]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page-writeback.c
mm: document /sys/class/bdi/<bdi>/max_bytes knob
[thirdparty/linux.git] / mm / page-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
f30c2269 3 * mm/page-writeback.c
1da177e4
LT
4 *
5 * Copyright (C) 2002, Linus Torvalds.
90eec103 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Initial version
13 */
14
15#include <linux/kernel.h>
1bf27e98 16#include <linux/math64.h>
b95f1b31 17#include <linux/export.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/fs.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/slab.h>
23#include <linux/pagemap.h>
24#include <linux/writeback.h>
25#include <linux/init.h>
26#include <linux/backing-dev.h>
55e829af 27#include <linux/task_io_accounting_ops.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/mpage.h>
d08b3851 30#include <linux/rmap.h>
1da177e4 31#include <linux/percpu.h>
1da177e4
LT
32#include <linux/smp.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
f361bf4a 39#include <linux/sched/signal.h>
6e543d57 40#include <linux/mm_inline.h>
028c2dd1 41#include <trace/events/writeback.h>
1da177e4 42
6e543d57
LD
43#include "internal.h"
44
ffd1f609
WF
45/*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48#define MAX_PAUSE max(HZ/5, 1)
49
5b9b3574
WF
50/*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
e98be2d5
WF
56/*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59#define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
6c14ae1e
WF
61#define RATELIMIT_CALC_SHIFT 10
62
1da177e4
LT
63/*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67static long ratelimit_pages = 32;
68
1da177e4
LT
69/* The following parameters are exported via /proc/sys/vm */
70
71/*
5b0830cb 72 * Start background writeback (via writeback threads) at this percentage
1da177e4 73 */
aa779e51 74static int dirty_background_ratio = 10;
1da177e4 75
2da02997
DR
76/*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
aa779e51 80static unsigned long dirty_background_bytes;
2da02997 81
195cf453
BG
82/*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
aa779e51 86static int vm_highmem_is_dirtyable;
195cf453 87
1da177e4
LT
88/*
89 * The generator of dirty data starts writeback at this percentage
90 */
aa779e51 91static int vm_dirty_ratio = 20;
1da177e4 92
2da02997
DR
93/*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
aa779e51 97static unsigned long vm_dirty_bytes;
2da02997 98
1da177e4 99/*
704503d8 100 * The interval between `kupdate'-style writebacks
1da177e4 101 */
22ef37ee 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 103
91913a29
AB
104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
1da177e4 106/*
704503d8 107 * The longest time for which data is allowed to remain dirty
1da177e4 108 */
22ef37ee 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4 110
1da177e4 111/*
ed5b43f1
BS
112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
114 */
115int laptop_mode;
116
117EXPORT_SYMBOL(laptop_mode);
118
119/* End of sysctl-exported parameters */
120
dcc25ae7 121struct wb_domain global_wb_domain;
1da177e4 122
2bc00aef
TH
123/* consolidated parameters for balance_dirty_pages() and its subroutines */
124struct dirty_throttle_control {
e9f07dfd
TH
125#ifdef CONFIG_CGROUP_WRITEBACK
126 struct wb_domain *dom;
9fc3a43e 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 128#endif
2bc00aef 129 struct bdi_writeback *wb;
e9770b34 130 struct fprop_local_percpu *wb_completions;
eb608e3a 131
9fc3a43e 132 unsigned long avail; /* dirtyable */
2bc00aef
TH
133 unsigned long dirty; /* file_dirty + write + nfs */
134 unsigned long thresh; /* dirty threshold */
135 unsigned long bg_thresh; /* dirty background threshold */
136
137 unsigned long wb_dirty; /* per-wb counterparts */
138 unsigned long wb_thresh;
970fb01a 139 unsigned long wb_bg_thresh;
daddfa3c
TH
140
141 unsigned long pos_ratio;
2bc00aef
TH
142};
143
eb608e3a
JK
144/*
145 * Length of period for aging writeout fractions of bdis. This is an
146 * arbitrarily chosen number. The longer the period, the slower fractions will
147 * reflect changes in current writeout rate.
148 */
149#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 150
693108a8
TH
151#ifdef CONFIG_CGROUP_WRITEBACK
152
d60d1bdd
TH
153#define GDTC_INIT(__wb) .wb = (__wb), \
154 .dom = &global_wb_domain, \
155 .wb_completions = &(__wb)->completions
156
9fc3a43e 157#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
158
159#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
160 .dom = mem_cgroup_wb_domain(__wb), \
161 .wb_completions = &(__wb)->memcg_completions, \
162 .gdtc = __gdtc
c2aa723a
TH
163
164static bool mdtc_valid(struct dirty_throttle_control *dtc)
165{
166 return dtc->dom;
167}
e9f07dfd
TH
168
169static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170{
171 return dtc->dom;
172}
173
9fc3a43e
TH
174static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175{
176 return mdtc->gdtc;
177}
178
841710aa
TH
179static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180{
181 return &wb->memcg_completions;
182}
183
693108a8
TH
184static void wb_min_max_ratio(struct bdi_writeback *wb,
185 unsigned long *minp, unsigned long *maxp)
186{
20792ebf 187 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
693108a8
TH
188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189 unsigned long long min = wb->bdi->min_ratio;
190 unsigned long long max = wb->bdi->max_ratio;
191
192 /*
193 * @wb may already be clean by the time control reaches here and
194 * the total may not include its bw.
195 */
196 if (this_bw < tot_bw) {
197 if (min) {
198 min *= this_bw;
6d9e8c65 199 min = div64_ul(min, tot_bw);
693108a8 200 }
ae82291e 201 if (max < 100 * BDI_RATIO_SCALE) {
693108a8 202 max *= this_bw;
6d9e8c65 203 max = div64_ul(max, tot_bw);
693108a8
TH
204 }
205 }
206
207 *minp = min;
208 *maxp = max;
209}
210
211#else /* CONFIG_CGROUP_WRITEBACK */
212
d60d1bdd
TH
213#define GDTC_INIT(__wb) .wb = (__wb), \
214 .wb_completions = &(__wb)->completions
9fc3a43e 215#define GDTC_INIT_NO_WB
c2aa723a
TH
216#define MDTC_INIT(__wb, __gdtc)
217
218static bool mdtc_valid(struct dirty_throttle_control *dtc)
219{
220 return false;
221}
e9f07dfd
TH
222
223static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224{
225 return &global_wb_domain;
226}
227
9fc3a43e
TH
228static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229{
230 return NULL;
231}
232
841710aa
TH
233static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234{
235 return NULL;
236}
237
693108a8
TH
238static void wb_min_max_ratio(struct bdi_writeback *wb,
239 unsigned long *minp, unsigned long *maxp)
240{
241 *minp = wb->bdi->min_ratio;
242 *maxp = wb->bdi->max_ratio;
243}
244
245#endif /* CONFIG_CGROUP_WRITEBACK */
246
a756cf59
JW
247/*
248 * In a memory zone, there is a certain amount of pages we consider
249 * available for the page cache, which is essentially the number of
250 * free and reclaimable pages, minus some zone reserves to protect
251 * lowmem and the ability to uphold the zone's watermarks without
252 * requiring writeback.
253 *
254 * This number of dirtyable pages is the base value of which the
e0857cf5 255 * user-configurable dirty ratio is the effective number of pages that
a756cf59
JW
256 * are allowed to be actually dirtied. Per individual zone, or
257 * globally by using the sum of dirtyable pages over all zones.
258 *
259 * Because the user is allowed to specify the dirty limit globally as
260 * absolute number of bytes, calculating the per-zone dirty limit can
261 * require translating the configured limit into a percentage of
262 * global dirtyable memory first.
263 */
264
a804552b 265/**
281e3726
MG
266 * node_dirtyable_memory - number of dirtyable pages in a node
267 * @pgdat: the node
a804552b 268 *
a862f68a 269 * Return: the node's number of pages potentially available for dirty
281e3726 270 * page cache. This is the base value for the per-node dirty limits.
a804552b 271 */
281e3726 272static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 273{
281e3726
MG
274 unsigned long nr_pages = 0;
275 int z;
276
277 for (z = 0; z < MAX_NR_ZONES; z++) {
278 struct zone *zone = pgdat->node_zones + z;
279
280 if (!populated_zone(zone))
281 continue;
282
283 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284 }
a804552b 285
a8d01437
JW
286 /*
287 * Pages reserved for the kernel should not be considered
288 * dirtyable, to prevent a situation where reclaim has to
289 * clean pages in order to balance the zones.
290 */
281e3726 291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 292
281e3726
MG
293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
295
296 return nr_pages;
297}
298
1edf2234
JW
299static unsigned long highmem_dirtyable_memory(unsigned long total)
300{
301#ifdef CONFIG_HIGHMEM
302 int node;
bb4cc2be 303 unsigned long x = 0;
09b4ab3c 304 int i;
1edf2234
JW
305
306 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308 struct zone *z;
9cb937e2 309 unsigned long nr_pages;
281e3726
MG
310
311 if (!is_highmem_idx(i))
312 continue;
313
314 z = &NODE_DATA(node)->node_zones[i];
9cb937e2
MK
315 if (!populated_zone(z))
316 continue;
1edf2234 317
9cb937e2 318 nr_pages = zone_page_state(z, NR_FREE_PAGES);
281e3726 319 /* watch for underflows */
9cb937e2 320 nr_pages -= min(nr_pages, high_wmark_pages(z));
bb4cc2be
MG
321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323 x += nr_pages;
09b4ab3c 324 }
1edf2234 325 }
281e3726 326
1edf2234
JW
327 /*
328 * Make sure that the number of highmem pages is never larger
329 * than the number of the total dirtyable memory. This can only
330 * occur in very strange VM situations but we want to make sure
331 * that this does not occur.
332 */
333 return min(x, total);
334#else
335 return 0;
336#endif
337}
338
339/**
ccafa287 340 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 341 *
a862f68a 342 * Return: the global number of pages potentially available for dirty
ccafa287 343 * page cache. This is the base value for the global dirty limits.
1edf2234 344 */
18cf8cf8 345static unsigned long global_dirtyable_memory(void)
1edf2234
JW
346{
347 unsigned long x;
348
c41f012a 349 x = global_zone_page_state(NR_FREE_PAGES);
a8d01437
JW
350 /*
351 * Pages reserved for the kernel should not be considered
352 * dirtyable, to prevent a situation where reclaim has to
353 * clean pages in order to balance the zones.
354 */
355 x -= min(x, totalreserve_pages);
1edf2234 356
599d0c95
MG
357 x += global_node_page_state(NR_INACTIVE_FILE);
358 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 359
1edf2234
JW
360 if (!vm_highmem_is_dirtyable)
361 x -= highmem_dirtyable_memory(x);
362
363 return x + 1; /* Ensure that we never return 0 */
364}
365
9fc3a43e
TH
366/**
367 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
368 * @dtc: dirty_throttle_control of interest
ccafa287 369 *
9fc3a43e
TH
370 * Calculate @dtc->thresh and ->bg_thresh considering
371 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
372 * must ensure that @dtc->avail is set before calling this function. The
a37b0715 373 * dirty limits will be lifted by 1/4 for real-time tasks.
ccafa287 374 */
9fc3a43e 375static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 376{
9fc3a43e
TH
377 const unsigned long available_memory = dtc->avail;
378 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
379 unsigned long bytes = vm_dirty_bytes;
380 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
381 /* convert ratios to per-PAGE_SIZE for higher precision */
382 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
383 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
384 unsigned long thresh;
385 unsigned long bg_thresh;
ccafa287
JW
386 struct task_struct *tsk;
387
9fc3a43e
TH
388 /* gdtc is !NULL iff @dtc is for memcg domain */
389 if (gdtc) {
390 unsigned long global_avail = gdtc->avail;
391
392 /*
393 * The byte settings can't be applied directly to memcg
394 * domains. Convert them to ratios by scaling against
62a584fe
TH
395 * globally available memory. As the ratios are in
396 * per-PAGE_SIZE, they can be obtained by dividing bytes by
397 * number of pages.
9fc3a43e
TH
398 */
399 if (bytes)
62a584fe
TH
400 ratio = min(DIV_ROUND_UP(bytes, global_avail),
401 PAGE_SIZE);
9fc3a43e 402 if (bg_bytes)
62a584fe
TH
403 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
404 PAGE_SIZE);
9fc3a43e
TH
405 bytes = bg_bytes = 0;
406 }
407
408 if (bytes)
409 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 410 else
62a584fe 411 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 412
9fc3a43e
TH
413 if (bg_bytes)
414 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 415 else
62a584fe 416 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 417
90daf306 418 if (bg_thresh >= thresh)
9fc3a43e 419 bg_thresh = thresh / 2;
ccafa287 420 tsk = current;
a37b0715 421 if (rt_task(tsk)) {
a53eaff8
N
422 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
423 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 424 }
9fc3a43e
TH
425 dtc->thresh = thresh;
426 dtc->bg_thresh = bg_thresh;
427
428 /* we should eventually report the domain in the TP */
429 if (!gdtc)
430 trace_global_dirty_state(bg_thresh, thresh);
431}
432
433/**
434 * global_dirty_limits - background-writeback and dirty-throttling thresholds
435 * @pbackground: out parameter for bg_thresh
436 * @pdirty: out parameter for thresh
437 *
438 * Calculate bg_thresh and thresh for global_wb_domain. See
439 * domain_dirty_limits() for details.
