]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/mlock.c
Linux 5.17-rc7
[thirdparty/linux.git] / mm / mlock.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/mlock.c
4 *
5 * (C) Copyright 1995 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
7 */
8
c59ede7b 9#include <linux/capability.h>
1da177e4
LT
10#include <linux/mman.h>
11#include <linux/mm.h>
8703e8a4 12#include <linux/sched/user.h>
b291f000
NP
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/pagemap.h>
7225522b 16#include <linux/pagevec.h>
1da177e4
LT
17#include <linux/mempolicy.h>
18#include <linux/syscalls.h>
e8edc6e0 19#include <linux/sched.h>
b95f1b31 20#include <linux/export.h>
b291f000
NP
21#include <linux/rmap.h>
22#include <linux/mmzone.h>
23#include <linux/hugetlb.h>
7225522b
VB
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
1507f512 26#include <linux/secretmem.h>
b291f000
NP
27
28#include "internal.h"
1da177e4 29
7f43add4 30bool can_do_mlock(void)
e8edc6e0 31{
59e99e5b 32 if (rlimit(RLIMIT_MEMLOCK) != 0)
7f43add4 33 return true;
a5a6579d 34 if (capable(CAP_IPC_LOCK))
7f43add4
WX
35 return true;
36 return false;
e8edc6e0
AD
37}
38EXPORT_SYMBOL(can_do_mlock);
1da177e4 39
b291f000
NP
40/*
41 * Mlocked pages are marked with PageMlocked() flag for efficient testing
42 * in vmscan and, possibly, the fault path; and to support semi-accurate
43 * statistics.
44 *
45 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
46 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
47 * The unevictable list is an LRU sibling list to the [in]active lists.
48 * PageUnevictable is set to indicate the unevictable state.
49 *
50 * When lazy mlocking via vmscan, it is important to ensure that the
51 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
52 * may have mlocked a page that is being munlocked. So lazy mlock must take
c1e8d7c6 53 * the mmap_lock for read, and verify that the vma really is locked
b291f000
NP
54 * (see mm/rmap.c).
55 */
56
57/*
58 * LRU accounting for clear_page_mlock()
59 */
e6c509f8 60void clear_page_mlock(struct page *page)
b291f000 61{
0964730b
HD
62 int nr_pages;
63
e6c509f8 64 if (!TestClearPageMlocked(page))
b291f000 65 return;
b291f000 66
0964730b
HD
67 nr_pages = thp_nr_pages(page);
68 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
69 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
9c4e6b1a
SB
70 /*
71 * The previous TestClearPageMlocked() corresponds to the smp_mb()
72 * in __pagevec_lru_add_fn().
73 *
74 * See __pagevec_lru_add_fn for more explanation.
75 */
b291f000
NP
76 if (!isolate_lru_page(page)) {
77 putback_lru_page(page);
78 } else {
79 /*
8891d6da 80 * We lost the race. the page already moved to evictable list.
b291f000 81 */
8891d6da 82 if (PageUnevictable(page))
0964730b 83 count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
b291f000
NP
84 }
85}
86
87/*
88 * Mark page as mlocked if not already.
89 * If page on LRU, isolate and putback to move to unevictable list.
90 */
91void mlock_vma_page(struct page *page)
92{
57e68e9c 93 /* Serialize with page migration */
b291f000
NP
94 BUG_ON(!PageLocked(page));
95
e90309c9
KS
96 VM_BUG_ON_PAGE(PageTail(page), page);
97 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
98
5344b7e6 99 if (!TestSetPageMlocked(page)) {
0964730b
HD
100 int nr_pages = thp_nr_pages(page);
101
102 mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
103 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
5344b7e6
NP
104 if (!isolate_lru_page(page))
105 putback_lru_page(page);
106 }
b291f000
NP
107}
108
7225522b
VB
109/*
110 * Finish munlock after successful page isolation
111 *
cd62734c 112 * Page must be locked. This is a wrapper for page_mlock()
7225522b
VB
113 * and putback_lru_page() with munlock accounting.
