]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page-writeback.c
writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
[thirdparty/linux.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
eb608e3a 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
e9f07dfd
TH
129#ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
9fc3a43e 131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 132#endif
2bc00aef 133 struct bdi_writeback *wb;
e9770b34 134 struct fprop_local_percpu *wb_completions;
2bc00aef 135
9fc3a43e 136 unsigned long avail; /* dirtyable */
2bc00aef
TH
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
140
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
970fb01a 143 unsigned long wb_bg_thresh;
daddfa3c
TH
144
145 unsigned long pos_ratio;
2bc00aef
TH
146};
147
e9f07dfd 148#define DTC_INIT_COMMON(__wb) .wb = (__wb), \
e9770b34 149 .wb_completions = &(__wb)->completions
2bc00aef 150
eb608e3a
JK
151/*
152 * Length of period for aging writeout fractions of bdis. This is an
153 * arbitrarily chosen number. The longer the period, the slower fractions will
154 * reflect changes in current writeout rate.
155 */
156#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 157
693108a8
TH
158#ifdef CONFIG_CGROUP_WRITEBACK
159
e9f07dfd
TH
160#define GDTC_INIT(__wb) .dom = &global_wb_domain, \
161 DTC_INIT_COMMON(__wb)
9fc3a43e 162#define GDTC_INIT_NO_WB .dom = &global_wb_domain
e9f07dfd
TH
163
164static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
165{
166 return dtc->dom;
167}
168
9fc3a43e
TH
169static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
170{
171 return mdtc->gdtc;
172}
173
841710aa
TH
174static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
175{
176 return &wb->memcg_completions;
177}
178
693108a8
TH
179static void wb_min_max_ratio(struct bdi_writeback *wb,
180 unsigned long *minp, unsigned long *maxp)
181{
182 unsigned long this_bw = wb->avg_write_bandwidth;
183 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
184 unsigned long long min = wb->bdi->min_ratio;
185 unsigned long long max = wb->bdi->max_ratio;
186
187 /*
188 * @wb may already be clean by the time control reaches here and
189 * the total may not include its bw.
190 */
191 if (this_bw < tot_bw) {
192 if (min) {
193 min *= this_bw;
194 do_div(min, tot_bw);
195 }
196 if (max < 100) {
197 max *= this_bw;
198 do_div(max, tot_bw);
199 }
200 }
201
202 *minp = min;
203 *maxp = max;
204}
205
206#else /* CONFIG_CGROUP_WRITEBACK */
207
e9f07dfd 208#define GDTC_INIT(__wb) DTC_INIT_COMMON(__wb)
9fc3a43e 209#define GDTC_INIT_NO_WB
e9f07dfd
TH
210
211static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
212{
213 return &global_wb_domain;
214}
215
9fc3a43e
TH
216static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
217{
218 return NULL;
219}
220
841710aa
TH
221static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
222{
223 return NULL;
224}
225
693108a8
TH
226static void wb_min_max_ratio(struct bdi_writeback *wb,
227 unsigned long *minp, unsigned long *maxp)
228{
229 *minp = wb->bdi->min_ratio;
230 *maxp = wb->bdi->max_ratio;
231}
232
233#endif /* CONFIG_CGROUP_WRITEBACK */
234
a756cf59
JW
235/*
236 * In a memory zone, there is a certain amount of pages we consider
237 * available for the page cache, which is essentially the number of
238 * free and reclaimable pages, minus some zone reserves to protect
239 * lowmem and the ability to uphold the zone's watermarks without
240 * requiring writeback.
241 *
242 * This number of dirtyable pages is the base value of which the
243 * user-configurable dirty ratio is the effictive number of pages that
244 * are allowed to be actually dirtied. Per individual zone, or
245 * globally by using the sum of dirtyable pages over all zones.
246 *
247 * Because the user is allowed to specify the dirty limit globally as
248 * absolute number of bytes, calculating the per-zone dirty limit can
249 * require translating the configured limit into a percentage of
250 * global dirtyable memory first.
251 */
252
a804552b
JW
253/**
254 * zone_dirtyable_memory - number of dirtyable pages in a zone
255 * @zone: the zone
256 *
257 * Returns the zone's number of pages potentially available for dirty
258 * page cache. This is the base value for the per-zone dirty limits.
259 */
260static unsigned long zone_dirtyable_memory(struct zone *zone)
261{
262 unsigned long nr_pages;
263
264 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
265 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
266
a1c3bfb2
JW
267 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
268 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
269
270 return nr_pages;
271}
272
1edf2234
JW
273static unsigned long highmem_dirtyable_memory(unsigned long total)
274{
275#ifdef CONFIG_HIGHMEM
276 int node;
277 unsigned long x = 0;
278
279 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 280 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 281
a804552b 282 x += zone_dirtyable_memory(z);
1edf2234 283 }
c8b74c2f
SR
284 /*
285 * Unreclaimable memory (kernel memory or anonymous memory
286 * without swap) can bring down the dirtyable pages below
287 * the zone's dirty balance reserve and the above calculation
288 * will underflow. However we still want to add in nodes
289 * which are below threshold (negative values) to get a more
290 * accurate calculation but make sure that the total never
291 * underflows.
292 */
293 if ((long)x < 0)
294 x = 0;
295
1edf2234
JW
296 /*
297 * Make sure that the number of highmem pages is never larger
298 * than the number of the total dirtyable memory. This can only
299 * occur in very strange VM situations but we want to make sure
300 * that this does not occur.
301 */
302 return min(x, total);
303#else
304 return 0;
305#endif
306}
307
308/**
ccafa287 309 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 310 *
ccafa287
JW
311 * Returns the global number of pages potentially available for dirty
312 * page cache. This is the base value for the global dirty limits.
1edf2234 313 */
18cf8cf8 314static unsigned long global_dirtyable_memory(void)
1edf2234
JW
315{
316 unsigned long x;
317
a804552b 318 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 319 x -= min(x, dirty_balance_reserve);
1edf2234 320
a1c3bfb2
JW
321 x += global_page_state(NR_INACTIVE_FILE);
322 x += global_page_state(NR_ACTIVE_FILE);
a804552b 323
1edf2234
JW
324 if (!vm_highmem_is_dirtyable)
325 x -= highmem_dirtyable_memory(x);
326
327 return x + 1; /* Ensure that we never return 0 */
328}
329
9fc3a43e
TH
330/**
331 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
332 * @dtc: dirty_throttle_control of interest
ccafa287 333 *
9fc3a43e
TH
334 * Calculate @dtc->thresh and ->bg_thresh considering
335 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
336 * must ensure that @dtc->avail is set before calling this function. The
337 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ccafa287
JW
338 * real-time tasks.
339 */
9fc3a43e 340static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 341{
9fc3a43e
TH
342 const unsigned long available_memory = dtc->avail;
343 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
344 unsigned long bytes = vm_dirty_bytes;
345 unsigned long bg_bytes = dirty_background_bytes;
346 unsigned long ratio = vm_dirty_ratio;
347 unsigned long bg_ratio = dirty_background_ratio;
348 unsigned long thresh;
349 unsigned long bg_thresh;
ccafa287
JW
350 struct task_struct *tsk;
351
9fc3a43e
TH
352 /* gdtc is !NULL iff @dtc is for memcg domain */
353 if (gdtc) {
354 unsigned long global_avail = gdtc->avail;
355
356 /*
357 * The byte settings can't be applied directly to memcg
358 * domains. Convert them to ratios by scaling against
359 * globally available memory.
360 */
361 if (bytes)
362 ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
363 global_avail, 100UL);
364 if (bg_bytes)
365 bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
366 global_avail, 100UL);
367 bytes = bg_bytes = 0;
368 }
369
370 if (bytes)
371 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 372 else
9fc3a43e 373 thresh = (ratio * available_memory) / 100;
ccafa287 374
9fc3a43e
TH
375 if (bg_bytes)
376 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 377 else
9fc3a43e 378 bg_thresh = (bg_ratio * available_memory) / 100;
ccafa287 379
9fc3a43e
TH
380 if (bg_thresh >= thresh)
381 bg_thresh = thresh / 2;
ccafa287
JW
382 tsk = current;
383 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
9fc3a43e
TH
384 bg_thresh += bg_thresh / 4;
385 thresh += thresh / 4;
ccafa287 386 }
9fc3a43e
TH
387 dtc->thresh = thresh;
388 dtc->bg_thresh = bg_thresh;
389
390 /* we should eventually report the domain in the TP */
391 if (!gdtc)
392 trace_global_dirty_state(bg_thresh, thresh);
393}
394
395/**
396 * global_dirty_limits - background-writeback and dirty-throttling thresholds
397 * @pbackground: out parameter for bg_thresh
398 * @pdirty: out parameter for thresh
399 *
400 * Calculate bg_thresh and thresh for global_wb_domain. See
401 * domain_dirty_limits() for details.
402 */
403void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
404{
405 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
406
407 gdtc.avail = global_dirtyable_memory();
408 domain_dirty_limits(&gdtc);
409
410 *pbackground = gdtc.bg_thresh;
411 *pdirty = gdtc.thresh;
ccafa287
JW
412}
413
a756cf59
JW
414/**
415 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
416 * @zone: the zone
417 *
418 * Returns the maximum number of dirty pages allowed in a zone, based
419 * on the zone's dirtyable memory.
420 */
421static unsigned long zone_dirty_limit(struct zone *zone)
422{
423 unsigned long zone_memory = zone_dirtyable_memory(zone);
424 struct task_struct *tsk = current;
425 unsigned long dirty;
426
427 if (vm_dirty_bytes)
428 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
429 zone_memory / global_dirtyable_memory();
430 else
431 dirty = vm_dirty_ratio * zone_memory / 100;
432
433 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
434 dirty += dirty / 4;
435
436 return dirty;
437}
438
439/**
440 * zone_dirty_ok - tells whether a zone is within its dirty limits
441 * @zone: the zone to check
442 *
443 * Returns %true when the dirty pages in @zone are within the zone's
444 * dirty limit, %false if the limit is exceeded.