440 */
441void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
442{
443 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
444
445 gdtc.avail = global_dirtyable_memory();
446 domain_dirty_limits(&gdtc);
447
448 *pbackground = gdtc.bg_thresh;
449 *pdirty = gdtc.thresh;
ccafa287
JW
450}
451
a756cf59 452/**
281e3726
MG
453 * node_dirty_limit - maximum number of dirty pages allowed in a node
454 * @pgdat: the node
a756cf59 455 *
a862f68a 456 * Return: the maximum number of dirty pages allowed in a node, based
281e3726 457 * on the node's dirtyable memory.
a756cf59 458 */
281e3726 459static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 460{
281e3726 461 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
462 struct task_struct *tsk = current;
463 unsigned long dirty;
464
465 if (vm_dirty_bytes)
466 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 467 node_memory / global_dirtyable_memory();
a756cf59 468 else
281e3726 469 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59 470
a37b0715 471 if (rt_task(tsk))
a756cf59
JW
472 dirty += dirty / 4;
473
474 return dirty;
475}
476
477/**
281e3726
MG
478 * node_dirty_ok - tells whether a node is within its dirty limits
479 * @pgdat: the node to check
a756cf59 480 *
a862f68a 481 * Return: %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
482 * dirty limit, %false if the limit is exceeded.
483 */
281e3726 484bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 485{
281e3726
MG
486 unsigned long limit = node_dirty_limit(pgdat);
487 unsigned long nr_pages = 0;
488
11fb9989 489 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
11fb9989 490 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
a756cf59 491
281e3726 492 return nr_pages <= limit;
a756cf59
JW
493}
494
aa779e51 495#ifdef CONFIG_SYSCTL
496static int dirty_background_ratio_handler(struct ctl_table *table, int write,
32927393 497 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
498{
499 int ret;
500
8d65af78 501 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
502 if (ret == 0 && write)
503 dirty_background_bytes = 0;
504 return ret;
505}
506
aa779e51 507static int dirty_background_bytes_handler(struct ctl_table *table, int write,
32927393 508 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
509{
510 int ret;
511
8d65af78 512 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
513 if (ret == 0 && write)
514 dirty_background_ratio = 0;
515 return ret;
516}
517
aa779e51 518static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
32927393 519 size_t *lenp, loff_t *ppos)
04fbfdc1
PZ
520{
521 int old_ratio = vm_dirty_ratio;
2da02997
DR
522 int ret;
523
8d65af78 524 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 525 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 526 writeback_set_ratelimit();
2da02997
DR
527 vm_dirty_bytes = 0;
528 }
529 return ret;
530}
531
aa779e51 532static int dirty_bytes_handler(struct ctl_table *table, int write,
32927393 533 void *buffer, size_t *lenp, loff_t *ppos)
2da02997 534{
fc3501d4 535 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
536 int ret;
537
8d65af78 538 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 539 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 540 writeback_set_ratelimit();
2da02997 541 vm_dirty_ratio = 0;
04fbfdc1
PZ
542 }
543 return ret;
544}
aa779e51 545#endif
04fbfdc1 546
eb608e3a
JK
547static unsigned long wp_next_time(unsigned long cur_time)
548{
549 cur_time += VM_COMPLETIONS_PERIOD_LEN;
550 /* 0 has a special meaning... */
551 if (!cur_time)
552 return 1;
553 return cur_time;
554}
555
cc24df4c 556static void wb_domain_writeout_add(struct wb_domain *dom,
c7981433 557 struct fprop_local_percpu *completions,
cc24df4c 558 unsigned int max_prop_frac, long nr)
04fbfdc1 559{
be5f1797 560 __fprop_add_percpu_max(&dom->completions, completions,
cc24df4c 561 max_prop_frac, nr);
eb608e3a 562 /* First event after period switching was turned off? */
517663ed 563 if (unlikely(!dom->period_time)) {
eb608e3a
JK
564 /*
565 * We can race with other __bdi_writeout_inc calls here but
566 * it does not cause any harm since the resulting time when
567 * timer will fire and what is in writeout_period_time will be
568 * roughly the same.
569 */
380c27ca
TH
570 dom->period_time = wp_next_time(jiffies);
571 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 572 }
04fbfdc1
PZ
573}
574
c7981433
TH
575/*
576 * Increment @wb's writeout completion count and the global writeout
269ccca3 577 * completion count. Called from __folio_end_writeback().
c7981433 578 */
cc24df4c 579static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
dd5656e5 580{
841710aa 581 struct wb_domain *cgdom;
dd5656e5 582
cc24df4c
MWO
583 wb_stat_mod(wb, WB_WRITTEN, nr);
584 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
585 wb->bdi->max_prop_frac, nr);
841710aa
TH
586
587 cgdom = mem_cgroup_wb_domain(wb);
588 if (cgdom)
cc24df4c
MWO
589 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
590 wb->bdi->max_prop_frac, nr);
dd5656e5 591}
dd5656e5 592
93f78d88 593void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 594{
dd5656e5
MS
595 unsigned long flags;
596
597 local_irq_save(flags);
cc24df4c 598 __wb_writeout_add(wb, 1);
dd5656e5 599 local_irq_restore(flags);
04fbfdc1 600}
93f78d88 601EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 602
eb608e3a
JK
603/*
604 * On idle system, we can be called long after we scheduled because we use
605 * deferred timers so count with missed periods.
606 */
9823e51b 607static void writeout_period(struct timer_list *t)
eb608e3a 608{
9823e51b 609 struct wb_domain *dom = from_timer(dom, t, period_timer);
380c27ca 610 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
611 VM_COMPLETIONS_PERIOD_LEN;
612
380c27ca
TH
613 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
614 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 615 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 616 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
617 } else {
618 /*
619 * Aging has zeroed all fractions. Stop wasting CPU on period
620 * updates.
621 */
380c27ca 622 dom->period_time = 0;
eb608e3a
JK
623 }
624}
625
380c27ca
TH
626int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
627{
628 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
629
630 spin_lock_init(&dom->lock);
631
9823e51b 632 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
dcc25ae7
TH
633
634 dom->dirty_limit_tstamp = jiffies;
635
380c27ca
TH
636 return fprop_global_init(&dom->completions, gfp);
637}
638
841710aa
TH
639#ifdef CONFIG_CGROUP_WRITEBACK
640void wb_domain_exit(struct wb_domain *dom)
641{
642 del_timer_sync(&dom->period_timer);
643 fprop_global_destroy(&dom->completions);
644}
645#endif
646
189d3c4a 647/*
d08c429b
JW
648 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
649 * registered backing devices, which, for obvious reasons, can not
650 * exceed 100%.
189d3c4a 651 */
189d3c4a
PZ
652static unsigned int bdi_min_ratio;
653
1bf27e98
SR
654static int bdi_check_pages_limit(unsigned long pages)
655{
656 unsigned long max_dirty_pages = global_dirtyable_memory();
657
658 if (pages > max_dirty_pages)
659 return -EINVAL;
660
661 return 0;
662}
663
664static unsigned long bdi_ratio_from_pages(unsigned long pages)
665{
666 unsigned long background_thresh;
667 unsigned long dirty_thresh;
668 unsigned long ratio;
669
670 global_dirty_limits(&background_thresh, &dirty_thresh);
671 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
672
673 return ratio;
674}
675
00df7d51
SR
676static u64 bdi_get_bytes(unsigned int ratio)
677{
678 unsigned long background_thresh;
679 unsigned long dirty_thresh;
680 u64 bytes;
681
682 global_dirty_limits(&background_thresh, &dirty_thresh);
683 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
684
685 return bytes;
686}
687
189d3c4a
PZ
688int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
689{
21f0dd88 690 unsigned int delta;
189d3c4a 691 int ret = 0;
189d3c4a 692
ae82291e
SR
693 min_ratio *= BDI_RATIO_SCALE;
694
cfc4ba53 695 spin_lock_bh(&bdi_lock);
a42dde04 696 if (min_ratio > bdi->max_ratio) {
189d3c4a 697 ret = -EINVAL;
a42dde04 698 } else {
21f0dd88
CW
699 if (min_ratio < bdi->min_ratio) {
700 delta = bdi->min_ratio - min_ratio;
701 bdi_min_ratio -= delta;
702 bdi->min_ratio = min_ratio;
a42dde04 703 } else {
21f0dd88 704 delta = min_ratio - bdi->min_ratio;
ae82291e 705 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
21f0dd88
CW
706 bdi_min_ratio += delta;
707 bdi->min_ratio = min_ratio;
708 } else {
709 ret = -EINVAL;
710 }
a42dde04
PZ
711 }
712 }
cfc4ba53 713 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
714
715 return ret;
716}
717
efc3e6ad 718static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
a42dde04 719{
a42dde04
PZ
720 int ret = 0;
721
cfc4ba53 722 spin_lock_bh(&bdi_lock);
a42dde04
PZ
723 if (bdi->min_ratio > max_ratio) {
724 ret = -EINVAL;
725 } else {
726 bdi->max_ratio = max_ratio;
eb608e3a 727 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 728 }
cfc4ba53 729 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
730
731 return ret;
732}
efc3e6ad
SR
733
734int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
735{
736 if (max_ratio > 100)
737 return -EINVAL;
738
739 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
740}
a42dde04 741EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 742
00df7d51
SR
743u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
744{
745 return bdi_get_bytes(bdi->max_ratio);
746}
747
1bf27e98
SR
748int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
749{
750 int ret;
751 unsigned long pages = max_bytes >> PAGE_SHIFT;
752 unsigned long max_ratio;
753
754 ret = bdi_check_pages_limit(pages);
755 if (ret)
756 return ret;
757
758 max_ratio = bdi_ratio_from_pages(pages);
759 return __bdi_set_max_ratio(bdi, max_ratio);
760}
761
8e9d5ead
SR
762int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
763{
764 if (strict_limit > 1)
765 return -EINVAL;
766
767 spin_lock_bh(&bdi_lock);
768 if (strict_limit)
769 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
770 else
771 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
772 spin_unlock_bh(&bdi_lock);
773
774 return 0;
775}
776
6c14ae1e
WF
777static unsigned long dirty_freerun_ceiling(unsigned long thresh,
778 unsigned long bg_thresh)
779{
780 return (thresh + bg_thresh) / 2;
781}
782
c7981433
TH
783static unsigned long hard_dirty_limit(struct wb_domain *dom,
784 unsigned long thresh)
ffd1f609 785{
dcc25ae7 786 return max(thresh, dom->dirty_limit);
ffd1f609
WF
787}
788
c5edf9cd
TH
789/*
790 * Memory which can be further allocated to a memcg domain is capped by
791 * system-wide clean memory excluding the amount being used in the domain.
792 */
793static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
794 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
795{
796 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
797 unsigned long clean = filepages - min(filepages, mdtc->dirty);
798 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
799 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 800
c5edf9cd 801 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
802}
803
6f718656 804/**
b1cbc6d4
TH
805 * __wb_calc_thresh - @wb's share of dirty throttling threshold
806 * @dtc: dirty_throttle_context of interest
1babe183 807 *
aed21ad2
WF
808 * Note that balance_dirty_pages() will only seriously take it as a hard limit
809 * when sleeping max_pause per page is not enough to keep the dirty pages under
810 * control. For example, when the device is completely stalled due to some error
811 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
812 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 813 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 814 *
6f718656 815 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
816 * - starving fast devices
817 * - piling up dirty pages (that will take long time to sync) on slow devices
818 *
a88a341a 819 * The wb's share of dirty limit will be adapting to its throughput and
1babe183 820 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
a862f68a
MR
821 *
822 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
8d92890b 823 * dirty balancing includes all PG_dirty and PG_writeback pages.
1babe183 824 */
b1cbc6d4 825static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 826{
e9f07dfd 827 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 828 unsigned long thresh = dtc->thresh;
0d960a38 829 u64 wb_thresh;
d3ac946e 830 unsigned long numerator, denominator;
693108a8 831 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 832
16c4042f 833 /*
0d960a38 834 * Calculate this BDI's share of the thresh ratio.
16c4042f 835 */
e9770b34 836 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 837 &numerator, &denominator);
04fbfdc1 838
ae82291e 839 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
0d960a38 840 wb_thresh *= numerator;
d3ac946e 841 wb_thresh = div64_ul(wb_thresh, denominator);
04fbfdc1 842
b1cbc6d4 843 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 844
ae82291e
SR
845 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
846 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
847 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
16c4042f 848
0d960a38 849 return wb_thresh;
1da177e4
LT
850}
851
b1cbc6d4
TH
852unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
853{
854 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
855 .thresh = thresh };
856 return __wb_calc_thresh(&gdtc);
1da177e4
LT
857}
858
5a537485
MP
859/*
860 * setpoint - dirty 3
861 * f(dirty) := 1.0 + (----------------)
862 * limit - setpoint
863 *
864 * it's a 3rd order polynomial that subjects to
865 *
866 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
867 * (2) f(setpoint) = 1.0 => the balance point
868 * (3) f(limit) = 0 => the hard limit
869 * (4) df/dx <= 0 => negative feedback control
870 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
871 * => fast response on large errors; small oscillation near setpoint
872 */
d5c9fde3 873static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
874 unsigned long dirty,
875 unsigned long limit)
876{
877 long long pos_ratio;
878 long x;
879
d5c9fde3 880 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 881 (limit - setpoint) | 1);
5a537485
MP
882 pos_ratio = x;
883 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
884 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
885 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
886
887 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
888}
889
6c14ae1e
WF
890/*
891 * Dirty position control.
892 *
893 * (o) global/bdi setpoints
894 *
de1fff37 895 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
896 * When the number of dirty pages is higher/lower than the setpoint, the
897 * dirty position control ratio (and hence task dirty ratelimit) will be
898 * decreased/increased to bring the dirty pages back to the setpoint.
899 *
900 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
901 *
902 * if (dirty < setpoint) scale up pos_ratio
903 * if (dirty > setpoint) scale down pos_ratio
904 *
de1fff37
TH
905 * if (wb_dirty < wb_setpoint) scale up pos_ratio
906 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
907 *
908 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
909 *
910 * (o) global control line
911 *
912 * ^ pos_ratio
913 * |
914 * | |<===== global dirty control scope ======>|
03231554 915 * 2.0 * * * * * * *
6c14ae1e
WF
916 * | .*
917 * | . *
918 * | . *
919 * | . *
920 * | . *
921 * | . *
922 * 1.0 ................................*
923 * | . . *
924 * | . . *
925 * | . . *
926 * | . . *
927 * | . . *
928 * 0 +------------.------------------.----------------------*------------->
929 * freerun^ setpoint^ limit^ dirty pages
930 *
de1fff37 931 * (o) wb control line
6c14ae1e
WF
932 *
933 * ^ pos_ratio
934 * |
935 * | *
936 * | *
937 * | *
938 * | *
939 * | * |<=========== span ============>|
940 * 1.0 .......................*
941 * | . *
942 * | . *
943 * | . *
944 * | . *
945 * | . *
946 * | . *
947 * | . *
948 * | . *
949 * | . *
950 * | . *
951 * | . *
952 * 1/4 ...............................................* * * * * * * * * * * *
953 * | . .