114 */
115static void __munlock_isolated_page(struct page *page)
116{
7225522b
VB
117 /*
118 * Optimization: if the page was mapped just once, that's our mapping
119 * and we don't need to check all the other vmas.
120 */
121 if (page_mapcount(page) > 1)
cd62734c 122 page_mlock(page);
7225522b
VB
123
124 /* Did try_to_unlock() succeed or punt? */
192d7232 125 if (!PageMlocked(page))
0964730b 126 count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
7225522b
VB
127
128 putback_lru_page(page);
129}
130
131/*
132 * Accounting for page isolation fail during munlock
133 *
134 * Performs accounting when page isolation fails in munlock. There is nothing
135 * else to do because it means some other task has already removed the page
136 * from the LRU. putback_lru_page() will take care of removing the page from
137 * the unevictable list, if necessary. vmscan [page_referenced()] will move
138 * the page back to the unevictable list if some other vma has it mlocked.
139 */
140static void __munlock_isolation_failed(struct page *page)
141{
0964730b
HD
142 int nr_pages = thp_nr_pages(page);
143
7225522b 144 if (PageUnevictable(page))
0964730b 145 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
7225522b 146 else
0964730b 147 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
7225522b
VB
148}
149
6927c1dd
LS
150/**
151 * munlock_vma_page - munlock a vma page
b7701a5f 152 * @page: page to be unlocked, either a normal page or THP page head
c424be1c
VB
153 *
154 * returns the size of the page as a page mask (0 for normal page,
155 * HPAGE_PMD_NR - 1 for THP head page)
b291f000 156 *
6927c1dd
LS
157 * called from munlock()/munmap() path with page supposedly on the LRU.
158 * When we munlock a page, because the vma where we found the page is being
159 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
160 * page locked so that we can leave it on the unevictable lru list and not
161 * bother vmscan with it. However, to walk the page's rmap list in
cd62734c 162 * page_mlock() we must isolate the page from the LRU. If some other
6927c1dd
LS
163 * task has removed the page from the LRU, we won't be able to do that.
164 * So we clear the PageMlocked as we might not get another chance. If we
165 * can't isolate the page, we leave it for putback_lru_page() and vmscan
166 * [page_referenced()/try_to_unmap()] to deal with.
b291f000 167 */
ff6a6da6 168unsigned int munlock_vma_page(struct page *page)
b291f000 169{
7162a1e8 170 int nr_pages;
ff6a6da6 171
cd62734c 172 /* For page_mlock() and to serialize with page migration */
b291f000 173 BUG_ON(!PageLocked(page));
e90309c9
KS
174 VM_BUG_ON_PAGE(PageTail(page), page);
175
655548bf
KS
176 if (!TestClearPageMlocked(page)) {
177 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
3db19aa3 178 return 0;
655548bf 179 }
01cc2e58 180
6c357848 181 nr_pages = thp_nr_pages(page);
3db19aa3 182 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
01cc2e58 183
3db19aa3 184 if (!isolate_lru_page(page))
01cc2e58 185 __munlock_isolated_page(page);
3db19aa3
AS
186 else
187 __munlock_isolation_failed(page);
01cc2e58 188
c424be1c 189 return nr_pages - 1;
b291f000
NP
190}
191
9978ad58
LS
192/*
193 * convert get_user_pages() return value to posix mlock() error
194 */
195static int __mlock_posix_error_return(long retval)
196{
197 if (retval == -EFAULT)
198 retval = -ENOMEM;
199 else if (retval == -ENOMEM)
200 retval = -EAGAIN;
201 return retval;
b291f000
NP
202}
203
56afe477
VB
204/*
205 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
206 *
207 * The fast path is available only for evictable pages with single mapping.
208 * Then we can bypass the per-cpu pvec and get better performance.
cd62734c 209 * when mapcount > 1 we need page_mlock() which can fail.
