]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page-writeback.c
net/atm/mpc: Avoid open-coded assignment of timer callback function
[thirdparty/kernel/linux.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
90eec103 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
f361bf4a 39#include <linux/sched/signal.h>
6e543d57 40#include <linux/mm_inline.h>
028c2dd1 41#include <trace/events/writeback.h>
1da177e4 42
6e543d57
LD
43#include "internal.h"
44
ffd1f609
WF
45/*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48#define MAX_PAUSE max(HZ/5, 1)
49
5b9b3574
WF
50/*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
e98be2d5
WF
56/*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59#define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
6c14ae1e
WF
61#define RATELIMIT_CALC_SHIFT 10
62
1da177e4
LT
63/*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67static long ratelimit_pages = 32;
68
1da177e4
LT
69/* The following parameters are exported via /proc/sys/vm */
70
71/*
5b0830cb 72 * Start background writeback (via writeback threads) at this percentage
1da177e4 73 */
1b5e62b4 74int dirty_background_ratio = 10;
1da177e4 75
2da02997
DR
76/*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80unsigned long dirty_background_bytes;
81
195cf453
BG
82/*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86int vm_highmem_is_dirtyable;
87
1da177e4
LT
88/*
89 * The generator of dirty data starts writeback at this percentage
90 */
1b5e62b4 91int vm_dirty_ratio = 20;
1da177e4 92
2da02997
DR
93/*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97unsigned long vm_dirty_bytes;
98
1da177e4 99/*
704503d8 100 * The interval between `kupdate'-style writebacks
1da177e4 101 */
22ef37ee 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 103
91913a29
AB
104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
1da177e4 106/*
704503d8 107 * The longest time for which data is allowed to remain dirty
1da177e4 108 */
22ef37ee 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
110
111/*
112 * Flag that makes the machine dump writes/reads and block dirtyings.
113 */
114int block_dump;
115
116/*
ed5b43f1
BS
117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
119 */
120int laptop_mode;
121
122EXPORT_SYMBOL(laptop_mode);
123
124/* End of sysctl-exported parameters */
125
dcc25ae7 126struct wb_domain global_wb_domain;
1da177e4 127
2bc00aef
TH
128/* consolidated parameters for balance_dirty_pages() and its subroutines */
129struct dirty_throttle_control {
e9f07dfd
TH
130#ifdef CONFIG_CGROUP_WRITEBACK
131 struct wb_domain *dom;
9fc3a43e 132 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 133#endif
2bc00aef 134 struct bdi_writeback *wb;
e9770b34 135 struct fprop_local_percpu *wb_completions;
eb608e3a 136
9fc3a43e 137 unsigned long avail; /* dirtyable */
2bc00aef
TH
138 unsigned long dirty; /* file_dirty + write + nfs */
139 unsigned long thresh; /* dirty threshold */
140 unsigned long bg_thresh; /* dirty background threshold */
141
142 unsigned long wb_dirty; /* per-wb counterparts */
143 unsigned long wb_thresh;
970fb01a 144 unsigned long wb_bg_thresh;
daddfa3c
TH
145
146 unsigned long pos_ratio;
2bc00aef
TH
147};
148
eb608e3a
JK
149/*
150 * Length of period for aging writeout fractions of bdis. This is an
151 * arbitrarily chosen number. The longer the period, the slower fractions will
152 * reflect changes in current writeout rate.
153 */
154#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 155
693108a8
TH
156#ifdef CONFIG_CGROUP_WRITEBACK
157
d60d1bdd
TH
158#define GDTC_INIT(__wb) .wb = (__wb), \
159 .dom = &global_wb_domain, \
160 .wb_completions = &(__wb)->completions
161
9fc3a43e 162#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
163
164#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
165 .dom = mem_cgroup_wb_domain(__wb), \
166 .wb_completions = &(__wb)->memcg_completions, \
167 .gdtc = __gdtc
c2aa723a
TH
168
169static bool mdtc_valid(struct dirty_throttle_control *dtc)
170{
171 return dtc->dom;
172}
e9f07dfd
TH
173
174static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175{
176 return dtc->dom;
177}
178
9fc3a43e
TH
179static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180{
181 return mdtc->gdtc;
182}
183
841710aa
TH
184static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185{
186 return &wb->memcg_completions;
187}
188
693108a8
TH
189static void wb_min_max_ratio(struct bdi_writeback *wb,
190 unsigned long *minp, unsigned long *maxp)
191{
192 unsigned long this_bw = wb->avg_write_bandwidth;
193 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194 unsigned long long min = wb->bdi->min_ratio;
195 unsigned long long max = wb->bdi->max_ratio;
196
197 /*
198 * @wb may already be clean by the time control reaches here and
199 * the total may not include its bw.
200 */
201 if (this_bw < tot_bw) {
202 if (min) {
203 min *= this_bw;
204 do_div(min, tot_bw);
205 }
206 if (max < 100) {
207 max *= this_bw;
208 do_div(max, tot_bw);
209 }
210 }
211
212 *minp = min;
213 *maxp = max;
214}
215
216#else /* CONFIG_CGROUP_WRITEBACK */
217
d60d1bdd
TH
218#define GDTC_INIT(__wb) .wb = (__wb), \
219 .wb_completions = &(__wb)->completions
9fc3a43e 220#define GDTC_INIT_NO_WB
c2aa723a
TH
221#define MDTC_INIT(__wb, __gdtc)
222
223static bool mdtc_valid(struct dirty_throttle_control *dtc)
224{
225 return false;
226}
e9f07dfd
TH
227
228static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229{
230 return &global_wb_domain;
231}
232
9fc3a43e
TH
233static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234{
235 return NULL;
236}
237
841710aa
TH
238static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239{
240 return NULL;
241}
242
693108a8
TH
243static void wb_min_max_ratio(struct bdi_writeback *wb,
244 unsigned long *minp, unsigned long *maxp)
245{
246 *minp = wb->bdi->min_ratio;
247 *maxp = wb->bdi->max_ratio;
248}
249
250#endif /* CONFIG_CGROUP_WRITEBACK */
251
a756cf59
JW
252/*
253 * In a memory zone, there is a certain amount of pages we consider
254 * available for the page cache, which is essentially the number of
255 * free and reclaimable pages, minus some zone reserves to protect
256 * lowmem and the ability to uphold the zone's watermarks without
257 * requiring writeback.
258 *
259 * This number of dirtyable pages is the base value of which the
260 * user-configurable dirty ratio is the effictive number of pages that
261 * are allowed to be actually dirtied. Per individual zone, or
262 * globally by using the sum of dirtyable pages over all zones.
263 *
264 * Because the user is allowed to specify the dirty limit globally as
265 * absolute number of bytes, calculating the per-zone dirty limit can
266 * require translating the configured limit into a percentage of
267 * global dirtyable memory first.
268 */
269
a804552b 270/**
281e3726
MG
271 * node_dirtyable_memory - number of dirtyable pages in a node
272 * @pgdat: the node
a804552b 273 *
281e3726
MG
274 * Returns the node's number of pages potentially available for dirty
275 * page cache. This is the base value for the per-node dirty limits.
a804552b 276 */
281e3726 277static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 278{
281e3726
MG
279 unsigned long nr_pages = 0;
280 int z;
281
282 for (z = 0; z < MAX_NR_ZONES; z++) {
283 struct zone *zone = pgdat->node_zones + z;
284
285 if (!populated_zone(zone))
286 continue;
287
288 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289 }
a804552b 290
a8d01437
JW
291 /*
292 * Pages reserved for the kernel should not be considered
293 * dirtyable, to prevent a situation where reclaim has to
294 * clean pages in order to balance the zones.
295 */
281e3726 296 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 297
281e3726
MG
298 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
300
301 return nr_pages;
302}
303
1edf2234
JW
304static unsigned long highmem_dirtyable_memory(unsigned long total)
305{
306#ifdef CONFIG_HIGHMEM
307 int node;
bb4cc2be 308 unsigned long x = 0;
09b4ab3c 309 int i;
1edf2234
JW
310
311 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
312 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313 struct zone *z;
9cb937e2 314 unsigned long nr_pages;
281e3726
MG
315
316 if (!is_highmem_idx(i))
317 continue;
318
319 z = &NODE_DATA(node)->node_zones[i];
9cb937e2
MK
320 if (!populated_zone(z))
321 continue;
1edf2234 322
9cb937e2 323 nr_pages = zone_page_state(z, NR_FREE_PAGES);
281e3726 324 /* watch for underflows */
9cb937e2 325 nr_pages -= min(nr_pages, high_wmark_pages(z));
bb4cc2be
MG
326 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 x += nr_pages;
09b4ab3c 329 }
1edf2234 330 }
281e3726 331
c8b74c2f
SR
332 /*
333 * Unreclaimable memory (kernel memory or anonymous memory
334 * without swap) can bring down the dirtyable pages below
335 * the zone's dirty balance reserve and the above calculation
336 * will underflow. However we still want to add in nodes
337 * which are below threshold (negative values) to get a more
338 * accurate calculation but make sure that the total never
339 * underflows.
340 */
341 if ((long)x < 0)
342 x = 0;
343
1edf2234
JW
344 /*
345 * Make sure that the number of highmem pages is never larger
346 * than the number of the total dirtyable memory. This can only
347 * occur in very strange VM situations but we want to make sure
348 * that this does not occur.
349 */
350 return min(x, total);
351#else
352 return 0;
353#endif
354}
355
356/**
ccafa287 357 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 358 *
ccafa287
JW
359 * Returns the global number of pages potentially available for dirty
360 * page cache. This is the base value for the global dirty limits.
1edf2234 361 */
18cf8cf8 362static unsigned long global_dirtyable_memory(void)
1edf2234
JW
363{
364 unsigned long x;
365
c41f012a 366 x = global_zone_page_state(NR_FREE_PAGES);
a8d01437
JW
367 /*
368 * Pages reserved for the kernel should not be considered
369 * dirtyable, to prevent a situation where reclaim has to
370 * clean pages in order to balance the zones.
371 */
372 x -= min(x, totalreserve_pages);
1edf2234 373
599d0c95
MG
374 x += global_node_page_state(NR_INACTIVE_FILE);
375 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 376
1edf2234
JW
377 if (!vm_highmem_is_dirtyable)
378 x -= highmem_dirtyable_memory(x);
379
380 return x + 1; /* Ensure that we never return 0 */
381}
382
9fc3a43e
TH
383/**
384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385 * @dtc: dirty_throttle_control of interest
ccafa287 386 *
9fc3a43e
TH
387 * Calculate @dtc->thresh and ->bg_thresh considering
388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
389 * must ensure that @dtc->avail is set before calling this function. The
390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ccafa287
JW
391 * real-time tasks.
392 */
9fc3a43e 393static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 394{
9fc3a43e
TH
395 const unsigned long available_memory = dtc->avail;
396 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
397 unsigned long bytes = vm_dirty_bytes;
398 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
399 /* convert ratios to per-PAGE_SIZE for higher precision */
400 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
401 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
402 unsigned long thresh;
403 unsigned long bg_thresh;
ccafa287
JW
404 struct task_struct *tsk;
405
9fc3a43e
TH
406 /* gdtc is !NULL iff @dtc is for memcg domain */
407 if (gdtc) {
408 unsigned long global_avail = gdtc->avail;
409
410 /*
411 * The byte settings can't be applied directly to memcg
412 * domains. Convert them to ratios by scaling against
62a584fe
TH
413 * globally available memory. As the ratios are in
414 * per-PAGE_SIZE, they can be obtained by dividing bytes by
415 * number of pages.
