,
2597 unsigned long *dst)
2598{
2599 struct vm_area_struct *vma = migrate->vma;
2600 struct mm_struct *mm = vma->vm_mm;
2601 struct mem_cgroup *memcg;
2602 bool flush = false;
2603 spinlock_t *ptl;
2604 pte_t entry;
2605 pgd_t *pgdp;
2606 p4d_t *p4dp;
2607 pud_t *pudp;
2608 pmd_t *pmdp;
2609 pte_t *ptep;
2610
2611 /* Only allow populating anonymous memory */
2612 if (!vma_is_anonymous(vma))
2613 goto abort;
2614
2615 pgdp = pgd_offset(mm, addr);
2616 p4dp = p4d_alloc(mm, pgdp, addr);
2617 if (!p4dp)
2618 goto abort;
2619 pudp = pud_alloc(mm, p4dp, addr);
2620 if (!pudp)
2621 goto abort;
2622 pmdp = pmd_alloc(mm, pudp, addr);
2623 if (!pmdp)
2624 goto abort;
2625
2626 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2627 goto abort;
2628
2629 /*
2630 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2631 * pte_offset_map() on pmds where a huge pmd might be created
2632 * from a different thread.
2633 *
2634 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2635 * parallel threads are excluded by other means.
2636 *
2637 * Here we only have down_read(mmap_sem).
2638 */
2639 if (pte_alloc(mm, pmdp, addr))
2640 goto abort;
2641
2642 /* See the comment in pte_alloc_one_map() */
2643 if (unlikely(pmd_trans_unstable(pmdp)))
2644 goto abort;
2645
2646 if (unlikely(anon_vma_prepare(vma)))
2647 goto abort;
2648 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2649 goto abort;
2650
2651 /*
2652 * The memory barrier inside __SetPageUptodate makes sure that
2653 * preceding stores to the page contents become visible before
2654 * the set_pte_at() write.
2655 */
2656 __SetPageUptodate(page);
2657
df6ad698
JG
2658 if (is_zone_device_page(page)) {
2659 if (is_device_private_page(page)) {
2660 swp_entry_t swp_entry;
2661
2662 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2663 entry = swp_entry_to_pte(swp_entry);
2664 } else if (is_device_public_page(page)) {
2665 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2666 if (vma->vm_flags & VM_WRITE)
2667 entry = pte_mkwrite(pte_mkdirty(entry));
2668 entry = pte_mkdevmap(entry);
2669 }
8315ada7
JG
2670 } else {
2671 entry = mk_pte(page, vma->vm_page_prot);
2672 if (vma->vm_flags & VM_WRITE)
2673 entry = pte_mkwrite(pte_mkdirty(entry));
2674 }
2675
2676 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2677
2678 if (pte_present(*ptep)) {
2679 unsigned long pfn = pte_pfn(*ptep);
2680
2681 if (!is_zero_pfn(pfn)) {
2682 pte_unmap_unlock(ptep, ptl);
2683 mem_cgroup_cancel_charge(page, memcg, false);
2684 goto abort;
2685 }
2686 flush = true;
2687 } else if (!pte_none(*ptep)) {
2688 pte_unmap_unlock(ptep, ptl);
2689 mem_cgroup_cancel_charge(page, memcg, false);
2690 goto abort;
2691 }
2692
2693 /*
2694 * Check for usefaultfd but do not deliver the fault. Instead,
2695 * just back off.
2696 */
2697 if (userfaultfd_missing(vma)) {
2698 pte_unmap_unlock(ptep, ptl);
2699 mem_cgroup_cancel_charge(page, memcg, false);
2700 goto abort;
2701 }
2702
2703 inc_mm_counter(mm, MM_ANONPAGES);
2704 page_add_new_anon_rmap(page, vma, addr, false);
2705 mem_cgroup_commit_charge(page, memcg, false, false);
2706 if (!is_zone_device_page(page))
2707 lru_cache_add_active_or_unevictable(page, vma);
2708 get_page(page);
2709
2710 if (flush) {
2711 flush_cache_page(vma, addr, pte_pfn(*ptep));
2712 ptep_clear_flush_notify(vma, addr, ptep);
2713 set_pte_at_notify(mm, addr, ptep, entry);
2714 update_mmu_cache(vma, addr, ptep);
2715 } else {
2716 /* No need to invalidate - it was non-present before */
2717 set_pte_at(mm, addr, ptep, entry);
2718 update_mmu_cache(vma, addr, ptep);
2719 }
2720
2721 pte_unmap_unlock(ptep, ptl);
2722 *src = MIGRATE_PFN_MIGRATE;
2723 return;
2724
2725abort:
2726 *src &= ~MIGRATE_PFN_MIGRATE;
2727}
2728
8763cb45
JG
2729/*
2730 * migrate_vma_pages() - migrate meta-data from src page to dst page
2731 * @migrate: migrate struct containing all migration information
2732 *
2733 * This migrates struct page meta-data from source struct page to destination
2734 * struct page. This effectively finishes the migration from source page to the
2735 * destination page.
