]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/mmap.c
mm: vm_page_prot: update with WRITE_ONCE/READ_ONCE
[thirdparty/kernel/linux.git] / mm / mmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
046c6884 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
1da177e4
LT
7 */
8
b1de0d13
MH
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
e8420a8e 11#include <linux/kernel.h>
1da177e4 12#include <linux/slab.h>
4af3c9cc 13#include <linux/backing-dev.h>
1da177e4 14#include <linux/mm.h>
615d6e87 15#include <linux/vmacache.h>
1da177e4
LT
16#include <linux/shm.h>
17#include <linux/mman.h>
18#include <linux/pagemap.h>
19#include <linux/swap.h>
20#include <linux/syscalls.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/init.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/hugetlb.h>
c01d5b30 28#include <linux/shmem_fs.h>
1da177e4 29#include <linux/profile.h>
b95f1b31 30#include <linux/export.h>
1da177e4
LT
31#include <linux/mount.h>
32#include <linux/mempolicy.h>
33#include <linux/rmap.h>
cddb8a5c 34#include <linux/mmu_notifier.h>
82f71ae4 35#include <linux/mmdebug.h>
cdd6c482 36#include <linux/perf_event.h>
120a795d 37#include <linux/audit.h>
b15d00b6 38#include <linux/khugepaged.h>
2b144498 39#include <linux/uprobes.h>
d3737187 40#include <linux/rbtree_augmented.h>
1640879a
AS
41#include <linux/notifier.h>
42#include <linux/memory.h>
b1de0d13 43#include <linux/printk.h>
19a809af 44#include <linux/userfaultfd_k.h>
d977d56c 45#include <linux/moduleparam.h>
62b5f7d0 46#include <linux/pkeys.h>
1da177e4
LT
47
48#include <asm/uaccess.h>
49#include <asm/cacheflush.h>
50#include <asm/tlb.h>
d6dd61c8 51#include <asm/mmu_context.h>
1da177e4 52
42b77728
JB
53#include "internal.h"
54
3a459756
KK
55#ifndef arch_mmap_check
56#define arch_mmap_check(addr, len, flags) (0)
57#endif
58
d07e2259
DC
59#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63#endif
64#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68#endif
69
f4fcd558 70static bool ignore_rlimit_data;
d977d56c 71core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
d07e2259 72
e0da382c
HD
73static void unmap_region(struct mm_struct *mm,
74 struct vm_area_struct *vma, struct vm_area_struct *prev,
75 unsigned long start, unsigned long end);
76
1da177e4
LT
77/* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
80 *
81 * map_type prot
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
cc71aba3 86 *
1da177e4
LT
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 *
cab15ce6
CM
91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92 * MAP_PRIVATE:
93 * r: (no) no
94 * w: (no) no
95 * x: (yes) yes
1da177e4
LT
96 */
97pgprot_t protection_map[16] = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100};
101
804af2cf
HD
102pgprot_t vm_get_page_prot(unsigned long vm_flags)
103{
b845f313
DK
104 return __pgprot(pgprot_val(protection_map[vm_flags &
105 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106 pgprot_val(arch_vm_get_page_prot(vm_flags)));
804af2cf
HD
107}
108EXPORT_SYMBOL(vm_get_page_prot);
109
64e45507
PF
110static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111{
112 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113}
114
115/* Update vma->vm_page_prot to reflect vma->vm_flags. */
116void vma_set_page_prot(struct vm_area_struct *vma)
117{
118 unsigned long vm_flags = vma->vm_flags;
6d2329f8 119 pgprot_t vm_page_prot;
64e45507 120
6d2329f8
AA
121 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122 if (vma_wants_writenotify(vma, vm_page_prot)) {
64e45507 123 vm_flags &= ~VM_SHARED;
6d2329f8 124 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
64e45507 125 }
6d2329f8
AA
126 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
64e45507
PF
128}
129
1da177e4 130/*
c8c06efa 131 * Requires inode->i_mapping->i_mmap_rwsem
1da177e4
LT
132 */
133static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134 struct file *file, struct address_space *mapping)
135{
136 if (vma->vm_flags & VM_DENYWRITE)
496ad9aa 137 atomic_inc(&file_inode(file)->i_writecount);
1da177e4 138 if (vma->vm_flags & VM_SHARED)
4bb5f5d9 139 mapping_unmap_writable(mapping);
1da177e4
LT
140
141 flush_dcache_mmap_lock(mapping);
27ba0644 142 vma_interval_tree_remove(vma, &mapping->i_mmap);
1da177e4
LT
143 flush_dcache_mmap_unlock(mapping);
144}
145
146/*
6b2dbba8 147 * Unlink a file-based vm structure from its interval tree, to hide
a8fb5618 148 * vma from rmap and vmtruncate before freeing its page tables.
1da177e4 149 */
a8fb5618 150void unlink_file_vma(struct vm_area_struct *vma)
1da177e4
LT
151{
152 struct file *file = vma->vm_file;
153
1da177e4
LT
154 if (file) {
155 struct address_space *mapping = file->f_mapping;
83cde9e8 156 i_mmap_lock_write(mapping);
1da177e4 157 __remove_shared_vm_struct(vma, file, mapping);
83cde9e8 158 i_mmap_unlock_write(mapping);
1da177e4 159 }
a8fb5618
HD
160}
161
162/*
163 * Close a vm structure and free it, returning the next.
164 */
165static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166{
167 struct vm_area_struct *next = vma->vm_next;
168
a8fb5618 169 might_sleep();
1da177e4
LT
170 if (vma->vm_ops && vma->vm_ops->close)
171 vma->vm_ops->close(vma);
e9714acf 172 if (vma->vm_file)
a8fb5618 173 fput(vma->vm_file);
f0be3d32 174 mpol_put(vma_policy(vma));
1da177e4 175 kmem_cache_free(vm_area_cachep, vma);
a8fb5618 176 return next;
1da177e4
LT
177}
178
5d22fc25 179static int do_brk(unsigned long addr, unsigned long len);
e4eb1ff6 180
6a6160a7 181SYSCALL_DEFINE1(brk, unsigned long, brk)
1da177e4 182{
8764b338 183 unsigned long retval;
1da177e4
LT
184 unsigned long newbrk, oldbrk;
185 struct mm_struct *mm = current->mm;
a5b4592c 186 unsigned long min_brk;
128557ff 187 bool populate;
1da177e4 188
dc0ef0df
MH
189 if (down_write_killable(&mm->mmap_sem))
190 return -EINTR;
1da177e4 191
a5b4592c 192#ifdef CONFIG_COMPAT_BRK
5520e894
JK
193 /*
194 * CONFIG_COMPAT_BRK can still be overridden by setting
195 * randomize_va_space to 2, which will still cause mm->start_brk
196 * to be arbitrarily shifted
197 */
4471a675 198 if (current->brk_randomized)
5520e894
JK
199 min_brk = mm->start_brk;
200 else
201 min_brk = mm->end_data;
a5b4592c
JK
202#else
203 min_brk = mm->start_brk;
204#endif
205 if (brk < min_brk)
1da177e4 206 goto out;
1e624196
RG
207
208 /*
209 * Check against rlimit here. If this check is done later after the test
210 * of oldbrk with newbrk then it can escape the test and let the data
211 * segment grow beyond its set limit the in case where the limit is
212 * not page aligned -Ram Gupta
213 */
8764b338
CG
214 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
215 mm->end_data, mm->start_data))
1e624196
RG
216 goto out;
217
1da177e4
LT
218 newbrk = PAGE_ALIGN(brk);
219 oldbrk = PAGE_ALIGN(mm->brk);
220 if (oldbrk == newbrk)
221 goto set_brk;
222
223 /* Always allow shrinking brk. */
224 if (brk <= mm->brk) {
225 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
226 goto set_brk;
227 goto out;
228 }
229
1da177e4
LT
230 /* Check against existing mmap mappings. */
231 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
232 goto out;
233
234 /* Ok, looks good - let it rip. */
5d22fc25 235 if (do_brk(oldbrk, newbrk-oldbrk) < 0)
1da177e4 236 goto out;
128557ff 237
1da177e4
LT
238set_brk:
239 mm->brk = brk;
128557ff
ML
240 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
241 up_write(&mm->mmap_sem);
242 if (populate)
243 mm_populate(oldbrk, newbrk - oldbrk);
244 return brk;
245
1da177e4
LT
246out:
247 retval = mm->brk;
248 up_write(&mm->mmap_sem);
249 return retval;
250}
251
d3737187
ML
252static long vma_compute_subtree_gap(struct vm_area_struct *vma)
253{
254 unsigned long max, subtree_gap;
255 max = vma->vm_start;
256 if (vma->vm_prev)
257 max -= vma->vm_prev->vm_end;
258 if (vma->vm_rb.rb_left) {
259 subtree_gap = rb_entry(vma->vm_rb.rb_left,
260 struct vm_area_struct, vm_rb)->rb_subtree_gap;
261 if (subtree_gap > max)
262 max = subtree_gap;
263 }
264 if (vma->vm_rb.rb_right) {
265 subtree_gap = rb_entry(vma->vm_rb.rb_right,
266 struct vm_area_struct, vm_rb)->rb_subtree_gap;
267 if (subtree_gap > max)
268 max = subtree_gap;
269 }
270 return max;
271}
272
ed8ea815 273#ifdef CONFIG_DEBUG_VM_RB
acf128d0 274static int browse_rb(struct mm_struct *mm)
1da177e4 275{
acf128d0 276 struct rb_root *root = &mm->mm_rb;
5a0768f6 277 int i = 0, j, bug = 0;
1da177e4
LT
278 struct rb_node *nd, *pn = NULL;
279 unsigned long prev = 0, pend = 0;
280
281 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
282 struct vm_area_struct *vma;
283 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
5a0768f6 284 if (vma->vm_start < prev) {
ff26f70f
AM
285 pr_emerg("vm_start %lx < prev %lx\n",
286 vma->vm_start, prev);
5a0768f6
ML
287 bug = 1;
288 }
289 if (vma->vm_start < pend) {
ff26f70f
AM
290 pr_emerg("vm_start %lx < pend %lx\n",
291 vma->vm_start, pend);
5a0768f6
ML
292 bug = 1;
293 }
294 if (vma->vm_start > vma->vm_end) {
ff26f70f
AM
295 pr_emerg("vm_start %lx > vm_end %lx\n",
296 vma->vm_start, vma->vm_end);
5a0768f6
ML
297 bug = 1;
298 }
acf128d0 299 spin_lock(&mm->page_table_lock);
5a0768f6 300 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
8542bdfc 301 pr_emerg("free gap %lx, correct %lx\n",
5a0768f6
ML
302 vma->rb_subtree_gap,
303 vma_compute_subtree_gap(vma));
304 bug = 1;
305 }
acf128d0 306 spin_unlock(&mm->page_table_lock);
1da177e4
LT
307 i++;
308 pn = nd;
d1af65d1
DM
309 prev = vma->vm_start;
310 pend = vma->vm_end;
1da177e4
LT
311 }
312 j = 0;
5a0768f6 313 for (nd = pn; nd; nd = rb_prev(nd))
1da177e4 314 j++;
5a0768f6 315 if (i != j) {
8542bdfc 316 pr_emerg("backwards %d, forwards %d\n", j, i);
5a0768f6 317 bug = 1;
1da177e4 318 }
5a0768f6 319 return bug ? -1 : i;
1da177e4
LT
320}
321
d3737187
ML
322static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
323{
324 struct rb_node *nd;
325
326 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
327 struct vm_area_struct *vma;
328 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
96dad67f
SL
329 VM_BUG_ON_VMA(vma != ignore &&
330 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
331 vma);
1da177e4 332 }
1da177e4
LT
333}
334
eafd4dc4 335static void validate_mm(struct mm_struct *mm)
1da177e4
LT
336{
337 int bug = 0;
338 int i = 0;
5a0768f6 339 unsigned long highest_address = 0;
ed8ea815 340 struct vm_area_struct *vma = mm->mmap;
ff26f70f 341
ed8ea815 342 while (vma) {
12352d3c 343 struct anon_vma *anon_vma = vma->anon_vma;
ed8ea815 344 struct anon_vma_chain *avc;
ff26f70f 345
12352d3c
KK
346 if (anon_vma) {
347 anon_vma_lock_read(anon_vma);
348 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
349 anon_vma_interval_tree_verify(avc);
350 anon_vma_unlock_read(anon_vma);
351 }
352
5a0768f6 353 highest_address = vma->vm_end;
ed8ea815 354 vma = vma->vm_next;
1da177e4
LT
355 i++;
356 }
5a0768f6 357 if (i != mm->map_count) {
8542bdfc 358 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
5a0768f6
ML
359 bug = 1;
360 }
361 if (highest_address != mm->highest_vm_end) {
8542bdfc 362 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
ff26f70f 363 mm->highest_vm_end, highest_address);
5a0768f6
ML
364 bug = 1;
365 }
acf128d0 366 i = browse_rb(mm);
5a0768f6 367 if (i != mm->map_count) {
ff26f70f
AM
368 if (i != -1)
369 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
5a0768f6
ML
370 bug = 1;
371 }
96dad67f 372 VM_BUG_ON_MM(bug, mm);
1da177e4
LT
373}
374#else
d3737187 375#define validate_mm_rb(root, ignore) do { } while (0)
1da177e4
LT
376#define validate_mm(mm) do { } while (0)
377#endif
378
d3737187
ML
379RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
380 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
381
382/*
383 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
384 * vma->vm_prev->vm_end values changed, without modifying the vma's position
385 * in the rbtree.
386 */
387static void vma_gap_update(struct vm_area_struct *vma)
388{
389 /*
390 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
391 * function that does exacltly what we want.
392 */
393 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
394}
395
396static inline void vma_rb_insert(struct vm_area_struct *vma,
397 struct rb_root *root)
398{
399 /* All rb_subtree_gap values must be consistent prior to insertion */
400 validate_mm_rb(root, NULL);
401
402 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
403}
404
405static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
406{
407 /*
408 * All rb_subtree_gap values must be consistent prior to erase,
409 * with the possible exception of the vma being erased.
410 */
411 validate_mm_rb(root, vma);
412
413 /*
414 * Note rb_erase_augmented is a fairly large inline function,
415 * so make sure we instantiate it only once with our desired
416 * augmented rbtree callbacks.
417 */
418 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
419}
420
bf181b9f
ML
421/*
422 * vma has some anon_vma assigned, and is already inserted on that
423 * anon_vma's interval trees.
424 *
425 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
426 * vma must be removed from the anon_vma's interval trees using
427 * anon_vma_interval_tree_pre_update_vma().
428 *
429 * After the update, the vma will be reinserted using
430 * anon_vma_interval_tree_post_update_vma().
431 *
432 * The entire update must be protected by exclusive mmap_sem and by
433 * the root anon_vma's mutex.
