]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/page_alloc.c
mm: introduce NR_INDIRECTLY_RECLAIMABLE_BYTES
[thirdparty/kernel/stable.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
7aac7898
LS
85#ifdef CONFIG_HAVE_MEMORYLESS_NODES
86/*
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
91 */
92DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
93EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 94int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
95#endif
96
bd233f53
MG
97/* work_structs for global per-cpu drains */
98DEFINE_MUTEX(pcpu_drain_mutex);
99DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100
38addce8 101#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 102volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
103EXPORT_SYMBOL(latent_entropy);
104#endif
105
1da177e4 106/*
13808910 107 * Array of node states.
1da177e4 108 */
13808910
CL
109nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
110 [N_POSSIBLE] = NODE_MASK_ALL,
111 [N_ONLINE] = { { [0] = 1UL } },
112#ifndef CONFIG_NUMA
113 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
114#ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 116#endif
20b2f52b 117 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
118 [N_CPU] = { { [0] = 1UL } },
119#endif /* NUMA */
120};
121EXPORT_SYMBOL(node_states);
122
c3d5f5f0
JL
123/* Protect totalram_pages and zone->managed_pages */
124static DEFINE_SPINLOCK(managed_page_count_lock);
125
6c231b7b 126unsigned long totalram_pages __read_mostly;
cb45b0e9 127unsigned long totalreserve_pages __read_mostly;
e48322ab 128unsigned long totalcma_pages __read_mostly;
ab8fabd4 129
1b76b02f 130int percpu_pagelist_fraction;
dcce284a 131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 132
bb14c2c7
VB
133/*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141static inline int get_pcppage_migratetype(struct page *page)
142{
143 return page->index;
144}
145
146static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147{
148 page->index = migratetype;
149}
150
452aa699
RW
151#ifdef CONFIG_PM_SLEEP
152/*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
c9e664f1
RW
160
161static gfp_t saved_gfp_mask;
162
163void pm_restore_gfp_mask(void)
452aa699
RW
164{
165 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
452aa699
RW
170}
171
c9e664f1 172void pm_restrict_gfp_mask(void)
452aa699 173{
452aa699 174 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
d0164adc 177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 178}
f90ac398
MG
179
180bool pm_suspended_storage(void)
181{
d0164adc 182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
183 return false;
184 return true;
185}
452aa699
RW
186#endif /* CONFIG_PM_SLEEP */
187
d9c23400 188#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 189unsigned int pageblock_order __read_mostly;
d9c23400
MG
190#endif
191
d98c7a09 192static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 193
1da177e4
LT
194/*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
1da177e4 204 */
2f1b6248 205int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 206#ifdef CONFIG_ZONE_DMA
2f1b6248 207 256,
4b51d669 208#endif
fb0e7942 209#ifdef CONFIG_ZONE_DMA32
2f1b6248 210 256,
fb0e7942 211#endif
e53ef38d 212#ifdef CONFIG_HIGHMEM
2a1e274a 213 32,
e53ef38d 214#endif
2a1e274a 215 32,
2f1b6248 216};
1da177e4
LT
217
218EXPORT_SYMBOL(totalram_pages);
1da177e4 219
15ad7cdc 220static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 221#ifdef CONFIG_ZONE_DMA
2f1b6248 222 "DMA",
4b51d669 223#endif
fb0e7942 224#ifdef CONFIG_ZONE_DMA32
2f1b6248 225 "DMA32",
fb0e7942 226#endif
2f1b6248 227 "Normal",
e53ef38d 228#ifdef CONFIG_HIGHMEM
2a1e274a 229 "HighMem",
e53ef38d 230#endif
2a1e274a 231 "Movable",
033fbae9
DW
232#ifdef CONFIG_ZONE_DEVICE
233 "Device",
234#endif
2f1b6248
CL
235};
236
60f30350
VB
237char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242#ifdef CONFIG_CMA
243 "CMA",
244#endif
245#ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247#endif
248};
249
f1e61557
KS
250compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253#ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255#endif
9a982250
KS
256#ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258#endif
f1e61557
KS
259};
260
1da177e4 261int min_free_kbytes = 1024;
42aa83cb 262int user_min_free_kbytes = -1;
795ae7a0 263int watermark_scale_factor = 10;
1da177e4 264
2c85f51d
JB
265static unsigned long __meminitdata nr_kernel_pages;
266static unsigned long __meminitdata nr_all_pages;
a3142c8e 267static unsigned long __meminitdata dma_reserve;
1da177e4 268
0ee332c1
TH
269#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272static unsigned long __initdata required_kernelcore;
273static unsigned long __initdata required_movablecore;
274static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 275static bool mirrored_kernelcore;
0ee332c1
TH
276
277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278int movable_zone;
279EXPORT_SYMBOL(movable_zone);
280#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 281
418508c1
MS
282#if MAX_NUMNODES > 1
283int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 284int nr_online_nodes __read_mostly = 1;
418508c1 285EXPORT_SYMBOL(nr_node_ids);
62bc62a8 286EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
287#endif
288
9ef9acb0
MG
289int page_group_by_mobility_disabled __read_mostly;
290
3a80a7fa 291#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
5a77c92f
PT
292
293/*
294 * Determine how many pages need to be initialized durig early boot
295 * (non-deferred initialization).
296 * The value of first_deferred_pfn will be set later, once non-deferred pages
297 * are initialized, but for now set it ULONG_MAX.
298 */
3a80a7fa
MG
299static inline void reset_deferred_meminit(pg_data_t *pgdat)
300{
5a77c92f
PT
301 phys_addr_t start_addr, end_addr;
302 unsigned long max_pgcnt;
303 unsigned long reserved;
864b9a39
MH
304
305 /*
306 * Initialise at least 2G of a node but also take into account that
307 * two large system hashes that can take up 1GB for 0.25TB/node.
308 */
5a77c92f
PT
309 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
310 (pgdat->node_spanned_pages >> 8));
864b9a39
MH
311
312 /*
313 * Compensate the all the memblock reservations (e.g. crash kernel)
314 * from the initial estimation to make sure we will initialize enough
315 * memory to boot.
316 */
5a77c92f
PT
317 start_addr = PFN_PHYS(pgdat->node_start_pfn);
318 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
319 reserved = memblock_reserved_memory_within(start_addr, end_addr);
320 max_pgcnt += PHYS_PFN(reserved);
864b9a39 321
5a77c92f 322 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
3a80a7fa
MG
323 pgdat->first_deferred_pfn = ULONG_MAX;
324}
325
326/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 327static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 328{
ef70b6f4
MG
329 int nid = early_pfn_to_nid(pfn);
330
331 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
332 return true;
333
334 return false;
335}
336
337/*
338 * Returns false when the remaining initialisation should be deferred until
339 * later in the boot cycle when it can be parallelised.
340 */
341static inline bool update_defer_init(pg_data_t *pgdat,
342 unsigned long pfn, unsigned long zone_end,
343 unsigned long *nr_initialised)
344{
345 /* Always populate low zones for address-contrained allocations */
346 if (zone_end < pgdat_end_pfn(pgdat))
347 return true;
3a80a7fa 348 (*nr_initialised)++;
5a77c92f 349 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
3a80a7fa
MG
350 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
351 pgdat->first_deferred_pfn = pfn;
352 return false;
353 }
354
355 return true;
356}
357#else
358static inline void reset_deferred_meminit(pg_data_t *pgdat)
359{
360}
361
362static inline bool early_page_uninitialised(unsigned long pfn)
363{
364 return false;
365}
366
367static inline bool update_defer_init(pg_data_t *pgdat,
368 unsigned long pfn, unsigned long zone_end,
369 unsigned long *nr_initialised)
370{
371 return true;
372}
373#endif
374
0b423ca2
MG
375/* Return a pointer to the bitmap storing bits affecting a block of pages */
376static inline unsigned long *get_pageblock_bitmap(struct page *page,
377 unsigned long pfn)
378{
379#ifdef CONFIG_SPARSEMEM
380 return __pfn_to_section(pfn)->pageblock_flags;
381#else
382 return page_zone(page)->pageblock_flags;
383#endif /* CONFIG_SPARSEMEM */
384}
385
386static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
387{
388#ifdef CONFIG_SPARSEMEM
389 pfn &= (PAGES_PER_SECTION-1);
390 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
391#else
392 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
393 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
394#endif /* CONFIG_SPARSEMEM */
395}
396
397/**
398 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
399 * @page: The page within the block of interest
400 * @pfn: The target page frame number
401 * @end_bitidx: The last bit of interest to retrieve
402 * @mask: mask of bits that the caller is interested in
403 *
404 * Return: pageblock_bits flags
405 */
406static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
407 unsigned long pfn,
408 unsigned long end_bitidx,
409 unsigned long mask)
410{
411 unsigned long *bitmap;
412 unsigned long bitidx, word_bitidx;
413 unsigned long word;
414
415 bitmap = get_pageblock_bitmap(page, pfn);
416 bitidx = pfn_to_bitidx(page, pfn);
417 word_bitidx = bitidx / BITS_PER_LONG;
418 bitidx &= (BITS_PER_LONG-1);
419
420 word = bitmap[word_bitidx];
421 bitidx += end_bitidx;
422 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
423}
424
425unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
426 unsigned long end_bitidx,
427 unsigned long mask)
428{
429 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
430}
431
432static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
433{
434 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
435}
436
437/**
438 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
439 * @page: The page within the block of interest
440 * @flags: The flags to set
441 * @pfn: The target page frame number
442 * @end_bitidx: The last bit of interest
443 * @mask: mask of bits that the caller is interested in
444 */
445void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
446 unsigned long pfn,
447 unsigned long end_bitidx,
448 unsigned long mask)
449{
450 unsigned long *bitmap;
451 unsigned long bitidx, word_bitidx;
452 unsigned long old_word, word;
453
454 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
455
456 bitmap = get_pageblock_bitmap(page, pfn);
457 bitidx = pfn_to_bitidx(page, pfn);
458 word_bitidx = bitidx / BITS_PER_LONG;
459 bitidx &= (BITS_PER_LONG-1);
460
461 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
462
463 bitidx += end_bitidx;
464 mask <<= (BITS_PER_LONG - bitidx - 1);
465 flags <<= (BITS_PER_LONG - bitidx - 1);
466
467 word = READ_ONCE(bitmap[word_bitidx]);
468 for (;;) {
469 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
470 if (word == old_word)
471 break;
472 word = old_word;
473 }
474}
3a80a7fa 475
ee6f509c 476void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 477{
5d0f3f72
KM
478 if (unlikely(page_group_by_mobility_disabled &&
479 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
480 migratetype = MIGRATE_UNMOVABLE;
481
b2a0ac88
MG
482 set_pageblock_flags_group(page, (unsigned long)migratetype,
483 PB_migrate, PB_migrate_end);
484}
485
13e7444b 486#ifdef CONFIG_DEBUG_VM
c6a57e19 487static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 488{
bdc8cb98
DH
489 int ret = 0;
490 unsigned seq;
491 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 492 unsigned long sp, start_pfn;
c6a57e19 493
bdc8cb98
DH
494 do {
495 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
496 start_pfn = zone->zone_start_pfn;
497 sp = zone->spanned_pages;
108bcc96 498 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
499 ret = 1;
500 } while (zone_span_seqretry(zone, seq));
501
b5e6a5a2 502 if (ret)
613813e8
DH
503 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
504 pfn, zone_to_nid(zone), zone->name,
505 start_pfn, start_pfn + sp);
b5e6a5a2 506
bdc8cb98 507 return ret;
c6a57e19
DH
508}
509
510static int page_is_consistent(struct zone *zone, struct page *page)
511{
14e07298 512 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 513 return 0;
1da177e4 514 if (zone != page_zone(page))
c6a57e19
DH
515 return 0;
516
517 return 1;
518}
519/*
520 * Temporary debugging check for pages not lying within a given zone.
521 */
d73d3c9f 522static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
523{
524 if (page_outside_zone_boundaries(zone, page))
1da177e4 525 return 1;
c6a57e19
DH
526 if (!page_is_consistent(zone, page))
527 return 1;
528
1da177e4
LT
529 return 0;
530}
13e7444b 531#else
d73d3c9f 532static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
533{
534 return 0;
535}
536#endif
537
d230dec1
KS
538static void bad_page(struct page *page, const char *reason,
539 unsigned long bad_flags)
1da177e4 540{
d936cf9b
HD
541 static unsigned long resume;
542 static unsigned long nr_shown;
543 static unsigned long nr_unshown;
544
545 /*
546 * Allow a burst of 60 reports, then keep quiet for that minute;
547 * or allow a steady drip of one report per second.
548 */
549 if (nr_shown == 60) {
550 if (time_before(jiffies, resume)) {
551 nr_unshown++;
552 goto out;
553 }
554 if (nr_unshown) {
ff8e8116 555 pr_alert(
1e9e6365 556 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
557 nr_unshown);
558 nr_unshown = 0;
559 }
560 nr_shown = 0;
561 }
562 if (nr_shown++ == 0)
563 resume = jiffies + 60 * HZ;
564
ff8e8116 565 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 566 current->comm, page_to_pfn(page));
ff8e8116
VB
567 __dump_page(page, reason);
568 bad_flags &= page->flags;
569 if (bad_flags)
570 pr_alert("bad because of flags: %#lx(%pGp)\n",
571 bad_flags, &bad_flags);
4e462112 572 dump_page_owner(page);
3dc14741 573
4f31888c 574 print_modules();
1da177e4 575 dump_stack();
d936cf9b 576out:
8cc3b392 577 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 578 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 579 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
580}
581
1da177e4
LT
582/*
583 * Higher-order pages are called "compound pages". They are structured thusly:
584 *
1d798ca3 585 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 586 *
1d798ca3
KS
587 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
588 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 589 *
1d798ca3
KS
590 * The first tail page's ->compound_dtor holds the offset in array of compound
591 * page destructors. See compound_page_dtors.
1da177e4 592 *
1d798ca3 593 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 594 * This usage means that zero-order pages may not be compound.
1da177e4 595 */
d98c7a09 596
9a982250 597void free_compound_page(struct page *page)
d98c7a09 598{
d85f3385 599 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
600}
601
d00181b9 602void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
603{
604 int i;
605 int nr_pages = 1 << order;
606
f1e61557 607 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
608 set_compound_order(page, order);
609 __SetPageHead(page);
610 for (i = 1; i < nr_pages; i++) {
611 struct page *p = page + i;
58a84aa9 612 set_page_count(p, 0);
1c290f64 613 p->mapping = TAIL_MAPPING;
1d798ca3 614 set_compound_head(p, page);
18229df5 615 }
53f9263b 616 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
617}
618
c0a32fc5
SG
619#ifdef CONFIG_DEBUG_PAGEALLOC
620unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
621bool _debug_pagealloc_enabled __read_mostly
622 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 623EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
624bool _debug_guardpage_enabled __read_mostly;
625
031bc574
JK
626static int __init early_debug_pagealloc(char *buf)
627{
628 if (!buf)
629 return -EINVAL;
2a138dc7 630 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
631}
632early_param("debug_pagealloc", early_debug_pagealloc);
633
e30825f1
JK
634static bool need_debug_guardpage(void)
635{
031bc574
JK
636 /* If we don't use debug_pagealloc, we don't need guard page */
637 if (!debug_pagealloc_enabled())
638 return false;
639
f1c1e9f7
JK
640 if (!debug_guardpage_minorder())
641 return false;
642
e30825f1
JK
643 return true;
644}
645
646static void init_debug_guardpage(void)
647{
031bc574
JK
648 if (!debug_pagealloc_enabled())
649 return;
650
f1c1e9f7
JK
651 if (!debug_guardpage_minorder())
652 return;
653
e30825f1
JK
654 _debug_guardpage_enabled = true;
655}
656
657struct page_ext_operations debug_guardpage_ops = {
658 .need = need_debug_guardpage,
659 .init = init_debug_guardpage,
660};
c0a32fc5
SG
661
662static int __init debug_guardpage_minorder_setup(char *buf)
663{
664 unsigned long res;
665
666 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 667 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
668 return 0;
669 }
670 _debug_guardpage_minorder = res;
1170532b 671 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
672 return 0;
673}
f1c1e9f7 674early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 675
acbc15a4 676static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 677 unsigned int order, int migratetype)
c0a32fc5 678{
e30825f1
JK
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
acbc15a4
JK
682 return false;
683
684 if (order >= debug_guardpage_minorder())
685 return false;
e30825f1
JK
686
687 page_ext = lookup_page_ext(page);
f86e4271 688 if (unlikely(!page_ext))
acbc15a4 689 return false;
f86e4271 690
e30825f1
JK
691 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
692
2847cf95
JK
693 INIT_LIST_HEAD(&page->lru);
694 set_page_private(page, order);
695 /* Guard pages are not available for any usage */
696 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
697
698 return true;
c0a32fc5
SG
699}
700
2847cf95
JK
701static inline void clear_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype)
c0a32fc5 703{
e30825f1
JK
704 struct page_ext *page_ext;
705
706 if (!debug_guardpage_enabled())
707 return;
708
709 page_ext = lookup_page_ext(page);
f86e4271
YS
710 if (unlikely(!page_ext))
711 return;
712
e30825f1
JK
713 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
714
2847cf95
JK
715 set_page_private(page, 0);
716 if (!is_migrate_isolate(migratetype))
717 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
718}
719#else
980ac167 720struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
721static inline bool set_page_guard(struct zone *zone, struct page *page,
722 unsigned int order, int migratetype) { return false; }
2847cf95
JK
723static inline void clear_page_guard(struct zone *zone, struct page *page,
724 unsigned int order, int migratetype) {}
c0a32fc5
SG
725#endif
726
7aeb09f9 727static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 728{
4c21e2f2 729 set_page_private(page, order);
676165a8 730 __SetPageBuddy(page);
1da177e4
LT
731}
732
733static inline void rmv_page_order(struct page *page)
734{
676165a8 735 __ClearPageBuddy(page);
4c21e2f2 736 set_page_private(page, 0);
1da177e4
LT
737}
738
1da177e4
LT
739/*
740 * This function checks whether a page is free && is the buddy
741 * we can do coalesce a page and its buddy if
13ad59df 742 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 743 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
744 * (c) a page and its buddy have the same order &&
745 * (d) a page and its buddy are in the same zone.
676165a8 746 *
cf6fe945
WSH
747 * For recording whether a page is in the buddy system, we set ->_mapcount
748 * PAGE_BUDDY_MAPCOUNT_VALUE.
749 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
750 * serialized by zone->lock.
1da177e4 751 *
676165a8 752 * For recording page's order, we use page_private(page).
1da177e4 753 */
cb2b95e1 754static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 755 unsigned int order)
1da177e4 756{
c0a32fc5 757 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
758 if (page_zone_id(page) != page_zone_id(buddy))
759 return 0;
760
4c5018ce
WY
761 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
762
c0a32fc5
SG
763 return 1;
764 }
765
cb2b95e1 766 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
767 /*
768 * zone check is done late to avoid uselessly
769 * calculating zone/node ids for pages that could
770 * never merge.
771 */
772 if (page_zone_id(page) != page_zone_id(buddy))
773 return 0;
774
4c5018ce
WY
775 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
776
6aa3001b 777 return 1;
676165a8 778 }
6aa3001b 779 return 0;
1da177e4
LT
780}
781
782/*
783 * Freeing function for a buddy system allocator.
784 *
785 * The concept of a buddy system is to maintain direct-mapped table
786 * (containing bit values) for memory blocks of various "orders".
787 * The bottom level table contains the map for the smallest allocatable
788 * units of memory (here, pages), and each level above it describes
789 * pairs of units from the levels below, hence, "buddies".
790 * At a high level, all that happens here is marking the table entry
791 * at the bottom level available, and propagating the changes upward
792 * as necessary, plus some accounting needed to play nicely with other
793 * parts of the VM system.
794 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
795 * free pages of length of (1 << order) and marked with _mapcount
796 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
797 * field.
1da177e4 798 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
799 * other. That is, if we allocate a small block, and both were
800 * free, the remainder of the region must be split into blocks.
1da177e4 801 * If a block is freed, and its buddy is also free, then this
5f63b720 802 * triggers coalescing into a block of larger size.
1da177e4 803 *
6d49e352 804 * -- nyc
1da177e4
LT
805 */
806
48db57f8 807static inline void __free_one_page(struct page *page,
dc4b0caf 808 unsigned long pfn,
ed0ae21d
MG
809 struct zone *zone, unsigned int order,
810 int migratetype)
1da177e4 811{
76741e77
VB
812 unsigned long combined_pfn;
813 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 814 struct page *buddy;
d9dddbf5
VB
815 unsigned int max_order;
816
817 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 818
d29bb978 819 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 820 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 821
ed0ae21d 822 VM_BUG_ON(migratetype == -1);
d9dddbf5 823 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 824 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 825
76741e77 826 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 827 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 828
d9dddbf5 829continue_merging:
3c605096 830 while (order < max_order - 1) {
76741e77
VB
831 buddy_pfn = __find_buddy_pfn(pfn, order);
832 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
833
834 if (!pfn_valid_within(buddy_pfn))
835 goto done_merging;
cb2b95e1 836 if (!page_is_buddy(page, buddy, order))
d9dddbf5 837 goto done_merging;
c0a32fc5
SG
838 /*
839 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
840 * merge with it and move up one order.
841 */
842 if (page_is_guard(buddy)) {
2847cf95 843 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
844 } else {
845 list_del(&buddy->lru);
846 zone->free_area[order].nr_free--;
847 rmv_page_order(buddy);
848 }
76741e77
VB
849 combined_pfn = buddy_pfn & pfn;
850 page = page + (combined_pfn - pfn);
851 pfn = combined_pfn;
1da177e4
LT
852 order++;
853 }
d9dddbf5
VB
854 if (max_order < MAX_ORDER) {
855 /* If we are here, it means order is >= pageblock_order.
856 * We want to prevent merge between freepages on isolate
857 * pageblock and normal pageblock. Without this, pageblock
858 * isolation could cause incorrect freepage or CMA accounting.
859 *
860 * We don't want to hit this code for the more frequent
861 * low-order merging.
862 */
863 if (unlikely(has_isolate_pageblock(zone))) {
864 int buddy_mt;
865
76741e77
VB
866 buddy_pfn = __find_buddy_pfn(pfn, order);
867 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
868 buddy_mt = get_pageblock_migratetype(buddy);
869
870 if (migratetype != buddy_mt
871 && (is_migrate_isolate(migratetype) ||
872 is_migrate_isolate(buddy_mt)))
873 goto done_merging;
874 }
875 max_order++;
876 goto continue_merging;
877 }
878
879done_merging:
1da177e4 880 set_page_order(page, order);
6dda9d55
CZ
881
882 /*
883 * If this is not the largest possible page, check if the buddy
884 * of the next-highest order is free. If it is, it's possible
885 * that pages are being freed that will coalesce soon. In case,
886 * that is happening, add the free page to the tail of the list
887 * so it's less likely to be used soon and more likely to be merged
888 * as a higher order page
889 */
13ad59df 890 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 891 struct page *higher_page, *higher_buddy;
76741e77
VB
892 combined_pfn = buddy_pfn & pfn;
893 higher_page = page + (combined_pfn - pfn);
894 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
895 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
896 if (pfn_valid_within(buddy_pfn) &&
897 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
898 list_add_tail(&page->lru,
899 &zone->free_area[order].free_list[migratetype]);
900 goto out;
901 }
902 }
903
904 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
905out:
1da177e4
LT
906 zone->free_area[order].nr_free++;
907}
908
7bfec6f4
MG
909/*
910 * A bad page could be due to a number of fields. Instead of multiple branches,
911 * try and check multiple fields with one check. The caller must do a detailed
912 * check if necessary.
913 */
914static inline bool page_expected_state(struct page *page,
915 unsigned long check_flags)
916{
917 if (unlikely(atomic_read(&page->_mapcount) != -1))
918 return false;
919
920 if (unlikely((unsigned long)page->mapping |
921 page_ref_count(page) |
922#ifdef CONFIG_MEMCG
923 (unsigned long)page->mem_cgroup |
924#endif
925 (page->flags & check_flags)))
926 return false;
927
928 return true;
929}
930
bb552ac6 931static void free_pages_check_bad(struct page *page)
1da177e4 932{
7bfec6f4
MG
933 const char *bad_reason;
934 unsigned long bad_flags;
935
7bfec6f4
MG
936 bad_reason = NULL;
937 bad_flags = 0;
f0b791a3 938
53f9263b 939 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
940 bad_reason = "nonzero mapcount";
941 if (unlikely(page->mapping != NULL))
942 bad_reason = "non-NULL mapping";
fe896d18 943 if (unlikely(page_ref_count(page) != 0))
0139aa7b 944 bad_reason = "nonzero _refcount";
f0b791a3
DH
945 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
946 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
947 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
948 }
9edad6ea
JW
949#ifdef CONFIG_MEMCG
950 if (unlikely(page->mem_cgroup))
951 bad_reason = "page still charged to cgroup";
952#endif
7bfec6f4 953 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
954}
955
956static inline int free_pages_check(struct page *page)
957{
da838d4f 958 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 959 return 0;
bb552ac6
MG
960
961 /* Something has gone sideways, find it */
962 free_pages_check_bad(page);
7bfec6f4 963 return 1;
1da177e4
LT
964}
965
4db7548c
MG
966static int free_tail_pages_check(struct page *head_page, struct page *page)
967{
968 int ret = 1;
969
970 /*
971 * We rely page->lru.next never has bit 0 set, unless the page
972 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
973 */
974 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
975
976 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
977 ret = 0;
978 goto out;
979 }
980 switch (page - head_page) {
981 case 1:
982 /* the first tail page: ->mapping is compound_mapcount() */
983 if (unlikely(compound_mapcount(page))) {
984 bad_page(page, "nonzero compound_mapcount", 0);
985 goto out;
986 }
987 break;
988 case 2:
989 /*
990 * the second tail page: ->mapping is
991 * page_deferred_list().next -- ignore value.
992 */
993 break;
994 default:
995 if (page->mapping != TAIL_MAPPING) {
996 bad_page(page, "corrupted mapping in tail page", 0);
997 goto out;
998 }
999 break;
1000 }
1001 if (unlikely(!PageTail(page))) {
1002 bad_page(page, "PageTail not set", 0);
1003 goto out;
1004 }
1005 if (unlikely(compound_head(page) != head_page)) {
1006 bad_page(page, "compound_head not consistent", 0);
1007 goto out;
1008 }
1009 ret = 0;
1010out:
1011 page->mapping = NULL;
1012 clear_compound_head(page);
1013 return ret;
1014}
1015
e2769dbd
MG
1016static __always_inline bool free_pages_prepare(struct page *page,
1017 unsigned int order, bool check_free)
4db7548c 1018{
e2769dbd 1019 int bad = 0;
4db7548c 1020
4db7548c
MG
1021 VM_BUG_ON_PAGE(PageTail(page), page);
1022
e2769dbd 1023 trace_mm_page_free(page, order);
e2769dbd
MG
1024
1025 /*
1026 * Check tail pages before head page information is cleared to
1027 * avoid checking PageCompound for order-0 pages.
1028 */
1029 if (unlikely(order)) {
1030 bool compound = PageCompound(page);
1031 int i;
1032
1033 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1034
9a73f61b
KS
1035 if (compound)
1036 ClearPageDoubleMap(page);
e2769dbd
MG
1037 for (i = 1; i < (1 << order); i++) {
1038 if (compound)
1039 bad += free_tail_pages_check(page, page + i);
1040 if (unlikely(free_pages_check(page + i))) {
1041 bad++;
1042 continue;
1043 }
1044 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1045 }
1046 }
bda807d4 1047 if (PageMappingFlags(page))
4db7548c 1048 page->mapping = NULL;
c4159a75 1049 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1050 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1051 if (check_free)
1052 bad += free_pages_check(page);
1053 if (bad)
1054 return false;
4db7548c 1055
e2769dbd
MG
1056 page_cpupid_reset_last(page);
1057 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1058 reset_page_owner(page, order);
4db7548c
MG
1059
1060 if (!PageHighMem(page)) {
1061 debug_check_no_locks_freed(page_address(page),
e2769dbd 1062 PAGE_SIZE << order);
4db7548c 1063 debug_check_no_obj_freed(page_address(page),
e2769dbd 1064 PAGE_SIZE << order);
4db7548c 1065 }
e2769dbd
MG
1066 arch_free_page(page, order);
1067 kernel_poison_pages(page, 1 << order, 0);
1068 kernel_map_pages(page, 1 << order, 0);
29b52de1 1069 kasan_free_pages(page, order);
4db7548c 1070
4db7548c
MG
1071 return true;
1072}
1073
e2769dbd
MG
1074#ifdef CONFIG_DEBUG_VM
1075static inline bool free_pcp_prepare(struct page *page)
1076{
1077 return free_pages_prepare(page, 0, true);
1078}
1079
1080static inline bool bulkfree_pcp_prepare(struct page *page)
1081{
1082 return false;
1083}
1084#else
1085static bool free_pcp_prepare(struct page *page)
1086{
1087 return free_pages_prepare(page, 0, false);
1088}
1089
4db7548c
MG
1090static bool bulkfree_pcp_prepare(struct page *page)
1091{
1092 return free_pages_check(page);
1093}
1094#endif /* CONFIG_DEBUG_VM */
1095
1da177e4 1096/*
5f8dcc21 1097 * Frees a number of pages from the PCP lists
1da177e4 1098 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1099 * count is the number of pages to free.
1da177e4
LT
1100 *
1101 * If the zone was previously in an "all pages pinned" state then look to
1102 * see if this freeing clears that state.
1103 *
1104 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1105 * pinned" detection logic.