2736 */
2737static void migrate_vma_pages(struct migrate_vma *migrate)
2738{
2739 const unsigned long npages = migrate->npages;
2740 const unsigned long start = migrate->start;
ac46d4f3
JG
2741 struct mmu_notifier_range range;
2742 unsigned long addr, i;
8315ada7 2743 bool notified = false;
8763cb45
JG
2744
2745 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2746 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2747 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2748 struct address_space *mapping;
2749 int r;
2750
8315ada7
JG
2751 if (!newpage) {
2752 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2753 continue;
8315ada7
JG
2754 }
2755
2756 if (!page) {
2757 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2758 continue;
2759 }
2760 if (!notified) {
8315ada7 2761 notified = true;
ac46d4f3
JG
2762
2763 mmu_notifier_range_init(&range,
2764 migrate->vma->vm_mm,
2765 addr, migrate->end);
2766 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
2767 }
2768 migrate_vma_insert_page(migrate, addr, newpage,
2769 &migrate->src[i],
2770 &migrate->dst[i]);
8763cb45 2771 continue;
8315ada7 2772 }
8763cb45
JG
2773
2774 mapping = page_mapping(page);
2775
a5430dda
JG
2776 if (is_zone_device_page(newpage)) {
2777 if (is_device_private_page(newpage)) {
2778 /*
2779 * For now only support private anonymous when
2780 * migrating to un-addressable device memory.
2781 */
2782 if (mapping) {
2783 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2784 continue;
2785 }
df6ad698 2786 } else if (!is_device_public_page(newpage)) {
a5430dda
JG
2787 /*
2788 * Other types of ZONE_DEVICE page are not
2789 * supported.
2790 */
2791 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2792 continue;
2793 }
2794 }
2795
8763cb45
JG
2796 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2797 if (r != MIGRATEPAGE_SUCCESS)
2798 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2799 }
8315ada7 2800
4645b9fe
JG
2801 /*
2802 * No need to double call mmu_notifier->invalidate_range() callback as
2803 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2804 * did already call it.
2805 */
8315ada7 2806 if (notified)
ac46d4f3 2807 mmu_notifier_invalidate_range_only_end(&range);
8763cb45
JG
2808}
2809
2810/*
2811 * migrate_vma_finalize() - restore CPU page table entry
2812 * @migrate: migrate struct containing all migration information
2813 *
2814 * This replaces the special migration pte entry with either a mapping to the
2815 * new page if migration was successful for that page, or to the original page
2816 * otherwise.
2817 *
2818 * This also unlocks the pages and puts them back on the lru, or drops the extra
2819 * refcount, for device pages.
2820 */
2821static void migrate_vma_finalize(struct migrate_vma *migrate)
2822{
2823 const unsigned long npages = migrate->npages;
2824 unsigned long i;
2825
2826 for (i = 0; i < npages; i++) {
2827 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2828 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2829
8315ada7
JG
2830 if (!page) {
2831 if (newpage) {
2832 unlock_page(newpage);
2833 put_page(newpage);
2834 }
8763cb45 2835 continue;
8315ada7
JG
2836 }
2837
8763cb45
JG
2838 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2839 if (newpage) {
2840 unlock_page(newpage);
2841 put_page(newpage);
2842 }
2843 newpage = page;
2844 }
2845
2846 remove_migration_ptes(page, newpage, false);
2847 unlock_page(page);
2848 migrate->cpages--;
2849
a5430dda
JG
2850 if (is_zone_device_page(page))
2851 put_page(page);
2852 else
2853 putback_lru_page(page);
8763cb45
JG
2854
2855 if (newpage != page) {
2856 unlock_page(newpage);
a5430dda
JG
2857 if (is_zone_device_page(newpage))
2858 put_page(newpage);
2859 else
2860 putback_lru_page(newpage);
8763cb45
JG
2861 }
2862 }
2863}
2864
2865/*
2866 * migrate_vma() - migrate a range of memory inside vma
2867 *
2868 * @ops: migration callback for allocating destination memory and copying
2869 * @vma: virtual memory area containing the range to be migrated
2870 * @start: start address of the range to migrate (inclusive)
2871 * @end: end address of the range to migrate (exclusive)
2872 * @src: array of hmm_pfn_t containing source pfns
2873 * @dst: array of hmm_pfn_t containing destination pfns
2874 * @private: pointer passed back to each of the callback
2875 * Returns: 0 on success, error code otherwise
2876 *
2877 * This function tries to migrate a range of memory virtual address range, using
2878 * callbacks to allocate and copy memory from source to destination. First it
2879 * collects all the pages backing each virtual address in the range, saving this
2880 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2881 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2882 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2883 * in the corresponding src array entry. It then restores any pages that are
2884 * pinned, by remapping and unlocking those pages.