9fc3a43e
TH
416 */
417 if (bytes)
62a584fe
TH
418 ratio = min(DIV_ROUND_UP(bytes, global_avail),
419 PAGE_SIZE);
9fc3a43e 420 if (bg_bytes)
62a584fe
TH
421 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
422 PAGE_SIZE);
9fc3a43e
TH
423 bytes = bg_bytes = 0;
424 }
425
426 if (bytes)
427 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 428 else
62a584fe 429 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 430
9fc3a43e
TH
431 if (bg_bytes)
432 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 433 else
62a584fe 434 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 435
0f6d24f8
YS
436 if (unlikely(bg_thresh >= thresh)) {
437 pr_warn("vm direct limit must be set greater than background limit.\n");
9fc3a43e 438 bg_thresh = thresh / 2;
0f6d24f8
YS
439 }
440
ccafa287
JW
441 tsk = current;
442 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
a53eaff8
N
443 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
444 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 445 }
9fc3a43e
TH
446 dtc->thresh = thresh;
447 dtc->bg_thresh = bg_thresh;
448
449 /* we should eventually report the domain in the TP */
450 if (!gdtc)
451 trace_global_dirty_state(bg_thresh, thresh);
452}
453
454/**
455 * global_dirty_limits - background-writeback and dirty-throttling thresholds
456 * @pbackground: out parameter for bg_thresh
457 * @pdirty: out parameter for thresh
458 *
459 * Calculate bg_thresh and thresh for global_wb_domain. See
460 * domain_dirty_limits() for details.
461 */
462void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
463{
464 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
465
466 gdtc.avail = global_dirtyable_memory();
467 domain_dirty_limits(&gdtc);
468
469 *pbackground = gdtc.bg_thresh;
470 *pdirty = gdtc.thresh;
ccafa287
JW
471}
472
a756cf59 473/**
281e3726
MG
474 * node_dirty_limit - maximum number of dirty pages allowed in a node
475 * @pgdat: the node
a756cf59 476 *
281e3726
MG
477 * Returns the maximum number of dirty pages allowed in a node, based
478 * on the node's dirtyable memory.
a756cf59 479 */
281e3726 480static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 481{
281e3726 482 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
483 struct task_struct *tsk = current;
484 unsigned long dirty;
485
486 if (vm_dirty_bytes)
487 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 488 node_memory / global_dirtyable_memory();
a756cf59 489 else
281e3726 490 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59
JW
491
492 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
493 dirty += dirty / 4;
494
495 return dirty;
496}
497
498/**
281e3726
MG
499 * node_dirty_ok - tells whether a node is within its dirty limits
500 * @pgdat: the node to check
a756cf59 501 *
281e3726 502 * Returns %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
503 * dirty limit, %false if the limit is exceeded.
504 */
281e3726 505bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 506{
281e3726
MG
507 unsigned long limit = node_dirty_limit(pgdat);
508 unsigned long nr_pages = 0;
509
11fb9989
MG
510 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
511 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
512 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
a756cf59 513
281e3726 514 return nr_pages <= limit;
a756cf59
JW
515}
516
2da02997 517int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 518 void __user *buffer, size_t *lenp,
2da02997
DR
519 loff_t *ppos)
520{
521 int ret;
522
8d65af78 523 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
524 if (ret == 0 && write)
525 dirty_background_bytes = 0;
526 return ret;
527}
528
529int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 530 void __user *buffer, size_t *lenp,
2da02997
DR
531 loff_t *ppos)
532{
533 int ret;
534
8d65af78 535 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
536 if (ret == 0 && write)
537 dirty_background_ratio = 0;
538 return ret;
539}
540
04fbfdc1 541int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 542 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
543 loff_t *ppos)
544{
545 int old_ratio = vm_dirty_ratio;
2da02997
DR
546 int ret;
547
8d65af78 548 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 549 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 550 writeback_set_ratelimit();
2da02997
DR
551 vm_dirty_bytes = 0;
552 }
553 return ret;
554}
555
2da02997 556int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 557 void __user *buffer, size_t *lenp,
2da02997
DR
558 loff_t *ppos)
559{
fc3501d4 560 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
561 int ret;
562
8d65af78 563 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 564 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 565 writeback_set_ratelimit();
2da02997 566 vm_dirty_ratio = 0;
04fbfdc1
PZ
567 }
568 return ret;
569}
570
eb608e3a
JK
571static unsigned long wp_next_time(unsigned long cur_time)
572{
573 cur_time += VM_COMPLETIONS_PERIOD_LEN;
574 /* 0 has a special meaning... */
575 if (!cur_time)
576 return 1;
577 return cur_time;
578}
579
c7981433
TH
580static void wb_domain_writeout_inc(struct wb_domain *dom,
581 struct fprop_local_percpu *completions,
582 unsigned int max_prop_frac)
04fbfdc1 583{
c7981433
TH
584 __fprop_inc_percpu_max(&dom->completions, completions,
585 max_prop_frac);
eb608e3a 586 /* First event after period switching was turned off? */
517663ed 587 if (unlikely(!dom->period_time)) {
eb608e3a
JK
588 /*
589 * We can race with other __bdi_writeout_inc calls here but
590 * it does not cause any harm since the resulting time when
591 * timer will fire and what is in writeout_period_time will be
592 * roughly the same.
593 */
380c27ca
TH
594 dom->period_time = wp_next_time(jiffies);
595 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 596 }
04fbfdc1
PZ
597}
598
c7981433
TH
599/*
600 * Increment @wb's writeout completion count and the global writeout
601 * completion count. Called from test_clear_page_writeback().
602 */
603static inline void __wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5 604{
841710aa 605 struct wb_domain *cgdom;
dd5656e5 606
3e8f399d 607 inc_wb_stat(wb, WB_WRITTEN);
c7981433
TH
608 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
609 wb->bdi->max_prop_frac);
841710aa
TH
610
611 cgdom = mem_cgroup_wb_domain(wb);
612 if (cgdom)
613 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
614 wb->bdi->max_prop_frac);
dd5656e5 615}
dd5656e5 616
93f78d88 617void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 618{
dd5656e5
MS
619 unsigned long flags;
620
621 local_irq_save(flags);
93f78d88 622 __wb_writeout_inc(wb);
dd5656e5 623 local_irq_restore(flags);
04fbfdc1 624}
93f78d88 625EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 626
eb608e3a
JK
627/*
628 * On idle system, we can be called long after we scheduled because we use
629 * deferred timers so count with missed periods.
630 */
9823e51b 631static void writeout_period(struct timer_list *t)
eb608e3a 632{
9823e51b 633 struct wb_domain *dom = from_timer(dom, t, period_timer);
380c27ca 634 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
635 VM_COMPLETIONS_PERIOD_LEN;
636
380c27ca
TH
637 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
638 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 639 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 640 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
641 } else {
642 /*
643 * Aging has zeroed all fractions. Stop wasting CPU on period
644 * updates.
645 */
380c27ca 646 dom->period_time = 0;
eb608e3a
JK
647 }
648}
649
380c27ca
TH
650int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
651{
652 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
653
654 spin_lock_init(&dom->lock);
655
9823e51b 656 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
dcc25ae7
TH
657
658 dom->dirty_limit_tstamp = jiffies;
659
380c27ca
TH
660 return fprop_global_init(&dom->completions, gfp);
661}
662
841710aa
TH
663#ifdef CONFIG_CGROUP_WRITEBACK
664void wb_domain_exit(struct wb_domain *dom)
665{
666 del_timer_sync(&dom->period_timer);
667 fprop_global_destroy(&dom->completions);
668}
669#endif
670
189d3c4a 671/*
d08c429b
JW
672 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
673 * registered backing devices, which, for obvious reasons, can not
674 * exceed 100%.
189d3c4a 675 */
189d3c4a
PZ
676static unsigned int bdi_min_ratio;
677
678int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
679{
680 int ret = 0;
189d3c4a 681
cfc4ba53 682 spin_lock_bh(&bdi_lock);
a42dde04 683 if (min_ratio > bdi->max_ratio) {
189d3c4a 684 ret = -EINVAL;
a42dde04
PZ
685 } else {
686 min_ratio -= bdi->min_ratio;
687 if (bdi_min_ratio + min_ratio < 100) {
688 bdi_min_ratio += min_ratio;
689 bdi->min_ratio += min_ratio;
690 } else {
691 ret = -EINVAL;
692 }
693 }
cfc4ba53 694 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
695
696 return ret;
697}
698
699int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
700{
a42dde04
PZ
701 int ret = 0;
702
703 if (max_ratio > 100)
704 return -EINVAL;
705
cfc4ba53 706 spin_lock_bh(&bdi_lock);
a42dde04
PZ
707 if (bdi->min_ratio > max_ratio) {
708 ret = -EINVAL;
709 } else {
710 bdi->max_ratio = max_ratio;
eb608e3a 711 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 712 }
cfc4ba53 713 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
714
715 return ret;
716}
a42dde04 717EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 718
6c14ae1e
WF
719static unsigned long dirty_freerun_ceiling(unsigned long thresh,
720 unsigned long bg_thresh)
721{
722 return (thresh + bg_thresh) / 2;
723}
724
c7981433
TH
725static unsigned long hard_dirty_limit(struct wb_domain *dom,
726 unsigned long thresh)
ffd1f609 727{
dcc25ae7 728 return max(thresh, dom->dirty_limit);
ffd1f609
WF
729}
730
c5edf9cd
TH
731/*
732 * Memory which can be further allocated to a memcg domain is capped by
733 * system-wide clean memory excluding the amount being used in the domain.
734 */
735static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
736 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
737{
738 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
739 unsigned long clean = filepages - min(filepages, mdtc->dirty);
740 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
741 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 742
c5edf9cd 743 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
744}
745
6f718656 746/**
b1cbc6d4
TH
747 * __wb_calc_thresh - @wb's share of dirty throttling threshold
748 * @dtc: dirty_throttle_context of interest
1babe183 749 *
a88a341a 750 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 751 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
752 *
753 * Note that balance_dirty_pages() will only seriously take it as a hard limit
754 * when sleeping max_pause per page is not enough to keep the dirty pages under
755 * control. For example, when the device is completely stalled due to some error
756 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
757 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 758 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 759 *
6f718656 760 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
761 * - starving fast devices
762 * - piling up dirty pages (that will take long time to sync) on slow devices
763 *
a88a341a 764 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
765 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
766 */
b1cbc6d4 767static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 768{
e9f07dfd 769 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 770 unsigned long thresh = dtc->thresh;
0d960a38 771 u64 wb_thresh;
16c4042f 772 long numerator, denominator;
693108a8 773 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 774
16c4042f 775 /*
0d960a38 776 * Calculate this BDI's share of the thresh ratio.
16c4042f 777 */
e9770b34 778 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 779 &numerator, &denominator);
04fbfdc1 780
0d960a38
TH
781 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
782 wb_thresh *= numerator;
783 do_div(wb_thresh, denominator);
04fbfdc1 784
b1cbc6d4 785 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 786
0d960a38
TH
787 wb_thresh += (thresh * wb_min_ratio) / 100;
788 if (wb_thresh > (thresh * wb_max_ratio) / 100)
789 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 790
0d960a38 791 return wb_thresh;
1da177e4
LT
792}
793
b1cbc6d4
TH
794unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
795{
796 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
797 .thresh = thresh };
798 return __wb_calc_thresh(&gdtc);
1da177e4
LT
799}
800
5a537485
MP
801/*
802 * setpoint - dirty 3
803 * f(dirty) := 1.0 + (----------------)
804 * limit - setpoint
805 *
806 * it's a 3rd order polynomial that subjects to
807 *
808 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
809 * (2) f(setpoint) = 1.0 => the balance point
810 * (3) f(limit) = 0 => the hard limit
811 * (4) df/dx <= 0 => negative feedback control
812 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
813 * => fast response on large errors; small oscillation near setpoint
814 */
d5c9fde3 815static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
816 unsigned long dirty,
817 unsigned long limit)
818{
819 long long pos_ratio;
820 long x;
821
d5c9fde3 822 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 823 (limit - setpoint) | 1);
5a537485
MP
824 pos_ratio = x;
825 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
826 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
827 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
828
829 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
830}
831
6c14ae1e
WF
832/*
833 * Dirty position control.