1106 */
5f8dcc21
MG
1107static void free_pcppages_bulk(struct zone *zone, int count,
1108 struct per_cpu_pages *pcp)
1da177e4 1109{
5f8dcc21 1110 int migratetype = 0;
a6f9edd6 1111 int batch_free = 0;
3777999d 1112 bool isolated_pageblocks;
5f8dcc21 1113
d34b0733 1114 spin_lock(&zone->lock);
3777999d 1115 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1116
e5b31ac2 1117 while (count) {
48db57f8 1118 struct page *page;
5f8dcc21
MG
1119 struct list_head *list;
1120
1121 /*
a6f9edd6
MG
1122 * Remove pages from lists in a round-robin fashion. A
1123 * batch_free count is maintained that is incremented when an
1124 * empty list is encountered. This is so more pages are freed
1125 * off fuller lists instead of spinning excessively around empty
1126 * lists
5f8dcc21
MG
1127 */
1128 do {
a6f9edd6 1129 batch_free++;
5f8dcc21
MG
1130 if (++migratetype == MIGRATE_PCPTYPES)
1131 migratetype = 0;
1132 list = &pcp->lists[migratetype];
1133 } while (list_empty(list));
48db57f8 1134
1d16871d
NK
1135 /* This is the only non-empty list. Free them all. */
1136 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1137 batch_free = count;
1d16871d 1138
a6f9edd6 1139 do {
770c8aaa
BZ
1140 int mt; /* migratetype of the to-be-freed page */
1141
a16601c5 1142 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1143 /* must delete as __free_one_page list manipulates */
1144 list_del(&page->lru);
aa016d14 1145
bb14c2c7 1146 mt = get_pcppage_migratetype(page);
aa016d14
VB
1147 /* MIGRATE_ISOLATE page should not go to pcplists */
1148 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1149 /* Pageblock could have been isolated meanwhile */
3777999d 1150 if (unlikely(isolated_pageblocks))
51bb1a40 1151 mt = get_pageblock_migratetype(page);
51bb1a40 1152
4db7548c
MG
1153 if (bulkfree_pcp_prepare(page))
1154 continue;
1155
dc4b0caf 1156 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1157 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1158 } while (--count && --batch_free && !list_empty(list));
1da177e4 1159 }
d34b0733 1160 spin_unlock(&zone->lock);
1da177e4
LT
1161}
1162
dc4b0caf
MG
1163static void free_one_page(struct zone *zone,
1164 struct page *page, unsigned long pfn,
7aeb09f9 1165 unsigned int order,
ed0ae21d 1166 int migratetype)
1da177e4 1167{
d34b0733 1168 spin_lock(&zone->lock);
ad53f92e
JK
1169 if (unlikely(has_isolate_pageblock(zone) ||
1170 is_migrate_isolate(migratetype))) {
1171 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1172 }
dc4b0caf 1173 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1174 spin_unlock(&zone->lock);
48db57f8
NP
1175}
1176
1e8ce83c
RH
1177static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1178 unsigned long zone, int nid)
1179{
1e8ce83c 1180 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1181 init_page_count(page);
1182 page_mapcount_reset(page);
1183 page_cpupid_reset_last(page);
1e8ce83c 1184
1e8ce83c
RH
1185 INIT_LIST_HEAD(&page->lru);
1186#ifdef WANT_PAGE_VIRTUAL
1187 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1188 if (!is_highmem_idx(zone))
1189 set_page_address(page, __va(pfn << PAGE_SHIFT));
1190#endif
1191}
1192
1193static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1194 int nid)
1195{
1196 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1197}
1198
7e18adb4 1199#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1200static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1201{
1202 pg_data_t *pgdat;
1203 int nid, zid;
1204
1205 if (!early_page_uninitialised(pfn))
1206 return;
1207
1208 nid = early_pfn_to_nid(pfn);
1209 pgdat = NODE_DATA(nid);
1210
1211 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1212 struct zone *zone = &pgdat->node_zones[zid];
1213
1214 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1215 break;
1216 }
1217 __init_single_pfn(pfn, zid, nid);
1218}
1219#else
1220static inline void init_reserved_page(unsigned long pfn)
1221{
1222}
1223#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1224
92923ca3
NZ
1225/*
1226 * Initialised pages do not have PageReserved set. This function is
1227 * called for each range allocated by the bootmem allocator and
1228 * marks the pages PageReserved. The remaining valid pages are later
1229 * sent to the buddy page allocator.
1230 */
4b50bcc7 1231void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1232{
1233 unsigned long start_pfn = PFN_DOWN(start);
1234 unsigned long end_pfn = PFN_UP(end);
1235
7e18adb4
MG
1236 for (; start_pfn < end_pfn; start_pfn++) {
1237 if (pfn_valid(start_pfn)) {
1238 struct page *page = pfn_to_page(start_pfn);
1239
1240 init_reserved_page(start_pfn);
1d798ca3
KS
1241
1242 /* Avoid false-positive PageTail() */
1243 INIT_LIST_HEAD(&page->lru);
1244
7e18adb4
MG
1245 SetPageReserved(page);
1246 }
1247 }
92923ca3
NZ
1248}
1249
ec95f53a
KM
1250static void __free_pages_ok(struct page *page, unsigned int order)
1251{
d34b0733 1252 unsigned long flags;
95e34412 1253 int migratetype;
dc4b0caf 1254 unsigned long pfn = page_to_pfn(page);
ec95f53a 1255
e2769dbd 1256 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1257 return;
1258
cfc47a28 1259 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1260 local_irq_save(flags);
1261 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1262 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1263 local_irq_restore(flags);
1da177e4
LT
1264}
1265
949698a3 1266static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1267{
c3993076 1268 unsigned int nr_pages = 1 << order;
e2d0bd2b 1269 struct page *p = page;
c3993076 1270 unsigned int loop;
a226f6c8 1271
e2d0bd2b
YL
1272 prefetchw(p);
1273 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1274 prefetchw(p + 1);
c3993076
JW
1275 __ClearPageReserved(p);
1276 set_page_count(p, 0);
a226f6c8 1277 }
e2d0bd2b
YL
1278 __ClearPageReserved(p);
1279 set_page_count(p, 0);
c3993076 1280
e2d0bd2b 1281 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1282 set_page_refcounted(page);
1283 __free_pages(page, order);
a226f6c8
DH
1284}
1285
75a592a4
MG
1286#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1287 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1288
75a592a4
MG
1289static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1290
1291int __meminit early_pfn_to_nid(unsigned long pfn)
1292{
7ace9917 1293 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1294 int nid;
1295
7ace9917 1296 spin_lock(&early_pfn_lock);
75a592a4 1297 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1298 if (nid < 0)
e4568d38 1299 nid = first_online_node;
7ace9917
MG
1300 spin_unlock(&early_pfn_lock);
1301
1302 return nid;
75a592a4
MG
1303}
1304#endif
1305
1306#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1307static inline bool __meminit __maybe_unused
1308meminit_pfn_in_nid(unsigned long pfn, int node,
1309 struct mminit_pfnnid_cache *state)
75a592a4
MG
1310{
1311 int nid;
1312
1313 nid = __early_pfn_to_nid(pfn, state);
1314 if (nid >= 0 && nid != node)
1315 return false;
1316 return true;
1317}
1318
1319/* Only safe to use early in boot when initialisation is single-threaded */
1320static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1321{
1322 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1323}
1324
1325#else
1326
1327static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1328{
1329 return true;
1330}
d73d3c9f
MK
1331static inline bool __meminit __maybe_unused
1332meminit_pfn_in_nid(unsigned long pfn, int node,
1333 struct mminit_pfnnid_cache *state)
75a592a4
MG
1334{
1335 return true;
1336}
1337#endif
1338
1339
0e1cc95b 1340void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1341 unsigned int order)
1342{
1343 if (early_page_uninitialised(pfn))
1344 return;
949698a3 1345 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1346}
1347
7cf91a98
JK
1348/*
1349 * Check that the whole (or subset of) a pageblock given by the interval of
1350 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1351 * with the migration of free compaction scanner. The scanners then need to
1352 * use only pfn_valid_within() check for arches that allow holes within
1353 * pageblocks.
1354 *
1355 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1356 *
1357 * It's possible on some configurations to have a setup like node0 node1 node0
1358 * i.e. it's possible that all pages within a zones range of pages do not
1359 * belong to a single zone. We assume that a border between node0 and node1
1360 * can occur within a single pageblock, but not a node0 node1 node0
1361 * interleaving within a single pageblock. It is therefore sufficient to check
1362 * the first and last page of a pageblock and avoid checking each individual
1363 * page in a pageblock.
1364 */
1365struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1366 unsigned long end_pfn, struct zone *zone)
1367{
1368 struct page *start_page;
1369 struct page *end_page;
1370
1371 /* end_pfn is one past the range we are checking */
1372 end_pfn--;
1373
1374 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1375 return NULL;
1376
2d070eab
MH
1377 start_page = pfn_to_online_page(start_pfn);
1378 if (!start_page)
1379 return NULL;
7cf91a98
JK
1380
1381 if (page_zone(start_page) != zone)
1382 return NULL;
1383
1384 end_page = pfn_to_page(end_pfn);
1385
1386 /* This gives a shorter code than deriving page_zone(end_page) */
1387 if (page_zone_id(start_page) != page_zone_id(end_page))
1388 return NULL;
1389
1390 return start_page;
1391}
1392
1393void set_zone_contiguous(struct zone *zone)
1394{
1395 unsigned long block_start_pfn = zone->zone_start_pfn;
1396 unsigned long block_end_pfn;
1397
1398 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1399 for (; block_start_pfn < zone_end_pfn(zone);
1400 block_start_pfn = block_end_pfn,
1401 block_end_pfn += pageblock_nr_pages) {
1402
1403 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1404
1405 if (!__pageblock_pfn_to_page(block_start_pfn,
1406 block_end_pfn, zone))
1407 return;
1408 }
1409
1410 /* We confirm that there is no hole */
1411 zone->contiguous = true;
1412}
1413
1414void clear_zone_contiguous(struct zone *zone)
1415{
1416 zone->contiguous = false;
1417}
1418
7e18adb4 1419#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1420static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1421 unsigned long pfn, int nr_pages)
1422{
1423 int i;
1424
1425 if (!page)
1426 return;
1427
1428 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1429 if (nr_pages == pageblock_nr_pages &&
1430 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1431 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1432 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1433 return;
1434 }
1435
e780149b
XQ
1436 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1437 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1438 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1439 __free_pages_boot_core(page, 0);
e780149b 1440 }
a4de83dd
MG
1441}
1442
d3cd131d
NS
1443/* Completion tracking for deferred_init_memmap() threads */
1444static atomic_t pgdat_init_n_undone __initdata;
1445static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1446
1447static inline void __init pgdat_init_report_one_done(void)
1448{
1449 if (atomic_dec_and_test(&pgdat_init_n_undone))
1450 complete(&pgdat_init_all_done_comp);
1451}
0e1cc95b 1452
7e18adb4 1453/* Initialise remaining memory on a node */
0e1cc95b 1454static int __init deferred_init_memmap(void *data)
7e18adb4 1455{
0e1cc95b
MG
1456 pg_data_t *pgdat = data;
1457 int nid = pgdat->node_id;
7e18adb4
MG
1458 struct mminit_pfnnid_cache nid_init_state = { };
1459 unsigned long start = jiffies;
1460 unsigned long nr_pages = 0;
1461 unsigned long walk_start, walk_end;
1462 int i, zid;
1463 struct zone *zone;
7e18adb4 1464 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1465 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1466
0e1cc95b 1467 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1468 pgdat_init_report_one_done();
0e1cc95b
MG
1469 return 0;
1470 }
1471
1472 /* Bind memory initialisation thread to a local node if possible */
1473 if (!cpumask_empty(cpumask))
1474 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1475
1476 /* Sanity check boundaries */
1477 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1478 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1479 pgdat->first_deferred_pfn = ULONG_MAX;
1480
1481 /* Only the highest zone is deferred so find it */
1482 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1483 zone = pgdat->node_zones + zid;
1484 if (first_init_pfn < zone_end_pfn(zone))
1485 break;
1486 }
1487
1488 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1489 unsigned long pfn, end_pfn;
54608c3f 1490 struct page *page = NULL;
a4de83dd
MG
1491 struct page *free_base_page = NULL;
1492 unsigned long free_base_pfn = 0;
1493 int nr_to_free = 0;
7e18adb4
MG
1494
1495 end_pfn = min(walk_end, zone_end_pfn(zone));
1496 pfn = first_init_pfn;
1497 if (pfn < walk_start)
1498 pfn = walk_start;
1499 if (pfn < zone->zone_start_pfn)
1500 pfn = zone->zone_start_pfn;
1501
1502 for (; pfn < end_pfn; pfn++) {
54608c3f 1503 if (!pfn_valid_within(pfn))
a4de83dd 1504 goto free_range;
7e18adb4 1505
54608c3f
MG
1506 /*
1507 * Ensure pfn_valid is checked every
e780149b 1508 * pageblock_nr_pages for memory holes
54608c3f 1509 */
e780149b 1510 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1511 if (!pfn_valid(pfn)) {
1512 page = NULL;
a4de83dd 1513 goto free_range;
54608c3f
MG
1514 }
1515 }
1516
1517 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1518 page = NULL;
a4de83dd 1519 goto free_range;
54608c3f
MG
1520 }
1521
1522 /* Minimise pfn page lookups and scheduler checks */
e780149b 1523 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1524 page++;
1525 } else {
a4de83dd
MG
1526 nr_pages += nr_to_free;
1527 deferred_free_range(free_base_page,
1528 free_base_pfn, nr_to_free);
1529 free_base_page = NULL;
1530 free_base_pfn = nr_to_free = 0;
1531
54608c3f
MG
1532 page = pfn_to_page(pfn);
1533 cond_resched();
1534 }
7e18adb4
MG
1535
1536 if (page->flags) {
1537 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1538 goto free_range;
7e18adb4
MG
1539 }
1540
1541 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1542 if (!free_base_page) {
1543 free_base_page = page;
1544 free_base_pfn = pfn;
1545 nr_to_free = 0;
1546 }
1547 nr_to_free++;
1548
1549 /* Where possible, batch up pages for a single free */
1550 continue;
1551free_range:
1552 /* Free the current block of pages to allocator */
1553 nr_pages += nr_to_free;
1554 deferred_free_range(free_base_page, free_base_pfn,
1555 nr_to_free);
1556 free_base_page = NULL;
1557 free_base_pfn = nr_to_free = 0;
7e18adb4 1558 }
e780149b
XQ
1559 /* Free the last block of pages to allocator */
1560 nr_pages += nr_to_free;
1561 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1562
7e18adb4
MG
1563 first_init_pfn = max(end_pfn, first_init_pfn);
1564 }
1565
1566 /* Sanity check that the next zone really is unpopulated */
1567 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1568
0e1cc95b 1569 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1570 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1571
1572 pgdat_init_report_one_done();
0e1cc95b
MG
1573 return 0;
1574}
7cf91a98 1575#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1576
1577void __init page_alloc_init_late(void)
1578{
7cf91a98
JK
1579 struct zone *zone;
1580
1581#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1582 int nid;
1583
d3cd131d
NS
1584 /* There will be num_node_state(N_MEMORY) threads */
1585 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1586 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1587 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1588 }
1589
1590 /* Block until all are initialised */
d3cd131d 1591 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1592
1593 /* Reinit limits that are based on free pages after the kernel is up */
1594 files_maxfiles_init();
7cf91a98 1595#endif
3010f876
PT
1596#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1597 /* Discard memblock private memory */
1598 memblock_discard();
1599#endif
7cf91a98
JK
1600
1601 for_each_populated_zone(zone)
1602 set_zone_contiguous(zone);
7e18adb4 1603}
7e18adb4 1604
47118af0 1605#ifdef CONFIG_CMA
9cf510a5 1606/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1607void __init init_cma_reserved_pageblock(struct page *page)
1608{
1609 unsigned i = pageblock_nr_pages;
1610 struct page *p = page;
1611
1612 do {
1613 __ClearPageReserved(p);
1614 set_page_count(p, 0);
1615 } while (++p, --i);
1616
47118af0 1617 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1618
1619 if (pageblock_order >= MAX_ORDER) {
1620 i = pageblock_nr_pages;
1621 p = page;
1622 do {
1623 set_page_refcounted(p);
1624 __free_pages(p, MAX_ORDER - 1);
1625 p += MAX_ORDER_NR_PAGES;
1626 } while (i -= MAX_ORDER_NR_PAGES);
1627 } else {
1628 set_page_refcounted(page);
1629 __free_pages(page, pageblock_order);
1630 }
1631
3dcc0571 1632 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1633}
1634#endif
1da177e4
LT
1635
1636/*
1637 * The order of subdivision here is critical for the IO subsystem.
1638 * Please do not alter this order without good reasons and regression
1639 * testing. Specifically, as large blocks of memory are subdivided,
1640 * the order in which smaller blocks are delivered depends on the order
1641 * they're subdivided in this function. This is the primary factor
1642 * influencing the order in which pages are delivered to the IO
1643 * subsystem according to empirical testing, and this is also justified
1644 * by considering the behavior of a buddy system containing a single
1645 * large block of memory acted on by a series of small allocations.
1646 * This behavior is a critical factor in sglist merging's success.
1647 *
6d49e352 1648 * -- nyc
1da177e4 1649 */
085cc7d5 1650static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1651 int low, int high, struct free_area *area,
1652 int migratetype)
1da177e4
LT
1653{
1654 unsigned long size = 1 << high;
1655
1656 while (high > low) {
1657 area--;
1658 high--;
1659 size >>= 1;
309381fe 1660 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1661
acbc15a4
JK
1662 /*
1663 * Mark as guard pages (or page), that will allow to
1664 * merge back to allocator when buddy will be freed.
1665 * Corresponding page table entries will not be touched,
1666 * pages will stay not present in virtual address space
1667 */
1668 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1669 continue;
acbc15a4 1670
b2a0ac88 1671 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1672 area->nr_free++;
1673 set_page_order(&page[size], high);
1674 }
1da177e4
LT
1675}
1676
4e611801 1677static void check_new_page_bad(struct page *page)
1da177e4 1678{
4e611801
VB
1679 const char *bad_reason = NULL;
1680 unsigned long bad_flags = 0;
7bfec6f4 1681
53f9263b 1682 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1683 bad_reason = "nonzero mapcount";
1684 if (unlikely(page->mapping != NULL))
1685 bad_reason = "non-NULL mapping";
fe896d18 1686 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1687 bad_reason = "nonzero _count";
f4c18e6f
NH
1688 if (unlikely(page->flags & __PG_HWPOISON)) {
1689 bad_reason = "HWPoisoned (hardware-corrupted)";
1690 bad_flags = __PG_HWPOISON;
e570f56c
NH
1691 /* Don't complain about hwpoisoned pages */
1692 page_mapcount_reset(page); /* remove PageBuddy */
1693 return;
f4c18e6f 1694 }
f0b791a3
DH
1695 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1696 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1697 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1698 }
9edad6ea
JW
1699#ifdef CONFIG_MEMCG
1700 if (unlikely(page->mem_cgroup))
1701 bad_reason = "page still charged to cgroup";
1702#endif
4e611801
VB
1703 bad_page(page, bad_reason, bad_flags);
1704}
1705
1706/*
1707 * This page is about to be returned from the page allocator
1708 */
1709static inline int check_new_page(struct page *page)
1710{
1711 if (likely(page_expected_state(page,
1712 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1713 return 0;
1714
1715 check_new_page_bad(page);
1716 return 1;
2a7684a2
WF
1717}
1718
bd33ef36 1719static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1720{
1721 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1722 page_poisoning_enabled();
1414c7f4
LA
1723}
1724
479f854a
MG
1725#ifdef CONFIG_DEBUG_VM
1726static bool check_pcp_refill(struct page *page)
1727{
1728 return false;
1729}
1730
1731static bool check_new_pcp(struct page *page)
1732{
1733 return check_new_page(page);
1734}
1735#else
1736static bool check_pcp_refill(struct page *page)
1737{
1738 return check_new_page(page);
1739}
1740static bool check_new_pcp(struct page *page)
1741{
1742 return false;
1743}
1744#endif /* CONFIG_DEBUG_VM */
1745
1746static bool check_new_pages(struct page *page, unsigned int order)
1747{
1748 int i;
1749 for (i = 0; i < (1 << order); i++) {
1750 struct page *p = page + i;
1751
1752 if (unlikely(check_new_page(p)))
1753 return true;
1754 }
1755
1756 return false;
1757}
1758
46f24fd8
JK
1759inline void post_alloc_hook(struct page *page, unsigned int order,
1760 gfp_t gfp_flags)
1761{
1762 set_page_private(page, 0);
1763 set_page_refcounted(page);
1764
1765 arch_alloc_page(page, order);
1766 kernel_map_pages(page, 1 << order, 1);
1767 kernel_poison_pages(page, 1 << order, 1);
1768 kasan_alloc_pages(page, order);
1769 set_page_owner(page, order, gfp_flags);
1770}
1771
479f854a 1772static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1773 unsigned int alloc_flags)
2a7684a2
WF
1774{
1775 int i;
689bcebf 1776
46f24fd8 1777 post_alloc_hook(page, order, gfp_flags);
17cf4406 1778
bd33ef36 1779 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1780 for (i = 0; i < (1 << order); i++)
1781 clear_highpage(page + i);
17cf4406
NP
1782
1783 if (order && (gfp_flags & __GFP_COMP))
1784 prep_compound_page(page, order);
1785
75379191 1786 /*
2f064f34 1787 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1788 * allocate the page. The expectation is that the caller is taking
1789 * steps that will free more memory. The caller should avoid the page
1790 * being used for !PFMEMALLOC purposes.
1791 */
2f064f34
MH
1792 if (alloc_flags & ALLOC_NO_WATERMARKS)
1793 set_page_pfmemalloc(page);
1794 else
1795 clear_page_pfmemalloc(page);
1da177e4
LT
1796}
1797
56fd56b8
MG
1798/*
1799 * Go through the free lists for the given migratetype and remove
1800 * the smallest available page from the freelists
1801 */
728ec980
MG
1802static inline
1803struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1804 int migratetype)
1805{
1806 unsigned int current_order;
b8af2941 1807 struct free_area *area;
56fd56b8
MG
1808 struct page *page;
1809
1810 /* Find a page of the appropriate size in the preferred list */
1811 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1812 area = &(zone->free_area[current_order]);
a16601c5 1813 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1814 struct page, lru);
a16601c5
GT
1815 if (!page)
1816 continue;
56fd56b8
MG
1817 list_del(&page->lru);
1818 rmv_page_order(page);
1819 area->nr_free--;
56fd56b8 1820 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1821 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1822 return page;
1823 }
1824
1825 return NULL;
1826}
1827
1828
b2a0ac88
MG
1829/*
1830 * This array describes the order lists are fallen back to when
1831 * the free lists for the desirable migrate type are depleted
1832 */
47118af0 1833static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1834 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1835 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1836 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1837#ifdef CONFIG_CMA
974a786e 1838 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1839#endif
194159fb 1840#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1841 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1842#endif
b2a0ac88
MG
1843};
1844
dc67647b
JK
1845#ifdef CONFIG_CMA
1846static struct page *__rmqueue_cma_fallback(struct zone *zone,
1847 unsigned int order)
1848{
1849 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1850}
1851#else
1852static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1853 unsigned int order) { return NULL; }
1854#endif
1855
c361be55
MG
1856/*
1857 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1858 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1859 * boundary. If alignment is required, use move_freepages_block()
1860 */
02aa0cdd 1861static int move_freepages(struct zone *zone,
b69a7288 1862 struct page *start_page, struct page *end_page,
02aa0cdd 1863 int migratetype, int *num_movable)
c361be55
MG
1864{
1865 struct page *page;
d00181b9 1866 unsigned int order;
d100313f 1867 int pages_moved = 0;
c361be55
MG
1868
1869#ifndef CONFIG_HOLES_IN_ZONE
1870 /*
1871 * page_zone is not safe to call in this context when
1872 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1873 * anyway as we check zone boundaries in move_freepages_block().
1874 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1875 * grouping pages by mobility
c361be55 1876 */
97ee4ba7 1877 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1878#endif
1879
02aa0cdd
VB
1880 if (num_movable)
1881 *num_movable = 0;
1882
c361be55
MG
1883 for (page = start_page; page <= end_page;) {
1884 if (!pfn_valid_within(page_to_pfn(page))) {
1885 page++;
1886 continue;
1887 }
1888
f073bdc5
AB
1889 /* Make sure we are not inadvertently changing nodes */
1890 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1891
c361be55 1892 if (!PageBuddy(page)) {
02aa0cdd
VB
1893 /*
1894 * We assume that pages that could be isolated for
1895 * migration are movable. But we don't actually try
1896 * isolating, as that would be expensive.
1897 */
1898 if (num_movable &&
1899 (PageLRU(page) || __PageMovable(page)))
1900 (*num_movable)++;
1901
c361be55
MG
1902 page++;
1903 continue;
1904 }
1905
1906 order = page_order(page);
84be48d8
KS
1907 list_move(&page->lru,
1908 &zone->free_area[order].free_list[migratetype]);
c361be55 1909 page += 1 << order;
d100313f 1910 pages_moved += 1 << order;
c361be55
MG
1911 }
1912
d100313f 1913 return pages_moved;
c361be55
MG
1914}
1915
ee6f509c 1916int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1917 int migratetype, int *num_movable)
c361be55
MG
1918{
1919 unsigned long start_pfn, end_pfn;
1920 struct page *start_page, *end_page;
1921
1922 start_pfn = page_to_pfn(page);
d9c23400 1923 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1924 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1925 end_page = start_page + pageblock_nr_pages - 1;
1926 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1927
1928 /* Do not cross zone boundaries */
108bcc96 1929 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1930 start_page = page;
108bcc96 1931 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1932 return 0;
1933
02aa0cdd
VB
1934 return move_freepages(zone, start_page, end_page, migratetype,
1935 num_movable);
c361be55
MG
1936}
1937
2f66a68f
MG
1938static void change_pageblock_range(struct page *pageblock_page,
1939 int start_order, int migratetype)
1940{
1941 int nr_pageblocks = 1 << (start_order - pageblock_order);
1942
1943 while (nr_pageblocks--) {
1944 set_pageblock_migratetype(pageblock_page, migratetype);
1945 pageblock_page += pageblock_nr_pages;
1946 }
1947}
1948
fef903ef 1949/*
9c0415eb
VB
1950 * When we are falling back to another migratetype during allocation, try to
1951 * steal extra free pages from the same pageblocks to satisfy further
1952 * allocations, instead of polluting multiple pageblocks.
1953 *
1954 * If we are stealing a relatively large buddy page, it is likely there will
1955 * be more free pages in the pageblock, so try to steal them all. For
1956 * reclaimable and unmovable allocations, we steal regardless of page size,
1957 * as fragmentation caused by those allocations polluting movable pageblocks
1958 * is worse than movable allocations stealing from unmovable and reclaimable
1959 * pageblocks.
fef903ef 1960 */
4eb7dce6
JK
1961static bool can_steal_fallback(unsigned int order, int start_mt)
1962{
1963 /*
1964 * Leaving this order check is intended, although there is
1965 * relaxed order check in next check. The reason is that
1966 * we can actually steal whole pageblock if this condition met,
1967 * but, below check doesn't guarantee it and that is just heuristic
1968 * so could be changed anytime.
1969 */
1970 if (order >= pageblock_order)
1971 return true;
1972
1973 if (order >= pageblock_order / 2 ||
1974 start_mt == MIGRATE_RECLAIMABLE ||
1975 start_mt == MIGRATE_UNMOVABLE ||
1976 page_group_by_mobility_disabled)
1977 return true;
1978
1979 return false;
1980}
1981
1982/*
1983 * This function implements actual steal behaviour. If order is large enough,
1984 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1985 * pageblock to our migratetype and determine how many already-allocated pages
1986 * are there in the pageblock with a compatible migratetype. If at least half
1987 * of pages are free or compatible, we can change migratetype of the pageblock
1988 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
1989 */
1990static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 1991 int start_type, bool whole_block)
fef903ef 1992{
d00181b9 1993 unsigned int current_order = page_order(page);
3bc48f96 1994 struct free_area *area;
02aa0cdd
VB
1995 int free_pages, movable_pages, alike_pages;
1996 int old_block_type;
1997
1998 old_block_type = get_pageblock_migratetype(page);
fef903ef 1999
3bc48f96
VB
2000 /*
2001 * This can happen due to races and we want to prevent broken
2002 * highatomic accounting.
2003 */
02aa0cdd 2004 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2005 goto single_page;
2006
fef903ef
SB
2007 /* Take ownership for orders >= pageblock_order */
2008 if (current_order >= pageblock_order) {
2009 change_pageblock_range(page, current_order, start_type);
3bc48f96 2010 goto single_page;
fef903ef
SB
2011 }
2012
3bc48f96
VB
2013 /* We are not allowed to try stealing from the whole block */
2014 if (!whole_block)
2015 goto single_page;
2016
02aa0cdd
VB
2017 free_pages = move_freepages_block(zone, page, start_type,
2018 &movable_pages);
2019 /*
2020 * Determine how many pages are compatible with our allocation.
2021 * For movable allocation, it's the number of movable pages which
2022 * we just obtained. For other types it's a bit more tricky.
2023 */
2024 if (start_type == MIGRATE_MOVABLE) {
2025 alike_pages = movable_pages;
2026 } else {
2027 /*
2028 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2029 * to MOVABLE pageblock, consider all non-movable pages as
2030 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2031 * vice versa, be conservative since we can't distinguish the
2032 * exact migratetype of non-movable pages.
2033 */
2034 if (old_block_type == MIGRATE_MOVABLE)
2035 alike_pages = pageblock_nr_pages
2036 - (free_pages + movable_pages);
2037 else
2038 alike_pages = 0;
2039 }
2040
3bc48f96 2041 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2042 if (!free_pages)
3bc48f96 2043 goto single_page;
fef903ef 2044
02aa0cdd
VB
2045 /*
2046 * If a sufficient number of pages in the block are either free or of
2047 * comparable migratability as our allocation, claim the whole block.
2048 */
2049 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2050 page_group_by_mobility_disabled)
2051 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2052
2053 return;
2054
2055single_page:
2056 area = &zone->free_area[current_order];
2057 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2058}
2059
2149cdae
JK
2060/*
2061 * Check whether there is a suitable fallback freepage with requested order.
2062 * If only_stealable is true, this function returns fallback_mt only if
2063 * we can steal other freepages all together. This would help to reduce
2064 * fragmentation due to mixed migratetype pages in one pageblock.
2065 */
2066int find_suitable_fallback(struct free_area *area, unsigned int order,
2067 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2068{
2069 int i;
2070 int fallback_mt;
2071
2072 if (area->nr_free == 0)
2073 return -1;
2074
2075 *can_steal = false;
2076 for (i = 0;; i++) {
2077 fallback_mt = fallbacks[migratetype][i];
974a786e 2078 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2079 break;
2080
2081 if (list_empty(&area->free_list[fallback_mt]))
2082 continue;
fef903ef 2083
4eb7dce6
JK
2084 if (can_steal_fallback(order, migratetype))
2085 *can_steal = true;
2086
2149cdae
JK
2087 if (!only_stealable)
2088 return fallback_mt;
2089
2090 if (*can_steal)
2091 return fallback_mt;
fef903ef 2092 }
4eb7dce6
JK
2093
2094 return -1;
fef903ef
SB
2095}
2096
0aaa29a5
MG
2097/*
2098 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2099 * there are no empty page blocks that contain a page with a suitable order
2100 */
2101static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2102 unsigned int alloc_order)
2103{
2104 int mt;
2105 unsigned long max_managed, flags;
2106
2107 /*
2108 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2109 * Check is race-prone but harmless.