434 */
435static inline void
436anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
437{
438 struct anon_vma_chain *avc;
439
440 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
441 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
442}
443
444static inline void
445anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
446{
447 struct anon_vma_chain *avc;
448
449 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
451}
452
6597d783
HD
453static int find_vma_links(struct mm_struct *mm, unsigned long addr,
454 unsigned long end, struct vm_area_struct **pprev,
455 struct rb_node ***rb_link, struct rb_node **rb_parent)
1da177e4 456{
6597d783 457 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
1da177e4
LT
458
459 __rb_link = &mm->mm_rb.rb_node;
460 rb_prev = __rb_parent = NULL;
1da177e4
LT
461
462 while (*__rb_link) {
463 struct vm_area_struct *vma_tmp;
464
465 __rb_parent = *__rb_link;
466 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
467
468 if (vma_tmp->vm_end > addr) {
6597d783
HD
469 /* Fail if an existing vma overlaps the area */
470 if (vma_tmp->vm_start < end)
471 return -ENOMEM;
1da177e4
LT
472 __rb_link = &__rb_parent->rb_left;
473 } else {
474 rb_prev = __rb_parent;
475 __rb_link = &__rb_parent->rb_right;
476 }
477 }
478
479 *pprev = NULL;
480 if (rb_prev)
481 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
482 *rb_link = __rb_link;
483 *rb_parent = __rb_parent;
6597d783 484 return 0;
1da177e4
LT
485}
486
e8420a8e
CH
487static unsigned long count_vma_pages_range(struct mm_struct *mm,
488 unsigned long addr, unsigned long end)
489{
490 unsigned long nr_pages = 0;
491 struct vm_area_struct *vma;
492
493 /* Find first overlaping mapping */
494 vma = find_vma_intersection(mm, addr, end);
495 if (!vma)
496 return 0;
497
498 nr_pages = (min(end, vma->vm_end) -
499 max(addr, vma->vm_start)) >> PAGE_SHIFT;
500
501 /* Iterate over the rest of the overlaps */
502 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
503 unsigned long overlap_len;
504
505 if (vma->vm_start > end)
506 break;
507
508 overlap_len = min(end, vma->vm_end) - vma->vm_start;
509 nr_pages += overlap_len >> PAGE_SHIFT;
510 }
511
512 return nr_pages;
513}
514
1da177e4
LT
515void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
516 struct rb_node **rb_link, struct rb_node *rb_parent)
517{
d3737187
ML
518 /* Update tracking information for the gap following the new vma. */
519 if (vma->vm_next)
520 vma_gap_update(vma->vm_next);
521 else
522 mm->highest_vm_end = vma->vm_end;
523
524 /*
525 * vma->vm_prev wasn't known when we followed the rbtree to find the
526 * correct insertion point for that vma. As a result, we could not
527 * update the vma vm_rb parents rb_subtree_gap values on the way down.
528 * So, we first insert the vma with a zero rb_subtree_gap value
529 * (to be consistent with what we did on the way down), and then
530 * immediately update the gap to the correct value. Finally we
531 * rebalance the rbtree after all augmented values have been set.
532 */
1da177e4 533 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
d3737187
ML
534 vma->rb_subtree_gap = 0;
535 vma_gap_update(vma);
536 vma_rb_insert(vma, &mm->mm_rb);
1da177e4
LT
537}
538
cb8f488c 539static void __vma_link_file(struct vm_area_struct *vma)
1da177e4 540{
48aae425 541 struct file *file;
1da177e4
LT
542
543 file = vma->vm_file;
544 if (file) {
545 struct address_space *mapping = file->f_mapping;
546
547 if (vma->vm_flags & VM_DENYWRITE)
496ad9aa 548 atomic_dec(&file_inode(file)->i_writecount);
1da177e4 549 if (vma->vm_flags & VM_SHARED)
4bb5f5d9 550 atomic_inc(&mapping->i_mmap_writable);
1da177e4
LT
551
552 flush_dcache_mmap_lock(mapping);
27ba0644 553 vma_interval_tree_insert(vma, &mapping->i_mmap);
1da177e4
LT
554 flush_dcache_mmap_unlock(mapping);
555 }
556}
557
558static void
559__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
560 struct vm_area_struct *prev, struct rb_node **rb_link,
561 struct rb_node *rb_parent)
562{
563 __vma_link_list(mm, vma, prev, rb_parent);
564 __vma_link_rb(mm, vma, rb_link, rb_parent);
1da177e4
LT
565}
566
567static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
568 struct vm_area_struct *prev, struct rb_node **rb_link,
569 struct rb_node *rb_parent)
570{
571 struct address_space *mapping = NULL;
572
64ac4940 573 if (vma->vm_file) {
1da177e4 574 mapping = vma->vm_file->f_mapping;
83cde9e8 575 i_mmap_lock_write(mapping);
64ac4940 576 }
1da177e4
LT
577
578 __vma_link(mm, vma, prev, rb_link, rb_parent);
579 __vma_link_file(vma);
580
1da177e4 581 if (mapping)
83cde9e8 582 i_mmap_unlock_write(mapping);
1da177e4
LT
583
584 mm->map_count++;
585 validate_mm(mm);
586}
587
588/*
88f6b4c3 589 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
6b2dbba8 590 * mm's list and rbtree. It has already been inserted into the interval tree.
1da177e4 591 */
48aae425 592static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1da177e4 593{
6597d783 594 struct vm_area_struct *prev;
48aae425 595 struct rb_node **rb_link, *rb_parent;
1da177e4 596
6597d783
HD
597 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
598 &prev, &rb_link, &rb_parent))
599 BUG();
1da177e4
LT
600 __vma_link(mm, vma, prev, rb_link, rb_parent);
601 mm->map_count++;
602}
603
604static inline void
605__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
606 struct vm_area_struct *prev)
607{
d3737187 608 struct vm_area_struct *next;
297c5eee 609
d3737187
ML
610 vma_rb_erase(vma, &mm->mm_rb);
611 prev->vm_next = next = vma->vm_next;
297c5eee
LT
612 if (next)
613 next->vm_prev = prev;
615d6e87
DB
614
615 /* Kill the cache */
616 vmacache_invalidate(mm);
1da177e4
LT
617}
618
619/*
620 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
621 * is already present in an i_mmap tree without adjusting the tree.
622 * The following helper function should be used when such adjustments
623 * are necessary. The "insert" vma (if any) is to be inserted
624 * before we drop the necessary locks.
625 */
5beb4930 626int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
627 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
628{
629 struct mm_struct *mm = vma->vm_mm;
630 struct vm_area_struct *next = vma->vm_next;
1da177e4 631 struct address_space *mapping = NULL;
6b2dbba8 632 struct rb_root *root = NULL;
012f1800 633 struct anon_vma *anon_vma = NULL;
1da177e4 634 struct file *file = vma->vm_file;
d3737187 635 bool start_changed = false, end_changed = false;
1da177e4
LT
636 long adjust_next = 0;
637 int remove_next = 0;
638
639 if (next && !insert) {
734537c9 640 struct vm_area_struct *exporter = NULL, *importer = NULL;
287d97ac 641
1da177e4
LT
642 if (end >= next->vm_end) {
643 /*
644 * vma expands, overlapping all the next, and
645 * perhaps the one after too (mprotect case 6).
646 */
734537c9 647 remove_next = 1 + (end > next->vm_end);
1da177e4 648 end = next->vm_end;
287d97ac 649 exporter = next;
1da177e4 650 importer = vma;
734537c9
KS
651
652 /*
653 * If next doesn't have anon_vma, import from vma after
654 * next, if the vma overlaps with it.
655 */
656 if (remove_next == 2 && next && !next->anon_vma)
657 exporter = next->vm_next;
658
1da177e4
LT
659 } else if (end > next->vm_start) {
660 /*
661 * vma expands, overlapping part of the next:
662 * mprotect case 5 shifting the boundary up.
663 */
664 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
287d97ac 665 exporter = next;
1da177e4
LT
666 importer = vma;
667 } else if (end < vma->vm_end) {
668 /*
669 * vma shrinks, and !insert tells it's not
670 * split_vma inserting another: so it must be
671 * mprotect case 4 shifting the boundary down.
672 */
cc71aba3 673 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
287d97ac 674 exporter = vma;
1da177e4
LT
675 importer = next;
676 }
1da177e4 677
5beb4930
RR
678 /*
679 * Easily overlooked: when mprotect shifts the boundary,
680 * make sure the expanding vma has anon_vma set if the
681 * shrinking vma had, to cover any anon pages imported.
682 */
287d97ac 683 if (exporter && exporter->anon_vma && !importer->anon_vma) {
c4ea95d7
DF
684 int error;
685
b800c91a 686 importer->anon_vma = exporter->anon_vma;
c4ea95d7 687 error = anon_vma_clone(importer, exporter);
3fe89b3e 688 if (error)
c4ea95d7 689 return error;
5beb4930
RR
690 }
691 }
734537c9 692again:
37f9f559
KS
693 vma_adjust_trans_huge(vma, start, end, adjust_next);
694
1da177e4
LT
695 if (file) {
696 mapping = file->f_mapping;
27ba0644
KS
697 root = &mapping->i_mmap;
698 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
682968e0 699
27ba0644
KS
700 if (adjust_next)
701 uprobe_munmap(next, next->vm_start, next->vm_end);
682968e0 702
83cde9e8 703 i_mmap_lock_write(mapping);
1da177e4 704 if (insert) {
1da177e4 705 /*
6b2dbba8 706 * Put into interval tree now, so instantiated pages
1da177e4
LT
707 * are visible to arm/parisc __flush_dcache_page
708 * throughout; but we cannot insert into address
709 * space until vma start or end is updated.
710 */
711 __vma_link_file(insert);
712 }
713 }
714
bf181b9f
ML
715 anon_vma = vma->anon_vma;
716 if (!anon_vma && adjust_next)
717 anon_vma = next->anon_vma;
718 if (anon_vma) {
81d1b09c
SL
719 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
720 anon_vma != next->anon_vma, next);
4fc3f1d6 721 anon_vma_lock_write(anon_vma);
bf181b9f
ML
722 anon_vma_interval_tree_pre_update_vma(vma);
723 if (adjust_next)
724 anon_vma_interval_tree_pre_update_vma(next);
725 }
012f1800 726
1da177e4
LT
727 if (root) {
728 flush_dcache_mmap_lock(mapping);
6b2dbba8 729 vma_interval_tree_remove(vma, root);
1da177e4 730 if (adjust_next)
6b2dbba8 731 vma_interval_tree_remove(next, root);
1da177e4
LT
732 }
733
d3737187
ML
734 if (start != vma->vm_start) {
735 vma->vm_start = start;
736 start_changed = true;
737 }
738 if (end != vma->vm_end) {
739 vma->vm_end = end;
740 end_changed = true;
741 }
1da177e4
LT
742 vma->vm_pgoff = pgoff;
743 if (adjust_next) {
744 next->vm_start += adjust_next << PAGE_SHIFT;
745 next->vm_pgoff += adjust_next;
746 }
747
748 if (root) {
749 if (adjust_next)
6b2dbba8
ML
750 vma_interval_tree_insert(next, root);
751 vma_interval_tree_insert(vma, root);
1da177e4
LT
752 flush_dcache_mmap_unlock(mapping);
753 }
754
755 if (remove_next) {
756 /*
757 * vma_merge has merged next into vma, and needs
758 * us to remove next before dropping the locks.
759 */
760 __vma_unlink(mm, next, vma);
761 if (file)
762 __remove_shared_vm_struct(next, file, mapping);
1da177e4
LT
763 } else if (insert) {
764 /*
765 * split_vma has split insert from vma, and needs
766 * us to insert it before dropping the locks
767 * (it may either follow vma or precede it).
768 */
769 __insert_vm_struct(mm, insert);
d3737187
ML
770 } else {
771 if (start_changed)
772 vma_gap_update(vma);
773 if (end_changed) {
774 if (!next)
775 mm->highest_vm_end = end;
776 else if (!adjust_next)
777 vma_gap_update(next);
778 }
1da177e4
LT
779 }
780
bf181b9f
ML
781 if (anon_vma) {
782 anon_vma_interval_tree_post_update_vma(vma);
783 if (adjust_next)
784 anon_vma_interval_tree_post_update_vma(next);
08b52706 785 anon_vma_unlock_write(anon_vma);
bf181b9f 786 }
1da177e4 787 if (mapping)
83cde9e8 788 i_mmap_unlock_write(mapping);
1da177e4 789
2b144498 790 if (root) {
7b2d81d4 791 uprobe_mmap(vma);
2b144498
SD
792
793 if (adjust_next)
7b2d81d4 794 uprobe_mmap(next);
2b144498
SD
795 }
796
1da177e4 797 if (remove_next) {
925d1c40 798 if (file) {
cbc91f71 799 uprobe_munmap(next, next->vm_start, next->vm_end);
1da177e4 800 fput(file);
925d1c40 801 }
5beb4930
RR
802 if (next->anon_vma)
803 anon_vma_merge(vma, next);
1da177e4 804 mm->map_count--;
3964acd0 805 mpol_put(vma_policy(next));
1da177e4
LT
806 kmem_cache_free(vm_area_cachep, next);
807 /*
808 * In mprotect's case 6 (see comments on vma_merge),
809 * we must remove another next too. It would clutter
810 * up the code too much to do both in one go.
811 */
d3737187 812 next = vma->vm_next;
734537c9
KS
813 if (remove_next == 2) {
814 remove_next = 1;
815 end = next->vm_end;
1da177e4 816 goto again;
734537c9 817 }
d3737187
ML
818 else if (next)
819 vma_gap_update(next);
820 else
821 mm->highest_vm_end = end;
1da177e4 822 }
2b144498 823 if (insert && file)
7b2d81d4 824 uprobe_mmap(insert);
1da177e4
LT
825
826 validate_mm(mm);
5beb4930
RR
827
828 return 0;
1da177e4
LT
829}
830
831/*
832 * If the vma has a ->close operation then the driver probably needs to release
833 * per-vma resources, so we don't attempt to merge those.
834 */
1da177e4 835static inline int is_mergeable_vma(struct vm_area_struct *vma,
19a809af
AA
836 struct file *file, unsigned long vm_flags,
837 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1da177e4 838{
34228d47
CG
839 /*
840 * VM_SOFTDIRTY should not prevent from VMA merging, if we
841 * match the flags but dirty bit -- the caller should mark
842 * merged VMA as dirty. If dirty bit won't be excluded from
843 * comparison, we increase pressue on the memory system forcing
844 * the kernel to generate new VMAs when old one could be
845 * extended instead.
846 */
847 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1da177e4
LT
848 return 0;
849 if (vma->vm_file != file)
850 return 0;
851 if (vma->vm_ops && vma->vm_ops->close)
852 return 0;
19a809af
AA
853 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
854 return 0;
1da177e4
LT
855 return 1;
856}
857
858static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
965f55de
SL
859 struct anon_vma *anon_vma2,
860 struct vm_area_struct *vma)
1da177e4 861{
965f55de
SL
862 /*
863 * The list_is_singular() test is to avoid merging VMA cloned from
864 * parents. This can improve scalability caused by anon_vma lock.
865 */
866 if ((!anon_vma1 || !anon_vma2) && (!vma ||
867 list_is_singular(&vma->anon_vma_chain)))
868 return 1;
869 return anon_vma1 == anon_vma2;
1da177e4
LT
870}
871
872/*
873 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
874 * in front of (at a lower virtual address and file offset than) the vma.
875 *
876 * We cannot merge two vmas if they have differently assigned (non-NULL)
877 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
878 *
879 * We don't check here for the merged mmap wrapping around the end of pagecache
880 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
881 * wrap, nor mmaps which cover the final page at index -1UL.
882 */
883static int
884can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
19a809af
AA
885 struct anon_vma *anon_vma, struct file *file,
886 pgoff_t vm_pgoff,
887 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1da177e4 888{
19a809af 889 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
965f55de 890 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1da177e4
LT
891 if (vma->vm_pgoff == vm_pgoff)
892 return 1;
893 }
894 return 0;
895}
896
897/*
898 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
899 * beyond (at a higher virtual address and file offset than) the vma.