954 * | . .
955 * | . .
956 * 0 +----------------------.-------------------------------.------------->
de1fff37 957 * wb_setpoint^ x_intercept^
6c14ae1e 958 *
de1fff37 959 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
960 * be smoothly throttled down to normal if it starts high in situations like
961 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
962 * card's wb_dirty may rush to many times higher than wb_setpoint.
963 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 964 */
daddfa3c 965static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 966{
2bc00aef 967 struct bdi_writeback *wb = dtc->wb;
20792ebf 968 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
2bc00aef 969 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 970 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 971 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
972 unsigned long x_intercept;
973 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 974 unsigned long wb_setpoint;
6c14ae1e
WF
975 unsigned long span;
976 long long pos_ratio; /* for scaling up/down the rate limit */
977 long x;
978
daddfa3c
TH
979 dtc->pos_ratio = 0;
980
2bc00aef 981 if (unlikely(dtc->dirty >= limit))
daddfa3c 982 return;
6c14ae1e
WF
983
984 /*
985 * global setpoint
986 *
5a537485
MP
987 * See comment for pos_ratio_polynom().
988 */
989 setpoint = (freerun + limit) / 2;
2bc00aef 990 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
991
992 /*
993 * The strictlimit feature is a tool preventing mistrusted filesystems
994 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
995 * such filesystems balance_dirty_pages always checks wb counters
996 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
997 * This is especially important for fuse which sets bdi->max_ratio to
998 * 1% by default. Without strictlimit feature, fuse writeback may
999 * consume arbitrary amount of RAM because it is accounted in
1000 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 1001 *
a88a341a 1002 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 1003 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
1004 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1005 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 1006 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 1007 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 1008 * about ~6K pages (as the average of background and throttle wb
5a537485 1009 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 1010 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 1011 *
5a537485 1012 * Note, that we cannot use global counters in these calculations
de1fff37 1013 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
1014 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1015 * in the example above).
6c14ae1e 1016 */
a88a341a 1017 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 1018 long long wb_pos_ratio;
5a537485 1019
daddfa3c
TH
1020 if (dtc->wb_dirty < 8) {
1021 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1022 2 << RATELIMIT_CALC_SHIFT);
1023 return;
1024 }
5a537485 1025
2bc00aef 1026 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 1027 return;
5a537485 1028
970fb01a
TH
1029 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1030 dtc->wb_bg_thresh);
5a537485 1031
de1fff37 1032 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 1033 return;
5a537485 1034
2bc00aef 1035 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 1036 wb_thresh);
5a537485
MP
1037
1038 /*
de1fff37
TH
1039 * Typically, for strictlimit case, wb_setpoint << setpoint
1040 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 1041 * state ("dirty") is not limiting factor and we have to
de1fff37 1042 * make decision based on wb counters. But there is an
5a537485
MP
1043 * important case when global pos_ratio should get precedence:
1044 * global limits are exceeded (e.g. due to activities on other
de1fff37 1045 * wb's) while given strictlimit wb is below limit.
5a537485 1046 *
de1fff37 1047 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 1048 * but it would look too non-natural for the case of all
de1fff37 1049 * activity in the system coming from a single strictlimit wb
5a537485
MP
1050 * with bdi->max_ratio == 100%.
1051 *
1052 * Note that min() below somewhat changes the dynamics of the
1053 * control system. Normally, pos_ratio value can be well over 3
de1fff37 1054 * (when globally we are at freerun and wb is well below wb
5a537485
MP
1055 * setpoint). Now the maximum pos_ratio in the same situation
1056 * is 2. We might want to tweak this if we observe the control
1057 * system is too slow to adapt.
1058 */
daddfa3c
TH
1059 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1060 return;
5a537485 1061 }
6c14ae1e
WF
1062
1063 /*
1064 * We have computed basic pos_ratio above based on global situation. If
de1fff37 1065 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
1066 * pos_ratio further down/up. That is done by the following mechanism.
1067 */
1068
1069 /*
de1fff37 1070 * wb setpoint
6c14ae1e 1071 *
de1fff37 1072 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 1073 *
de1fff37 1074 * x_intercept - wb_dirty
6c14ae1e 1075 * := --------------------------
de1fff37 1076 * x_intercept - wb_setpoint
6c14ae1e 1077 *
de1fff37 1078 * The main wb control line is a linear function that subjects to
6c14ae1e 1079 *
de1fff37
TH
1080 * (1) f(wb_setpoint) = 1.0
1081 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1082 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 1083 *
de1fff37 1084 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1085 * regularly within range
de1fff37 1086 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1087 * for various filesystems, where (2) can yield in a reasonable 12.5%
1088 * fluctuation range for pos_ratio.
1089 *
de1fff37 1090 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1091 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1092 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1093 */
2bc00aef
TH
1094 if (unlikely(wb_thresh > dtc->thresh))
1095 wb_thresh = dtc->thresh;
aed21ad2 1096 /*
de1fff37 1097 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1098 * device is slow, but that it has remained inactive for long time.
1099 * Honour such devices a reasonable good (hopefully IO efficient)
1100 * threshold, so that the occasional writes won't be blocked and active
1101 * writes can rampup the threshold quickly.
1102 */
2bc00aef 1103 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1104 /*
de1fff37
TH
1105 * scale global setpoint to wb's:
1106 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1107 */
e4bc13ad 1108 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1109 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1110 /*
de1fff37
TH
1111 * Use span=(8*write_bw) in single wb case as indicated by
1112 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1113 *
de1fff37
TH
1114 * wb_thresh thresh - wb_thresh
1115 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1116 * thresh thresh
6c14ae1e 1117 */
2bc00aef 1118 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1119 x_intercept = wb_setpoint + span;
6c14ae1e 1120
2bc00aef
TH
1121 if (dtc->wb_dirty < x_intercept - span / 4) {
1122 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1123 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1124 } else
1125 pos_ratio /= 4;
1126
8927f66c 1127 /*
de1fff37 1128 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1129 * It may push the desired control point of global dirty pages higher
1130 * than setpoint.
1131 */
de1fff37 1132 x_intercept = wb_thresh / 2;
2bc00aef
TH
1133 if (dtc->wb_dirty < x_intercept) {
1134 if (dtc->wb_dirty > x_intercept / 8)
1135 pos_ratio = div_u64(pos_ratio * x_intercept,
1136 dtc->wb_dirty);
50657fc4 1137 else
8927f66c
WF
1138 pos_ratio *= 8;
1139 }
1140
daddfa3c 1141 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1142}
1143
a88a341a
TH
1144static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1145 unsigned long elapsed,
1146 unsigned long written)
e98be2d5
WF
1147{
1148 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1149 unsigned long avg = wb->avg_write_bandwidth;
1150 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1151 u64 bw;
1152
1153 /*
1154 * bw = written * HZ / elapsed
1155 *
1156 * bw * elapsed + write_bandwidth * (period - elapsed)
1157 * write_bandwidth = ---------------------------------------------------
1158 * period
c72efb65 1159 *
25ff8b15 1160 * @written may have decreased due to folio_account_redirty().
c72efb65 1161 * Avoid underflowing @bw calculation.
e98be2d5 1162 */
a88a341a 1163 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1164 bw *= HZ;
1165 if (unlikely(elapsed > period)) {
0a5d1a7f 1166 bw = div64_ul(bw, elapsed);
e98be2d5
WF
1167 avg = bw;
1168 goto out;
1169 }
a88a341a 1170 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1171 bw >>= ilog2(period);
1172
1173 /*
1174 * one more level of smoothing, for filtering out sudden spikes
1175 */
1176 if (avg > old && old >= (unsigned long)bw)
1177 avg -= (avg - old) >> 3;
1178
1179 if (avg < old && old <= (unsigned long)bw)
1180 avg += (old - avg) >> 3;
1181
1182out:
95a46c65
TH
1183 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1184 avg = max(avg, 1LU);
1185 if (wb_has_dirty_io(wb)) {
1186 long delta = avg - wb->avg_write_bandwidth;
1187 WARN_ON_ONCE(atomic_long_add_return(delta,
1188 &wb->bdi->tot_write_bandwidth) <= 0);
1189 }
a88a341a 1190 wb->write_bandwidth = bw;
20792ebf 1191 WRITE_ONCE(wb->avg_write_bandwidth, avg);
e98be2d5
WF
1192}
1193
2bc00aef 1194static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1195{
e9f07dfd 1196 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1197 unsigned long thresh = dtc->thresh;
dcc25ae7 1198 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1199
1200 /*
1201 * Follow up in one step.
1202 */
1203 if (limit < thresh) {
1204 limit = thresh;
1205 goto update;
1206 }
1207
1208 /*
1209 * Follow down slowly. Use the higher one as the target, because thresh
1210 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1211 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1212 */
2bc00aef 1213 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1214 if (limit > thresh) {
1215 limit -= (limit - thresh) >> 5;
1216 goto update;
1217 }
1218 return;
1219update:
dcc25ae7 1220 dom->dirty_limit = limit;
c42843f2
WF
1221}
1222
42dd235c
JK
1223static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1224 unsigned long now)
c42843f2 1225{
e9f07dfd 1226 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1227
1228 /*
1229 * check locklessly first to optimize away locking for the most time
1230 */
dcc25ae7 1231 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1232 return;
1233
dcc25ae7
TH
1234 spin_lock(&dom->lock);
1235 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1236 update_dirty_limit(dtc);
dcc25ae7 1237 dom->dirty_limit_tstamp = now;
c42843f2 1238 }
dcc25ae7 1239 spin_unlock(&dom->lock);
c42843f2
WF
1240}
1241
be3ffa27 1242/*
de1fff37 1243 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1244 *
de1fff37 1245 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1246 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1247 */
2bc00aef 1248static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1249 unsigned long dirtied,
1250 unsigned long elapsed)
be3ffa27 1251{
2bc00aef
TH
1252 struct bdi_writeback *wb = dtc->wb;
1253 unsigned long dirty = dtc->dirty;
1254 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1255 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1256 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1257 unsigned long write_bw = wb->avg_write_bandwidth;
1258 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1259 unsigned long dirty_rate;
1260 unsigned long task_ratelimit;
1261 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1262 unsigned long step;
1263 unsigned long x;
d59b1087 1264 unsigned long shift;
be3ffa27
WF
1265
1266 /*
1267 * The dirty rate will match the writeout rate in long term, except
1268 * when dirty pages are truncated by userspace or re-dirtied by FS.
1269 */
a88a341a 1270 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1271
be3ffa27
WF
1272 /*
1273 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1274 */
1275 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1276 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1277 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1278
1279 /*
1280 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1281 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1282 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1283 * formula will yield the balanced rate limit (write_bw / N).
1284 *
1285 * Note that the expanded form is not a pure rate feedback:
1286 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1287 * but also takes pos_ratio into account:
1288 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1289 *
1290 * (1) is not realistic because pos_ratio also takes part in balancing
1291 * the dirty rate. Consider the state
1292 * pos_ratio = 0.5 (3)
1293 * rate = 2 * (write_bw / N) (4)
1294 * If (1) is used, it will stuck in that state! Because each dd will
1295 * be throttled at
1296 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1297 * yielding
1298 * dirty_rate = N * task_ratelimit = write_bw (6)
1299 * put (6) into (1) we get
1300 * rate_(i+1) = rate_(i) (7)
1301 *
1302 * So we end up using (2) to always keep
1303 * rate_(i+1) ~= (write_bw / N) (8)
1304 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1305 * pos_ratio is able to drive itself to 1.0, which is not only where
1306 * the dirty count meet the setpoint, but also where the slope of
1307 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1308 */
1309 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1310 dirty_rate | 1);
bdaac490
WF
1311 /*
1312 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1313 */
1314 if (unlikely(balanced_dirty_ratelimit > write_bw))
1315 balanced_dirty_ratelimit = write_bw;
be3ffa27 1316
7381131c
WF
1317 /*
1318 * We could safely do this and return immediately:
1319 *
de1fff37 1320 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1321 *
1322 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1323 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1324 * limit the step size.
1325 *
1326 * The below code essentially only uses the relative value of
1327 *
1328 * task_ratelimit - dirty_ratelimit
1329 * = (pos_ratio - 1) * dirty_ratelimit
1330 *
1331 * which reflects the direction and size of dirty position error.
1332 */
1333
1334 /*
1335 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1336 * task_ratelimit is on the same side of dirty_ratelimit, too.
1337 * For example, when
1338 * - dirty_ratelimit > balanced_dirty_ratelimit
1339 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1340 * lowering dirty_ratelimit will help meet both the position and rate
1341 * control targets. Otherwise, don't update dirty_ratelimit if it will
1342 * only help meet the rate target. After all, what the users ultimately
1343 * feel and care are stable dirty rate and small position error.
1344 *
1345 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1346 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1347 * keeps jumping around randomly and can even leap far away at times
1348 * due to the small 200ms estimation period of dirty_rate (we want to
1349 * keep that period small to reduce time lags).
1350 */
1351 step = 0;
5a537485
MP
1352
1353 /*
de1fff37 1354 * For strictlimit case, calculations above were based on wb counters
a88a341a 1355 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1356 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1357 * Hence, to calculate "step" properly, we have to use wb_dirty as
1358 * "dirty" and wb_setpoint as "setpoint".
5a537485 1359 *
de1fff37
TH
1360 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1361 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1362 * of backing device.