445 */
446bool zone_dirty_ok(struct zone *zone)
447{
448 unsigned long limit = zone_dirty_limit(zone);
449
450 return zone_page_state(zone, NR_FILE_DIRTY) +
451 zone_page_state(zone, NR_UNSTABLE_NFS) +
452 zone_page_state(zone, NR_WRITEBACK) <= limit;
453}
454
2da02997 455int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 456 void __user *buffer, size_t *lenp,
2da02997
DR
457 loff_t *ppos)
458{
459 int ret;
460
8d65af78 461 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
462 if (ret == 0 && write)
463 dirty_background_bytes = 0;
464 return ret;
465}
466
467int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 468 void __user *buffer, size_t *lenp,
2da02997
DR
469 loff_t *ppos)
470{
471 int ret;
472
8d65af78 473 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
474 if (ret == 0 && write)
475 dirty_background_ratio = 0;
476 return ret;
477}
478
04fbfdc1 479int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 480 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
481 loff_t *ppos)
482{
483 int old_ratio = vm_dirty_ratio;
2da02997
DR
484 int ret;
485
8d65af78 486 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 487 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 488 writeback_set_ratelimit();
2da02997
DR
489 vm_dirty_bytes = 0;
490 }
491 return ret;
492}
493
2da02997 494int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 495 void __user *buffer, size_t *lenp,
2da02997
DR
496 loff_t *ppos)
497{
fc3501d4 498 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
499 int ret;
500
8d65af78 501 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 502 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 503 writeback_set_ratelimit();
2da02997 504 vm_dirty_ratio = 0;
04fbfdc1
PZ
505 }
506 return ret;
507}
508
eb608e3a
JK
509static unsigned long wp_next_time(unsigned long cur_time)
510{
511 cur_time += VM_COMPLETIONS_PERIOD_LEN;
512 /* 0 has a special meaning... */
513 if (!cur_time)
514 return 1;
515 return cur_time;
516}
517
c7981433
TH
518static void wb_domain_writeout_inc(struct wb_domain *dom,
519 struct fprop_local_percpu *completions,
520 unsigned int max_prop_frac)
04fbfdc1 521{
c7981433
TH
522 __fprop_inc_percpu_max(&dom->completions, completions,
523 max_prop_frac);
eb608e3a 524 /* First event after period switching was turned off? */
380c27ca 525 if (!unlikely(dom->period_time)) {
eb608e3a
JK
526 /*
527 * We can race with other __bdi_writeout_inc calls here but
528 * it does not cause any harm since the resulting time when
529 * timer will fire and what is in writeout_period_time will be
530 * roughly the same.
531 */
380c27ca
TH
532 dom->period_time = wp_next_time(jiffies);
533 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 534 }
04fbfdc1
PZ
535}
536
c7981433
TH
537/*
538 * Increment @wb's writeout completion count and the global writeout
539 * completion count. Called from test_clear_page_writeback().
540 */
541static inline void __wb_writeout_inc(struct bdi_writeback *wb)
542{
841710aa
TH
543 struct wb_domain *cgdom;
544
c7981433
TH
545 __inc_wb_stat(wb, WB_WRITTEN);
546 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
547 wb->bdi->max_prop_frac);
841710aa
TH
548
549 cgdom = mem_cgroup_wb_domain(wb);
550 if (cgdom)
551 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
552 wb->bdi->max_prop_frac);
c7981433
TH
553}
554
93f78d88 555void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
556{
557 unsigned long flags;
558
559 local_irq_save(flags);
93f78d88 560 __wb_writeout_inc(wb);
dd5656e5
MS
561 local_irq_restore(flags);
562}
93f78d88 563EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 564
eb608e3a
JK
565/*
566 * On idle system, we can be called long after we scheduled because we use
567 * deferred timers so count with missed periods.
568 */
569static void writeout_period(unsigned long t)
570{
380c27ca
TH
571 struct wb_domain *dom = (void *)t;
572 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
573 VM_COMPLETIONS_PERIOD_LEN;
574
380c27ca
TH
575 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
576 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 577 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 578 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
579 } else {
580 /*
581 * Aging has zeroed all fractions. Stop wasting CPU on period
582 * updates.
583 */
380c27ca 584 dom->period_time = 0;
eb608e3a
JK
585 }
586}
587
380c27ca
TH
588int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
589{
590 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
591
592 spin_lock_init(&dom->lock);
593
380c27ca
TH
594 init_timer_deferrable(&dom->period_timer);
595 dom->period_timer.function = writeout_period;
596 dom->period_timer.data = (unsigned long)dom;
dcc25ae7
TH
597
598 dom->dirty_limit_tstamp = jiffies;
599
380c27ca
TH
600 return fprop_global_init(&dom->completions, gfp);
601}
602
841710aa
TH
603#ifdef CONFIG_CGROUP_WRITEBACK
604void wb_domain_exit(struct wb_domain *dom)
605{
606 del_timer_sync(&dom->period_timer);
607 fprop_global_destroy(&dom->completions);
608}
609#endif
610
189d3c4a 611/*
d08c429b
JW
612 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
613 * registered backing devices, which, for obvious reasons, can not
614 * exceed 100%.
189d3c4a 615 */
189d3c4a
PZ
616static unsigned int bdi_min_ratio;
617
618int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
619{
620 int ret = 0;
189d3c4a 621
cfc4ba53 622 spin_lock_bh(&bdi_lock);
a42dde04 623 if (min_ratio > bdi->max_ratio) {
189d3c4a 624 ret = -EINVAL;
a42dde04
PZ
625 } else {
626 min_ratio -= bdi->min_ratio;
627 if (bdi_min_ratio + min_ratio < 100) {
628 bdi_min_ratio += min_ratio;
629 bdi->min_ratio += min_ratio;
630 } else {
631 ret = -EINVAL;
632 }
633 }
cfc4ba53 634 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
635
636 return ret;
637}
638
639int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
640{
a42dde04
PZ
641 int ret = 0;
642
643 if (max_ratio > 100)
644 return -EINVAL;
645
cfc4ba53 646 spin_lock_bh(&bdi_lock);
a42dde04
PZ
647 if (bdi->min_ratio > max_ratio) {
648 ret = -EINVAL;
649 } else {
650 bdi->max_ratio = max_ratio;
eb608e3a 651 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 652 }
cfc4ba53 653 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
654
655 return ret;
656}
a42dde04 657EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 658
6c14ae1e
WF
659static unsigned long dirty_freerun_ceiling(unsigned long thresh,
660 unsigned long bg_thresh)
661{
662 return (thresh + bg_thresh) / 2;
663}
664
c7981433
TH
665static unsigned long hard_dirty_limit(struct wb_domain *dom,
666 unsigned long thresh)
ffd1f609 667{
dcc25ae7 668 return max(thresh, dom->dirty_limit);
ffd1f609
WF
669}
670
6f718656 671/**
b1cbc6d4
TH
672 * __wb_calc_thresh - @wb's share of dirty throttling threshold
673 * @dtc: dirty_throttle_context of interest
1babe183 674 *
a88a341a 675 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 676 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
677 *
678 * Note that balance_dirty_pages() will only seriously take it as a hard limit
679 * when sleeping max_pause per page is not enough to keep the dirty pages under
680 * control. For example, when the device is completely stalled due to some error
681 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
682 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 683 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 684 *
6f718656 685 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
686 * - starving fast devices
687 * - piling up dirty pages (that will take long time to sync) on slow devices
688 *
a88a341a 689 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
690 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
691 */
b1cbc6d4 692static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 693{
e9f07dfd 694 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 695 unsigned long thresh = dtc->thresh;
0d960a38 696 u64 wb_thresh;
16c4042f 697 long numerator, denominator;
693108a8 698 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 699
16c4042f 700 /*
0d960a38 701 * Calculate this BDI's share of the thresh ratio.
16c4042f 702 */
e9770b34 703 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 704 &numerator, &denominator);
04fbfdc1 705
0d960a38
TH
706 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
707 wb_thresh *= numerator;
708 do_div(wb_thresh, denominator);
04fbfdc1 709
b1cbc6d4 710 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
693108a8 711
0d960a38
TH
712 wb_thresh += (thresh * wb_min_ratio) / 100;
713 if (wb_thresh > (thresh * wb_max_ratio) / 100)
714 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 715
0d960a38 716 return wb_thresh;
1da177e4
LT
717}
718
b1cbc6d4
TH
719unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
720{
721 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
722 .thresh = thresh };
723 return __wb_calc_thresh(&gdtc);
724}
725
5a537485
MP
726/*
727 * setpoint - dirty 3
728 * f(dirty) := 1.0 + (----------------)
729 * limit - setpoint
730 *
731 * it's a 3rd order polynomial that subjects to
732 *
733 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
734 * (2) f(setpoint) = 1.0 => the balance point
735 * (3) f(limit) = 0 => the hard limit
736 * (4) df/dx <= 0 => negative feedback control
737 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
738 * => fast response on large errors; small oscillation near setpoint
739 */
d5c9fde3 740static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
741 unsigned long dirty,
742 unsigned long limit)
743{
744 long long pos_ratio;
745 long x;
746
d5c9fde3 747 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
748 limit - setpoint + 1);
749 pos_ratio = x;
750 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
751 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
752 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
753
754 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
755}
756
6c14ae1e
WF
757/*
758 * Dirty position control.
759 *
760 * (o) global/bdi setpoints
761 *
de1fff37 762 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
763 * When the number of dirty pages is higher/lower than the setpoint, the
764 * dirty position control ratio (and hence task dirty ratelimit) will be
765 * decreased/increased to bring the dirty pages back to the setpoint.
766 *
767 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
768 *
769 * if (dirty < setpoint) scale up pos_ratio
770 * if (dirty > setpoint) scale down pos_ratio
771 *
de1fff37
TH
772 * if (wb_dirty < wb_setpoint) scale up pos_ratio
773 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
774 *
775 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
776 *
777 * (o) global control line
778 *
779 * ^ pos_ratio
780 * |
781 * | |<===== global dirty control scope ======>|
782 * 2.0 .............*
783 * | .*
784 * | . *
785 * | . *
786 * | . *
787 * | . *
788 * | . *
789 * 1.0 ................................*
790 * | . . *
791 * | . . *
792 * | . . *
793 * | . . *
794 * | . . *
795 * 0 +------------.------------------.----------------------*------------->
796 * freerun^ setpoint^ limit^ dirty pages
797 *
de1fff37 798 * (o) wb control line
6c14ae1e
WF
799 *
800 * ^ pos_ratio
801 * |
802 * | *
803 * | *
804 * | *
805 * | *
806 * | * |<=========== span ============>|
807 * 1.0 .......................*
808 * | . *
809 * | . *
810 * | . *
811 * | . *
812 * | . *
813 * | . *
814 * | . *
815 * | . *
816 * | . *
817 * | . *
818 * | . *
819 * 1/4 ...............................................* * * * * * * * * * * *
820 * | . .
821 * | . .
822 * | . .