2885 *
2886 * At this point it calls the alloc_and_copy() callback. For documentation on
2887 * what is expected from that callback, see struct migrate_vma_ops comments in
2888 * include/linux/migrate.h
2889 *
2890 * After the alloc_and_copy() callback, this function goes over each entry in
2891 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2892 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2893 * then the function tries to migrate struct page information from the source
2894 * struct page to the destination struct page. If it fails to migrate the struct
2895 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2896 * array.
2897 *
2898 * At this point all successfully migrated pages have an entry in the src
2899 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2900 * array entry with MIGRATE_PFN_VALID flag set.
2901 *
2902 * It then calls the finalize_and_map() callback. See comments for "struct
2903 * migrate_vma_ops", in include/linux/migrate.h for details about
2904 * finalize_and_map() behavior.
2905 *
2906 * After the finalize_and_map() callback, for successfully migrated pages, this
2907 * function updates the CPU page table to point to new pages, otherwise it
2908 * restores the CPU page table to point to the original source pages.
2909 *
2910 * Function returns 0 after the above steps, even if no pages were migrated
2911 * (The function only returns an error if any of the arguments are invalid.)
2912 *
2913 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2914 * unsigned long entries.
2915 */
2916int migrate_vma(const struct migrate_vma_ops *ops,
2917 struct vm_area_struct *vma,
2918 unsigned long start,
2919 unsigned long end,
2920 unsigned long *src,
2921 unsigned long *dst,
2922 void *private)
2923{
2924 struct migrate_vma migrate;
2925
2926 /* Sanity check the arguments */
2927 start &= PAGE_MASK;
2928 end &= PAGE_MASK;
e1fb4a08
DJ
2929 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2930 vma_is_dax(vma))
8763cb45
JG
2931 return -EINVAL;
2932 if (start < vma->vm_start || start >= vma->vm_end)
2933 return -EINVAL;
2934 if (end <= vma->vm_start || end > vma->vm_end)
2935 return -EINVAL;
2936 if (!ops || !src || !dst || start >= end)
2937 return -EINVAL;
2938
2939 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2940 migrate.src = src;
2941 migrate.dst = dst;
2942 migrate.start = start;
2943 migrate.npages = 0;
2944 migrate.cpages = 0;
2945 migrate.end = end;
2946 migrate.vma = vma;
2947
2948 /* Collect, and try to unmap source pages */
2949 migrate_vma_collect(&migrate);
2950 if (!migrate.cpages)
2951 return 0;
2952
2953 /* Lock and isolate page */
2954 migrate_vma_prepare(&migrate);
2955 if (!migrate.cpages)
2956 return 0;
2957
2958 /* Unmap pages */
2959 migrate_vma_unmap(&migrate);
2960 if (!migrate.cpages)
2961 return 0;
2962
2963 /*
2964 * At this point pages are locked and unmapped, and thus they have
2965 * stable content and can safely be copied to destination memory that
2966 * is allocated by the callback.
2967 *
2968 * Note that migration can fail in migrate_vma_struct_page() for each
2969 * individual page.
2970 */
2971 ops->alloc_and_copy(vma, src, dst, start, end, private);
2972
2973 /* This does the real migration of struct page */
2974 migrate_vma_pages(&migrate);
2975
2976 ops->finalize_and_map(vma, src, dst, start, end, private);
2977
2978 /* Unlock and remap pages */
2979 migrate_vma_finalize(&migrate);
2980
2981 return 0;
2982}
2983EXPORT_SYMBOL(migrate_vma);
6b368cd4 2984#endif /* defined(MIGRATE_VMA_HELPER) */