900 *
901 * We cannot merge two vmas if they have differently assigned (non-NULL)
902 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
903 */
904static int
905can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
19a809af
AA
906 struct anon_vma *anon_vma, struct file *file,
907 pgoff_t vm_pgoff,
908 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1da177e4 909{
19a809af 910 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
965f55de 911 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1da177e4 912 pgoff_t vm_pglen;
d6e93217 913 vm_pglen = vma_pages(vma);
1da177e4
LT
914 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
915 return 1;
916 }
917 return 0;
918}
919
920/*
921 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
922 * whether that can be merged with its predecessor or its successor.
923 * Or both (it neatly fills a hole).
924 *
925 * In most cases - when called for mmap, brk or mremap - [addr,end) is
926 * certain not to be mapped by the time vma_merge is called; but when
927 * called for mprotect, it is certain to be already mapped (either at
928 * an offset within prev, or at the start of next), and the flags of
929 * this area are about to be changed to vm_flags - and the no-change
930 * case has already been eliminated.
931 *
932 * The following mprotect cases have to be considered, where AAAA is
933 * the area passed down from mprotect_fixup, never extending beyond one
934 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
935 *
936 * AAAA AAAA AAAA AAAA
937 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
938 * cannot merge might become might become might become
939 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
940 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
941 * mremap move: PPPPNNNNNNNN 8
942 * AAAA
943 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
944 * might become case 1 below case 2 below case 3 below
945 *
946 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
947 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
948 */
949struct vm_area_struct *vma_merge(struct mm_struct *mm,
950 struct vm_area_struct *prev, unsigned long addr,
951 unsigned long end, unsigned long vm_flags,
cc71aba3 952 struct anon_vma *anon_vma, struct file *file,
19a809af
AA
953 pgoff_t pgoff, struct mempolicy *policy,
954 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1da177e4
LT
955{
956 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
957 struct vm_area_struct *area, *next;
5beb4930 958 int err;
1da177e4
LT
959
960 /*
961 * We later require that vma->vm_flags == vm_flags,
962 * so this tests vma->vm_flags & VM_SPECIAL, too.
963 */
964 if (vm_flags & VM_SPECIAL)
965 return NULL;
966
967 if (prev)
968 next = prev->vm_next;
969 else
970 next = mm->mmap;
971 area = next;
972 if (next && next->vm_end == end) /* cases 6, 7, 8 */
973 next = next->vm_next;
974
975 /*
976 * Can it merge with the predecessor?
977 */
978 if (prev && prev->vm_end == addr &&
cc71aba3 979 mpol_equal(vma_policy(prev), policy) &&
1da177e4 980 can_vma_merge_after(prev, vm_flags,
19a809af
AA
981 anon_vma, file, pgoff,
982 vm_userfaultfd_ctx)) {
1da177e4
LT
983 /*
984 * OK, it can. Can we now merge in the successor as well?
985 */
986 if (next && end == next->vm_start &&
987 mpol_equal(policy, vma_policy(next)) &&
988 can_vma_merge_before(next, vm_flags,
19a809af
AA
989 anon_vma, file,
990 pgoff+pglen,
991 vm_userfaultfd_ctx) &&
1da177e4 992 is_mergeable_anon_vma(prev->anon_vma,
965f55de 993 next->anon_vma, NULL)) {
1da177e4 994 /* cases 1, 6 */
5beb4930 995 err = vma_adjust(prev, prev->vm_start,
1da177e4
LT
996 next->vm_end, prev->vm_pgoff, NULL);
997 } else /* cases 2, 5, 7 */
5beb4930 998 err = vma_adjust(prev, prev->vm_start,
1da177e4 999 end, prev->vm_pgoff, NULL);
5beb4930
RR
1000 if (err)
1001 return NULL;
6d50e60c 1002 khugepaged_enter_vma_merge(prev, vm_flags);
1da177e4
LT
1003 return prev;
1004 }
1005
1006 /*
1007 * Can this new request be merged in front of next?
1008 */
1009 if (next && end == next->vm_start &&
cc71aba3 1010 mpol_equal(policy, vma_policy(next)) &&
1da177e4 1011 can_vma_merge_before(next, vm_flags,
19a809af
AA
1012 anon_vma, file, pgoff+pglen,
1013 vm_userfaultfd_ctx)) {
1da177e4 1014 if (prev && addr < prev->vm_end) /* case 4 */
5beb4930 1015 err = vma_adjust(prev, prev->vm_start,
1da177e4
LT
1016 addr, prev->vm_pgoff, NULL);
1017 else /* cases 3, 8 */
5beb4930 1018 err = vma_adjust(area, addr, next->vm_end,
1da177e4 1019 next->vm_pgoff - pglen, NULL);
5beb4930
RR
1020 if (err)
1021 return NULL;
6d50e60c 1022 khugepaged_enter_vma_merge(area, vm_flags);
1da177e4
LT
1023 return area;
1024 }
1025
1026 return NULL;
1027}
1028
d0e9fe17
LT
1029/*
1030 * Rough compatbility check to quickly see if it's even worth looking
1031 * at sharing an anon_vma.
1032 *
1033 * They need to have the same vm_file, and the flags can only differ
1034 * in things that mprotect may change.
1035 *
1036 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1037 * we can merge the two vma's. For example, we refuse to merge a vma if
1038 * there is a vm_ops->close() function, because that indicates that the
1039 * driver is doing some kind of reference counting. But that doesn't
1040 * really matter for the anon_vma sharing case.
1041 */
1042static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1043{
1044 return a->vm_end == b->vm_start &&
1045 mpol_equal(vma_policy(a), vma_policy(b)) &&
1046 a->vm_file == b->vm_file &&
34228d47 1047 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
d0e9fe17
LT
1048 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1049}
1050
1051/*
1052 * Do some basic sanity checking to see if we can re-use the anon_vma
1053 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1054 * the same as 'old', the other will be the new one that is trying
1055 * to share the anon_vma.
1056 *
1057 * NOTE! This runs with mm_sem held for reading, so it is possible that
1058 * the anon_vma of 'old' is concurrently in the process of being set up
1059 * by another page fault trying to merge _that_. But that's ok: if it
1060 * is being set up, that automatically means that it will be a singleton
1061 * acceptable for merging, so we can do all of this optimistically. But
4db0c3c2 1062 * we do that READ_ONCE() to make sure that we never re-load the pointer.
d0e9fe17
LT
1063 *
1064 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1065 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1066 * is to return an anon_vma that is "complex" due to having gone through
1067 * a fork).
1068 *
1069 * We also make sure that the two vma's are compatible (adjacent,
1070 * and with the same memory policies). That's all stable, even with just
1071 * a read lock on the mm_sem.
1072 */
1073static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1074{
1075 if (anon_vma_compatible(a, b)) {
4db0c3c2 1076 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
d0e9fe17
LT
1077
1078 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1079 return anon_vma;
1080 }
1081 return NULL;
1082}
1083
1da177e4
LT
1084/*
1085 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1086 * neighbouring vmas for a suitable anon_vma, before it goes off
1087 * to allocate a new anon_vma. It checks because a repetitive
1088 * sequence of mprotects and faults may otherwise lead to distinct
1089 * anon_vmas being allocated, preventing vma merge in subsequent
1090 * mprotect.
1091 */
1092struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1093{
d0e9fe17 1094 struct anon_vma *anon_vma;
1da177e4 1095 struct vm_area_struct *near;
1da177e4
LT
1096
1097 near = vma->vm_next;
1098 if (!near)
1099 goto try_prev;
1100
d0e9fe17
LT
1101 anon_vma = reusable_anon_vma(near, vma, near);
1102 if (anon_vma)
1103 return anon_vma;
1da177e4 1104try_prev:
9be34c9d 1105 near = vma->vm_prev;
1da177e4
LT
1106 if (!near)
1107 goto none;
1108
d0e9fe17
LT
1109 anon_vma = reusable_anon_vma(near, near, vma);
1110 if (anon_vma)
1111 return anon_vma;
1da177e4
LT
1112none:
1113 /*
1114 * There's no absolute need to look only at touching neighbours:
1115 * we could search further afield for "compatible" anon_vmas.
1116 * But it would probably just be a waste of time searching,
1117 * or lead to too many vmas hanging off the same anon_vma.
1118 * We're trying to allow mprotect remerging later on,
1119 * not trying to minimize memory used for anon_vmas.
1120 */
1121 return NULL;
1122}
1123
40401530
AV
1124/*
1125 * If a hint addr is less than mmap_min_addr change hint to be as
1126 * low as possible but still greater than mmap_min_addr
1127 */
1128static inline unsigned long round_hint_to_min(unsigned long hint)
1129{
1130 hint &= PAGE_MASK;
1131 if (((void *)hint != NULL) &&
1132 (hint < mmap_min_addr))
1133 return PAGE_ALIGN(mmap_min_addr);
1134 return hint;
1135}
1136
363ee17f
DB
1137static inline int mlock_future_check(struct mm_struct *mm,
1138 unsigned long flags,
1139 unsigned long len)
1140{
1141 unsigned long locked, lock_limit;
1142
1143 /* mlock MCL_FUTURE? */
1144 if (flags & VM_LOCKED) {
1145 locked = len >> PAGE_SHIFT;
1146 locked += mm->locked_vm;
1147 lock_limit = rlimit(RLIMIT_MEMLOCK);
1148 lock_limit >>= PAGE_SHIFT;
1149 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1150 return -EAGAIN;
1151 }
1152 return 0;
1153}
1154
1da177e4 1155/*
27f5de79 1156 * The caller must hold down_write(&current->mm->mmap_sem).
1da177e4 1157 */
1fcfd8db 1158unsigned long do_mmap(struct file *file, unsigned long addr,
1da177e4 1159 unsigned long len, unsigned long prot,
1fcfd8db
ON
1160 unsigned long flags, vm_flags_t vm_flags,
1161 unsigned long pgoff, unsigned long *populate)
1da177e4 1162{
cc71aba3 1163 struct mm_struct *mm = current->mm;
62b5f7d0 1164 int pkey = 0;
1da177e4 1165
41badc15 1166 *populate = 0;
bebeb3d6 1167
e37609bb
PK
1168 if (!len)
1169 return -EINVAL;
1170
1da177e4
LT
1171 /*
1172 * Does the application expect PROT_READ to imply PROT_EXEC?
1173 *
1174 * (the exception is when the underlying filesystem is noexec
1175 * mounted, in which case we dont add PROT_EXEC.)
1176 */
1177 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
90f8572b 1178 if (!(file && path_noexec(&file->f_path)))
1da177e4
LT
1179 prot |= PROT_EXEC;
1180
7cd94146
EP
1181 if (!(flags & MAP_FIXED))
1182 addr = round_hint_to_min(addr);
1183
1da177e4
LT
1184 /* Careful about overflows.. */
1185 len = PAGE_ALIGN(len);
9206de95 1186 if (!len)
1da177e4
LT
1187 return -ENOMEM;
1188
1189 /* offset overflow? */
1190 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
cc71aba3 1191 return -EOVERFLOW;
1da177e4
LT
1192
1193 /* Too many mappings? */
1194 if (mm->map_count > sysctl_max_map_count)
1195 return -ENOMEM;
1196
1197 /* Obtain the address to map to. we verify (or select) it and ensure
1198 * that it represents a valid section of the address space.
1199 */
1200 addr = get_unmapped_area(file, addr, len, pgoff, flags);
de1741a1 1201 if (offset_in_page(addr))
1da177e4
LT
1202 return addr;
1203
62b5f7d0
DH
1204 if (prot == PROT_EXEC) {
1205 pkey = execute_only_pkey(mm);
1206 if (pkey < 0)
1207 pkey = 0;
1208 }
1209
1da177e4
LT
1210 /* Do simple checking here so the lower-level routines won't have
1211 * to. we assume access permissions have been handled by the open
1212 * of the memory object, so we don't do any here.
1213 */
62b5f7d0 1214 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1da177e4
LT
1215 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1216
cdf7b341 1217 if (flags & MAP_LOCKED)
1da177e4
LT
1218 if (!can_do_mlock())
1219 return -EPERM;
ba470de4 1220
363ee17f
DB
1221 if (mlock_future_check(mm, vm_flags, len))
1222 return -EAGAIN;
1da177e4 1223
1da177e4 1224 if (file) {
077bf22b
ON
1225 struct inode *inode = file_inode(file);
1226
1da177e4
LT
1227 switch (flags & MAP_TYPE) {
1228 case MAP_SHARED:
1229 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1230 return -EACCES;
1231
1232 /*
1233 * Make sure we don't allow writing to an append-only
1234 * file..
1235 */
1236 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1237 return -EACCES;
1238
1239 /*
1240 * Make sure there are no mandatory locks on the file.
1241 */
d7a06983 1242 if (locks_verify_locked(file))
1da177e4
LT
1243 return -EAGAIN;
1244
1245 vm_flags |= VM_SHARED | VM_MAYSHARE;
1246 if (!(file->f_mode & FMODE_WRITE))
1247 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1248
1249 /* fall through */
1250 case MAP_PRIVATE:
1251 if (!(file->f_mode & FMODE_READ))
1252 return -EACCES;
90f8572b 1253 if (path_noexec(&file->f_path)) {
80c5606c
LT
1254 if (vm_flags & VM_EXEC)
1255 return -EPERM;
1256 vm_flags &= ~VM_MAYEXEC;
1257 }
80c5606c 1258
72c2d531 1259 if (!file->f_op->mmap)
80c5606c 1260 return -ENODEV;
b2c56e4f
ON
1261 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1262 return -EINVAL;
1da177e4
LT
1263 break;
1264
1265 default:
1266 return -EINVAL;
1267 }
1268 } else {
1269 switch (flags & MAP_TYPE) {
1270 case MAP_SHARED:
b2c56e4f
ON
1271 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1272 return -EINVAL;
ce363942
TH
1273 /*
1274 * Ignore pgoff.
1275 */
1276 pgoff = 0;
1da177e4
LT
1277 vm_flags |= VM_SHARED | VM_MAYSHARE;
1278 break;
1279 case MAP_PRIVATE:
1280 /*
1281 * Set pgoff according to addr for anon_vma.
1282 */
1283 pgoff = addr >> PAGE_SHIFT;
1284 break;
1285 default:
1286 return -EINVAL;
1287 }
1288 }
1289
c22c0d63
ML
1290 /*
1291 * Set 'VM_NORESERVE' if we should not account for the
1292 * memory use of this mapping.