56afe477
VB
210 * when !page_evictable(), we need the full redo logic of putback_lru_page to
211 * avoid leaving evictable page in unevictable list.
212 *
213 * In case of success, @page is added to @pvec and @pgrescued is incremented
214 * in case that the page was previously unevictable. @page is also unlocked.
215 */
216static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
217 int *pgrescued)
218{
309381fe
SL
219 VM_BUG_ON_PAGE(PageLRU(page), page);
220 VM_BUG_ON_PAGE(!PageLocked(page), page);
56afe477
VB
221
222 if (page_mapcount(page) <= 1 && page_evictable(page)) {
223 pagevec_add(pvec, page);
224 if (TestClearPageUnevictable(page))
225 (*pgrescued)++;
226 unlock_page(page);
227 return true;
228 }
229
230 return false;
231}
232
233/*
234 * Putback multiple evictable pages to the LRU
235 *
236 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
237 * the pages might have meanwhile become unevictable but that is OK.
238 */
239static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
240{
241 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
242 /*
243 *__pagevec_lru_add() calls release_pages() so we don't call
244 * put_page() explicitly
245 */
246 __pagevec_lru_add(pvec);
247 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
248}
249
7225522b
VB
250/*
251 * Munlock a batch of pages from the same zone
252 *
253 * The work is split to two main phases. First phase clears the Mlocked flag
254 * and attempts to isolate the pages, all under a single zone lru lock.
255 * The second phase finishes the munlock only for pages where isolation
256 * succeeded.
257 *
7a8010cd 258 * Note that the pagevec may be modified during the process.
7225522b
VB
259 */
260static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
261{
262 int i;
263 int nr = pagevec_count(pvec);
70feee0e 264 int delta_munlocked = -nr;
56afe477 265 struct pagevec pvec_putback;
6168d0da 266 struct lruvec *lruvec = NULL;
56afe477 267 int pgrescued = 0;
7225522b 268
86679820 269 pagevec_init(&pvec_putback);
3b25df93 270
7225522b 271 /* Phase 1: page isolation */
7225522b
VB
272 for (i = 0; i < nr; i++) {
273 struct page *page = pvec->pages[i];
0de340cb 274 struct folio *folio = page_folio(page);
7225522b
VB
275
276 if (TestClearPageMlocked(page)) {
7225522b 277 /*
01cc2e58
VB
278 * We already have pin from follow_page_mask()
279 * so we can spare the get_page() here.
7225522b 280 */
d25b5bd8 281 if (TestClearPageLRU(page)) {
0de340cb 282 lruvec = folio_lruvec_relock_irq(folio, lruvec);
46ae6b2c 283 del_page_from_lru_list(page, lruvec);
01cc2e58 284 continue;
13805a88 285 } else
01cc2e58 286 __munlock_isolation_failed(page);
70feee0e
YX
287 } else {
288 delta_munlocked++;
7225522b 289 }
01cc2e58
VB
290
291 /*
292 * We won't be munlocking this page in the next phase
293 * but we still need to release the follow_page_mask()
294 * pin. We cannot do it under lru_lock however. If it's
295 * the last pin, __page_cache_release() would deadlock.