5a537485 1363 */
a88a341a 1364 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1365 dirty = dtc->wb_dirty;
1366 if (dtc->wb_dirty < 8)
1367 setpoint = dtc->wb_dirty + 1;
5a537485 1368 else
970fb01a 1369 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1370 }
1371
7381131c 1372 if (dirty < setpoint) {
a88a341a 1373 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1374 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1375 if (dirty_ratelimit < x)
1376 step = x - dirty_ratelimit;
1377 } else {
a88a341a 1378 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1379 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1380 if (dirty_ratelimit > x)
1381 step = dirty_ratelimit - x;
1382 }
1383
1384 /*
1385 * Don't pursue 100% rate matching. It's impossible since the balanced
1386 * rate itself is constantly fluctuating. So decrease the track speed
1387 * when it gets close to the target. Helps eliminate pointless tremors.
1388 */
d59b1087
AR
1389 shift = dirty_ratelimit / (2 * step + 1);
1390 if (shift < BITS_PER_LONG)
1391 step = DIV_ROUND_UP(step >> shift, 8);
1392 else
1393 step = 0;
7381131c
WF
1394
1395 if (dirty_ratelimit < balanced_dirty_ratelimit)
1396 dirty_ratelimit += step;
1397 else
1398 dirty_ratelimit -= step;
1399
20792ebf 1400 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
a88a341a 1401 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1402
5634cc2a 1403 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1404}
1405
c2aa723a
TH
1406static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1407 struct dirty_throttle_control *mdtc,
8a731799 1408 bool update_ratelimit)
e98be2d5 1409{
c2aa723a 1410 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1411 unsigned long now = jiffies;
45a2966f 1412 unsigned long elapsed;
be3ffa27 1413 unsigned long dirtied;
e98be2d5
WF
1414 unsigned long written;
1415
45a2966f 1416 spin_lock(&wb->list_lock);
8a731799 1417
e98be2d5 1418 /*
45a2966f
JK
1419 * Lockless checks for elapsed time are racy and delayed update after
1420 * IO completion doesn't do it at all (to make sure written pages are
1421 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1422 * division errors.
e98be2d5 1423 */
45a2966f 1424 elapsed = max(now - wb->bw_time_stamp, 1UL);
a88a341a
TH
1425 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1426 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5 1427
8a731799 1428 if (update_ratelimit) {
42dd235c 1429 domain_update_dirty_limit(gdtc, now);
c2aa723a
TH
1430 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1431
1432 /*
1433 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1434 * compiler has no way to figure that out. Help it.
1435 */
1436 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
42dd235c 1437 domain_update_dirty_limit(mdtc, now);
c2aa723a
TH
1438 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1439 }
be3ffa27 1440 }
a88a341a 1441 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5 1442
a88a341a
TH
1443 wb->dirtied_stamp = dirtied;
1444 wb->written_stamp = written;
20792ebf 1445 WRITE_ONCE(wb->bw_time_stamp, now);
45a2966f 1446 spin_unlock(&wb->list_lock);
e98be2d5
WF
1447}
1448
45a2966f 1449void wb_update_bandwidth(struct bdi_writeback *wb)
e98be2d5 1450{
2bc00aef
TH
1451 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1452
fee468fd 1453 __wb_update_bandwidth(&gdtc, NULL, false);
fee468fd
JK
1454}
1455
1456/* Interval after which we consider wb idle and don't estimate bandwidth */
1457#define WB_BANDWIDTH_IDLE_JIF (HZ)
1458
1459static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1460{
1461 unsigned long now = jiffies;
1462 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1463
1464 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1465 !atomic_read(&wb->writeback_inodes)) {
1466 spin_lock(&wb->list_lock);
1467 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1468 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
20792ebf 1469 WRITE_ONCE(wb->bw_time_stamp, now);
fee468fd
JK
1470 spin_unlock(&wb->list_lock);
1471 }
e98be2d5
WF
1472}
1473
9d823e8f 1474/*
d0e1d66b 1475 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1476 * will look to see if it needs to start dirty throttling.
1477 *
1478 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
c41f012a 1479 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
9d823e8f
WF
1480 * (the number of pages we may dirty without exceeding the dirty limits).
1481 */
1482static unsigned long dirty_poll_interval(unsigned long dirty,
1483 unsigned long thresh)
1484{
1485 if (thresh > dirty)
1486 return 1UL << (ilog2(thresh - dirty) >> 1);
1487
1488 return 1;
1489}
1490
a88a341a 1491static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1492 unsigned long wb_dirty)
c8462cc9 1493{
20792ebf 1494 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
e3b6c655 1495 unsigned long t;
c8462cc9 1496
7ccb9ad5
WF
1497 /*
1498 * Limit pause time for small memory systems. If sleeping for too long
1499 * time, a small pool of dirty/writeback pages may go empty and disk go
1500 * idle.
1501 *
1502 * 8 serves as the safety ratio.
1503 */
de1fff37 1504 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1505 t++;
1506
e3b6c655 1507 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1508}
1509
a88a341a
TH
1510static long wb_min_pause(struct bdi_writeback *wb,
1511 long max_pause,
1512 unsigned long task_ratelimit,
1513 unsigned long dirty_ratelimit,
1514 int *nr_dirtied_pause)
c8462cc9 1515{
20792ebf
JK
1516 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1517 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
7ccb9ad5
WF
1518 long t; /* target pause */
1519 long pause; /* estimated next pause */
1520 int pages; /* target nr_dirtied_pause */
c8462cc9 1521
7ccb9ad5
WF
1522 /* target for 10ms pause on 1-dd case */
1523 t = max(1, HZ / 100);
c8462cc9
WF
1524
1525 /*
1526 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1527 * overheads.
1528 *
7ccb9ad5 1529 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1530 */
1531 if (hi > lo)
7ccb9ad5 1532 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1533
1534 /*
7ccb9ad5
WF
1535 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1536 * on the much more stable dirty_ratelimit. However the next pause time
1537 * will be computed based on task_ratelimit and the two rate limits may
1538 * depart considerably at some time. Especially if task_ratelimit goes
1539 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1540 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1541 * result task_ratelimit won't be executed faithfully, which could
1542 * eventually bring down dirty_ratelimit.
c8462cc9 1543 *
7ccb9ad5
WF
1544 * We apply two rules to fix it up:
1545 * 1) try to estimate the next pause time and if necessary, use a lower
1546 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1547 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1548 * 2) limit the target pause time to max_pause/2, so that the normal
1549 * small fluctuations of task_ratelimit won't trigger rule (1) and
1550 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1551 */
7ccb9ad5
WF
1552 t = min(t, 1 + max_pause / 2);
1553 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1554
1555 /*
5b9b3574
WF
1556 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1557 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1558 * When the 16 consecutive reads are often interrupted by some dirty
1559 * throttling pause during the async writes, cfq will go into idles
1560 * (deadline is fine). So push nr_dirtied_pause as high as possible
1561 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1562 */
5b9b3574
WF
1563 if (pages < DIRTY_POLL_THRESH) {
1564 t = max_pause;
1565 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1566 if (pages > DIRTY_POLL_THRESH) {
1567 pages = DIRTY_POLL_THRESH;
1568 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1569 }
1570 }
1571
7ccb9ad5
WF
1572 pause = HZ * pages / (task_ratelimit + 1);
1573 if (pause > max_pause) {
1574 t = max_pause;
1575 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1576 }
c8462cc9 1577
7ccb9ad5 1578 *nr_dirtied_pause = pages;
c8462cc9 1579 /*
7ccb9ad5 1580 * The minimal pause time will normally be half the target pause time.
c8462cc9 1581 */
5b9b3574 1582 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1583}
1584
970fb01a 1585static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1586{
2bc00aef 1587 struct bdi_writeback *wb = dtc->wb;
93f78d88 1588 unsigned long wb_reclaimable;
5a537485
MP
1589
1590 /*
de1fff37 1591 * wb_thresh is not treated as some limiting factor as
5a537485 1592 * dirty_thresh, due to reasons
de1fff37 1593 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1594 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1595 * go into state (wb_dirty >> wb_thresh) either because
1596 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1597 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1598 * dirtiers for 100 seconds until wb_dirty drops under
1599 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1600 * wb_position_ratio() will let the dirtier task progress
de1fff37 1601 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1602 */
b1cbc6d4 1603 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1604 dtc->wb_bg_thresh = dtc->thresh ?
1605 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1606
1607 /*
1608 * In order to avoid the stacked BDI deadlock we need
1609 * to ensure we accurately count the 'dirty' pages when
1610 * the threshold is low.
1611 *
1612 * Otherwise it would be possible to get thresh+n pages
1613 * reported dirty, even though there are thresh-m pages
1614 * actually dirty; with m+n sitting in the percpu
1615 * deltas.
1616 */
2bce774e 1617 if (dtc->wb_thresh < 2 * wb_stat_error()) {
93f78d88 1618 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1619 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1620 } else {
93f78d88 1621 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1622 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1623 }
1624}
1625
1da177e4
LT
1626/*
1627 * balance_dirty_pages() must be called by processes which are generating dirty
1628 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1629 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1630 * If we're over `background_thresh' then the writeback threads are woken to
1631 * perform some writeout.
1da177e4 1632 */
fe6c9c6e
JK
1633static int balance_dirty_pages(struct bdi_writeback *wb,
1634 unsigned long pages_dirtied, unsigned int flags)
1da177e4 1635{
2bc00aef 1636 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1637 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1638 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1639 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1640 &mdtc_stor : NULL;
1641 struct dirty_throttle_control *sdtc;
8d92890b 1642 unsigned long nr_reclaimable; /* = file_dirty */
83712358 1643 long period;
7ccb9ad5
WF
1644 long pause;
1645 long max_pause;
1646 long min_pause;
1647 int nr_dirtied_pause;
e50e3720 1648 bool dirty_exceeded = false;
143dfe86 1649 unsigned long task_ratelimit;
7ccb9ad5 1650 unsigned long dirty_ratelimit;
dfb8ae56 1651 struct backing_dev_info *bdi = wb->bdi;
5a537485 1652 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1653 unsigned long start_time = jiffies;
fe6c9c6e 1654 int ret = 0;
1da177e4
LT
1655
1656 for (;;) {
83712358 1657 unsigned long now = jiffies;
2bc00aef 1658 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1659 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1660 unsigned long m_thresh = 0;
1661 unsigned long m_bg_thresh = 0;
83712358 1662
8d92890b 1663 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
9fc3a43e 1664 gdtc->avail = global_dirtyable_memory();
11fb9989 1665 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
5fce25a9 1666
9fc3a43e 1667 domain_dirty_limits(gdtc);
16c4042f 1668
5a537485 1669 if (unlikely(strictlimit)) {
970fb01a 1670 wb_dirty_limits(gdtc);
5a537485 1671
2bc00aef
TH
1672 dirty = gdtc->wb_dirty;
1673 thresh = gdtc->wb_thresh;
970fb01a 1674 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1675 } else {
2bc00aef
TH
1676 dirty = gdtc->dirty;
1677 thresh = gdtc->thresh;
1678 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1679 }
1680
c2aa723a 1681 if (mdtc) {
c5edf9cd 1682 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1683
1684 /*
1685 * If @wb belongs to !root memcg, repeat the same
1686 * basic calculations for the memcg domain.
1687 */
c5edf9cd
TH
1688 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1689 &mdtc->dirty, &writeback);
c2aa723a 1690 mdtc->dirty += writeback;
c5edf9cd 1691 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1692
1693 domain_dirty_limits(mdtc);
1694
1695 if (unlikely(strictlimit)) {
1696 wb_dirty_limits(mdtc);
1697 m_dirty = mdtc->wb_dirty;
1698 m_thresh = mdtc->wb_thresh;
1699 m_bg_thresh = mdtc->wb_bg_thresh;
1700 } else {
1701 m_dirty = mdtc->dirty;
1702 m_thresh = mdtc->thresh;
1703 m_bg_thresh = mdtc->bg_thresh;
1704 }
5a537485
MP
1705 }
1706
ea6813be
JK
1707 /*
1708 * In laptop mode, we wait until hitting the higher threshold
1709 * before starting background writeout, and then write out all
1710 * the way down to the lower threshold. So slow writers cause
1711 * minimal disk activity.
1712 *
1713 * In normal mode, we start background writeout at the lower
1714 * background_thresh, to keep the amount of dirty memory low.
1715 */
1716 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1717 !writeback_in_progress(wb))
1718 wb_start_background_writeback(wb);
1719
16c4042f
WF
1720 /*
1721 * Throttle it only when the background writeback cannot
1722 * catch-up. This avoids (excessively) small writeouts
de1fff37 1723 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1724 *
de1fff37
TH
1725 * In strictlimit case make decision based on the wb counters
1726 * and limits. Small writeouts when the wb limits are ramping
5a537485 1727 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1728 *
1729 * If memcg domain is in effect, @dirty should be under
1730 * both global and memcg freerun ceilings.
16c4042f 1731 */
c2aa723a
TH
1732 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1733 (!mdtc ||
1734 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
a37b0715
N
1735 unsigned long intv;
1736 unsigned long m_intv;
1737
1738free_running:
1739 intv = dirty_poll_interval(dirty, thresh);
1740 m_intv = ULONG_MAX;
c2aa723a 1741
83712358
WF
1742 current->dirty_paused_when = now;
1743 current->nr_dirtied = 0;
c2aa723a
TH
1744 if (mdtc)
1745 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1746 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1747 break;
83712358 1748 }
16c4042f 1749
ea6813be 1750 /* Start writeback even when in laptop mode */
bc05873d 1751 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1752 wb_start_background_writeback(wb);
143dfe86 1753
97b27821
TH
1754 mem_cgroup_flush_foreign(wb);
1755
c2aa723a
TH
1756 /*
1757 * Calculate global domain's pos_ratio and select the
1758 * global dtc by default.