1293 */
1294 if (flags & MAP_NORESERVE) {
1295 /* We honor MAP_NORESERVE if allowed to overcommit */
1296 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1297 vm_flags |= VM_NORESERVE;
1298
1299 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1300 if (file && is_file_hugepages(file))
1301 vm_flags |= VM_NORESERVE;
1302 }
1303
1304 addr = mmap_region(file, addr, len, vm_flags, pgoff);
09a9f1d2
ML
1305 if (!IS_ERR_VALUE(addr) &&
1306 ((vm_flags & VM_LOCKED) ||
1307 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
41badc15 1308 *populate = len;
bebeb3d6 1309 return addr;
0165ab44 1310}
6be5ceb0 1311
66f0dc48
HD
1312SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1313 unsigned long, prot, unsigned long, flags,
1314 unsigned long, fd, unsigned long, pgoff)
1315{
1316 struct file *file = NULL;
1e3ee14b 1317 unsigned long retval;
66f0dc48
HD
1318
1319 if (!(flags & MAP_ANONYMOUS)) {
120a795d 1320 audit_mmap_fd(fd, flags);
66f0dc48
HD
1321 file = fget(fd);
1322 if (!file)
1e3ee14b 1323 return -EBADF;
af73e4d9
NH
1324 if (is_file_hugepages(file))
1325 len = ALIGN(len, huge_page_size(hstate_file(file)));
493af578
JE
1326 retval = -EINVAL;
1327 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1328 goto out_fput;
66f0dc48
HD
1329 } else if (flags & MAP_HUGETLB) {
1330 struct user_struct *user = NULL;
c103a4dc 1331 struct hstate *hs;
af73e4d9 1332
c103a4dc 1333 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
091d0d55
LZ
1334 if (!hs)
1335 return -EINVAL;
1336
1337 len = ALIGN(len, huge_page_size(hs));
66f0dc48
HD
1338 /*
1339 * VM_NORESERVE is used because the reservations will be
1340 * taken when vm_ops->mmap() is called
1341 * A dummy user value is used because we are not locking
1342 * memory so no accounting is necessary
1343 */
af73e4d9 1344 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
42d7395f
AK
1345 VM_NORESERVE,
1346 &user, HUGETLB_ANONHUGE_INODE,
1347 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
66f0dc48
HD
1348 if (IS_ERR(file))
1349 return PTR_ERR(file);
1350 }
1351
1352 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1353
9fbeb5ab 1354 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
493af578 1355out_fput:
66f0dc48
HD
1356 if (file)
1357 fput(file);
66f0dc48
HD
1358 return retval;
1359}
1360
a4679373
CH
1361#ifdef __ARCH_WANT_SYS_OLD_MMAP
1362struct mmap_arg_struct {
1363 unsigned long addr;
1364 unsigned long len;
1365 unsigned long prot;
1366 unsigned long flags;
1367 unsigned long fd;
1368 unsigned long offset;
1369};
1370
1371SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1372{
1373 struct mmap_arg_struct a;
1374
1375 if (copy_from_user(&a, arg, sizeof(a)))
1376 return -EFAULT;
de1741a1 1377 if (offset_in_page(a.offset))
a4679373
CH
1378 return -EINVAL;
1379
1380 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1381 a.offset >> PAGE_SHIFT);
1382}
1383#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1384
4e950f6f
AD
1385/*
1386 * Some shared mappigns will want the pages marked read-only
1387 * to track write events. If so, we'll downgrade vm_page_prot
1388 * to the private version (using protection_map[] without the
1389 * VM_SHARED bit).
1390 */
6d2329f8 1391int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
4e950f6f 1392{
ca16d140 1393 vm_flags_t vm_flags = vma->vm_flags;
8a04446a 1394 const struct vm_operations_struct *vm_ops = vma->vm_ops;
4e950f6f
AD
1395
1396 /* If it was private or non-writable, the write bit is already clear */
1397 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1398 return 0;
1399
1400 /* The backer wishes to know when pages are first written to? */
8a04446a 1401 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
4e950f6f
AD
1402 return 1;
1403
64e45507
PF
1404 /* The open routine did something to the protections that pgprot_modify
1405 * won't preserve? */
6d2329f8
AA
1406 if (pgprot_val(vm_page_prot) !=
1407 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
4e950f6f
AD
1408 return 0;
1409
64e45507
PF
1410 /* Do we need to track softdirty? */
1411 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1412 return 1;
1413
4e950f6f 1414 /* Specialty mapping? */
4b6e1e37 1415 if (vm_flags & VM_PFNMAP)
4e950f6f
AD
1416 return 0;
1417
1418 /* Can the mapping track the dirty pages? */
1419 return vma->vm_file && vma->vm_file->f_mapping &&
1420 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1421}
1422
fc8744ad
LT
1423/*
1424 * We account for memory if it's a private writeable mapping,
5a6fe125 1425 * not hugepages and VM_NORESERVE wasn't set.
fc8744ad 1426 */
ca16d140 1427static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
fc8744ad 1428{
5a6fe125
MG
1429 /*
1430 * hugetlb has its own accounting separate from the core VM
1431 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1432 */
1433 if (file && is_file_hugepages(file))
1434 return 0;
1435
fc8744ad
LT
1436 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1437}
1438
0165ab44 1439unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1440 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
0165ab44
MS
1441{
1442 struct mm_struct *mm = current->mm;
1443 struct vm_area_struct *vma, *prev;
0165ab44
MS
1444 int error;
1445 struct rb_node **rb_link, *rb_parent;
1446 unsigned long charged = 0;
0165ab44 1447
e8420a8e 1448 /* Check against address space limit. */
84638335 1449 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
e8420a8e
CH
1450 unsigned long nr_pages;
1451
1452 /*
1453 * MAP_FIXED may remove pages of mappings that intersects with
1454 * requested mapping. Account for the pages it would unmap.
1455 */
e8420a8e
CH
1456 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1457
84638335
KK
1458 if (!may_expand_vm(mm, vm_flags,
1459 (len >> PAGE_SHIFT) - nr_pages))
e8420a8e
CH
1460 return -ENOMEM;
1461 }
1462
1da177e4 1463 /* Clear old maps */
9fcd1457
RV
1464 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1465 &rb_parent)) {
1da177e4
LT
1466 if (do_munmap(mm, addr, len))
1467 return -ENOMEM;
1da177e4
LT
1468 }
1469
fc8744ad
LT
1470 /*
1471 * Private writable mapping: check memory availability
1472 */
5a6fe125 1473 if (accountable_mapping(file, vm_flags)) {
fc8744ad 1474 charged = len >> PAGE_SHIFT;
191c5424 1475 if (security_vm_enough_memory_mm(mm, charged))
fc8744ad
LT
1476 return -ENOMEM;
1477 vm_flags |= VM_ACCOUNT;
1da177e4
LT
1478 }
1479
1480 /*
de33c8db 1481 * Can we just expand an old mapping?
1da177e4 1482 */
19a809af
AA
1483 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1484 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
de33c8db
LT
1485 if (vma)
1486 goto out;
1da177e4
LT
1487
1488 /*
1489 * Determine the object being mapped and call the appropriate
1490 * specific mapper. the address has already been validated, but
1491 * not unmapped, but the maps are removed from the list.
1492 */
c5e3b83e 1493 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1da177e4
LT
1494 if (!vma) {
1495 error = -ENOMEM;
1496 goto unacct_error;
1497 }
1da177e4
LT
1498
1499 vma->vm_mm = mm;
1500 vma->vm_start = addr;
1501 vma->vm_end = addr + len;
1502 vma->vm_flags = vm_flags;
3ed75eb8 1503 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1da177e4 1504 vma->vm_pgoff = pgoff;
5beb4930 1505 INIT_LIST_HEAD(&vma->anon_vma_chain);
1da177e4
LT
1506
1507 if (file) {
1da177e4
LT
1508 if (vm_flags & VM_DENYWRITE) {
1509 error = deny_write_access(file);
1510 if (error)
1511 goto free_vma;
1da177e4 1512 }
4bb5f5d9
DR
1513 if (vm_flags & VM_SHARED) {
1514 error = mapping_map_writable(file->f_mapping);
1515 if (error)
1516 goto allow_write_and_free_vma;
1517 }
1518
1519 /* ->mmap() can change vma->vm_file, but must guarantee that
1520 * vma_link() below can deny write-access if VM_DENYWRITE is set
1521 * and map writably if VM_SHARED is set. This usually means the
1522 * new file must not have been exposed to user-space, yet.
1523 */
cb0942b8 1524 vma->vm_file = get_file(file);
1da177e4
LT
1525 error = file->f_op->mmap(file, vma);
1526 if (error)
1527 goto unmap_and_free_vma;
f8dbf0a7
HS
1528
1529 /* Can addr have changed??
1530 *
1531 * Answer: Yes, several device drivers can do it in their
1532 * f_op->mmap method. -DaveM
2897b4d2
JK
1533 * Bug: If addr is changed, prev, rb_link, rb_parent should
1534 * be updated for vma_link()
f8dbf0a7 1535 */
2897b4d2
JK
1536 WARN_ON_ONCE(addr != vma->vm_start);
1537
f8dbf0a7 1538 addr = vma->vm_start;
f8dbf0a7 1539 vm_flags = vma->vm_flags;
1da177e4
LT
1540 } else if (vm_flags & VM_SHARED) {
1541 error = shmem_zero_setup(vma);
1542 if (error)
1543 goto free_vma;
1544 }
1545
de33c8db 1546 vma_link(mm, vma, prev, rb_link, rb_parent);
4d3d5b41 1547 /* Once vma denies write, undo our temporary denial count */
4bb5f5d9
DR
1548 if (file) {
1549 if (vm_flags & VM_SHARED)
1550 mapping_unmap_writable(file->f_mapping);
1551 if (vm_flags & VM_DENYWRITE)
1552 allow_write_access(file);
1553 }
e8686772 1554 file = vma->vm_file;
4d3d5b41 1555out:
cdd6c482 1556 perf_event_mmap(vma);
0a4a9391 1557
84638335 1558 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1da177e4 1559 if (vm_flags & VM_LOCKED) {
bebeb3d6
ML
1560 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1561 vma == get_gate_vma(current->mm)))
06f9d8c2 1562 mm->locked_vm += (len >> PAGE_SHIFT);
bebeb3d6 1563 else
de60f5f1 1564 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
bebeb3d6 1565 }
2b144498 1566
c7a3a88c
ON
1567 if (file)
1568 uprobe_mmap(vma);
2b144498 1569
d9104d1c
CG
1570 /*
1571 * New (or expanded) vma always get soft dirty status.
1572 * Otherwise user-space soft-dirty page tracker won't
1573 * be able to distinguish situation when vma area unmapped,
1574 * then new mapped in-place (which must be aimed as
1575 * a completely new data area).
1576 */
1577 vma->vm_flags |= VM_SOFTDIRTY;
1578
64e45507
PF
1579 vma_set_page_prot(vma);
1580
1da177e4
LT
1581 return addr;
1582
1583unmap_and_free_vma:
1da177e4
LT
1584 vma->vm_file = NULL;
1585 fput(file);
1586
1587 /* Undo any partial mapping done by a device driver. */
e0da382c
HD
1588 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1589 charged = 0;
4bb5f5d9
DR
1590 if (vm_flags & VM_SHARED)
1591 mapping_unmap_writable(file->f_mapping);
1592allow_write_and_free_vma:
1593 if (vm_flags & VM_DENYWRITE)
1594 allow_write_access(file);
1da177e4
LT
1595free_vma:
1596 kmem_cache_free(vm_area_cachep, vma);
1597unacct_error:
1598 if (charged)
1599 vm_unacct_memory(charged);
1600 return error;
1601}
1602
db4fbfb9
ML
1603unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1604{
1605 /*
1606 * We implement the search by looking for an rbtree node that
1607 * immediately follows a suitable gap. That is,
1608 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1609 * - gap_end = vma->vm_start >= info->low_limit + length;
1610 * - gap_end - gap_start >= length
1611 */
1612
1613 struct mm_struct *mm = current->mm;
1614 struct vm_area_struct *vma;
1615 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1616
1617 /* Adjust search length to account for worst case alignment overhead */
1618 length = info->length + info->align_mask;
1619 if (length < info->length)
1620 return -ENOMEM;
1621
1622 /* Adjust search limits by the desired length */
1623 if (info->high_limit < length)
1624 return -ENOMEM;
1625 high_limit = info->high_limit - length;
1626
1627 if (info->low_limit > high_limit)
1628 return -ENOMEM;
1629 low_limit = info->low_limit + length;
1630
1631 /* Check if rbtree root looks promising */
1632 if (RB_EMPTY_ROOT(&mm->mm_rb))
1633 goto check_highest;
1634 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1635 if (vma->rb_subtree_gap < length)
1636 goto check_highest;
1637
1638 while (true) {
1639 /* Visit left subtree if it looks promising */
1640 gap_end = vma->vm_start;
1641 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1642 struct vm_area_struct *left =
1643 rb_entry(vma->vm_rb.rb_left,
1644 struct vm_area_struct, vm_rb);
1645 if (left->rb_subtree_gap >= length) {
1646 vma = left;
1647 continue;
1648 }
1649 }
1650
1651 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1652check_current:
1653 /* Check if current node has a suitable gap */
1654 if (gap_start > high_limit)
1655 return -ENOMEM;
1656 if (gap_end >= low_limit && gap_end - gap_start >= length)
1657 goto found;
1658
1659 /* Visit right subtree if it looks promising */
1660 if (vma->vm_rb.rb_right) {
1661 struct vm_area_struct *right =
1662 rb_entry(vma->vm_rb.rb_right,
1663 struct vm_area_struct, vm_rb);
1664 if (right->rb_subtree_gap >= length) {
1665 vma = right;
1666 continue;
1667 }
1668 }
1669
1670 /* Go back up the rbtree to find next candidate node */
1671 while (true) {
1672 struct rb_node *prev = &vma->vm_rb;
1673 if (!rb_parent(prev))
1674 goto check_highest;
1675 vma = rb_entry(rb_parent(prev),
1676 struct vm_area_struct, vm_rb);
1677 if (prev == vma->vm_rb.rb_left) {
1678 gap_start = vma->vm_prev->vm_end;
1679 gap_end = vma->vm_start;
1680 goto check_current;
1681 }
1682 }
1683 }
1684
1685check_highest:
1686 /* Check highest gap, which does not precede any rbtree node */
1687 gap_start = mm->highest_vm_end;
1688 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1689 if (gap_start > high_limit)
1690 return -ENOMEM;
1691
1692found:
1693 /* We found a suitable gap. Clip it with the original low_limit. */
1694 if (gap_start < info->low_limit)
1695 gap_start = info->low_limit;
1696
1697 /* Adjust gap address to the desired alignment */
1698 gap_start += (info->align_offset - gap_start) & info->align_mask;
1699
1700 VM_BUG_ON(gap_start + info->length > info->high_limit);
1701 VM_BUG_ON(gap_start + info->length > gap_end);
1702 return gap_start;
1703}
1704
1705unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1706{
1707 struct mm_struct *mm = current->mm;
1708 struct vm_area_struct *vma;
1709 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1710
1711 /* Adjust search length to account for worst case alignment overhead */
1712 length = info->length + info->align_mask;
1713 if (length < info->length)
1714 return -ENOMEM;
1715
1716 /*
1717 * Adjust search limits by the desired length.
1718 * See implementation comment at top of unmapped_area().
1719 */
1720 gap_end = info->high_limit;
1721 if (gap_end < length)
1722 return -ENOMEM;
1723 high_limit = gap_end - length;
1724
1725 if (info->low_limit > high_limit)
1726 return -ENOMEM;
1727 low_limit = info->low_limit + length;
1728
1729 /* Check highest gap, which does not precede any rbtree node */
1730 gap_start = mm->highest_vm_end;
1731 if (gap_start <= high_limit)
1732 goto found_highest;
1733
1734 /* Check if rbtree root looks promising */
1735 if (RB_EMPTY_ROOT(&mm->mm_rb))
1736 return -ENOMEM;
1737 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1738 if (vma->rb_subtree_gap < length)
1739 return -ENOMEM;
1740
1741 while (true) {
1742 /* Visit right subtree if it looks promising */
1743 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1744 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1745 struct vm_area_struct *right =
1746 rb_entry(vma->vm_rb.rb_right,
1747 struct vm_area_struct, vm_rb);
1748 if (right->rb_subtree_gap >= length) {
1749 vma = right;
1750 continue;
1751 }
1752 }
1753
1754check_current:
1755 /* Check if current node has a suitable gap */
1756 gap_end = vma->vm_start;
1757 if (gap_end < low_limit)
1758 return -ENOMEM;
1759 if (gap_start <= high_limit && gap_end - gap_start >= length)
1760 goto found;
1761
1762 /* Visit left subtree if it looks promising */
1763 if (vma->vm_rb.rb_left) {
1764 struct vm_area_struct *left =
1765 rb_entry(vma->vm_rb.rb_left,
1766 struct vm_area_struct, vm_rb);
1767 if (left->rb_subtree_gap >= length) {
1768 vma = left;
1769 continue;
1770 }
1771 }
1772
1773 /* Go back up the rbtree to find next candidate node */
1774 while (true) {
1775 struct rb_node *prev = &vma->vm_rb;
1776 if (!rb_parent(prev))
1777 return -ENOMEM;
1778 vma = rb_entry(rb_parent(prev),
1779 struct vm_area_struct, vm_rb);
1780 if (prev == vma->vm_rb.rb_right) {
1781 gap_start = vma->vm_prev ?