296 */
297 pagevec_add(&pvec_putback, pvec->pages[i]);
298 pvec->pages[i] = NULL;
7225522b 299 }
6168d0da
AS
300 if (lruvec) {
301 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
302 unlock_page_lruvec_irq(lruvec);
303 } else if (delta_munlocked) {
304 mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
305 }
7225522b 306
3b25df93
VB
307 /* Now we can release pins of pages that we are not munlocking */
308 pagevec_release(&pvec_putback);
309
56afe477 310 /* Phase 2: page munlock */
7225522b
VB
311 for (i = 0; i < nr; i++) {
312 struct page *page = pvec->pages[i];
313
314 if (page) {
315 lock_page(page);
56afe477
VB
316 if (!__putback_lru_fast_prepare(page, &pvec_putback,
317 &pgrescued)) {
5b40998a
VB
318 /*
319 * Slow path. We don't want to lose the last
320 * pin before unlock_page()
321 */
322 get_page(page); /* for putback_lru_page() */
56afe477
VB
323 __munlock_isolated_page(page);
324 unlock_page(page);
5b40998a 325 put_page(page); /* from follow_page_mask() */
56afe477 326 }
7225522b
VB
327 }
328 }
56afe477 329
5b40998a
VB
330 /*
331 * Phase 3: page putback for pages that qualified for the fast path
332 * This will also call put_page() to return pin from follow_page_mask()
333 */
56afe477
VB
334 if (pagevec_count(&pvec_putback))
335 __putback_lru_fast(&pvec_putback, pgrescued);
7a8010cd
VB
336}
337
338/*
339 * Fill up pagevec for __munlock_pagevec using pte walk
340 *
341 * The function expects that the struct page corresponding to @start address is
342 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
343 *
344 * The rest of @pvec is filled by subsequent pages within the same pmd and same
345 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
346 * pages also get pinned.
347 *
348 * Returns the address of the next page that should be scanned. This equals
349 * @start + PAGE_SIZE when no page could be added by the pte walk.
350 */
351static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
9472f23c
JK
352 struct vm_area_struct *vma, struct zone *zone,
353 unsigned long start, unsigned long end)
7a8010cd
VB
354{
355 pte_t *pte;
356 spinlock_t *ptl;
357
358 /*
359 * Initialize pte walk starting at the already pinned page where we
eadb41ae 360 * are sure that there is a pte, as it was pinned under the same
c1e8d7c6 361 * mmap_lock write op.
7a8010cd
VB
362 */
363 pte = get_locked_pte(vma->vm_mm, start, &ptl);
eadb41ae
VB
364 /* Make sure we do not cross the page table boundary */
365 end = pgd_addr_end(start, end);
c2febafc 366 end = p4d_addr_end(start, end);
eadb41ae
VB
367 end = pud_addr_end(start, end);
368 end = pmd_addr_end(start, end);
7a8010cd
VB
369
370 /* The page next to the pinned page is the first we will try to get */
371 start += PAGE_SIZE;
372 while (start < end) {
373 struct page *page = NULL;
374 pte++;
375 if (pte_present(*pte))
376 page = vm_normal_page(vma, start, *pte);
377 /*
378 * Break if page could not be obtained or the page's node+zone does not
379 * match
380 */
9472f23c 381 if (!page || page_zone(page) != zone)
7a8010cd 382 break;
56afe477 383
e90309c9
KS
384 /*
385 * Do not use pagevec for PTE-mapped THP,
386 * munlock_vma_pages_range() will handle them.
387 */
388 if (PageTransCompound(page))
389 break;
390
7a8010cd
VB
391 get_page(page);
392 /*
393 * Increase the address that will be returned *before* the
394 * eventual break due to pvec becoming full by adding the page
395 */
396 start += PAGE_SIZE;
397 if (pagevec_add(pvec, page) == 0)
398 break;
399 }
400 pte_unmap_unlock(pte, ptl);
401 return start;
7225522b
VB
402}
403
b291f000 404/*
ba470de4
RR
405 * munlock_vma_pages_range() - munlock all pages in the vma range.'
406 * @vma - vma containing range to be munlock()ed.
407 * @start - start address in @vma of the range
408 * @end - end of range in @vma.
409 *
410 * For mremap(), munmap() and exit().
411 *
412 * Called with @vma VM_LOCKED.
413 *
414 * Returns with VM_LOCKED cleared. Callers must be prepared to
415 * deal with this.