2110 */
2111 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2112 if (zone->nr_reserved_highatomic >= max_managed)
2113 return;
2114
2115 spin_lock_irqsave(&zone->lock, flags);
2116
2117 /* Recheck the nr_reserved_highatomic limit under the lock */
2118 if (zone->nr_reserved_highatomic >= max_managed)
2119 goto out_unlock;
2120
2121 /* Yoink! */
2122 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2123 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2124 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2125 zone->nr_reserved_highatomic += pageblock_nr_pages;
2126 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2127 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2128 }
2129
2130out_unlock:
2131 spin_unlock_irqrestore(&zone->lock, flags);
2132}
2133
2134/*
2135 * Used when an allocation is about to fail under memory pressure. This
2136 * potentially hurts the reliability of high-order allocations when under
2137 * intense memory pressure but failed atomic allocations should be easier
2138 * to recover from than an OOM.
29fac03b
MK
2139 *
2140 * If @force is true, try to unreserve a pageblock even though highatomic
2141 * pageblock is exhausted.
0aaa29a5 2142 */
29fac03b
MK
2143static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2144 bool force)
0aaa29a5
MG
2145{
2146 struct zonelist *zonelist = ac->zonelist;
2147 unsigned long flags;
2148 struct zoneref *z;
2149 struct zone *zone;
2150 struct page *page;
2151 int order;
04c8716f 2152 bool ret;
0aaa29a5
MG
2153
2154 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2155 ac->nodemask) {
29fac03b
MK
2156 /*
2157 * Preserve at least one pageblock unless memory pressure
2158 * is really high.
2159 */
2160 if (!force && zone->nr_reserved_highatomic <=
2161 pageblock_nr_pages)
0aaa29a5
MG
2162 continue;
2163
2164 spin_lock_irqsave(&zone->lock, flags);
2165 for (order = 0; order < MAX_ORDER; order++) {
2166 struct free_area *area = &(zone->free_area[order]);
2167
a16601c5
GT
2168 page = list_first_entry_or_null(
2169 &area->free_list[MIGRATE_HIGHATOMIC],
2170 struct page, lru);
2171 if (!page)
0aaa29a5
MG
2172 continue;
2173
0aaa29a5 2174 /*
4855e4a7
MK
2175 * In page freeing path, migratetype change is racy so
2176 * we can counter several free pages in a pageblock
2177 * in this loop althoug we changed the pageblock type
2178 * from highatomic to ac->migratetype. So we should
2179 * adjust the count once.
0aaa29a5 2180 */
a6ffdc07 2181 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2182 /*
2183 * It should never happen but changes to
2184 * locking could inadvertently allow a per-cpu
2185 * drain to add pages to MIGRATE_HIGHATOMIC
2186 * while unreserving so be safe and watch for
2187 * underflows.
2188 */
2189 zone->nr_reserved_highatomic -= min(
2190 pageblock_nr_pages,
2191 zone->nr_reserved_highatomic);
2192 }
0aaa29a5
MG
2193
2194 /*
2195 * Convert to ac->migratetype and avoid the normal
2196 * pageblock stealing heuristics. Minimally, the caller
2197 * is doing the work and needs the pages. More
2198 * importantly, if the block was always converted to
2199 * MIGRATE_UNMOVABLE or another type then the number
2200 * of pageblocks that cannot be completely freed
2201 * may increase.
2202 */
2203 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2204 ret = move_freepages_block(zone, page, ac->migratetype,
2205 NULL);
29fac03b
MK
2206 if (ret) {
2207 spin_unlock_irqrestore(&zone->lock, flags);
2208 return ret;
2209 }
0aaa29a5
MG
2210 }
2211 spin_unlock_irqrestore(&zone->lock, flags);
2212 }
04c8716f
MK
2213
2214 return false;
0aaa29a5
MG
2215}
2216
3bc48f96
VB
2217/*
2218 * Try finding a free buddy page on the fallback list and put it on the free
2219 * list of requested migratetype, possibly along with other pages from the same
2220 * block, depending on fragmentation avoidance heuristics. Returns true if
2221 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2222 *
2223 * The use of signed ints for order and current_order is a deliberate
2224 * deviation from the rest of this file, to make the for loop
2225 * condition simpler.
3bc48f96
VB
2226 */
2227static inline bool
b002529d 2228__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2229{
b8af2941 2230 struct free_area *area;
b002529d 2231 int current_order;
b2a0ac88 2232 struct page *page;
4eb7dce6
JK
2233 int fallback_mt;
2234 bool can_steal;
b2a0ac88 2235
7a8f58f3
VB
2236 /*
2237 * Find the largest available free page in the other list. This roughly
2238 * approximates finding the pageblock with the most free pages, which
2239 * would be too costly to do exactly.
2240 */
b002529d 2241 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2242 --current_order) {
4eb7dce6
JK
2243 area = &(zone->free_area[current_order]);
2244 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2245 start_migratetype, false, &can_steal);
4eb7dce6
JK
2246 if (fallback_mt == -1)
2247 continue;
b2a0ac88 2248
7a8f58f3
VB
2249 /*
2250 * We cannot steal all free pages from the pageblock and the
2251 * requested migratetype is movable. In that case it's better to
2252 * steal and split the smallest available page instead of the
2253 * largest available page, because even if the next movable
2254 * allocation falls back into a different pageblock than this
2255 * one, it won't cause permanent fragmentation.
2256 */
2257 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2258 && current_order > order)
2259 goto find_smallest;
b2a0ac88 2260
7a8f58f3
VB
2261 goto do_steal;
2262 }
e0fff1bd 2263
7a8f58f3 2264 return false;
e0fff1bd 2265
7a8f58f3
VB
2266find_smallest:
2267 for (current_order = order; current_order < MAX_ORDER;
2268 current_order++) {
2269 area = &(zone->free_area[current_order]);
2270 fallback_mt = find_suitable_fallback(area, current_order,
2271 start_migratetype, false, &can_steal);
2272 if (fallback_mt != -1)
2273 break;
b2a0ac88
MG
2274 }
2275
7a8f58f3
VB
2276 /*
2277 * This should not happen - we already found a suitable fallback
2278 * when looking for the largest page.
2279 */
2280 VM_BUG_ON(current_order == MAX_ORDER);
2281
2282do_steal:
2283 page = list_first_entry(&area->free_list[fallback_mt],
2284 struct page, lru);
2285
2286 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2287
2288 trace_mm_page_alloc_extfrag(page, order, current_order,
2289 start_migratetype, fallback_mt);
2290
2291 return true;
2292
b2a0ac88
MG
2293}
2294
56fd56b8 2295/*
1da177e4
LT
2296 * Do the hard work of removing an element from the buddy allocator.
2297 * Call me with the zone->lock already held.
2298 */
b2a0ac88 2299static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2300 int migratetype)
1da177e4 2301{
1da177e4
LT
2302 struct page *page;
2303
3bc48f96 2304retry:
56fd56b8 2305 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2306 if (unlikely(!page)) {
dc67647b
JK
2307 if (migratetype == MIGRATE_MOVABLE)
2308 page = __rmqueue_cma_fallback(zone, order);
2309
3bc48f96
VB
2310 if (!page && __rmqueue_fallback(zone, order, migratetype))
2311 goto retry;
728ec980
MG
2312 }
2313
0d3d062a 2314 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2315 return page;
1da177e4
LT
2316}
2317
5f63b720 2318/*
1da177e4
LT
2319 * Obtain a specified number of elements from the buddy allocator, all under
2320 * a single hold of the lock, for efficiency. Add them to the supplied list.
2321 * Returns the number of new pages which were placed at *list.
2322 */
5f63b720 2323static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2324 unsigned long count, struct list_head *list,
b745bc85 2325 int migratetype, bool cold)
1da177e4 2326{
a6de734b 2327 int i, alloced = 0;
5f63b720 2328
d34b0733 2329 spin_lock(&zone->lock);
1da177e4 2330 for (i = 0; i < count; ++i) {
6ac0206b 2331 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2332 if (unlikely(page == NULL))
1da177e4 2333 break;
81eabcbe 2334
479f854a
MG
2335 if (unlikely(check_pcp_refill(page)))
2336 continue;
2337
81eabcbe
MG
2338 /*
2339 * Split buddy pages returned by expand() are received here
2340 * in physical page order. The page is added to the callers and
2341 * list and the list head then moves forward. From the callers
2342 * perspective, the linked list is ordered by page number in
2343 * some conditions. This is useful for IO devices that can
2344 * merge IO requests if the physical pages are ordered
2345 * properly.
2346 */
b745bc85 2347 if (likely(!cold))
e084b2d9
MG
2348 list_add(&page->lru, list);
2349 else
2350 list_add_tail(&page->lru, list);
81eabcbe 2351 list = &page->lru;
a6de734b 2352 alloced++;
bb14c2c7 2353 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2354 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2355 -(1 << order));
1da177e4 2356 }
a6de734b
MG
2357
2358 /*
2359 * i pages were removed from the buddy list even if some leak due
2360 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2361 * on i. Do not confuse with 'alloced' which is the number of
2362 * pages added to the pcp list.
2363 */
f2260e6b 2364 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2365 spin_unlock(&zone->lock);
a6de734b 2366 return alloced;
1da177e4
LT
2367}
2368
4ae7c039 2369#ifdef CONFIG_NUMA
8fce4d8e 2370/*
4037d452
CL
2371 * Called from the vmstat counter updater to drain pagesets of this
2372 * currently executing processor on remote nodes after they have
2373 * expired.
2374 *
879336c3
CL
2375 * Note that this function must be called with the thread pinned to
2376 * a single processor.
8fce4d8e 2377 */
4037d452 2378void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2379{
4ae7c039 2380 unsigned long flags;
7be12fc9 2381 int to_drain, batch;
4ae7c039 2382
4037d452 2383 local_irq_save(flags);
4db0c3c2 2384 batch = READ_ONCE(pcp->batch);
7be12fc9 2385 to_drain = min(pcp->count, batch);
2a13515c
KM
2386 if (to_drain > 0) {
2387 free_pcppages_bulk(zone, to_drain, pcp);
2388 pcp->count -= to_drain;
2389 }
4037d452 2390 local_irq_restore(flags);
4ae7c039
CL
2391}
2392#endif
2393
9f8f2172 2394/*
93481ff0 2395 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2396 *
2397 * The processor must either be the current processor and the
2398 * thread pinned to the current processor or a processor that
2399 * is not online.
2400 */
93481ff0 2401static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2402{
c54ad30c 2403 unsigned long flags;
93481ff0
VB
2404 struct per_cpu_pageset *pset;
2405 struct per_cpu_pages *pcp;
1da177e4 2406
93481ff0
VB
2407 local_irq_save(flags);
2408 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2409
93481ff0
VB
2410 pcp = &pset->pcp;
2411 if (pcp->count) {
2412 free_pcppages_bulk(zone, pcp->count, pcp);
2413 pcp->count = 0;
2414 }
2415 local_irq_restore(flags);
2416}
3dfa5721 2417
93481ff0
VB
2418/*
2419 * Drain pcplists of all zones on the indicated processor.
2420 *
2421 * The processor must either be the current processor and the
2422 * thread pinned to the current processor or a processor that
2423 * is not online.
2424 */
2425static void drain_pages(unsigned int cpu)
2426{
2427 struct zone *zone;
2428
2429 for_each_populated_zone(zone) {
2430 drain_pages_zone(cpu, zone);
1da177e4
LT
2431 }
2432}
1da177e4 2433
9f8f2172
CL
2434/*
2435 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2436 *
2437 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2438 * the single zone's pages.
9f8f2172 2439 */
93481ff0 2440void drain_local_pages(struct zone *zone)
9f8f2172 2441{
93481ff0
VB
2442 int cpu = smp_processor_id();
2443
2444 if (zone)
2445 drain_pages_zone(cpu, zone);
2446 else
2447 drain_pages(cpu);
9f8f2172
CL
2448}
2449
0ccce3b9
MG
2450static void drain_local_pages_wq(struct work_struct *work)
2451{
a459eeb7
MH
2452 /*
2453 * drain_all_pages doesn't use proper cpu hotplug protection so
2454 * we can race with cpu offline when the WQ can move this from
2455 * a cpu pinned worker to an unbound one. We can operate on a different
2456 * cpu which is allright but we also have to make sure to not move to
2457 * a different one.
2458 */
2459 preempt_disable();
0ccce3b9 2460 drain_local_pages(NULL);
a459eeb7 2461 preempt_enable();
0ccce3b9
MG
2462}
2463
9f8f2172 2464/*
74046494
GBY
2465 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2466 *
93481ff0
VB
2467 * When zone parameter is non-NULL, spill just the single zone's pages.
2468 *
0ccce3b9 2469 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2470 */
93481ff0 2471void drain_all_pages(struct zone *zone)
9f8f2172 2472{
74046494 2473 int cpu;
74046494
GBY
2474
2475 /*
2476 * Allocate in the BSS so we wont require allocation in
2477 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2478 */
2479 static cpumask_t cpus_with_pcps;
2480
ce612879
MH
2481 /*
2482 * Make sure nobody triggers this path before mm_percpu_wq is fully
2483 * initialized.
2484 */
2485 if (WARN_ON_ONCE(!mm_percpu_wq))
2486 return;
2487
bd233f53
MG
2488 /*
2489 * Do not drain if one is already in progress unless it's specific to
2490 * a zone. Such callers are primarily CMA and memory hotplug and need
2491 * the drain to be complete when the call returns.
2492 */
2493 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2494 if (!zone)
2495 return;
2496 mutex_lock(&pcpu_drain_mutex);
2497 }
0ccce3b9 2498
74046494
GBY
2499 /*
2500 * We don't care about racing with CPU hotplug event
2501 * as offline notification will cause the notified
2502 * cpu to drain that CPU pcps and on_each_cpu_mask
2503 * disables preemption as part of its processing
2504 */
2505 for_each_online_cpu(cpu) {
93481ff0
VB
2506 struct per_cpu_pageset *pcp;
2507 struct zone *z;
74046494 2508 bool has_pcps = false;
93481ff0
VB
2509
2510 if (zone) {
74046494 2511 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2512 if (pcp->pcp.count)
74046494 2513 has_pcps = true;
93481ff0
VB
2514 } else {
2515 for_each_populated_zone(z) {
2516 pcp = per_cpu_ptr(z->pageset, cpu);
2517 if (pcp->pcp.count) {
2518 has_pcps = true;
2519 break;
2520 }
74046494
GBY
2521 }
2522 }
93481ff0 2523
74046494
GBY
2524 if (has_pcps)
2525 cpumask_set_cpu(cpu, &cpus_with_pcps);
2526 else
2527 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2528 }
0ccce3b9 2529
bd233f53
MG
2530 for_each_cpu(cpu, &cpus_with_pcps) {
2531 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2532 INIT_WORK(work, drain_local_pages_wq);
ce612879 2533 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2534 }
bd233f53
MG
2535 for_each_cpu(cpu, &cpus_with_pcps)
2536 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2537
2538 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2539}
2540
296699de 2541#ifdef CONFIG_HIBERNATION
1da177e4 2542
556b969a
CY
2543/*
2544 * Touch the watchdog for every WD_PAGE_COUNT pages.
2545 */
2546#define WD_PAGE_COUNT (128*1024)
2547
1da177e4
LT
2548void mark_free_pages(struct zone *zone)
2549{
556b969a 2550 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2551 unsigned long flags;
7aeb09f9 2552 unsigned int order, t;
86760a2c 2553 struct page *page;
1da177e4 2554
8080fc03 2555 if (zone_is_empty(zone))
1da177e4
LT
2556 return;
2557
2558 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2559
108bcc96 2560 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2561 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2562 if (pfn_valid(pfn)) {
86760a2c 2563 page = pfn_to_page(pfn);
ba6b0979 2564
556b969a
CY
2565 if (!--page_count) {
2566 touch_nmi_watchdog();
2567 page_count = WD_PAGE_COUNT;
2568 }
2569
ba6b0979
JK
2570 if (page_zone(page) != zone)
2571 continue;
2572
7be98234
RW
2573 if (!swsusp_page_is_forbidden(page))
2574 swsusp_unset_page_free(page);
f623f0db 2575 }
1da177e4 2576
b2a0ac88 2577 for_each_migratetype_order(order, t) {
86760a2c
GT
2578 list_for_each_entry(page,
2579 &zone->free_area[order].free_list[t], lru) {
f623f0db 2580 unsigned long i;
1da177e4 2581
86760a2c 2582 pfn = page_to_pfn(page);
556b969a
CY
2583 for (i = 0; i < (1UL << order); i++) {
2584 if (!--page_count) {
2585 touch_nmi_watchdog();
2586 page_count = WD_PAGE_COUNT;
2587 }
7be98234 2588 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2589 }
f623f0db 2590 }
b2a0ac88 2591 }
1da177e4
LT
2592 spin_unlock_irqrestore(&zone->lock, flags);
2593}
e2c55dc8 2594#endif /* CONFIG_PM */
1da177e4 2595
1da177e4
LT
2596/*
2597 * Free a 0-order page
b745bc85 2598 * cold == true ? free a cold page : free a hot page
1da177e4 2599 */
b745bc85 2600void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2601{
2602 struct zone *zone = page_zone(page);
2603 struct per_cpu_pages *pcp;
d34b0733 2604 unsigned long flags;
dc4b0caf 2605 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2606 int migratetype;
1da177e4 2607
4db7548c 2608 if (!free_pcp_prepare(page))
689bcebf
HD
2609 return;
2610
dc4b0caf 2611 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2612 set_pcppage_migratetype(page, migratetype);
d34b0733
MG
2613 local_irq_save(flags);
2614 __count_vm_event(PGFREE);
da456f14 2615
5f8dcc21
MG
2616 /*
2617 * We only track unmovable, reclaimable and movable on pcp lists.
2618 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2619 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2620 * areas back if necessary. Otherwise, we may have to free
2621 * excessively into the page allocator
2622 */
2623 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2624 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2625 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2626 goto out;
2627 }
2628 migratetype = MIGRATE_MOVABLE;
2629 }
2630
99dcc3e5 2631 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2632 if (!cold)
5f8dcc21 2633 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2634 else
2635 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2636 pcp->count++;
48db57f8 2637 if (pcp->count >= pcp->high) {
4db0c3c2 2638 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2639 free_pcppages_bulk(zone, batch, pcp);
2640 pcp->count -= batch;
48db57f8 2641 }
5f8dcc21
MG
2642
2643out:
d34b0733 2644 local_irq_restore(flags);
1da177e4
LT
2645}
2646
cc59850e
KK
2647/*
2648 * Free a list of 0-order pages
2649 */
b745bc85 2650void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2651{
2652 struct page *page, *next;
2653
2654 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2655 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2656 free_hot_cold_page(page, cold);
2657 }
2658}
2659
8dfcc9ba
NP
2660/*
2661 * split_page takes a non-compound higher-order page, and splits it into
2662 * n (1<<order) sub-pages: page[0..n]
2663 * Each sub-page must be freed individually.
2664 *
2665 * Note: this is probably too low level an operation for use in drivers.
2666 * Please consult with lkml before using this in your driver.
2667 */
2668void split_page(struct page *page, unsigned int order)
2669{
2670 int i;
2671
309381fe
SL
2672 VM_BUG_ON_PAGE(PageCompound(page), page);
2673 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2674
a9627bc5 2675 for (i = 1; i < (1 << order); i++)
7835e98b 2676 set_page_refcounted(page + i);
a9627bc5 2677 split_page_owner(page, order);
8dfcc9ba 2678}
5853ff23 2679EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2680
3c605096 2681int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2682{
748446bb
MG
2683 unsigned long watermark;
2684 struct zone *zone;
2139cbe6 2685 int mt;
748446bb
MG
2686
2687 BUG_ON(!PageBuddy(page));
2688
2689 zone = page_zone(page);
2e30abd1 2690 mt = get_pageblock_migratetype(page);
748446bb 2691
194159fb 2692 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2693 /*
2694 * Obey watermarks as if the page was being allocated. We can
2695 * emulate a high-order watermark check with a raised order-0
2696 * watermark, because we already know our high-order page
2697 * exists.
2698 */
2699 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2700 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2701 return 0;
2702
8fb74b9f 2703 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2704 }
748446bb
MG
2705
2706 /* Remove page from free list */
2707 list_del(&page->lru);
2708 zone->free_area[order].nr_free--;
2709 rmv_page_order(page);
2139cbe6 2710
400bc7fd 2711 /*
2712 * Set the pageblock if the isolated page is at least half of a
2713 * pageblock
2714 */
748446bb
MG
2715 if (order >= pageblock_order - 1) {
2716 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2717 for (; page < endpage; page += pageblock_nr_pages) {
2718 int mt = get_pageblock_migratetype(page);
88ed365e 2719 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2720 && !is_migrate_highatomic(mt))
47118af0
MN
2721 set_pageblock_migratetype(page,
2722 MIGRATE_MOVABLE);
2723 }
748446bb
MG
2724 }
2725
f3a14ced 2726
8fb74b9f 2727 return 1UL << order;
1fb3f8ca
MG
2728}
2729
060e7417
MG
2730/*
2731 * Update NUMA hit/miss statistics
2732 *
2733 * Must be called with interrupts disabled.
060e7417 2734 */
41b6167e 2735static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2736{
2737#ifdef CONFIG_NUMA
3a321d2a 2738 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2739
2df26639 2740 if (z->node != numa_node_id())
060e7417 2741 local_stat = NUMA_OTHER;
060e7417 2742
2df26639 2743 if (z->node == preferred_zone->node)
3a321d2a 2744 __inc_numa_state(z, NUMA_HIT);
2df26639 2745 else {
3a321d2a
KW
2746 __inc_numa_state(z, NUMA_MISS);
2747 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2748 }
3a321d2a 2749 __inc_numa_state(z, local_stat);
060e7417
MG
2750#endif
2751}
2752
066b2393
MG
2753/* Remove page from the per-cpu list, caller must protect the list */
2754static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2755 bool cold, struct per_cpu_pages *pcp,
2756 struct list_head *list)
2757{
2758 struct page *page;
2759
2760 do {
2761 if (list_empty(list)) {
2762 pcp->count += rmqueue_bulk(zone, 0,
2763 pcp->batch, list,
2764 migratetype, cold);
2765 if (unlikely(list_empty(list)))
2766 return NULL;
2767 }
2768
2769 if (cold)
2770 page = list_last_entry(list, struct page, lru);
2771 else
2772 page = list_first_entry(list, struct page, lru);
2773
2774 list_del(&page->lru);
2775 pcp->count--;
2776 } while (check_new_pcp(page));
2777
2778 return page;
2779}
2780
2781/* Lock and remove page from the per-cpu list */
2782static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2783 struct zone *zone, unsigned int order,
2784 gfp_t gfp_flags, int migratetype)
2785{
2786 struct per_cpu_pages *pcp;
2787 struct list_head *list;
2788 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2789 struct page *page;
d34b0733 2790 unsigned long flags;
066b2393 2791
d34b0733 2792 local_irq_save(flags);
066b2393
MG
2793 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2794 list = &pcp->lists[migratetype];
2795 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2796 if (page) {
2797 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2798 zone_statistics(preferred_zone, zone);
2799 }
d34b0733 2800 local_irq_restore(flags);
066b2393
MG
2801 return page;
2802}
2803
1da177e4 2804/*
75379191 2805 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2806 */
0a15c3e9 2807static inline
066b2393 2808struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2809 struct zone *zone, unsigned int order,
c603844b
MG
2810 gfp_t gfp_flags, unsigned int alloc_flags,
2811 int migratetype)
1da177e4
LT
2812{
2813 unsigned long flags;
689bcebf 2814 struct page *page;
1da177e4 2815
d34b0733 2816 if (likely(order == 0)) {
066b2393
MG
2817 page = rmqueue_pcplist(preferred_zone, zone, order,
2818 gfp_flags, migratetype);
2819 goto out;
2820 }
83b9355b 2821
066b2393
MG
2822 /*
2823 * We most definitely don't want callers attempting to
2824 * allocate greater than order-1 page units with __GFP_NOFAIL.
2825 */
2826 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2827 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2828
066b2393
MG
2829 do {
2830 page = NULL;
2831 if (alloc_flags & ALLOC_HARDER) {
2832 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2833 if (page)
2834 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2835 }
a74609fa 2836 if (!page)
066b2393
MG
2837 page = __rmqueue(zone, order, migratetype);
2838 } while (page && check_new_pages(page, order));
2839 spin_unlock(&zone->lock);
2840 if (!page)
2841 goto failed;
2842 __mod_zone_freepage_state(zone, -(1 << order),
2843 get_pcppage_migratetype(page));
1da177e4 2844
16709d1d 2845 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2846 zone_statistics(preferred_zone, zone);
a74609fa 2847 local_irq_restore(flags);
1da177e4 2848
066b2393
MG
2849out:
2850 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2851 return page;
a74609fa
NP
2852
2853failed:
2854 local_irq_restore(flags);
a74609fa 2855 return NULL;
1da177e4
LT
2856}
2857
933e312e
AM
2858#ifdef CONFIG_FAIL_PAGE_ALLOC
2859
b2588c4b 2860static struct {
933e312e
AM
2861 struct fault_attr attr;
2862
621a5f7a 2863 bool ignore_gfp_highmem;
71baba4b 2864 bool ignore_gfp_reclaim;
54114994 2865 u32 min_order;
933e312e
AM
2866} fail_page_alloc = {
2867 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2868 .ignore_gfp_reclaim = true,
621a5f7a 2869 .ignore_gfp_highmem = true,
54114994 2870 .min_order = 1,
933e312e
AM
2871};
2872
2873static int __init setup_fail_page_alloc(char *str)
2874{
2875 return setup_fault_attr(&fail_page_alloc.attr, str);
2876}
2877__setup("fail_page_alloc=", setup_fail_page_alloc);
2878
deaf386e 2879static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2880{
54114994 2881 if (order < fail_page_alloc.min_order)
deaf386e 2882 return false;
933e312e 2883 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2884 return false;
933e312e 2885 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2886 return false;
71baba4b
MG
2887 if (fail_page_alloc.ignore_gfp_reclaim &&
2888 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2889 return false;
933e312e
AM
2890
2891 return should_fail(&fail_page_alloc.attr, 1 << order);
2892}
2893
2894#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2895
2896static int __init fail_page_alloc_debugfs(void)
2897{
f4ae40a6 2898 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2899 struct dentry *dir;
933e312e 2900
dd48c085
AM
2901 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2902 &fail_page_alloc.attr);
2903 if (IS_ERR(dir))
2904 return PTR_ERR(dir);
933e312e 2905
b2588c4b 2906 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2907 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2908 goto fail;
2909 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2910 &fail_page_alloc.ignore_gfp_highmem))
2911 goto fail;
2912 if (!debugfs_create_u32("min-order", mode, dir,
2913 &fail_page_alloc.min_order))
2914 goto fail;
2915
2916 return 0;
2917fail:
dd48c085 2918 debugfs_remove_recursive(dir);
933e312e 2919
b2588c4b 2920 return -ENOMEM;
933e312e
AM
2921}
2922
2923late_initcall(fail_page_alloc_debugfs);
2924
2925#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2926
2927#else /* CONFIG_FAIL_PAGE_ALLOC */
2928
deaf386e 2929static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2930{
deaf386e 2931 return false;
933e312e
AM
2932}
2933
2934#endif /* CONFIG_FAIL_PAGE_ALLOC */
2935
1da177e4 2936/*
97a16fc8
MG
2937 * Return true if free base pages are above 'mark'. For high-order checks it
2938 * will return true of the order-0 watermark is reached and there is at least
2939 * one free page of a suitable size. Checking now avoids taking the zone lock
2940 * to check in the allocation paths if no pages are free.
1da177e4 2941 */
86a294a8
MH
2942bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2943 int classzone_idx, unsigned int alloc_flags,
2944 long free_pages)
1da177e4 2945{
d23ad423 2946 long min = mark;
1da177e4 2947 int o;
cd04ae1e 2948 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 2949
0aaa29a5 2950 /* free_pages may go negative - that's OK */
df0a6daa 2951 free_pages -= (1 << order) - 1;
0aaa29a5 2952
7fb1d9fc 2953 if (alloc_flags & ALLOC_HIGH)
1da177e4 2954 min -= min / 2;
0aaa29a5
MG
2955
2956 /*
2957 * If the caller does not have rights to ALLOC_HARDER then subtract
2958 * the high-atomic reserves. This will over-estimate the size of the
2959 * atomic reserve but it avoids a search.
2960 */
cd04ae1e 2961 if (likely(!alloc_harder)) {
0aaa29a5 2962 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
2963 } else {
2964 /*
2965 * OOM victims can try even harder than normal ALLOC_HARDER
2966 * users on the grounds that it's definitely going to be in
2967 * the exit path shortly and free memory. Any allocation it
2968 * makes during the free path will be small and short-lived.
2969 */
2970 if (alloc_flags & ALLOC_OOM)
2971 min -= min / 2;
2972 else
2973 min -= min / 4;
2974 }
2975
e2b19197 2976
d95ea5d1
BZ
2977#ifdef CONFIG_CMA
2978 /* If allocation can't use CMA areas don't use free CMA pages */
2979 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2980 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2981#endif
026b0814 2982
97a16fc8
MG
2983 /*
2984 * Check watermarks for an order-0 allocation request. If these
2985 * are not met, then a high-order request also cannot go ahead
2986 * even if a suitable page happened to be free.