834 *
835 * (o) global/bdi setpoints
836 *
de1fff37 837 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
838 * When the number of dirty pages is higher/lower than the setpoint, the
839 * dirty position control ratio (and hence task dirty ratelimit) will be
840 * decreased/increased to bring the dirty pages back to the setpoint.
841 *
842 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
843 *
844 * if (dirty < setpoint) scale up pos_ratio
845 * if (dirty > setpoint) scale down pos_ratio
846 *
de1fff37
TH
847 * if (wb_dirty < wb_setpoint) scale up pos_ratio
848 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
849 *
850 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
851 *
852 * (o) global control line
853 *
854 * ^ pos_ratio
855 * |
856 * | |<===== global dirty control scope ======>|
857 * 2.0 .............*
858 * | .*
859 * | . *
860 * | . *
861 * | . *
862 * | . *
863 * | . *
864 * 1.0 ................................*
865 * | . . *
866 * | . . *
867 * | . . *
868 * | . . *
869 * | . . *
870 * 0 +------------.------------------.----------------------*------------->
871 * freerun^ setpoint^ limit^ dirty pages
872 *
de1fff37 873 * (o) wb control line
6c14ae1e
WF
874 *
875 * ^ pos_ratio
876 * |
877 * | *
878 * | *
879 * | *
880 * | *
881 * | * |<=========== span ============>|
882 * 1.0 .......................*
883 * | . *
884 * | . *
885 * | . *
886 * | . *
887 * | . *
888 * | . *
889 * | . *
890 * | . *
891 * | . *
892 * | . *
893 * | . *
894 * 1/4 ...............................................* * * * * * * * * * * *
895 * | . .
896 * | . .
897 * | . .
898 * 0 +----------------------.-------------------------------.------------->
de1fff37 899 * wb_setpoint^ x_intercept^
6c14ae1e 900 *
de1fff37 901 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
902 * be smoothly throttled down to normal if it starts high in situations like
903 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
904 * card's wb_dirty may rush to many times higher than wb_setpoint.
905 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 906 */
daddfa3c 907static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 908{
2bc00aef 909 struct bdi_writeback *wb = dtc->wb;
a88a341a 910 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef 911 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 912 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 913 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
914 unsigned long x_intercept;
915 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 916 unsigned long wb_setpoint;
6c14ae1e
WF
917 unsigned long span;
918 long long pos_ratio; /* for scaling up/down the rate limit */
919 long x;
920
daddfa3c
TH
921 dtc->pos_ratio = 0;
922
2bc00aef 923 if (unlikely(dtc->dirty >= limit))
daddfa3c 924 return;
6c14ae1e
WF
925
926 /*
927 * global setpoint
928 *
5a537485
MP
929 * See comment for pos_ratio_polynom().
930 */
931 setpoint = (freerun + limit) / 2;
2bc00aef 932 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
933
934 /*
935 * The strictlimit feature is a tool preventing mistrusted filesystems
936 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
937 * such filesystems balance_dirty_pages always checks wb counters
938 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
939 * This is especially important for fuse which sets bdi->max_ratio to
940 * 1% by default. Without strictlimit feature, fuse writeback may
941 * consume arbitrary amount of RAM because it is accounted in
942 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 943 *
a88a341a 944 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 945 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
946 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
947 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 948 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 949 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 950 * about ~6K pages (as the average of background and throttle wb
5a537485 951 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 952 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 953 *
5a537485 954 * Note, that we cannot use global counters in these calculations
de1fff37 955 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
956 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
957 * in the example above).
6c14ae1e 958 */
a88a341a 959 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 960 long long wb_pos_ratio;
5a537485 961
daddfa3c
TH
962 if (dtc->wb_dirty < 8) {
963 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
964 2 << RATELIMIT_CALC_SHIFT);
965 return;
966 }
5a537485 967
2bc00aef 968 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 969 return;
5a537485 970
970fb01a
TH
971 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
972 dtc->wb_bg_thresh);
5a537485 973
de1fff37 974 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 975 return;
5a537485 976
2bc00aef 977 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 978 wb_thresh);
5a537485
MP
979
980 /*
de1fff37
TH
981 * Typically, for strictlimit case, wb_setpoint << setpoint
982 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 983 * state ("dirty") is not limiting factor and we have to
de1fff37 984 * make decision based on wb counters. But there is an
5a537485
MP
985 * important case when global pos_ratio should get precedence:
986 * global limits are exceeded (e.g. due to activities on other
de1fff37 987 * wb's) while given strictlimit wb is below limit.
5a537485 988 *
de1fff37 989 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 990 * but it would look too non-natural for the case of all
de1fff37 991 * activity in the system coming from a single strictlimit wb
5a537485
MP
992 * with bdi->max_ratio == 100%.
993 *
994 * Note that min() below somewhat changes the dynamics of the
995 * control system. Normally, pos_ratio value can be well over 3
de1fff37 996 * (when globally we are at freerun and wb is well below wb
5a537485
MP
997 * setpoint). Now the maximum pos_ratio in the same situation
998 * is 2. We might want to tweak this if we observe the control
999 * system is too slow to adapt.
1000 */
daddfa3c
TH
1001 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1002 return;
5a537485 1003 }
6c14ae1e
WF
1004
1005 /*
1006 * We have computed basic pos_ratio above based on global situation. If
de1fff37 1007 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
1008 * pos_ratio further down/up. That is done by the following mechanism.
1009 */
1010
1011 /*
de1fff37 1012 * wb setpoint
6c14ae1e 1013 *
de1fff37 1014 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 1015 *
de1fff37 1016 * x_intercept - wb_dirty
6c14ae1e 1017 * := --------------------------
de1fff37 1018 * x_intercept - wb_setpoint
6c14ae1e 1019 *
de1fff37 1020 * The main wb control line is a linear function that subjects to
6c14ae1e 1021 *
de1fff37
TH
1022 * (1) f(wb_setpoint) = 1.0
1023 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1024 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 1025 *
de1fff37 1026 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1027 * regularly within range
de1fff37 1028 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1029 * for various filesystems, where (2) can yield in a reasonable 12.5%
1030 * fluctuation range for pos_ratio.
1031 *
de1fff37 1032 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1033 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1034 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1035 */
2bc00aef
TH
1036 if (unlikely(wb_thresh > dtc->thresh))
1037 wb_thresh = dtc->thresh;
aed21ad2 1038 /*
de1fff37 1039 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1040 * device is slow, but that it has remained inactive for long time.
1041 * Honour such devices a reasonable good (hopefully IO efficient)
1042 * threshold, so that the occasional writes won't be blocked and active
1043 * writes can rampup the threshold quickly.
1044 */
2bc00aef 1045 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1046 /*
de1fff37
TH
1047 * scale global setpoint to wb's:
1048 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1049 */
e4bc13ad 1050 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1051 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1052 /*
de1fff37
TH
1053 * Use span=(8*write_bw) in single wb case as indicated by
1054 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1055 *
de1fff37
TH
1056 * wb_thresh thresh - wb_thresh
1057 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1058 * thresh thresh
6c14ae1e 1059 */
2bc00aef 1060 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1061 x_intercept = wb_setpoint + span;
6c14ae1e 1062
2bc00aef
TH
1063 if (dtc->wb_dirty < x_intercept - span / 4) {
1064 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1065 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1066 } else
1067 pos_ratio /= 4;
1068
8927f66c 1069 /*
de1fff37 1070 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1071 * It may push the desired control point of global dirty pages higher
1072 * than setpoint.
1073 */
de1fff37 1074 x_intercept = wb_thresh / 2;
2bc00aef
TH
1075 if (dtc->wb_dirty < x_intercept) {
1076 if (dtc->wb_dirty > x_intercept / 8)
1077 pos_ratio = div_u64(pos_ratio * x_intercept,
1078 dtc->wb_dirty);
50657fc4 1079 else
8927f66c
WF
1080 pos_ratio *= 8;
1081 }
1082
daddfa3c 1083 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1084}
1085
a88a341a
TH
1086static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1087 unsigned long elapsed,
1088 unsigned long written)
e98be2d5
WF
1089{
1090 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1091 unsigned long avg = wb->avg_write_bandwidth;
1092 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1093 u64 bw;
1094
1095 /*
1096 * bw = written * HZ / elapsed
1097 *
1098 * bw * elapsed + write_bandwidth * (period - elapsed)
1099 * write_bandwidth = ---------------------------------------------------
1100 * period
c72efb65
TH
1101 *
1102 * @written may have decreased due to account_page_redirty().
1103 * Avoid underflowing @bw calculation.
e98be2d5 1104 */
a88a341a 1105 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1106 bw *= HZ;
1107 if (unlikely(elapsed > period)) {
1108 do_div(bw, elapsed);
1109 avg = bw;
1110 goto out;
1111 }
a88a341a 1112 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1113 bw >>= ilog2(period);
1114
1115 /*
1116 * one more level of smoothing, for filtering out sudden spikes
1117 */
1118 if (avg > old && old >= (unsigned long)bw)
1119 avg -= (avg - old) >> 3;
1120
1121 if (avg < old && old <= (unsigned long)bw)
1122 avg += (old - avg) >> 3;
1123
1124out:
95a46c65
TH
1125 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1126 avg = max(avg, 1LU);
1127 if (wb_has_dirty_io(wb)) {
1128 long delta = avg - wb->avg_write_bandwidth;
1129 WARN_ON_ONCE(atomic_long_add_return(delta,
1130 &wb->bdi->tot_write_bandwidth) <= 0);
1131 }
a88a341a
TH
1132 wb->write_bandwidth = bw;
1133 wb->avg_write_bandwidth = avg;
e98be2d5
WF
1134}
1135
2bc00aef 1136static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1137{
e9f07dfd 1138 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1139 unsigned long thresh = dtc->thresh;
dcc25ae7 1140 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1141
1142 /*
1143 * Follow up in one step.
1144 */
1145 if (limit < thresh) {
1146 limit = thresh;
1147 goto update;
1148 }
1149
1150 /*
1151 * Follow down slowly. Use the higher one as the target, because thresh
1152 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1153 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1154 */
2bc00aef 1155 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1156 if (limit > thresh) {
1157 limit -= (limit - thresh) >> 5;
1158 goto update;
1159 }
1160 return;
1161update:
dcc25ae7 1162 dom->dirty_limit = limit;
c42843f2
WF
1163}
1164
e9f07dfd 1165static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
1166 unsigned long now)
1167{
e9f07dfd 1168 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1169
1170 /*
1171 * check locklessly first to optimize away locking for the most time
1172 */
dcc25ae7 1173 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1174 return;
1175
dcc25ae7
TH
1176 spin_lock(&dom->lock);
1177 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1178 update_dirty_limit(dtc);
dcc25ae7 1179 dom->dirty_limit_tstamp = now;
c42843f2 1180 }
dcc25ae7 1181 spin_unlock(&dom->lock);
c42843f2
WF
1182}
1183
be3ffa27 1184/*
de1fff37 1185 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1186 *
de1fff37 1187 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1188 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1189 */
2bc00aef 1190static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1191 unsigned long dirtied,
1192 unsigned long elapsed)
be3ffa27 1193{
2bc00aef
TH
1194 struct bdi_writeback *wb = dtc->wb;
1195 unsigned long dirty = dtc->dirty;
1196 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1197 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1198 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1199 unsigned long write_bw = wb->avg_write_bandwidth;
1200 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1201 unsigned long dirty_rate;
1202 unsigned long task_ratelimit;
1203 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1204 unsigned long step;
1205 unsigned long x;
d59b1087 1206 unsigned long shift;
be3ffa27
WF
1207
1208 /*
1209 * The dirty rate will match the writeout rate in long term, except
1210 * when dirty pages are truncated by userspace or re-dirtied by FS.