1782 vma->vm_prev->vm_end : 0;
1783 goto check_current;
1784 }
1785 }
1786 }
1787
1788found:
1789 /* We found a suitable gap. Clip it with the original high_limit. */
1790 if (gap_end > info->high_limit)
1791 gap_end = info->high_limit;
1792
1793found_highest:
1794 /* Compute highest gap address at the desired alignment */
1795 gap_end -= info->length;
1796 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1797
1798 VM_BUG_ON(gap_end < info->low_limit);
1799 VM_BUG_ON(gap_end < gap_start);
1800 return gap_end;
1801}
1802
1da177e4
LT
1803/* Get an address range which is currently unmapped.
1804 * For shmat() with addr=0.
1805 *
1806 * Ugly calling convention alert:
1807 * Return value with the low bits set means error value,
1808 * ie
1809 * if (ret & ~PAGE_MASK)
1810 * error = ret;
1811 *
1812 * This function "knows" that -ENOMEM has the bits set.
1813 */
1814#ifndef HAVE_ARCH_UNMAPPED_AREA
1815unsigned long
1816arch_get_unmapped_area(struct file *filp, unsigned long addr,
1817 unsigned long len, unsigned long pgoff, unsigned long flags)
1818{
1819 struct mm_struct *mm = current->mm;
1820 struct vm_area_struct *vma;
db4fbfb9 1821 struct vm_unmapped_area_info info;
1da177e4 1822
2afc745f 1823 if (len > TASK_SIZE - mmap_min_addr)
1da177e4
LT
1824 return -ENOMEM;
1825
06abdfb4
BH
1826 if (flags & MAP_FIXED)
1827 return addr;
1828
1da177e4
LT
1829 if (addr) {
1830 addr = PAGE_ALIGN(addr);
1831 vma = find_vma(mm, addr);
2afc745f 1832 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1da177e4
LT
1833 (!vma || addr + len <= vma->vm_start))
1834 return addr;
1835 }
1da177e4 1836
db4fbfb9
ML
1837 info.flags = 0;
1838 info.length = len;
4e99b021 1839 info.low_limit = mm->mmap_base;
db4fbfb9
ML
1840 info.high_limit = TASK_SIZE;
1841 info.align_mask = 0;
1842 return vm_unmapped_area(&info);
1da177e4 1843}
cc71aba3 1844#endif
1da177e4 1845
1da177e4
LT
1846/*
1847 * This mmap-allocator allocates new areas top-down from below the
1848 * stack's low limit (the base):
1849 */
1850#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1851unsigned long
1852arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1853 const unsigned long len, const unsigned long pgoff,
1854 const unsigned long flags)
1855{
1856 struct vm_area_struct *vma;
1857 struct mm_struct *mm = current->mm;
db4fbfb9
ML
1858 unsigned long addr = addr0;
1859 struct vm_unmapped_area_info info;
1da177e4
LT
1860
1861 /* requested length too big for entire address space */
2afc745f 1862 if (len > TASK_SIZE - mmap_min_addr)
1da177e4
LT
1863 return -ENOMEM;
1864
06abdfb4
BH
1865 if (flags & MAP_FIXED)
1866 return addr;
1867
1da177e4
LT
1868 /* requesting a specific address */
1869 if (addr) {
1870 addr = PAGE_ALIGN(addr);
1871 vma = find_vma(mm, addr);
2afc745f 1872 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1da177e4
LT
1873 (!vma || addr + len <= vma->vm_start))
1874 return addr;
1875 }
1876
db4fbfb9
ML
1877 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1878 info.length = len;
2afc745f 1879 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
db4fbfb9
ML
1880 info.high_limit = mm->mmap_base;
1881 info.align_mask = 0;
1882 addr = vm_unmapped_area(&info);
b716ad95 1883
1da177e4
LT
1884 /*
1885 * A failed mmap() very likely causes application failure,
1886 * so fall back to the bottom-up function here. This scenario
1887 * can happen with large stack limits and large mmap()
1888 * allocations.
1889 */
de1741a1 1890 if (offset_in_page(addr)) {
db4fbfb9
ML
1891 VM_BUG_ON(addr != -ENOMEM);
1892 info.flags = 0;
1893 info.low_limit = TASK_UNMAPPED_BASE;
1894 info.high_limit = TASK_SIZE;
1895 addr = vm_unmapped_area(&info);
1896 }
1da177e4
LT
1897
1898 return addr;
1899}
1900#endif
1901
1da177e4
LT
1902unsigned long
1903get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1904 unsigned long pgoff, unsigned long flags)
1905{
06abdfb4
BH
1906 unsigned long (*get_area)(struct file *, unsigned long,
1907 unsigned long, unsigned long, unsigned long);
1908
9206de95
AV
1909 unsigned long error = arch_mmap_check(addr, len, flags);
1910 if (error)
1911 return error;
1912
1913 /* Careful about overflows.. */
1914 if (len > TASK_SIZE)
1915 return -ENOMEM;
1916
06abdfb4 1917 get_area = current->mm->get_unmapped_area;
c01d5b30
HD
1918 if (file) {
1919 if (file->f_op->get_unmapped_area)
1920 get_area = file->f_op->get_unmapped_area;
1921 } else if (flags & MAP_SHARED) {
1922 /*
1923 * mmap_region() will call shmem_zero_setup() to create a file,
1924 * so use shmem's get_unmapped_area in case it can be huge.
1925 * do_mmap_pgoff() will clear pgoff, so match alignment.
1926 */
1927 pgoff = 0;
1928 get_area = shmem_get_unmapped_area;
1929 }
1930
06abdfb4
BH
1931 addr = get_area(file, addr, len, pgoff, flags);
1932 if (IS_ERR_VALUE(addr))
1933 return addr;
1da177e4 1934
07ab67c8
LT
1935 if (addr > TASK_SIZE - len)
1936 return -ENOMEM;
de1741a1 1937 if (offset_in_page(addr))
07ab67c8 1938 return -EINVAL;
06abdfb4 1939
9ac4ed4b
AV
1940 error = security_mmap_addr(addr);
1941 return error ? error : addr;
1da177e4
LT
1942}
1943
1944EXPORT_SYMBOL(get_unmapped_area);
1945
1946/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
48aae425 1947struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1da177e4 1948{
615d6e87
DB
1949 struct rb_node *rb_node;
1950 struct vm_area_struct *vma;
1da177e4 1951
841e31e5 1952 /* Check the cache first. */
615d6e87
DB
1953 vma = vmacache_find(mm, addr);
1954 if (likely(vma))
1955 return vma;
841e31e5 1956
615d6e87 1957 rb_node = mm->mm_rb.rb_node;
841e31e5 1958
615d6e87
DB
1959 while (rb_node) {
1960 struct vm_area_struct *tmp;
1961
1962 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1963
1964 if (tmp->vm_end > addr) {
1965 vma = tmp;
1966 if (tmp->vm_start <= addr)
1967 break;
1968 rb_node = rb_node->rb_left;
1969 } else
1970 rb_node = rb_node->rb_right;
1da177e4 1971 }
615d6e87
DB
1972
1973 if (vma)
1974 vmacache_update(addr, vma);
1da177e4
LT
1975 return vma;
1976}
1977
1978EXPORT_SYMBOL(find_vma);
1979
6bd4837d
KM
1980/*
1981 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
6bd4837d 1982 */
1da177e4
LT
1983struct vm_area_struct *
1984find_vma_prev(struct mm_struct *mm, unsigned long addr,
1985 struct vm_area_struct **pprev)
1986{
6bd4837d 1987 struct vm_area_struct *vma;
1da177e4 1988
6bd4837d 1989 vma = find_vma(mm, addr);
83cd904d
MP
1990 if (vma) {
1991 *pprev = vma->vm_prev;
1992 } else {
1993 struct rb_node *rb_node = mm->mm_rb.rb_node;
1994 *pprev = NULL;
1995 while (rb_node) {
1996 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1997 rb_node = rb_node->rb_right;
1998 }
1999 }
6bd4837d 2000 return vma;
1da177e4
LT
2001}
2002
2003/*
2004 * Verify that the stack growth is acceptable and
2005 * update accounting. This is shared with both the
2006 * grow-up and grow-down cases.
2007 */
48aae425 2008static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1da177e4
LT
2009{
2010 struct mm_struct *mm = vma->vm_mm;
2011 struct rlimit *rlim = current->signal->rlim;
690eac53 2012 unsigned long new_start, actual_size;
1da177e4
LT
2013
2014 /* address space limit tests */
84638335 2015 if (!may_expand_vm(mm, vma->vm_flags, grow))
1da177e4
LT
2016 return -ENOMEM;
2017
2018 /* Stack limit test */
690eac53
LT
2019 actual_size = size;
2020 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2021 actual_size -= PAGE_SIZE;
4db0c3c2 2022 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1da177e4
LT
2023 return -ENOMEM;
2024
2025 /* mlock limit tests */
2026 if (vma->vm_flags & VM_LOCKED) {
2027 unsigned long locked;
2028 unsigned long limit;
2029 locked = mm->locked_vm + grow;
4db0c3c2 2030 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
59e99e5b 2031 limit >>= PAGE_SHIFT;
1da177e4
LT
2032 if (locked > limit && !capable(CAP_IPC_LOCK))
2033 return -ENOMEM;
2034 }
2035
0d59a01b
AL
2036 /* Check to ensure the stack will not grow into a hugetlb-only region */
2037 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2038 vma->vm_end - size;
2039 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2040 return -EFAULT;
2041
1da177e4
LT
2042 /*
2043 * Overcommit.. This must be the final test, as it will
2044 * update security statistics.
2045 */
05fa199d 2046 if (security_vm_enough_memory_mm(mm, grow))
1da177e4
LT
2047 return -ENOMEM;
2048
1da177e4
LT
2049 return 0;
2050}
2051
46dea3d0 2052#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 2053/*
46dea3d0
HD
2054 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2055 * vma is the last one with address > vma->vm_end. Have to extend vma.
1da177e4 2056 */
46dea3d0 2057int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1da177e4 2058{
09357814 2059 struct mm_struct *mm = vma->vm_mm;
12352d3c 2060 int error = 0;
1da177e4
LT
2061
2062 if (!(vma->vm_flags & VM_GROWSUP))
2063 return -EFAULT;
2064
12352d3c
KK
2065 /* Guard against wrapping around to address 0. */
2066 if (address < PAGE_ALIGN(address+4))
2067 address = PAGE_ALIGN(address+4);
2068 else
2069 return -ENOMEM;
2070
2071 /* We must make sure the anon_vma is allocated. */
1da177e4
LT
2072 if (unlikely(anon_vma_prepare(vma)))
2073 return -ENOMEM;
1da177e4
LT
2074
2075 /*
2076 * vma->vm_start/vm_end cannot change under us because the caller
2077 * is required to hold the mmap_sem in read mode. We need the
2078 * anon_vma lock to serialize against concurrent expand_stacks.
2079 */
12352d3c 2080 anon_vma_lock_write(vma->anon_vma);
1da177e4
LT
2081
2082 /* Somebody else might have raced and expanded it already */
2083 if (address > vma->vm_end) {
2084 unsigned long size, grow;
2085
2086 size = address - vma->vm_start;
2087 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2088
42c36f63
HD
2089 error = -ENOMEM;
2090 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2091 error = acct_stack_growth(vma, size, grow);
2092 if (!error) {
4128997b
ML
2093 /*
2094 * vma_gap_update() doesn't support concurrent
2095 * updates, but we only hold a shared mmap_sem
2096 * lock here, so we need to protect against
2097 * concurrent vma expansions.
12352d3c 2098 * anon_vma_lock_write() doesn't help here, as
4128997b
ML
2099 * we don't guarantee that all growable vmas
2100 * in a mm share the same root anon vma.
2101 * So, we reuse mm->page_table_lock to guard
2102 * against concurrent vma expansions.
2103 */
09357814 2104 spin_lock(&mm->page_table_lock);
87e8827b 2105 if (vma->vm_flags & VM_LOCKED)
09357814 2106 mm->locked_vm += grow;
84638335 2107 vm_stat_account(mm, vma->vm_flags, grow);
bf181b9f 2108 anon_vma_interval_tree_pre_update_vma(vma);
42c36f63 2109 vma->vm_end = address;
bf181b9f 2110 anon_vma_interval_tree_post_update_vma(vma);
d3737187
ML
2111 if (vma->vm_next)
2112 vma_gap_update(vma->vm_next);
2113 else
09357814
ON
2114 mm->highest_vm_end = address;
2115 spin_unlock(&mm->page_table_lock);
4128997b 2116
42c36f63
HD
2117 perf_event_mmap(vma);
2118 }
3af9e859 2119 }
1da177e4 2120 }
12352d3c 2121 anon_vma_unlock_write(vma->anon_vma);
6d50e60c 2122 khugepaged_enter_vma_merge(vma, vma->vm_flags);
09357814 2123 validate_mm(mm);
1da177e4
LT
2124 return error;
2125}
46dea3d0
HD
2126#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2127
1da177e4
LT
2128/*
2129 * vma is the first one with address < vma->vm_start. Have to extend vma.
2130 */
d05f3169 2131int expand_downwards(struct vm_area_struct *vma,
b6a2fea3 2132 unsigned long address)
1da177e4 2133{
09357814 2134 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
2135 int error;
2136
8869477a 2137 address &= PAGE_MASK;
e5467859 2138 error = security_mmap_addr(address);
8869477a
EP
2139 if (error)
2140 return error;
2141
12352d3c
KK
2142 /* We must make sure the anon_vma is allocated. */
2143 if (unlikely(anon_vma_prepare(vma)))
2144 return -ENOMEM;
1da177e4
LT
2145
2146 /*
2147 * vma->vm_start/vm_end cannot change under us because the caller
2148 * is required to hold the mmap_sem in read mode. We need the
2149 * anon_vma lock to serialize against concurrent expand_stacks.
2150 */
12352d3c 2151 anon_vma_lock_write(vma->anon_vma);
1da177e4
LT
2152
2153 /* Somebody else might have raced and expanded it already */
2154 if (address < vma->vm_start) {
2155 unsigned long size, grow;
2156
2157 size = vma->vm_end - address;
2158 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2159
a626ca6a
LT
2160 error = -ENOMEM;
2161 if (grow <= vma->vm_pgoff) {
2162 error = acct_stack_growth(vma, size, grow);
2163 if (!error) {
4128997b
ML
2164 /*
2165 * vma_gap_update() doesn't support concurrent
2166 * updates, but we only hold a shared mmap_sem
2167 * lock here, so we need to protect against
2168 * concurrent vma expansions.