1759 */
a37b0715 1760 if (!strictlimit) {
970fb01a 1761 wb_dirty_limits(gdtc);
5fce25a9 1762
a37b0715
N
1763 if ((current->flags & PF_LOCAL_THROTTLE) &&
1764 gdtc->wb_dirty <
1765 dirty_freerun_ceiling(gdtc->wb_thresh,
1766 gdtc->wb_bg_thresh))
1767 /*
1768 * LOCAL_THROTTLE tasks must not be throttled
1769 * when below the per-wb freerun ceiling.
1770 */
1771 goto free_running;
1772 }
1773
2bc00aef
TH
1774 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1775 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1776
1777 wb_position_ratio(gdtc);
c2aa723a
TH
1778 sdtc = gdtc;
1779
1780 if (mdtc) {
1781 /*
1782 * If memcg domain is in effect, calculate its
1783 * pos_ratio. @wb should satisfy constraints from
1784 * both global and memcg domains. Choose the one
1785 * w/ lower pos_ratio.
1786 */
a37b0715 1787 if (!strictlimit) {
c2aa723a
TH
1788 wb_dirty_limits(mdtc);
1789
a37b0715
N
1790 if ((current->flags & PF_LOCAL_THROTTLE) &&
1791 mdtc->wb_dirty <
1792 dirty_freerun_ceiling(mdtc->wb_thresh,
1793 mdtc->wb_bg_thresh))
1794 /*
1795 * LOCAL_THROTTLE tasks must not be
1796 * throttled when below the per-wb
1797 * freerun ceiling.
1798 */
1799 goto free_running;
1800 }
c2aa723a
TH
1801 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1802 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1803
1804 wb_position_ratio(mdtc);
1805 if (mdtc->pos_ratio < gdtc->pos_ratio)
1806 sdtc = mdtc;
1807 }
daddfa3c 1808
e92eebbb
JK
1809 if (dirty_exceeded != wb->dirty_exceeded)
1810 wb->dirty_exceeded = dirty_exceeded;
1da177e4 1811
20792ebf 1812 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
45a2966f 1813 BANDWIDTH_INTERVAL))
fee468fd 1814 __wb_update_bandwidth(gdtc, mdtc, true);
e98be2d5 1815
c2aa723a 1816 /* throttle according to the chosen dtc */
20792ebf 1817 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
c2aa723a 1818 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1819 RATELIMIT_CALC_SHIFT;
c2aa723a 1820 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1821 min_pause = wb_min_pause(wb, max_pause,
1822 task_ratelimit, dirty_ratelimit,
1823 &nr_dirtied_pause);
7ccb9ad5 1824
3a73dbbc 1825 if (unlikely(task_ratelimit == 0)) {
83712358 1826 period = max_pause;
c8462cc9 1827 pause = max_pause;
143dfe86 1828 goto pause;
04fbfdc1 1829 }
83712358
WF
1830 period = HZ * pages_dirtied / task_ratelimit;
1831 pause = period;
1832 if (current->dirty_paused_when)
1833 pause -= now - current->dirty_paused_when;
1834 /*
1835 * For less than 1s think time (ext3/4 may block the dirtier
1836 * for up to 800ms from time to time on 1-HDD; so does xfs,
1837 * however at much less frequency), try to compensate it in
1838 * future periods by updating the virtual time; otherwise just
1839 * do a reset, as it may be a light dirtier.
1840 */
7ccb9ad5 1841 if (pause < min_pause) {
5634cc2a 1842 trace_balance_dirty_pages(wb,
c2aa723a
TH
1843 sdtc->thresh,
1844 sdtc->bg_thresh,
1845 sdtc->dirty,
1846 sdtc->wb_thresh,
1847 sdtc->wb_dirty,
ece13ac3
WF
1848 dirty_ratelimit,
1849 task_ratelimit,
1850 pages_dirtied,
83712358 1851 period,
7ccb9ad5 1852 min(pause, 0L),
ece13ac3 1853 start_time);
83712358
WF
1854 if (pause < -HZ) {
1855 current->dirty_paused_when = now;
1856 current->nr_dirtied = 0;
1857 } else if (period) {
1858 current->dirty_paused_when += period;
1859 current->nr_dirtied = 0;
7ccb9ad5
WF
1860 } else if (current->nr_dirtied_pause <= pages_dirtied)
1861 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1862 break;
04fbfdc1 1863 }
7ccb9ad5
WF
1864 if (unlikely(pause > max_pause)) {
1865 /* for occasional dropped task_ratelimit */
1866 now += min(pause - max_pause, max_pause);
1867 pause = max_pause;
1868 }
143dfe86
WF
1869
1870pause:
5634cc2a 1871 trace_balance_dirty_pages(wb,
c2aa723a
TH
1872 sdtc->thresh,
1873 sdtc->bg_thresh,
1874 sdtc->dirty,
1875 sdtc->wb_thresh,
1876 sdtc->wb_dirty,
ece13ac3
WF
1877 dirty_ratelimit,
1878 task_ratelimit,
1879 pages_dirtied,
83712358 1880 period,
ece13ac3
WF
1881 pause,
1882 start_time);
fe6c9c6e
JK
1883 if (flags & BDP_ASYNC) {
1884 ret = -EAGAIN;
1885 break;
1886 }
499d05ec 1887 __set_current_state(TASK_KILLABLE);
b57d74af 1888 wb->dirty_sleep = now;
d25105e8 1889 io_schedule_timeout(pause);
87c6a9b2 1890
83712358
WF
1891 current->dirty_paused_when = now + pause;
1892 current->nr_dirtied = 0;
7ccb9ad5 1893 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1894
ffd1f609 1895 /*
2bc00aef
TH
1896 * This is typically equal to (dirty < thresh) and can also
1897 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1898 */
1df64719 1899 if (task_ratelimit)
ffd1f609 1900 break;
499d05ec 1901
c5c6343c 1902 /*
f0953a1b 1903 * In the case of an unresponsive NFS server and the NFS dirty
de1fff37 1904 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1905 * to go through, so that tasks on them still remain responsive.
1906 *
3f8b6fb7 1907 * In theory 1 page is enough to keep the consumer-producer
c5c6343c 1908 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1909 * more page. However wb_dirty has accounting errors. So use
93f78d88 1910 * the larger and more IO friendly wb_stat_error.
c5c6343c 1911 */
2bce774e 1912 if (sdtc->wb_dirty <= wb_stat_error())
c5c6343c
WF
1913 break;
1914
499d05ec
JK
1915 if (fatal_signal_pending(current))
1916 break;
1da177e4 1917 }
fe6c9c6e 1918 return ret;
1da177e4
LT
1919}
1920
9d823e8f 1921static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1922
54848d73
WF
1923/*
1924 * Normal tasks are throttled by
1925 * loop {
1926 * dirty tsk->nr_dirtied_pause pages;
1927 * take a snap in balance_dirty_pages();
1928 * }
1929 * However there is a worst case. If every task exit immediately when dirtied
1930 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1931 * called to throttle the page dirties. The solution is to save the not yet
1932 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1933 * randomly into the running tasks. This works well for the above worst case,
1934 * as the new task will pick up and accumulate the old task's leaked dirty
1935 * count and eventually get throttled.
1936 */
1937DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1938
1da177e4 1939/**
fe6c9c6e
JK
1940 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1941 * @mapping: address_space which was dirtied.
1942 * @flags: BDP flags.
1da177e4
LT
1943 *
1944 * Processes which are dirtying memory should call in here once for each page
1945 * which was newly dirtied. The function will periodically check the system's
1946 * dirty state and will initiate writeback if needed.
1947 *
fe6c9c6e
JK
1948 * See balance_dirty_pages_ratelimited() for details.
1949 *
1950 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
1951 * indicate that memory is out of balance and the caller must wait
1952 * for I/O to complete. Otherwise, it will return 0 to indicate
1953 * that either memory was already in balance, or it was able to sleep
1954 * until the amount of dirty memory returned to balance.
1da177e4 1955 */
fe6c9c6e
JK
1956int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
1957 unsigned int flags)
1da177e4 1958{
dfb8ae56
TH
1959 struct inode *inode = mapping->host;
1960 struct backing_dev_info *bdi = inode_to_bdi(inode);
1961 struct bdi_writeback *wb = NULL;
9d823e8f 1962 int ratelimit;
fe6c9c6e 1963 int ret = 0;
9d823e8f 1964 int *p;
1da177e4 1965
f56753ac 1966 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
fe6c9c6e 1967 return ret;
36715cef 1968
dfb8ae56
TH
1969 if (inode_cgwb_enabled(inode))
1970 wb = wb_get_create_current(bdi, GFP_KERNEL);
1971 if (!wb)
1972 wb = &bdi->wb;
1973
9d823e8f 1974 ratelimit = current->nr_dirtied_pause;
a88a341a 1975 if (wb->dirty_exceeded)
9d823e8f
WF
1976 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1977
9d823e8f 1978 preempt_disable();
1da177e4 1979 /*
9d823e8f
WF
1980 * This prevents one CPU to accumulate too many dirtied pages without
1981 * calling into balance_dirty_pages(), which can happen when there are
1982 * 1000+ tasks, all of them start dirtying pages at exactly the same
1983 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1984 */
7c8e0181 1985 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1986 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1987 *p = 0;
d3bc1fef
WF
1988 else if (unlikely(*p >= ratelimit_pages)) {
1989 *p = 0;
1990 ratelimit = 0;
1da177e4 1991 }
54848d73
WF
1992 /*
1993 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1994 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1995 * the dirty throttling and livelock other long-run dirtiers.
1996 */
7c8e0181 1997 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1998 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1999 unsigned long nr_pages_dirtied;
54848d73
WF
2000 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2001 *p -= nr_pages_dirtied;
2002 current->nr_dirtied += nr_pages_dirtied;
1da177e4 2003 }
fa5a734e 2004 preempt_enable();
9d823e8f
WF
2005
2006 if (unlikely(current->nr_dirtied >= ratelimit))
fe6c9c6e 2007 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
dfb8ae56
TH
2008
2009 wb_put(wb);
fe6c9c6e
JK
2010 return ret;
2011}
611df5d6 2012EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
fe6c9c6e
JK
2013
2014/**
2015 * balance_dirty_pages_ratelimited - balance dirty memory state.
2016 * @mapping: address_space which was dirtied.
2017 *
2018 * Processes which are dirtying memory should call in here once for each page
2019 * which was newly dirtied. The function will periodically check the system's
2020 * dirty state and will initiate writeback if needed.
2021 *
2022 * Once we're over the dirty memory limit we decrease the ratelimiting
2023 * by a lot, to prevent individual processes from overshooting the limit
2024 * by (ratelimit_pages) each.
2025 */
2026void balance_dirty_pages_ratelimited(struct address_space *mapping)
2027{
2028 balance_dirty_pages_ratelimited_flags(mapping, 0);
1da177e4 2029}
d0e1d66b 2030EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 2031
aa661bbe
TH
2032/**
2033 * wb_over_bg_thresh - does @wb need to be written back?
2034 * @wb: bdi_writeback of interest
2035 *
2036 * Determines whether background writeback should keep writing @wb or it's
a862f68a
MR
2037 * clean enough.
2038 *
2039 * Return: %true if writeback should continue.
aa661bbe
TH
2040 */
2041bool wb_over_bg_thresh(struct bdi_writeback *wb)
2042{
947e9762 2043 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 2044 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 2045 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
2046 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2047 &mdtc_stor : NULL;
ab19939a
CW
2048 unsigned long reclaimable;
2049 unsigned long thresh;
aa661bbe 2050
947e9762
TH
2051 /*
2052 * Similar to balance_dirty_pages() but ignores pages being written
2053 * as we're trying to decide whether to put more under writeback.
2054 */
2055 gdtc->avail = global_dirtyable_memory();
8d92890b 2056 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
947e9762 2057 domain_dirty_limits(gdtc);
aa661bbe 2058
947e9762 2059 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
2060 return true;
2061
ab19939a
CW
2062 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2063 if (thresh < 2 * wb_stat_error())
2064 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2065 else
2066 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2067
2068 if (reclaimable > thresh)
aa661bbe
TH
2069 return true;
2070
c2aa723a 2071 if (mdtc) {
c5edf9cd 2072 unsigned long filepages, headroom, writeback;
c2aa723a 2073
c5edf9cd
TH
2074 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2075 &writeback);
2076 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
2077 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
2078
2079 if (mdtc->dirty > mdtc->bg_thresh)
2080 return true;
2081
ab19939a
CW
2082 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2083 if (thresh < 2 * wb_stat_error())
2084 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2085 else
2086 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2087
2088 if (reclaimable > thresh)
c2aa723a
TH
2089 return true;
2090 }
2091
aa661bbe
TH
2092 return false;
2093}
2094
aa779e51 2095#ifdef CONFIG_SYSCTL
1da177e4
LT
2096/*
2097 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2098 */
aa779e51 2099static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
32927393 2100 void *buffer, size_t *length, loff_t *ppos)
1da177e4 2101{
94af5846
YS
2102 unsigned int old_interval = dirty_writeback_interval;
2103 int ret;
2104
2105 ret = proc_dointvec(table, write, buffer, length, ppos);
515c24c1
YS
2106
2107 /*
2108 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2109 * and a different non-zero value will wakeup the writeback threads.
2110 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2111 * iterate over all bdis and wbs.
2112 * The reason we do this is to make the change take effect immediately.
2113 */
2114 if (!ret && write && dirty_writeback_interval &&
2115 dirty_writeback_interval != old_interval)
94af5846
YS
2116 wakeup_flusher_threads(WB_REASON_PERIODIC);
2117
2118 return ret;
1da177e4 2119}
aa779e51 2120#endif
1da177e4 2121
bca237a5 2122void laptop_mode_timer_fn(struct timer_list *t)
1da177e4 2123{
bca237a5
KC
2124 struct backing_dev_info *backing_dev_info =
2125 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
1da177e4 2126
bca237a5 2127 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
1da177e4
LT
2128}
2129
2130/*
2131 * We've spun up the disk and we're in laptop mode: schedule writeback
2132 * of all dirty data a few seconds from now. If the flush is already scheduled
2133 * then push it back - the user is still using the disk.