823 * 0 +----------------------.-------------------------------.------------->
de1fff37 824 * wb_setpoint^ x_intercept^
6c14ae1e 825 *
de1fff37 826 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
827 * be smoothly throttled down to normal if it starts high in situations like
828 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
829 * card's wb_dirty may rush to many times higher than wb_setpoint.
830 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 831 */
daddfa3c 832static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 833{
2bc00aef 834 struct bdi_writeback *wb = dtc->wb;
a88a341a 835 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef 836 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 837 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 838 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
839 unsigned long x_intercept;
840 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 841 unsigned long wb_setpoint;
6c14ae1e
WF
842 unsigned long span;
843 long long pos_ratio; /* for scaling up/down the rate limit */
844 long x;
845
daddfa3c
TH
846 dtc->pos_ratio = 0;
847
2bc00aef 848 if (unlikely(dtc->dirty >= limit))
daddfa3c 849 return;
6c14ae1e
WF
850
851 /*
852 * global setpoint
853 *
5a537485
MP
854 * See comment for pos_ratio_polynom().
855 */
856 setpoint = (freerun + limit) / 2;
2bc00aef 857 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
858
859 /*
860 * The strictlimit feature is a tool preventing mistrusted filesystems
861 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
862 * such filesystems balance_dirty_pages always checks wb counters
863 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
864 * This is especially important for fuse which sets bdi->max_ratio to
865 * 1% by default. Without strictlimit feature, fuse writeback may
866 * consume arbitrary amount of RAM because it is accounted in
867 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 868 *
a88a341a 869 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 870 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
871 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
872 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 873 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 874 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 875 * about ~6K pages (as the average of background and throttle wb
5a537485 876 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 877 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 878 *
5a537485 879 * Note, that we cannot use global counters in these calculations
de1fff37 880 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
881 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
882 * in the example above).
6c14ae1e 883 */
a88a341a 884 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 885 long long wb_pos_ratio;
5a537485 886
daddfa3c
TH
887 if (dtc->wb_dirty < 8) {
888 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
889 2 << RATELIMIT_CALC_SHIFT);
890 return;
891 }
5a537485 892
2bc00aef 893 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 894 return;
5a537485 895
970fb01a
TH
896 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
897 dtc->wb_bg_thresh);
5a537485 898
de1fff37 899 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 900 return;
5a537485 901
2bc00aef 902 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 903 wb_thresh);
5a537485
MP
904
905 /*
de1fff37
TH
906 * Typically, for strictlimit case, wb_setpoint << setpoint
907 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 908 * state ("dirty") is not limiting factor and we have to
de1fff37 909 * make decision based on wb counters. But there is an
5a537485
MP
910 * important case when global pos_ratio should get precedence:
911 * global limits are exceeded (e.g. due to activities on other
de1fff37 912 * wb's) while given strictlimit wb is below limit.
5a537485 913 *
de1fff37 914 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 915 * but it would look too non-natural for the case of all
de1fff37 916 * activity in the system coming from a single strictlimit wb
5a537485
MP
917 * with bdi->max_ratio == 100%.
918 *
919 * Note that min() below somewhat changes the dynamics of the
920 * control system. Normally, pos_ratio value can be well over 3
de1fff37 921 * (when globally we are at freerun and wb is well below wb
5a537485
MP
922 * setpoint). Now the maximum pos_ratio in the same situation
923 * is 2. We might want to tweak this if we observe the control
924 * system is too slow to adapt.
925 */
daddfa3c
TH
926 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
927 return;
5a537485 928 }
6c14ae1e
WF
929
930 /*
931 * We have computed basic pos_ratio above based on global situation. If
de1fff37 932 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
933 * pos_ratio further down/up. That is done by the following mechanism.
934 */
935
936 /*
de1fff37 937 * wb setpoint
6c14ae1e 938 *
de1fff37 939 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 940 *
de1fff37 941 * x_intercept - wb_dirty
6c14ae1e 942 * := --------------------------
de1fff37 943 * x_intercept - wb_setpoint
6c14ae1e 944 *
de1fff37 945 * The main wb control line is a linear function that subjects to
6c14ae1e 946 *
de1fff37
TH
947 * (1) f(wb_setpoint) = 1.0
948 * (2) k = - 1 / (8 * write_bw) (in single wb case)
949 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 950 *
de1fff37 951 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 952 * regularly within range
de1fff37 953 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
954 * for various filesystems, where (2) can yield in a reasonable 12.5%
955 * fluctuation range for pos_ratio.
956 *
de1fff37 957 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 958 * own size, so move the slope over accordingly and choose a slope that
de1fff37 959 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 960 */
2bc00aef
TH
961 if (unlikely(wb_thresh > dtc->thresh))
962 wb_thresh = dtc->thresh;
aed21ad2 963 /*
de1fff37 964 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
965 * device is slow, but that it has remained inactive for long time.
966 * Honour such devices a reasonable good (hopefully IO efficient)
967 * threshold, so that the occasional writes won't be blocked and active
968 * writes can rampup the threshold quickly.
969 */
2bc00aef 970 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 971 /*
de1fff37
TH
972 * scale global setpoint to wb's:
973 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 974 */
2bc00aef 975 x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
de1fff37 976 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 977 /*
de1fff37
TH
978 * Use span=(8*write_bw) in single wb case as indicated by
979 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 980 *
de1fff37
TH
981 * wb_thresh thresh - wb_thresh
982 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
983 * thresh thresh
6c14ae1e 984 */
2bc00aef 985 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 986 x_intercept = wb_setpoint + span;
6c14ae1e 987
2bc00aef
TH
988 if (dtc->wb_dirty < x_intercept - span / 4) {
989 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
990 x_intercept - wb_setpoint + 1);
6c14ae1e
WF
991 } else
992 pos_ratio /= 4;
993
8927f66c 994 /*
de1fff37 995 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
996 * It may push the desired control point of global dirty pages higher
997 * than setpoint.
998 */
de1fff37 999 x_intercept = wb_thresh / 2;
2bc00aef
TH
1000 if (dtc->wb_dirty < x_intercept) {
1001 if (dtc->wb_dirty > x_intercept / 8)
1002 pos_ratio = div_u64(pos_ratio * x_intercept,
1003 dtc->wb_dirty);
50657fc4 1004 else
8927f66c
WF
1005 pos_ratio *= 8;
1006 }
1007
daddfa3c 1008 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1009}
1010
a88a341a
TH
1011static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1012 unsigned long elapsed,
1013 unsigned long written)
e98be2d5
WF
1014{
1015 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1016 unsigned long avg = wb->avg_write_bandwidth;
1017 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1018 u64 bw;
1019
1020 /*
1021 * bw = written * HZ / elapsed
1022 *
1023 * bw * elapsed + write_bandwidth * (period - elapsed)
1024 * write_bandwidth = ---------------------------------------------------
1025 * period
c72efb65
TH
1026 *
1027 * @written may have decreased due to account_page_redirty().
1028 * Avoid underflowing @bw calculation.
e98be2d5 1029 */
a88a341a 1030 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1031 bw *= HZ;
1032 if (unlikely(elapsed > period)) {
1033 do_div(bw, elapsed);
1034 avg = bw;
1035 goto out;
1036 }
a88a341a 1037 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1038 bw >>= ilog2(period);
1039
1040 /*
1041 * one more level of smoothing, for filtering out sudden spikes
1042 */
1043 if (avg > old && old >= (unsigned long)bw)
1044 avg -= (avg - old) >> 3;
1045
1046 if (avg < old && old <= (unsigned long)bw)
1047 avg += (old - avg) >> 3;
1048
1049out:
95a46c65
TH
1050 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1051 avg = max(avg, 1LU);
1052 if (wb_has_dirty_io(wb)) {
1053 long delta = avg - wb->avg_write_bandwidth;
1054 WARN_ON_ONCE(atomic_long_add_return(delta,
1055 &wb->bdi->tot_write_bandwidth) <= 0);
1056 }
a88a341a
TH
1057 wb->write_bandwidth = bw;
1058 wb->avg_write_bandwidth = avg;
e98be2d5
WF
1059}
1060
2bc00aef 1061static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1062{
e9f07dfd 1063 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1064 unsigned long thresh = dtc->thresh;
dcc25ae7 1065 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1066
1067 /*
1068 * Follow up in one step.
1069 */
1070 if (limit < thresh) {
1071 limit = thresh;
1072 goto update;
1073 }
1074
1075 /*
1076 * Follow down slowly. Use the higher one as the target, because thresh
1077 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1078 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1079 */
2bc00aef 1080 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1081 if (limit > thresh) {
1082 limit -= (limit - thresh) >> 5;
1083 goto update;
1084 }
1085 return;
1086update:
dcc25ae7 1087 dom->dirty_limit = limit;
c42843f2
WF
1088}
1089
e9f07dfd 1090static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
1091 unsigned long now)
1092{
e9f07dfd 1093 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1094
1095 /*
1096 * check locklessly first to optimize away locking for the most time
1097 */
dcc25ae7 1098 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1099 return;
1100
dcc25ae7
TH
1101 spin_lock(&dom->lock);
1102 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1103 update_dirty_limit(dtc);
dcc25ae7 1104 dom->dirty_limit_tstamp = now;
c42843f2 1105 }
dcc25ae7 1106 spin_unlock(&dom->lock);
c42843f2
WF
1107}
1108
be3ffa27 1109/*
de1fff37 1110 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1111 *
de1fff37 1112 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1113 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1114 */
2bc00aef 1115static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1116 unsigned long dirtied,
1117 unsigned long elapsed)
be3ffa27 1118{
2bc00aef
TH
1119 struct bdi_writeback *wb = dtc->wb;
1120 unsigned long dirty = dtc->dirty;
1121 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1122 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1123 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1124 unsigned long write_bw = wb->avg_write_bandwidth;
1125 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1126 unsigned long dirty_rate;
1127 unsigned long task_ratelimit;
1128 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1129 unsigned long step;
1130 unsigned long x;
be3ffa27
WF
1131
1132 /*
1133 * The dirty rate will match the writeout rate in long term, except
1134 * when dirty pages are truncated by userspace or re-dirtied by FS.
1135 */
a88a341a 1136 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1137
be3ffa27
WF
1138 /*
1139 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1140 */
1141 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1142 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1143 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1144
1145 /*
1146 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1147 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1148 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1149 * formula will yield the balanced rate limit (write_bw / N).