416 *
417 * We don't save and restore VM_LOCKED here because pages are
418 * still on lru. In unmap path, pages might be scanned by reclaim
cd62734c 419 * and re-mlocked by page_mlock/try_to_unmap before we unmap and
ba470de4 420 * free them. This will result in freeing mlocked pages.
b291f000 421 */
ba470de4 422void munlock_vma_pages_range(struct vm_area_struct *vma,
408e82b7 423 unsigned long start, unsigned long end)
b291f000 424{
de60f5f1 425 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
408e82b7 426
ff6a6da6 427 while (start < end) {
ab7a5af7 428 struct page *page;
6ebb4a1b 429 unsigned int page_mask = 0;
c424be1c 430 unsigned long page_increm;
7a8010cd
VB
431 struct pagevec pvec;
432 struct zone *zone;
ff6a6da6 433
86679820 434 pagevec_init(&pvec);
6e919717
HD
435 /*
436 * Although FOLL_DUMP is intended for get_dump_page(),
437 * it just so happens that its special treatment of the
438 * ZERO_PAGE (returning an error instead of doing get_page)
439 * suits munlock very well (and if somehow an abnormal page
440 * has sneaked into the range, we won't oops here: great).
441 */
6ebb4a1b 442 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
7a8010cd 443
e90309c9
KS
444 if (page && !IS_ERR(page)) {
445 if (PageTransTail(page)) {
446 VM_BUG_ON_PAGE(PageMlocked(page), page);
447 put_page(page); /* follow_page_mask() */
448 } else if (PageTransHuge(page)) {
449 lock_page(page);
450 /*
451 * Any THP page found by follow_page_mask() may
452 * have gotten split before reaching
6ebb4a1b
KS
453 * munlock_vma_page(), so we need to compute
454 * the page_mask here instead.
e90309c9
KS
455 */
456 page_mask = munlock_vma_page(page);
457 unlock_page(page);
458 put_page(page); /* follow_page_mask() */
459 } else {
460 /*
461 * Non-huge pages are handled in batches via
462 * pagevec. The pin from follow_page_mask()
463 * prevents them from collapsing by THP.
464 */
465 pagevec_add(&pvec, page);
466 zone = page_zone(page);
7a8010cd 467
e90309c9
KS
468 /*
469 * Try to fill the rest of pagevec using fast
470 * pte walk. This will also update start to
471 * the next page to process. Then munlock the
472 * pagevec.
473 */
474 start = __munlock_pagevec_fill(&pvec, vma,
9472f23c 475 zone, start, end);
e90309c9
KS
476 __munlock_pagevec(&pvec, zone);
477 goto next;
478 }
408e82b7 479 }
c424be1c 480 page_increm = 1 + page_mask;
ff6a6da6 481 start += page_increm * PAGE_SIZE;
7a8010cd 482next:
408e82b7
HD
483 cond_resched();
484 }
b291f000
NP
485}
486
487/*
488 * mlock_fixup - handle mlock[all]/munlock[all] requests.
489 *
490 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
491 * munlock is a no-op. However, for some special vmas, we go ahead and
cea10a19 492 * populate the ptes.
b291f000
NP
493 *
494 * For vmas that pass the filters, merge/split as appropriate.
495 */
1da177e4 496static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
ca16d140 497 unsigned long start, unsigned long end, vm_flags_t newflags)
1da177e4 498{
b291f000 499 struct mm_struct *mm = vma->vm_mm;
1da177e4 500 pgoff_t pgoff;
b291f000 501 int nr_pages;
1da177e4 502 int ret = 0;
ca16d140 503 int lock = !!(newflags & VM_LOCKED);
b155b4fd 504 vm_flags_t old_flags = vma->vm_flags;
1da177e4 505
fed067da 506 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
e1fb4a08 507 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
1507f512 508 vma_is_dax(vma) || vma_is_secretmem(vma))
b0f205c2
EM
509 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
510 goto out;
b291f000 511
1da177e4
LT
512 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
513 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
19a809af 514 vma->vm_file, pgoff, vma_policy(vma),
5c26f6ac 515 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
1da177e4
LT
516 if (*prev) {
517 vma = *prev;
518 goto success;
519 }
520
1da177e4
LT
521 if (start != vma->vm_start) {
522 ret = split_vma(mm, vma, start, 1);
523 if (ret)
524 goto out;
525 }
526
527 if (end != vma->vm_end) {
528 ret = split_vma(mm, vma, end, 0);
529 if (ret)
530 goto out;
531 }
532
533success:
b291f000
NP
534 /*
535 * Keep track of amount of locked VM.