2134 */
31373d09 2135void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2136{
31373d09 2137 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2138}
2139
2140/*
2141 * We're in laptop mode and we've just synced. The sync's writes will have
2142 * caused another writeback to be scheduled by laptop_io_completion.
2143 * Nothing needs to be written back anymore, so we unschedule the writeback.
2144 */
2145void laptop_sync_completion(void)
2146{
31373d09
MG
2147 struct backing_dev_info *bdi;
2148
2149 rcu_read_lock();
2150
2151 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2152 del_timer(&bdi->laptop_mode_wb_timer);
2153
2154 rcu_read_unlock();
1da177e4
LT
2155}
2156
2157/*
2158 * If ratelimit_pages is too high then we can get into dirty-data overload
2159 * if a large number of processes all perform writes at the same time.
1da177e4
LT
2160 *
2161 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2162 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2163 * thresholds.
1da177e4
LT
2164 */
2165
2d1d43f6 2166void writeback_set_ratelimit(void)
1da177e4 2167{
dcc25ae7 2168 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2169 unsigned long background_thresh;
2170 unsigned long dirty_thresh;
dcc25ae7 2171
9d823e8f 2172 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2173 dom->dirty_limit = dirty_thresh;
9d823e8f 2174 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2175 if (ratelimit_pages < 16)
2176 ratelimit_pages = 16;
1da177e4
LT
2177}
2178
1d7ac6ae 2179static int page_writeback_cpu_online(unsigned int cpu)
1da177e4 2180{
1d7ac6ae
SAS
2181 writeback_set_ratelimit();
2182 return 0;
1da177e4
LT
2183}
2184
aa779e51 2185#ifdef CONFIG_SYSCTL
3c6a4cba
LC
2186
2187/* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2188static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2189
aa779e51 2190static struct ctl_table vm_page_writeback_sysctls[] = {
2191 {
2192 .procname = "dirty_background_ratio",
2193 .data = &dirty_background_ratio,
2194 .maxlen = sizeof(dirty_background_ratio),
2195 .mode = 0644,
2196 .proc_handler = dirty_background_ratio_handler,
2197 .extra1 = SYSCTL_ZERO,
2198 .extra2 = SYSCTL_ONE_HUNDRED,
2199 },
2200 {
2201 .procname = "dirty_background_bytes",
2202 .data = &dirty_background_bytes,
2203 .maxlen = sizeof(dirty_background_bytes),
2204 .mode = 0644,
2205 .proc_handler = dirty_background_bytes_handler,
2206 .extra1 = SYSCTL_LONG_ONE,
2207 },
2208 {
2209 .procname = "dirty_ratio",
2210 .data = &vm_dirty_ratio,
2211 .maxlen = sizeof(vm_dirty_ratio),
2212 .mode = 0644,
2213 .proc_handler = dirty_ratio_handler,
2214 .extra1 = SYSCTL_ZERO,
2215 .extra2 = SYSCTL_ONE_HUNDRED,
2216 },
2217 {
2218 .procname = "dirty_bytes",
2219 .data = &vm_dirty_bytes,
2220 .maxlen = sizeof(vm_dirty_bytes),
2221 .mode = 0644,
2222 .proc_handler = dirty_bytes_handler,
2223 .extra1 = (void *)&dirty_bytes_min,
2224 },
2225 {
2226 .procname = "dirty_writeback_centisecs",
2227 .data = &dirty_writeback_interval,
2228 .maxlen = sizeof(dirty_writeback_interval),
2229 .mode = 0644,
2230 .proc_handler = dirty_writeback_centisecs_handler,
2231 },
2232 {
2233 .procname = "dirty_expire_centisecs",
2234 .data = &dirty_expire_interval,
2235 .maxlen = sizeof(dirty_expire_interval),
2236 .mode = 0644,
2237 .proc_handler = proc_dointvec_minmax,
2238 .extra1 = SYSCTL_ZERO,
2239 },
2240#ifdef CONFIG_HIGHMEM
2241 {
2242 .procname = "highmem_is_dirtyable",
2243 .data = &vm_highmem_is_dirtyable,
2244 .maxlen = sizeof(vm_highmem_is_dirtyable),
2245 .mode = 0644,
2246 .proc_handler = proc_dointvec_minmax,
2247 .extra1 = SYSCTL_ZERO,
2248 .extra2 = SYSCTL_ONE,
2249 },
2250#endif
2251 {
2252 .procname = "laptop_mode",
2253 .data = &laptop_mode,
2254 .maxlen = sizeof(laptop_mode),
2255 .mode = 0644,
2256 .proc_handler = proc_dointvec_jiffies,
2257 },
2258 {}
2259};
2260#endif
2261
1da177e4 2262/*
dc6e29da
LT
2263 * Called early on to tune the page writeback dirty limits.
2264 *
2265 * We used to scale dirty pages according to how total memory
0a18e607 2266 * related to pages that could be allocated for buffers.
dc6e29da
LT
2267 *
2268 * However, that was when we used "dirty_ratio" to scale with
2269 * all memory, and we don't do that any more. "dirty_ratio"
0a18e607 2270 * is now applied to total non-HIGHPAGE memory, and as such we can't
dc6e29da
LT
2271 * get into the old insane situation any more where we had
2272 * large amounts of dirty pages compared to a small amount of
2273 * non-HIGHMEM memory.
2274 *
2275 * But we might still want to scale the dirty_ratio by how
2276 * much memory the box has..
1da177e4
LT
2277 */
2278void __init page_writeback_init(void)
2279{
a50fcb51
RV
2280 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2281
1d7ac6ae
SAS
2282 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2283 page_writeback_cpu_online, NULL);
2284 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2285 page_writeback_cpu_online);
aa779e51 2286#ifdef CONFIG_SYSCTL
2287 register_sysctl_init("vm", vm_page_writeback_sysctls);
2288#endif
1da177e4
LT
2289}
2290
f446daae
JK
2291/**
2292 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2293 * @mapping: address space structure to write
2294 * @start: starting page index
2295 * @end: ending page index (inclusive)
2296 *
2297 * This function scans the page range from @start to @end (inclusive) and tags
2298 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2299 * that write_cache_pages (or whoever calls this function) will then use
2300 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2301 * used to avoid livelocking of writeback by a process steadily creating new
2302 * dirty pages in the file (thus it is important for this function to be quick
2303 * so that it can tag pages faster than a dirtying process can create them).
2304 */
f446daae
JK
2305void tag_pages_for_writeback(struct address_space *mapping,
2306 pgoff_t start, pgoff_t end)
2307{
ff9c745b
MW
2308 XA_STATE(xas, &mapping->i_pages, start);
2309 unsigned int tagged = 0;
2310 void *page;
268f42de 2311
ff9c745b
MW
2312 xas_lock_irq(&xas);
2313 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2314 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2315 if (++tagged % XA_CHECK_SCHED)
268f42de 2316 continue;
ff9c745b
MW
2317
2318 xas_pause(&xas);
2319 xas_unlock_irq(&xas);
f446daae 2320 cond_resched();
ff9c745b 2321 xas_lock_irq(&xas);
268f42de 2322 }
ff9c745b 2323 xas_unlock_irq(&xas);
f446daae
JK
2324}
2325EXPORT_SYMBOL(tag_pages_for_writeback);
2326
811d736f 2327/**
0ea97180 2328 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2329 * @mapping: address space structure to write
2330 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2331 * @writepage: function called for each page
2332 * @data: data passed to writepage function
811d736f 2333 *
0ea97180 2334 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2335 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2336 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2337 * and msync() need to guarantee that all the data which was dirty at the time
2338 * the call was made get new I/O started against them. If wbc->sync_mode is
2339 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2340 * existing IO to complete.
f446daae
JK
2341 *
2342 * To avoid livelocks (when other process dirties new pages), we first tag
2343 * pages which should be written back with TOWRITE tag and only then start
2344 * writing them. For data-integrity sync we have to be careful so that we do
2345 * not miss some pages (e.g., because some other process has cleared TOWRITE
2346 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2347 * by the process clearing the DIRTY tag (and submitting the page for IO).
64081362
DC
2348 *
2349 * To avoid deadlocks between range_cyclic writeback and callers that hold
2350 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2351 * we do not loop back to the start of the file. Doing so causes a page
2352 * lock/page writeback access order inversion - we should only ever lock
2353 * multiple pages in ascending page->index order, and looping back to the start
2354 * of the file violates that rule and causes deadlocks.
a862f68a
MR
2355 *
2356 * Return: %0 on success, negative error code otherwise
811d736f 2357 */
0ea97180
MS
2358int write_cache_pages(struct address_space *mapping,
2359 struct writeback_control *wbc, writepage_t writepage,
2360 void *data)
811d736f 2361{
811d736f
DH
2362 int ret = 0;
2363 int done = 0;
3fa750dc 2364 int error;
811d736f
DH
2365 struct pagevec pvec;
2366 int nr_pages;
2367 pgoff_t index;
2368 pgoff_t end; /* Inclusive */
bd19e012 2369 pgoff_t done_index;
811d736f 2370 int range_whole = 0;
ff9c745b 2371 xa_mark_t tag;
811d736f 2372
86679820 2373 pagevec_init(&pvec);
811d736f 2374 if (wbc->range_cyclic) {
28659cc8 2375 index = mapping->writeback_index; /* prev offset */
811d736f
DH
2376 end = -1;
2377 } else {
09cbfeaf
KS
2378 index = wbc->range_start >> PAGE_SHIFT;
2379 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2380 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2381 range_whole = 1;
811d736f 2382 }
cc7b8f62
MFO
2383 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2384 tag_pages_for_writeback(mapping, index, end);
f446daae 2385 tag = PAGECACHE_TAG_TOWRITE;
cc7b8f62 2386 } else {
f446daae 2387 tag = PAGECACHE_TAG_DIRTY;
cc7b8f62 2388 }
bd19e012 2389 done_index = index;
5a3d5c98
NP
2390 while (!done && (index <= end)) {
2391 int i;
2392
2b9775ae 2393 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2394 tag);
5a3d5c98
NP
2395 if (nr_pages == 0)
2396 break;
811d736f 2397
811d736f
DH
2398 for (i = 0; i < nr_pages; i++) {
2399 struct page *page = pvec.pages[i];
2400
cf15b07c 2401 done_index = page->index;
d5482cdf 2402
811d736f
DH
2403 lock_page(page);
2404
5a3d5c98
NP
2405 /*
2406 * Page truncated or invalidated. We can freely skip it
2407 * then, even for data integrity operations: the page
2408 * has disappeared concurrently, so there could be no
f0953a1b 2409 * real expectation of this data integrity operation
5a3d5c98
NP
2410 * even if there is now a new, dirty page at the same
2411 * pagecache address.
2412 */
811d736f 2413 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2414continue_unlock:
811d736f
DH
2415 unlock_page(page);
2416 continue;
2417 }
2418
515f4a03
NP
2419 if (!PageDirty(page)) {
2420 /* someone wrote it for us */
2421 goto continue_unlock;
2422 }
2423
2424 if (PageWriteback(page)) {
2425 if (wbc->sync_mode != WB_SYNC_NONE)
2426 wait_on_page_writeback(page);
2427 else
2428 goto continue_unlock;
2429 }
811d736f 2430
515f4a03
NP
2431 BUG_ON(PageWriteback(page));
2432 if (!clear_page_dirty_for_io(page))
5a3d5c98 2433 goto continue_unlock;
811d736f 2434
de1414a6 2435 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
3fa750dc
BF
2436 error = (*writepage)(page, wbc, data);
2437 if (unlikely(error)) {
2438 /*
2439 * Handle errors according to the type of
2440 * writeback. There's no need to continue for
2441 * background writeback. Just push done_index
2442 * past this page so media errors won't choke
2443 * writeout for the entire file. For integrity
2444 * writeback, we must process the entire dirty
2445 * set regardless of errors because the fs may
2446 * still have state to clear for each page. In
2447 * that case we continue processing and return
2448 * the first error.
2449 */
2450 if (error == AOP_WRITEPAGE_ACTIVATE) {
00266770 2451 unlock_page(page);
3fa750dc
BF
2452 error = 0;
2453 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2454 ret = error;
cf15b07c 2455 done_index = page->index + 1;
00266770
NP
2456 done = 1;
2457 break;
2458 }
3fa750dc
BF
2459 if (!ret)
2460 ret = error;
0b564927 2461 }
00266770 2462
546a1924
DC
2463 /*
2464 * We stop writing back only if we are not doing
2465 * integrity sync. In case of integrity sync we have to
2466 * keep going until we have written all the pages
2467 * we tagged for writeback prior to entering this loop.
2468 */
2469 if (--wbc->nr_to_write <= 0 &&
2470 wbc->sync_mode == WB_SYNC_NONE) {
2471 done = 1;
2472 break;
05fe478d 2473 }
811d736f
DH
2474 }
2475 pagevec_release(&pvec);
2476 cond_resched();
2477 }
64081362
DC
2478
2479 /*
2480 * If we hit the last page and there is more work to be done: wrap
2481 * back the index back to the start of the file for the next
2482 * time we are called.
