]> git.ipfire.org Git - people/ms/linux.git/blame - mm/migrate_device.c
Merge tag 'mediatek-drm-fixes-6.0' of https://git.kernel.org/pub/scm/linux/kernel...
[people/ms/linux.git] / mm / migrate_device.c
CommitLineData
76cbbead
CH
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Device Memory Migration functionality.
4 *
5 * Originally written by Jérôme Glisse.
6 */
7#include <linux/export.h>
8#include <linux/memremap.h>
9#include <linux/migrate.h>
10#include <linux/mm_inline.h>
11#include <linux/mmu_notifier.h>
12#include <linux/oom.h>
13#include <linux/pagewalk.h>
14#include <linux/rmap.h>
15#include <linux/swapops.h>
16#include <asm/tlbflush.h>
17#include "internal.h"
18
19static int migrate_vma_collect_skip(unsigned long start,
20 unsigned long end,
21 struct mm_walk *walk)
22{
23 struct migrate_vma *migrate = walk->private;
24 unsigned long addr;
25
26 for (addr = start; addr < end; addr += PAGE_SIZE) {
27 migrate->dst[migrate->npages] = 0;
28 migrate->src[migrate->npages++] = 0;
29 }
30
31 return 0;
32}
33
34static int migrate_vma_collect_hole(unsigned long start,
35 unsigned long end,
36 __always_unused int depth,
37 struct mm_walk *walk)
38{
39 struct migrate_vma *migrate = walk->private;
40 unsigned long addr;
41
42 /* Only allow populating anonymous memory. */
43 if (!vma_is_anonymous(walk->vma))
44 return migrate_vma_collect_skip(start, end, walk);
45
46 for (addr = start; addr < end; addr += PAGE_SIZE) {
47 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
48 migrate->dst[migrate->npages] = 0;
49 migrate->npages++;
50 migrate->cpages++;
51 }
52
53 return 0;
54}
55
56static int migrate_vma_collect_pmd(pmd_t *pmdp,
57 unsigned long start,
58 unsigned long end,
59 struct mm_walk *walk)
60{
61 struct migrate_vma *migrate = walk->private;
62 struct vm_area_struct *vma = walk->vma;
63 struct mm_struct *mm = vma->vm_mm;
64 unsigned long addr = start, unmapped = 0;
65 spinlock_t *ptl;
66 pte_t *ptep;
67
68again:
69 if (pmd_none(*pmdp))
70 return migrate_vma_collect_hole(start, end, -1, walk);
71
72 if (pmd_trans_huge(*pmdp)) {
73 struct page *page;
74
75 ptl = pmd_lock(mm, pmdp);
76 if (unlikely(!pmd_trans_huge(*pmdp))) {
77 spin_unlock(ptl);
78 goto again;
79 }
80
81 page = pmd_page(*pmdp);
82 if (is_huge_zero_page(page)) {
83 spin_unlock(ptl);
84 split_huge_pmd(vma, pmdp, addr);
85 if (pmd_trans_unstable(pmdp))
86 return migrate_vma_collect_skip(start, end,
87 walk);
88 } else {
89 int ret;
90
91 get_page(page);
92 spin_unlock(ptl);
93 if (unlikely(!trylock_page(page)))
94 return migrate_vma_collect_skip(start, end,
95 walk);
96 ret = split_huge_page(page);
97 unlock_page(page);
98 put_page(page);
99 if (ret)
100 return migrate_vma_collect_skip(start, end,
101 walk);
102 if (pmd_none(*pmdp))
103 return migrate_vma_collect_hole(start, end, -1,
104 walk);
105 }
106 }
107
108 if (unlikely(pmd_bad(*pmdp)))
109 return migrate_vma_collect_skip(start, end, walk);
110
111 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
112 arch_enter_lazy_mmu_mode();
113
114 for (; addr < end; addr += PAGE_SIZE, ptep++) {
115 unsigned long mpfn = 0, pfn;
116 struct page *page;
117 swp_entry_t entry;
118 pte_t pte;
119
120 pte = *ptep;
121
122 if (pte_none(pte)) {
123 if (vma_is_anonymous(vma)) {
124 mpfn = MIGRATE_PFN_MIGRATE;
125 migrate->cpages++;
126 }
127 goto next;
128 }
129
130 if (!pte_present(pte)) {
131 /*
132 * Only care about unaddressable device page special
133 * page table entry. Other special swap entries are not
134 * migratable, and we ignore regular swapped page.