536 */
537 nr_pages = (end - start) >> PAGE_SHIFT;
538 if (!lock)
539 nr_pages = -nr_pages;
b155b4fd
SG
540 else if (old_flags & VM_LOCKED)
541 nr_pages = 0;
b291f000
NP
542 mm->locked_vm += nr_pages;
543
1da177e4 544 /*
c1e8d7c6 545 * vm_flags is protected by the mmap_lock held in write mode.
1da177e4 546 * It's okay if try_to_unmap_one unmaps a page just after we
fc05f566 547 * set VM_LOCKED, populate_vma_page_range will bring it back.
1da177e4 548 */
1da177e4 549
fed067da 550 if (lock)
408e82b7 551 vma->vm_flags = newflags;
fed067da 552 else
408e82b7 553 munlock_vma_pages_range(vma, start, end);
1da177e4 554
1da177e4 555out:
b291f000 556 *prev = vma;
1da177e4
LT
557 return ret;
558}
559
1aab92ec
EM
560static int apply_vma_lock_flags(unsigned long start, size_t len,
561 vm_flags_t flags)
1da177e4
LT
562{
563 unsigned long nstart, end, tmp;
68d68ff6 564 struct vm_area_struct *vma, *prev;
1da177e4
LT
565 int error;
566
8fd9e488 567 VM_BUG_ON(offset_in_page(start));
fed067da 568 VM_BUG_ON(len != PAGE_ALIGN(len));
1da177e4
LT
569 end = start + len;
570 if (end < start)
571 return -EINVAL;
572 if (end == start)
573 return 0;
097d5910 574 vma = find_vma(current->mm, start);
1da177e4
LT
575 if (!vma || vma->vm_start > start)
576 return -ENOMEM;
577
097d5910 578 prev = vma->vm_prev;
1da177e4
LT
579 if (start > vma->vm_start)
580 prev = vma;
581
582 for (nstart = start ; ; ) {
b0f205c2 583 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
1da177e4 584
1aab92ec 585 newflags |= flags;
1da177e4 586
1aab92ec 587 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
1da177e4
LT
588 tmp = vma->vm_end;
589 if (tmp > end)
590 tmp = end;
591 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
592 if (error)
593 break;
594 nstart = tmp;
595 if (nstart < prev->vm_end)
596 nstart = prev->vm_end;
597 if (nstart >= end)
598 break;
599
600 vma = prev->vm_next;
601 if (!vma || vma->vm_start != nstart) {
602 error = -ENOMEM;
603 break;
604 }
605 }
606 return error;
607}
608
0cf2f6f6
SG
609/*
610 * Go through vma areas and sum size of mlocked
611 * vma pages, as return value.
612 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
613 * is also counted.