1150 *
1151 * Note that the expanded form is not a pure rate feedback:
1152 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1153 * but also takes pos_ratio into account:
1154 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1155 *
1156 * (1) is not realistic because pos_ratio also takes part in balancing
1157 * the dirty rate. Consider the state
1158 * pos_ratio = 0.5 (3)
1159 * rate = 2 * (write_bw / N) (4)
1160 * If (1) is used, it will stuck in that state! Because each dd will
1161 * be throttled at
1162 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1163 * yielding
1164 * dirty_rate = N * task_ratelimit = write_bw (6)
1165 * put (6) into (1) we get
1166 * rate_(i+1) = rate_(i) (7)
1167 *
1168 * So we end up using (2) to always keep
1169 * rate_(i+1) ~= (write_bw / N) (8)
1170 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1171 * pos_ratio is able to drive itself to 1.0, which is not only where
1172 * the dirty count meet the setpoint, but also where the slope of
1173 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1174 */
1175 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1176 dirty_rate | 1);
bdaac490
WF
1177 /*
1178 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1179 */
1180 if (unlikely(balanced_dirty_ratelimit > write_bw))
1181 balanced_dirty_ratelimit = write_bw;
be3ffa27 1182
7381131c
WF
1183 /*
1184 * We could safely do this and return immediately:
1185 *
de1fff37 1186 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1187 *
1188 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1189 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1190 * limit the step size.
1191 *
1192 * The below code essentially only uses the relative value of
1193 *
1194 * task_ratelimit - dirty_ratelimit
1195 * = (pos_ratio - 1) * dirty_ratelimit
1196 *
1197 * which reflects the direction and size of dirty position error.
1198 */
1199
1200 /*
1201 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1202 * task_ratelimit is on the same side of dirty_ratelimit, too.
1203 * For example, when
1204 * - dirty_ratelimit > balanced_dirty_ratelimit
1205 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1206 * lowering dirty_ratelimit will help meet both the position and rate
1207 * control targets. Otherwise, don't update dirty_ratelimit if it will
1208 * only help meet the rate target. After all, what the users ultimately
1209 * feel and care are stable dirty rate and small position error.
1210 *
1211 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1212 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1213 * keeps jumping around randomly and can even leap far away at times
1214 * due to the small 200ms estimation period of dirty_rate (we want to
1215 * keep that period small to reduce time lags).
1216 */
1217 step = 0;
5a537485
MP
1218
1219 /*
de1fff37 1220 * For strictlimit case, calculations above were based on wb counters
a88a341a 1221 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1222 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1223 * Hence, to calculate "step" properly, we have to use wb_dirty as
1224 * "dirty" and wb_setpoint as "setpoint".
5a537485 1225 *
de1fff37
TH
1226 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1227 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1228 * of backing device.
5a537485 1229 */
a88a341a 1230 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1231 dirty = dtc->wb_dirty;
1232 if (dtc->wb_dirty < 8)
1233 setpoint = dtc->wb_dirty + 1;
5a537485 1234 else
970fb01a 1235 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1236 }
1237
7381131c 1238 if (dirty < setpoint) {
a88a341a 1239 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1240 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1241 if (dirty_ratelimit < x)
1242 step = x - dirty_ratelimit;
1243 } else {
a88a341a 1244 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1245 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1246 if (dirty_ratelimit > x)
1247 step = dirty_ratelimit - x;
1248 }
1249
1250 /*
1251 * Don't pursue 100% rate matching. It's impossible since the balanced
1252 * rate itself is constantly fluctuating. So decrease the track speed
1253 * when it gets close to the target. Helps eliminate pointless tremors.
1254 */
1255 step >>= dirty_ratelimit / (2 * step + 1);
1256 /*
1257 * Limit the tracking speed to avoid overshooting.
1258 */
1259 step = (step + 7) / 8;
1260
1261 if (dirty_ratelimit < balanced_dirty_ratelimit)
1262 dirty_ratelimit += step;
1263 else
1264 dirty_ratelimit -= step;
1265
a88a341a
TH
1266 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1267 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1268
a88a341a 1269 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1270}
1271
2bc00aef 1272static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
8a731799
TH
1273 unsigned long start_time,
1274 bool update_ratelimit)
e98be2d5 1275{
2bc00aef 1276 struct bdi_writeback *wb = dtc->wb;
e98be2d5 1277 unsigned long now = jiffies;
a88a341a 1278 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1279 unsigned long dirtied;
e98be2d5
WF
1280 unsigned long written;
1281
8a731799
TH
1282 lockdep_assert_held(&wb->list_lock);
1283
e98be2d5
WF
1284 /*
1285 * rate-limit, only update once every 200ms.
1286 */
1287 if (elapsed < BANDWIDTH_INTERVAL)
1288 return;
1289
a88a341a
TH
1290 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1291 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1292
1293 /*
1294 * Skip quiet periods when disk bandwidth is under-utilized.
1295 * (at least 1s idle time between two flusher runs)
1296 */
a88a341a 1297 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1298 goto snapshot;
1299
8a731799 1300 if (update_ratelimit) {
e9f07dfd 1301 domain_update_bandwidth(dtc, now);
2bc00aef 1302 wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
be3ffa27 1303 }
a88a341a 1304 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1305
1306snapshot:
a88a341a
TH
1307 wb->dirtied_stamp = dirtied;
1308 wb->written_stamp = written;
1309 wb->bw_time_stamp = now;
e98be2d5
WF
1310}
1311
8a731799 1312void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1313{
2bc00aef
TH
1314 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1315
1316 __wb_update_bandwidth(&gdtc, start_time, false);
e98be2d5
WF
1317}
1318
9d823e8f 1319/*
d0e1d66b 1320 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1321 * will look to see if it needs to start dirty throttling.
1322 *
1323 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1324 * global_page_state() too often. So scale it near-sqrt to the safety margin
1325 * (the number of pages we may dirty without exceeding the dirty limits).
1326 */
1327static unsigned long dirty_poll_interval(unsigned long dirty,
1328 unsigned long thresh)
1329{
1330 if (thresh > dirty)
1331 return 1UL << (ilog2(thresh - dirty) >> 1);
1332
1333 return 1;
1334}
1335
a88a341a 1336static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1337 unsigned long wb_dirty)
c8462cc9 1338{
a88a341a 1339 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1340 unsigned long t;
c8462cc9 1341
7ccb9ad5
WF
1342 /*
1343 * Limit pause time for small memory systems. If sleeping for too long
1344 * time, a small pool of dirty/writeback pages may go empty and disk go
1345 * idle.
1346 *
1347 * 8 serves as the safety ratio.
1348 */
de1fff37 1349 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1350 t++;
1351
e3b6c655 1352 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1353}
1354
a88a341a
TH
1355static long wb_min_pause(struct bdi_writeback *wb,
1356 long max_pause,
1357 unsigned long task_ratelimit,
1358 unsigned long dirty_ratelimit,
1359 int *nr_dirtied_pause)
c8462cc9 1360{
a88a341a
TH
1361 long hi = ilog2(wb->avg_write_bandwidth);
1362 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1363 long t; /* target pause */
1364 long pause; /* estimated next pause */
1365 int pages; /* target nr_dirtied_pause */
c8462cc9 1366
7ccb9ad5
WF
1367 /* target for 10ms pause on 1-dd case */
1368 t = max(1, HZ / 100);
c8462cc9
WF
1369
1370 /*
1371 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1372 * overheads.
1373 *
7ccb9ad5 1374 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1375 */
1376 if (hi > lo)
7ccb9ad5 1377 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1378
1379 /*
7ccb9ad5
WF
1380 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1381 * on the much more stable dirty_ratelimit. However the next pause time
1382 * will be computed based on task_ratelimit and the two rate limits may
1383 * depart considerably at some time. Especially if task_ratelimit goes
1384 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1385 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1386 * result task_ratelimit won't be executed faithfully, which could
1387 * eventually bring down dirty_ratelimit.
c8462cc9 1388 *
7ccb9ad5
WF
1389 * We apply two rules to fix it up:
1390 * 1) try to estimate the next pause time and if necessary, use a lower
1391 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1392 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1393 * 2) limit the target pause time to max_pause/2, so that the normal
1394 * small fluctuations of task_ratelimit won't trigger rule (1) and
1395 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1396 */
7ccb9ad5
WF
1397 t = min(t, 1 + max_pause / 2);
1398 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1399
1400 /*
5b9b3574
WF
1401 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1402 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1403 * When the 16 consecutive reads are often interrupted by some dirty
1404 * throttling pause during the async writes, cfq will go into idles
1405 * (deadline is fine). So push nr_dirtied_pause as high as possible
1406 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1407 */
5b9b3574
WF
1408 if (pages < DIRTY_POLL_THRESH) {
1409 t = max_pause;
1410 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1411 if (pages > DIRTY_POLL_THRESH) {
1412 pages = DIRTY_POLL_THRESH;
1413 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1414 }
1415 }
1416
7ccb9ad5
WF
1417 pause = HZ * pages / (task_ratelimit + 1);
1418 if (pause > max_pause) {
1419 t = max_pause;
1420 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1421 }
c8462cc9 1422
7ccb9ad5 1423 *nr_dirtied_pause = pages;
c8462cc9 1424 /*
7ccb9ad5 1425 * The minimal pause time will normally be half the target pause time.
c8462cc9 1426 */
5b9b3574 1427 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1428}
1429
970fb01a 1430static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1431{
2bc00aef 1432 struct bdi_writeback *wb = dtc->wb;
93f78d88 1433 unsigned long wb_reclaimable;
5a537485
MP
1434
1435 /*
de1fff37 1436 * wb_thresh is not treated as some limiting factor as
5a537485 1437 * dirty_thresh, due to reasons
de1fff37 1438 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1439 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1440 * go into state (wb_dirty >> wb_thresh) either because
1441 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1442 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1443 * dirtiers for 100 seconds until wb_dirty drops under
1444 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1445 * wb_position_ratio() will let the dirtier task progress
de1fff37 1446 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1447 */
b1cbc6d4 1448 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1449 dtc->wb_bg_thresh = dtc->thresh ?
1450 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1451
1452 /*
1453 * In order to avoid the stacked BDI deadlock we need
1454 * to ensure we accurately count the 'dirty' pages when
1455 * the threshold is low.
1456 *
1457 * Otherwise it would be possible to get thresh+n pages
1458 * reported dirty, even though there are thresh-m pages
1459 * actually dirty; with m+n sitting in the percpu
1460 * deltas.
1461 */
2bc00aef 1462 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1463 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1464 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1465 } else {
93f78d88 1466 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1467 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1468 }
1469}
1470
1da177e4
LT
1471/*
1472 * balance_dirty_pages() must be called by processes which are generating dirty
1473 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1474 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1475 * If we're over `background_thresh' then the writeback threads are woken to
1476 * perform some writeout.