12352d3c 2169 * anon_vma_lock_write() doesn't help here, as
4128997b
ML
2170 * we don't guarantee that all growable vmas
2171 * in a mm share the same root anon vma.
2172 * So, we reuse mm->page_table_lock to guard
2173 * against concurrent vma expansions.
2174 */
09357814 2175 spin_lock(&mm->page_table_lock);
87e8827b 2176 if (vma->vm_flags & VM_LOCKED)
09357814 2177 mm->locked_vm += grow;
84638335 2178 vm_stat_account(mm, vma->vm_flags, grow);
bf181b9f 2179 anon_vma_interval_tree_pre_update_vma(vma);
a626ca6a
LT
2180 vma->vm_start = address;
2181 vma->vm_pgoff -= grow;
bf181b9f 2182 anon_vma_interval_tree_post_update_vma(vma);
d3737187 2183 vma_gap_update(vma);
09357814 2184 spin_unlock(&mm->page_table_lock);
4128997b 2185
a626ca6a
LT
2186 perf_event_mmap(vma);
2187 }
1da177e4
LT
2188 }
2189 }
12352d3c 2190 anon_vma_unlock_write(vma->anon_vma);
6d50e60c 2191 khugepaged_enter_vma_merge(vma, vma->vm_flags);
09357814 2192 validate_mm(mm);
1da177e4
LT
2193 return error;
2194}
2195
09884964
LT
2196/*
2197 * Note how expand_stack() refuses to expand the stack all the way to
2198 * abut the next virtual mapping, *unless* that mapping itself is also
2199 * a stack mapping. We want to leave room for a guard page, after all
2200 * (the guard page itself is not added here, that is done by the
2201 * actual page faulting logic)
2202 *
2203 * This matches the behavior of the guard page logic (see mm/memory.c:
2204 * check_stack_guard_page()), which only allows the guard page to be
2205 * removed under these circumstances.
2206 */
b6a2fea3
OW
2207#ifdef CONFIG_STACK_GROWSUP
2208int expand_stack(struct vm_area_struct *vma, unsigned long address)
2209{
09884964
LT
2210 struct vm_area_struct *next;
2211
2212 address &= PAGE_MASK;
2213 next = vma->vm_next;
2214 if (next && next->vm_start == address + PAGE_SIZE) {
2215 if (!(next->vm_flags & VM_GROWSUP))
2216 return -ENOMEM;
2217 }
b6a2fea3
OW
2218 return expand_upwards(vma, address);
2219}
2220
2221struct vm_area_struct *
2222find_extend_vma(struct mm_struct *mm, unsigned long addr)
2223{
2224 struct vm_area_struct *vma, *prev;
2225
2226 addr &= PAGE_MASK;
2227 vma = find_vma_prev(mm, addr, &prev);
2228 if (vma && (vma->vm_start <= addr))
2229 return vma;
1c127185 2230 if (!prev || expand_stack(prev, addr))
b6a2fea3 2231 return NULL;
cea10a19 2232 if (prev->vm_flags & VM_LOCKED)
fc05f566 2233 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
b6a2fea3
OW
2234 return prev;
2235}
2236#else
2237int expand_stack(struct vm_area_struct *vma, unsigned long address)
2238{
09884964
LT
2239 struct vm_area_struct *prev;
2240
2241 address &= PAGE_MASK;
2242 prev = vma->vm_prev;
2243 if (prev && prev->vm_end == address) {
2244 if (!(prev->vm_flags & VM_GROWSDOWN))
2245 return -ENOMEM;
2246 }
b6a2fea3
OW
2247 return expand_downwards(vma, address);
2248}
2249
1da177e4 2250struct vm_area_struct *
cc71aba3 2251find_extend_vma(struct mm_struct *mm, unsigned long addr)
1da177e4 2252{
cc71aba3 2253 struct vm_area_struct *vma;
1da177e4
LT
2254 unsigned long start;
2255
2256 addr &= PAGE_MASK;
cc71aba3 2257 vma = find_vma(mm, addr);
1da177e4
LT
2258 if (!vma)
2259 return NULL;
2260 if (vma->vm_start <= addr)
2261 return vma;
2262 if (!(vma->vm_flags & VM_GROWSDOWN))
2263 return NULL;
2264 start = vma->vm_start;
2265 if (expand_stack(vma, addr))
2266 return NULL;
cea10a19 2267 if (vma->vm_flags & VM_LOCKED)
fc05f566 2268 populate_vma_page_range(vma, addr, start, NULL);
1da177e4
LT
2269 return vma;
2270}
2271#endif
2272
e1d6d01a
JB
2273EXPORT_SYMBOL_GPL(find_extend_vma);
2274
1da177e4 2275/*
2c0b3814 2276 * Ok - we have the memory areas we should free on the vma list,
1da177e4 2277 * so release them, and do the vma updates.
2c0b3814
HD
2278 *
2279 * Called with the mm semaphore held.
1da177e4 2280 */
2c0b3814 2281static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1da177e4 2282{
4f74d2c8
LT
2283 unsigned long nr_accounted = 0;
2284
365e9c87
HD
2285 /* Update high watermark before we lower total_vm */
2286 update_hiwater_vm(mm);
1da177e4 2287 do {
2c0b3814
HD
2288 long nrpages = vma_pages(vma);
2289
4f74d2c8
LT
2290 if (vma->vm_flags & VM_ACCOUNT)
2291 nr_accounted += nrpages;
84638335 2292 vm_stat_account(mm, vma->vm_flags, -nrpages);
a8fb5618 2293 vma = remove_vma(vma);
146425a3 2294 } while (vma);
4f74d2c8 2295 vm_unacct_memory(nr_accounted);
1da177e4
LT
2296 validate_mm(mm);
2297}
2298
2299/*
2300 * Get rid of page table information in the indicated region.
2301 *
f10df686 2302 * Called with the mm semaphore held.
1da177e4
LT
2303 */
2304static void unmap_region(struct mm_struct *mm,
e0da382c
HD
2305 struct vm_area_struct *vma, struct vm_area_struct *prev,
2306 unsigned long start, unsigned long end)
1da177e4 2307{
cc71aba3 2308 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
d16dfc55 2309 struct mmu_gather tlb;
1da177e4
LT
2310
2311 lru_add_drain();
2b047252 2312 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 2313 update_hiwater_rss(mm);
4f74d2c8 2314 unmap_vmas(&tlb, vma, start, end);
d16dfc55 2315 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
6ee8630e 2316 next ? next->vm_start : USER_PGTABLES_CEILING);
d16dfc55 2317 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
2318}
2319
2320/*
2321 * Create a list of vma's touched by the unmap, removing them from the mm's
2322 * vma list as we go..
2323 */
2324static void
2325detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2326 struct vm_area_struct *prev, unsigned long end)
2327{
2328 struct vm_area_struct **insertion_point;
2329 struct vm_area_struct *tail_vma = NULL;
2330
2331 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
297c5eee 2332 vma->vm_prev = NULL;
1da177e4 2333 do {
d3737187 2334 vma_rb_erase(vma, &mm->mm_rb);
1da177e4
LT
2335 mm->map_count--;
2336 tail_vma = vma;
2337 vma = vma->vm_next;
2338 } while (vma && vma->vm_start < end);
2339 *insertion_point = vma;
d3737187 2340 if (vma) {
297c5eee 2341 vma->vm_prev = prev;
d3737187
ML
2342 vma_gap_update(vma);
2343 } else
2344 mm->highest_vm_end = prev ? prev->vm_end : 0;
1da177e4 2345 tail_vma->vm_next = NULL;
615d6e87
DB
2346
2347 /* Kill the cache */
2348 vmacache_invalidate(mm);
1da177e4
LT
2349}
2350
2351/*
659ace58
KM
2352 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2353 * munmap path where it doesn't make sense to fail.
1da177e4 2354 */
cc71aba3 2355static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2356 unsigned long addr, int new_below)
2357{
1da177e4 2358 struct vm_area_struct *new;
e3975891 2359 int err;
1da177e4 2360
a5516438
AK
2361 if (is_vm_hugetlb_page(vma) && (addr &
2362 ~(huge_page_mask(hstate_vma(vma)))))
1da177e4
LT
2363 return -EINVAL;
2364
e94b1766 2365 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1da177e4 2366 if (!new)
e3975891 2367 return -ENOMEM;
1da177e4
LT
2368
2369 /* most fields are the same, copy all, and then fixup */
2370 *new = *vma;
2371
5beb4930
RR
2372 INIT_LIST_HEAD(&new->anon_vma_chain);
2373
1da177e4
LT
2374 if (new_below)
2375 new->vm_end = addr;
2376 else {
2377 new->vm_start = addr;
2378 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2379 }
2380
ef0855d3
ON
2381 err = vma_dup_policy(vma, new);
2382 if (err)
5beb4930 2383 goto out_free_vma;
1da177e4 2384
c4ea95d7
DF
2385 err = anon_vma_clone(new, vma);
2386 if (err)
5beb4930
RR
2387 goto out_free_mpol;
2388
e9714acf 2389 if (new->vm_file)
1da177e4
LT
2390 get_file(new->vm_file);
2391
2392 if (new->vm_ops && new->vm_ops->open)
2393 new->vm_ops->open(new);
2394
2395 if (new_below)
5beb4930 2396 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1da177e4
LT
2397 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2398 else
5beb4930 2399 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1da177e4 2400
5beb4930
RR
2401 /* Success. */
2402 if (!err)
2403 return 0;
2404
2405 /* Clean everything up if vma_adjust failed. */
58927533
RR
2406 if (new->vm_ops && new->vm_ops->close)
2407 new->vm_ops->close(new);
e9714acf 2408 if (new->vm_file)
5beb4930 2409 fput(new->vm_file);
2aeadc30 2410 unlink_anon_vmas(new);
5beb4930 2411 out_free_mpol:
ef0855d3 2412 mpol_put(vma_policy(new));
5beb4930
RR
2413 out_free_vma:
2414 kmem_cache_free(vm_area_cachep, new);
5beb4930 2415 return err;
1da177e4
LT
2416}
2417
659ace58
KM
2418/*
2419 * Split a vma into two pieces at address 'addr', a new vma is allocated
2420 * either for the first part or the tail.
2421 */
2422int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2423 unsigned long addr, int new_below)
2424{
2425 if (mm->map_count >= sysctl_max_map_count)
2426 return -ENOMEM;
2427
2428 return __split_vma(mm, vma, addr, new_below);
2429}
2430
1da177e4
LT
2431/* Munmap is split into 2 main parts -- this part which finds
2432 * what needs doing, and the areas themselves, which do the
2433 * work. This now handles partial unmappings.
2434 * Jeremy Fitzhardinge <jeremy@goop.org>
2435 */
2436int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2437{
2438 unsigned long end;
146425a3 2439 struct vm_area_struct *vma, *prev, *last;
1da177e4 2440
de1741a1 2441 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1da177e4
LT
2442 return -EINVAL;
2443
cc71aba3 2444 len = PAGE_ALIGN(len);
2445 if (len == 0)
1da177e4
LT
2446 return -EINVAL;
2447
2448 /* Find the first overlapping VMA */
9be34c9d 2449 vma = find_vma(mm, start);
146425a3 2450 if (!vma)
1da177e4 2451 return 0;
9be34c9d 2452 prev = vma->vm_prev;
146425a3 2453 /* we have start < vma->vm_end */
1da177e4
LT
2454
2455 /* if it doesn't overlap, we have nothing.. */
2456 end = start + len;
146425a3 2457 if (vma->vm_start >= end)
1da177e4
LT
2458 return 0;
2459
2460 /*
2461 * If we need to split any vma, do it now to save pain later.
2462 *
2463 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2464 * unmapped vm_area_struct will remain in use: so lower split_vma
2465 * places tmp vma above, and higher split_vma places tmp vma below.
2466 */
146425a3 2467 if (start > vma->vm_start) {
659ace58
KM
2468 int error;
2469
2470 /*
2471 * Make sure that map_count on return from munmap() will
2472 * not exceed its limit; but let map_count go just above
2473 * its limit temporarily, to help free resources as expected.
2474 */
2475 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2476 return -ENOMEM;
2477
2478 error = __split_vma(mm, vma, start, 0);
1da177e4
LT
2479 if (error)
2480 return error;
146425a3 2481 prev = vma;
1da177e4
LT
2482 }
2483
2484 /* Does it split the last one? */
2485 last = find_vma(mm, end);
2486 if (last && end > last->vm_start) {
659ace58 2487 int error = __split_vma(mm, last, end, 1);
1da177e4
LT
2488 if (error)
2489 return error;
2490 }
cc71aba3 2491 vma = prev ? prev->vm_next : mm->mmap;
1da177e4 2492
ba470de4
RR
2493 /*
2494 * unlock any mlock()ed ranges before detaching vmas
2495 */
2496 if (mm->locked_vm) {
2497 struct vm_area_struct *tmp = vma;
2498 while (tmp && tmp->vm_start < end) {
2499 if (tmp->vm_flags & VM_LOCKED) {
2500 mm->locked_vm -= vma_pages(tmp);
2501 munlock_vma_pages_all(tmp);
2502 }
2503 tmp = tmp->vm_next;
2504 }
2505 }
2506
1da177e4
LT
2507 /*
2508 * Remove the vma's, and unmap the actual pages
2509 */
146425a3
HD
2510 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2511 unmap_region(mm, vma, prev, start, end);
1da177e4 2512
1de4fa14
DH
2513 arch_unmap(mm, vma, start, end);
2514
1da177e4 2515 /* Fix up all other VM information */
2c0b3814 2516 remove_vma_list(mm, vma);
1da177e4
LT
2517
2518 return 0;
2519}
1da177e4 2520
bfce281c 2521int vm_munmap(unsigned long start, size_t len)
1da177e4
LT
2522{
2523 int ret;
bfce281c 2524 struct mm_struct *mm = current->mm;
1da177e4 2525
ae798783
MH
2526 if (down_write_killable(&mm->mmap_sem))
2527 return -EINTR;
2528
a46ef99d 2529 ret = do_munmap(mm, start, len);
1da177e4
LT
2530 up_write(&mm->mmap_sem);
2531 return ret;
2532}
a46ef99d
LT
2533EXPORT_SYMBOL(vm_munmap);
2534
2535SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2536{
dc0ef0df
MH
2537 int ret;
2538 struct mm_struct *mm = current->mm;
2539
a46ef99d 2540 profile_munmap(addr);
dc0ef0df
MH
2541 if (down_write_killable(&mm->mmap_sem))
2542 return -EINTR;
2543 ret = do_munmap(mm, addr, len);
2544 up_write(&mm->mmap_sem);
2545 return ret;
a46ef99d 2546}
1da177e4 2547
c8d78c18
KS
2548
2549/*
2550 * Emulation of deprecated remap_file_pages() syscall.