2483 */
2484 if (wbc->range_cyclic && !done)
2485 done_index = 0;
0b564927
DC
2486 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2487 mapping->writeback_index = done_index;
06d6cf69 2488
811d736f
DH
2489 return ret;
2490}
0ea97180
MS
2491EXPORT_SYMBOL(write_cache_pages);
2492
2493/*
2494 * Function used by generic_writepages to call the real writepage
2495 * function and set the mapping flags on error
2496 */
2497static int __writepage(struct page *page, struct writeback_control *wbc,
2498 void *data)
2499{
2500 struct address_space *mapping = data;
2501 int ret = mapping->a_ops->writepage(page, wbc);
2502 mapping_set_error(mapping, ret);
2503 return ret;
2504}
2505
2506/**
2507 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2508 * @mapping: address space structure to write
2509 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2510 *
2511 * This is a library function, which implements the writepages()
2512 * address_space_operation.
a862f68a
MR
2513 *
2514 * Return: %0 on success, negative error code otherwise
0ea97180
MS
2515 */
2516int generic_writepages(struct address_space *mapping,
2517 struct writeback_control *wbc)
2518{
9b6096a6
SL
2519 struct blk_plug plug;
2520 int ret;
2521
0ea97180
MS
2522 /* deal with chardevs and other special file */
2523 if (!mapping->a_ops->writepage)
2524 return 0;
2525
9b6096a6
SL
2526 blk_start_plug(&plug);
2527 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2528 blk_finish_plug(&plug);
2529 return ret;
0ea97180 2530}
811d736f
DH
2531
2532EXPORT_SYMBOL(generic_writepages);
2533
1da177e4
LT
2534int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2535{
22905f77 2536 int ret;
fee468fd 2537 struct bdi_writeback *wb;
22905f77 2538
1da177e4
LT
2539 if (wbc->nr_to_write <= 0)
2540 return 0;
fee468fd
JK
2541 wb = inode_to_wb_wbc(mapping->host, wbc);
2542 wb_bandwidth_estimate_start(wb);
80a2ea9f
TT
2543 while (1) {
2544 if (mapping->a_ops->writepages)
2545 ret = mapping->a_ops->writepages(mapping, wbc);
2546 else
2547 ret = generic_writepages(mapping, wbc);
2548 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2549 break;
8d58802f
MG
2550
2551 /*
2552 * Lacking an allocation context or the locality or writeback
2553 * state of any of the inode's pages, throttle based on
2554 * writeback activity on the local node. It's as good a
2555 * guess as any.
2556 */
2557 reclaim_throttle(NODE_DATA(numa_node_id()),
c3f4a9a2 2558 VMSCAN_THROTTLE_WRITEBACK);
80a2ea9f 2559 }
45a2966f
JK
2560 /*
2561 * Usually few pages are written by now from those we've just submitted
2562 * but if there's constant writeback being submitted, this makes sure
2563 * writeback bandwidth is updated once in a while.
2564 */
20792ebf
JK
2565 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2566 BANDWIDTH_INTERVAL))
45a2966f 2567 wb_update_bandwidth(wb);
22905f77 2568 return ret;
1da177e4
LT
2569}
2570
2571/**
121703c1
MWO
2572 * folio_write_one - write out a single folio and wait on I/O.
2573 * @folio: The folio to write.
1da177e4 2574 *
121703c1 2575 * The folio must be locked by the caller and will be unlocked upon return.
1da177e4 2576 *
37e51a76
JL
2577 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2578 * function returns.
a862f68a
MR
2579 *
2580 * Return: %0 on success, negative error code otherwise
1da177e4 2581 */
121703c1 2582int folio_write_one(struct folio *folio)
1da177e4 2583{
121703c1 2584 struct address_space *mapping = folio->mapping;
1da177e4
LT
2585 int ret = 0;
2586 struct writeback_control wbc = {
2587 .sync_mode = WB_SYNC_ALL,
121703c1 2588 .nr_to_write = folio_nr_pages(folio),
1da177e4
LT
2589 };
2590
121703c1 2591 BUG_ON(!folio_test_locked(folio));
1da177e4 2592
121703c1 2593 folio_wait_writeback(folio);
1da177e4 2594
121703c1
MWO
2595 if (folio_clear_dirty_for_io(folio)) {
2596 folio_get(folio);
2597 ret = mapping->a_ops->writepage(&folio->page, &wbc);
37e51a76 2598 if (ret == 0)
121703c1
MWO
2599 folio_wait_writeback(folio);
2600 folio_put(folio);
1da177e4 2601 } else {
121703c1 2602 folio_unlock(folio);
1da177e4 2603 }
37e51a76
JL
2604
2605 if (!ret)
2606 ret = filemap_check_errors(mapping);
1da177e4
LT
2607 return ret;
2608}
121703c1 2609EXPORT_SYMBOL(folio_write_one);
1da177e4 2610
76719325
KC
2611/*
2612 * For address_spaces which do not use buffers nor write back.
2613 */
46de8b97 2614bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
76719325 2615{
46de8b97
MWO
2616 if (!folio_test_dirty(folio))
2617 return !folio_test_set_dirty(folio);
2618 return false;
76719325 2619}
46de8b97 2620EXPORT_SYMBOL(noop_dirty_folio);
76719325 2621
e3a7cca1
ES
2622/*
2623 * Helper function for set_page_dirty family.
c4843a75 2624 *
81f8c3a4 2625 * Caller must hold lock_page_memcg().
c4843a75 2626 *
e3a7cca1
ES
2627 * NOTE: This relies on being atomic wrt interrupts.
2628 */
203a3151 2629static void folio_account_dirtied(struct folio *folio,
6e1cae88 2630 struct address_space *mapping)
e3a7cca1 2631{
52ebea74
TH
2632 struct inode *inode = mapping->host;
2633
b9b0ff61 2634 trace_writeback_dirty_folio(folio, mapping);
9fb0a7da 2635
f56753ac 2636 if (mapping_can_writeback(mapping)) {
52ebea74 2637 struct bdi_writeback *wb;
203a3151 2638 long nr = folio_nr_pages(folio);
de1414a6 2639
203a3151 2640 inode_attach_wb(inode, &folio->page);
52ebea74 2641 wb = inode_to_wb(inode);
de1414a6 2642
203a3151
MWO
2643 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2644 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2645 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2646 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2647 wb_stat_mod(wb, WB_DIRTIED, nr);
2648 task_io_account_write(nr * PAGE_SIZE);
2649 current->nr_dirtied += nr;
2650 __this_cpu_add(bdp_ratelimits, nr);
97b27821 2651
203a3151 2652 mem_cgroup_track_foreign_dirty(folio, wb);
e3a7cca1
ES
2653 }
2654}
2655
b9ea2515
KK
2656/*
2657 * Helper function for deaccounting dirty page without writeback.
2658 *
81f8c3a4 2659 * Caller must hold lock_page_memcg().
b9ea2515 2660 */
566d3362 2661void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
b9ea2515 2662{
566d3362
HD
2663 long nr = folio_nr_pages(folio);
2664
2665 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2666 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2667 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2668 task_io_account_cancelled_write(nr * PAGE_SIZE);
b9ea2515 2669}
b9ea2515 2670
6e1cae88 2671/*
203a3151
MWO
2672 * Mark the folio dirty, and set it dirty in the page cache, and mark
2673 * the inode dirty.
6e1cae88 2674 *
203a3151 2675 * If warn is true, then emit a warning if the folio is not uptodate and has
6e1cae88
MWO
2676 * not been truncated.
2677 *
a229a4f0
MWO
2678 * The caller must hold lock_page_memcg(). Most callers have the folio
2679 * locked. A few have the folio blocked from truncation through other
2680 * means (eg zap_page_range() has it mapped and is holding the page table
2681 * lock). This can also be called from mark_buffer_dirty(), which I
2682 * cannot prove is always protected against truncate.
6e1cae88 2683 */
203a3151 2684void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
6e1cae88
MWO
2685 int warn)
2686{
2687 unsigned long flags;
2688
2689 xa_lock_irqsave(&mapping->i_pages, flags);
203a3151
MWO
2690 if (folio->mapping) { /* Race with truncate? */
2691 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2692 folio_account_dirtied(folio, mapping);
2693 __xa_set_mark(&mapping->i_pages, folio_index(folio),
6e1cae88
MWO
2694 PAGECACHE_TAG_DIRTY);
2695 }
2696 xa_unlock_irqrestore(&mapping->i_pages, flags);
2697}
2698
85d4d2eb
MWO
2699/**
2700 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2701 * @mapping: Address space this folio belongs to.
2702 * @folio: Folio to be marked as dirty.
1da177e4 2703 *
85d4d2eb
MWO
2704 * Filesystems which do not use buffer heads should call this function
2705 * from their set_page_dirty address space operation. It ignores the
2706 * contents of folio_get_private(), so if the filesystem marks individual
2707 * blocks as dirty, the filesystem should handle that itself.
1da177e4 2708 *
85d4d2eb
MWO
2709 * This is also sometimes used by filesystems which use buffer_heads when
2710 * a single buffer is being dirtied: we want to set the folio dirty in
2711 * that case, but not all the buffers. This is a "bottom-up" dirtying,
e621900a 2712 * whereas block_dirty_folio() is a "top-down" dirtying.
85d4d2eb
MWO
2713 *
2714 * The caller must ensure this doesn't race with truncation. Most will
2715 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2716 * folio mapped and the pte lock held, which also locks out truncation.
1da177e4 2717 */
85d4d2eb 2718bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
1da177e4 2719{
85d4d2eb
MWO
2720 folio_memcg_lock(folio);
2721 if (folio_test_set_dirty(folio)) {
2722 folio_memcg_unlock(folio);
2723 return false;
2724 }
1da177e4 2725
85d4d2eb
MWO
2726 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2727 folio_memcg_unlock(folio);
c4843a75 2728
85d4d2eb
MWO
2729 if (mapping->host) {
2730 /* !PageAnon && !swapper_space */
2731 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2732 }
85d4d2eb 2733 return true;
1da177e4 2734}
85d4d2eb 2735EXPORT_SYMBOL(filemap_dirty_folio);
1da177e4 2736
25ff8b15
MWO
2737/**
2738 * folio_account_redirty - Manually account for redirtying a page.
2739 * @folio: The folio which is being redirtied.
2740 *
2741 * Most filesystems should call folio_redirty_for_writepage() instead
2742 * of this fuction. If your filesystem is doing writeback outside the
2743 * context of a writeback_control(), it can call this when redirtying
2744 * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2745 * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2746 * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2747 * in balanced_dirty_ratelimit and the dirty pages position control.
2f800fbd 2748 */
25ff8b15 2749void folio_account_redirty(struct folio *folio)
2f800fbd 2750{
25ff8b15 2751 struct address_space *mapping = folio->mapping;
91018134 2752
f56753ac 2753 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2754 struct inode *inode = mapping->host;
2755 struct bdi_writeback *wb;
2e898e4c 2756 struct wb_lock_cookie cookie = {};
25ff8b15 2757 long nr = folio_nr_pages(folio);
91018134 2758
2e898e4c 2759 wb = unlocked_inode_to_wb_begin(inode, &cookie);
25ff8b15
MWO
2760 current->nr_dirtied -= nr;
2761 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2762 wb_stat_mod(wb, WB_DIRTIED, -nr);
2e898e4c 2763 unlocked_inode_to_wb_end(inode, &cookie);
2f800fbd
WF
2764 }
2765}
25ff8b15 2766EXPORT_SYMBOL(folio_account_redirty);
2f800fbd 2767
cd78ab11
MWO
2768/**
2769 * folio_redirty_for_writepage - Decline to write a dirty folio.
2770 * @wbc: The writeback control.
2771 * @folio: The folio.
2772 *
2773 * When a writepage implementation decides that it doesn't want to write
2774 * @folio for some reason, it should call this function, unlock @folio and
2775 * return 0.
2776 *
2777 * Return: True if we redirtied the folio. False if someone else dirtied
2778 * it first.
1da177e4 2779 */
cd78ab11
MWO
2780bool folio_redirty_for_writepage(struct writeback_control *wbc,
2781 struct folio *folio)
1da177e4 2782{
cd78ab11
MWO
2783 bool ret;
2784 long nr = folio_nr_pages(folio);
2785
2786 wbc->pages_skipped += nr;
2787 ret = filemap_dirty_folio(folio->mapping, folio);
2788 folio_account_redirty(folio);
8d38633c 2789
8d38633c 2790 return ret;
1da177e4 2791}
cd78ab11 2792EXPORT_SYMBOL(folio_redirty_for_writepage);
1da177e4 2793
b5e84594
MWO
2794/**
2795 * folio_mark_dirty - Mark a folio as being modified.
2796 * @folio: The folio.
6746aff7 2797 *
2ca456c2
MWO
2798 * The folio may not be truncated while this function is running.
2799 * Holding the folio lock is sufficient to prevent truncation, but some
2800 * callers cannot acquire a sleeping lock. These callers instead hold
2801 * the page table lock for a page table which contains at least one page
2802 * in this folio. Truncation will block on the page table lock as it
2803 * unmaps pages before removing the folio from its mapping.
b5e84594
MWO
2804 *
2805 * Return: True if the folio was newly dirtied, false if it was already dirty.
1da177e4 2806 */
b5e84594 2807bool folio_mark_dirty(struct folio *folio)
1da177e4 2808{
b5e84594 2809 struct address_space *mapping = folio_mapping(folio);
1da177e4
LT
2810
2811 if (likely(mapping)) {
278df9f4
MK
2812 /*
2813 * readahead/lru_deactivate_page could remain
6f31a5a2
MWO
2814 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2815 * About readahead, if the folio is written, the flags would be
278df9f4 2816 * reset. So no problem.
6f31a5a2
MWO
2817 * About lru_deactivate_page, if the folio is redirtied,
2818 * the flag will be reset. So no problem. but if the
2819 * folio is used by readahead it will confuse readahead
2820 * and make it restart the size rampup process. But it's
2821 * a trivial problem.
278df9f4 2822 */
b5e84594
MWO
2823 if (folio_test_reclaim(folio))
2824 folio_clear_reclaim(folio);
3a3bae50 2825 return mapping->a_ops->dirty_folio(mapping, folio);
4741c9fd 2826 }
3a3bae50
MWO
2827
2828 return noop_dirty_folio(mapping, folio);
1da177e4 2829}
b5e84594 2830EXPORT_SYMBOL(folio_mark_dirty);
1da177e4
LT
2831
2832/*
2833 * set_page_dirty() is racy if the caller has no reference against
2834 * page->mapping->host, and if the page is unlocked. This is because another
2835 * CPU could truncate the page off the mapping and then free the mapping.
2836 *
2837 * Usually, the page _is_ locked, or the caller is a user-space process which
2838 * holds a reference on the inode by having an open file.