135 */
136 entry = pte_to_swp_entry(pte);
137 if (!is_device_private_entry(entry))
138 goto next;
139
140 page = pfn_swap_entry_to_page(entry);
141 if (!(migrate->flags &
142 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
143 page->pgmap->owner != migrate->pgmap_owner)
144 goto next;
145
146 mpfn = migrate_pfn(page_to_pfn(page)) |
147 MIGRATE_PFN_MIGRATE;
148 if (is_writable_device_private_entry(entry))
149 mpfn |= MIGRATE_PFN_WRITE;
150 } else {
76cbbead 151 pfn = pte_pfn(pte);
dd19e6d8
AS
152 if (is_zero_pfn(pfn) &&
153 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
76cbbead
CH
154 mpfn = MIGRATE_PFN_MIGRATE;
155 migrate->cpages++;
156 goto next;
157 }
158 page = vm_normal_page(migrate->vma, addr, pte);
dd19e6d8
AS
159 if (page && !is_zone_device_page(page) &&
160 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
161 goto next;
162 else if (page && is_device_coherent_page(page) &&
163 (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
164 page->pgmap->owner != migrate->pgmap_owner))
165 goto next;
76cbbead
CH
166 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
167 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
168 }
169
170 /* FIXME support THP */
171 if (!page || !page->mapping || PageTransCompound(page)) {
172 mpfn = 0;
173 goto next;
174 }
175
176 /*
177 * By getting a reference on the page we pin it and that blocks
178 * any kind of migration. Side effect is that it "freezes" the
179 * pte.
180 *
181 * We drop this reference after isolating the page from the lru
182 * for non device page (device page are not on the lru and thus
183 * can't be dropped from it).
184 */
185 get_page(page);
186
187 /*
188 * Optimize for the common case where page is only mapped once
189 * in one process. If we can lock the page, then we can safely
190 * set up a special migration page table entry now.
191 */
192 if (trylock_page(page)) {
6c287605 193 bool anon_exclusive;
76cbbead
CH
194 pte_t swp_pte;
195
6c287605
DH
196 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
197 if (anon_exclusive) {
198 flush_cache_page(vma, addr, pte_pfn(*ptep));
199 ptep_clear_flush(vma, addr, ptep);
200
201 if (page_try_share_anon_rmap(page)) {
202 set_pte_at(mm, addr, ptep, pte);
203 unlock_page(page);
204 put_page(page);
205 mpfn = 0;
206 goto next;
207 }
208 } else {
209 ptep_get_and_clear(mm, addr, ptep);
210 }
211
76cbbead 212 migrate->cpages++;
76cbbead
CH
213
214 /* Setup special migration page table entry */
215 if (mpfn & MIGRATE_PFN_WRITE)
216 entry = make_writable_migration_entry(
217 page_to_pfn(page));
6c287605
DH
218 else if (anon_exclusive)
219 entry = make_readable_exclusive_migration_entry(
220 page_to_pfn(page));
76cbbead
CH
221 else
222 entry = make_readable_migration_entry(
223 page_to_pfn(page));
224 swp_pte = swp_entry_to_pte(entry);
225 if (pte_present(pte)) {
226 if (pte_soft_dirty(pte))
227 swp_pte = pte_swp_mksoft_dirty(swp_pte);
228 if (pte_uffd_wp(pte))
229 swp_pte = pte_swp_mkuffd_wp(swp_pte);
230 } else {
231 if (pte_swp_soft_dirty(pte))
232 swp_pte = pte_swp_mksoft_dirty(swp_pte);
233 if (pte_swp_uffd_wp(pte))
234 swp_pte = pte_swp_mkuffd_wp(swp_pte);
235 }
236 set_pte_at(mm, addr, ptep, swp_pte);
237
238 /*
239 * This is like regular unmap: we remove the rmap and
240 * drop page refcount. Page won't be freed, as we took
241 * a reference just above.