614 * Return value: previously mlocked page counts
615 */
0874bb49 616static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
0cf2f6f6
SG
617 unsigned long start, size_t len)
618{
619 struct vm_area_struct *vma;
0874bb49 620 unsigned long count = 0;
0cf2f6f6
SG
621
622 if (mm == NULL)
623 mm = current->mm;
624
625 vma = find_vma(mm, start);
626 if (vma == NULL)
48b03eea 627 return 0;
0cf2f6f6
SG
628
629 for (; vma ; vma = vma->vm_next) {
630 if (start >= vma->vm_end)
631 continue;
632 if (start + len <= vma->vm_start)
633 break;
634 if (vma->vm_flags & VM_LOCKED) {
635 if (start > vma->vm_start)
636 count -= (start - vma->vm_start);
637 if (start + len < vma->vm_end) {
638 count += start + len - vma->vm_start;
639 break;
640 }
641 count += vma->vm_end - vma->vm_start;
642 }
643 }
644
645 return count >> PAGE_SHIFT;
646}
647
dc0ef0df 648static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
1da177e4
LT
649{
650 unsigned long locked;
651 unsigned long lock_limit;
652 int error = -ENOMEM;
653
057d3389
AK
654 start = untagged_addr(start);
655
1da177e4
LT
656 if (!can_do_mlock())
657 return -EPERM;
658
8fd9e488 659 len = PAGE_ALIGN(len + (offset_in_page(start)));
1da177e4
LT
660 start &= PAGE_MASK;
661
59e99e5b 662 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4 663 lock_limit >>= PAGE_SHIFT;
1f1cd705
DB
664 locked = len >> PAGE_SHIFT;
665
d8ed45c5 666 if (mmap_write_lock_killable(current->mm))
dc0ef0df 667 return -EINTR;
1f1cd705
DB
668
669 locked += current->mm->locked_vm;
0cf2f6f6
SG
670 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
671 /*
672 * It is possible that the regions requested intersect with
673 * previously mlocked areas, that part area in "mm->locked_vm"
674 * should not be counted to new mlock increment count. So check
675 * and adjust locked count if necessary.
676 */
677 locked -= count_mm_mlocked_page_nr(current->mm,
678 start, len);
679 }
1da177e4
LT
680
681 /* check against resource limits */
682 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
1aab92ec 683 error = apply_vma_lock_flags(start, len, flags);
1f1cd705 684
d8ed45c5 685 mmap_write_unlock(current->mm);
c561259c
KS
686 if (error)
687 return error;
688
689 error = __mm_populate(start, len, 0);
690 if (error)
691 return __mlock_posix_error_return(error);
692 return 0;
1da177e4
LT
693}
694
1aab92ec
EM
695SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
696{
697 return do_mlock(start, len, VM_LOCKED);
698}
699
a8ca5d0e
EM
700SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
701{
b0f205c2
EM
702 vm_flags_t vm_flags = VM_LOCKED;
703
704 if (flags & ~MLOCK_ONFAULT)
a8ca5d0e
EM
705 return -EINVAL;
706
b0f205c2
EM
707 if (flags & MLOCK_ONFAULT)
708 vm_flags |= VM_LOCKONFAULT;
709
710 return do_mlock(start, len, vm_flags);
a8ca5d0e
EM
711}
712
6a6160a7 713SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
1da177e4
LT
714{
715 int ret;
716
057d3389
AK
717 start = untagged_addr(start);
718
8fd9e488 719 len = PAGE_ALIGN(len + (offset_in_page(start)));
1da177e4 720 start &= PAGE_MASK;
1f1cd705 721
d8ed45c5 722 if (mmap_write_lock_killable(current->mm))
dc0ef0df 723 return -EINTR;
1aab92ec 724 ret = apply_vma_lock_flags(start, len, 0);
d8ed45c5 725 mmap_write_unlock(current->mm);
1f1cd705 726
1da177e4
LT
727 return ret;
728}
729
b0f205c2
EM
730/*
731 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
732 * and translate into the appropriate modifications to mm->def_flags and/or the
733 * flags for all current VMAs.