1da177e4 1477 */
3a2e9a5a 1478static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1479 struct bdi_writeback *wb,
143dfe86 1480 unsigned long pages_dirtied)
1da177e4 1481{
2bc00aef
TH
1482 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1483 struct dirty_throttle_control * const gdtc = &gdtc_stor;
143dfe86 1484 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1485 long period;
7ccb9ad5
WF
1486 long pause;
1487 long max_pause;
1488 long min_pause;
1489 int nr_dirtied_pause;
e50e3720 1490 bool dirty_exceeded = false;
143dfe86 1491 unsigned long task_ratelimit;
7ccb9ad5 1492 unsigned long dirty_ratelimit;
dfb8ae56 1493 struct backing_dev_info *bdi = wb->bdi;
5a537485 1494 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1495 unsigned long start_time = jiffies;
1da177e4
LT
1496
1497 for (;;) {
83712358 1498 unsigned long now = jiffies;
2bc00aef 1499 unsigned long dirty, thresh, bg_thresh;
83712358 1500
143dfe86
WF
1501 /*
1502 * Unstable writes are a feature of certain networked
1503 * filesystems (i.e. NFS) in which data may have been
1504 * written to the server's write cache, but has not yet
1505 * been flushed to permanent storage.
1506 */
5fce25a9
PZ
1507 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1508 global_page_state(NR_UNSTABLE_NFS);
9fc3a43e 1509 gdtc->avail = global_dirtyable_memory();
2bc00aef 1510 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1511
9fc3a43e 1512 domain_dirty_limits(gdtc);
16c4042f 1513
5a537485 1514 if (unlikely(strictlimit)) {
970fb01a 1515 wb_dirty_limits(gdtc);
5a537485 1516
2bc00aef
TH
1517 dirty = gdtc->wb_dirty;
1518 thresh = gdtc->wb_thresh;
970fb01a 1519 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1520 } else {
2bc00aef
TH
1521 dirty = gdtc->dirty;
1522 thresh = gdtc->thresh;
1523 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1524 }
1525
16c4042f
WF
1526 /*
1527 * Throttle it only when the background writeback cannot
1528 * catch-up. This avoids (excessively) small writeouts
de1fff37 1529 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1530 *
de1fff37
TH
1531 * In strictlimit case make decision based on the wb counters
1532 * and limits. Small writeouts when the wb limits are ramping
5a537485 1533 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1534 */
5a537485 1535 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1536 current->dirty_paused_when = now;
1537 current->nr_dirtied = 0;
7ccb9ad5 1538 current->nr_dirtied_pause =
5a537485 1539 dirty_poll_interval(dirty, thresh);
16c4042f 1540 break;
83712358 1541 }
16c4042f 1542
bc05873d 1543 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1544 wb_start_background_writeback(wb);
143dfe86 1545
5a537485 1546 if (!strictlimit)
970fb01a 1547 wb_dirty_limits(gdtc);
5fce25a9 1548
2bc00aef
TH
1549 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1550 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1551
1552 wb_position_ratio(gdtc);
1553
a88a341a
TH
1554 if (dirty_exceeded && !wb->dirty_exceeded)
1555 wb->dirty_exceeded = 1;
1da177e4 1556
8a731799
TH
1557 if (time_is_before_jiffies(wb->bw_time_stamp +
1558 BANDWIDTH_INTERVAL)) {
1559 spin_lock(&wb->list_lock);
2bc00aef 1560 __wb_update_bandwidth(gdtc, start_time, true);
8a731799
TH
1561 spin_unlock(&wb->list_lock);
1562 }
e98be2d5 1563
a88a341a 1564 dirty_ratelimit = wb->dirty_ratelimit;
daddfa3c 1565 task_ratelimit = ((u64)dirty_ratelimit * gdtc->pos_ratio) >>
3a73dbbc 1566 RATELIMIT_CALC_SHIFT;
2bc00aef 1567 max_pause = wb_max_pause(wb, gdtc->wb_dirty);
a88a341a
TH
1568 min_pause = wb_min_pause(wb, max_pause,
1569 task_ratelimit, dirty_ratelimit,
1570 &nr_dirtied_pause);
7ccb9ad5 1571
3a73dbbc 1572 if (unlikely(task_ratelimit == 0)) {
83712358 1573 period = max_pause;
c8462cc9 1574 pause = max_pause;
143dfe86 1575 goto pause;
04fbfdc1 1576 }
83712358
WF
1577 period = HZ * pages_dirtied / task_ratelimit;
1578 pause = period;
1579 if (current->dirty_paused_when)
1580 pause -= now - current->dirty_paused_when;
1581 /*
1582 * For less than 1s think time (ext3/4 may block the dirtier
1583 * for up to 800ms from time to time on 1-HDD; so does xfs,
1584 * however at much less frequency), try to compensate it in
1585 * future periods by updating the virtual time; otherwise just
1586 * do a reset, as it may be a light dirtier.
1587 */
7ccb9ad5 1588 if (pause < min_pause) {
ece13ac3 1589 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1590 gdtc->thresh,
1591 gdtc->bg_thresh,
1592 gdtc->dirty,
1593 gdtc->wb_thresh,
1594 gdtc->wb_dirty,
ece13ac3
WF
1595 dirty_ratelimit,
1596 task_ratelimit,
1597 pages_dirtied,
83712358 1598 period,
7ccb9ad5 1599 min(pause, 0L),
ece13ac3 1600 start_time);
83712358
WF
1601 if (pause < -HZ) {
1602 current->dirty_paused_when = now;
1603 current->nr_dirtied = 0;
1604 } else if (period) {
1605 current->dirty_paused_when += period;
1606 current->nr_dirtied = 0;
7ccb9ad5
WF
1607 } else if (current->nr_dirtied_pause <= pages_dirtied)
1608 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1609 break;
04fbfdc1 1610 }
7ccb9ad5
WF
1611 if (unlikely(pause > max_pause)) {
1612 /* for occasional dropped task_ratelimit */
1613 now += min(pause - max_pause, max_pause);
1614 pause = max_pause;
1615 }
143dfe86
WF
1616
1617pause:
ece13ac3 1618 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1619 gdtc->thresh,
1620 gdtc->bg_thresh,
1621 gdtc->dirty,
1622 gdtc->wb_thresh,
1623 gdtc->wb_dirty,
ece13ac3
WF
1624 dirty_ratelimit,
1625 task_ratelimit,
1626 pages_dirtied,
83712358 1627 period,
ece13ac3
WF
1628 pause,
1629 start_time);
499d05ec 1630 __set_current_state(TASK_KILLABLE);
d25105e8 1631 io_schedule_timeout(pause);
87c6a9b2 1632
83712358
WF
1633 current->dirty_paused_when = now + pause;
1634 current->nr_dirtied = 0;
7ccb9ad5 1635 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1636
ffd1f609 1637 /*
2bc00aef
TH
1638 * This is typically equal to (dirty < thresh) and can also
1639 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1640 */
1df64719 1641 if (task_ratelimit)
ffd1f609 1642 break;
499d05ec 1643
c5c6343c
WF
1644 /*
1645 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1646 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1647 * to go through, so that tasks on them still remain responsive.
1648 *
1649 * In theory 1 page is enough to keep the comsumer-producer
1650 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1651 * more page. However wb_dirty has accounting errors. So use
93f78d88 1652 * the larger and more IO friendly wb_stat_error.
c5c6343c 1653 */
2bc00aef 1654 if (gdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1655 break;
1656
499d05ec
JK
1657 if (fatal_signal_pending(current))
1658 break;
1da177e4
LT
1659 }
1660
a88a341a
TH
1661 if (!dirty_exceeded && wb->dirty_exceeded)
1662 wb->dirty_exceeded = 0;
1da177e4 1663
bc05873d 1664 if (writeback_in_progress(wb))
5b0830cb 1665 return;
1da177e4
LT
1666
1667 /*
1668 * In laptop mode, we wait until hitting the higher threshold before
1669 * starting background writeout, and then write out all the way down
1670 * to the lower threshold. So slow writers cause minimal disk activity.
1671 *
1672 * In normal mode, we start background writeout at the lower
1673 * background_thresh, to keep the amount of dirty memory low.
1674 */
143dfe86
WF
1675 if (laptop_mode)
1676 return;
1677
2bc00aef 1678 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1679 wb_start_background_writeback(wb);
1da177e4
LT
1680}
1681
9d823e8f 1682static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1683
54848d73
WF
1684/*
1685 * Normal tasks are throttled by
1686 * loop {
1687 * dirty tsk->nr_dirtied_pause pages;
1688 * take a snap in balance_dirty_pages();
1689 * }
1690 * However there is a worst case. If every task exit immediately when dirtied
1691 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1692 * called to throttle the page dirties. The solution is to save the not yet
1693 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1694 * randomly into the running tasks. This works well for the above worst case,
1695 * as the new task will pick up and accumulate the old task's leaked dirty
1696 * count and eventually get throttled.
1697 */
1698DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1699
1da177e4 1700/**
d0e1d66b 1701 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1702 * @mapping: address_space which was dirtied
1da177e4
LT
1703 *
1704 * Processes which are dirtying memory should call in here once for each page
1705 * which was newly dirtied. The function will periodically check the system's
1706 * dirty state and will initiate writeback if needed.
1707 *
1708 * On really big machines, get_writeback_state is expensive, so try to avoid
1709 * calling it too often (ratelimiting). But once we're over the dirty memory
1710 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1711 * from overshooting the limit by (ratelimit_pages) each.
1712 */
d0e1d66b 1713void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1714{
dfb8ae56
TH
1715 struct inode *inode = mapping->host;
1716 struct backing_dev_info *bdi = inode_to_bdi(inode);
1717 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1718 int ratelimit;
1719 int *p;
1da177e4 1720
36715cef
WF
1721 if (!bdi_cap_account_dirty(bdi))
1722 return;
1723
dfb8ae56
TH
1724 if (inode_cgwb_enabled(inode))
1725 wb = wb_get_create_current(bdi, GFP_KERNEL);
1726 if (!wb)
1727 wb = &bdi->wb;
1728
9d823e8f 1729 ratelimit = current->nr_dirtied_pause;
a88a341a 1730 if (wb->dirty_exceeded)
9d823e8f
WF
1731 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1732
9d823e8f 1733 preempt_disable();
1da177e4 1734 /*
9d823e8f
WF
1735 * This prevents one CPU to accumulate too many dirtied pages without
1736 * calling into balance_dirty_pages(), which can happen when there are
1737 * 1000+ tasks, all of them start dirtying pages at exactly the same
1738 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1739 */
7c8e0181 1740 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1741 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1742 *p = 0;
d3bc1fef
WF
1743 else if (unlikely(*p >= ratelimit_pages)) {
1744 *p = 0;
1745 ratelimit = 0;
1da177e4 1746 }
54848d73
WF
1747 /*
1748 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1749 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1750 * the dirty throttling and livelock other long-run dirtiers.