2987 */
2988 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2989 return false;
1da177e4 2990
97a16fc8
MG
2991 /* If this is an order-0 request then the watermark is fine */
2992 if (!order)
2993 return true;
2994
2995 /* For a high-order request, check at least one suitable page is free */
2996 for (o = order; o < MAX_ORDER; o++) {
2997 struct free_area *area = &z->free_area[o];
2998 int mt;
2999
3000 if (!area->nr_free)
3001 continue;
3002
97a16fc8
MG
3003 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3004 if (!list_empty(&area->free_list[mt]))
3005 return true;
3006 }
3007
3008#ifdef CONFIG_CMA
3009 if ((alloc_flags & ALLOC_CMA) &&
3010 !list_empty(&area->free_list[MIGRATE_CMA])) {
3011 return true;
3012 }
3013#endif
bd9fa782
VB
3014 if (alloc_harder &&
3015 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3016 return true;
1da177e4 3017 }
97a16fc8 3018 return false;
88f5acf8
MG
3019}
3020
7aeb09f9 3021bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3022 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3023{
3024 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3025 zone_page_state(z, NR_FREE_PAGES));
3026}
3027
48ee5f36
MG
3028static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3029 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3030{
3031 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3032 long cma_pages = 0;
3033
3034#ifdef CONFIG_CMA
3035 /* If allocation can't use CMA areas don't use free CMA pages */
3036 if (!(alloc_flags & ALLOC_CMA))
3037 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3038#endif
3039
3040 /*
3041 * Fast check for order-0 only. If this fails then the reserves
3042 * need to be calculated. There is a corner case where the check
3043 * passes but only the high-order atomic reserve are free. If
3044 * the caller is !atomic then it'll uselessly search the free
3045 * list. That corner case is then slower but it is harmless.
3046 */
3047 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3048 return true;
3049
3050 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3051 free_pages);
3052}
3053
7aeb09f9 3054bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3055 unsigned long mark, int classzone_idx)
88f5acf8
MG
3056{
3057 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3058
3059 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3060 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3061
e2b19197 3062 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3063 free_pages);
1da177e4
LT
3064}
3065
9276b1bc 3066#ifdef CONFIG_NUMA
957f822a
DR
3067static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3068{
e02dc017 3069 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3070 RECLAIM_DISTANCE;
957f822a 3071}
9276b1bc 3072#else /* CONFIG_NUMA */
957f822a
DR
3073static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3074{
3075 return true;
3076}
9276b1bc
PJ
3077#endif /* CONFIG_NUMA */
3078
7fb1d9fc 3079/*
0798e519 3080 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3081 * a page.
3082 */
3083static struct page *
a9263751
VB
3084get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3085 const struct alloc_context *ac)
753ee728 3086{
c33d6c06 3087 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3088 struct zone *zone;
3b8c0be4
MG
3089 struct pglist_data *last_pgdat_dirty_limit = NULL;
3090
7fb1d9fc 3091 /*
9276b1bc 3092 * Scan zonelist, looking for a zone with enough free.
344736f2 3093 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3094 */
c33d6c06 3095 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3096 ac->nodemask) {
be06af00 3097 struct page *page;
e085dbc5
JW
3098 unsigned long mark;
3099
664eedde
MG
3100 if (cpusets_enabled() &&
3101 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3102 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3103 continue;
a756cf59
JW
3104 /*
3105 * When allocating a page cache page for writing, we
281e3726
MG
3106 * want to get it from a node that is within its dirty
3107 * limit, such that no single node holds more than its
a756cf59 3108 * proportional share of globally allowed dirty pages.
281e3726 3109 * The dirty limits take into account the node's
a756cf59
JW
3110 * lowmem reserves and high watermark so that kswapd
3111 * should be able to balance it without having to
3112 * write pages from its LRU list.
3113 *
a756cf59 3114 * XXX: For now, allow allocations to potentially
281e3726 3115 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3116 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3117 * which is important when on a NUMA setup the allowed
281e3726 3118 * nodes are together not big enough to reach the
a756cf59 3119 * global limit. The proper fix for these situations
281e3726 3120 * will require awareness of nodes in the
a756cf59
JW
3121 * dirty-throttling and the flusher threads.
3122 */
3b8c0be4
MG
3123 if (ac->spread_dirty_pages) {
3124 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3125 continue;
3126
3127 if (!node_dirty_ok(zone->zone_pgdat)) {
3128 last_pgdat_dirty_limit = zone->zone_pgdat;
3129 continue;
3130 }
3131 }
7fb1d9fc 3132
e085dbc5 3133 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3134 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3135 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3136 int ret;
3137
5dab2911
MG
3138 /* Checked here to keep the fast path fast */
3139 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3140 if (alloc_flags & ALLOC_NO_WATERMARKS)
3141 goto try_this_zone;
3142
a5f5f91d 3143 if (node_reclaim_mode == 0 ||
c33d6c06 3144 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3145 continue;
3146
a5f5f91d 3147 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3148 switch (ret) {
a5f5f91d 3149 case NODE_RECLAIM_NOSCAN:
fa5e084e 3150 /* did not scan */
cd38b115 3151 continue;
a5f5f91d 3152 case NODE_RECLAIM_FULL:
fa5e084e 3153 /* scanned but unreclaimable */
cd38b115 3154 continue;
fa5e084e
MG
3155 default:
3156 /* did we reclaim enough */
fed2719e 3157 if (zone_watermark_ok(zone, order, mark,
93ea9964 3158 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3159 goto try_this_zone;
3160
fed2719e 3161 continue;
0798e519 3162 }
7fb1d9fc
RS
3163 }
3164
fa5e084e 3165try_this_zone:
066b2393 3166 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3167 gfp_mask, alloc_flags, ac->migratetype);
75379191 3168 if (page) {
479f854a 3169 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3170
3171 /*
3172 * If this is a high-order atomic allocation then check
3173 * if the pageblock should be reserved for the future
3174 */
3175 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3176 reserve_highatomic_pageblock(page, zone, order);
3177
75379191
VB
3178 return page;
3179 }
54a6eb5c 3180 }
9276b1bc 3181
4ffeaf35 3182 return NULL;
753ee728
MH
3183}
3184
29423e77
DR
3185/*
3186 * Large machines with many possible nodes should not always dump per-node
3187 * meminfo in irq context.
3188 */
3189static inline bool should_suppress_show_mem(void)
3190{
3191 bool ret = false;
3192
3193#if NODES_SHIFT > 8
3194 ret = in_interrupt();
3195#endif
3196 return ret;
3197}
3198
9af744d7 3199static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3200{
a238ab5b 3201 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3202 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3203
aa187507 3204 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3205 return;
3206
3207 /*
3208 * This documents exceptions given to allocations in certain
3209 * contexts that are allowed to allocate outside current's set
3210 * of allowed nodes.
3211 */
3212 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3213 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3214 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3215 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3216 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3217 filter &= ~SHOW_MEM_FILTER_NODES;
3218
9af744d7 3219 show_mem(filter, nodemask);
aa187507
MH
3220}
3221
a8e99259 3222void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3223{
3224 struct va_format vaf;
3225 va_list args;
3226 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3227 DEFAULT_RATELIMIT_BURST);
3228
0f7896f1 3229 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3230 return;
3231
7877cdcc 3232 pr_warn("%s: ", current->comm);
3ee9a4f0 3233
7877cdcc
MH
3234 va_start(args, fmt);
3235 vaf.fmt = fmt;
3236 vaf.va = &args;
3237 pr_cont("%pV", &vaf);
3238 va_end(args);
3ee9a4f0 3239
685dbf6f
DR
3240 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3241 if (nodemask)
3242 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3243 else
3244 pr_cont("(null)\n");
3245
a8e99259 3246 cpuset_print_current_mems_allowed();
3ee9a4f0 3247
a238ab5b 3248 dump_stack();
685dbf6f 3249 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3250}
3251
6c18ba7a
MH
3252static inline struct page *
3253__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3254 unsigned int alloc_flags,
3255 const struct alloc_context *ac)
3256{
3257 struct page *page;
3258
3259 page = get_page_from_freelist(gfp_mask, order,
3260 alloc_flags|ALLOC_CPUSET, ac);
3261 /*
3262 * fallback to ignore cpuset restriction if our nodes
3263 * are depleted
3264 */
3265 if (!page)
3266 page = get_page_from_freelist(gfp_mask, order,
3267 alloc_flags, ac);
3268
3269 return page;
3270}
3271
11e33f6a
MG
3272static inline struct page *
3273__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3274 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3275{
6e0fc46d
DR
3276 struct oom_control oc = {
3277 .zonelist = ac->zonelist,
3278 .nodemask = ac->nodemask,
2a966b77 3279 .memcg = NULL,
6e0fc46d
DR
3280 .gfp_mask = gfp_mask,
3281 .order = order,
6e0fc46d 3282 };
11e33f6a
MG
3283 struct page *page;
3284
9879de73
JW
3285 *did_some_progress = 0;
3286
9879de73 3287 /*
dc56401f
JW
3288 * Acquire the oom lock. If that fails, somebody else is
3289 * making progress for us.
9879de73 3290 */
dc56401f 3291 if (!mutex_trylock(&oom_lock)) {
9879de73 3292 *did_some_progress = 1;
11e33f6a 3293 schedule_timeout_uninterruptible(1);
1da177e4
LT
3294 return NULL;
3295 }
6b1de916 3296
11e33f6a
MG
3297 /*
3298 * Go through the zonelist yet one more time, keep very high watermark
3299 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3300 * we're still under heavy pressure. But make sure that this reclaim
3301 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3302 * allocation which will never fail due to oom_lock already held.
11e33f6a 3303 */
e746bf73
TH
3304 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3305 ~__GFP_DIRECT_RECLAIM, order,
3306 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3307 if (page)
11e33f6a
MG
3308 goto out;
3309
06ad276a
MH
3310 /* Coredumps can quickly deplete all memory reserves */
3311 if (current->flags & PF_DUMPCORE)
3312 goto out;
3313 /* The OOM killer will not help higher order allocs */
3314 if (order > PAGE_ALLOC_COSTLY_ORDER)
3315 goto out;
dcda9b04
MH
3316 /*
3317 * We have already exhausted all our reclaim opportunities without any
3318 * success so it is time to admit defeat. We will skip the OOM killer
3319 * because it is very likely that the caller has a more reasonable
3320 * fallback than shooting a random task.
3321 */
3322 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3323 goto out;
06ad276a
MH
3324 /* The OOM killer does not needlessly kill tasks for lowmem */
3325 if (ac->high_zoneidx < ZONE_NORMAL)
3326 goto out;
3327 if (pm_suspended_storage())
3328 goto out;
3329 /*
3330 * XXX: GFP_NOFS allocations should rather fail than rely on
3331 * other request to make a forward progress.
3332 * We are in an unfortunate situation where out_of_memory cannot
3333 * do much for this context but let's try it to at least get
3334 * access to memory reserved if the current task is killed (see
3335 * out_of_memory). Once filesystems are ready to handle allocation
3336 * failures more gracefully we should just bail out here.
3337 */
3338
3339 /* The OOM killer may not free memory on a specific node */
3340 if (gfp_mask & __GFP_THISNODE)
3341 goto out;
3da88fb3 3342
11e33f6a 3343 /* Exhausted what can be done so it's blamo time */
5020e285 3344 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3345 *did_some_progress = 1;
5020e285 3346
6c18ba7a
MH
3347 /*
3348 * Help non-failing allocations by giving them access to memory
3349 * reserves
3350 */
3351 if (gfp_mask & __GFP_NOFAIL)
3352 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3353 ALLOC_NO_WATERMARKS, ac);
5020e285 3354 }
11e33f6a 3355out:
dc56401f 3356 mutex_unlock(&oom_lock);
11e33f6a
MG
3357 return page;
3358}
3359
33c2d214
MH
3360/*
3361 * Maximum number of compaction retries wit a progress before OOM
3362 * killer is consider as the only way to move forward.
3363 */
3364#define MAX_COMPACT_RETRIES 16
3365
56de7263
MG
3366#ifdef CONFIG_COMPACTION
3367/* Try memory compaction for high-order allocations before reclaim */
3368static struct page *
3369__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3370 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3371 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3372{
98dd3b48 3373 struct page *page;
499118e9 3374 unsigned int noreclaim_flag;
53853e2d
VB
3375
3376 if (!order)
66199712 3377 return NULL;
66199712 3378
499118e9 3379 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3380 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3381 prio);
499118e9 3382 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3383
c5d01d0d 3384 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3385 return NULL;
53853e2d 3386
98dd3b48
VB
3387 /*
3388 * At least in one zone compaction wasn't deferred or skipped, so let's
3389 * count a compaction stall
3390 */
3391 count_vm_event(COMPACTSTALL);
8fb74b9f 3392
31a6c190 3393 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3394
98dd3b48
VB
3395 if (page) {
3396 struct zone *zone = page_zone(page);
53853e2d 3397
98dd3b48
VB
3398 zone->compact_blockskip_flush = false;
3399 compaction_defer_reset(zone, order, true);
3400 count_vm_event(COMPACTSUCCESS);
3401 return page;
3402 }
56de7263 3403
98dd3b48
VB
3404 /*
3405 * It's bad if compaction run occurs and fails. The most likely reason
3406 * is that pages exist, but not enough to satisfy watermarks.
3407 */
3408 count_vm_event(COMPACTFAIL);
66199712 3409
98dd3b48 3410 cond_resched();
56de7263
MG
3411
3412 return NULL;
3413}
33c2d214 3414
3250845d
VB
3415static inline bool
3416should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3417 enum compact_result compact_result,
3418 enum compact_priority *compact_priority,
d9436498 3419 int *compaction_retries)
3250845d
VB
3420{
3421 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3422 int min_priority;
65190cff
MH
3423 bool ret = false;
3424 int retries = *compaction_retries;
3425 enum compact_priority priority = *compact_priority;
3250845d
VB
3426
3427 if (!order)
3428 return false;
3429
d9436498
VB
3430 if (compaction_made_progress(compact_result))
3431 (*compaction_retries)++;
3432
3250845d
VB
3433 /*
3434 * compaction considers all the zone as desperately out of memory
3435 * so it doesn't really make much sense to retry except when the
3436 * failure could be caused by insufficient priority
3437 */
d9436498
VB
3438 if (compaction_failed(compact_result))
3439 goto check_priority;
3250845d
VB
3440
3441 /*
3442 * make sure the compaction wasn't deferred or didn't bail out early
3443 * due to locks contention before we declare that we should give up.
3444 * But do not retry if the given zonelist is not suitable for
3445 * compaction.
3446 */
65190cff
MH
3447 if (compaction_withdrawn(compact_result)) {
3448 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3449 goto out;
3450 }
3250845d
VB
3451
3452 /*
dcda9b04 3453 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3454 * costly ones because they are de facto nofail and invoke OOM
3455 * killer to move on while costly can fail and users are ready
3456 * to cope with that. 1/4 retries is rather arbitrary but we
3457 * would need much more detailed feedback from compaction to
3458 * make a better decision.
3459 */
3460 if (order > PAGE_ALLOC_COSTLY_ORDER)
3461 max_retries /= 4;
65190cff
MH
3462 if (*compaction_retries <= max_retries) {
3463 ret = true;
3464 goto out;
3465 }
3250845d 3466
d9436498
VB
3467 /*
3468 * Make sure there are attempts at the highest priority if we exhausted
3469 * all retries or failed at the lower priorities.
3470 */
3471check_priority:
c2033b00
VB
3472 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3473 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3474
c2033b00 3475 if (*compact_priority > min_priority) {
d9436498
VB
3476 (*compact_priority)--;
3477 *compaction_retries = 0;
65190cff 3478 ret = true;
d9436498 3479 }
65190cff
MH
3480out:
3481 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3482 return ret;
3250845d 3483}
56de7263
MG
3484#else
3485static inline struct page *
3486__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3487 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3488 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3489{
33c2d214 3490 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3491 return NULL;
3492}
33c2d214
MH
3493
3494static inline bool
86a294a8
MH
3495should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3496 enum compact_result compact_result,
a5508cd8 3497 enum compact_priority *compact_priority,
d9436498 3498 int *compaction_retries)
33c2d214 3499{
31e49bfd
MH
3500 struct zone *zone;
3501 struct zoneref *z;
3502
3503 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3504 return false;
3505
3506 /*
3507 * There are setups with compaction disabled which would prefer to loop
3508 * inside the allocator rather than hit the oom killer prematurely.
3509 * Let's give them a good hope and keep retrying while the order-0
3510 * watermarks are OK.
3511 */
3512 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3513 ac->nodemask) {
3514 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3515 ac_classzone_idx(ac), alloc_flags))
3516 return true;
3517 }
33c2d214
MH
3518 return false;
3519}
3250845d 3520#endif /* CONFIG_COMPACTION */
56de7263 3521
d92a8cfc
PZ
3522#ifdef CONFIG_LOCKDEP
3523struct lockdep_map __fs_reclaim_map =
3524 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3525
3526static bool __need_fs_reclaim(gfp_t gfp_mask)
3527{
3528 gfp_mask = current_gfp_context(gfp_mask);
3529
3530 /* no reclaim without waiting on it */
3531 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3532 return false;
3533
3534 /* this guy won't enter reclaim */
ef006d43 3535 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3536 return false;
3537
3538 /* We're only interested __GFP_FS allocations for now */
3539 if (!(gfp_mask & __GFP_FS))
3540 return false;
3541
3542 if (gfp_mask & __GFP_NOLOCKDEP)
3543 return false;
3544
3545 return true;
3546}
3547
3548void fs_reclaim_acquire(gfp_t gfp_mask)
3549{
3550 if (__need_fs_reclaim(gfp_mask))
3551 lock_map_acquire(&__fs_reclaim_map);
3552}
3553EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3554
3555void fs_reclaim_release(gfp_t gfp_mask)
3556{
3557 if (__need_fs_reclaim(gfp_mask))
3558 lock_map_release(&__fs_reclaim_map);
3559}
3560EXPORT_SYMBOL_GPL(fs_reclaim_release);
3561#endif
3562
bba90710
MS
3563/* Perform direct synchronous page reclaim */
3564static int
a9263751
VB
3565__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3566 const struct alloc_context *ac)
11e33f6a 3567{
11e33f6a 3568 struct reclaim_state reclaim_state;
bba90710 3569 int progress;
499118e9 3570 unsigned int noreclaim_flag;
11e33f6a
MG
3571
3572 cond_resched();
3573
3574 /* We now go into synchronous reclaim */
3575 cpuset_memory_pressure_bump();
499118e9 3576 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3577 fs_reclaim_acquire(gfp_mask);
11e33f6a 3578 reclaim_state.reclaimed_slab = 0;
c06b1fca 3579 current->reclaim_state = &reclaim_state;
11e33f6a 3580
a9263751
VB
3581 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3582 ac->nodemask);
11e33f6a 3583
c06b1fca 3584 current->reclaim_state = NULL;
d92a8cfc 3585 fs_reclaim_release(gfp_mask);
499118e9 3586 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3587
3588 cond_resched();
3589
bba90710
MS
3590 return progress;
3591}
3592
3593/* The really slow allocator path where we enter direct reclaim */
3594static inline struct page *
3595__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3596 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3597 unsigned long *did_some_progress)
bba90710
MS
3598{
3599 struct page *page = NULL;
3600 bool drained = false;
3601
a9263751 3602 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3603 if (unlikely(!(*did_some_progress)))
3604 return NULL;
11e33f6a 3605
9ee493ce 3606retry:
31a6c190 3607 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3608
3609 /*
3610 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3611 * pages are pinned on the per-cpu lists or in high alloc reserves.
3612 * Shrink them them and try again
9ee493ce
MG
3613 */
3614 if (!page && !drained) {
29fac03b 3615 unreserve_highatomic_pageblock(ac, false);
93481ff0 3616 drain_all_pages(NULL);
9ee493ce
MG
3617 drained = true;
3618 goto retry;
3619 }
3620
11e33f6a
MG
3621 return page;
3622}
3623
a9263751 3624static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3625{
3626 struct zoneref *z;
3627 struct zone *zone;
e1a55637 3628 pg_data_t *last_pgdat = NULL;
3a025760 3629
a9263751 3630 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3631 ac->high_zoneidx, ac->nodemask) {
3632 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3633 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3634 last_pgdat = zone->zone_pgdat;
3635 }
3a025760
JW
3636}
3637
c603844b 3638static inline unsigned int
341ce06f
PZ
3639gfp_to_alloc_flags(gfp_t gfp_mask)
3640{
c603844b 3641 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3642
a56f57ff 3643 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3644 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3645
341ce06f
PZ
3646 /*
3647 * The caller may dip into page reserves a bit more if the caller
3648 * cannot run direct reclaim, or if the caller has realtime scheduling
3649 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3650 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3651 */
e6223a3b 3652 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3653
d0164adc 3654 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3655 /*
b104a35d
DR
3656 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3657 * if it can't schedule.
5c3240d9 3658 */
b104a35d 3659 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3660 alloc_flags |= ALLOC_HARDER;
523b9458 3661 /*
b104a35d 3662 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3663 * comment for __cpuset_node_allowed().
523b9458 3664 */
341ce06f 3665 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3666 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3667 alloc_flags |= ALLOC_HARDER;
3668
d95ea5d1 3669#ifdef CONFIG_CMA
43e7a34d 3670 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3671 alloc_flags |= ALLOC_CMA;
3672#endif
341ce06f
PZ
3673 return alloc_flags;
3674}
3675
cd04ae1e 3676static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3677{
cd04ae1e
MH
3678 if (!tsk_is_oom_victim(tsk))
3679 return false;
3680
3681 /*
3682 * !MMU doesn't have oom reaper so give access to memory reserves
3683 * only to the thread with TIF_MEMDIE set
3684 */
3685 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3686 return false;
3687
cd04ae1e
MH
3688 return true;
3689}
3690
3691/*
3692 * Distinguish requests which really need access to full memory
3693 * reserves from oom victims which can live with a portion of it
3694 */
3695static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3696{
3697 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3698 return 0;
31a6c190 3699 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3700 return ALLOC_NO_WATERMARKS;
31a6c190 3701 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3702 return ALLOC_NO_WATERMARKS;
3703 if (!in_interrupt()) {
3704 if (current->flags & PF_MEMALLOC)
3705 return ALLOC_NO_WATERMARKS;
3706 else if (oom_reserves_allowed(current))
3707 return ALLOC_OOM;
3708 }
31a6c190 3709
cd04ae1e
MH
3710 return 0;
3711}
3712
3713bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3714{
3715 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3716}
3717
0a0337e0
MH
3718/*
3719 * Checks whether it makes sense to retry the reclaim to make a forward progress
3720 * for the given allocation request.
491d79ae
JW
3721 *
3722 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3723 * without success, or when we couldn't even meet the watermark if we
3724 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3725 *
3726 * Returns true if a retry is viable or false to enter the oom path.
3727 */
3728static inline bool
3729should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3730 struct alloc_context *ac, int alloc_flags,
423b452e 3731 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3732{
3733 struct zone *zone;
3734 struct zoneref *z;
3735
423b452e
VB
3736 /*
3737 * Costly allocations might have made a progress but this doesn't mean
3738 * their order will become available due to high fragmentation so
3739 * always increment the no progress counter for them
3740 */
3741 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3742 *no_progress_loops = 0;
3743 else
3744 (*no_progress_loops)++;
3745
0a0337e0
MH
3746 /*
3747 * Make sure we converge to OOM if we cannot make any progress
3748 * several times in the row.
3749 */
04c8716f
MK
3750 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3751 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3752 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3753 }
0a0337e0 3754
bca67592
MG
3755 /*
3756 * Keep reclaiming pages while there is a chance this will lead
3757 * somewhere. If none of the target zones can satisfy our allocation
3758 * request even if all reclaimable pages are considered then we are
3759 * screwed and have to go OOM.
0a0337e0
MH
3760 */
3761 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3762 ac->nodemask) {
3763 unsigned long available;
ede37713 3764 unsigned long reclaimable;
d379f01d
MH
3765 unsigned long min_wmark = min_wmark_pages(zone);
3766 bool wmark;
0a0337e0 3767
5a1c84b4 3768 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3769 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3770
3771 /*
491d79ae
JW
3772 * Would the allocation succeed if we reclaimed all
3773 * reclaimable pages?
0a0337e0 3774 */
d379f01d
MH
3775 wmark = __zone_watermark_ok(zone, order, min_wmark,
3776 ac_classzone_idx(ac), alloc_flags, available);
3777 trace_reclaim_retry_zone(z, order, reclaimable,
3778 available, min_wmark, *no_progress_loops, wmark);
3779 if (wmark) {
ede37713
MH
3780 /*
3781 * If we didn't make any progress and have a lot of
3782 * dirty + writeback pages then we should wait for
3783 * an IO to complete to slow down the reclaim and
3784 * prevent from pre mature OOM
3785 */
3786 if (!did_some_progress) {
11fb9989 3787 unsigned long write_pending;
ede37713 3788
5a1c84b4
MG
3789 write_pending = zone_page_state_snapshot(zone,
3790 NR_ZONE_WRITE_PENDING);
ede37713 3791
11fb9989 3792 if (2 * write_pending > reclaimable) {
ede37713
MH
3793 congestion_wait(BLK_RW_ASYNC, HZ/10);
3794 return true;
3795 }
3796 }
5a1c84b4 3797
ede37713
MH
3798 /*
3799 * Memory allocation/reclaim might be called from a WQ
3800 * context and the current implementation of the WQ
3801 * concurrency control doesn't recognize that
3802 * a particular WQ is congested if the worker thread is
3803 * looping without ever sleeping. Therefore we have to
3804 * do a short sleep here rather than calling
3805 * cond_resched().
3806 */
3807 if (current->flags & PF_WQ_WORKER)
3808 schedule_timeout_uninterruptible(1);
3809 else
3810 cond_resched();
3811
0a0337e0
MH
3812 return true;
3813 }
3814 }
3815
3816 return false;
3817}
3818
902b6281
VB
3819static inline bool
3820check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3821{
3822 /*
3823 * It's possible that cpuset's mems_allowed and the nodemask from
3824 * mempolicy don't intersect. This should be normally dealt with by
3825 * policy_nodemask(), but it's possible to race with cpuset update in
3826 * such a way the check therein was true, and then it became false
3827 * before we got our cpuset_mems_cookie here.
3828 * This assumes that for all allocations, ac->nodemask can come only
3829 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3830 * when it does not intersect with the cpuset restrictions) or the
3831 * caller can deal with a violated nodemask.
3832 */
3833 if (cpusets_enabled() && ac->nodemask &&
3834 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3835 ac->nodemask = NULL;
3836 return true;
3837 }
3838
3839 /*
3840 * When updating a task's mems_allowed or mempolicy nodemask, it is
3841 * possible to race with parallel threads in such a way that our
3842 * allocation can fail while the mask is being updated. If we are about
3843 * to fail, check if the cpuset changed during allocation and if so,
3844 * retry.
3845 */
3846 if (read_mems_allowed_retry(cpuset_mems_cookie))
3847 return true;
3848
3849 return false;
3850}
3851
11e33f6a
MG
3852static inline struct page *
3853__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3854 struct alloc_context *ac)
11e33f6a 3855{
d0164adc 3856 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3857 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3858 struct page *page = NULL;
c603844b 3859 unsigned int alloc_flags;
11e33f6a 3860 unsigned long did_some_progress;
5ce9bfef 3861 enum compact_priority compact_priority;
c5d01d0d 3862 enum compact_result compact_result;
5ce9bfef
VB
3863 int compaction_retries;
3864 int no_progress_loops;
63f53dea
MH
3865 unsigned long alloc_start = jiffies;
3866 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3867 unsigned int cpuset_mems_cookie;
cd04ae1e 3868 int reserve_flags;
1da177e4 3869
72807a74
MG
3870 /*
3871 * In the slowpath, we sanity check order to avoid ever trying to
3872 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3873 * be using allocators in order of preference for an area that is
3874 * too large.
3875 */
1fc28b70
MG
3876 if (order >= MAX_ORDER) {
3877 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3878 return NULL;
1fc28b70 3879 }
1da177e4 3880
d0164adc
MG
3881 /*
3882 * We also sanity check to catch abuse of atomic reserves being used by
3883 * callers that are not in atomic context.
3884 */
3885 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3886 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3887 gfp_mask &= ~__GFP_ATOMIC;
3888
5ce9bfef
VB
3889retry_cpuset:
3890 compaction_retries = 0;
3891 no_progress_loops = 0;
3892 compact_priority = DEF_COMPACT_PRIORITY;
3893 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3894
3895 /*
3896 * The fast path uses conservative alloc_flags to succeed only until
3897 * kswapd needs to be woken up, and to avoid the cost of setting up
3898 * alloc_flags precisely. So we do that now.
3899 */
3900 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3901
e47483bc
VB
3902 /*
3903 * We need to recalculate the starting point for the zonelist iterator
3904 * because we might have used different nodemask in the fast path, or
3905 * there was a cpuset modification and we are retrying - otherwise we
3906 * could end up iterating over non-eligible zones endlessly.
3907 */
3908 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3909 ac->high_zoneidx, ac->nodemask);
3910 if (!ac->preferred_zoneref->zone)
3911 goto nopage;
3912
23771235
VB
3913 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3914 wake_all_kswapds(order, ac);
3915
3916 /*
3917 * The adjusted alloc_flags might result in immediate success, so try
3918 * that first
3919 */
3920 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3921 if (page)
3922 goto got_pg;
3923
a8161d1e
VB
3924 /*
3925 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3926 * that we have enough base pages and don't need to reclaim. For non-
3927 * movable high-order allocations, do that as well, as compaction will
3928 * try prevent permanent fragmentation by migrating from blocks of the
3929 * same migratetype.
3930 * Don't try this for allocations that are allowed to ignore
3931 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3932 */
282722b0
VB
3933 if (can_direct_reclaim &&
3934 (costly_order ||
3935 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3936 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3937 page = __alloc_pages_direct_compact(gfp_mask, order,
3938 alloc_flags, ac,
a5508cd8 3939 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3940 &compact_result);
3941 if (page)
3942 goto got_pg;
3943
3eb2771b
VB
3944 /*
3945 * Checks for costly allocations with __GFP_NORETRY, which
3946 * includes THP page fault allocations
3947 */
282722b0 3948 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3949 /*
3950 * If compaction is deferred for high-order allocations,
3951 * it is because sync compaction recently failed. If
3952 * this is the case and the caller requested a THP
3953 * allocation, we do not want to heavily disrupt the
3954 * system, so we fail the allocation instead of entering
3955 * direct reclaim.
3956 */
3957 if (compact_result == COMPACT_DEFERRED)
3958 goto nopage;
3959
a8161d1e 3960 /*
3eb2771b
VB
3961 * Looks like reclaim/compaction is worth trying, but
3962 * sync compaction could be very expensive, so keep
25160354 3963 * using async compaction.
a8161d1e 3964 */
a5508cd8 3965 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3966 }
3967 }
23771235 3968
31a6c190 3969retry:
23771235 3970 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3971 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3972 wake_all_kswapds(order, ac);
3973
cd04ae1e
MH
3974 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
3975 if (reserve_flags)
3976 alloc_flags = reserve_flags;
23771235 3977
e46e7b77
MG
3978 /*
3979 * Reset the zonelist iterators if memory policies can be ignored.