242 */
243 page_remove_rmap(page, vma, false);
244 put_page(page);
245
246 if (pte_present(pte))
247 unmapped++;
248 } else {
249 put_page(page);
250 mpfn = 0;
251 }
252
253next:
254 migrate->dst[migrate->npages] = 0;
255 migrate->src[migrate->npages++] = mpfn;
256 }
257 arch_leave_lazy_mmu_mode();
258 pte_unmap_unlock(ptep - 1, ptl);
259
260 /* Only flush the TLB if we actually modified any entries */
261 if (unmapped)
262 flush_tlb_range(walk->vma, start, end);
263
264 return 0;
265}
266
267static const struct mm_walk_ops migrate_vma_walk_ops = {
268 .pmd_entry = migrate_vma_collect_pmd,
269 .pte_hole = migrate_vma_collect_hole,
270};
271
272/*
273 * migrate_vma_collect() - collect pages over a range of virtual addresses
274 * @migrate: migrate struct containing all migration information
275 *
276 * This will walk the CPU page table. For each virtual address backed by a
277 * valid page, it updates the src array and takes a reference on the page, in
278 * order to pin the page until we lock it and unmap it.
279 */
280static void migrate_vma_collect(struct migrate_vma *migrate)
281{
282 struct mmu_notifier_range range;
283
284 /*
285 * Note that the pgmap_owner is passed to the mmu notifier callback so
286 * that the registered device driver can skip invalidating device
287 * private page mappings that won't be migrated.
288 */
289 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
290 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
291 migrate->pgmap_owner);
292 mmu_notifier_invalidate_range_start(&range);
293
294 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
295 &migrate_vma_walk_ops, migrate);
296
297 mmu_notifier_invalidate_range_end(&range);
298 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
299}
300
301/*
302 * migrate_vma_check_page() - check if page is pinned or not
303 * @page: struct page to check
304 *
305 * Pinned pages cannot be migrated. This is the same test as in
306 * folio_migrate_mapping(), except that here we allow migration of a
307 * ZONE_DEVICE page.
308 */
309static bool migrate_vma_check_page(struct page *page)
310{
311 /*
312 * One extra ref because caller holds an extra reference, either from
313 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
314 * a device page.
315 */
316 int extra = 1;
317
318 /*
319 * FIXME support THP (transparent huge page), it is bit more complex to
320 * check them than regular pages, because they can be mapped with a pmd
321 * or with a pte (split pte mapping).
322 */
323 if (PageCompound(page))
324 return false;
325
326 /* Page from ZONE_DEVICE have one extra reference */
327 if (is_zone_device_page(page))
328 extra++;
329
330 /* For file back page */
331 if (page_mapping(page))
332 extra += 1 + page_has_private(page);
333
334 if ((page_count(page) - extra) > page_mapcount(page))
335 return false;
336
337 return true;
338}
339
340/*
341 * migrate_vma_unmap() - replace page mapping with special migration pte entry
342 * @migrate: migrate struct containing all migration information
343 *
344 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
345 * special migration pte entry and check if it has been pinned. Pinned pages are
346 * restored because we cannot migrate them.
347 *
348 * This is the last step before we call the device driver callback to allocate
349 * destination memory and copy contents of original page over to new page.