1751 */
7c8e0181 1752 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1753 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1754 unsigned long nr_pages_dirtied;
54848d73
WF
1755 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1756 *p -= nr_pages_dirtied;
1757 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1758 }
fa5a734e 1759 preempt_enable();
9d823e8f
WF
1760
1761 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1762 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1763
1764 wb_put(wb);
1da177e4 1765}
d0e1d66b 1766EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1767
aa661bbe
TH
1768/**
1769 * wb_over_bg_thresh - does @wb need to be written back?
1770 * @wb: bdi_writeback of interest
1771 *
1772 * Determines whether background writeback should keep writing @wb or it's
1773 * clean enough. Returns %true if writeback should continue.
1774 */
1775bool wb_over_bg_thresh(struct bdi_writeback *wb)
1776{
947e9762
TH
1777 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1778 struct dirty_throttle_control * const gdtc = &gdtc_stor;
aa661bbe 1779
947e9762
TH
1780 /*
1781 * Similar to balance_dirty_pages() but ignores pages being written
1782 * as we're trying to decide whether to put more under writeback.
1783 */
1784 gdtc->avail = global_dirtyable_memory();
1785 gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1786 global_page_state(NR_UNSTABLE_NFS);
1787 domain_dirty_limits(gdtc);
aa661bbe 1788
947e9762 1789 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1790 return true;
1791
947e9762 1792 if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
aa661bbe
TH
1793 return true;
1794
1795 return false;
1796}
1797
232ea4d6 1798void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1799{
364aeb28
DR
1800 unsigned long background_thresh;
1801 unsigned long dirty_thresh;
1da177e4
LT
1802
1803 for ( ; ; ) {
16c4042f 1804 global_dirty_limits(&background_thresh, &dirty_thresh);
c7981433 1805 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1da177e4
LT
1806
1807 /*
1808 * Boost the allowable dirty threshold a bit for page
1809 * allocators so they don't get DoS'ed by heavy writers
1810 */
1811 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1812
c24f21bd
CL
1813 if (global_page_state(NR_UNSTABLE_NFS) +
1814 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1815 break;
8aa7e847 1816 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1817
1818 /*
1819 * The caller might hold locks which can prevent IO completion
1820 * or progress in the filesystem. So we cannot just sit here
1821 * waiting for IO to complete.
1822 */
1823 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1824 break;
1da177e4
LT
1825 }
1826}
1827
1da177e4
LT
1828/*
1829 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1830 */
cccad5b9 1831int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1832 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1833{
8d65af78 1834 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1835 return 0;
1836}
1837
c2c4986e 1838#ifdef CONFIG_BLOCK
31373d09 1839void laptop_mode_timer_fn(unsigned long data)
1da177e4 1840{
31373d09
MG
1841 struct request_queue *q = (struct request_queue *)data;
1842 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1843 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1
TH
1844 struct bdi_writeback *wb;
1845 struct wb_iter iter;
1da177e4 1846
31373d09
MG
1847 /*
1848 * We want to write everything out, not just down to the dirty
1849 * threshold
1850 */
a06fd6b1
TH
1851 if (!bdi_has_dirty_io(&q->backing_dev_info))
1852 return;
1853
1854 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1855 if (wb_has_dirty_io(wb))
1856 wb_start_writeback(wb, nr_pages, true,
1857 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1858}
1859
1860/*
1861 * We've spun up the disk and we're in laptop mode: schedule writeback
1862 * of all dirty data a few seconds from now. If the flush is already scheduled
1863 * then push it back - the user is still using the disk.
1864 */
31373d09 1865void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1866{
31373d09 1867 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1868}
1869
1870/*
1871 * We're in laptop mode and we've just synced. The sync's writes will have
1872 * caused another writeback to be scheduled by laptop_io_completion.
1873 * Nothing needs to be written back anymore, so we unschedule the writeback.
1874 */
1875void laptop_sync_completion(void)
1876{
31373d09
MG
1877 struct backing_dev_info *bdi;
1878
1879 rcu_read_lock();
1880
1881 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1882 del_timer(&bdi->laptop_mode_wb_timer);
1883
1884 rcu_read_unlock();
1da177e4 1885}
c2c4986e 1886#endif
1da177e4
LT
1887
1888/*
1889 * If ratelimit_pages is too high then we can get into dirty-data overload
1890 * if a large number of processes all perform writes at the same time.
1891 * If it is too low then SMP machines will call the (expensive)
1892 * get_writeback_state too often.
1893 *
1894 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1895 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1896 * thresholds.
1da177e4
LT
1897 */
1898
2d1d43f6 1899void writeback_set_ratelimit(void)
1da177e4 1900{
dcc25ae7 1901 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
1902 unsigned long background_thresh;
1903 unsigned long dirty_thresh;
dcc25ae7 1904
9d823e8f 1905 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 1906 dom->dirty_limit = dirty_thresh;
9d823e8f 1907 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1908 if (ratelimit_pages < 16)
1909 ratelimit_pages = 16;
1da177e4
LT
1910}
1911
0db0628d 1912static int
2f60d628
SB
1913ratelimit_handler(struct notifier_block *self, unsigned long action,
1914 void *hcpu)
1da177e4 1915{
2f60d628
SB
1916
1917 switch (action & ~CPU_TASKS_FROZEN) {
1918 case CPU_ONLINE:
1919 case CPU_DEAD:
1920 writeback_set_ratelimit();
1921 return NOTIFY_OK;
1922 default:
1923 return NOTIFY_DONE;
1924 }
1da177e4
LT
1925}
1926
0db0628d 1927static struct notifier_block ratelimit_nb = {
1da177e4
LT
1928 .notifier_call = ratelimit_handler,
1929 .next = NULL,
1930};
1931
1932/*
dc6e29da
LT
1933 * Called early on to tune the page writeback dirty limits.
1934 *
1935 * We used to scale dirty pages according to how total memory
1936 * related to pages that could be allocated for buffers (by
1937 * comparing nr_free_buffer_pages() to vm_total_pages.
1938 *
1939 * However, that was when we used "dirty_ratio" to scale with
1940 * all memory, and we don't do that any more. "dirty_ratio"
1941 * is now applied to total non-HIGHPAGE memory (by subtracting
1942 * totalhigh_pages from vm_total_pages), and as such we can't
1943 * get into the old insane situation any more where we had
1944 * large amounts of dirty pages compared to a small amount of
1945 * non-HIGHMEM memory.
1946 *
1947 * But we might still want to scale the dirty_ratio by how
1948 * much memory the box has..
1da177e4
LT
1949 */
1950void __init page_writeback_init(void)
1951{
2d1d43f6 1952 writeback_set_ratelimit();
1da177e4 1953 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1954
380c27ca 1955 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
1da177e4
LT
1956}
1957
f446daae
JK
1958/**
1959 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1960 * @mapping: address space structure to write
1961 * @start: starting page index
1962 * @end: ending page index (inclusive)
1963 *
1964 * This function scans the page range from @start to @end (inclusive) and tags
1965 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1966 * that write_cache_pages (or whoever calls this function) will then use
1967 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1968 * used to avoid livelocking of writeback by a process steadily creating new
1969 * dirty pages in the file (thus it is important for this function to be quick
1970 * so that it can tag pages faster than a dirtying process can create them).
1971 */
1972/*
1973 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1974 */
f446daae
JK
1975void tag_pages_for_writeback(struct address_space *mapping,
1976 pgoff_t start, pgoff_t end)
1977{
3c111a07 1978#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1979 unsigned long tagged;
1980
1981 do {
1982 spin_lock_irq(&mapping->tree_lock);
1983 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1984 &start, end, WRITEBACK_TAG_BATCH,
1985 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1986 spin_unlock_irq(&mapping->tree_lock);
1987 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1988 cond_resched();
d5ed3a4a
JK
1989 /* We check 'start' to handle wrapping when end == ~0UL */
1990 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1991}
1992EXPORT_SYMBOL(tag_pages_for_writeback);
1993
811d736f 1994/**
0ea97180 1995 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1996 * @mapping: address space structure to write
1997 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1998 * @writepage: function called for each page
1999 * @data: data passed to writepage function
811d736f 2000 *
0ea97180 2001 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2002 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2003 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2004 * and msync() need to guarantee that all the data which was dirty at the time
2005 * the call was made get new I/O started against them. If wbc->sync_mode is
2006 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2007 * existing IO to complete.
f446daae
JK
2008 *
2009 * To avoid livelocks (when other process dirties new pages), we first tag
2010 * pages which should be written back with TOWRITE tag and only then start
2011 * writing them. For data-integrity sync we have to be careful so that we do
2012 * not miss some pages (e.g., because some other process has cleared TOWRITE
2013 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2014 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 2015 */
0ea97180
MS
2016int write_cache_pages(struct address_space *mapping,
2017 struct writeback_control *wbc, writepage_t writepage,
2018 void *data)
811d736f 2019{
811d736f
DH
2020 int ret = 0;
2021 int done = 0;
811d736f
DH
2022 struct pagevec pvec;
2023 int nr_pages;
31a12666 2024 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
2025 pgoff_t index;
2026 pgoff_t end; /* Inclusive */
bd19e012 2027 pgoff_t done_index;
31a12666 2028 int cycled;
811d736f 2029 int range_whole = 0;
f446daae 2030 int tag;
811d736f 2031
811d736f
DH
2032 pagevec_init(&pvec, 0);
2033 if (wbc->range_cyclic) {
31a12666
NP
2034 writeback_index = mapping->writeback_index; /* prev offset */
2035 index = writeback_index;
2036 if (index == 0)
2037 cycled = 1;
2038 else
2039 cycled = 0;
811d736f
DH
2040 end = -1;
2041 } else {
2042 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2043 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2044 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2045 range_whole = 1;
31a12666 2046 cycled = 1; /* ignore range_cyclic tests */
811d736f 2047 }
6e6938b6 2048 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
2049 tag = PAGECACHE_TAG_TOWRITE;
2050 else
2051 tag = PAGECACHE_TAG_DIRTY;
811d736f 2052retry:
6e6938b6 2053 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 2054 tag_pages_for_writeback(mapping, index, end);
bd19e012 2055 done_index = index;
5a3d5c98
NP
2056 while (!done && (index <= end)) {
2057 int i;
2058
f446daae 2059 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
2060 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2061 if (nr_pages == 0)
2062 break;
811d736f 2063
811d736f
DH
2064 for (i = 0; i < nr_pages; i++) {
2065 struct page *page = pvec.pages[i];
2066
2067 /*
d5482cdf
NP
2068 * At this point, the page may be truncated or
2069 * invalidated (changing page->mapping to NULL), or
2070 * even swizzled back from swapper_space to tmpfs file
2071 * mapping. However, page->index will not change
2072 * because we have a reference on the page.