3980 * These allocations are high priority and system rather than user
3981 * orientated.
3982 */
cd04ae1e 3983 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
3984 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3985 ac->high_zoneidx, ac->nodemask);
3986 }
3987
23771235 3988 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3989 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3990 if (page)
3991 goto got_pg;
1da177e4 3992
d0164adc 3993 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 3994 if (!can_direct_reclaim)
1da177e4
LT
3995 goto nopage;
3996
9a67f648
MH
3997 /* Make sure we know about allocations which stall for too long */
3998 if (time_after(jiffies, alloc_start + stall_timeout)) {
82251963 3999 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
9a67f648
MH
4000 "page allocation stalls for %ums, order:%u",
4001 jiffies_to_msecs(jiffies-alloc_start), order);
4002 stall_timeout += 10 * HZ;
33d53103 4003 }
341ce06f 4004
9a67f648
MH
4005 /* Avoid recursion of direct reclaim */
4006 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4007 goto nopage;
4008
a8161d1e
VB
4009 /* Try direct reclaim and then allocating */
4010 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4011 &did_some_progress);
4012 if (page)
4013 goto got_pg;
4014
4015 /* Try direct compaction and then allocating */
a9263751 4016 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4017 compact_priority, &compact_result);
56de7263
MG
4018 if (page)
4019 goto got_pg;
75f30861 4020
9083905a
JW
4021 /* Do not loop if specifically requested */
4022 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4023 goto nopage;
9083905a 4024
0a0337e0
MH
4025 /*
4026 * Do not retry costly high order allocations unless they are
dcda9b04 4027 * __GFP_RETRY_MAYFAIL
0a0337e0 4028 */
dcda9b04 4029 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4030 goto nopage;
0a0337e0 4031
0a0337e0 4032 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4033 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4034 goto retry;
4035
33c2d214
MH
4036 /*
4037 * It doesn't make any sense to retry for the compaction if the order-0
4038 * reclaim is not able to make any progress because the current
4039 * implementation of the compaction depends on the sufficient amount
4040 * of free memory (see __compaction_suitable)
4041 */
4042 if (did_some_progress > 0 &&
86a294a8 4043 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4044 compact_result, &compact_priority,
d9436498 4045 &compaction_retries))
33c2d214
MH
4046 goto retry;
4047
902b6281
VB
4048
4049 /* Deal with possible cpuset update races before we start OOM killing */
4050 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4051 goto retry_cpuset;
4052
9083905a
JW
4053 /* Reclaim has failed us, start killing things */
4054 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4055 if (page)
4056 goto got_pg;
4057
9a67f648 4058 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4059 if (tsk_is_oom_victim(current) &&
4060 (alloc_flags == ALLOC_OOM ||
c288983d 4061 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4062 goto nopage;
4063
9083905a 4064 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4065 if (did_some_progress) {
4066 no_progress_loops = 0;
9083905a 4067 goto retry;
0a0337e0 4068 }
9083905a 4069
1da177e4 4070nopage:
902b6281
VB
4071 /* Deal with possible cpuset update races before we fail */
4072 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4073 goto retry_cpuset;
4074
9a67f648
MH
4075 /*
4076 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4077 * we always retry
4078 */
4079 if (gfp_mask & __GFP_NOFAIL) {
4080 /*
4081 * All existing users of the __GFP_NOFAIL are blockable, so warn
4082 * of any new users that actually require GFP_NOWAIT
4083 */
4084 if (WARN_ON_ONCE(!can_direct_reclaim))
4085 goto fail;
4086
4087 /*
4088 * PF_MEMALLOC request from this context is rather bizarre
4089 * because we cannot reclaim anything and only can loop waiting
4090 * for somebody to do a work for us
4091 */
4092 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4093
4094 /*
4095 * non failing costly orders are a hard requirement which we
4096 * are not prepared for much so let's warn about these users
4097 * so that we can identify them and convert them to something
4098 * else.
4099 */
4100 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4101
6c18ba7a
MH
4102 /*
4103 * Help non-failing allocations by giving them access to memory
4104 * reserves but do not use ALLOC_NO_WATERMARKS because this
4105 * could deplete whole memory reserves which would just make
4106 * the situation worse
4107 */
4108 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4109 if (page)
4110 goto got_pg;
4111
9a67f648
MH
4112 cond_resched();
4113 goto retry;
4114 }
4115fail:
a8e99259 4116 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4117 "page allocation failure: order:%u", order);
1da177e4 4118got_pg:
072bb0aa 4119 return page;
1da177e4 4120}
11e33f6a 4121
9cd75558 4122static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4123 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4124 struct alloc_context *ac, gfp_t *alloc_mask,
4125 unsigned int *alloc_flags)
11e33f6a 4126{
9cd75558 4127 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4128 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4129 ac->nodemask = nodemask;
4130 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4131
682a3385 4132 if (cpusets_enabled()) {
9cd75558 4133 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4134 if (!ac->nodemask)
4135 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4136 else
4137 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4138 }
4139
d92a8cfc
PZ
4140 fs_reclaim_acquire(gfp_mask);
4141 fs_reclaim_release(gfp_mask);
11e33f6a 4142
d0164adc 4143 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4144
4145 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4146 return false;
11e33f6a 4147
9cd75558
MG
4148 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4149 *alloc_flags |= ALLOC_CMA;
4150
4151 return true;
4152}
21bb9bd1 4153
9cd75558
MG
4154/* Determine whether to spread dirty pages and what the first usable zone */
4155static inline void finalise_ac(gfp_t gfp_mask,
4156 unsigned int order, struct alloc_context *ac)
4157{
c9ab0c4f 4158 /* Dirty zone balancing only done in the fast path */
9cd75558 4159 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4160
e46e7b77
MG
4161 /*
4162 * The preferred zone is used for statistics but crucially it is
4163 * also used as the starting point for the zonelist iterator. It
4164 * may get reset for allocations that ignore memory policies.
4165 */
9cd75558
MG
4166 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4167 ac->high_zoneidx, ac->nodemask);
4168}
4169
4170/*
4171 * This is the 'heart' of the zoned buddy allocator.
4172 */
4173struct page *
04ec6264
VB
4174__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4175 nodemask_t *nodemask)
9cd75558
MG
4176{
4177 struct page *page;
4178 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4179 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4180 struct alloc_context ac = { };
4181
4182 gfp_mask &= gfp_allowed_mask;
f19360f0 4183 alloc_mask = gfp_mask;
04ec6264 4184 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4185 return NULL;
4186
4187 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4188
5117f45d 4189 /* First allocation attempt */
a9263751 4190 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4191 if (likely(page))
4192 goto out;
11e33f6a 4193
4fcb0971 4194 /*
7dea19f9
MH
4195 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4196 * resp. GFP_NOIO which has to be inherited for all allocation requests
4197 * from a particular context which has been marked by
4198 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4199 */
7dea19f9 4200 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4201 ac.spread_dirty_pages = false;
23f086f9 4202
4741526b
MG
4203 /*
4204 * Restore the original nodemask if it was potentially replaced with
4205 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4206 */
e47483bc 4207 if (unlikely(ac.nodemask != nodemask))
4741526b 4208 ac.nodemask = nodemask;
16096c25 4209
4fcb0971 4210 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4211
4fcb0971 4212out:
c4159a75
VD
4213 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4214 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4215 __free_pages(page, order);
4216 page = NULL;
4949148a
VD
4217 }
4218
4fcb0971
MG
4219 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4220
11e33f6a 4221 return page;
1da177e4 4222}
d239171e 4223EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4224
4225/*
4226 * Common helper functions.
4227 */
920c7a5d 4228unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4229{
945a1113
AM
4230 struct page *page;
4231
4232 /*
4233 * __get_free_pages() returns a 32-bit address, which cannot represent
4234 * a highmem page
4235 */
4236 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4237
1da177e4
LT
4238 page = alloc_pages(gfp_mask, order);
4239 if (!page)
4240 return 0;
4241 return (unsigned long) page_address(page);
4242}
1da177e4
LT
4243EXPORT_SYMBOL(__get_free_pages);
4244
920c7a5d 4245unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4246{
945a1113 4247 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4248}
1da177e4
LT
4249EXPORT_SYMBOL(get_zeroed_page);
4250
920c7a5d 4251void __free_pages(struct page *page, unsigned int order)
1da177e4 4252{
b5810039 4253 if (put_page_testzero(page)) {
1da177e4 4254 if (order == 0)
b745bc85 4255 free_hot_cold_page(page, false);
1da177e4
LT
4256 else
4257 __free_pages_ok(page, order);
4258 }
4259}
4260
4261EXPORT_SYMBOL(__free_pages);
4262
920c7a5d 4263void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4264{
4265 if (addr != 0) {
725d704e 4266 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4267 __free_pages(virt_to_page((void *)addr), order);
4268 }
4269}
4270
4271EXPORT_SYMBOL(free_pages);
4272
b63ae8ca
AD
4273/*
4274 * Page Fragment:
4275 * An arbitrary-length arbitrary-offset area of memory which resides
4276 * within a 0 or higher order page. Multiple fragments within that page
4277 * are individually refcounted, in the page's reference counter.
4278 *
4279 * The page_frag functions below provide a simple allocation framework for
4280 * page fragments. This is used by the network stack and network device
4281 * drivers to provide a backing region of memory for use as either an
4282 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4283 */
2976db80
AD
4284static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4285 gfp_t gfp_mask)
b63ae8ca
AD
4286{
4287 struct page *page = NULL;
4288 gfp_t gfp = gfp_mask;
4289
4290#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4291 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4292 __GFP_NOMEMALLOC;
4293 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4294 PAGE_FRAG_CACHE_MAX_ORDER);
4295 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4296#endif
4297 if (unlikely(!page))
4298 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4299
4300 nc->va = page ? page_address(page) : NULL;
4301
4302 return page;
4303}
4304
2976db80 4305void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4306{
4307 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4308
4309 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4310 unsigned int order = compound_order(page);
4311
44fdffd7
AD
4312 if (order == 0)
4313 free_hot_cold_page(page, false);
4314 else
4315 __free_pages_ok(page, order);
4316 }
4317}
2976db80 4318EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4319
8c2dd3e4
AD
4320void *page_frag_alloc(struct page_frag_cache *nc,
4321 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4322{
4323 unsigned int size = PAGE_SIZE;
4324 struct page *page;
4325 int offset;
4326
4327 if (unlikely(!nc->va)) {
4328refill:
2976db80 4329 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4330 if (!page)
4331 return NULL;
4332
4333#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4334 /* if size can vary use size else just use PAGE_SIZE */
4335 size = nc->size;
4336#endif
4337 /* Even if we own the page, we do not use atomic_set().
4338 * This would break get_page_unless_zero() users.
4339 */
fe896d18 4340 page_ref_add(page, size - 1);
b63ae8ca
AD
4341
4342 /* reset page count bias and offset to start of new frag */
2f064f34 4343 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4344 nc->pagecnt_bias = size;
4345 nc->offset = size;
4346 }
4347
4348 offset = nc->offset - fragsz;
4349 if (unlikely(offset < 0)) {
4350 page = virt_to_page(nc->va);
4351
fe896d18 4352 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4353 goto refill;
4354
4355#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4356 /* if size can vary use size else just use PAGE_SIZE */
4357 size = nc->size;
4358#endif
4359 /* OK, page count is 0, we can safely set it */
fe896d18 4360 set_page_count(page, size);
b63ae8ca
AD
4361
4362 /* reset page count bias and offset to start of new frag */
4363 nc->pagecnt_bias = size;
4364 offset = size - fragsz;
4365 }
4366
4367 nc->pagecnt_bias--;
4368 nc->offset = offset;
4369
4370 return nc->va + offset;
4371}
8c2dd3e4 4372EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4373
4374/*
4375 * Frees a page fragment allocated out of either a compound or order 0 page.
4376 */
8c2dd3e4 4377void page_frag_free(void *addr)
b63ae8ca
AD
4378{
4379 struct page *page = virt_to_head_page(addr);
4380
4381 if (unlikely(put_page_testzero(page)))
4382 __free_pages_ok(page, compound_order(page));
4383}
8c2dd3e4 4384EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4385
d00181b9
KS
4386static void *make_alloc_exact(unsigned long addr, unsigned int order,
4387 size_t size)
ee85c2e1
AK
4388{
4389 if (addr) {
4390 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4391 unsigned long used = addr + PAGE_ALIGN(size);
4392
4393 split_page(virt_to_page((void *)addr), order);
4394 while (used < alloc_end) {
4395 free_page(used);
4396 used += PAGE_SIZE;
4397 }
4398 }
4399 return (void *)addr;
4400}
4401
2be0ffe2
TT
4402/**
4403 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4404 * @size: the number of bytes to allocate
4405 * @gfp_mask: GFP flags for the allocation
4406 *
4407 * This function is similar to alloc_pages(), except that it allocates the
4408 * minimum number of pages to satisfy the request. alloc_pages() can only
4409 * allocate memory in power-of-two pages.
4410 *
4411 * This function is also limited by MAX_ORDER.
4412 *
4413 * Memory allocated by this function must be released by free_pages_exact().
4414 */
4415void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4416{
4417 unsigned int order = get_order(size);
4418 unsigned long addr;
4419
4420 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4421 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4422}
4423EXPORT_SYMBOL(alloc_pages_exact);
4424
ee85c2e1
AK
4425/**
4426 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4427 * pages on a node.
b5e6ab58 4428 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4429 * @size: the number of bytes to allocate
4430 * @gfp_mask: GFP flags for the allocation
4431 *
4432 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4433 * back.
ee85c2e1 4434 */
e1931811 4435void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4436{
d00181b9 4437 unsigned int order = get_order(size);
ee85c2e1
AK
4438 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4439 if (!p)
4440 return NULL;
4441 return make_alloc_exact((unsigned long)page_address(p), order, size);
4442}
ee85c2e1 4443
2be0ffe2
TT
4444/**
4445 * free_pages_exact - release memory allocated via alloc_pages_exact()
4446 * @virt: the value returned by alloc_pages_exact.
4447 * @size: size of allocation, same value as passed to alloc_pages_exact().
4448 *
4449 * Release the memory allocated by a previous call to alloc_pages_exact.
4450 */
4451void free_pages_exact(void *virt, size_t size)
4452{
4453 unsigned long addr = (unsigned long)virt;
4454 unsigned long end = addr + PAGE_ALIGN(size);
4455
4456 while (addr < end) {
4457 free_page(addr);
4458 addr += PAGE_SIZE;
4459 }
4460}
4461EXPORT_SYMBOL(free_pages_exact);
4462
e0fb5815
ZY
4463/**
4464 * nr_free_zone_pages - count number of pages beyond high watermark
4465 * @offset: The zone index of the highest zone
4466 *
4467 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4468 * high watermark within all zones at or below a given zone index. For each
4469 * zone, the number of pages is calculated as:
0e056eb5
MCC
4470 *
4471 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4472 */
ebec3862 4473static unsigned long nr_free_zone_pages(int offset)
1da177e4 4474{
dd1a239f 4475 struct zoneref *z;
54a6eb5c
MG
4476 struct zone *zone;
4477
e310fd43 4478 /* Just pick one node, since fallback list is circular */
ebec3862 4479 unsigned long sum = 0;
1da177e4 4480
0e88460d 4481 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4482
54a6eb5c 4483 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4484 unsigned long size = zone->managed_pages;
41858966 4485 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4486 if (size > high)
4487 sum += size - high;
1da177e4
LT
4488 }
4489
4490 return sum;
4491}
4492
e0fb5815
ZY
4493/**
4494 * nr_free_buffer_pages - count number of pages beyond high watermark
4495 *
4496 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4497 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4498 */
ebec3862 4499unsigned long nr_free_buffer_pages(void)
1da177e4 4500{
af4ca457 4501 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4502}
c2f1a551 4503EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4504
e0fb5815
ZY
4505/**
4506 * nr_free_pagecache_pages - count number of pages beyond high watermark
4507 *
4508 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4509 * high watermark within all zones.
1da177e4 4510 */
ebec3862 4511unsigned long nr_free_pagecache_pages(void)
1da177e4 4512{
2a1e274a 4513 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4514}
08e0f6a9
CL
4515
4516static inline void show_node(struct zone *zone)
1da177e4 4517{
e5adfffc 4518 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4519 printk("Node %d ", zone_to_nid(zone));
1da177e4 4520}
1da177e4 4521
d02bd27b
IR
4522long si_mem_available(void)
4523{
4524 long available;
4525 unsigned long pagecache;
4526 unsigned long wmark_low = 0;
4527 unsigned long pages[NR_LRU_LISTS];
4528 struct zone *zone;
4529 int lru;
4530
4531 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4532 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4533
4534 for_each_zone(zone)
4535 wmark_low += zone->watermark[WMARK_LOW];
4536
4537 /*
4538 * Estimate the amount of memory available for userspace allocations,
4539 * without causing swapping.
4540 */
c41f012a 4541 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4542
4543 /*
4544 * Not all the page cache can be freed, otherwise the system will
4545 * start swapping. Assume at least half of the page cache, or the
4546 * low watermark worth of cache, needs to stay.
4547 */
4548 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4549 pagecache -= min(pagecache / 2, wmark_low);
4550 available += pagecache;
4551
4552 /*
4553 * Part of the reclaimable slab consists of items that are in use,
4554 * and cannot be freed. Cap this estimate at the low watermark.
4555 */
d507e2eb
JW
4556 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4557 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4558 wmark_low);
d02bd27b
IR
4559
4560 if (available < 0)
4561 available = 0;
4562 return available;
4563}
4564EXPORT_SYMBOL_GPL(si_mem_available);
4565
1da177e4
LT
4566void si_meminfo(struct sysinfo *val)
4567{
4568 val->totalram = totalram_pages;
11fb9989 4569 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4570 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4571 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4572 val->totalhigh = totalhigh_pages;
4573 val->freehigh = nr_free_highpages();
1da177e4
LT
4574 val->mem_unit = PAGE_SIZE;
4575}
4576
4577EXPORT_SYMBOL(si_meminfo);
4578
4579#ifdef CONFIG_NUMA
4580void si_meminfo_node(struct sysinfo *val, int nid)
4581{
cdd91a77
JL
4582 int zone_type; /* needs to be signed */
4583 unsigned long managed_pages = 0;
fc2bd799
JK
4584 unsigned long managed_highpages = 0;
4585 unsigned long free_highpages = 0;
1da177e4
LT
4586 pg_data_t *pgdat = NODE_DATA(nid);
4587
cdd91a77
JL
4588 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4589 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4590 val->totalram = managed_pages;
11fb9989 4591 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4592 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4593#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4594 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4595 struct zone *zone = &pgdat->node_zones[zone_type];
4596
4597 if (is_highmem(zone)) {
4598 managed_highpages += zone->managed_pages;
4599 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4600 }
4601 }
4602 val->totalhigh = managed_highpages;
4603 val->freehigh = free_highpages;
98d2b0eb 4604#else
fc2bd799
JK
4605 val->totalhigh = managed_highpages;
4606 val->freehigh = free_highpages;
98d2b0eb 4607#endif
1da177e4
LT
4608 val->mem_unit = PAGE_SIZE;
4609}
4610#endif
4611
ddd588b5 4612/*
7bf02ea2
DR
4613 * Determine whether the node should be displayed or not, depending on whether
4614 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4615 */
9af744d7 4616static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4617{
ddd588b5 4618 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4619 return false;
ddd588b5 4620
9af744d7
MH
4621 /*
4622 * no node mask - aka implicit memory numa policy. Do not bother with
4623 * the synchronization - read_mems_allowed_begin - because we do not
4624 * have to be precise here.
4625 */
4626 if (!nodemask)
4627 nodemask = &cpuset_current_mems_allowed;
4628
4629 return !node_isset(nid, *nodemask);
ddd588b5
DR
4630}
4631
1da177e4
LT
4632#define K(x) ((x) << (PAGE_SHIFT-10))
4633
377e4f16
RV
4634static void show_migration_types(unsigned char type)
4635{
4636 static const char types[MIGRATE_TYPES] = {
4637 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4638 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4639 [MIGRATE_RECLAIMABLE] = 'E',
4640 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4641#ifdef CONFIG_CMA
4642 [MIGRATE_CMA] = 'C',
4643#endif
194159fb 4644#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4645 [MIGRATE_ISOLATE] = 'I',
194159fb 4646#endif
377e4f16
RV
4647 };
4648 char tmp[MIGRATE_TYPES + 1];
4649 char *p = tmp;
4650 int i;
4651
4652 for (i = 0; i < MIGRATE_TYPES; i++) {
4653 if (type & (1 << i))
4654 *p++ = types[i];
4655 }
4656
4657 *p = '\0';
1f84a18f 4658 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4659}
4660
1da177e4
LT
4661/*
4662 * Show free area list (used inside shift_scroll-lock stuff)
4663 * We also calculate the percentage fragmentation. We do this by counting the
4664 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4665 *
4666 * Bits in @filter:
4667 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4668 * cpuset.
1da177e4 4669 */
9af744d7 4670void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4671{
d1bfcdb8 4672 unsigned long free_pcp = 0;
c7241913 4673 int cpu;
1da177e4 4674 struct zone *zone;
599d0c95 4675 pg_data_t *pgdat;
1da177e4 4676
ee99c71c 4677 for_each_populated_zone(zone) {
9af744d7 4678 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4679 continue;
d1bfcdb8 4680
761b0677
KK
4681 for_each_online_cpu(cpu)
4682 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4683 }
4684
a731286d
KM
4685 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4686 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4687 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4688 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4689 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4690 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4691 global_node_page_state(NR_ACTIVE_ANON),
4692 global_node_page_state(NR_INACTIVE_ANON),
4693 global_node_page_state(NR_ISOLATED_ANON),
4694 global_node_page_state(NR_ACTIVE_FILE),
4695 global_node_page_state(NR_INACTIVE_FILE),
4696 global_node_page_state(NR_ISOLATED_FILE),
4697 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4698 global_node_page_state(NR_FILE_DIRTY),
4699 global_node_page_state(NR_WRITEBACK),
4700 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4701 global_node_page_state(NR_SLAB_RECLAIMABLE),
4702 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4703 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4704 global_node_page_state(NR_SHMEM),
c41f012a
MH
4705 global_zone_page_state(NR_PAGETABLE),
4706 global_zone_page_state(NR_BOUNCE),
4707 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4708 free_pcp,
c41f012a 4709 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4710
599d0c95 4711 for_each_online_pgdat(pgdat) {
9af744d7 4712 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4713 continue;
4714
599d0c95
MG
4715 printk("Node %d"
4716 " active_anon:%lukB"
4717 " inactive_anon:%lukB"
4718 " active_file:%lukB"
4719 " inactive_file:%lukB"
4720 " unevictable:%lukB"
4721 " isolated(anon):%lukB"
4722 " isolated(file):%lukB"
50658e2e 4723 " mapped:%lukB"
11fb9989
MG
4724 " dirty:%lukB"
4725 " writeback:%lukB"
4726 " shmem:%lukB"
4727#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4728 " shmem_thp: %lukB"
4729 " shmem_pmdmapped: %lukB"
4730 " anon_thp: %lukB"
4731#endif
4732 " writeback_tmp:%lukB"
4733 " unstable:%lukB"
599d0c95
MG
4734 " all_unreclaimable? %s"
4735 "\n",
4736 pgdat->node_id,
4737 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4738 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4739 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4740 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4741 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4742 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4743 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4744 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4745 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4746 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4747 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4748#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4749 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4750 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4751 * HPAGE_PMD_NR),
4752 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4753#endif
11fb9989
MG
4754 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4755 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4756 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4757 "yes" : "no");
599d0c95
MG
4758 }
4759
ee99c71c 4760 for_each_populated_zone(zone) {
1da177e4
LT
4761 int i;
4762
9af744d7 4763 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4764 continue;
d1bfcdb8
KK
4765
4766 free_pcp = 0;
4767 for_each_online_cpu(cpu)
4768 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4769
1da177e4 4770 show_node(zone);
1f84a18f
JP
4771 printk(KERN_CONT
4772 "%s"
1da177e4
LT
4773 " free:%lukB"
4774 " min:%lukB"
4775 " low:%lukB"
4776 " high:%lukB"
71c799f4
MK
4777 " active_anon:%lukB"
4778 " inactive_anon:%lukB"
4779 " active_file:%lukB"
4780 " inactive_file:%lukB"
4781 " unevictable:%lukB"
5a1c84b4 4782 " writepending:%lukB"
1da177e4 4783 " present:%lukB"
9feedc9d 4784 " managed:%lukB"
4a0aa73f 4785 " mlocked:%lukB"
c6a7f572 4786 " kernel_stack:%lukB"
4a0aa73f 4787 " pagetables:%lukB"
4a0aa73f 4788 " bounce:%lukB"
d1bfcdb8
KK
4789 " free_pcp:%lukB"
4790 " local_pcp:%ukB"
d1ce749a 4791 " free_cma:%lukB"
1da177e4
LT
4792 "\n",
4793 zone->name,
88f5acf8 4794 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4795 K(min_wmark_pages(zone)),
4796 K(low_wmark_pages(zone)),
4797 K(high_wmark_pages(zone)),
71c799f4
MK
4798 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4799 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4800 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4801 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4802 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4803 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4804 K(zone->present_pages),
9feedc9d 4805 K(zone->managed_pages),
4a0aa73f 4806 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4807 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4808 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4809 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4810 K(free_pcp),
4811 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4812 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4813 printk("lowmem_reserve[]:");
4814 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4815 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4816 printk(KERN_CONT "\n");
1da177e4
LT
4817 }
4818
ee99c71c 4819 for_each_populated_zone(zone) {
d00181b9
KS
4820 unsigned int order;
4821 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4822 unsigned char types[MAX_ORDER];
1da177e4 4823
9af744d7 4824 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4825 continue;
1da177e4 4826 show_node(zone);
1f84a18f 4827 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4828
4829 spin_lock_irqsave(&zone->lock, flags);
4830 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4831 struct free_area *area = &zone->free_area[order];
4832 int type;
4833
4834 nr[order] = area->nr_free;
8f9de51a 4835 total += nr[order] << order;
377e4f16
RV
4836
4837 types[order] = 0;
4838 for (type = 0; type < MIGRATE_TYPES; type++) {
4839 if (!list_empty(&area->free_list[type]))
4840 types[order] |= 1 << type;
4841 }
1da177e4
LT
4842 }
4843 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4844 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4845 printk(KERN_CONT "%lu*%lukB ",
4846 nr[order], K(1UL) << order);
377e4f16
RV
4847 if (nr[order])
4848 show_migration_types(types[order]);
4849 }
1f84a18f 4850 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4851 }
4852
949f7ec5
DR
4853 hugetlb_show_meminfo();
4854
11fb9989 4855 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4856
1da177e4
LT
4857 show_swap_cache_info();
4858}
4859
19770b32
MG
4860static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4861{
4862 zoneref->zone = zone;
4863 zoneref->zone_idx = zone_idx(zone);
4864}
4865
1da177e4
LT
4866/*
4867 * Builds allocation fallback zone lists.
1a93205b
CL
4868 *
4869 * Add all populated zones of a node to the zonelist.
1da177e4 4870 */
9d3be21b 4871static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4872{
1a93205b 4873 struct zone *zone;
bc732f1d 4874 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4875 int nr_zones = 0;
02a68a5e
CL
4876
4877 do {
2f6726e5 4878 zone_type--;
070f8032 4879 zone = pgdat->node_zones + zone_type;
6aa303de 4880 if (managed_zone(zone)) {
9d3be21b 4881 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4882 check_highest_zone(zone_type);
1da177e4 4883 }
2f6726e5 4884 } while (zone_type);
bc732f1d 4885
070f8032 4886 return nr_zones;
1da177e4
LT
4887}
4888
4889#ifdef CONFIG_NUMA
f0c0b2b8
KH
4890
4891static int __parse_numa_zonelist_order(char *s)
4892{
c9bff3ee
MH
4893 /*
4894 * We used to support different zonlists modes but they turned
4895 * out to be just not useful. Let's keep the warning in place
4896 * if somebody still use the cmd line parameter so that we do
4897 * not fail it silently
4898 */
4899 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4900 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4901 return -EINVAL;
4902 }
4903 return 0;
4904}
4905
4906static __init int setup_numa_zonelist_order(char *s)
4907{
ecb256f8
VL
4908 if (!s)
4909 return 0;
4910
c9bff3ee 4911 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4912}
4913early_param("numa_zonelist_order", setup_numa_zonelist_order);
4914
c9bff3ee
MH
4915char numa_zonelist_order[] = "Node";
4916
f0c0b2b8
KH
4917/*
4918 * sysctl handler for numa_zonelist_order
4919 */
cccad5b9 4920int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4921 void __user *buffer, size_t *length,
f0c0b2b8
KH
4922 loff_t *ppos)
4923{
c9bff3ee 4924 char *str;
f0c0b2b8
KH
4925 int ret;
4926
c9bff3ee
MH
4927 if (!write)
4928 return proc_dostring(table, write, buffer, length, ppos);
4929 str = memdup_user_nul(buffer, 16);
4930 if (IS_ERR(str))
4931 return PTR_ERR(str);
dacbde09 4932
c9bff3ee
MH
4933 ret = __parse_numa_zonelist_order(str);
4934 kfree(str);
443c6f14 4935 return ret;
f0c0b2b8
KH
4936}
4937
4938
62bc62a8 4939#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4940static int node_load[MAX_NUMNODES];
4941
1da177e4 4942/**
4dc3b16b 4943 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4944 * @node: node whose fallback list we're appending
4945 * @used_node_mask: nodemask_t of already used nodes
4946 *
4947 * We use a number of factors to determine which is the next node that should
4948 * appear on a given node's fallback list. The node should not have appeared
4949 * already in @node's fallback list, and it should be the next closest node
4950 * according to the distance array (which contains arbitrary distance values
4951 * from each node to each node in the system), and should also prefer nodes
4952 * with no CPUs, since presumably they'll have very little allocation pressure
4953 * on them otherwise.
4954 * It returns -1 if no node is found.