350 */
351static void migrate_vma_unmap(struct migrate_vma *migrate)
352{
353 const unsigned long npages = migrate->npages;
354 unsigned long i, restore = 0;
355 bool allow_drain = true;
356
357 lru_add_drain();
358
359 for (i = 0; i < npages; i++) {
360 struct page *page = migrate_pfn_to_page(migrate->src[i]);
4b8554c5 361 struct folio *folio;
76cbbead
CH
362
363 if (!page)
364 continue;
365
366 /* ZONE_DEVICE pages are not on LRU */
367 if (!is_zone_device_page(page)) {
368 if (!PageLRU(page) && allow_drain) {
369 /* Drain CPU's pagevec */
370 lru_add_drain_all();
371 allow_drain = false;
372 }
373
374 if (isolate_lru_page(page)) {
375 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
376 migrate->cpages--;
377 restore++;
378 continue;
379 }
380
381 /* Drop the reference we took in collect */
382 put_page(page);
383 }
384
4b8554c5
MWO
385 folio = page_folio(page);
386 if (folio_mapped(folio))
387 try_to_migrate(folio, 0);
76cbbead
CH
388
389 if (page_mapped(page) || !migrate_vma_check_page(page)) {
390 if (!is_zone_device_page(page)) {
391 get_page(page);
392 putback_lru_page(page);
393 }
394
395 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
396 migrate->cpages--;
397 restore++;
398 continue;
399 }
400 }
401
402 for (i = 0; i < npages && restore; i++) {
403 struct page *page = migrate_pfn_to_page(migrate->src[i]);
4eecb8b9 404 struct folio *folio;
76cbbead
CH
405
406 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
407 continue;
408
4eecb8b9
MWO
409 folio = page_folio(page);
410 remove_migration_ptes(folio, folio, false);
76cbbead
CH
411
412 migrate->src[i] = 0;
4eecb8b9
MWO
413 folio_unlock(folio);
414 folio_put(folio);
76cbbead
CH
415 restore--;
416 }
417}
418
419/**
420 * migrate_vma_setup() - prepare to migrate a range of memory
421 * @args: contains the vma, start, and pfns arrays for the migration
422 *
423 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
424 * without an error.
425 *
426 * Prepare to migrate a range of memory virtual address range by collecting all
427 * the pages backing each virtual address in the range, saving them inside the
428 * src array. Then lock those pages and unmap them. Once the pages are locked
429 * and unmapped, check whether each page is pinned or not. Pages that aren't
430 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
431 * corresponding src array entry. Then restores any pages that are pinned, by
432 * remapping and unlocking those pages.
433 *
434 * The caller should then allocate destination memory and copy source memory to
435 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
436 * flag set). Once these are allocated and copied, the caller must update each
437 * corresponding entry in the dst array with the pfn value of the destination
438 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
439 * lock_page().
440 *
441 * Note that the caller does not have to migrate all the pages that are marked
442 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
443 * device memory to system memory. If the caller cannot migrate a device page
444 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
445 * consequences for the userspace process, so it must be avoided if at all
446 * possible.
447 *
448 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
449 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
450 * allowing the caller to allocate device memory for those unbacked virtual
451 * addresses. For this the caller simply has to allocate device memory and
452 * properly set the destination entry like for regular migration. Note that
453 * this can still fail, and thus inside the device driver you must check if the
454 * migration was successful for those entries after calling migrate_vma_pages(),
455 * just like for regular migration.
456 *
457 * After that, the callers must call migrate_vma_pages() to go over each entry
458 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
459 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
460 * then migrate_vma_pages() to migrate struct page information from the source
461 * struct page to the destination struct page. If it fails to migrate the
462 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
463 * src array.
464 *
465 * At this point all successfully migrated pages have an entry in the src
466 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
467 * array entry with MIGRATE_PFN_VALID flag set.
468 *
469 * Once migrate_vma_pages() returns the caller may inspect which pages were
470 * successfully migrated, and which were not. Successfully migrated pages will
471 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
472 *
473 * It is safe to update device page table after migrate_vma_pages() because
474 * both destination and source page are still locked, and the mmap_lock is held
475 * in read mode (hence no one can unmap the range being migrated).