811d736f 2073 */
d5482cdf
NP
2074 if (page->index > end) {
2075 /*
2076 * can't be range_cyclic (1st pass) because
2077 * end == -1 in that case.
2078 */
2079 done = 1;
2080 break;
2081 }
2082
cf15b07c 2083 done_index = page->index;
d5482cdf 2084
811d736f
DH
2085 lock_page(page);
2086
5a3d5c98
NP
2087 /*
2088 * Page truncated or invalidated. We can freely skip it
2089 * then, even for data integrity operations: the page
2090 * has disappeared concurrently, so there could be no
2091 * real expectation of this data interity operation
2092 * even if there is now a new, dirty page at the same
2093 * pagecache address.
2094 */
811d736f 2095 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2096continue_unlock:
811d736f
DH
2097 unlock_page(page);
2098 continue;
2099 }
2100
515f4a03
NP
2101 if (!PageDirty(page)) {
2102 /* someone wrote it for us */
2103 goto continue_unlock;
2104 }
2105
2106 if (PageWriteback(page)) {
2107 if (wbc->sync_mode != WB_SYNC_NONE)
2108 wait_on_page_writeback(page);
2109 else
2110 goto continue_unlock;
2111 }
811d736f 2112
515f4a03
NP
2113 BUG_ON(PageWriteback(page));
2114 if (!clear_page_dirty_for_io(page))
5a3d5c98 2115 goto continue_unlock;
811d736f 2116
de1414a6 2117 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 2118 ret = (*writepage)(page, wbc, data);
00266770
NP
2119 if (unlikely(ret)) {
2120 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2121 unlock_page(page);
2122 ret = 0;
2123 } else {
2124 /*
2125 * done_index is set past this page,
2126 * so media errors will not choke
2127 * background writeout for the entire
2128 * file. This has consequences for
2129 * range_cyclic semantics (ie. it may
2130 * not be suitable for data integrity
2131 * writeout).
2132 */
cf15b07c 2133 done_index = page->index + 1;
00266770
NP
2134 done = 1;
2135 break;
2136 }
0b564927 2137 }
00266770 2138
546a1924
DC
2139 /*
2140 * We stop writing back only if we are not doing
2141 * integrity sync. In case of integrity sync we have to
2142 * keep going until we have written all the pages
2143 * we tagged for writeback prior to entering this loop.
2144 */
2145 if (--wbc->nr_to_write <= 0 &&
2146 wbc->sync_mode == WB_SYNC_NONE) {
2147 done = 1;
2148 break;
05fe478d 2149 }
811d736f
DH
2150 }
2151 pagevec_release(&pvec);
2152 cond_resched();
2153 }
3a4c6800 2154 if (!cycled && !done) {
811d736f 2155 /*
31a12666 2156 * range_cyclic:
811d736f
DH
2157 * We hit the last page and there is more work to be done: wrap
2158 * back to the start of the file
2159 */
31a12666 2160 cycled = 1;
811d736f 2161 index = 0;
31a12666 2162 end = writeback_index - 1;
811d736f
DH
2163 goto retry;
2164 }
0b564927
DC
2165 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2166 mapping->writeback_index = done_index;
06d6cf69 2167
811d736f
DH
2168 return ret;
2169}
0ea97180
MS
2170EXPORT_SYMBOL(write_cache_pages);
2171
2172/*
2173 * Function used by generic_writepages to call the real writepage
2174 * function and set the mapping flags on error
2175 */
2176static int __writepage(struct page *page, struct writeback_control *wbc,
2177 void *data)
2178{
2179 struct address_space *mapping = data;
2180 int ret = mapping->a_ops->writepage(page, wbc);
2181 mapping_set_error(mapping, ret);
2182 return ret;
2183}
2184
2185/**
2186 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2187 * @mapping: address space structure to write
2188 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2189 *
2190 * This is a library function, which implements the writepages()
2191 * address_space_operation.
2192 */
2193int generic_writepages(struct address_space *mapping,
2194 struct writeback_control *wbc)
2195{
9b6096a6
SL
2196 struct blk_plug plug;
2197 int ret;
2198
0ea97180
MS
2199 /* deal with chardevs and other special file */
2200 if (!mapping->a_ops->writepage)
2201 return 0;
2202
9b6096a6
SL
2203 blk_start_plug(&plug);
2204 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2205 blk_finish_plug(&plug);
2206 return ret;
0ea97180 2207}
811d736f
DH
2208
2209EXPORT_SYMBOL(generic_writepages);
2210
1da177e4
LT
2211int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2212{
22905f77
AM
2213 int ret;
2214
1da177e4
LT
2215 if (wbc->nr_to_write <= 0)
2216 return 0;
2217 if (mapping->a_ops->writepages)
d08b3851 2218 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2219 else
2220 ret = generic_writepages(mapping, wbc);
22905f77 2221 return ret;
1da177e4
LT
2222}
2223
2224/**
2225 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2226 * @page: the page to write
2227 * @wait: if true, wait on writeout
1da177e4
LT
2228 *
2229 * The page must be locked by the caller and will be unlocked upon return.
2230 *
2231 * write_one_page() returns a negative error code if I/O failed.
2232 */
2233int write_one_page(struct page *page, int wait)
2234{
2235 struct address_space *mapping = page->mapping;
2236 int ret = 0;
2237 struct writeback_control wbc = {
2238 .sync_mode = WB_SYNC_ALL,
2239 .nr_to_write = 1,
2240 };
2241
2242 BUG_ON(!PageLocked(page));
2243
2244 if (wait)
2245 wait_on_page_writeback(page);
2246
2247 if (clear_page_dirty_for_io(page)) {
2248 page_cache_get(page);
2249 ret = mapping->a_ops->writepage(page, &wbc);
2250 if (ret == 0 && wait) {
2251 wait_on_page_writeback(page);
2252 if (PageError(page))
2253 ret = -EIO;
2254 }
2255 page_cache_release(page);
2256 } else {
2257 unlock_page(page);
2258 }
2259 return ret;
2260}
2261EXPORT_SYMBOL(write_one_page);
2262
76719325
KC
2263/*
2264 * For address_spaces which do not use buffers nor write back.
2265 */
2266int __set_page_dirty_no_writeback(struct page *page)
2267{
2268 if (!PageDirty(page))
c3f0da63 2269 return !TestSetPageDirty(page);
76719325
KC
2270 return 0;
2271}
2272
e3a7cca1
ES
2273/*
2274 * Helper function for set_page_dirty family.
c4843a75
GT
2275 *
2276 * Caller must hold mem_cgroup_begin_page_stat().
2277 *
e3a7cca1
ES
2278 * NOTE: This relies on being atomic wrt interrupts.
2279 */
c4843a75
GT
2280void account_page_dirtied(struct page *page, struct address_space *mapping,
2281 struct mem_cgroup *memcg)
e3a7cca1 2282{
52ebea74
TH
2283 struct inode *inode = mapping->host;
2284
9fb0a7da
TH
2285 trace_writeback_dirty_page(page, mapping);
2286
e3a7cca1 2287 if (mapping_cap_account_dirty(mapping)) {
52ebea74
TH
2288 struct bdi_writeback *wb;
2289
2290 inode_attach_wb(inode, page);
2291 wb = inode_to_wb(inode);
de1414a6 2292
c4843a75 2293 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2294 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2295 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2296 __inc_wb_stat(wb, WB_RECLAIMABLE);
2297 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2298 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2299 current->nr_dirtied++;
2300 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2301 }
2302}
679ceace 2303EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2304
b9ea2515
KK
2305/*
2306 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2307 *
2308 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2309 */
c4843a75
GT
2310void account_page_cleaned(struct page *page, struct address_space *mapping,
2311 struct mem_cgroup *memcg)
b9ea2515
KK
2312{
2313 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2314 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2315 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2316 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
b9ea2515
KK
2317 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2318 }
2319}
b9ea2515 2320
1da177e4
LT
2321/*
2322 * For address_spaces which do not use buffers. Just tag the page as dirty in
2323 * its radix tree.
2324 *
2325 * This is also used when a single buffer is being dirtied: we want to set the
2326 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2327 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2328 *
2d6d7f98
JW
2329 * The caller must ensure this doesn't race with truncation. Most will simply
2330 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2331 * the pte lock held, which also locks out truncation.
1da177e4
LT
2332 */
2333int __set_page_dirty_nobuffers(struct page *page)
2334{
c4843a75
GT
2335 struct mem_cgroup *memcg;
2336
2337 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2338 if (!TestSetPageDirty(page)) {
2339 struct address_space *mapping = page_mapping(page);
a85d9df1 2340 unsigned long flags;
1da177e4 2341
c4843a75
GT
2342 if (!mapping) {
2343 mem_cgroup_end_page_stat(memcg);
8c08540f 2344 return 1;
c4843a75 2345 }
8c08540f 2346
a85d9df1 2347 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2348 BUG_ON(page_mapping(page) != mapping);
2349 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2350 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2351 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2352 PAGECACHE_TAG_DIRTY);
a85d9df1 2353 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2354 mem_cgroup_end_page_stat(memcg);
2355
8c08540f
AM
2356 if (mapping->host) {
2357 /* !PageAnon && !swapper_space */
2358 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2359 }
4741c9fd 2360 return 1;
1da177e4 2361 }
c4843a75 2362 mem_cgroup_end_page_stat(memcg);
4741c9fd 2363 return 0;
1da177e4
LT
2364}
2365EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2366
2f800fbd
WF
2367/*
2368 * Call this whenever redirtying a page, to de-account the dirty counters
2369 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2370 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2371 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2372 * control.