1211 */
a88a341a 1212 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1213
be3ffa27
WF
1214 /*
1215 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1216 */
1217 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1218 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1219 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1220
1221 /*
1222 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1223 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1224 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1225 * formula will yield the balanced rate limit (write_bw / N).
1226 *
1227 * Note that the expanded form is not a pure rate feedback:
1228 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1229 * but also takes pos_ratio into account:
1230 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1231 *
1232 * (1) is not realistic because pos_ratio also takes part in balancing
1233 * the dirty rate. Consider the state
1234 * pos_ratio = 0.5 (3)
1235 * rate = 2 * (write_bw / N) (4)
1236 * If (1) is used, it will stuck in that state! Because each dd will
1237 * be throttled at
1238 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1239 * yielding
1240 * dirty_rate = N * task_ratelimit = write_bw (6)
1241 * put (6) into (1) we get
1242 * rate_(i+1) = rate_(i) (7)
1243 *
1244 * So we end up using (2) to always keep
1245 * rate_(i+1) ~= (write_bw / N) (8)
1246 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1247 * pos_ratio is able to drive itself to 1.0, which is not only where
1248 * the dirty count meet the setpoint, but also where the slope of
1249 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1250 */
1251 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1252 dirty_rate | 1);
bdaac490
WF
1253 /*
1254 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1255 */
1256 if (unlikely(balanced_dirty_ratelimit > write_bw))
1257 balanced_dirty_ratelimit = write_bw;
be3ffa27 1258
7381131c
WF
1259 /*
1260 * We could safely do this and return immediately:
1261 *
de1fff37 1262 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1263 *
1264 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1265 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1266 * limit the step size.
1267 *
1268 * The below code essentially only uses the relative value of
1269 *
1270 * task_ratelimit - dirty_ratelimit
1271 * = (pos_ratio - 1) * dirty_ratelimit
1272 *
1273 * which reflects the direction and size of dirty position error.
1274 */
1275
1276 /*
1277 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1278 * task_ratelimit is on the same side of dirty_ratelimit, too.
1279 * For example, when
1280 * - dirty_ratelimit > balanced_dirty_ratelimit
1281 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1282 * lowering dirty_ratelimit will help meet both the position and rate
1283 * control targets. Otherwise, don't update dirty_ratelimit if it will
1284 * only help meet the rate target. After all, what the users ultimately
1285 * feel and care are stable dirty rate and small position error.
1286 *
1287 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1288 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1289 * keeps jumping around randomly and can even leap far away at times
1290 * due to the small 200ms estimation period of dirty_rate (we want to
1291 * keep that period small to reduce time lags).
1292 */
1293 step = 0;
5a537485
MP
1294
1295 /*
de1fff37 1296 * For strictlimit case, calculations above were based on wb counters
a88a341a 1297 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1298 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1299 * Hence, to calculate "step" properly, we have to use wb_dirty as
1300 * "dirty" and wb_setpoint as "setpoint".
5a537485 1301 *
de1fff37
TH
1302 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1303 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1304 * of backing device.
5a537485 1305 */
a88a341a 1306 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1307 dirty = dtc->wb_dirty;
1308 if (dtc->wb_dirty < 8)
1309 setpoint = dtc->wb_dirty + 1;
5a537485 1310 else
970fb01a 1311 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1312 }
1313
7381131c 1314 if (dirty < setpoint) {
a88a341a 1315 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1316 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1317 if (dirty_ratelimit < x)
1318 step = x - dirty_ratelimit;
1319 } else {
a88a341a 1320 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1321 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1322 if (dirty_ratelimit > x)
1323 step = dirty_ratelimit - x;
1324 }
1325
1326 /*
1327 * Don't pursue 100% rate matching. It's impossible since the balanced
1328 * rate itself is constantly fluctuating. So decrease the track speed
1329 * when it gets close to the target. Helps eliminate pointless tremors.
1330 */
d59b1087
AR
1331 shift = dirty_ratelimit / (2 * step + 1);
1332 if (shift < BITS_PER_LONG)
1333 step = DIV_ROUND_UP(step >> shift, 8);
1334 else
1335 step = 0;
7381131c
WF
1336
1337 if (dirty_ratelimit < balanced_dirty_ratelimit)
1338 dirty_ratelimit += step;
1339 else
1340 dirty_ratelimit -= step;
1341
a88a341a
TH
1342 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1343 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1344
5634cc2a 1345 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1346}
1347
c2aa723a
TH
1348static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1349 struct dirty_throttle_control *mdtc,
8a731799
TH
1350 unsigned long start_time,
1351 bool update_ratelimit)
e98be2d5 1352{
c2aa723a 1353 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1354 unsigned long now = jiffies;
a88a341a 1355 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1356 unsigned long dirtied;
e98be2d5
WF
1357 unsigned long written;
1358
8a731799
TH
1359 lockdep_assert_held(&wb->list_lock);
1360
e98be2d5
WF
1361 /*
1362 * rate-limit, only update once every 200ms.
1363 */
1364 if (elapsed < BANDWIDTH_INTERVAL)
1365 return;
1366
a88a341a
TH
1367 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1368 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1369
1370 /*
1371 * Skip quiet periods when disk bandwidth is under-utilized.
1372 * (at least 1s idle time between two flusher runs)
1373 */
a88a341a 1374 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1375 goto snapshot;
1376
8a731799 1377 if (update_ratelimit) {
c2aa723a
TH
1378 domain_update_bandwidth(gdtc, now);
1379 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1380
1381 /*
1382 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1383 * compiler has no way to figure that out. Help it.
1384 */
1385 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1386 domain_update_bandwidth(mdtc, now);
1387 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1388 }
be3ffa27 1389 }
a88a341a 1390 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1391
1392snapshot:
a88a341a
TH
1393 wb->dirtied_stamp = dirtied;
1394 wb->written_stamp = written;
1395 wb->bw_time_stamp = now;
e98be2d5
WF
1396}
1397
8a731799 1398void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1399{
2bc00aef
TH
1400 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1401
c2aa723a 1402 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
e98be2d5
WF
1403}
1404
9d823e8f 1405/*
d0e1d66b 1406 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1407 * will look to see if it needs to start dirty throttling.
1408 *
1409 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
c41f012a 1410 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
9d823e8f
WF
1411 * (the number of pages we may dirty without exceeding the dirty limits).
1412 */
1413static unsigned long dirty_poll_interval(unsigned long dirty,
1414 unsigned long thresh)
1415{
1416 if (thresh > dirty)
1417 return 1UL << (ilog2(thresh - dirty) >> 1);
1418
1419 return 1;
1420}
1421
a88a341a 1422static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1423 unsigned long wb_dirty)
c8462cc9 1424{
a88a341a 1425 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1426 unsigned long t;
c8462cc9 1427
7ccb9ad5
WF
1428 /*
1429 * Limit pause time for small memory systems. If sleeping for too long
1430 * time, a small pool of dirty/writeback pages may go empty and disk go
1431 * idle.
1432 *
1433 * 8 serves as the safety ratio.
1434 */
de1fff37 1435 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1436 t++;
1437
e3b6c655 1438 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1439}
1440
a88a341a
TH
1441static long wb_min_pause(struct bdi_writeback *wb,
1442 long max_pause,
1443 unsigned long task_ratelimit,
1444 unsigned long dirty_ratelimit,
1445 int *nr_dirtied_pause)
c8462cc9 1446{
a88a341a
TH
1447 long hi = ilog2(wb->avg_write_bandwidth);
1448 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1449 long t; /* target pause */
1450 long pause; /* estimated next pause */
1451 int pages; /* target nr_dirtied_pause */
c8462cc9 1452
7ccb9ad5
WF
1453 /* target for 10ms pause on 1-dd case */
1454 t = max(1, HZ / 100);
c8462cc9
WF
1455
1456 /*
1457 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1458 * overheads.
1459 *
7ccb9ad5 1460 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1461 */
1462 if (hi > lo)
7ccb9ad5 1463 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1464
1465 /*
7ccb9ad5
WF
1466 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1467 * on the much more stable dirty_ratelimit. However the next pause time
1468 * will be computed based on task_ratelimit and the two rate limits may
1469 * depart considerably at some time. Especially if task_ratelimit goes
1470 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1471 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1472 * result task_ratelimit won't be executed faithfully, which could
1473 * eventually bring down dirty_ratelimit.
c8462cc9 1474 *
7ccb9ad5
WF
1475 * We apply two rules to fix it up:
1476 * 1) try to estimate the next pause time and if necessary, use a lower
1477 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1478 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1479 * 2) limit the target pause time to max_pause/2, so that the normal
1480 * small fluctuations of task_ratelimit won't trigger rule (1) and
1481 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1482 */
7ccb9ad5
WF
1483 t = min(t, 1 + max_pause / 2);
1484 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1485
1486 /*
5b9b3574
WF
1487 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1488 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1489 * When the 16 consecutive reads are often interrupted by some dirty
1490 * throttling pause during the async writes, cfq will go into idles
1491 * (deadline is fine). So push nr_dirtied_pause as high as possible
1492 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1493 */
5b9b3574
WF
1494 if (pages < DIRTY_POLL_THRESH) {
1495 t = max_pause;
1496 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1497 if (pages > DIRTY_POLL_THRESH) {
1498 pages = DIRTY_POLL_THRESH;
1499 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1500 }
1501 }
1502
7ccb9ad5
WF
1503 pause = HZ * pages / (task_ratelimit + 1);
1504 if (pause > max_pause) {
1505 t = max_pause;
1506 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1507 }
c8462cc9 1508
7ccb9ad5 1509 *nr_dirtied_pause = pages;
c8462cc9 1510 /*
7ccb9ad5 1511 * The minimal pause time will normally be half the target pause time.
c8462cc9 1512 */
5b9b3574 1513 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1514}
1515
970fb01a 1516static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1517{
2bc00aef 1518 struct bdi_writeback *wb = dtc->wb;
93f78d88 1519 unsigned long wb_reclaimable;
5a537485
MP
1520
1521 /*
de1fff37 1522 * wb_thresh is not treated as some limiting factor as
5a537485 1523 * dirty_thresh, due to reasons
de1fff37 1524 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1525 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1526 * go into state (wb_dirty >> wb_thresh) either because
1527 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1528 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1529 * dirtiers for 100 seconds until wb_dirty drops under
1530 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1531 * wb_position_ratio() will let the dirtier task progress
de1fff37 1532 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1533 */
b1cbc6d4 1534 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1535 dtc->wb_bg_thresh = dtc->thresh ?
1536 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1537
1538 /*
1539 * In order to avoid the stacked BDI deadlock we need
1540 * to ensure we accurately count the 'dirty' pages when
1541 * the threshold is low.
1542 *
1543 * Otherwise it would be possible to get thresh+n pages
1544 * reported dirty, even though there are thresh-m pages
1545 * actually dirty; with m+n sitting in the percpu
1546 * deltas.
1547 */
2bce774e 1548 if (dtc->wb_thresh < 2 * wb_stat_error()) {
93f78d88 1549 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1550 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1551 } else {
93f78d88 1552 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1553 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1554 }
1555}
1556
1da177e4
LT
1557/*
1558 * balance_dirty_pages() must be called by processes which are generating dirty
1559 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1560 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1561 * If we're over `background_thresh' then the writeback threads are woken to
1562 * perform some writeout.