476 *
477 * Once the caller is done cleaning up things and updating its page table (if it
478 * chose to do so, this is not an obligation) it finally calls
479 * migrate_vma_finalize() to update the CPU page table to point to new pages
480 * for successfully migrated pages or otherwise restore the CPU page table to
481 * point to the original source pages.
482 */
483int migrate_vma_setup(struct migrate_vma *args)
484{
485 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
486
487 args->start &= PAGE_MASK;
488 args->end &= PAGE_MASK;
489 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
490 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
491 return -EINVAL;
492 if (nr_pages <= 0)
493 return -EINVAL;
494 if (args->start < args->vma->vm_start ||
495 args->start >= args->vma->vm_end)
496 return -EINVAL;
497 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
498 return -EINVAL;
499 if (!args->src || !args->dst)
500 return -EINVAL;
501
502 memset(args->src, 0, sizeof(*args->src) * nr_pages);
503 args->cpages = 0;
504 args->npages = 0;
505
506 migrate_vma_collect(args);
507
508 if (args->cpages)
509 migrate_vma_unmap(args);
510
511 /*
512 * At this point pages are locked and unmapped, and thus they have
513 * stable content and can safely be copied to destination memory that
514 * is allocated by the drivers.
515 */
516 return 0;
517
518}
519EXPORT_SYMBOL(migrate_vma_setup);
520
521/*
522 * This code closely matches the code in:
523 * __handle_mm_fault()
524 * handle_pte_fault()
525 * do_anonymous_page()
526 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
f25cbb7a 527 * private or coherent page.
76cbbead
CH
528 */
529static void migrate_vma_insert_page(struct migrate_vma *migrate,
530 unsigned long addr,
531 struct page *page,
532 unsigned long *src)
533{
534 struct vm_area_struct *vma = migrate->vma;
535 struct mm_struct *mm = vma->vm_mm;
536 bool flush = false;
537 spinlock_t *ptl;
538 pte_t entry;
539 pgd_t *pgdp;
540 p4d_t *p4dp;
541 pud_t *pudp;
542 pmd_t *pmdp;
543 pte_t *ptep;
544
545 /* Only allow populating anonymous memory */
546 if (!vma_is_anonymous(vma))
547 goto abort;
548
549 pgdp = pgd_offset(mm, addr);
550 p4dp = p4d_alloc(mm, pgdp, addr);
551 if (!p4dp)
552 goto abort;
553 pudp = pud_alloc(mm, p4dp, addr);
554 if (!pudp)
555 goto abort;
556 pmdp = pmd_alloc(mm, pudp, addr);
557 if (!pmdp)
558 goto abort;
559
560 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
561 goto abort;
562
563 /*
564 * Use pte_alloc() instead of pte_alloc_map(). We can't run
565 * pte_offset_map() on pmds where a huge pmd might be created
566 * from a different thread.
567 *
568 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
569 * parallel threads are excluded by other means.
570 *
571 * Here we only have mmap_read_lock(mm).
572 */
573 if (pte_alloc(mm, pmdp))
574 goto abort;
575
576 /* See the comment in pte_alloc_one_map() */
577 if (unlikely(pmd_trans_unstable(pmdp)))
578 goto abort;
579
580 if (unlikely(anon_vma_prepare(vma)))
581 goto abort;
582 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
583 goto abort;
584
585 /*
586 * The memory barrier inside __SetPageUptodate makes sure that
587 * preceding stores to the page contents become visible before
588 * the set_pte_at() write.