2373 */
2374void account_page_redirty(struct page *page)
2375{
2376 struct address_space *mapping = page->mapping;
91018134 2377
2f800fbd 2378 if (mapping && mapping_cap_account_dirty(mapping)) {
91018134
TH
2379 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2380
2f800fbd
WF
2381 current->nr_dirtied--;
2382 dec_zone_page_state(page, NR_DIRTIED);
91018134 2383 dec_wb_stat(wb, WB_DIRTIED);
2f800fbd
WF
2384 }
2385}
2386EXPORT_SYMBOL(account_page_redirty);
2387
1da177e4
LT
2388/*
2389 * When a writepage implementation decides that it doesn't want to write this
2390 * page for some reason, it should redirty the locked page via
2391 * redirty_page_for_writepage() and it should then unlock the page and return 0
2392 */
2393int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2394{
8d38633c
KK
2395 int ret;
2396
1da177e4 2397 wbc->pages_skipped++;
8d38633c 2398 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2399 account_page_redirty(page);
8d38633c 2400 return ret;
1da177e4
LT
2401}
2402EXPORT_SYMBOL(redirty_page_for_writepage);
2403
2404/*
6746aff7
WF
2405 * Dirty a page.
2406 *
2407 * For pages with a mapping this should be done under the page lock
2408 * for the benefit of asynchronous memory errors who prefer a consistent
2409 * dirty state. This rule can be broken in some special cases,
2410 * but should be better not to.
2411 *
1da177e4
LT
2412 * If the mapping doesn't provide a set_page_dirty a_op, then
2413 * just fall through and assume that it wants buffer_heads.
2414 */
1cf6e7d8 2415int set_page_dirty(struct page *page)
1da177e4
LT
2416{
2417 struct address_space *mapping = page_mapping(page);
2418
2419 if (likely(mapping)) {
2420 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2421 /*
2422 * readahead/lru_deactivate_page could remain
2423 * PG_readahead/PG_reclaim due to race with end_page_writeback
2424 * About readahead, if the page is written, the flags would be
2425 * reset. So no problem.
2426 * About lru_deactivate_page, if the page is redirty, the flag
2427 * will be reset. So no problem. but if the page is used by readahead
2428 * it will confuse readahead and make it restart the size rampup
2429 * process. But it's a trivial problem.
2430 */
a4bb3ecd
NH
2431 if (PageReclaim(page))
2432 ClearPageReclaim(page);
9361401e
DH
2433#ifdef CONFIG_BLOCK
2434 if (!spd)
2435 spd = __set_page_dirty_buffers;
2436#endif
2437 return (*spd)(page);
1da177e4 2438 }
4741c9fd
AM
2439 if (!PageDirty(page)) {
2440 if (!TestSetPageDirty(page))
2441 return 1;
2442 }
1da177e4
LT
2443 return 0;
2444}
2445EXPORT_SYMBOL(set_page_dirty);
2446
2447/*
2448 * set_page_dirty() is racy if the caller has no reference against
2449 * page->mapping->host, and if the page is unlocked. This is because another
2450 * CPU could truncate the page off the mapping and then free the mapping.
2451 *
2452 * Usually, the page _is_ locked, or the caller is a user-space process which
2453 * holds a reference on the inode by having an open file.
2454 *
2455 * In other cases, the page should be locked before running set_page_dirty().
2456 */
2457int set_page_dirty_lock(struct page *page)
2458{
2459 int ret;
2460
7eaceacc 2461 lock_page(page);
1da177e4
LT
2462 ret = set_page_dirty(page);
2463 unlock_page(page);
2464 return ret;
2465}
2466EXPORT_SYMBOL(set_page_dirty_lock);
2467
11f81bec
TH
2468/*
2469 * This cancels just the dirty bit on the kernel page itself, it does NOT
2470 * actually remove dirty bits on any mmap's that may be around. It also
2471 * leaves the page tagged dirty, so any sync activity will still find it on
2472 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2473 * look at the dirty bits in the VM.
2474 *
2475 * Doing this should *normally* only ever be done when a page is truncated,
2476 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2477 * this when it notices that somebody has cleaned out all the buffers on a
2478 * page without actually doing it through the VM. Can you say "ext3 is
2479 * horribly ugly"? Thought you could.
2480 */
2481void cancel_dirty_page(struct page *page)
2482{
c4843a75
GT
2483 struct address_space *mapping = page_mapping(page);
2484
2485 if (mapping_cap_account_dirty(mapping)) {
2486 struct mem_cgroup *memcg;
2487
2488 memcg = mem_cgroup_begin_page_stat(page);
2489
2490 if (TestClearPageDirty(page))
2491 account_page_cleaned(page, mapping, memcg);
2492
2493 mem_cgroup_end_page_stat(memcg);
2494 } else {
2495 ClearPageDirty(page);
2496 }
11f81bec
TH
2497}
2498EXPORT_SYMBOL(cancel_dirty_page);
2499
1da177e4
LT
2500/*
2501 * Clear a page's dirty flag, while caring for dirty memory accounting.
2502 * Returns true if the page was previously dirty.
2503 *
2504 * This is for preparing to put the page under writeout. We leave the page
2505 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2506 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2507 * implementation will run either set_page_writeback() or set_page_dirty(),
2508 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2509 * back into sync.
2510 *
2511 * This incoherency between the page's dirty flag and radix-tree tag is
2512 * unfortunate, but it only exists while the page is locked.
2513 */
2514int clear_page_dirty_for_io(struct page *page)
2515{
2516 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2517 struct mem_cgroup *memcg;
2518 int ret = 0;
1da177e4 2519
79352894
NP
2520 BUG_ON(!PageLocked(page));
2521
7658cc28
LT
2522 if (mapping && mapping_cap_account_dirty(mapping)) {
2523 /*
2524 * Yes, Virginia, this is indeed insane.
2525 *
2526 * We use this sequence to make sure that
2527 * (a) we account for dirty stats properly
2528 * (b) we tell the low-level filesystem to
2529 * mark the whole page dirty if it was
2530 * dirty in a pagetable. Only to then
2531 * (c) clean the page again and return 1 to
2532 * cause the writeback.
2533 *
2534 * This way we avoid all nasty races with the
2535 * dirty bit in multiple places and clearing
2536 * them concurrently from different threads.
2537 *
2538 * Note! Normally the "set_page_dirty(page)"
2539 * has no effect on the actual dirty bit - since
2540 * that will already usually be set. But we
2541 * need the side effects, and it can help us
2542 * avoid races.
2543 *
2544 * We basically use the page "master dirty bit"
2545 * as a serialization point for all the different
2546 * threads doing their things.
7658cc28
LT
2547 */
2548 if (page_mkclean(page))
2549 set_page_dirty(page);
79352894
NP
2550 /*
2551 * We carefully synchronise fault handlers against
2552 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2553 * at this point. We do this by having them hold the
2554 * page lock while dirtying the page, and pages are
2555 * always locked coming in here, so we get the desired
2556 * exclusion.
79352894 2557 */
c4843a75 2558 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2559 if (TestClearPageDirty(page)) {
c4843a75 2560 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2561 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2562 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
c4843a75 2563 ret = 1;
1da177e4 2564 }
c4843a75
GT
2565 mem_cgroup_end_page_stat(memcg);
2566 return ret;
1da177e4 2567 }
7658cc28 2568 return TestClearPageDirty(page);
1da177e4 2569}
58bb01a9 2570EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2571
2572int test_clear_page_writeback(struct page *page)
2573{
2574 struct address_space *mapping = page_mapping(page);
d7365e78 2575 struct mem_cgroup *memcg;
d7365e78 2576 int ret;
1da177e4 2577
6de22619 2578 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2579 if (mapping) {
91018134
TH
2580 struct inode *inode = mapping->host;
2581 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2582 unsigned long flags;
2583
19fd6231 2584 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2585 ret = TestClearPageWriteback(page);
69cb51d1 2586 if (ret) {
1da177e4
LT
2587 radix_tree_tag_clear(&mapping->page_tree,
2588 page_index(page),
2589 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2590 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2591 struct bdi_writeback *wb = inode_to_wb(inode);
2592
2593 __dec_wb_stat(wb, WB_WRITEBACK);
2594 __wb_writeout_inc(wb);
04fbfdc1 2595 }
69cb51d1 2596 }
19fd6231 2597 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2598 } else {
2599 ret = TestClearPageWriteback(page);
2600 }
99b12e3d 2601 if (ret) {
d7365e78 2602 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2603 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2604 inc_zone_page_state(page, NR_WRITTEN);
2605 }
6de22619 2606 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2607 return ret;
2608}
2609
1c8349a1 2610int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2611{
2612 struct address_space *mapping = page_mapping(page);
d7365e78 2613 struct mem_cgroup *memcg;
d7365e78 2614 int ret;
1da177e4 2615
6de22619 2616 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2617 if (mapping) {
91018134
TH
2618 struct inode *inode = mapping->host;
2619 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2620 unsigned long flags;
2621
19fd6231 2622 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2623 ret = TestSetPageWriteback(page);
69cb51d1 2624 if (!ret) {
1da177e4
LT
2625 radix_tree_tag_set(&mapping->page_tree,
2626 page_index(page),
2627 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2628 if (bdi_cap_account_writeback(bdi))
91018134 2629 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2630 }
1da177e4
LT
2631 if (!PageDirty(page))
2632 radix_tree_tag_clear(&mapping->page_tree,
2633 page_index(page),
2634 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2635 if (!keep_write)
2636 radix_tree_tag_clear(&mapping->page_tree,
2637 page_index(page),
2638 PAGECACHE_TAG_TOWRITE);
19fd6231 2639 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2640 } else {
2641 ret = TestSetPageWriteback(page);
2642 }
3a3c02ec 2643 if (!ret) {
d7365e78 2644 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2645 inc_zone_page_state(page, NR_WRITEBACK);
2646 }
6de22619 2647 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2648 return ret;
2649
2650}
1c8349a1 2651EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2652
2653/*
00128188 2654 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2655 * passed tag.
2656 */
2657int mapping_tagged(struct address_space *mapping, int tag)
2658{
72c47832 2659 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2660}
2661EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2662
2663/**
2664 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2665 * @page: The page to wait on.
2666 *
2667 * This function determines if the given page is related to a backing device
2668 * that requires page contents to be held stable during writeback. If so, then
2669 * it will wait for any pending writeback to complete.
2670 */
2671void wait_for_stable_page(struct page *page)
2672{
de1414a6
CH
2673 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2674 wait_on_page_writeback(page);
1d1d1a76
DW
2675}
2676EXPORT_SYMBOL_GPL(wait_for_stable_page);