1da177e4 1563 */
4c578dce 1564static void balance_dirty_pages(struct bdi_writeback *wb,
143dfe86 1565 unsigned long pages_dirtied)
1da177e4 1566{
2bc00aef 1567 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1568 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1569 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1570 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1571 &mdtc_stor : NULL;
1572 struct dirty_throttle_control *sdtc;
143dfe86 1573 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1574 long period;
7ccb9ad5
WF
1575 long pause;
1576 long max_pause;
1577 long min_pause;
1578 int nr_dirtied_pause;
e50e3720 1579 bool dirty_exceeded = false;
143dfe86 1580 unsigned long task_ratelimit;
7ccb9ad5 1581 unsigned long dirty_ratelimit;
dfb8ae56 1582 struct backing_dev_info *bdi = wb->bdi;
5a537485 1583 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1584 unsigned long start_time = jiffies;
1da177e4
LT
1585
1586 for (;;) {
83712358 1587 unsigned long now = jiffies;
2bc00aef 1588 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1589 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1590 unsigned long m_thresh = 0;
1591 unsigned long m_bg_thresh = 0;
83712358 1592
143dfe86
WF
1593 /*
1594 * Unstable writes are a feature of certain networked
1595 * filesystems (i.e. NFS) in which data may have been
1596 * written to the server's write cache, but has not yet
1597 * been flushed to permanent storage.
1598 */
11fb9989
MG
1599 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1600 global_node_page_state(NR_UNSTABLE_NFS);
9fc3a43e 1601 gdtc->avail = global_dirtyable_memory();
11fb9989 1602 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
5fce25a9 1603
9fc3a43e 1604 domain_dirty_limits(gdtc);
16c4042f 1605
5a537485 1606 if (unlikely(strictlimit)) {
970fb01a 1607 wb_dirty_limits(gdtc);
5a537485 1608
2bc00aef
TH
1609 dirty = gdtc->wb_dirty;
1610 thresh = gdtc->wb_thresh;
970fb01a 1611 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1612 } else {
2bc00aef
TH
1613 dirty = gdtc->dirty;
1614 thresh = gdtc->thresh;
1615 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1616 }
1617
c2aa723a 1618 if (mdtc) {
c5edf9cd 1619 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1620
1621 /*
1622 * If @wb belongs to !root memcg, repeat the same
1623 * basic calculations for the memcg domain.
1624 */
c5edf9cd
TH
1625 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1626 &mdtc->dirty, &writeback);
c2aa723a 1627 mdtc->dirty += writeback;
c5edf9cd 1628 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1629
1630 domain_dirty_limits(mdtc);
1631
1632 if (unlikely(strictlimit)) {
1633 wb_dirty_limits(mdtc);
1634 m_dirty = mdtc->wb_dirty;
1635 m_thresh = mdtc->wb_thresh;
1636 m_bg_thresh = mdtc->wb_bg_thresh;
1637 } else {
1638 m_dirty = mdtc->dirty;
1639 m_thresh = mdtc->thresh;
1640 m_bg_thresh = mdtc->bg_thresh;
1641 }
5a537485
MP
1642 }
1643
16c4042f
WF
1644 /*
1645 * Throttle it only when the background writeback cannot
1646 * catch-up. This avoids (excessively) small writeouts
de1fff37 1647 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1648 *
de1fff37
TH
1649 * In strictlimit case make decision based on the wb counters
1650 * and limits. Small writeouts when the wb limits are ramping
5a537485 1651 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1652 *
1653 * If memcg domain is in effect, @dirty should be under
1654 * both global and memcg freerun ceilings.
16c4042f 1655 */
c2aa723a
TH
1656 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1657 (!mdtc ||
1658 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1659 unsigned long intv = dirty_poll_interval(dirty, thresh);
1660 unsigned long m_intv = ULONG_MAX;
1661
83712358
WF
1662 current->dirty_paused_when = now;
1663 current->nr_dirtied = 0;
c2aa723a
TH
1664 if (mdtc)
1665 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1666 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1667 break;
83712358 1668 }
16c4042f 1669
bc05873d 1670 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1671 wb_start_background_writeback(wb);
143dfe86 1672
c2aa723a
TH
1673 /*
1674 * Calculate global domain's pos_ratio and select the
1675 * global dtc by default.
1676 */
5a537485 1677 if (!strictlimit)
970fb01a 1678 wb_dirty_limits(gdtc);
5fce25a9 1679
2bc00aef
TH
1680 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1681 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1682
1683 wb_position_ratio(gdtc);
c2aa723a
TH
1684 sdtc = gdtc;
1685
1686 if (mdtc) {
1687 /*
1688 * If memcg domain is in effect, calculate its
1689 * pos_ratio. @wb should satisfy constraints from
1690 * both global and memcg domains. Choose the one
1691 * w/ lower pos_ratio.
1692 */
1693 if (!strictlimit)
1694 wb_dirty_limits(mdtc);
1695
1696 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1697 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1698
1699 wb_position_ratio(mdtc);
1700 if (mdtc->pos_ratio < gdtc->pos_ratio)
1701 sdtc = mdtc;
1702 }
daddfa3c 1703
a88a341a
TH
1704 if (dirty_exceeded && !wb->dirty_exceeded)
1705 wb->dirty_exceeded = 1;
1da177e4 1706
8a731799
TH
1707 if (time_is_before_jiffies(wb->bw_time_stamp +
1708 BANDWIDTH_INTERVAL)) {
1709 spin_lock(&wb->list_lock);
c2aa723a 1710 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
8a731799
TH
1711 spin_unlock(&wb->list_lock);
1712 }
e98be2d5 1713
c2aa723a 1714 /* throttle according to the chosen dtc */
a88a341a 1715 dirty_ratelimit = wb->dirty_ratelimit;
c2aa723a 1716 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1717 RATELIMIT_CALC_SHIFT;
c2aa723a 1718 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1719 min_pause = wb_min_pause(wb, max_pause,
1720 task_ratelimit, dirty_ratelimit,
1721 &nr_dirtied_pause);
7ccb9ad5 1722
3a73dbbc 1723 if (unlikely(task_ratelimit == 0)) {
83712358 1724 period = max_pause;
c8462cc9 1725 pause = max_pause;
143dfe86 1726 goto pause;
04fbfdc1 1727 }
83712358
WF
1728 period = HZ * pages_dirtied / task_ratelimit;
1729 pause = period;
1730 if (current->dirty_paused_when)
1731 pause -= now - current->dirty_paused_when;
1732 /*
1733 * For less than 1s think time (ext3/4 may block the dirtier
1734 * for up to 800ms from time to time on 1-HDD; so does xfs,
1735 * however at much less frequency), try to compensate it in
1736 * future periods by updating the virtual time; otherwise just
1737 * do a reset, as it may be a light dirtier.
1738 */
7ccb9ad5 1739 if (pause < min_pause) {
5634cc2a 1740 trace_balance_dirty_pages(wb,
c2aa723a
TH
1741 sdtc->thresh,
1742 sdtc->bg_thresh,
1743 sdtc->dirty,
1744 sdtc->wb_thresh,
1745 sdtc->wb_dirty,
ece13ac3
WF
1746 dirty_ratelimit,
1747 task_ratelimit,
1748 pages_dirtied,
83712358 1749 period,
7ccb9ad5 1750 min(pause, 0L),
ece13ac3 1751 start_time);
83712358
WF
1752 if (pause < -HZ) {
1753 current->dirty_paused_when = now;
1754 current->nr_dirtied = 0;
1755 } else if (period) {
1756 current->dirty_paused_when += period;
1757 current->nr_dirtied = 0;
7ccb9ad5
WF
1758 } else if (current->nr_dirtied_pause <= pages_dirtied)
1759 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1760 break;
04fbfdc1 1761 }
7ccb9ad5
WF
1762 if (unlikely(pause > max_pause)) {
1763 /* for occasional dropped task_ratelimit */
1764 now += min(pause - max_pause, max_pause);
1765 pause = max_pause;
1766 }
143dfe86
WF
1767
1768pause:
5634cc2a 1769 trace_balance_dirty_pages(wb,
c2aa723a
TH
1770 sdtc->thresh,
1771 sdtc->bg_thresh,
1772 sdtc->dirty,
1773 sdtc->wb_thresh,
1774 sdtc->wb_dirty,
ece13ac3
WF
1775 dirty_ratelimit,
1776 task_ratelimit,
1777 pages_dirtied,
83712358 1778 period,
ece13ac3
WF
1779 pause,
1780 start_time);
499d05ec 1781 __set_current_state(TASK_KILLABLE);
b57d74af 1782 wb->dirty_sleep = now;
d25105e8 1783 io_schedule_timeout(pause);
87c6a9b2 1784
83712358
WF
1785 current->dirty_paused_when = now + pause;
1786 current->nr_dirtied = 0;
7ccb9ad5 1787 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1788
ffd1f609 1789 /*
2bc00aef
TH
1790 * This is typically equal to (dirty < thresh) and can also
1791 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1792 */
1df64719 1793 if (task_ratelimit)
ffd1f609 1794 break;
499d05ec 1795
c5c6343c
WF
1796 /*
1797 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1798 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1799 * to go through, so that tasks on them still remain responsive.
1800 *
3f8b6fb7 1801 * In theory 1 page is enough to keep the consumer-producer
c5c6343c 1802 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1803 * more page. However wb_dirty has accounting errors. So use
93f78d88 1804 * the larger and more IO friendly wb_stat_error.
c5c6343c 1805 */
2bce774e 1806 if (sdtc->wb_dirty <= wb_stat_error())
c5c6343c
WF
1807 break;
1808
499d05ec
JK
1809 if (fatal_signal_pending(current))
1810 break;
1da177e4
LT
1811 }
1812
a88a341a
TH
1813 if (!dirty_exceeded && wb->dirty_exceeded)
1814 wb->dirty_exceeded = 0;
1da177e4 1815
bc05873d 1816 if (writeback_in_progress(wb))
5b0830cb 1817 return;
1da177e4
LT
1818
1819 /*
1820 * In laptop mode, we wait until hitting the higher threshold before
1821 * starting background writeout, and then write out all the way down
1822 * to the lower threshold. So slow writers cause minimal disk activity.
1823 *
1824 * In normal mode, we start background writeout at the lower
1825 * background_thresh, to keep the amount of dirty memory low.
1826 */
143dfe86
WF
1827 if (laptop_mode)
1828 return;
1829
2bc00aef 1830 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1831 wb_start_background_writeback(wb);
1da177e4
LT
1832}
1833
9d823e8f 1834static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1835
54848d73
WF
1836/*
1837 * Normal tasks are throttled by
1838 * loop {
1839 * dirty tsk->nr_dirtied_pause pages;
1840 * take a snap in balance_dirty_pages();
1841 * }
1842 * However there is a worst case. If every task exit immediately when dirtied
1843 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1844 * called to throttle the page dirties. The solution is to save the not yet
1845 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1846 * randomly into the running tasks. This works well for the above worst case,
1847 * as the new task will pick up and accumulate the old task's leaked dirty
1848 * count and eventually get throttled.
1849 */
1850DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1851
1da177e4 1852/**
d0e1d66b 1853 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1854 * @mapping: address_space which was dirtied
1da177e4
LT
1855 *
1856 * Processes which are dirtying memory should call in here once for each page
1857 * which was newly dirtied. The function will periodically check the system's
1858 * dirty state and will initiate writeback if needed.
1859 *
1860 * On really big machines, get_writeback_state is expensive, so try to avoid
1861 * calling it too often (ratelimiting). But once we're over the dirty memory
1862 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1863 * from overshooting the limit by (ratelimit_pages) each.