589 */
590 __SetPageUptodate(page);
591
592 if (is_device_private_page(page)) {
593 swp_entry_t swp_entry;
594
595 if (vma->vm_flags & VM_WRITE)
596 swp_entry = make_writable_device_private_entry(
597 page_to_pfn(page));
598 else
599 swp_entry = make_readable_device_private_entry(
600 page_to_pfn(page));
601 entry = swp_entry_to_pte(swp_entry);
602 } else {
f25cbb7a
AS
603 if (is_zone_device_page(page) &&
604 !is_device_coherent_page(page)) {
76cbbead
CH
605 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
606 goto abort;
607 }
608 entry = mk_pte(page, vma->vm_page_prot);
609 if (vma->vm_flags & VM_WRITE)
610 entry = pte_mkwrite(pte_mkdirty(entry));
611 }
612
613 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
614
615 if (check_stable_address_space(mm))
616 goto unlock_abort;
617
618 if (pte_present(*ptep)) {
619 unsigned long pfn = pte_pfn(*ptep);
620
621 if (!is_zero_pfn(pfn))
622 goto unlock_abort;
623 flush = true;
624 } else if (!pte_none(*ptep))
625 goto unlock_abort;
626
627 /*
628 * Check for userfaultfd but do not deliver the fault. Instead,
629 * just back off.
630 */
631 if (userfaultfd_missing(vma))
632 goto unlock_abort;
633
634 inc_mm_counter(mm, MM_ANONPAGES);
40f2bbf7 635 page_add_new_anon_rmap(page, vma, addr);
76cbbead
CH
636 if (!is_zone_device_page(page))
637 lru_cache_add_inactive_or_unevictable(page, vma);
638 get_page(page);
639
640 if (flush) {
641 flush_cache_page(vma, addr, pte_pfn(*ptep));
642 ptep_clear_flush_notify(vma, addr, ptep);
643 set_pte_at_notify(mm, addr, ptep, entry);
644 update_mmu_cache(vma, addr, ptep);
645 } else {
646 /* No need to invalidate - it was non-present before */
647 set_pte_at(mm, addr, ptep, entry);
648 update_mmu_cache(vma, addr, ptep);
649 }
650
651 pte_unmap_unlock(ptep, ptl);
652 *src = MIGRATE_PFN_MIGRATE;
653 return;
654
655unlock_abort:
656 pte_unmap_unlock(ptep, ptl);
657abort:
658 *src &= ~MIGRATE_PFN_MIGRATE;
659}
660
661/**
662 * migrate_vma_pages() - migrate meta-data from src page to dst page
663 * @migrate: migrate struct containing all migration information
664 *
665 * This migrates struct page meta-data from source struct page to destination
666 * struct page. This effectively finishes the migration from source page to the
667 * destination page.
668 */
669void migrate_vma_pages(struct migrate_vma *migrate)
670{
671 const unsigned long npages = migrate->npages;
672 const unsigned long start = migrate->start;
673 struct mmu_notifier_range range;
674 unsigned long addr, i;
675 bool notified = false;
676
677 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
678 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
679 struct page *page = migrate_pfn_to_page(migrate->src[i]);
680 struct address_space *mapping;
681 int r;
682
683 if (!newpage) {
684 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
685 continue;
686 }
687
688 if (!page) {
b05a79d4
AP
689 /*
690 * The only time there is no vma is when called from
691 * migrate_device_coherent_page(). However this isn't
692 * called if the page could not be unmapped.
693 */
694 VM_BUG_ON(!migrate->vma);
76cbbead
CH
695 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
696 continue;
697 if (!notified) {
698 notified = true;
699
700 mmu_notifier_range_init_owner(&range,
701 MMU_NOTIFY_MIGRATE, 0, migrate->vma,
702 migrate->vma->vm_mm, addr, migrate->end,
703 migrate->pgmap_owner);
704 mmu_notifier_invalidate_range_start(&range);
705 }
706 migrate_vma_insert_page(migrate, addr, newpage,
707 &migrate->src[i]);
708 continue;
709 }
710
711 mapping = page_mapping(page);
712
f25cbb7a
AS
713 if (is_device_private_page(newpage) ||
714 is_device_coherent_page(newpage)) {
76cbbead 715 /*
f25cbb7a
AS
716 * For now only support anonymous memory migrating to
717 * device private or coherent memory.
76cbbead
CH
718 */
719 if (mapping) {
720 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
721 continue;
722 }
723 } else if (is_zone_device_page(newpage)) {
724 /*
725 * Other types of ZONE_DEVICE page are not supported.