4955 */
f0c0b2b8 4956static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4957{
4cf808eb 4958 int n, val;
1da177e4 4959 int min_val = INT_MAX;
00ef2d2f 4960 int best_node = NUMA_NO_NODE;
a70f7302 4961 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4962
4cf808eb
LT
4963 /* Use the local node if we haven't already */
4964 if (!node_isset(node, *used_node_mask)) {
4965 node_set(node, *used_node_mask);
4966 return node;
4967 }
1da177e4 4968
4b0ef1fe 4969 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4970
4971 /* Don't want a node to appear more than once */
4972 if (node_isset(n, *used_node_mask))
4973 continue;
4974
1da177e4
LT
4975 /* Use the distance array to find the distance */
4976 val = node_distance(node, n);
4977
4cf808eb
LT
4978 /* Penalize nodes under us ("prefer the next node") */
4979 val += (n < node);
4980
1da177e4 4981 /* Give preference to headless and unused nodes */
a70f7302
RR
4982 tmp = cpumask_of_node(n);
4983 if (!cpumask_empty(tmp))
1da177e4
LT
4984 val += PENALTY_FOR_NODE_WITH_CPUS;
4985
4986 /* Slight preference for less loaded node */
4987 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4988 val += node_load[n];
4989
4990 if (val < min_val) {
4991 min_val = val;
4992 best_node = n;
4993 }
4994 }
4995
4996 if (best_node >= 0)
4997 node_set(best_node, *used_node_mask);
4998
4999 return best_node;
5000}
5001
f0c0b2b8
KH
5002
5003/*
5004 * Build zonelists ordered by node and zones within node.
5005 * This results in maximum locality--normal zone overflows into local
5006 * DMA zone, if any--but risks exhausting DMA zone.
5007 */
9d3be21b
MH
5008static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5009 unsigned nr_nodes)
1da177e4 5010{
9d3be21b
MH
5011 struct zoneref *zonerefs;
5012 int i;
5013
5014 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5015
5016 for (i = 0; i < nr_nodes; i++) {
5017 int nr_zones;
5018
5019 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5020
9d3be21b
MH
5021 nr_zones = build_zonerefs_node(node, zonerefs);
5022 zonerefs += nr_zones;
5023 }
5024 zonerefs->zone = NULL;
5025 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5026}
5027
523b9458
CL
5028/*
5029 * Build gfp_thisnode zonelists
5030 */
5031static void build_thisnode_zonelists(pg_data_t *pgdat)
5032{
9d3be21b
MH
5033 struct zoneref *zonerefs;
5034 int nr_zones;
523b9458 5035
9d3be21b
MH
5036 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5037 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5038 zonerefs += nr_zones;
5039 zonerefs->zone = NULL;
5040 zonerefs->zone_idx = 0;
523b9458
CL
5041}
5042
f0c0b2b8
KH
5043/*
5044 * Build zonelists ordered by zone and nodes within zones.
5045 * This results in conserving DMA zone[s] until all Normal memory is
5046 * exhausted, but results in overflowing to remote node while memory
5047 * may still exist in local DMA zone.
5048 */
f0c0b2b8 5049
f0c0b2b8
KH
5050static void build_zonelists(pg_data_t *pgdat)
5051{
9d3be21b
MH
5052 static int node_order[MAX_NUMNODES];
5053 int node, load, nr_nodes = 0;
1da177e4 5054 nodemask_t used_mask;
f0c0b2b8 5055 int local_node, prev_node;
1da177e4
LT
5056
5057 /* NUMA-aware ordering of nodes */
5058 local_node = pgdat->node_id;
62bc62a8 5059 load = nr_online_nodes;
1da177e4
LT
5060 prev_node = local_node;
5061 nodes_clear(used_mask);
f0c0b2b8 5062
f0c0b2b8 5063 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5064 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5065 /*
5066 * We don't want to pressure a particular node.
5067 * So adding penalty to the first node in same
5068 * distance group to make it round-robin.
5069 */
957f822a
DR
5070 if (node_distance(local_node, node) !=
5071 node_distance(local_node, prev_node))
f0c0b2b8
KH
5072 node_load[node] = load;
5073
9d3be21b 5074 node_order[nr_nodes++] = node;
1da177e4
LT
5075 prev_node = node;
5076 load--;
1da177e4 5077 }
523b9458 5078
9d3be21b 5079 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5080 build_thisnode_zonelists(pgdat);
1da177e4
LT
5081}
5082
7aac7898
LS
5083#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5084/*
5085 * Return node id of node used for "local" allocations.
5086 * I.e., first node id of first zone in arg node's generic zonelist.
5087 * Used for initializing percpu 'numa_mem', which is used primarily
5088 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5089 */
5090int local_memory_node(int node)
5091{
c33d6c06 5092 struct zoneref *z;
7aac7898 5093
c33d6c06 5094 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5095 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5096 NULL);
5097 return z->zone->node;
7aac7898
LS
5098}
5099#endif
f0c0b2b8 5100
6423aa81
JK
5101static void setup_min_unmapped_ratio(void);
5102static void setup_min_slab_ratio(void);
1da177e4
LT
5103#else /* CONFIG_NUMA */
5104
f0c0b2b8 5105static void build_zonelists(pg_data_t *pgdat)
1da177e4 5106{
19655d34 5107 int node, local_node;
9d3be21b
MH
5108 struct zoneref *zonerefs;
5109 int nr_zones;
1da177e4
LT
5110
5111 local_node = pgdat->node_id;
1da177e4 5112
9d3be21b
MH
5113 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5114 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5115 zonerefs += nr_zones;
1da177e4 5116
54a6eb5c
MG
5117 /*
5118 * Now we build the zonelist so that it contains the zones
5119 * of all the other nodes.
5120 * We don't want to pressure a particular node, so when
5121 * building the zones for node N, we make sure that the
5122 * zones coming right after the local ones are those from
5123 * node N+1 (modulo N)
5124 */
5125 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5126 if (!node_online(node))
5127 continue;
9d3be21b
MH
5128 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5129 zonerefs += nr_zones;
1da177e4 5130 }
54a6eb5c
MG
5131 for (node = 0; node < local_node; node++) {
5132 if (!node_online(node))
5133 continue;
9d3be21b
MH
5134 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5135 zonerefs += nr_zones;
54a6eb5c
MG
5136 }
5137
9d3be21b
MH
5138 zonerefs->zone = NULL;
5139 zonerefs->zone_idx = 0;
1da177e4
LT
5140}
5141
5142#endif /* CONFIG_NUMA */
5143
99dcc3e5
CL
5144/*
5145 * Boot pageset table. One per cpu which is going to be used for all
5146 * zones and all nodes. The parameters will be set in such a way
5147 * that an item put on a list will immediately be handed over to
5148 * the buddy list. This is safe since pageset manipulation is done
5149 * with interrupts disabled.
5150 *
5151 * The boot_pagesets must be kept even after bootup is complete for
5152 * unused processors and/or zones. They do play a role for bootstrapping
5153 * hotplugged processors.
5154 *
5155 * zoneinfo_show() and maybe other functions do
5156 * not check if the processor is online before following the pageset pointer.
5157 * Other parts of the kernel may not check if the zone is available.
5158 */
5159static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5160static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5161static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5162
11cd8638 5163static void __build_all_zonelists(void *data)
1da177e4 5164{
6811378e 5165 int nid;
afb6ebb3 5166 int __maybe_unused cpu;
9adb62a5 5167 pg_data_t *self = data;
b93e0f32
MH
5168 static DEFINE_SPINLOCK(lock);
5169
5170 spin_lock(&lock);
9276b1bc 5171
7f9cfb31
BL
5172#ifdef CONFIG_NUMA
5173 memset(node_load, 0, sizeof(node_load));
5174#endif
9adb62a5 5175
c1152583
WY
5176 /*
5177 * This node is hotadded and no memory is yet present. So just
5178 * building zonelists is fine - no need to touch other nodes.
5179 */
9adb62a5
JL
5180 if (self && !node_online(self->node_id)) {
5181 build_zonelists(self);
c1152583
WY
5182 } else {
5183 for_each_online_node(nid) {
5184 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5185
c1152583
WY
5186 build_zonelists(pgdat);
5187 }
99dcc3e5 5188
7aac7898
LS
5189#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5190 /*
5191 * We now know the "local memory node" for each node--
5192 * i.e., the node of the first zone in the generic zonelist.
5193 * Set up numa_mem percpu variable for on-line cpus. During
5194 * boot, only the boot cpu should be on-line; we'll init the
5195 * secondary cpus' numa_mem as they come on-line. During
5196 * node/memory hotplug, we'll fixup all on-line cpus.
5197 */
d9c9a0b9 5198 for_each_online_cpu(cpu)
7aac7898 5199 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5200#endif
d9c9a0b9 5201 }
b93e0f32
MH
5202
5203 spin_unlock(&lock);
6811378e
YG
5204}
5205
061f67bc
RV
5206static noinline void __init
5207build_all_zonelists_init(void)
5208{
afb6ebb3
MH
5209 int cpu;
5210
061f67bc 5211 __build_all_zonelists(NULL);
afb6ebb3
MH
5212
5213 /*
5214 * Initialize the boot_pagesets that are going to be used
5215 * for bootstrapping processors. The real pagesets for
5216 * each zone will be allocated later when the per cpu
5217 * allocator is available.
5218 *
5219 * boot_pagesets are used also for bootstrapping offline
5220 * cpus if the system is already booted because the pagesets
5221 * are needed to initialize allocators on a specific cpu too.
5222 * F.e. the percpu allocator needs the page allocator which
5223 * needs the percpu allocator in order to allocate its pagesets
5224 * (a chicken-egg dilemma).
5225 */
5226 for_each_possible_cpu(cpu)
5227 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5228
061f67bc
RV
5229 mminit_verify_zonelist();
5230 cpuset_init_current_mems_allowed();
5231}
5232
4eaf3f64 5233/*
4eaf3f64 5234 * unless system_state == SYSTEM_BOOTING.
061f67bc 5235 *
72675e13 5236 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5237 * [protected by SYSTEM_BOOTING].
4eaf3f64 5238 */
72675e13 5239void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5240{
5241 if (system_state == SYSTEM_BOOTING) {
061f67bc 5242 build_all_zonelists_init();
6811378e 5243 } else {
11cd8638 5244 __build_all_zonelists(pgdat);
6811378e
YG
5245 /* cpuset refresh routine should be here */
5246 }
bd1e22b8 5247 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5248 /*
5249 * Disable grouping by mobility if the number of pages in the
5250 * system is too low to allow the mechanism to work. It would be
5251 * more accurate, but expensive to check per-zone. This check is
5252 * made on memory-hotadd so a system can start with mobility
5253 * disabled and enable it later
5254 */
d9c23400 5255 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5256 page_group_by_mobility_disabled = 1;
5257 else
5258 page_group_by_mobility_disabled = 0;
5259
c9bff3ee 5260 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5261 nr_online_nodes,
756a025f
JP
5262 page_group_by_mobility_disabled ? "off" : "on",
5263 vm_total_pages);
f0c0b2b8 5264#ifdef CONFIG_NUMA
f88dfff5 5265 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5266#endif
1da177e4
LT
5267}
5268
1da177e4
LT
5269/*
5270 * Initially all pages are reserved - free ones are freed
5271 * up by free_all_bootmem() once the early boot process is
5272 * done. Non-atomic initialization, single-pass.
5273 */
c09b4240 5274void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5275 unsigned long start_pfn, enum memmap_context context)
1da177e4 5276{
4b94ffdc 5277 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5278 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5279 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5280 unsigned long pfn;
3a80a7fa 5281 unsigned long nr_initialised = 0;
342332e6
TI
5282#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5283 struct memblock_region *r = NULL, *tmp;
5284#endif
1da177e4 5285
22b31eec
HD
5286 if (highest_memmap_pfn < end_pfn - 1)
5287 highest_memmap_pfn = end_pfn - 1;
5288
4b94ffdc
DW
5289 /*
5290 * Honor reservation requested by the driver for this ZONE_DEVICE
5291 * memory
5292 */
5293 if (altmap && start_pfn == altmap->base_pfn)
5294 start_pfn += altmap->reserve;
5295
cbe8dd4a 5296 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5297 /*
b72d0ffb
AM
5298 * There can be holes in boot-time mem_map[]s handed to this
5299 * function. They do not exist on hotplugged memory.
a2f3aa02 5300 */
b72d0ffb
AM
5301 if (context != MEMMAP_EARLY)
5302 goto not_early;
5303
99b6ead4 5304 if (!early_pfn_valid(pfn))
b72d0ffb
AM
5305 continue;
5306 if (!early_pfn_in_nid(pfn, nid))
5307 continue;
5308 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5309 break;
342332e6
TI
5310
5311#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5312 /*
5313 * Check given memblock attribute by firmware which can affect
5314 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5315 * mirrored, it's an overlapped memmap init. skip it.
5316 */
5317 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5318 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5319 for_each_memblock(memory, tmp)
5320 if (pfn < memblock_region_memory_end_pfn(tmp))
5321 break;
5322 r = tmp;
5323 }
5324 if (pfn >= memblock_region_memory_base_pfn(r) &&
5325 memblock_is_mirror(r)) {
5326 /* already initialized as NORMAL */
5327 pfn = memblock_region_memory_end_pfn(r);
5328 continue;
342332e6 5329 }
a2f3aa02 5330 }
b72d0ffb 5331#endif
ac5d2539 5332
b72d0ffb 5333not_early:
ac5d2539
MG
5334 /*
5335 * Mark the block movable so that blocks are reserved for
5336 * movable at startup. This will force kernel allocations
5337 * to reserve their blocks rather than leaking throughout
5338 * the address space during boot when many long-lived
974a786e 5339 * kernel allocations are made.
ac5d2539
MG
5340 *
5341 * bitmap is created for zone's valid pfn range. but memmap
5342 * can be created for invalid pages (for alignment)
5343 * check here not to call set_pageblock_migratetype() against
5344 * pfn out of zone.
5345 */
5346 if (!(pfn & (pageblock_nr_pages - 1))) {
5347 struct page *page = pfn_to_page(pfn);
5348
5349 __init_single_page(page, pfn, zone, nid);
5350 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5351 cond_resched();
ac5d2539
MG
5352 } else {
5353 __init_single_pfn(pfn, zone, nid);
5354 }
1da177e4
LT
5355 }
5356}
5357
1e548deb 5358static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5359{
7aeb09f9 5360 unsigned int order, t;
b2a0ac88
MG
5361 for_each_migratetype_order(order, t) {
5362 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5363 zone->free_area[order].nr_free = 0;
5364 }
5365}
5366
5367#ifndef __HAVE_ARCH_MEMMAP_INIT
5368#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5369 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5370#endif
5371
7cd2b0a3 5372static int zone_batchsize(struct zone *zone)
e7c8d5c9 5373{
3a6be87f 5374#ifdef CONFIG_MMU
e7c8d5c9
CL
5375 int batch;
5376
5377 /*
5378 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5379 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5380 *
5381 * OK, so we don't know how big the cache is. So guess.
5382 */
b40da049 5383 batch = zone->managed_pages / 1024;
ba56e91c
SR
5384 if (batch * PAGE_SIZE > 512 * 1024)
5385 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5386 batch /= 4; /* We effectively *= 4 below */
5387 if (batch < 1)
5388 batch = 1;
5389
5390 /*
0ceaacc9
NP
5391 * Clamp the batch to a 2^n - 1 value. Having a power
5392 * of 2 value was found to be more likely to have
5393 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5394 *
0ceaacc9
NP
5395 * For example if 2 tasks are alternately allocating
5396 * batches of pages, one task can end up with a lot
5397 * of pages of one half of the possible page colors
5398 * and the other with pages of the other colors.
e7c8d5c9 5399 */
9155203a 5400 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5401
e7c8d5c9 5402 return batch;
3a6be87f
DH
5403
5404#else
5405 /* The deferral and batching of frees should be suppressed under NOMMU
5406 * conditions.
5407 *
5408 * The problem is that NOMMU needs to be able to allocate large chunks
5409 * of contiguous memory as there's no hardware page translation to
5410 * assemble apparent contiguous memory from discontiguous pages.
5411 *
5412 * Queueing large contiguous runs of pages for batching, however,
5413 * causes the pages to actually be freed in smaller chunks. As there
5414 * can be a significant delay between the individual batches being
5415 * recycled, this leads to the once large chunks of space being
5416 * fragmented and becoming unavailable for high-order allocations.
5417 */
5418 return 0;
5419#endif
e7c8d5c9
CL
5420}
5421
8d7a8fa9
CS
5422/*
5423 * pcp->high and pcp->batch values are related and dependent on one another:
5424 * ->batch must never be higher then ->high.
5425 * The following function updates them in a safe manner without read side
5426 * locking.
5427 *
5428 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5429 * those fields changing asynchronously (acording the the above rule).
5430 *
5431 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5432 * outside of boot time (or some other assurance that no concurrent updaters
5433 * exist).
5434 */
5435static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5436 unsigned long batch)
5437{
5438 /* start with a fail safe value for batch */
5439 pcp->batch = 1;
5440 smp_wmb();
5441
5442 /* Update high, then batch, in order */
5443 pcp->high = high;
5444 smp_wmb();
5445
5446 pcp->batch = batch;
5447}
5448
3664033c 5449/* a companion to pageset_set_high() */
4008bab7
CS
5450static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5451{
8d7a8fa9 5452 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5453}
5454
88c90dbc 5455static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5456{
5457 struct per_cpu_pages *pcp;
5f8dcc21 5458 int migratetype;
2caaad41 5459
1c6fe946
MD
5460 memset(p, 0, sizeof(*p));
5461
3dfa5721 5462 pcp = &p->pcp;
2caaad41 5463 pcp->count = 0;
5f8dcc21
MG
5464 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5465 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5466}
5467
88c90dbc
CS
5468static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5469{
5470 pageset_init(p);
5471 pageset_set_batch(p, batch);
5472}
5473
8ad4b1fb 5474/*
3664033c 5475 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5476 * to the value high for the pageset p.
5477 */
3664033c 5478static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5479 unsigned long high)
5480{
8d7a8fa9
CS
5481 unsigned long batch = max(1UL, high / 4);
5482 if ((high / 4) > (PAGE_SHIFT * 8))
5483 batch = PAGE_SHIFT * 8;
8ad4b1fb 5484
8d7a8fa9 5485 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5486}
5487
7cd2b0a3
DR
5488static void pageset_set_high_and_batch(struct zone *zone,
5489 struct per_cpu_pageset *pcp)
56cef2b8 5490{
56cef2b8 5491 if (percpu_pagelist_fraction)
3664033c 5492 pageset_set_high(pcp,
56cef2b8
CS
5493 (zone->managed_pages /
5494 percpu_pagelist_fraction));
5495 else
5496 pageset_set_batch(pcp, zone_batchsize(zone));
5497}
5498
169f6c19
CS
5499static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5500{
5501 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5502
5503 pageset_init(pcp);
5504 pageset_set_high_and_batch(zone, pcp);
5505}
5506
72675e13 5507void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5508{
5509 int cpu;
319774e2 5510 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5511 for_each_possible_cpu(cpu)
5512 zone_pageset_init(zone, cpu);
319774e2
WF
5513}
5514
2caaad41 5515/*
99dcc3e5
CL
5516 * Allocate per cpu pagesets and initialize them.
5517 * Before this call only boot pagesets were available.
e7c8d5c9 5518 */
99dcc3e5 5519void __init setup_per_cpu_pageset(void)
e7c8d5c9 5520{
b4911ea2 5521 struct pglist_data *pgdat;
99dcc3e5 5522 struct zone *zone;
e7c8d5c9 5523
319774e2
WF
5524 for_each_populated_zone(zone)
5525 setup_zone_pageset(zone);
b4911ea2
MG
5526
5527 for_each_online_pgdat(pgdat)
5528 pgdat->per_cpu_nodestats =
5529 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5530}
5531
c09b4240 5532static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5533{
99dcc3e5
CL
5534 /*
5535 * per cpu subsystem is not up at this point. The following code
5536 * relies on the ability of the linker to provide the
5537 * offset of a (static) per cpu variable into the per cpu area.
5538 */
5539 zone->pageset = &boot_pageset;
ed8ece2e 5540
b38a8725 5541 if (populated_zone(zone))
99dcc3e5
CL
5542 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5543 zone->name, zone->present_pages,
5544 zone_batchsize(zone));
ed8ece2e
DH
5545}
5546
dc0bbf3b 5547void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5548 unsigned long zone_start_pfn,
b171e409 5549 unsigned long size)
ed8ece2e
DH
5550{
5551 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5552
ed8ece2e
DH
5553 pgdat->nr_zones = zone_idx(zone) + 1;
5554
ed8ece2e
DH
5555 zone->zone_start_pfn = zone_start_pfn;
5556
708614e6
MG
5557 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5558 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5559 pgdat->node_id,
5560 (unsigned long)zone_idx(zone),
5561 zone_start_pfn, (zone_start_pfn + size));
5562
1e548deb 5563 zone_init_free_lists(zone);
9dcb8b68 5564 zone->initialized = 1;
ed8ece2e
DH
5565}
5566
0ee332c1 5567#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5568#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5569
c713216d
MG
5570/*
5571 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5572 */
8a942fde
MG
5573int __meminit __early_pfn_to_nid(unsigned long pfn,
5574 struct mminit_pfnnid_cache *state)
c713216d 5575{
c13291a5 5576 unsigned long start_pfn, end_pfn;
e76b63f8 5577 int nid;
7c243c71 5578
8a942fde
MG
5579 if (state->last_start <= pfn && pfn < state->last_end)
5580 return state->last_nid;
c713216d 5581
e76b63f8
YL
5582 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5583 if (nid != -1) {
8a942fde
MG
5584 state->last_start = start_pfn;
5585 state->last_end = end_pfn;
5586 state->last_nid = nid;
e76b63f8
YL
5587 }
5588
5589 return nid;
c713216d
MG
5590}
5591#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5592
c713216d 5593/**
6782832e 5594 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5595 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5596 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5597 *
7d018176
ZZ
5598 * If an architecture guarantees that all ranges registered contain no holes
5599 * and may be freed, this this function may be used instead of calling
5600 * memblock_free_early_nid() manually.
c713216d 5601 */
c13291a5 5602void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5603{
c13291a5
TH
5604 unsigned long start_pfn, end_pfn;
5605 int i, this_nid;
edbe7d23 5606
c13291a5
TH
5607 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5608 start_pfn = min(start_pfn, max_low_pfn);
5609 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5610
c13291a5 5611 if (start_pfn < end_pfn)
6782832e
SS
5612 memblock_free_early_nid(PFN_PHYS(start_pfn),
5613 (end_pfn - start_pfn) << PAGE_SHIFT,
5614 this_nid);
edbe7d23 5615 }
edbe7d23 5616}
edbe7d23 5617
c713216d
MG
5618/**
5619 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5620 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5621 *
7d018176
ZZ
5622 * If an architecture guarantees that all ranges registered contain no holes and may
5623 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5624 */
5625void __init sparse_memory_present_with_active_regions(int nid)
5626{
c13291a5
TH
5627 unsigned long start_pfn, end_pfn;
5628 int i, this_nid;
c713216d 5629
c13291a5
TH
5630 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5631 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5632}
5633
5634/**
5635 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5636 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5637 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5638 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5639 *
5640 * It returns the start and end page frame of a node based on information
7d018176 5641 * provided by memblock_set_node(). If called for a node
c713216d 5642 * with no available memory, a warning is printed and the start and end
88ca3b94 5643 * PFNs will be 0.
c713216d 5644 */
a3142c8e 5645void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5646 unsigned long *start_pfn, unsigned long *end_pfn)
5647{
c13291a5 5648 unsigned long this_start_pfn, this_end_pfn;
c713216d 5649 int i;
c13291a5 5650
c713216d
MG
5651 *start_pfn = -1UL;
5652 *end_pfn = 0;
5653
c13291a5
TH
5654 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5655 *start_pfn = min(*start_pfn, this_start_pfn);
5656 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5657 }
5658
633c0666 5659 if (*start_pfn == -1UL)
c713216d 5660 *start_pfn = 0;
c713216d
MG
5661}
5662
2a1e274a
MG
5663/*
5664 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5665 * assumption is made that zones within a node are ordered in monotonic
5666 * increasing memory addresses so that the "highest" populated zone is used
5667 */
b69a7288 5668static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5669{
5670 int zone_index;
5671 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5672 if (zone_index == ZONE_MOVABLE)
5673 continue;
5674
5675 if (arch_zone_highest_possible_pfn[zone_index] >
5676 arch_zone_lowest_possible_pfn[zone_index])
5677 break;
5678 }
5679
5680 VM_BUG_ON(zone_index == -1);
5681 movable_zone = zone_index;
5682}
5683
5684/*
5685 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5686 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5687 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5688 * in each node depending on the size of each node and how evenly kernelcore
5689 * is distributed. This helper function adjusts the zone ranges
5690 * provided by the architecture for a given node by using the end of the
5691 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5692 * zones within a node are in order of monotonic increases memory addresses
5693 */
b69a7288 5694static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5695 unsigned long zone_type,
5696 unsigned long node_start_pfn,
5697 unsigned long node_end_pfn,
5698 unsigned long *zone_start_pfn,
5699 unsigned long *zone_end_pfn)
5700{
5701 /* Only adjust if ZONE_MOVABLE is on this node */
5702 if (zone_movable_pfn[nid]) {
5703 /* Size ZONE_MOVABLE */
5704 if (zone_type == ZONE_MOVABLE) {
5705 *zone_start_pfn = zone_movable_pfn[nid];
5706 *zone_end_pfn = min(node_end_pfn,
5707 arch_zone_highest_possible_pfn[movable_zone]);
5708
e506b996
XQ
5709 /* Adjust for ZONE_MOVABLE starting within this range */
5710 } else if (!mirrored_kernelcore &&
5711 *zone_start_pfn < zone_movable_pfn[nid] &&
5712 *zone_end_pfn > zone_movable_pfn[nid]) {
5713 *zone_end_pfn = zone_movable_pfn[nid];
5714
2a1e274a
MG
5715 /* Check if this whole range is within ZONE_MOVABLE */
5716 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5717 *zone_start_pfn = *zone_end_pfn;
5718 }
5719}
5720
c713216d
MG
5721/*
5722 * Return the number of pages a zone spans in a node, including holes
5723 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5724 */
6ea6e688 5725static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5726 unsigned long zone_type,
7960aedd
ZY
5727 unsigned long node_start_pfn,
5728 unsigned long node_end_pfn,
d91749c1
TI
5729 unsigned long *zone_start_pfn,
5730 unsigned long *zone_end_pfn,
c713216d
MG
5731 unsigned long *ignored)
5732{
b5685e92 5733 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5734 if (!node_start_pfn && !node_end_pfn)
5735 return 0;
5736
7960aedd 5737 /* Get the start and end of the zone */
d91749c1
TI
5738 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5739 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5740 adjust_zone_range_for_zone_movable(nid, zone_type,
5741 node_start_pfn, node_end_pfn,
d91749c1 5742 zone_start_pfn, zone_end_pfn);
c713216d
MG
5743
5744 /* Check that this node has pages within the zone's required range */
d91749c1 5745 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5746 return 0;
5747
5748 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5749 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5750 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5751
5752 /* Return the spanned pages */
d91749c1 5753 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5754}
5755
5756/*
5757 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5758 * then all holes in the requested range will be accounted for.
c713216d 5759 */
32996250 5760unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5761 unsigned long range_start_pfn,
5762 unsigned long range_end_pfn)
5763{
96e907d1
TH
5764 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5765 unsigned long start_pfn, end_pfn;
5766 int i;
c713216d 5767
96e907d1
TH
5768 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5769 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5770 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5771 nr_absent -= end_pfn - start_pfn;
c713216d 5772 }
96e907d1 5773 return nr_absent;
c713216d
MG
5774}
5775
5776/**
5777 * absent_pages_in_range - Return number of page frames in holes within a range
5778 * @start_pfn: The start PFN to start searching for holes
5779 * @end_pfn: The end PFN to stop searching for holes
5780 *
88ca3b94 5781 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5782 */
5783unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5784 unsigned long end_pfn)
5785{
5786 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5787}
5788
5789/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5790static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5791 unsigned long zone_type,
7960aedd
ZY
5792 unsigned long node_start_pfn,
5793 unsigned long node_end_pfn,
c713216d
MG
5794 unsigned long *ignored)
5795{
96e907d1
TH
5796 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5797 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5798 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5799 unsigned long nr_absent;
9c7cd687 5800
b5685e92 5801 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5802 if (!node_start_pfn && !node_end_pfn)
5803 return 0;
5804
96e907d1
TH
5805 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5806 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5807
2a1e274a
MG
5808 adjust_zone_range_for_zone_movable(nid, zone_type,
5809 node_start_pfn, node_end_pfn,
5810 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5811 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5812
5813 /*
5814 * ZONE_MOVABLE handling.
5815 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5816 * and vice versa.
5817 */
e506b996
XQ
5818 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5819 unsigned long start_pfn, end_pfn;
5820 struct memblock_region *r;
5821
5822 for_each_memblock(memory, r) {
5823 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5824 zone_start_pfn, zone_end_pfn);
5825 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5826 zone_start_pfn, zone_end_pfn);
5827
5828 if (zone_type == ZONE_MOVABLE &&
5829 memblock_is_mirror(r))
5830 nr_absent += end_pfn - start_pfn;
5831
5832 if (zone_type == ZONE_NORMAL &&
5833 !memblock_is_mirror(r))
5834 nr_absent += end_pfn - start_pfn;
342332e6
TI
5835 }
5836 }
5837
5838 return nr_absent;
c713216d 5839}
0e0b864e 5840
0ee332c1 5841#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5842static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5843 unsigned long zone_type,
7960aedd
ZY
5844 unsigned long node_start_pfn,
5845 unsigned long node_end_pfn,
d91749c1
TI
5846 unsigned long *zone_start_pfn,
5847 unsigned long *zone_end_pfn,
c713216d
MG
5848 unsigned long *zones_size)
5849{
d91749c1
TI
5850 unsigned int zone;
5851
5852 *zone_start_pfn = node_start_pfn;
5853 for (zone = 0; zone < zone_type; zone++)
5854 *zone_start_pfn += zones_size[zone];
5855
5856 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5857
c713216d
MG
5858 return zones_size[zone_type];
5859}
5860
6ea6e688 5861static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5862 unsigned long zone_type,
7960aedd
ZY
5863 unsigned long node_start_pfn,
5864 unsigned long node_end_pfn,
c713216d
MG
5865 unsigned long *zholes_size)
5866{
5867 if (!zholes_size)
5868 return 0;
5869
5870 return zholes_size[zone_type];
5871}
20e6926d 5872
0ee332c1 5873#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5874
a3142c8e 5875static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5876 unsigned long node_start_pfn,
5877 unsigned long node_end_pfn,
5878 unsigned long *zones_size,
5879 unsigned long *zholes_size)
c713216d 5880{
febd5949 5881 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5882 enum zone_type i;
5883
febd5949
GZ
5884 for (i = 0; i < MAX_NR_ZONES; i++) {
5885 struct zone *zone = pgdat->node_zones + i;
d91749c1 5886 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5887 unsigned long size, real_size;
c713216d 5888
febd5949
GZ
5889 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5890 node_start_pfn,
5891 node_end_pfn,
d91749c1
TI
5892 &zone_start_pfn,
5893 &zone_end_pfn,
febd5949
GZ
5894 zones_size);
5895 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5896 node_start_pfn, node_end_pfn,
5897 zholes_size);
d91749c1
TI
5898 if (size)
5899 zone->zone_start_pfn = zone_start_pfn;
5900 else
5901 zone->zone_start_pfn = 0;
febd5949
GZ
5902 zone->spanned_pages = size;
5903 zone->present_pages = real_size;
5904
5905 totalpages += size;
5906 realtotalpages += real_size;
5907 }
5908
5909 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5910 pgdat->node_present_pages = realtotalpages;
5911 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5912 realtotalpages);
5913}
5914
835c134e
MG
5915#ifndef CONFIG_SPARSEMEM
5916/*
5917 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5918 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5919 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5920 * round what is now in bits to nearest long in bits, then return it in
5921 * bytes.