1864 */
d0e1d66b 1865void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1866{
dfb8ae56
TH
1867 struct inode *inode = mapping->host;
1868 struct backing_dev_info *bdi = inode_to_bdi(inode);
1869 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1870 int ratelimit;
1871 int *p;
1da177e4 1872
36715cef
WF
1873 if (!bdi_cap_account_dirty(bdi))
1874 return;
1875
dfb8ae56
TH
1876 if (inode_cgwb_enabled(inode))
1877 wb = wb_get_create_current(bdi, GFP_KERNEL);
1878 if (!wb)
1879 wb = &bdi->wb;
1880
9d823e8f 1881 ratelimit = current->nr_dirtied_pause;
a88a341a 1882 if (wb->dirty_exceeded)
9d823e8f
WF
1883 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1884
9d823e8f 1885 preempt_disable();
1da177e4 1886 /*
9d823e8f
WF
1887 * This prevents one CPU to accumulate too many dirtied pages without
1888 * calling into balance_dirty_pages(), which can happen when there are
1889 * 1000+ tasks, all of them start dirtying pages at exactly the same
1890 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1891 */
7c8e0181 1892 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1893 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1894 *p = 0;
d3bc1fef
WF
1895 else if (unlikely(*p >= ratelimit_pages)) {
1896 *p = 0;
1897 ratelimit = 0;
1da177e4 1898 }
54848d73
WF
1899 /*
1900 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1901 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1902 * the dirty throttling and livelock other long-run dirtiers.
1903 */
7c8e0181 1904 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1905 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1906 unsigned long nr_pages_dirtied;
54848d73
WF
1907 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1908 *p -= nr_pages_dirtied;
1909 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1910 }
fa5a734e 1911 preempt_enable();
9d823e8f
WF
1912
1913 if (unlikely(current->nr_dirtied >= ratelimit))
4c578dce 1914 balance_dirty_pages(wb, current->nr_dirtied);
dfb8ae56
TH
1915
1916 wb_put(wb);
1da177e4 1917}
d0e1d66b 1918EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1919
aa661bbe
TH
1920/**
1921 * wb_over_bg_thresh - does @wb need to be written back?
1922 * @wb: bdi_writeback of interest
1923 *
1924 * Determines whether background writeback should keep writing @wb or it's
1925 * clean enough. Returns %true if writeback should continue.
1926 */
1927bool wb_over_bg_thresh(struct bdi_writeback *wb)
1928{
947e9762 1929 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1930 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 1931 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1932 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1933 &mdtc_stor : NULL;
aa661bbe 1934
947e9762
TH
1935 /*
1936 * Similar to balance_dirty_pages() but ignores pages being written
1937 * as we're trying to decide whether to put more under writeback.
1938 */
1939 gdtc->avail = global_dirtyable_memory();
11fb9989
MG
1940 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1941 global_node_page_state(NR_UNSTABLE_NFS);
947e9762 1942 domain_dirty_limits(gdtc);
aa661bbe 1943
947e9762 1944 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1945 return true;
1946
74d36944
HC
1947 if (wb_stat(wb, WB_RECLAIMABLE) >
1948 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
aa661bbe
TH
1949 return true;
1950
c2aa723a 1951 if (mdtc) {
c5edf9cd 1952 unsigned long filepages, headroom, writeback;
c2aa723a 1953
c5edf9cd
TH
1954 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1955 &writeback);
1956 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1957 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1958
1959 if (mdtc->dirty > mdtc->bg_thresh)
1960 return true;
1961
74d36944
HC
1962 if (wb_stat(wb, WB_RECLAIMABLE) >
1963 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
c2aa723a
TH
1964 return true;
1965 }
1966
aa661bbe
TH
1967 return false;
1968}
1969
1da177e4
LT
1970/*
1971 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1972 */
cccad5b9 1973int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1974 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1975{
94af5846
YS
1976 unsigned int old_interval = dirty_writeback_interval;
1977 int ret;
1978
1979 ret = proc_dointvec(table, write, buffer, length, ppos);
515c24c1
YS
1980
1981 /*
1982 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1983 * and a different non-zero value will wakeup the writeback threads.
1984 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1985 * iterate over all bdis and wbs.
1986 * The reason we do this is to make the change take effect immediately.
1987 */
1988 if (!ret && write && dirty_writeback_interval &&
1989 dirty_writeback_interval != old_interval)
94af5846
YS
1990 wakeup_flusher_threads(WB_REASON_PERIODIC);
1991
1992 return ret;
1da177e4
LT
1993}
1994
c2c4986e 1995#ifdef CONFIG_BLOCK
31373d09 1996void laptop_mode_timer_fn(unsigned long data)
1da177e4 1997{
31373d09 1998 struct request_queue *q = (struct request_queue *)data;
1da177e4 1999
0ab29fd0 2000 wakeup_flusher_threads_bdi(q->backing_dev_info, WB_REASON_LAPTOP_TIMER);
1da177e4
LT
2001}
2002
2003/*
2004 * We've spun up the disk and we're in laptop mode: schedule writeback
2005 * of all dirty data a few seconds from now. If the flush is already scheduled
2006 * then push it back - the user is still using the disk.
2007 */
31373d09 2008void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2009{
31373d09 2010 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2011}
2012
2013/*
2014 * We're in laptop mode and we've just synced. The sync's writes will have
2015 * caused another writeback to be scheduled by laptop_io_completion.
2016 * Nothing needs to be written back anymore, so we unschedule the writeback.
2017 */
2018void laptop_sync_completion(void)
2019{
31373d09
MG
2020 struct backing_dev_info *bdi;
2021
2022 rcu_read_lock();
2023
2024 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2025 del_timer(&bdi->laptop_mode_wb_timer);
2026
2027 rcu_read_unlock();
1da177e4 2028}
c2c4986e 2029#endif
1da177e4
LT
2030
2031/*
2032 * If ratelimit_pages is too high then we can get into dirty-data overload
2033 * if a large number of processes all perform writes at the same time.
2034 * If it is too low then SMP machines will call the (expensive)
2035 * get_writeback_state too often.
2036 *
2037 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2038 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2039 * thresholds.
1da177e4
LT
2040 */
2041
2d1d43f6 2042void writeback_set_ratelimit(void)
1da177e4 2043{
dcc25ae7 2044 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2045 unsigned long background_thresh;
2046 unsigned long dirty_thresh;
dcc25ae7 2047
9d823e8f 2048 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2049 dom->dirty_limit = dirty_thresh;
9d823e8f 2050 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2051 if (ratelimit_pages < 16)
2052 ratelimit_pages = 16;
1da177e4
LT
2053}
2054
1d7ac6ae 2055static int page_writeback_cpu_online(unsigned int cpu)
1da177e4 2056{
1d7ac6ae
SAS
2057 writeback_set_ratelimit();
2058 return 0;
1da177e4
LT
2059}
2060
1da177e4 2061/*
dc6e29da
LT
2062 * Called early on to tune the page writeback dirty limits.
2063 *
2064 * We used to scale dirty pages according to how total memory
2065 * related to pages that could be allocated for buffers (by
2066 * comparing nr_free_buffer_pages() to vm_total_pages.
2067 *
2068 * However, that was when we used "dirty_ratio" to scale with
2069 * all memory, and we don't do that any more. "dirty_ratio"
2070 * is now applied to total non-HIGHPAGE memory (by subtracting
2071 * totalhigh_pages from vm_total_pages), and as such we can't
2072 * get into the old insane situation any more where we had
2073 * large amounts of dirty pages compared to a small amount of
2074 * non-HIGHMEM memory.
2075 *
2076 * But we might still want to scale the dirty_ratio by how
2077 * much memory the box has..
1da177e4
LT
2078 */
2079void __init page_writeback_init(void)
2080{
a50fcb51
RV
2081 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2082
1d7ac6ae
SAS
2083 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2084 page_writeback_cpu_online, NULL);
2085 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2086 page_writeback_cpu_online);
1da177e4
LT
2087}
2088
f446daae
JK
2089/**
2090 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2091 * @mapping: address space structure to write
2092 * @start: starting page index
2093 * @end: ending page index (inclusive)
2094 *
2095 * This function scans the page range from @start to @end (inclusive) and tags
2096 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2097 * that write_cache_pages (or whoever calls this function) will then use
2098 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2099 * used to avoid livelocking of writeback by a process steadily creating new
2100 * dirty pages in the file (thus it is important for this function to be quick
2101 * so that it can tag pages faster than a dirtying process can create them).
2102 */
2103/*
2104 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2105 */
f446daae
JK
2106void tag_pages_for_writeback(struct address_space *mapping,
2107 pgoff_t start, pgoff_t end)
2108{
3c111a07 2109#define WRITEBACK_TAG_BATCH 4096
268f42de
MW
2110 unsigned long tagged = 0;
2111 struct radix_tree_iter iter;
2112 void **slot;
2113
2114 spin_lock_irq(&mapping->tree_lock);
2115 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start,
2116 PAGECACHE_TAG_DIRTY) {
2117 if (iter.index > end)
2118 break;
2119 radix_tree_iter_tag_set(&mapping->page_tree, &iter,
2120 PAGECACHE_TAG_TOWRITE);
2121 tagged++;
2122 if ((tagged % WRITEBACK_TAG_BATCH) != 0)
2123 continue;
2124 slot = radix_tree_iter_resume(slot, &iter);
f446daae 2125 spin_unlock_irq(&mapping->tree_lock);
f446daae 2126 cond_resched();
268f42de
MW
2127 spin_lock_irq(&mapping->tree_lock);
2128 }
2129 spin_unlock_irq(&mapping->tree_lock);
f446daae
JK
2130}
2131EXPORT_SYMBOL(tag_pages_for_writeback);
2132
811d736f 2133/**
0ea97180 2134 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2135 * @mapping: address space structure to write
2136 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2137 * @writepage: function called for each page
2138 * @data: data passed to writepage function
811d736f 2139 *
0ea97180 2140 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2141 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2142 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2143 * and msync() need to guarantee that all the data which was dirty at the time
2144 * the call was made get new I/O started against them. If wbc->sync_mode is
2145 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2146 * existing IO to complete.
f446daae
JK
2147 *
2148 * To avoid livelocks (when other process dirties new pages), we first tag
2149 * pages which should be written back with TOWRITE tag and only then start
2150 * writing them. For data-integrity sync we have to be careful so that we do
2151 * not miss some pages (e.g., because some other process has cleared TOWRITE
2152 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2153 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 2154 */
0ea97180
MS
2155int write_cache_pages(struct address_space *mapping,
2156 struct writeback_control *wbc, writepage_t writepage,
2157 void *data)
811d736f 2158{
811d736f
DH
2159 int ret = 0;
2160 int done = 0;
811d736f
DH
2161 struct pagevec pvec;
2162 int nr_pages;
31a12666 2163 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
2164 pgoff_t index;
2165 pgoff_t end; /* Inclusive */
bd19e012 2166 pgoff_t done_index;
31a12666 2167 int cycled;
811d736f 2168 int range_whole = 0;
f446daae 2169 int tag;
811d736f 2170
86679820 2171 pagevec_init(&pvec);
811d736f 2172 if (wbc->range_cyclic) {
31a12666
NP
2173 writeback_index = mapping->writeback_index; /* prev offset */
2174 index = writeback_index;
2175 if (index == 0)
2176 cycled = 1;
2177 else
2178 cycled = 0;
811d736f
DH
2179 end = -1;
2180 } else {
09cbfeaf
KS
2181 index = wbc->range_start >> PAGE_SHIFT;
2182 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2183 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2184 range_whole = 1;
31a12666 2185 cycled = 1; /* ignore range_cyclic tests */
811d736f 2186 }
6e6938b6 2187 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
2188 tag = PAGECACHE_TAG_TOWRITE;
2189 else
2190 tag = PAGECACHE_TAG_DIRTY;
811d736f 2191retry:
6e6938b6 2192 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 2193 tag_pages_for_writeback(mapping, index, end);
bd19e012 2194 done_index = index;
5a3d5c98
NP
2195 while (!done && (index <= end)) {
2196 int i;
2197
2b9775ae 2198 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2199 tag);
5a3d5c98
NP
2200 if (nr_pages == 0)
2201 break;
811d736f 2202
811d736f
DH
2203 for (i = 0; i < nr_pages; i++) {
2204 struct page *page = pvec.pages[i];
2205
cf15b07c 2206 done_index = page->index;
d5482cdf 2207
811d736f
DH
2208 lock_page(page);
2209
5a3d5c98
NP
2210 /*
2211 * Page truncated or invalidated. We can freely skip it
2212 * then, even for data integrity operations: the page
2213 * has disappeared concurrently, so there could be no
2214 * real expectation of this data interity operation
2215 * even if there is now a new, dirty page at the same
2216 * pagecache address.