726 */
727 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
728 continue;
729 }
730
54184650
MWO
731 r = migrate_folio(mapping, page_folio(newpage),
732 page_folio(page), MIGRATE_SYNC_NO_COPY);
76cbbead
CH
733 if (r != MIGRATEPAGE_SUCCESS)
734 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
735 }
736
737 /*
738 * No need to double call mmu_notifier->invalidate_range() callback as
739 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
740 * did already call it.
741 */
742 if (notified)
743 mmu_notifier_invalidate_range_only_end(&range);
744}
745EXPORT_SYMBOL(migrate_vma_pages);
746
747/**
748 * migrate_vma_finalize() - restore CPU page table entry
749 * @migrate: migrate struct containing all migration information
750 *
751 * This replaces the special migration pte entry with either a mapping to the
752 * new page if migration was successful for that page, or to the original page
753 * otherwise.
754 *
755 * This also unlocks the pages and puts them back on the lru, or drops the extra
756 * refcount, for device pages.
757 */
758void migrate_vma_finalize(struct migrate_vma *migrate)
759{
760 const unsigned long npages = migrate->npages;
761 unsigned long i;
762
763 for (i = 0; i < npages; i++) {
4eecb8b9 764 struct folio *dst, *src;
76cbbead
CH
765 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
766 struct page *page = migrate_pfn_to_page(migrate->src[i]);
767
768 if (!page) {
769 if (newpage) {
770 unlock_page(newpage);
771 put_page(newpage);
772 }
773 continue;
774 }
775
776 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
777 if (newpage) {
778 unlock_page(newpage);
779 put_page(newpage);
780 }
781 newpage = page;
782 }
783
4eecb8b9
MWO
784 src = page_folio(page);
785 dst = page_folio(newpage);
786 remove_migration_ptes(src, dst, false);
787 folio_unlock(src);
76cbbead
CH
788
789 if (is_zone_device_page(page))
790 put_page(page);
791 else
792 putback_lru_page(page);
793
794 if (newpage != page) {
795 unlock_page(newpage);
796 if (is_zone_device_page(newpage))
797 put_page(newpage);
798 else
799 putback_lru_page(newpage);
800 }
801 }
802}
803EXPORT_SYMBOL(migrate_vma_finalize);
b05a79d4
AP
804
805/*
806 * Migrate a device coherent page back to normal memory. The caller should have
807 * a reference on page which will be copied to the new page if migration is
808 * successful or dropped on failure.
809 */
810int migrate_device_coherent_page(struct page *page)
811{
812 unsigned long src_pfn, dst_pfn = 0;
813 struct migrate_vma args;
814 struct page *dpage;
815
816 WARN_ON_ONCE(PageCompound(page));
817
818 lock_page(page);
819 src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
820 args.src = &src_pfn;
821 args.dst = &dst_pfn;
822 args.cpages = 1;
823 args.npages = 1;
824 args.vma = NULL;
825
826 /*
827 * We don't have a VMA and don't need to walk the page tables to find
828 * the source page. So call migrate_vma_unmap() directly to unmap the
829 * page as migrate_vma_setup() will fail if args.vma == NULL.
830 */
831 migrate_vma_unmap(&args);
832 if (!(src_pfn & MIGRATE_PFN_MIGRATE))
833 return -EBUSY;
834
835 dpage = alloc_page(GFP_USER | __GFP_NOWARN);
836 if (dpage) {
837 lock_page(dpage);
838 dst_pfn = migrate_pfn(page_to_pfn(dpage));
839 }
840
841 migrate_vma_pages(&args);
842 if (src_pfn & MIGRATE_PFN_MIGRATE)
843 copy_highpage(dpage, page);
844 migrate_vma_finalize(&args);
845
846 if (src_pfn & MIGRATE_PFN_MIGRATE)
847 return 0;
848 return -EBUSY;
849}