5922 */
7c45512d 5923static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5924{
5925 unsigned long usemapsize;
5926
7c45512d 5927 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5928 usemapsize = roundup(zonesize, pageblock_nr_pages);
5929 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5930 usemapsize *= NR_PAGEBLOCK_BITS;
5931 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5932
5933 return usemapsize / 8;
5934}
5935
5936static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5937 struct zone *zone,
5938 unsigned long zone_start_pfn,
5939 unsigned long zonesize)
835c134e 5940{
7c45512d 5941 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5942 zone->pageblock_flags = NULL;
58a01a45 5943 if (usemapsize)
6782832e
SS
5944 zone->pageblock_flags =
5945 memblock_virt_alloc_node_nopanic(usemapsize,
5946 pgdat->node_id);
835c134e
MG
5947}
5948#else
7c45512d
LT
5949static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5950 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5951#endif /* CONFIG_SPARSEMEM */
5952
d9c23400 5953#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5954
d9c23400 5955/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5956void __paginginit set_pageblock_order(void)
d9c23400 5957{
955c1cd7
AM
5958 unsigned int order;
5959
d9c23400
MG
5960 /* Check that pageblock_nr_pages has not already been setup */
5961 if (pageblock_order)
5962 return;
5963
955c1cd7
AM
5964 if (HPAGE_SHIFT > PAGE_SHIFT)
5965 order = HUGETLB_PAGE_ORDER;
5966 else
5967 order = MAX_ORDER - 1;
5968
d9c23400
MG
5969 /*
5970 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5971 * This value may be variable depending on boot parameters on IA64 and
5972 * powerpc.
d9c23400
MG
5973 */
5974 pageblock_order = order;
5975}
5976#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5977
ba72cb8c
MG
5978/*
5979 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5980 * is unused as pageblock_order is set at compile-time. See
5981 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5982 * the kernel config
ba72cb8c 5983 */
15ca220e 5984void __paginginit set_pageblock_order(void)
ba72cb8c 5985{
ba72cb8c 5986}
d9c23400
MG
5987
5988#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5989
01cefaef
JL
5990static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5991 unsigned long present_pages)
5992{
5993 unsigned long pages = spanned_pages;
5994
5995 /*
5996 * Provide a more accurate estimation if there are holes within
5997 * the zone and SPARSEMEM is in use. If there are holes within the
5998 * zone, each populated memory region may cost us one or two extra
5999 * memmap pages due to alignment because memmap pages for each
89d790ab 6000 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6001 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6002 */
6003 if (spanned_pages > present_pages + (present_pages >> 4) &&
6004 IS_ENABLED(CONFIG_SPARSEMEM))
6005 pages = present_pages;
6006
6007 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6008}
6009
1da177e4
LT
6010/*
6011 * Set up the zone data structures:
6012 * - mark all pages reserved
6013 * - mark all memory queues empty
6014 * - clear the memory bitmaps
6527af5d
MK
6015 *
6016 * NOTE: pgdat should get zeroed by caller.
1da177e4 6017 */
7f3eb55b 6018static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6019{
2f1b6248 6020 enum zone_type j;
ed8ece2e 6021 int nid = pgdat->node_id;
1da177e4 6022
208d54e5 6023 pgdat_resize_init(pgdat);
8177a420
AA
6024#ifdef CONFIG_NUMA_BALANCING
6025 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6026 pgdat->numabalancing_migrate_nr_pages = 0;
6027 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6028#endif
6029#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6030 spin_lock_init(&pgdat->split_queue_lock);
6031 INIT_LIST_HEAD(&pgdat->split_queue);
6032 pgdat->split_queue_len = 0;
8177a420 6033#endif
1da177e4 6034 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6035 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6036#ifdef CONFIG_COMPACTION
6037 init_waitqueue_head(&pgdat->kcompactd_wait);
6038#endif
eefa864b 6039 pgdat_page_ext_init(pgdat);
a52633d8 6040 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6041 lruvec_init(node_lruvec(pgdat));
5f63b720 6042
385386cf
JW
6043 pgdat->per_cpu_nodestats = &boot_nodestats;
6044
1da177e4
LT
6045 for (j = 0; j < MAX_NR_ZONES; j++) {
6046 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6047 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6048 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6049
febd5949
GZ
6050 size = zone->spanned_pages;
6051 realsize = freesize = zone->present_pages;
1da177e4 6052
0e0b864e 6053 /*
9feedc9d 6054 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6055 * is used by this zone for memmap. This affects the watermark
6056 * and per-cpu initialisations
6057 */
01cefaef 6058 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6059 if (!is_highmem_idx(j)) {
6060 if (freesize >= memmap_pages) {
6061 freesize -= memmap_pages;
6062 if (memmap_pages)
6063 printk(KERN_DEBUG
6064 " %s zone: %lu pages used for memmap\n",
6065 zone_names[j], memmap_pages);
6066 } else
1170532b 6067 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6068 zone_names[j], memmap_pages, freesize);
6069 }
0e0b864e 6070
6267276f 6071 /* Account for reserved pages */
9feedc9d
JL
6072 if (j == 0 && freesize > dma_reserve) {
6073 freesize -= dma_reserve;
d903ef9f 6074 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6075 zone_names[0], dma_reserve);
0e0b864e
MG
6076 }
6077
98d2b0eb 6078 if (!is_highmem_idx(j))
9feedc9d 6079 nr_kernel_pages += freesize;
01cefaef
JL
6080 /* Charge for highmem memmap if there are enough kernel pages */
6081 else if (nr_kernel_pages > memmap_pages * 2)
6082 nr_kernel_pages -= memmap_pages;
9feedc9d 6083 nr_all_pages += freesize;
1da177e4 6084
9feedc9d
JL
6085 /*
6086 * Set an approximate value for lowmem here, it will be adjusted
6087 * when the bootmem allocator frees pages into the buddy system.
6088 * And all highmem pages will be managed by the buddy system.
6089 */
6090 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6091#ifdef CONFIG_NUMA
d5f541ed 6092 zone->node = nid;
9614634f 6093#endif
1da177e4 6094 zone->name = zone_names[j];
a52633d8 6095 zone->zone_pgdat = pgdat;
1da177e4 6096 spin_lock_init(&zone->lock);
bdc8cb98 6097 zone_seqlock_init(zone);
ed8ece2e 6098 zone_pcp_init(zone);
81c0a2bb 6099
1da177e4
LT
6100 if (!size)
6101 continue;
6102
955c1cd7 6103 set_pageblock_order();
7c45512d 6104 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6105 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6106 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6107 }
6108}
6109
bd721ea7 6110static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6111{
b0aeba74 6112 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6113 unsigned long __maybe_unused offset = 0;
6114
1da177e4
LT
6115 /* Skip empty nodes */
6116 if (!pgdat->node_spanned_pages)
6117 return;
6118
d41dee36 6119#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6120 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6121 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6122 /* ia64 gets its own node_mem_map, before this, without bootmem */
6123 if (!pgdat->node_mem_map) {
b0aeba74 6124 unsigned long size, end;
d41dee36
AW
6125 struct page *map;
6126
e984bb43
BP
6127 /*
6128 * The zone's endpoints aren't required to be MAX_ORDER
6129 * aligned but the node_mem_map endpoints must be in order
6130 * for the buddy allocator to function correctly.
6131 */
108bcc96 6132 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6133 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6134 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6135 map = alloc_remap(pgdat->node_id, size);
6136 if (!map)
6782832e
SS
6137 map = memblock_virt_alloc_node_nopanic(size,
6138 pgdat->node_id);
a1c34a3b 6139 pgdat->node_mem_map = map + offset;
1da177e4 6140 }
12d810c1 6141#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6142 /*
6143 * With no DISCONTIG, the global mem_map is just set as node 0's
6144 */
c713216d 6145 if (pgdat == NODE_DATA(0)) {
1da177e4 6146 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6147#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6148 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6149 mem_map -= offset;
0ee332c1 6150#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6151 }
1da177e4 6152#endif
d41dee36 6153#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6154}
6155
9109fb7b
JW
6156void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6157 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6158{
9109fb7b 6159 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6160 unsigned long start_pfn = 0;
6161 unsigned long end_pfn = 0;
9109fb7b 6162
88fdf75d 6163 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6164 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6165
1da177e4
LT
6166 pgdat->node_id = nid;
6167 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6168 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6169#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6170 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6171 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6172 (u64)start_pfn << PAGE_SHIFT,
6173 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6174#else
6175 start_pfn = node_start_pfn;
7960aedd
ZY
6176#endif
6177 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6178 zones_size, zholes_size);
1da177e4
LT
6179
6180 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6181#ifdef CONFIG_FLAT_NODE_MEM_MAP
6182 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6183 nid, (unsigned long)pgdat,
6184 (unsigned long)pgdat->node_mem_map);
6185#endif
1da177e4 6186
864b9a39 6187 reset_deferred_meminit(pgdat);
7f3eb55b 6188 free_area_init_core(pgdat);
1da177e4
LT
6189}
6190
0ee332c1 6191#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6192
6193#if MAX_NUMNODES > 1
6194/*
6195 * Figure out the number of possible node ids.
6196 */
f9872caf 6197void __init setup_nr_node_ids(void)
418508c1 6198{
904a9553 6199 unsigned int highest;
418508c1 6200
904a9553 6201 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6202 nr_node_ids = highest + 1;
6203}
418508c1
MS
6204#endif
6205
1e01979c
TH
6206/**
6207 * node_map_pfn_alignment - determine the maximum internode alignment
6208 *
6209 * This function should be called after node map is populated and sorted.
6210 * It calculates the maximum power of two alignment which can distinguish
6211 * all the nodes.
6212 *
6213 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6214 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6215 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6216 * shifted, 1GiB is enough and this function will indicate so.
6217 *
6218 * This is used to test whether pfn -> nid mapping of the chosen memory
6219 * model has fine enough granularity to avoid incorrect mapping for the
6220 * populated node map.
6221 *
6222 * Returns the determined alignment in pfn's. 0 if there is no alignment
6223 * requirement (single node).
6224 */
6225unsigned long __init node_map_pfn_alignment(void)
6226{
6227 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6228 unsigned long start, end, mask;
1e01979c 6229 int last_nid = -1;
c13291a5 6230 int i, nid;
1e01979c 6231
c13291a5 6232 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6233 if (!start || last_nid < 0 || last_nid == nid) {
6234 last_nid = nid;
6235 last_end = end;
6236 continue;
6237 }
6238
6239 /*
6240 * Start with a mask granular enough to pin-point to the
6241 * start pfn and tick off bits one-by-one until it becomes
6242 * too coarse to separate the current node from the last.
6243 */
6244 mask = ~((1 << __ffs(start)) - 1);
6245 while (mask && last_end <= (start & (mask << 1)))
6246 mask <<= 1;
6247
6248 /* accumulate all internode masks */
6249 accl_mask |= mask;
6250 }
6251
6252 /* convert mask to number of pages */
6253 return ~accl_mask + 1;
6254}
6255
a6af2bc3 6256/* Find the lowest pfn for a node */
b69a7288 6257static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6258{
a6af2bc3 6259 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6260 unsigned long start_pfn;
6261 int i;
1abbfb41 6262
c13291a5
TH
6263 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6264 min_pfn = min(min_pfn, start_pfn);
c713216d 6265
a6af2bc3 6266 if (min_pfn == ULONG_MAX) {
1170532b 6267 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6268 return 0;
6269 }
6270
6271 return min_pfn;
c713216d
MG
6272}
6273
6274/**
6275 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6276 *
6277 * It returns the minimum PFN based on information provided via
7d018176 6278 * memblock_set_node().
c713216d
MG
6279 */
6280unsigned long __init find_min_pfn_with_active_regions(void)
6281{
6282 return find_min_pfn_for_node(MAX_NUMNODES);
6283}
6284
37b07e41
LS
6285/*
6286 * early_calculate_totalpages()
6287 * Sum pages in active regions for movable zone.
4b0ef1fe 6288 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6289 */
484f51f8 6290static unsigned long __init early_calculate_totalpages(void)
7e63efef 6291{
7e63efef 6292 unsigned long totalpages = 0;
c13291a5
TH
6293 unsigned long start_pfn, end_pfn;
6294 int i, nid;
6295
6296 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6297 unsigned long pages = end_pfn - start_pfn;
7e63efef 6298
37b07e41
LS
6299 totalpages += pages;
6300 if (pages)
4b0ef1fe 6301 node_set_state(nid, N_MEMORY);
37b07e41 6302 }
b8af2941 6303 return totalpages;
7e63efef
MG
6304}
6305
2a1e274a
MG
6306/*
6307 * Find the PFN the Movable zone begins in each node. Kernel memory
6308 * is spread evenly between nodes as long as the nodes have enough
6309 * memory. When they don't, some nodes will have more kernelcore than
6310 * others
6311 */
b224ef85 6312static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6313{
6314 int i, nid;
6315 unsigned long usable_startpfn;
6316 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6317 /* save the state before borrow the nodemask */
4b0ef1fe 6318 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6319 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6320 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6321 struct memblock_region *r;
b2f3eebe
TC
6322
6323 /* Need to find movable_zone earlier when movable_node is specified. */
6324 find_usable_zone_for_movable();
6325
6326 /*
6327 * If movable_node is specified, ignore kernelcore and movablecore
6328 * options.
6329 */
6330 if (movable_node_is_enabled()) {
136199f0
EM
6331 for_each_memblock(memory, r) {
6332 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6333 continue;
6334
136199f0 6335 nid = r->nid;
b2f3eebe 6336
136199f0 6337 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6338 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6339 min(usable_startpfn, zone_movable_pfn[nid]) :
6340 usable_startpfn;
6341 }
6342
6343 goto out2;
6344 }
2a1e274a 6345
342332e6
TI
6346 /*
6347 * If kernelcore=mirror is specified, ignore movablecore option
6348 */
6349 if (mirrored_kernelcore) {
6350 bool mem_below_4gb_not_mirrored = false;
6351
6352 for_each_memblock(memory, r) {
6353 if (memblock_is_mirror(r))
6354 continue;
6355
6356 nid = r->nid;
6357
6358 usable_startpfn = memblock_region_memory_base_pfn(r);
6359
6360 if (usable_startpfn < 0x100000) {
6361 mem_below_4gb_not_mirrored = true;
6362 continue;
6363 }
6364
6365 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6366 min(usable_startpfn, zone_movable_pfn[nid]) :
6367 usable_startpfn;
6368 }
6369
6370 if (mem_below_4gb_not_mirrored)
6371 pr_warn("This configuration results in unmirrored kernel memory.");
6372
6373 goto out2;
6374 }
6375
7e63efef 6376 /*
b2f3eebe 6377 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6378 * kernelcore that corresponds so that memory usable for
6379 * any allocation type is evenly spread. If both kernelcore
6380 * and movablecore are specified, then the value of kernelcore
6381 * will be used for required_kernelcore if it's greater than
6382 * what movablecore would have allowed.
6383 */
6384 if (required_movablecore) {
7e63efef
MG
6385 unsigned long corepages;
6386
6387 /*
6388 * Round-up so that ZONE_MOVABLE is at least as large as what
6389 * was requested by the user
6390 */
6391 required_movablecore =
6392 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6393 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6394 corepages = totalpages - required_movablecore;
6395
6396 required_kernelcore = max(required_kernelcore, corepages);
6397 }
6398
bde304bd
XQ
6399 /*
6400 * If kernelcore was not specified or kernelcore size is larger
6401 * than totalpages, there is no ZONE_MOVABLE.
6402 */
6403 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6404 goto out;
2a1e274a
MG
6405
6406 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6407 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6408
6409restart:
6410 /* Spread kernelcore memory as evenly as possible throughout nodes */
6411 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6412 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6413 unsigned long start_pfn, end_pfn;
6414
2a1e274a
MG
6415 /*
6416 * Recalculate kernelcore_node if the division per node
6417 * now exceeds what is necessary to satisfy the requested
6418 * amount of memory for the kernel
6419 */
6420 if (required_kernelcore < kernelcore_node)
6421 kernelcore_node = required_kernelcore / usable_nodes;
6422
6423 /*
6424 * As the map is walked, we track how much memory is usable
6425 * by the kernel using kernelcore_remaining. When it is
6426 * 0, the rest of the node is usable by ZONE_MOVABLE
6427 */
6428 kernelcore_remaining = kernelcore_node;
6429
6430 /* Go through each range of PFNs within this node */
c13291a5 6431 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6432 unsigned long size_pages;
6433
c13291a5 6434 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6435 if (start_pfn >= end_pfn)
6436 continue;
6437
6438 /* Account for what is only usable for kernelcore */
6439 if (start_pfn < usable_startpfn) {
6440 unsigned long kernel_pages;
6441 kernel_pages = min(end_pfn, usable_startpfn)
6442 - start_pfn;
6443
6444 kernelcore_remaining -= min(kernel_pages,
6445 kernelcore_remaining);
6446 required_kernelcore -= min(kernel_pages,
6447 required_kernelcore);
6448
6449 /* Continue if range is now fully accounted */
6450 if (end_pfn <= usable_startpfn) {
6451
6452 /*
6453 * Push zone_movable_pfn to the end so
6454 * that if we have to rebalance
6455 * kernelcore across nodes, we will
6456 * not double account here
6457 */
6458 zone_movable_pfn[nid] = end_pfn;
6459 continue;
6460 }
6461 start_pfn = usable_startpfn;
6462 }
6463
6464 /*
6465 * The usable PFN range for ZONE_MOVABLE is from
6466 * start_pfn->end_pfn. Calculate size_pages as the
6467 * number of pages used as kernelcore
6468 */
6469 size_pages = end_pfn - start_pfn;
6470 if (size_pages > kernelcore_remaining)
6471 size_pages = kernelcore_remaining;
6472 zone_movable_pfn[nid] = start_pfn + size_pages;
6473
6474 /*
6475 * Some kernelcore has been met, update counts and
6476 * break if the kernelcore for this node has been
b8af2941 6477 * satisfied
2a1e274a
MG
6478 */
6479 required_kernelcore -= min(required_kernelcore,
6480 size_pages);
6481 kernelcore_remaining -= size_pages;
6482 if (!kernelcore_remaining)
6483 break;
6484 }
6485 }
6486
6487 /*
6488 * If there is still required_kernelcore, we do another pass with one
6489 * less node in the count. This will push zone_movable_pfn[nid] further
6490 * along on the nodes that still have memory until kernelcore is
b8af2941 6491 * satisfied
2a1e274a
MG
6492 */
6493 usable_nodes--;
6494 if (usable_nodes && required_kernelcore > usable_nodes)
6495 goto restart;
6496
b2f3eebe 6497out2:
2a1e274a
MG
6498 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6499 for (nid = 0; nid < MAX_NUMNODES; nid++)
6500 zone_movable_pfn[nid] =
6501 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6502
20e6926d 6503out:
66918dcd 6504 /* restore the node_state */
4b0ef1fe 6505 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6506}
6507
4b0ef1fe
LJ
6508/* Any regular or high memory on that node ? */
6509static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6510{
37b07e41
LS
6511 enum zone_type zone_type;
6512
4b0ef1fe
LJ
6513 if (N_MEMORY == N_NORMAL_MEMORY)
6514 return;
6515
6516 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6517 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6518 if (populated_zone(zone)) {
4b0ef1fe
LJ
6519 node_set_state(nid, N_HIGH_MEMORY);
6520 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6521 zone_type <= ZONE_NORMAL)
6522 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6523 break;
6524 }
37b07e41 6525 }
37b07e41
LS
6526}
6527
c713216d
MG
6528/**
6529 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6530 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6531 *
6532 * This will call free_area_init_node() for each active node in the system.
7d018176 6533 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6534 * zone in each node and their holes is calculated. If the maximum PFN
6535 * between two adjacent zones match, it is assumed that the zone is empty.
6536 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6537 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6538 * starts where the previous one ended. For example, ZONE_DMA32 starts
6539 * at arch_max_dma_pfn.
6540 */
6541void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6542{
c13291a5
TH
6543 unsigned long start_pfn, end_pfn;
6544 int i, nid;
a6af2bc3 6545
c713216d
MG
6546 /* Record where the zone boundaries are */
6547 memset(arch_zone_lowest_possible_pfn, 0,
6548 sizeof(arch_zone_lowest_possible_pfn));
6549 memset(arch_zone_highest_possible_pfn, 0,
6550 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6551
6552 start_pfn = find_min_pfn_with_active_regions();
6553
6554 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6555 if (i == ZONE_MOVABLE)
6556 continue;
90cae1fe
OH
6557
6558 end_pfn = max(max_zone_pfn[i], start_pfn);
6559 arch_zone_lowest_possible_pfn[i] = start_pfn;
6560 arch_zone_highest_possible_pfn[i] = end_pfn;
6561
6562 start_pfn = end_pfn;
c713216d 6563 }
2a1e274a
MG
6564
6565 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6566 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6567 find_zone_movable_pfns_for_nodes();
c713216d 6568
c713216d 6569 /* Print out the zone ranges */
f88dfff5 6570 pr_info("Zone ranges:\n");
2a1e274a
MG
6571 for (i = 0; i < MAX_NR_ZONES; i++) {
6572 if (i == ZONE_MOVABLE)
6573 continue;
f88dfff5 6574 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6575 if (arch_zone_lowest_possible_pfn[i] ==
6576 arch_zone_highest_possible_pfn[i])
f88dfff5 6577 pr_cont("empty\n");
72f0ba02 6578 else
8d29e18a
JG
6579 pr_cont("[mem %#018Lx-%#018Lx]\n",
6580 (u64)arch_zone_lowest_possible_pfn[i]
6581 << PAGE_SHIFT,
6582 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6583 << PAGE_SHIFT) - 1);
2a1e274a
MG
6584 }
6585
6586 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6587 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6588 for (i = 0; i < MAX_NUMNODES; i++) {
6589 if (zone_movable_pfn[i])
8d29e18a
JG
6590 pr_info(" Node %d: %#018Lx\n", i,
6591 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6592 }
c713216d 6593
f2d52fe5 6594 /* Print out the early node map */
f88dfff5 6595 pr_info("Early memory node ranges\n");
c13291a5 6596 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6597 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6598 (u64)start_pfn << PAGE_SHIFT,
6599 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6600
6601 /* Initialise every node */
708614e6 6602 mminit_verify_pageflags_layout();
8ef82866 6603 setup_nr_node_ids();
c713216d
MG
6604 for_each_online_node(nid) {
6605 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6606 free_area_init_node(nid, NULL,
c713216d 6607 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6608
6609 /* Any memory on that node */
6610 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6611 node_set_state(nid, N_MEMORY);
6612 check_for_memory(pgdat, nid);
c713216d
MG
6613 }
6614}
2a1e274a 6615
7e63efef 6616static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6617{
6618 unsigned long long coremem;
6619 if (!p)
6620 return -EINVAL;
6621
6622 coremem = memparse(p, &p);
7e63efef 6623 *core = coremem >> PAGE_SHIFT;
2a1e274a 6624
7e63efef 6625 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6626 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6627
6628 return 0;
6629}
ed7ed365 6630
7e63efef
MG
6631/*
6632 * kernelcore=size sets the amount of memory for use for allocations that
6633 * cannot be reclaimed or migrated.
6634 */
6635static int __init cmdline_parse_kernelcore(char *p)
6636{
342332e6
TI
6637 /* parse kernelcore=mirror */
6638 if (parse_option_str(p, "mirror")) {
6639 mirrored_kernelcore = true;
6640 return 0;
6641 }
6642
7e63efef
MG
6643 return cmdline_parse_core(p, &required_kernelcore);
6644}
6645
6646/*
6647 * movablecore=size sets the amount of memory for use for allocations that
6648 * can be reclaimed or migrated.
6649 */
6650static int __init cmdline_parse_movablecore(char *p)
6651{
6652 return cmdline_parse_core(p, &required_movablecore);
6653}
6654
ed7ed365 6655early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6656early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6657
0ee332c1 6658#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6659
c3d5f5f0
JL
6660void adjust_managed_page_count(struct page *page, long count)
6661{
6662 spin_lock(&managed_page_count_lock);
6663 page_zone(page)->managed_pages += count;
6664 totalram_pages += count;
3dcc0571
JL
6665#ifdef CONFIG_HIGHMEM
6666 if (PageHighMem(page))
6667 totalhigh_pages += count;
6668#endif
c3d5f5f0
JL
6669 spin_unlock(&managed_page_count_lock);
6670}
3dcc0571 6671EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6672
11199692 6673unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6674{
11199692
JL
6675 void *pos;
6676 unsigned long pages = 0;
69afade7 6677
11199692
JL
6678 start = (void *)PAGE_ALIGN((unsigned long)start);
6679 end = (void *)((unsigned long)end & PAGE_MASK);
6680 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6681 if ((unsigned int)poison <= 0xFF)
11199692
JL
6682 memset(pos, poison, PAGE_SIZE);
6683 free_reserved_page(virt_to_page(pos));
69afade7
JL
6684 }
6685
6686 if (pages && s)
adb1fe9a
JP
6687 pr_info("Freeing %s memory: %ldK\n",
6688 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6689
6690 return pages;
6691}
11199692 6692EXPORT_SYMBOL(free_reserved_area);
69afade7 6693
cfa11e08
JL
6694#ifdef CONFIG_HIGHMEM
6695void free_highmem_page(struct page *page)
6696{
6697 __free_reserved_page(page);
6698 totalram_pages++;
7b4b2a0d 6699 page_zone(page)->managed_pages++;
cfa11e08
JL
6700 totalhigh_pages++;
6701}
6702#endif
6703
7ee3d4e8
JL
6704
6705void __init mem_init_print_info(const char *str)
6706{
6707 unsigned long physpages, codesize, datasize, rosize, bss_size;
6708 unsigned long init_code_size, init_data_size;
6709
6710 physpages = get_num_physpages();
6711 codesize = _etext - _stext;
6712 datasize = _edata - _sdata;
6713 rosize = __end_rodata - __start_rodata;
6714 bss_size = __bss_stop - __bss_start;
6715 init_data_size = __init_end - __init_begin;
6716 init_code_size = _einittext - _sinittext;
6717
6718 /*
6719 * Detect special cases and adjust section sizes accordingly:
6720 * 1) .init.* may be embedded into .data sections
6721 * 2) .init.text.* may be out of [__init_begin, __init_end],
6722 * please refer to arch/tile/kernel/vmlinux.lds.S.
6723 * 3) .rodata.* may be embedded into .text or .data sections.
6724 */
6725#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6726 do { \
6727 if (start <= pos && pos < end && size > adj) \
6728 size -= adj; \
6729 } while (0)
7ee3d4e8
JL
6730
6731 adj_init_size(__init_begin, __init_end, init_data_size,
6732 _sinittext, init_code_size);
6733 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6734 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6735 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6736 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6737
6738#undef adj_init_size
6739
756a025f 6740 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6741#ifdef CONFIG_HIGHMEM
756a025f 6742 ", %luK highmem"
7ee3d4e8 6743#endif
756a025f
JP
6744 "%s%s)\n",
6745 nr_free_pages() << (PAGE_SHIFT - 10),
6746 physpages << (PAGE_SHIFT - 10),
6747 codesize >> 10, datasize >> 10, rosize >> 10,
6748 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6749 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6750 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6751#ifdef CONFIG_HIGHMEM
756a025f 6752 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6753#endif
756a025f 6754 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6755}
6756
0e0b864e 6757/**
88ca3b94
RD
6758 * set_dma_reserve - set the specified number of pages reserved in the first zone
6759 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6760 *
013110a7 6761 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6762 * In the DMA zone, a significant percentage may be consumed by kernel image
6763 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6764 * function may optionally be used to account for unfreeable pages in the
6765 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6766 * smaller per-cpu batchsize.
0e0b864e
MG
6767 */
6768void __init set_dma_reserve(unsigned long new_dma_reserve)
6769{
6770 dma_reserve = new_dma_reserve;
6771}
6772
1da177e4
LT
6773void __init free_area_init(unsigned long *zones_size)
6774{
9109fb7b 6775 free_area_init_node(0, zones_size,
1da177e4
LT
6776 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6777}
1da177e4 6778
005fd4bb 6779static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6780{
1da177e4 6781
005fd4bb
SAS
6782 lru_add_drain_cpu(cpu);
6783 drain_pages(cpu);
9f8f2172 6784
005fd4bb
SAS
6785 /*
6786 * Spill the event counters of the dead processor
6787 * into the current processors event counters.
6788 * This artificially elevates the count of the current
6789 * processor.
6790 */
6791 vm_events_fold_cpu(cpu);
9f8f2172 6792
005fd4bb
SAS
6793 /*
6794 * Zero the differential counters of the dead processor
6795 * so that the vm statistics are consistent.
6796 *
6797 * This is only okay since the processor is dead and cannot
6798 * race with what we are doing.
6799 */
6800 cpu_vm_stats_fold(cpu);
6801 return 0;
1da177e4 6802}
1da177e4
LT
6803
6804void __init page_alloc_init(void)
6805{
005fd4bb
SAS
6806 int ret;
6807
6808 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6809 "mm/page_alloc:dead", NULL,
6810 page_alloc_cpu_dead);
6811 WARN_ON(ret < 0);
1da177e4
LT
6812}
6813
cb45b0e9 6814/*
34b10060 6815 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6816 * or min_free_kbytes changes.