2217 */
811d736f 2218 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2219continue_unlock:
811d736f
DH
2220 unlock_page(page);
2221 continue;
2222 }
2223
515f4a03
NP
2224 if (!PageDirty(page)) {
2225 /* someone wrote it for us */
2226 goto continue_unlock;
2227 }
2228
2229 if (PageWriteback(page)) {
2230 if (wbc->sync_mode != WB_SYNC_NONE)
2231 wait_on_page_writeback(page);
2232 else
2233 goto continue_unlock;
2234 }
811d736f 2235
515f4a03
NP
2236 BUG_ON(PageWriteback(page));
2237 if (!clear_page_dirty_for_io(page))
5a3d5c98 2238 goto continue_unlock;
811d736f 2239
de1414a6 2240 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 2241 ret = (*writepage)(page, wbc, data);
00266770
NP
2242 if (unlikely(ret)) {
2243 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2244 unlock_page(page);
2245 ret = 0;
2246 } else {
2247 /*
2248 * done_index is set past this page,
2249 * so media errors will not choke
2250 * background writeout for the entire
2251 * file. This has consequences for
2252 * range_cyclic semantics (ie. it may
2253 * not be suitable for data integrity
2254 * writeout).
2255 */
cf15b07c 2256 done_index = page->index + 1;
00266770
NP
2257 done = 1;
2258 break;
2259 }
0b564927 2260 }
00266770 2261
546a1924
DC
2262 /*
2263 * We stop writing back only if we are not doing
2264 * integrity sync. In case of integrity sync we have to
2265 * keep going until we have written all the pages
2266 * we tagged for writeback prior to entering this loop.
2267 */
2268 if (--wbc->nr_to_write <= 0 &&
2269 wbc->sync_mode == WB_SYNC_NONE) {
2270 done = 1;
2271 break;
05fe478d 2272 }
811d736f
DH
2273 }
2274 pagevec_release(&pvec);
2275 cond_resched();
2276 }
3a4c6800 2277 if (!cycled && !done) {
811d736f 2278 /*
31a12666 2279 * range_cyclic:
811d736f
DH
2280 * We hit the last page and there is more work to be done: wrap
2281 * back to the start of the file
2282 */
31a12666 2283 cycled = 1;
811d736f 2284 index = 0;
31a12666 2285 end = writeback_index - 1;
811d736f
DH
2286 goto retry;
2287 }
0b564927
DC
2288 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2289 mapping->writeback_index = done_index;
06d6cf69 2290
811d736f
DH
2291 return ret;
2292}
0ea97180
MS
2293EXPORT_SYMBOL(write_cache_pages);
2294
2295/*
2296 * Function used by generic_writepages to call the real writepage
2297 * function and set the mapping flags on error
2298 */
2299static int __writepage(struct page *page, struct writeback_control *wbc,
2300 void *data)
2301{
2302 struct address_space *mapping = data;
2303 int ret = mapping->a_ops->writepage(page, wbc);
2304 mapping_set_error(mapping, ret);
2305 return ret;
2306}
2307
2308/**
2309 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2310 * @mapping: address space structure to write
2311 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2312 *
2313 * This is a library function, which implements the writepages()
2314 * address_space_operation.
2315 */
2316int generic_writepages(struct address_space *mapping,
2317 struct writeback_control *wbc)
2318{
9b6096a6
SL
2319 struct blk_plug plug;
2320 int ret;
2321
0ea97180
MS
2322 /* deal with chardevs and other special file */
2323 if (!mapping->a_ops->writepage)
2324 return 0;
2325
9b6096a6
SL
2326 blk_start_plug(&plug);
2327 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2328 blk_finish_plug(&plug);
2329 return ret;
0ea97180 2330}
811d736f
DH
2331
2332EXPORT_SYMBOL(generic_writepages);
2333
1da177e4
LT
2334int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2335{
22905f77
AM
2336 int ret;
2337
1da177e4
LT
2338 if (wbc->nr_to_write <= 0)
2339 return 0;
80a2ea9f
TT
2340 while (1) {
2341 if (mapping->a_ops->writepages)
2342 ret = mapping->a_ops->writepages(mapping, wbc);
2343 else
2344 ret = generic_writepages(mapping, wbc);
2345 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2346 break;
2347 cond_resched();
2348 congestion_wait(BLK_RW_ASYNC, HZ/50);
2349 }
22905f77 2350 return ret;
1da177e4
LT
2351}
2352
2353/**
2b69c828 2354 * write_one_page - write out a single page and wait on I/O
67be2dd1 2355 * @page: the page to write
1da177e4
LT
2356 *
2357 * The page must be locked by the caller and will be unlocked upon return.
2358 *
37e51a76
JL
2359 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2360 * function returns.
1da177e4 2361 */
2b69c828 2362int write_one_page(struct page *page)
1da177e4
LT
2363{
2364 struct address_space *mapping = page->mapping;
2365 int ret = 0;
2366 struct writeback_control wbc = {
2367 .sync_mode = WB_SYNC_ALL,
2368 .nr_to_write = 1,
2369 };
2370
2371 BUG_ON(!PageLocked(page));
2372
2b69c828 2373 wait_on_page_writeback(page);
1da177e4
LT
2374
2375 if (clear_page_dirty_for_io(page)) {
09cbfeaf 2376 get_page(page);
1da177e4 2377 ret = mapping->a_ops->writepage(page, &wbc);
37e51a76 2378 if (ret == 0)
1da177e4 2379 wait_on_page_writeback(page);
09cbfeaf 2380 put_page(page);
1da177e4
LT
2381 } else {
2382 unlock_page(page);
2383 }
37e51a76
JL
2384
2385 if (!ret)
2386 ret = filemap_check_errors(mapping);
1da177e4
LT
2387 return ret;
2388}
2389EXPORT_SYMBOL(write_one_page);
2390
76719325
KC
2391/*
2392 * For address_spaces which do not use buffers nor write back.
2393 */
2394int __set_page_dirty_no_writeback(struct page *page)
2395{
2396 if (!PageDirty(page))
c3f0da63 2397 return !TestSetPageDirty(page);
76719325
KC
2398 return 0;
2399}
2400
e3a7cca1
ES
2401/*
2402 * Helper function for set_page_dirty family.
c4843a75 2403 *
81f8c3a4 2404 * Caller must hold lock_page_memcg().
c4843a75 2405 *
e3a7cca1
ES
2406 * NOTE: This relies on being atomic wrt interrupts.
2407 */
62cccb8c 2408void account_page_dirtied(struct page *page, struct address_space *mapping)
e3a7cca1 2409{
52ebea74
TH
2410 struct inode *inode = mapping->host;
2411
9fb0a7da
TH
2412 trace_writeback_dirty_page(page, mapping);
2413
e3a7cca1 2414 if (mapping_cap_account_dirty(mapping)) {
52ebea74 2415 struct bdi_writeback *wb;
de1414a6 2416
52ebea74
TH
2417 inode_attach_wb(inode, page);
2418 wb = inode_to_wb(inode);
de1414a6 2419
00f3ca2c 2420 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2421 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
c4a25635 2422 __inc_node_page_state(page, NR_DIRTIED);
3e8f399d
NB
2423 inc_wb_stat(wb, WB_RECLAIMABLE);
2424 inc_wb_stat(wb, WB_DIRTIED);
09cbfeaf 2425 task_io_account_write(PAGE_SIZE);
d3bc1fef
WF
2426 current->nr_dirtied++;
2427 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2428 }
2429}
679ceace 2430EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2431
b9ea2515
KK
2432/*
2433 * Helper function for deaccounting dirty page without writeback.
2434 *
81f8c3a4 2435 * Caller must hold lock_page_memcg().
b9ea2515 2436 */
c4843a75 2437void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 2438 struct bdi_writeback *wb)
b9ea2515
KK
2439{
2440 if (mapping_cap_account_dirty(mapping)) {
00f3ca2c 2441 dec_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2442 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
682aa8e1 2443 dec_wb_stat(wb, WB_RECLAIMABLE);
09cbfeaf 2444 task_io_account_cancelled_write(PAGE_SIZE);
b9ea2515
KK
2445 }
2446}
b9ea2515 2447
1da177e4
LT
2448/*
2449 * For address_spaces which do not use buffers. Just tag the page as dirty in
2450 * its radix tree.
2451 *
2452 * This is also used when a single buffer is being dirtied: we want to set the
2453 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2454 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2455 *
2d6d7f98
JW
2456 * The caller must ensure this doesn't race with truncation. Most will simply
2457 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2458 * the pte lock held, which also locks out truncation.
1da177e4
LT
2459 */
2460int __set_page_dirty_nobuffers(struct page *page)
2461{
62cccb8c 2462 lock_page_memcg(page);
1da177e4
LT
2463 if (!TestSetPageDirty(page)) {
2464 struct address_space *mapping = page_mapping(page);
a85d9df1 2465 unsigned long flags;
1da177e4 2466
c4843a75 2467 if (!mapping) {
62cccb8c 2468 unlock_page_memcg(page);
8c08540f 2469 return 1;
c4843a75 2470 }
8c08540f 2471
a85d9df1 2472 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2473 BUG_ON(page_mapping(page) != mapping);
2474 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
62cccb8c 2475 account_page_dirtied(page, mapping);
2d6d7f98
JW
2476 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2477 PAGECACHE_TAG_DIRTY);
a85d9df1 2478 spin_unlock_irqrestore(&mapping->tree_lock, flags);
62cccb8c 2479 unlock_page_memcg(page);
c4843a75 2480
8c08540f
AM
2481 if (mapping->host) {
2482 /* !PageAnon && !swapper_space */
2483 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2484 }
4741c9fd 2485 return 1;
1da177e4 2486 }
62cccb8c 2487 unlock_page_memcg(page);
4741c9fd 2488 return 0;
1da177e4
LT
2489}
2490EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2491
2f800fbd
WF
2492/*
2493 * Call this whenever redirtying a page, to de-account the dirty counters
2494 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2495 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2496 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2497 * control.
2498 */
2499void account_page_redirty(struct page *page)
2500{
2501 struct address_space *mapping = page->mapping;
91018134 2502
2f800fbd 2503 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2504 struct inode *inode = mapping->host;
2505 struct bdi_writeback *wb;
2506 bool locked;
91018134 2507
682aa8e1 2508 wb = unlocked_inode_to_wb_begin(inode, &locked);
2f800fbd 2509 current->nr_dirtied--;
c4a25635 2510 dec_node_page_state(page, NR_DIRTIED);
91018134 2511 dec_wb_stat(wb, WB_DIRTIED);
682aa8e1 2512 unlocked_inode_to_wb_end(inode, locked);
2f800fbd
WF
2513 }
2514}
2515EXPORT_SYMBOL(account_page_redirty);
2516
1da177e4
LT
2517/*
2518 * When a writepage implementation decides that it doesn't want to write this
2519 * page for some reason, it should redirty the locked page via
2520 * redirty_page_for_writepage() and it should then unlock the page and return 0
2521 */
2522int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2523{
8d38633c
KK
2524 int ret;
2525
1da177e4 2526 wbc->pages_skipped++;
8d38633c 2527 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2528 account_page_redirty(page);
8d38633c 2529 return ret;
1da177e4
LT
2530}
2531EXPORT_SYMBOL(redirty_page_for_writepage);
2532
2533/*
6746aff7
WF
2534 * Dirty a page.