2551 */
2552SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2553 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2554{
2555
2556 struct mm_struct *mm = current->mm;
2557 struct vm_area_struct *vma;
2558 unsigned long populate = 0;
2559 unsigned long ret = -EINVAL;
2560 struct file *file;
2561
756a025f
JP
2562 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2563 current->comm, current->pid);
c8d78c18
KS
2564
2565 if (prot)
2566 return ret;
2567 start = start & PAGE_MASK;
2568 size = size & PAGE_MASK;
2569
2570 if (start + size <= start)
2571 return ret;
2572
2573 /* Does pgoff wrap? */
2574 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2575 return ret;
2576
dc0ef0df
MH
2577 if (down_write_killable(&mm->mmap_sem))
2578 return -EINTR;
2579
c8d78c18
KS
2580 vma = find_vma(mm, start);
2581
2582 if (!vma || !(vma->vm_flags & VM_SHARED))
2583 goto out;
2584
48f7df32 2585 if (start < vma->vm_start)
c8d78c18
KS
2586 goto out;
2587
48f7df32
KS
2588 if (start + size > vma->vm_end) {
2589 struct vm_area_struct *next;
2590
2591 for (next = vma->vm_next; next; next = next->vm_next) {
2592 /* hole between vmas ? */
2593 if (next->vm_start != next->vm_prev->vm_end)
2594 goto out;
2595
2596 if (next->vm_file != vma->vm_file)
2597 goto out;
2598
2599 if (next->vm_flags != vma->vm_flags)
2600 goto out;
2601
2602 if (start + size <= next->vm_end)
2603 break;
2604 }
2605
2606 if (!next)
2607 goto out;
c8d78c18
KS
2608 }
2609
2610 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2611 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2612 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2613
2614 flags &= MAP_NONBLOCK;
2615 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2616 if (vma->vm_flags & VM_LOCKED) {
48f7df32 2617 struct vm_area_struct *tmp;
c8d78c18 2618 flags |= MAP_LOCKED;
48f7df32 2619
c8d78c18 2620 /* drop PG_Mlocked flag for over-mapped range */
48f7df32
KS
2621 for (tmp = vma; tmp->vm_start >= start + size;
2622 tmp = tmp->vm_next) {
9a73f61b
KS
2623 /*
2624 * Split pmd and munlock page on the border
2625 * of the range.
2626 */
2627 vma_adjust_trans_huge(tmp, start, start + size, 0);
2628
48f7df32
KS
2629 munlock_vma_pages_range(tmp,
2630 max(tmp->vm_start, start),
2631 min(tmp->vm_end, start + size));
2632 }
c8d78c18
KS
2633 }
2634
2635 file = get_file(vma->vm_file);
2636 ret = do_mmap_pgoff(vma->vm_file, start, size,
2637 prot, flags, pgoff, &populate);
2638 fput(file);
2639out:
2640 up_write(&mm->mmap_sem);
2641 if (populate)
2642 mm_populate(ret, populate);
2643 if (!IS_ERR_VALUE(ret))
2644 ret = 0;
2645 return ret;
2646}
2647
1da177e4
LT
2648static inline void verify_mm_writelocked(struct mm_struct *mm)
2649{
a241ec65 2650#ifdef CONFIG_DEBUG_VM
1da177e4
LT
2651 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2652 WARN_ON(1);
2653 up_read(&mm->mmap_sem);
2654 }
2655#endif
2656}
2657
2658/*
2659 * this is really a simplified "do_mmap". it only handles
2660 * anonymous maps. eventually we may be able to do some
2661 * brk-specific accounting here.
2662 */
ba093a6d 2663static int do_brk(unsigned long addr, unsigned long request)
1da177e4 2664{
cc71aba3 2665 struct mm_struct *mm = current->mm;
2666 struct vm_area_struct *vma, *prev;
ba093a6d 2667 unsigned long flags, len;
cc71aba3 2668 struct rb_node **rb_link, *rb_parent;
1da177e4 2669 pgoff_t pgoff = addr >> PAGE_SHIFT;
3a459756 2670 int error;
1da177e4 2671
ba093a6d
KC
2672 len = PAGE_ALIGN(request);
2673 if (len < request)
2674 return -ENOMEM;
1da177e4 2675 if (!len)
5d22fc25 2676 return 0;
1da177e4 2677
3a459756
KK
2678 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2679
2c6a1016 2680 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
de1741a1 2681 if (offset_in_page(error))
3a459756
KK
2682 return error;
2683
363ee17f
DB
2684 error = mlock_future_check(mm, mm->def_flags, len);
2685 if (error)
2686 return error;
1da177e4
LT
2687
2688 /*
2689 * mm->mmap_sem is required to protect against another thread
2690 * changing the mappings in case we sleep.
2691 */
2692 verify_mm_writelocked(mm);
2693
2694 /*
2695 * Clear old maps. this also does some error checking for us
2696 */
9fcd1457
RV
2697 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2698 &rb_parent)) {
1da177e4
LT
2699 if (do_munmap(mm, addr, len))
2700 return -ENOMEM;
1da177e4
LT
2701 }
2702
2703 /* Check against address space limits *after* clearing old maps... */
84638335 2704 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
1da177e4
LT
2705 return -ENOMEM;
2706
2707 if (mm->map_count > sysctl_max_map_count)
2708 return -ENOMEM;
2709
191c5424 2710 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1da177e4
LT
2711 return -ENOMEM;
2712
1da177e4 2713 /* Can we just expand an old private anonymous mapping? */
ba470de4 2714 vma = vma_merge(mm, prev, addr, addr + len, flags,
19a809af 2715 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
ba470de4 2716 if (vma)
1da177e4
LT
2717 goto out;
2718
2719 /*
2720 * create a vma struct for an anonymous mapping
2721 */
c5e3b83e 2722 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1da177e4
LT
2723 if (!vma) {
2724 vm_unacct_memory(len >> PAGE_SHIFT);
2725 return -ENOMEM;
2726 }
1da177e4 2727
5beb4930 2728 INIT_LIST_HEAD(&vma->anon_vma_chain);
1da177e4
LT
2729 vma->vm_mm = mm;
2730 vma->vm_start = addr;
2731 vma->vm_end = addr + len;
2732 vma->vm_pgoff = pgoff;
2733 vma->vm_flags = flags;
3ed75eb8 2734 vma->vm_page_prot = vm_get_page_prot(flags);
1da177e4
LT
2735 vma_link(mm, vma, prev, rb_link, rb_parent);
2736out:
3af9e859 2737 perf_event_mmap(vma);
1da177e4 2738 mm->total_vm += len >> PAGE_SHIFT;
84638335 2739 mm->data_vm += len >> PAGE_SHIFT;
128557ff
ML
2740 if (flags & VM_LOCKED)
2741 mm->locked_vm += (len >> PAGE_SHIFT);
d9104d1c 2742 vma->vm_flags |= VM_SOFTDIRTY;
5d22fc25 2743 return 0;
1da177e4
LT
2744}
2745
5d22fc25 2746int vm_brk(unsigned long addr, unsigned long len)
e4eb1ff6
LT
2747{
2748 struct mm_struct *mm = current->mm;
5d22fc25 2749 int ret;
128557ff 2750 bool populate;
e4eb1ff6 2751
2d6c9282
MH
2752 if (down_write_killable(&mm->mmap_sem))
2753 return -EINTR;
2754
e4eb1ff6 2755 ret = do_brk(addr, len);
128557ff 2756 populate = ((mm->def_flags & VM_LOCKED) != 0);
e4eb1ff6 2757 up_write(&mm->mmap_sem);
5d22fc25 2758 if (populate && !ret)
128557ff 2759 mm_populate(addr, len);
e4eb1ff6
LT
2760 return ret;
2761}
2762EXPORT_SYMBOL(vm_brk);
1da177e4
LT
2763
2764/* Release all mmaps. */
2765void exit_mmap(struct mm_struct *mm)
2766{
d16dfc55 2767 struct mmu_gather tlb;
ba470de4 2768 struct vm_area_struct *vma;
1da177e4
LT
2769 unsigned long nr_accounted = 0;
2770
d6dd61c8 2771 /* mm's last user has gone, and its about to be pulled down */
cddb8a5c 2772 mmu_notifier_release(mm);
d6dd61c8 2773
ba470de4
RR
2774 if (mm->locked_vm) {
2775 vma = mm->mmap;
2776 while (vma) {
2777 if (vma->vm_flags & VM_LOCKED)
2778 munlock_vma_pages_all(vma);
2779 vma = vma->vm_next;
2780 }
2781 }
9480c53e
JF
2782
2783 arch_exit_mmap(mm);
2784
ba470de4 2785 vma = mm->mmap;
9480c53e
JF
2786 if (!vma) /* Can happen if dup_mmap() received an OOM */
2787 return;
2788
1da177e4 2789 lru_add_drain();
1da177e4 2790 flush_cache_mm(mm);
2b047252 2791 tlb_gather_mmu(&tlb, mm, 0, -1);
901608d9 2792 /* update_hiwater_rss(mm) here? but nobody should be looking */
e0da382c 2793 /* Use -1 here to ensure all VMAs in the mm are unmapped */
4f74d2c8 2794 unmap_vmas(&tlb, vma, 0, -1);
9ba69294 2795
6ee8630e 2796 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
853f5e26 2797 tlb_finish_mmu(&tlb, 0, -1);
1da177e4 2798
1da177e4 2799 /*
8f4f8c16
HD
2800 * Walk the list again, actually closing and freeing it,
2801 * with preemption enabled, without holding any MM locks.
1da177e4 2802 */
4f74d2c8
LT
2803 while (vma) {
2804 if (vma->vm_flags & VM_ACCOUNT)
2805 nr_accounted += vma_pages(vma);
a8fb5618 2806 vma = remove_vma(vma);
4f74d2c8
LT
2807 }
2808 vm_unacct_memory(nr_accounted);
1da177e4
LT
2809}
2810
2811/* Insert vm structure into process list sorted by address
2812 * and into the inode's i_mmap tree. If vm_file is non-NULL
c8c06efa 2813 * then i_mmap_rwsem is taken here.
1da177e4 2814 */
6597d783 2815int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1da177e4 2816{
6597d783
HD
2817 struct vm_area_struct *prev;
2818 struct rb_node **rb_link, *rb_parent;
1da177e4 2819
c9d13f5f
CG
2820 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2821 &prev, &rb_link, &rb_parent))
2822 return -ENOMEM;
2823 if ((vma->vm_flags & VM_ACCOUNT) &&
2824 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2825 return -ENOMEM;
2826
1da177e4
LT
2827 /*
2828 * The vm_pgoff of a purely anonymous vma should be irrelevant
2829 * until its first write fault, when page's anon_vma and index
2830 * are set. But now set the vm_pgoff it will almost certainly
2831 * end up with (unless mremap moves it elsewhere before that
2832 * first wfault), so /proc/pid/maps tells a consistent story.
2833 *
2834 * By setting it to reflect the virtual start address of the
2835 * vma, merges and splits can happen in a seamless way, just
2836 * using the existing file pgoff checks and manipulations.
2837 * Similarly in do_mmap_pgoff and in do_brk.
2838 */
8a9cc3b5 2839 if (vma_is_anonymous(vma)) {
1da177e4
LT
2840 BUG_ON(vma->anon_vma);
2841 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2842 }
2b144498 2843
1da177e4
LT
2844 vma_link(mm, vma, prev, rb_link, rb_parent);
2845 return 0;
2846}
2847
2848/*
2849 * Copy the vma structure to a new location in the same mm,
2850 * prior to moving page table entries, to effect an mremap move.
2851 */
2852struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
38a76013
ML
2853 unsigned long addr, unsigned long len, pgoff_t pgoff,
2854 bool *need_rmap_locks)
1da177e4
LT
2855{
2856 struct vm_area_struct *vma = *vmap;
2857 unsigned long vma_start = vma->vm_start;
2858 struct mm_struct *mm = vma->vm_mm;
2859 struct vm_area_struct *new_vma, *prev;
2860 struct rb_node **rb_link, *rb_parent;
948f017b 2861 bool faulted_in_anon_vma = true;
1da177e4
LT
2862
2863 /*
2864 * If anonymous vma has not yet been faulted, update new pgoff
2865 * to match new location, to increase its chance of merging.
2866 */
ce75799b 2867 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1da177e4 2868 pgoff = addr >> PAGE_SHIFT;
948f017b
AA
2869 faulted_in_anon_vma = false;
2870 }
1da177e4 2871
6597d783
HD
2872 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2873 return NULL; /* should never get here */
1da177e4 2874 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
19a809af
AA
2875 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2876 vma->vm_userfaultfd_ctx);
1da177e4
LT
2877 if (new_vma) {
2878 /*
2879 * Source vma may have been merged into new_vma
2880 */
948f017b
AA
2881 if (unlikely(vma_start >= new_vma->vm_start &&
2882 vma_start < new_vma->vm_end)) {
2883 /*
2884 * The only way we can get a vma_merge with
2885 * self during an mremap is if the vma hasn't
2886 * been faulted in yet and we were allowed to
2887 * reset the dst vma->vm_pgoff to the
2888 * destination address of the mremap to allow
2889 * the merge to happen. mremap must change the
2890 * vm_pgoff linearity between src and dst vmas
2891 * (in turn preventing a vma_merge) to be
2892 * safe. It is only safe to keep the vm_pgoff
2893 * linear if there are no pages mapped yet.
2894 */
81d1b09c 2895 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
38a76013 2896 *vmap = vma = new_vma;
108d6642 2897 }
38a76013 2898 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1da177e4 2899 } else {
e94b1766 2900 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
e3975891
CG
2901 if (!new_vma)
2902 goto out;
2903 *new_vma = *vma;
2904 new_vma->vm_start = addr;
2905 new_vma->vm_end = addr + len;
2906 new_vma->vm_pgoff = pgoff;
2907 if (vma_dup_policy(vma, new_vma))
2908 goto out_free_vma;
2909 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2910 if (anon_vma_clone(new_vma, vma))
2911 goto out_free_mempol;
2912 if (new_vma->vm_file)
2913 get_file(new_vma->vm_file);
2914 if (new_vma->vm_ops && new_vma->vm_ops->open)
2915 new_vma->vm_ops->open(new_vma);
2916 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2917 *need_rmap_locks = false;
1da177e4
LT
2918 }
2919 return new_vma;
5beb4930 2920
e3975891 2921out_free_mempol:
ef0855d3 2922 mpol_put(vma_policy(new_vma));
e3975891 2923out_free_vma:
5beb4930 2924 kmem_cache_free(vm_area_cachep, new_vma);
e3975891 2925out:
5beb4930 2926 return NULL;
1da177e4 2927}
119f657c 2928
2929/*
2930 * Return true if the calling process may expand its vm space by the passed
2931 * number of pages
2932 */
84638335 2933bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
119f657c 2934{
84638335
KK
2935 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2936 return false;
119f657c 2937
d977d56c
KK
2938 if (is_data_mapping(flags) &&
2939 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
f4fcd558
KK
2940 /* Workaround for Valgrind */
2941 if (rlimit(RLIMIT_DATA) == 0 &&
2942 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
2943 return true;
2944 if (!ignore_rlimit_data) {
2945 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
d977d56c
KK
2946 current->comm, current->pid,
2947 (mm->data_vm + npages) << PAGE_SHIFT,
2948 rlimit(RLIMIT_DATA));
d977d56c 2949 return false;
f4fcd558 2950 }
d977d56c 2951 }
119f657c 2952
84638335
KK
2953 return true;
2954}
2955
2956void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2957{
2958 mm->total_vm += npages;
2959
d977d56c 2960 if (is_exec_mapping(flags))
84638335 2961 mm->exec_vm += npages;
d977d56c 2962 else if (is_stack_mapping(flags))
84638335 2963 mm->stack_vm += npages;
d977d56c 2964 else if (is_data_mapping(flags))
84638335 2965 mm->data_vm += npages;
119f657c 2966}
fa5dc22f 2967
a62c34bd
AL
2968static int special_mapping_fault(struct vm_area_struct *vma,
2969 struct vm_fault *vmf);
2970
2971/*
2972 * Having a close hook prevents vma merging regardless of flags.