2839 *
2840 * In other cases, the page should be locked before running set_page_dirty().
2841 */
2842int set_page_dirty_lock(struct page *page)
2843{
2844 int ret;
2845
7eaceacc 2846 lock_page(page);
1da177e4
LT
2847 ret = set_page_dirty(page);
2848 unlock_page(page);
2849 return ret;
2850}
2851EXPORT_SYMBOL(set_page_dirty_lock);
2852
11f81bec
TH
2853/*
2854 * This cancels just the dirty bit on the kernel page itself, it does NOT
2855 * actually remove dirty bits on any mmap's that may be around. It also
2856 * leaves the page tagged dirty, so any sync activity will still find it on
2857 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2858 * look at the dirty bits in the VM.
2859 *
2860 * Doing this should *normally* only ever be done when a page is truncated,
2861 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2862 * this when it notices that somebody has cleaned out all the buffers on a
2863 * page without actually doing it through the VM. Can you say "ext3 is
2864 * horribly ugly"? Thought you could.
2865 */
fdaf532a 2866void __folio_cancel_dirty(struct folio *folio)
11f81bec 2867{
fdaf532a 2868 struct address_space *mapping = folio_mapping(folio);
c4843a75 2869
f56753ac 2870 if (mapping_can_writeback(mapping)) {
682aa8e1
TH
2871 struct inode *inode = mapping->host;
2872 struct bdi_writeback *wb;
2e898e4c 2873 struct wb_lock_cookie cookie = {};
c4843a75 2874
fdaf532a 2875 folio_memcg_lock(folio);
2e898e4c 2876 wb = unlocked_inode_to_wb_begin(inode, &cookie);
c4843a75 2877
fdaf532a 2878 if (folio_test_clear_dirty(folio))
566d3362 2879 folio_account_cleaned(folio, wb);
c4843a75 2880
2e898e4c 2881 unlocked_inode_to_wb_end(inode, &cookie);
fdaf532a 2882 folio_memcg_unlock(folio);
c4843a75 2883 } else {
fdaf532a 2884 folio_clear_dirty(folio);
c4843a75 2885 }
11f81bec 2886}
fdaf532a 2887EXPORT_SYMBOL(__folio_cancel_dirty);
11f81bec 2888
1da177e4 2889/*
9350f20a
MWO
2890 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2891 * Returns true if the folio was previously dirty.
1da177e4 2892 *
9350f20a
MWO
2893 * This is for preparing to put the folio under writeout. We leave
2894 * the folio tagged as dirty in the xarray so that a concurrent
2895 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2896 * The ->writepage implementation will run either folio_start_writeback()
2897 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2898 * and xarray dirty tag back into sync.
1da177e4 2899 *
9350f20a
MWO
2900 * This incoherency between the folio's dirty flag and xarray tag is
2901 * unfortunate, but it only exists while the folio is locked.
1da177e4 2902 */
9350f20a 2903bool folio_clear_dirty_for_io(struct folio *folio)
1da177e4 2904{
9350f20a
MWO
2905 struct address_space *mapping = folio_mapping(folio);
2906 bool ret = false;
1da177e4 2907
9350f20a 2908 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
79352894 2909
f56753ac 2910 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2911 struct inode *inode = mapping->host;
2912 struct bdi_writeback *wb;
2e898e4c 2913 struct wb_lock_cookie cookie = {};
682aa8e1 2914
7658cc28
LT
2915 /*
2916 * Yes, Virginia, this is indeed insane.
2917 *
2918 * We use this sequence to make sure that
2919 * (a) we account for dirty stats properly
2920 * (b) we tell the low-level filesystem to
9350f20a 2921 * mark the whole folio dirty if it was
7658cc28 2922 * dirty in a pagetable. Only to then
9350f20a 2923 * (c) clean the folio again and return 1 to
7658cc28
LT
2924 * cause the writeback.
2925 *
2926 * This way we avoid all nasty races with the
2927 * dirty bit in multiple places and clearing
2928 * them concurrently from different threads.
2929 *
9350f20a 2930 * Note! Normally the "folio_mark_dirty(folio)"
7658cc28
LT
2931 * has no effect on the actual dirty bit - since
2932 * that will already usually be set. But we
2933 * need the side effects, and it can help us
2934 * avoid races.
2935 *
9350f20a 2936 * We basically use the folio "master dirty bit"
7658cc28
LT
2937 * as a serialization point for all the different
2938 * threads doing their things.
7658cc28 2939 */
9350f20a
MWO
2940 if (folio_mkclean(folio))
2941 folio_mark_dirty(folio);
79352894
NP
2942 /*
2943 * We carefully synchronise fault handlers against
9350f20a 2944 * installing a dirty pte and marking the folio dirty
2d6d7f98 2945 * at this point. We do this by having them hold the
9350f20a 2946 * page lock while dirtying the folio, and folios are
2d6d7f98
JW
2947 * always locked coming in here, so we get the desired
2948 * exclusion.
79352894 2949 */
2e898e4c 2950 wb = unlocked_inode_to_wb_begin(inode, &cookie);
9350f20a
MWO
2951 if (folio_test_clear_dirty(folio)) {
2952 long nr = folio_nr_pages(folio);
2953 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2954 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2955 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2956 ret = true;
1da177e4 2957 }
2e898e4c 2958 unlocked_inode_to_wb_end(inode, &cookie);
c4843a75 2959 return ret;
1da177e4 2960 }
9350f20a 2961 return folio_test_clear_dirty(folio);
1da177e4 2962}
9350f20a 2963EXPORT_SYMBOL(folio_clear_dirty_for_io);
1da177e4 2964
633a2abb
JK
2965static void wb_inode_writeback_start(struct bdi_writeback *wb)
2966{
2967 atomic_inc(&wb->writeback_inodes);
2968}
2969
2970static void wb_inode_writeback_end(struct bdi_writeback *wb)
2971{
f87904c0 2972 unsigned long flags;
633a2abb 2973 atomic_dec(&wb->writeback_inodes);
45a2966f
JK
2974 /*
2975 * Make sure estimate of writeback throughput gets updated after
2976 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2977 * (which is the interval other bandwidth updates use for batching) so
2978 * that if multiple inodes end writeback at a similar time, they get
2979 * batched into one bandwidth update.
2980 */
f87904c0
KK
2981 spin_lock_irqsave(&wb->work_lock, flags);
2982 if (test_bit(WB_registered, &wb->state))
2983 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2984 spin_unlock_irqrestore(&wb->work_lock, flags);
633a2abb
JK
2985}
2986
269ccca3 2987bool __folio_end_writeback(struct folio *folio)
1da177e4 2988{
269ccca3
MWO
2989 long nr = folio_nr_pages(folio);
2990 struct address_space *mapping = folio_mapping(folio);
2991 bool ret;
1da177e4 2992
269ccca3 2993 folio_memcg_lock(folio);
371a096e 2994 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2995 struct inode *inode = mapping->host;
2996 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2997 unsigned long flags;
2998
b93b0163 2999 xa_lock_irqsave(&mapping->i_pages, flags);
269ccca3 3000 ret = folio_test_clear_writeback(folio);
69cb51d1 3001 if (ret) {
269ccca3 3002 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
1da177e4 3003 PAGECACHE_TAG_WRITEBACK);
823423ef 3004 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
91018134
TH
3005 struct bdi_writeback *wb = inode_to_wb(inode);
3006
269ccca3
MWO
3007 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3008 __wb_writeout_add(wb, nr);
633a2abb
JK
3009 if (!mapping_tagged(mapping,
3010 PAGECACHE_TAG_WRITEBACK))
3011 wb_inode_writeback_end(wb);
04fbfdc1 3012 }
69cb51d1 3013 }
6c60d2b5
DC
3014
3015 if (mapping->host && !mapping_tagged(mapping,
3016 PAGECACHE_TAG_WRITEBACK))
3017 sb_clear_inode_writeback(mapping->host);
3018
b93b0163 3019 xa_unlock_irqrestore(&mapping->i_pages, flags);
1da177e4 3020 } else {
269ccca3 3021 ret = folio_test_clear_writeback(folio);
1da177e4 3022 }
99b12e3d 3023 if (ret) {
269ccca3
MWO
3024 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3025 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3026 node_stat_mod_folio(folio, NR_WRITTEN, nr);
99b12e3d 3027 }
269ccca3 3028 folio_memcg_unlock(folio);
1da177e4
LT
3029 return ret;
3030}
3031
f143f1ea 3032bool __folio_start_writeback(struct folio *folio, bool keep_write)
1da177e4 3033{
f143f1ea
MWO
3034 long nr = folio_nr_pages(folio);
3035 struct address_space *mapping = folio_mapping(folio);
3036 bool ret;
3037 int access_ret;
1da177e4 3038
f143f1ea 3039 folio_memcg_lock(folio);
371a096e 3040 if (mapping && mapping_use_writeback_tags(mapping)) {
f143f1ea 3041 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
91018134
TH
3042 struct inode *inode = mapping->host;
3043 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
3044 unsigned long flags;
3045
ff9c745b
MW
3046 xas_lock_irqsave(&xas, flags);
3047 xas_load(&xas);
f143f1ea 3048 ret = folio_test_set_writeback(folio);
69cb51d1 3049 if (!ret) {
6c60d2b5
DC
3050 bool on_wblist;
3051
3052 on_wblist = mapping_tagged(mapping,
3053 PAGECACHE_TAG_WRITEBACK);
3054
ff9c745b 3055 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
633a2abb
JK
3056 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3057 struct bdi_writeback *wb = inode_to_wb(inode);
3058
f143f1ea 3059 wb_stat_mod(wb, WB_WRITEBACK, nr);
633a2abb
JK
3060 if (!on_wblist)
3061 wb_inode_writeback_start(wb);
3062 }
6c60d2b5
DC
3063
3064 /*
f143f1ea
MWO
3065 * We can come through here when swapping
3066 * anonymous folios, so we don't necessarily
3067 * have an inode to track for sync.
6c60d2b5
DC
3068 */
3069 if (mapping->host && !on_wblist)
3070 sb_mark_inode_writeback(mapping->host);
69cb51d1 3071 }
f143f1ea 3072 if (!folio_test_dirty(folio))
ff9c745b 3073 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1c8349a1 3074 if (!keep_write)
ff9c745b
MW
3075 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3076 xas_unlock_irqrestore(&xas, flags);
1da177e4 3077 } else {
f143f1ea 3078 ret = folio_test_set_writeback(folio);
1da177e4 3079 }
3a3c02ec 3080 if (!ret) {
f143f1ea
MWO
3081 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3082 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3a3c02ec 3083 }
f143f1ea
MWO
3084 folio_memcg_unlock(folio);
3085 access_ret = arch_make_folio_accessible(folio);
f28d4363
CI
3086 /*
3087 * If writeback has been triggered on a page that cannot be made
3088 * accessible, it is too late to recover here.
3089 */
f143f1ea 3090 VM_BUG_ON_FOLIO(access_ret != 0, folio);
f28d4363 3091
1da177e4 3092 return ret;
1da177e4 3093}
f143f1ea 3094EXPORT_SYMBOL(__folio_start_writeback);
1da177e4 3095
490e016f
MWO
3096/**
3097 * folio_wait_writeback - Wait for a folio to finish writeback.
3098 * @folio: The folio to wait for.
3099 *
3100 * If the folio is currently being written back to storage, wait for the
3101 * I/O to complete.
3102 *
3103 * Context: Sleeps. Must be called in process context and with
3104 * no spinlocks held. Caller should hold a reference on the folio.
3105 * If the folio is not locked, writeback may start again after writeback
3106 * has finished.
19343b5b 3107 */
490e016f 3108void folio_wait_writeback(struct folio *folio)
19343b5b 3109{
490e016f 3110 while (folio_test_writeback(folio)) {
b9b0ff61 3111 trace_folio_wait_writeback(folio, folio_mapping(folio));
101c0bf6 3112 folio_wait_bit(folio, PG_writeback);
19343b5b
YS
3113 }
3114}
490e016f 3115EXPORT_SYMBOL_GPL(folio_wait_writeback);
19343b5b 3116
490e016f
MWO
3117/**
3118 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3119 * @folio: The folio to wait for.
3120 *
3121 * If the folio is currently being written back to storage, wait for the
3122 * I/O to complete or a fatal signal to arrive.
3123 *
3124 * Context: Sleeps. Must be called in process context and with
3125 * no spinlocks held. Caller should hold a reference on the folio.
3126 * If the folio is not locked, writeback may start again after writeback
3127 * has finished.
3128 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
e5dbd332 3129 */
490e016f 3130int folio_wait_writeback_killable(struct folio *folio)
e5dbd332 3131{
490e016f 3132 while (folio_test_writeback(folio)) {
b9b0ff61 3133 trace_folio_wait_writeback(folio, folio_mapping(folio));
101c0bf6 3134 if (folio_wait_bit_killable(folio, PG_writeback))
e5dbd332
MWO
3135 return -EINTR;
3136 }
3137
3138 return 0;
3139}
490e016f 3140EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
e5dbd332 3141
1d1d1a76 3142/**
a49d0c50
MWO
3143 * folio_wait_stable() - wait for writeback to finish, if necessary.
3144 * @folio: The folio to wait on.
1d1d1a76 3145 *
a49d0c50
MWO
3146 * This function determines if the given folio is related to a backing
3147 * device that requires folio contents to be held stable during writeback.
3148 * If so, then it will wait for any pending writeback to complete.
3149 *
3150 * Context: Sleeps. Must be called in process context and with
3151 * no spinlocks held. Caller should hold a reference on the folio.
3152 * If the folio is not locked, writeback may start again after writeback
3153 * has finished.
1d1d1a76 3154 */
a49d0c50 3155void folio_wait_stable(struct folio *folio)
1d1d1a76 3156{
452c472e 3157 if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
a49d0c50 3158 folio_wait_writeback(folio);
1d1d1a76 3159}
a49d0c50 3160EXPORT_SYMBOL_GPL(folio_wait_stable);