2535 *
2536 * For pages with a mapping this should be done under the page lock
2537 * for the benefit of asynchronous memory errors who prefer a consistent
2538 * dirty state. This rule can be broken in some special cases,
2539 * but should be better not to.
2540 *
1da177e4
LT
2541 * If the mapping doesn't provide a set_page_dirty a_op, then
2542 * just fall through and assume that it wants buffer_heads.
2543 */
1cf6e7d8 2544int set_page_dirty(struct page *page)
1da177e4
LT
2545{
2546 struct address_space *mapping = page_mapping(page);
2547
800d8c63 2548 page = compound_head(page);
1da177e4
LT
2549 if (likely(mapping)) {
2550 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2551 /*
2552 * readahead/lru_deactivate_page could remain
2553 * PG_readahead/PG_reclaim due to race with end_page_writeback
2554 * About readahead, if the page is written, the flags would be
2555 * reset. So no problem.
2556 * About lru_deactivate_page, if the page is redirty, the flag
2557 * will be reset. So no problem. but if the page is used by readahead
2558 * it will confuse readahead and make it restart the size rampup
2559 * process. But it's a trivial problem.
2560 */
a4bb3ecd
NH
2561 if (PageReclaim(page))
2562 ClearPageReclaim(page);
9361401e
DH
2563#ifdef CONFIG_BLOCK
2564 if (!spd)
2565 spd = __set_page_dirty_buffers;
2566#endif
2567 return (*spd)(page);
1da177e4 2568 }
4741c9fd
AM
2569 if (!PageDirty(page)) {
2570 if (!TestSetPageDirty(page))
2571 return 1;
2572 }
1da177e4
LT
2573 return 0;
2574}
2575EXPORT_SYMBOL(set_page_dirty);
2576
2577/*
2578 * set_page_dirty() is racy if the caller has no reference against
2579 * page->mapping->host, and if the page is unlocked. This is because another
2580 * CPU could truncate the page off the mapping and then free the mapping.
2581 *
2582 * Usually, the page _is_ locked, or the caller is a user-space process which
2583 * holds a reference on the inode by having an open file.
2584 *
2585 * In other cases, the page should be locked before running set_page_dirty().
2586 */
2587int set_page_dirty_lock(struct page *page)
2588{
2589 int ret;
2590
7eaceacc 2591 lock_page(page);
1da177e4
LT
2592 ret = set_page_dirty(page);
2593 unlock_page(page);
2594 return ret;
2595}
2596EXPORT_SYMBOL(set_page_dirty_lock);
2597
11f81bec
TH
2598/*
2599 * This cancels just the dirty bit on the kernel page itself, it does NOT
2600 * actually remove dirty bits on any mmap's that may be around. It also
2601 * leaves the page tagged dirty, so any sync activity will still find it on
2602 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2603 * look at the dirty bits in the VM.
2604 *
2605 * Doing this should *normally* only ever be done when a page is truncated,
2606 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2607 * this when it notices that somebody has cleaned out all the buffers on a
2608 * page without actually doing it through the VM. Can you say "ext3 is
2609 * horribly ugly"? Thought you could.
2610 */
736304f3 2611void __cancel_dirty_page(struct page *page)
11f81bec 2612{
c4843a75
GT
2613 struct address_space *mapping = page_mapping(page);
2614
2615 if (mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2616 struct inode *inode = mapping->host;
2617 struct bdi_writeback *wb;
682aa8e1 2618 bool locked;
c4843a75 2619
62cccb8c 2620 lock_page_memcg(page);
682aa8e1 2621 wb = unlocked_inode_to_wb_begin(inode, &locked);
c4843a75
GT
2622
2623 if (TestClearPageDirty(page))
62cccb8c 2624 account_page_cleaned(page, mapping, wb);
c4843a75 2625
682aa8e1 2626 unlocked_inode_to_wb_end(inode, locked);
62cccb8c 2627 unlock_page_memcg(page);
c4843a75
GT
2628 } else {
2629 ClearPageDirty(page);
2630 }
11f81bec 2631}
736304f3 2632EXPORT_SYMBOL(__cancel_dirty_page);
11f81bec 2633
1da177e4
LT
2634/*
2635 * Clear a page's dirty flag, while caring for dirty memory accounting.
2636 * Returns true if the page was previously dirty.
2637 *
2638 * This is for preparing to put the page under writeout. We leave the page
2639 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2640 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2641 * implementation will run either set_page_writeback() or set_page_dirty(),
2642 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2643 * back into sync.
2644 *
2645 * This incoherency between the page's dirty flag and radix-tree tag is
2646 * unfortunate, but it only exists while the page is locked.
2647 */
2648int clear_page_dirty_for_io(struct page *page)
2649{
2650 struct address_space *mapping = page_mapping(page);
c4843a75 2651 int ret = 0;
1da177e4 2652
79352894
NP
2653 BUG_ON(!PageLocked(page));
2654
7658cc28 2655 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2656 struct inode *inode = mapping->host;
2657 struct bdi_writeback *wb;
682aa8e1
TH
2658 bool locked;
2659
7658cc28
LT
2660 /*
2661 * Yes, Virginia, this is indeed insane.
2662 *
2663 * We use this sequence to make sure that
2664 * (a) we account for dirty stats properly
2665 * (b) we tell the low-level filesystem to
2666 * mark the whole page dirty if it was
2667 * dirty in a pagetable. Only to then
2668 * (c) clean the page again and return 1 to
2669 * cause the writeback.
2670 *
2671 * This way we avoid all nasty races with the
2672 * dirty bit in multiple places and clearing
2673 * them concurrently from different threads.
2674 *
2675 * Note! Normally the "set_page_dirty(page)"
2676 * has no effect on the actual dirty bit - since
2677 * that will already usually be set. But we
2678 * need the side effects, and it can help us
2679 * avoid races.
2680 *
2681 * We basically use the page "master dirty bit"
2682 * as a serialization point for all the different
2683 * threads doing their things.
7658cc28
LT
2684 */
2685 if (page_mkclean(page))
2686 set_page_dirty(page);
79352894
NP
2687 /*
2688 * We carefully synchronise fault handlers against
2689 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2690 * at this point. We do this by having them hold the
2691 * page lock while dirtying the page, and pages are
2692 * always locked coming in here, so we get the desired
2693 * exclusion.
79352894 2694 */
682aa8e1 2695 wb = unlocked_inode_to_wb_begin(inode, &locked);
7658cc28 2696 if (TestClearPageDirty(page)) {
00f3ca2c 2697 dec_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2698 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
682aa8e1 2699 dec_wb_stat(wb, WB_RECLAIMABLE);
c4843a75 2700 ret = 1;
1da177e4 2701 }
682aa8e1 2702 unlocked_inode_to_wb_end(inode, locked);
c4843a75 2703 return ret;
1da177e4 2704 }
7658cc28 2705 return TestClearPageDirty(page);
1da177e4 2706}
58bb01a9 2707EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2708
2709int test_clear_page_writeback(struct page *page)
2710{
2711 struct address_space *mapping = page_mapping(page);
739f79fc
JW
2712 struct mem_cgroup *memcg;
2713 struct lruvec *lruvec;
d7365e78 2714 int ret;
1da177e4 2715
739f79fc
JW
2716 memcg = lock_page_memcg(page);
2717 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
371a096e 2718 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2719 struct inode *inode = mapping->host;
2720 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2721 unsigned long flags;
2722
19fd6231 2723 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2724 ret = TestClearPageWriteback(page);
69cb51d1 2725 if (ret) {
1da177e4
LT
2726 radix_tree_tag_clear(&mapping->page_tree,
2727 page_index(page),
2728 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2729 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2730 struct bdi_writeback *wb = inode_to_wb(inode);
2731
3e8f399d 2732 dec_wb_stat(wb, WB_WRITEBACK);
91018134 2733 __wb_writeout_inc(wb);
04fbfdc1 2734 }
69cb51d1 2735 }
6c60d2b5
DC
2736
2737 if (mapping->host && !mapping_tagged(mapping,
2738 PAGECACHE_TAG_WRITEBACK))
2739 sb_clear_inode_writeback(mapping->host);
2740
19fd6231 2741 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2742 } else {
2743 ret = TestClearPageWriteback(page);
2744 }
739f79fc
JW
2745 /*
2746 * NOTE: Page might be free now! Writeback doesn't hold a page
2747 * reference on its own, it relies on truncation to wait for
2748 * the clearing of PG_writeback. The below can only access
2749 * page state that is static across allocation cycles.
2750 */
99b12e3d 2751 if (ret) {
739f79fc 2752 dec_lruvec_state(lruvec, NR_WRITEBACK);
5a1c84b4 2753 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
c4a25635 2754 inc_node_page_state(page, NR_WRITTEN);
99b12e3d 2755 }
739f79fc 2756 __unlock_page_memcg(memcg);
1da177e4
LT
2757 return ret;
2758}
2759
1c8349a1 2760int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2761{
2762 struct address_space *mapping = page_mapping(page);
d7365e78 2763 int ret;
1da177e4 2764
62cccb8c 2765 lock_page_memcg(page);
371a096e 2766 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2767 struct inode *inode = mapping->host;
2768 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2769 unsigned long flags;
2770
19fd6231 2771 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2772 ret = TestSetPageWriteback(page);
69cb51d1 2773 if (!ret) {
6c60d2b5
DC
2774 bool on_wblist;
2775
2776 on_wblist = mapping_tagged(mapping,
2777 PAGECACHE_TAG_WRITEBACK);
2778
1da177e4
LT
2779 radix_tree_tag_set(&mapping->page_tree,
2780 page_index(page),
2781 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2782 if (bdi_cap_account_writeback(bdi))
3e8f399d 2783 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
6c60d2b5
DC
2784
2785 /*
2786 * We can come through here when swapping anonymous
2787 * pages, so we don't necessarily have an inode to track
2788 * for sync.
2789 */
2790 if (mapping->host && !on_wblist)
2791 sb_mark_inode_writeback(mapping->host);
69cb51d1 2792 }
1da177e4
LT
2793 if (!PageDirty(page))
2794 radix_tree_tag_clear(&mapping->page_tree,
2795 page_index(page),
2796 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2797 if (!keep_write)
2798 radix_tree_tag_clear(&mapping->page_tree,
2799 page_index(page),
2800 PAGECACHE_TAG_TOWRITE);
19fd6231 2801 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2802 } else {
2803 ret = TestSetPageWriteback(page);
2804 }
3a3c02ec 2805 if (!ret) {
00f3ca2c 2806 inc_lruvec_page_state(page, NR_WRITEBACK);
5a1c84b4 2807 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
3a3c02ec 2808 }
62cccb8c 2809 unlock_page_memcg(page);
1da177e4
LT
2810 return ret;
2811
2812}
1c8349a1 2813EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2814
2815/*
00128188 2816 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2817 * passed tag.
2818 */
2819int mapping_tagged(struct address_space *mapping, int tag)
2820{
72c47832 2821 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2822}
2823EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2824
2825/**
2826 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2827 * @page: The page to wait on.
2828 *
2829 * This function determines if the given page is related to a backing device
2830 * that requires page contents to be held stable during writeback. If so, then
2831 * it will wait for any pending writeback to complete.
2832 */
2833void wait_for_stable_page(struct page *page)
2834{
de1414a6
CH
2835 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2836 wait_on_page_writeback(page);
1d1d1a76
DW
2837}
2838EXPORT_SYMBOL_GPL(wait_for_stable_page);