734 *
735 * There are a couple of subtleties with this. If mlockall() is called multiple
736 * times with different flags, the values do not necessarily stack. If mlockall
737 * is called once including the MCL_FUTURE flag and then a second time without
738 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
739 */
1aab92ec 740static int apply_mlockall_flags(int flags)
1da177e4 741{
68d68ff6 742 struct vm_area_struct *vma, *prev = NULL;
b0f205c2 743 vm_flags_t to_add = 0;
1da177e4 744
b0f205c2
EM
745 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
746 if (flags & MCL_FUTURE) {
09a9f1d2 747 current->mm->def_flags |= VM_LOCKED;
1aab92ec 748
b0f205c2
EM
749 if (flags & MCL_ONFAULT)
750 current->mm->def_flags |= VM_LOCKONFAULT;
751
752 if (!(flags & MCL_CURRENT))
753 goto out;
754 }
755
756 if (flags & MCL_CURRENT) {
757 to_add |= VM_LOCKED;
758 if (flags & MCL_ONFAULT)
759 to_add |= VM_LOCKONFAULT;
760 }
1da177e4
LT
761
762 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
ca16d140 763 vm_flags_t newflags;
1da177e4 764
b0f205c2
EM
765 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
766 newflags |= to_add;
1da177e4
LT
767
768 /* Ignore errors */
769 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
50d4fb78 770 cond_resched();
1da177e4
LT
771 }
772out:
773 return 0;
774}
775
3480b257 776SYSCALL_DEFINE1(mlockall, int, flags)
1da177e4
LT
777{
778 unsigned long lock_limit;
86d2adcc 779 int ret;
1da177e4 780
dedca635
PS
781 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
782 flags == MCL_ONFAULT)
86d2adcc 783 return -EINVAL;
1da177e4 784
1da177e4 785 if (!can_do_mlock())
86d2adcc 786 return -EPERM;
1da177e4 787
59e99e5b 788 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4
LT
789 lock_limit >>= PAGE_SHIFT;
790
d8ed45c5 791 if (mmap_write_lock_killable(current->mm))
dc0ef0df 792 return -EINTR;
1f1cd705 793
dc0ef0df 794 ret = -ENOMEM;
1da177e4
LT
795 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
796 capable(CAP_IPC_LOCK))
1aab92ec 797 ret = apply_mlockall_flags(flags);
d8ed45c5 798 mmap_write_unlock(current->mm);
bebeb3d6
ML
799 if (!ret && (flags & MCL_CURRENT))
800 mm_populate(0, TASK_SIZE);
86d2adcc 801
1da177e4
LT
802 return ret;
803}
804
3480b257 805SYSCALL_DEFINE0(munlockall)
1da177e4
LT
806{
807 int ret;
808
d8ed45c5 809 if (mmap_write_lock_killable(current->mm))
dc0ef0df 810 return -EINTR;
1aab92ec 811 ret = apply_mlockall_flags(0);
d8ed45c5 812 mmap_write_unlock(current->mm);
1da177e4
LT
813 return ret;
814}
815
816/*
817 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
818 * shm segments) get accounted against the user_struct instead.
819 */
820static DEFINE_SPINLOCK(shmlock_user_lock);
821
d7c9e99a 822int user_shm_lock(size_t size, struct ucounts *ucounts)
1da177e4
LT
823{
824 unsigned long lock_limit, locked;
d7c9e99a 825 long memlock;
1da177e4
LT
826 int allowed = 0;
827
828 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
59e99e5b 829 lock_limit = rlimit(RLIMIT_MEMLOCK);
5ed44a40
HB
830 if (lock_limit == RLIM_INFINITY)
831 allowed = 1;
1da177e4
LT
832 lock_limit >>= PAGE_SHIFT;
833 spin_lock(&shmlock_user_lock);
d7c9e99a
AG
834 memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
835
836 if (!allowed && (memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
837 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
838 goto out;
839 }
840 if (!get_ucounts(ucounts)) {
841 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
1da177e4 842 goto out;
d7c9e99a 843 }
1da177e4
LT
844 allowed = 1;
845out:
846 spin_unlock(&shmlock_user_lock);
847 return allowed;
848}
849
d7c9e99a 850void user_shm_unlock(size_t size, struct ucounts *ucounts)
1da177e4
LT
851{
852 spin_lock(&shmlock_user_lock);
d7c9e99a 853 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1da177e4 854 spin_unlock(&shmlock_user_lock);
d7c9e99a 855 put_ucounts(ucounts);
1da177e4 856}