6817 */
6818static void calculate_totalreserve_pages(void)
6819{
6820 struct pglist_data *pgdat;
6821 unsigned long reserve_pages = 0;
2f6726e5 6822 enum zone_type i, j;
cb45b0e9
HA
6823
6824 for_each_online_pgdat(pgdat) {
281e3726
MG
6825
6826 pgdat->totalreserve_pages = 0;
6827
cb45b0e9
HA
6828 for (i = 0; i < MAX_NR_ZONES; i++) {
6829 struct zone *zone = pgdat->node_zones + i;
3484b2de 6830 long max = 0;
cb45b0e9
HA
6831
6832 /* Find valid and maximum lowmem_reserve in the zone */
6833 for (j = i; j < MAX_NR_ZONES; j++) {
6834 if (zone->lowmem_reserve[j] > max)
6835 max = zone->lowmem_reserve[j];
6836 }
6837
41858966
MG
6838 /* we treat the high watermark as reserved pages. */
6839 max += high_wmark_pages(zone);
cb45b0e9 6840
b40da049
JL
6841 if (max > zone->managed_pages)
6842 max = zone->managed_pages;
a8d01437 6843
281e3726 6844 pgdat->totalreserve_pages += max;
a8d01437 6845
cb45b0e9
HA
6846 reserve_pages += max;
6847 }
6848 }
6849 totalreserve_pages = reserve_pages;
6850}
6851
1da177e4
LT
6852/*
6853 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6854 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6855 * has a correct pages reserved value, so an adequate number of
6856 * pages are left in the zone after a successful __alloc_pages().
6857 */
6858static void setup_per_zone_lowmem_reserve(void)
6859{
6860 struct pglist_data *pgdat;
2f6726e5 6861 enum zone_type j, idx;
1da177e4 6862
ec936fc5 6863 for_each_online_pgdat(pgdat) {
1da177e4
LT
6864 for (j = 0; j < MAX_NR_ZONES; j++) {
6865 struct zone *zone = pgdat->node_zones + j;
b40da049 6866 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6867
6868 zone->lowmem_reserve[j] = 0;
6869
2f6726e5
CL
6870 idx = j;
6871 while (idx) {
1da177e4
LT
6872 struct zone *lower_zone;
6873
2f6726e5
CL
6874 idx--;
6875
1da177e4
LT
6876 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6877 sysctl_lowmem_reserve_ratio[idx] = 1;
6878
6879 lower_zone = pgdat->node_zones + idx;
b40da049 6880 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6881 sysctl_lowmem_reserve_ratio[idx];
b40da049 6882 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6883 }
6884 }
6885 }
cb45b0e9
HA
6886
6887 /* update totalreserve_pages */
6888 calculate_totalreserve_pages();
1da177e4
LT
6889}
6890
cfd3da1e 6891static void __setup_per_zone_wmarks(void)
1da177e4
LT
6892{
6893 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6894 unsigned long lowmem_pages = 0;
6895 struct zone *zone;
6896 unsigned long flags;
6897
6898 /* Calculate total number of !ZONE_HIGHMEM pages */
6899 for_each_zone(zone) {
6900 if (!is_highmem(zone))
b40da049 6901 lowmem_pages += zone->managed_pages;
1da177e4
LT
6902 }
6903
6904 for_each_zone(zone) {
ac924c60
AM
6905 u64 tmp;
6906
1125b4e3 6907 spin_lock_irqsave(&zone->lock, flags);
b40da049 6908 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6909 do_div(tmp, lowmem_pages);
1da177e4
LT
6910 if (is_highmem(zone)) {
6911 /*
669ed175
NP
6912 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6913 * need highmem pages, so cap pages_min to a small
6914 * value here.
6915 *
41858966 6916 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6917 * deltas control asynch page reclaim, and so should
669ed175 6918 * not be capped for highmem.
1da177e4 6919 */
90ae8d67 6920 unsigned long min_pages;
1da177e4 6921
b40da049 6922 min_pages = zone->managed_pages / 1024;
90ae8d67 6923 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6924 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6925 } else {
669ed175
NP
6926 /*
6927 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6928 * proportionate to the zone's size.
6929 */
41858966 6930 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6931 }
6932
795ae7a0
JW
6933 /*
6934 * Set the kswapd watermarks distance according to the
6935 * scale factor in proportion to available memory, but
6936 * ensure a minimum size on small systems.
6937 */
6938 tmp = max_t(u64, tmp >> 2,
6939 mult_frac(zone->managed_pages,
6940 watermark_scale_factor, 10000));
6941
6942 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6943 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6944
1125b4e3 6945 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6946 }
cb45b0e9
HA
6947
6948 /* update totalreserve_pages */
6949 calculate_totalreserve_pages();
1da177e4
LT
6950}
6951
cfd3da1e
MG
6952/**
6953 * setup_per_zone_wmarks - called when min_free_kbytes changes
6954 * or when memory is hot-{added|removed}
6955 *
6956 * Ensures that the watermark[min,low,high] values for each zone are set
6957 * correctly with respect to min_free_kbytes.
6958 */
6959void setup_per_zone_wmarks(void)
6960{
b93e0f32
MH
6961 static DEFINE_SPINLOCK(lock);
6962
6963 spin_lock(&lock);
cfd3da1e 6964 __setup_per_zone_wmarks();
b93e0f32 6965 spin_unlock(&lock);
cfd3da1e
MG
6966}
6967
1da177e4
LT
6968/*
6969 * Initialise min_free_kbytes.
6970 *
6971 * For small machines we want it small (128k min). For large machines
6972 * we want it large (64MB max). But it is not linear, because network
6973 * bandwidth does not increase linearly with machine size. We use
6974 *
b8af2941 6975 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6976 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6977 *
6978 * which yields
6979 *
6980 * 16MB: 512k
6981 * 32MB: 724k
6982 * 64MB: 1024k
6983 * 128MB: 1448k
6984 * 256MB: 2048k
6985 * 512MB: 2896k
6986 * 1024MB: 4096k
6987 * 2048MB: 5792k
6988 * 4096MB: 8192k
6989 * 8192MB: 11584k
6990 * 16384MB: 16384k
6991 */
1b79acc9 6992int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6993{
6994 unsigned long lowmem_kbytes;
5f12733e 6995 int new_min_free_kbytes;
1da177e4
LT
6996
6997 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6998 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6999
7000 if (new_min_free_kbytes > user_min_free_kbytes) {
7001 min_free_kbytes = new_min_free_kbytes;
7002 if (min_free_kbytes < 128)
7003 min_free_kbytes = 128;
7004 if (min_free_kbytes > 65536)
7005 min_free_kbytes = 65536;
7006 } else {
7007 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7008 new_min_free_kbytes, user_min_free_kbytes);
7009 }
bc75d33f 7010 setup_per_zone_wmarks();
a6cccdc3 7011 refresh_zone_stat_thresholds();
1da177e4 7012 setup_per_zone_lowmem_reserve();
6423aa81
JK
7013
7014#ifdef CONFIG_NUMA
7015 setup_min_unmapped_ratio();
7016 setup_min_slab_ratio();
7017#endif
7018
1da177e4
LT
7019 return 0;
7020}
bc22af74 7021core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7022
7023/*
b8af2941 7024 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7025 * that we can call two helper functions whenever min_free_kbytes
7026 * changes.
7027 */
cccad5b9 7028int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7029 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7030{
da8c757b
HP
7031 int rc;
7032
7033 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7034 if (rc)
7035 return rc;
7036
5f12733e
MH
7037 if (write) {
7038 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7039 setup_per_zone_wmarks();
5f12733e 7040 }
1da177e4
LT
7041 return 0;
7042}
7043
795ae7a0
JW
7044int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7045 void __user *buffer, size_t *length, loff_t *ppos)
7046{
7047 int rc;
7048
7049 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7050 if (rc)
7051 return rc;
7052
7053 if (write)
7054 setup_per_zone_wmarks();
7055
7056 return 0;
7057}
7058
9614634f 7059#ifdef CONFIG_NUMA
6423aa81 7060static void setup_min_unmapped_ratio(void)
9614634f 7061{
6423aa81 7062 pg_data_t *pgdat;
9614634f 7063 struct zone *zone;
9614634f 7064
a5f5f91d 7065 for_each_online_pgdat(pgdat)
81cbcbc2 7066 pgdat->min_unmapped_pages = 0;
a5f5f91d 7067
9614634f 7068 for_each_zone(zone)
a5f5f91d 7069 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7070 sysctl_min_unmapped_ratio) / 100;
9614634f 7071}
0ff38490 7072
6423aa81
JK
7073
7074int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7075 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7076{
0ff38490
CL
7077 int rc;
7078
8d65af78 7079 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7080 if (rc)
7081 return rc;
7082
6423aa81
JK
7083 setup_min_unmapped_ratio();
7084
7085 return 0;
7086}
7087
7088static void setup_min_slab_ratio(void)
7089{
7090 pg_data_t *pgdat;
7091 struct zone *zone;
7092
a5f5f91d
MG
7093 for_each_online_pgdat(pgdat)
7094 pgdat->min_slab_pages = 0;
7095
0ff38490 7096 for_each_zone(zone)
a5f5f91d 7097 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7098 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7099}
7100
7101int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7102 void __user *buffer, size_t *length, loff_t *ppos)
7103{
7104 int rc;
7105
7106 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7107 if (rc)
7108 return rc;
7109
7110 setup_min_slab_ratio();
7111
0ff38490
CL
7112 return 0;
7113}
9614634f
CL
7114#endif
7115
1da177e4
LT
7116/*
7117 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7118 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7119 * whenever sysctl_lowmem_reserve_ratio changes.
7120 *
7121 * The reserve ratio obviously has absolutely no relation with the
41858966 7122 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7123 * if in function of the boot time zone sizes.
7124 */
cccad5b9 7125int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7126 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7127{
8d65af78 7128 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7129 setup_per_zone_lowmem_reserve();
7130 return 0;
7131}
7132
8ad4b1fb
RS
7133/*
7134 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7135 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7136 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7137 */
cccad5b9 7138int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7139 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7140{
7141 struct zone *zone;
7cd2b0a3 7142 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7143 int ret;
7144
7cd2b0a3
DR
7145 mutex_lock(&pcp_batch_high_lock);
7146 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7147
8d65af78 7148 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7149 if (!write || ret < 0)
7150 goto out;
7151
7152 /* Sanity checking to avoid pcp imbalance */
7153 if (percpu_pagelist_fraction &&
7154 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7155 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7156 ret = -EINVAL;
7157 goto out;
7158 }
7159
7160 /* No change? */
7161 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7162 goto out;
c8e251fa 7163
364df0eb 7164 for_each_populated_zone(zone) {
7cd2b0a3
DR
7165 unsigned int cpu;
7166
22a7f12b 7167 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7168 pageset_set_high_and_batch(zone,
7169 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7170 }
7cd2b0a3 7171out:
c8e251fa 7172 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7173 return ret;
8ad4b1fb
RS
7174}
7175
a9919c79 7176#ifdef CONFIG_NUMA
f034b5d4 7177int hashdist = HASHDIST_DEFAULT;
1da177e4 7178
1da177e4
LT
7179static int __init set_hashdist(char *str)
7180{
7181 if (!str)
7182 return 0;
7183 hashdist = simple_strtoul(str, &str, 0);
7184 return 1;
7185}
7186__setup("hashdist=", set_hashdist);
7187#endif
7188
f6f34b43
SD
7189#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7190/*
7191 * Returns the number of pages that arch has reserved but
7192 * is not known to alloc_large_system_hash().
7193 */
7194static unsigned long __init arch_reserved_kernel_pages(void)
7195{
7196 return 0;
7197}
7198#endif
7199
9017217b
PT
7200/*
7201 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7202 * machines. As memory size is increased the scale is also increased but at
7203 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7204 * quadruples the scale is increased by one, which means the size of hash table
7205 * only doubles, instead of quadrupling as well.
7206 * Because 32-bit systems cannot have large physical memory, where this scaling
7207 * makes sense, it is disabled on such platforms.
7208 */
7209#if __BITS_PER_LONG > 32
7210#define ADAPT_SCALE_BASE (64ul << 30)
7211#define ADAPT_SCALE_SHIFT 2
7212#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7213#endif
7214
1da177e4
LT
7215/*
7216 * allocate a large system hash table from bootmem
7217 * - it is assumed that the hash table must contain an exact power-of-2
7218 * quantity of entries
7219 * - limit is the number of hash buckets, not the total allocation size
7220 */
7221void *__init alloc_large_system_hash(const char *tablename,
7222 unsigned long bucketsize,
7223 unsigned long numentries,
7224 int scale,
7225 int flags,
7226 unsigned int *_hash_shift,
7227 unsigned int *_hash_mask,
31fe62b9
TB
7228 unsigned long low_limit,
7229 unsigned long high_limit)
1da177e4 7230{
31fe62b9 7231 unsigned long long max = high_limit;
1da177e4
LT
7232 unsigned long log2qty, size;
7233 void *table = NULL;
3749a8f0 7234 gfp_t gfp_flags;
1da177e4
LT
7235
7236 /* allow the kernel cmdline to have a say */
7237 if (!numentries) {
7238 /* round applicable memory size up to nearest megabyte */
04903664 7239 numentries = nr_kernel_pages;
f6f34b43 7240 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7241
7242 /* It isn't necessary when PAGE_SIZE >= 1MB */
7243 if (PAGE_SHIFT < 20)
7244 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7245
9017217b
PT
7246#if __BITS_PER_LONG > 32
7247 if (!high_limit) {
7248 unsigned long adapt;
7249
7250 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7251 adapt <<= ADAPT_SCALE_SHIFT)
7252 scale++;
7253 }
7254#endif
7255
1da177e4
LT
7256 /* limit to 1 bucket per 2^scale bytes of low memory */
7257 if (scale > PAGE_SHIFT)
7258 numentries >>= (scale - PAGE_SHIFT);
7259 else
7260 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7261
7262 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7263 if (unlikely(flags & HASH_SMALL)) {
7264 /* Makes no sense without HASH_EARLY */
7265 WARN_ON(!(flags & HASH_EARLY));
7266 if (!(numentries >> *_hash_shift)) {
7267 numentries = 1UL << *_hash_shift;
7268 BUG_ON(!numentries);
7269 }
7270 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7271 numentries = PAGE_SIZE / bucketsize;
1da177e4 7272 }
6e692ed3 7273 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7274
7275 /* limit allocation size to 1/16 total memory by default */
7276 if (max == 0) {
7277 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7278 do_div(max, bucketsize);
7279 }
074b8517 7280 max = min(max, 0x80000000ULL);
1da177e4 7281
31fe62b9
TB
7282 if (numentries < low_limit)
7283 numentries = low_limit;
1da177e4
LT
7284 if (numentries > max)
7285 numentries = max;
7286
f0d1b0b3 7287 log2qty = ilog2(numentries);
1da177e4 7288
3749a8f0
PT
7289 /*
7290 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7291 * currently not used when HASH_EARLY is specified.
7292 */
7293 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7294 do {
7295 size = bucketsize << log2qty;
7296 if (flags & HASH_EARLY)
6782832e 7297 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4 7298 else if (hashdist)
3749a8f0 7299 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
1da177e4 7300 else {
1037b83b
ED
7301 /*
7302 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7303 * some pages at the end of hash table which
7304 * alloc_pages_exact() automatically does
1037b83b 7305 */
264ef8a9 7306 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7307 table = alloc_pages_exact(size, gfp_flags);
7308 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7309 }
1da177e4
LT
7310 }
7311 } while (!table && size > PAGE_SIZE && --log2qty);
7312
7313 if (!table)
7314 panic("Failed to allocate %s hash table\n", tablename);
7315
1170532b
JP
7316 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7317 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7318
7319 if (_hash_shift)
7320 *_hash_shift = log2qty;
7321 if (_hash_mask)
7322 *_hash_mask = (1 << log2qty) - 1;
7323
7324 return table;
7325}
a117e66e 7326
a5d76b54 7327/*
80934513
MK
7328 * This function checks whether pageblock includes unmovable pages or not.
7329 * If @count is not zero, it is okay to include less @count unmovable pages
7330 *
b8af2941 7331 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7332 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7333 * check without lock_page also may miss some movable non-lru pages at
7334 * race condition. So you can't expect this function should be exact.
a5d76b54 7335 */
b023f468
WC
7336bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7337 bool skip_hwpoisoned_pages)
49ac8255
KH
7338{
7339 unsigned long pfn, iter, found;
47118af0
MN
7340 int mt;
7341
49ac8255
KH
7342 /*
7343 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7344 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7345 */
7346 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7347 return false;
47118af0
MN
7348 mt = get_pageblock_migratetype(page);
7349 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7350 return false;
49ac8255
KH
7351
7352 pfn = page_to_pfn(page);
7353 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7354 unsigned long check = pfn + iter;
7355
29723fcc 7356 if (!pfn_valid_within(check))
49ac8255 7357 continue;
29723fcc 7358
49ac8255 7359 page = pfn_to_page(check);
c8721bbb
NH
7360
7361 /*
7362 * Hugepages are not in LRU lists, but they're movable.
7363 * We need not scan over tail pages bacause we don't
7364 * handle each tail page individually in migration.
7365 */
7366 if (PageHuge(page)) {
7367 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7368 continue;
7369 }
7370
97d255c8
MK
7371 /*
7372 * We can't use page_count without pin a page
7373 * because another CPU can free compound page.
7374 * This check already skips compound tails of THP
0139aa7b 7375 * because their page->_refcount is zero at all time.
97d255c8 7376 */
fe896d18 7377 if (!page_ref_count(page)) {
49ac8255
KH
7378 if (PageBuddy(page))
7379 iter += (1 << page_order(page)) - 1;
7380 continue;
7381 }
97d255c8 7382
b023f468
WC
7383 /*
7384 * The HWPoisoned page may be not in buddy system, and
7385 * page_count() is not 0.
7386 */
7387 if (skip_hwpoisoned_pages && PageHWPoison(page))
7388 continue;
7389
0efadf48
YX
7390 if (__PageMovable(page))
7391 continue;
7392
49ac8255
KH
7393 if (!PageLRU(page))
7394 found++;
7395 /*
6b4f7799
JW
7396 * If there are RECLAIMABLE pages, we need to check
7397 * it. But now, memory offline itself doesn't call
7398 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7399 */
7400 /*
7401 * If the page is not RAM, page_count()should be 0.
7402 * we don't need more check. This is an _used_ not-movable page.
7403 *
7404 * The problematic thing here is PG_reserved pages. PG_reserved
7405 * is set to both of a memory hole page and a _used_ kernel
7406 * page at boot.
7407 */
7408 if (found > count)
80934513 7409 return true;
49ac8255 7410 }
80934513 7411 return false;
49ac8255
KH
7412}
7413
7414bool is_pageblock_removable_nolock(struct page *page)
7415{
656a0706
MH
7416 struct zone *zone;
7417 unsigned long pfn;
687875fb
MH
7418
7419 /*
7420 * We have to be careful here because we are iterating over memory
7421 * sections which are not zone aware so we might end up outside of
7422 * the zone but still within the section.
656a0706
MH
7423 * We have to take care about the node as well. If the node is offline
7424 * its NODE_DATA will be NULL - see page_zone.
687875fb 7425 */
656a0706
MH
7426 if (!node_online(page_to_nid(page)))
7427 return false;
7428
7429 zone = page_zone(page);
7430 pfn = page_to_pfn(page);
108bcc96 7431 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7432 return false;
7433
b023f468 7434 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7435}
0c0e6195 7436
080fe206 7437#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7438
7439static unsigned long pfn_max_align_down(unsigned long pfn)
7440{
7441 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7442 pageblock_nr_pages) - 1);
7443}
7444
7445static unsigned long pfn_max_align_up(unsigned long pfn)
7446{
7447 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7448 pageblock_nr_pages));
7449}
7450
041d3a8c 7451/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7452static int __alloc_contig_migrate_range(struct compact_control *cc,
7453 unsigned long start, unsigned long end)
041d3a8c
MN
7454{
7455 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7456 unsigned long nr_reclaimed;
041d3a8c
MN
7457 unsigned long pfn = start;
7458 unsigned int tries = 0;
7459 int ret = 0;
7460
be49a6e1 7461 migrate_prep();
041d3a8c 7462
bb13ffeb 7463 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7464 if (fatal_signal_pending(current)) {
7465 ret = -EINTR;
7466 break;
7467 }
7468
bb13ffeb
MG
7469 if (list_empty(&cc->migratepages)) {
7470 cc->nr_migratepages = 0;
edc2ca61 7471 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7472 if (!pfn) {
7473 ret = -EINTR;
7474 break;
7475 }
7476 tries = 0;
7477 } else if (++tries == 5) {
7478 ret = ret < 0 ? ret : -EBUSY;
7479 break;
7480 }
7481
beb51eaa
MK
7482 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7483 &cc->migratepages);
7484 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7485
9c620e2b 7486 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7487 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7488 }
2a6f5124
SP
7489 if (ret < 0) {
7490 putback_movable_pages(&cc->migratepages);
7491 return ret;
7492 }
7493 return 0;
041d3a8c
MN
7494}
7495
7496/**
7497 * alloc_contig_range() -- tries to allocate given range of pages
7498 * @start: start PFN to allocate
7499 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7500 * @migratetype: migratetype of the underlaying pageblocks (either
7501 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7502 * in range must have the same migratetype and it must
7503 * be either of the two.
ca96b625 7504 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7505 *
7506 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7507 * aligned, however it's the caller's responsibility to guarantee that
7508 * we are the only thread that changes migrate type of pageblocks the
7509 * pages fall in.
7510 *
7511 * The PFN range must belong to a single zone.
7512 *
7513 * Returns zero on success or negative error code. On success all
7514 * pages which PFN is in [start, end) are allocated for the caller and
7515 * need to be freed with free_contig_range().
7516 */
0815f3d8 7517int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7518 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7519{
041d3a8c 7520 unsigned long outer_start, outer_end;
d00181b9
KS
7521 unsigned int order;
7522 int ret = 0;
041d3a8c 7523
bb13ffeb
MG
7524 struct compact_control cc = {
7525 .nr_migratepages = 0,
7526 .order = -1,
7527 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7528 .mode = MIGRATE_SYNC,
bb13ffeb 7529 .ignore_skip_hint = true,
7dea19f9 7530 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7531 };
7532 INIT_LIST_HEAD(&cc.migratepages);
7533
041d3a8c
MN
7534 /*
7535 * What we do here is we mark all pageblocks in range as
7536 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7537 * have different sizes, and due to the way page allocator
7538 * work, we align the range to biggest of the two pages so
7539 * that page allocator won't try to merge buddies from
7540 * different pageblocks and change MIGRATE_ISOLATE to some
7541 * other migration type.
7542 *
7543 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7544 * migrate the pages from an unaligned range (ie. pages that
7545 * we are interested in). This will put all the pages in
7546 * range back to page allocator as MIGRATE_ISOLATE.
7547 *
7548 * When this is done, we take the pages in range from page
7549 * allocator removing them from the buddy system. This way
7550 * page allocator will never consider using them.
7551 *
7552 * This lets us mark the pageblocks back as
7553 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7554 * aligned range but not in the unaligned, original range are
7555 * put back to page allocator so that buddy can use them.
7556 */
7557
7558 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7559 pfn_max_align_up(end), migratetype,
7560 false);
041d3a8c 7561 if (ret)
86a595f9 7562 return ret;
041d3a8c 7563
8ef5849f
JK
7564 /*
7565 * In case of -EBUSY, we'd like to know which page causes problem.
b4c8fce6
MK
7566 * So, just fall through. test_pages_isolated() has a tracepoint
7567 * which will report the busy page.
7568 *
7569 * It is possible that busy pages could become available before
7570 * the call to test_pages_isolated, and the range will actually be
7571 * allocated. So, if we fall through be sure to clear ret so that
7572 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 7573 */
bb13ffeb 7574 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7575 if (ret && ret != -EBUSY)
041d3a8c 7576 goto done;
b4c8fce6 7577 ret =0;
041d3a8c
MN
7578
7579 /*
7580 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7581 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7582 * more, all pages in [start, end) are free in page allocator.
7583 * What we are going to do is to allocate all pages from
7584 * [start, end) (that is remove them from page allocator).
7585 *
7586 * The only problem is that pages at the beginning and at the
7587 * end of interesting range may be not aligned with pages that
7588 * page allocator holds, ie. they can be part of higher order
7589 * pages. Because of this, we reserve the bigger range and
7590 * once this is done free the pages we are not interested in.
7591 *
7592 * We don't have to hold zone->lock here because the pages are
7593 * isolated thus they won't get removed from buddy.
7594 */
7595
7596 lru_add_drain_all();
510f5507 7597 drain_all_pages(cc.zone);
041d3a8c
MN
7598
7599 order = 0;
7600 outer_start = start;
7601 while (!PageBuddy(pfn_to_page(outer_start))) {
7602 if (++order >= MAX_ORDER) {
8ef5849f
JK
7603 outer_start = start;
7604 break;
041d3a8c
MN
7605 }
7606 outer_start &= ~0UL << order;
7607 }
7608
8ef5849f
JK
7609 if (outer_start != start) {
7610 order = page_order(pfn_to_page(outer_start));
7611
7612 /*
7613 * outer_start page could be small order buddy page and
7614 * it doesn't include start page. Adjust outer_start
7615 * in this case to report failed page properly
7616 * on tracepoint in test_pages_isolated()
7617 */
7618 if (outer_start + (1UL << order) <= start)
7619 outer_start = start;
7620 }
7621
041d3a8c 7622 /* Make sure the range is really isolated. */
b023f468 7623 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7624 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7625 __func__, outer_start, end);
041d3a8c
MN
7626 ret = -EBUSY;
7627 goto done;
7628 }
7629
49f223a9 7630 /* Grab isolated pages from freelists. */
bb13ffeb 7631 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7632 if (!outer_end) {
7633 ret = -EBUSY;
7634 goto done;
7635 }
7636
7637 /* Free head and tail (if any) */
7638 if (start != outer_start)
7639 free_contig_range(outer_start, start - outer_start);
7640 if (end != outer_end)
7641 free_contig_range(end, outer_end - end);
7642
7643done:
7644 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7645 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7646 return ret;
7647}
7648
7649void free_contig_range(unsigned long pfn, unsigned nr_pages)
7650{
bcc2b02f
MS
7651 unsigned int count = 0;
7652
7653 for (; nr_pages--; pfn++) {
7654 struct page *page = pfn_to_page(pfn);
7655
7656 count += page_count(page) != 1;
7657 __free_page(page);
7658 }
7659 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7660}
7661#endif
7662
4ed7e022 7663#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7664/*
7665 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7666 * page high values need to be recalulated.
7667 */
4ed7e022
JL
7668void __meminit zone_pcp_update(struct zone *zone)
7669{
0a647f38 7670 unsigned cpu;
c8e251fa 7671 mutex_lock(&pcp_batch_high_lock);
0a647f38 7672 for_each_possible_cpu(cpu)
169f6c19
CS
7673 pageset_set_high_and_batch(zone,
7674 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7675 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7676}
7677#endif
7678
340175b7
JL
7679void zone_pcp_reset(struct zone *zone)
7680{
7681 unsigned long flags;
5a883813
MK
7682 int cpu;
7683 struct per_cpu_pageset *pset;
340175b7
JL
7684
7685 /* avoid races with drain_pages() */
7686 local_irq_save(flags);
7687 if (zone->pageset != &boot_pageset) {
5a883813
MK
7688 for_each_online_cpu(cpu) {
7689 pset = per_cpu_ptr(zone->pageset, cpu);
7690 drain_zonestat(zone, pset);
7691 }
340175b7
JL
7692 free_percpu(zone->pageset);
7693 zone->pageset = &boot_pageset;
7694 }
7695 local_irq_restore(flags);
7696}
7697
6dcd73d7 7698#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7699/*
b9eb6319
JK
7700 * All pages in the range must be in a single zone and isolated
7701 * before calling this.
0c0e6195
KH
7702 */
7703void
7704__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7705{
7706 struct page *page;
7707 struct zone *zone;
7aeb09f9 7708 unsigned int order, i;
0c0e6195
KH
7709 unsigned long pfn;
7710 unsigned long flags;
7711 /* find the first valid pfn */
7712 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7713 if (pfn_valid(pfn))
7714 break;
7715 if (pfn == end_pfn)
7716 return;
2d070eab 7717 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7718 zone = page_zone(pfn_to_page(pfn));
7719 spin_lock_irqsave(&zone->lock, flags);
7720 pfn = start_pfn;
7721 while (pfn < end_pfn) {
7722 if (!pfn_valid(pfn)) {
7723 pfn++;
7724 continue;
7725 }
7726 page = pfn_to_page(pfn);
b023f468
WC
7727 /*
7728 * The HWPoisoned page may be not in buddy system, and
7729 * page_count() is not 0.
7730 */
7731 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7732 pfn++;
7733 SetPageReserved(page);
7734 continue;
7735 }
7736
0c0e6195
KH
7737 BUG_ON(page_count(page));
7738 BUG_ON(!PageBuddy(page));
7739 order = page_order(page);
7740#ifdef CONFIG_DEBUG_VM
1170532b
JP
7741 pr_info("remove from free list %lx %d %lx\n",
7742 pfn, 1 << order, end_pfn);
0c0e6195
KH
7743#endif
7744 list_del(&page->lru);
7745 rmv_page_order(page);
7746 zone->free_area[order].nr_free--;
0c0e6195
KH
7747 for (i = 0; i < (1 << order); i++)
7748 SetPageReserved((page+i));
7749 pfn += (1 << order);
7750 }
7751 spin_unlock_irqrestore(&zone->lock, flags);
7752}
7753#endif
8d22ba1b 7754
8d22ba1b
WF
7755bool is_free_buddy_page(struct page *page)
7756{
7757 struct zone *zone = page_zone(page);
7758 unsigned long pfn = page_to_pfn(page);
7759 unsigned long flags;
7aeb09f9 7760 unsigned int order;
8d22ba1b
WF
7761
7762 spin_lock_irqsave(&zone->lock, flags);
7763 for (order = 0; order < MAX_ORDER; order++) {
7764 struct page *page_head = page - (pfn & ((1 << order) - 1));
7765
7766 if (PageBuddy(page_head) && page_order(page_head) >= order)
7767 break;
7768 }
7769 spin_unlock_irqrestore(&zone->lock, flags);
7770
7771 return order < MAX_ORDER;
7772}