2973 */
2974static void special_mapping_close(struct vm_area_struct *vma)
2975{
2976}
2977
2978static const char *special_mapping_name(struct vm_area_struct *vma)
2979{
2980 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2981}
2982
b059a453
DS
2983static int special_mapping_mremap(struct vm_area_struct *new_vma)
2984{
2985 struct vm_special_mapping *sm = new_vma->vm_private_data;
2986
2987 if (sm->mremap)
2988 return sm->mremap(sm, new_vma);
2989 return 0;
2990}
2991
a62c34bd
AL
2992static const struct vm_operations_struct special_mapping_vmops = {
2993 .close = special_mapping_close,
2994 .fault = special_mapping_fault,
b059a453 2995 .mremap = special_mapping_mremap,
a62c34bd
AL
2996 .name = special_mapping_name,
2997};
2998
2999static const struct vm_operations_struct legacy_special_mapping_vmops = {
3000 .close = special_mapping_close,
3001 .fault = special_mapping_fault,
3002};
fa5dc22f 3003
b1d0e4f5
NP
3004static int special_mapping_fault(struct vm_area_struct *vma,
3005 struct vm_fault *vmf)
fa5dc22f 3006{
b1d0e4f5 3007 pgoff_t pgoff;
fa5dc22f
RM
3008 struct page **pages;
3009
f872f540 3010 if (vma->vm_ops == &legacy_special_mapping_vmops) {
a62c34bd 3011 pages = vma->vm_private_data;
f872f540
AL
3012 } else {
3013 struct vm_special_mapping *sm = vma->vm_private_data;
3014
3015 if (sm->fault)
3016 return sm->fault(sm, vma, vmf);
3017
3018 pages = sm->pages;
3019 }
a62c34bd 3020
8a9cc3b5 3021 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
b1d0e4f5 3022 pgoff--;
fa5dc22f
RM
3023
3024 if (*pages) {
3025 struct page *page = *pages;
3026 get_page(page);
b1d0e4f5
NP
3027 vmf->page = page;
3028 return 0;
fa5dc22f
RM
3029 }
3030
b1d0e4f5 3031 return VM_FAULT_SIGBUS;
fa5dc22f
RM
3032}
3033
a62c34bd
AL
3034static struct vm_area_struct *__install_special_mapping(
3035 struct mm_struct *mm,
3036 unsigned long addr, unsigned long len,
27f28b97
CG
3037 unsigned long vm_flags, void *priv,
3038 const struct vm_operations_struct *ops)
fa5dc22f 3039{
462e635e 3040 int ret;
fa5dc22f
RM
3041 struct vm_area_struct *vma;
3042
3043 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3044 if (unlikely(vma == NULL))
3935ed6a 3045 return ERR_PTR(-ENOMEM);
fa5dc22f 3046
5beb4930 3047 INIT_LIST_HEAD(&vma->anon_vma_chain);
fa5dc22f
RM
3048 vma->vm_mm = mm;
3049 vma->vm_start = addr;
3050 vma->vm_end = addr + len;
3051
d9104d1c 3052 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3ed75eb8 3053 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
fa5dc22f 3054
a62c34bd
AL
3055 vma->vm_ops = ops;
3056 vma->vm_private_data = priv;
fa5dc22f 3057
462e635e
TO
3058 ret = insert_vm_struct(mm, vma);
3059 if (ret)
3060 goto out;
fa5dc22f 3061
84638335 3062 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
fa5dc22f 3063
cdd6c482 3064 perf_event_mmap(vma);
089dd79d 3065
3935ed6a 3066 return vma;
462e635e
TO
3067
3068out:
3069 kmem_cache_free(vm_area_cachep, vma);
3935ed6a
SS
3070 return ERR_PTR(ret);
3071}
3072
2eefd878
DS
3073bool vma_is_special_mapping(const struct vm_area_struct *vma,
3074 const struct vm_special_mapping *sm)
3075{
3076 return vma->vm_private_data == sm &&
3077 (vma->vm_ops == &special_mapping_vmops ||
3078 vma->vm_ops == &legacy_special_mapping_vmops);
3079}
3080
a62c34bd
AL
3081/*
3082 * Called with mm->mmap_sem held for writing.
3083 * Insert a new vma covering the given region, with the given flags.
3084 * Its pages are supplied by the given array of struct page *.
3085 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3086 * The region past the last page supplied will always produce SIGBUS.
3087 * The array pointer and the pages it points to are assumed to stay alive
3088 * for as long as this mapping might exist.
3089 */
3090struct vm_area_struct *_install_special_mapping(
3091 struct mm_struct *mm,
3092 unsigned long addr, unsigned long len,
3093 unsigned long vm_flags, const struct vm_special_mapping *spec)
3094{
27f28b97
CG
3095 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3096 &special_mapping_vmops);
a62c34bd
AL
3097}
3098
3935ed6a
SS
3099int install_special_mapping(struct mm_struct *mm,
3100 unsigned long addr, unsigned long len,
3101 unsigned long vm_flags, struct page **pages)
3102{
a62c34bd 3103 struct vm_area_struct *vma = __install_special_mapping(
27f28b97
CG
3104 mm, addr, len, vm_flags, (void *)pages,
3105 &legacy_special_mapping_vmops);
3935ed6a 3106
14bd5b45 3107 return PTR_ERR_OR_ZERO(vma);
fa5dc22f 3108}
7906d00c
AA
3109
3110static DEFINE_MUTEX(mm_all_locks_mutex);
3111
454ed842 3112static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
7906d00c 3113{
bf181b9f 3114 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
7906d00c
AA
3115 /*
3116 * The LSB of head.next can't change from under us
3117 * because we hold the mm_all_locks_mutex.
3118 */
572043c9 3119 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
7906d00c
AA
3120 /*
3121 * We can safely modify head.next after taking the
5a505085 3122 * anon_vma->root->rwsem. If some other vma in this mm shares
7906d00c
AA
3123 * the same anon_vma we won't take it again.
3124 *
3125 * No need of atomic instructions here, head.next
3126 * can't change from under us thanks to the
5a505085 3127 * anon_vma->root->rwsem.
7906d00c
AA
3128 */
3129 if (__test_and_set_bit(0, (unsigned long *)
bf181b9f 3130 &anon_vma->root->rb_root.rb_node))
7906d00c
AA
3131 BUG();
3132 }
3133}
3134
454ed842 3135static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
7906d00c
AA
3136{
3137 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3138 /*
3139 * AS_MM_ALL_LOCKS can't change from under us because
3140 * we hold the mm_all_locks_mutex.
3141 *
3142 * Operations on ->flags have to be atomic because
3143 * even if AS_MM_ALL_LOCKS is stable thanks to the
3144 * mm_all_locks_mutex, there may be other cpus
3145 * changing other bitflags in parallel to us.
3146 */
3147 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3148 BUG();
c8c06efa 3149 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
7906d00c
AA
3150 }
3151}
3152
3153/*
3154 * This operation locks against the VM for all pte/vma/mm related
3155 * operations that could ever happen on a certain mm. This includes
3156 * vmtruncate, try_to_unmap, and all page faults.
3157 *
3158 * The caller must take the mmap_sem in write mode before calling
3159 * mm_take_all_locks(). The caller isn't allowed to release the
3160 * mmap_sem until mm_drop_all_locks() returns.
3161 *
3162 * mmap_sem in write mode is required in order to block all operations
3163 * that could modify pagetables and free pages without need of
27ba0644 3164 * altering the vma layout. It's also needed in write mode to avoid new
7906d00c
AA
3165 * anon_vmas to be associated with existing vmas.
3166 *
3167 * A single task can't take more than one mm_take_all_locks() in a row
3168 * or it would deadlock.
3169 *
bf181b9f 3170 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
7906d00c
AA
3171 * mapping->flags avoid to take the same lock twice, if more than one
3172 * vma in this mm is backed by the same anon_vma or address_space.
3173 *
88f306b6
KS
3174 * We take locks in following order, accordingly to comment at beginning
3175 * of mm/rmap.c:
3176 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3177 * hugetlb mapping);
3178 * - all i_mmap_rwsem locks;
3179 * - all anon_vma->rwseml
3180 *
3181 * We can take all locks within these types randomly because the VM code
3182 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3183 * mm_all_locks_mutex.
7906d00c
AA
3184 *
3185 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3186 * that may have to take thousand of locks.
3187 *
3188 * mm_take_all_locks() can fail if it's interrupted by signals.
3189 */
3190int mm_take_all_locks(struct mm_struct *mm)
3191{
3192 struct vm_area_struct *vma;
5beb4930 3193 struct anon_vma_chain *avc;
7906d00c
AA
3194
3195 BUG_ON(down_read_trylock(&mm->mmap_sem));
3196
3197 mutex_lock(&mm_all_locks_mutex);
3198
3199 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3200 if (signal_pending(current))
3201 goto out_unlock;
88f306b6
KS
3202 if (vma->vm_file && vma->vm_file->f_mapping &&
3203 is_vm_hugetlb_page(vma))
3204 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3205 }
3206
3207 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3208 if (signal_pending(current))
3209 goto out_unlock;
3210 if (vma->vm_file && vma->vm_file->f_mapping &&
3211 !is_vm_hugetlb_page(vma))
454ed842 3212 vm_lock_mapping(mm, vma->vm_file->f_mapping);
7906d00c 3213 }
7cd5a02f
PZ
3214
3215 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3216 if (signal_pending(current))
3217 goto out_unlock;
3218 if (vma->anon_vma)
5beb4930
RR
3219 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3220 vm_lock_anon_vma(mm, avc->anon_vma);
7906d00c 3221 }
7cd5a02f 3222
584cff54 3223 return 0;
7906d00c
AA
3224
3225out_unlock:
584cff54
KC
3226 mm_drop_all_locks(mm);
3227 return -EINTR;
7906d00c
AA
3228}
3229
3230static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3231{
bf181b9f 3232 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
7906d00c
AA
3233 /*
3234 * The LSB of head.next can't change to 0 from under
3235 * us because we hold the mm_all_locks_mutex.
3236 *
3237 * We must however clear the bitflag before unlocking
bf181b9f 3238 * the vma so the users using the anon_vma->rb_root will
7906d00c
AA
3239 * never see our bitflag.
3240 *
3241 * No need of atomic instructions here, head.next
3242 * can't change from under us until we release the
5a505085 3243 * anon_vma->root->rwsem.
7906d00c
AA
3244 */
3245 if (!__test_and_clear_bit(0, (unsigned long *)
bf181b9f 3246 &anon_vma->root->rb_root.rb_node))
7906d00c 3247 BUG();
08b52706 3248 anon_vma_unlock_write(anon_vma);
7906d00c
AA
3249 }
3250}
3251
3252static void vm_unlock_mapping(struct address_space *mapping)
3253{
3254 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3255 /*
3256 * AS_MM_ALL_LOCKS can't change to 0 from under us
3257 * because we hold the mm_all_locks_mutex.
3258 */
83cde9e8 3259 i_mmap_unlock_write(mapping);
7906d00c
AA
3260 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3261 &mapping->flags))
3262 BUG();
3263 }
3264}
3265
3266/*
3267 * The mmap_sem cannot be released by the caller until
3268 * mm_drop_all_locks() returns.
3269 */
3270void mm_drop_all_locks(struct mm_struct *mm)
3271{
3272 struct vm_area_struct *vma;
5beb4930 3273 struct anon_vma_chain *avc;
7906d00c
AA
3274
3275 BUG_ON(down_read_trylock(&mm->mmap_sem));
3276 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3277
3278 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3279 if (vma->anon_vma)
5beb4930
RR
3280 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3281 vm_unlock_anon_vma(avc->anon_vma);
7906d00c
AA
3282 if (vma->vm_file && vma->vm_file->f_mapping)
3283 vm_unlock_mapping(vma->vm_file->f_mapping);
3284 }
3285
3286 mutex_unlock(&mm_all_locks_mutex);
3287}
8feae131
DH
3288
3289/*
3290 * initialise the VMA slab
3291 */
3292void __init mmap_init(void)
3293{
00a62ce9
KM
3294 int ret;
3295
908c7f19 3296 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
00a62ce9 3297 VM_BUG_ON(ret);
8feae131 3298}
c9b1d098
AS
3299
3300/*
3301 * Initialise sysctl_user_reserve_kbytes.
3302 *
3303 * This is intended to prevent a user from starting a single memory hogging
3304 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3305 * mode.
3306 *
3307 * The default value is min(3% of free memory, 128MB)
3308 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3309 */
1640879a 3310static int init_user_reserve(void)
c9b1d098
AS
3311{
3312 unsigned long free_kbytes;
3313
3314 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3315
3316 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3317 return 0;
3318}
a64fb3cd 3319subsys_initcall(init_user_reserve);
4eeab4f5
AS
3320
3321/*
3322 * Initialise sysctl_admin_reserve_kbytes.
3323 *
3324 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3325 * to log in and kill a memory hogging process.
3326 *
3327 * Systems with more than 256MB will reserve 8MB, enough to recover
3328 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3329 * only reserve 3% of free pages by default.
3330 */
1640879a 3331static int init_admin_reserve(void)
4eeab4f5
AS
3332{
3333 unsigned long free_kbytes;
3334
3335 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3336
3337 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3338 return 0;
3339}
a64fb3cd 3340subsys_initcall(init_admin_reserve);
1640879a
AS
3341
3342/*
3343 * Reinititalise user and admin reserves if memory is added or removed.
3344 *
3345 * The default user reserve max is 128MB, and the default max for the
3346 * admin reserve is 8MB. These are usually, but not always, enough to
3347 * enable recovery from a memory hogging process using login/sshd, a shell,
3348 * and tools like top. It may make sense to increase or even disable the
3349 * reserve depending on the existence of swap or variations in the recovery
3350 * tools. So, the admin may have changed them.
3351 *
3352 * If memory is added and the reserves have been eliminated or increased above
3353 * the default max, then we'll trust the admin.
3354 *
3355 * If memory is removed and there isn't enough free memory, then we
3356 * need to reset the reserves.
3357 *
3358 * Otherwise keep the reserve set by the admin.
3359 */
3360static int reserve_mem_notifier(struct notifier_block *nb,
3361 unsigned long action, void *data)
3362{
3363 unsigned long tmp, free_kbytes;
3364
3365 switch (action) {
3366 case MEM_ONLINE:
3367 /* Default max is 128MB. Leave alone if modified by operator. */
3368 tmp = sysctl_user_reserve_kbytes;
3369 if (0 < tmp && tmp < (1UL << 17))
3370 init_user_reserve();
3371
3372 /* Default max is 8MB. Leave alone if modified by operator. */
3373 tmp = sysctl_admin_reserve_kbytes;
3374 if (0 < tmp && tmp < (1UL << 13))
3375 init_admin_reserve();
3376
3377 break;
3378 case MEM_OFFLINE:
3379 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3380
3381 if (sysctl_user_reserve_kbytes > free_kbytes) {
3382 init_user_reserve();
3383 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3384 sysctl_user_reserve_kbytes);
3385 }
3386
3387 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3388 init_admin_reserve();
3389 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3390 sysctl_admin_reserve_kbytes);
3391 }
3392 break;
3393 default:
3394 break;
3395 }
3396 return NOTIFY_OK;
3397}
3398
3399static struct notifier_block reserve_mem_nb = {
3400 .notifier_call = reserve_mem_notifier,
3401};
3402
3403static int __meminit init_reserve_notifier(void)
3404{
3405 if (register_hotmemory_notifier(&reserve_mem_nb))
b1de0d13 3406 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
1640879a
AS
3407
3408 return 0;
3409}
a64fb3cd 3410subsys_initcall(init_reserve_notifier);