]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
mm/page_alloc: fix tracepoint mm_page_alloc_zone_locked()
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/swap.h>
bf181c58 22#include <linux/swapops.h>
1da177e4
LT
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
10ed273f 25#include <linux/jiffies.h>
edbe7d23 26#include <linux/memblock.h>
1da177e4 27#include <linux/compiler.h>
9f158333 28#include <linux/kernel.h>
b8c73fc2 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/suspend.h>
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/slab.h>
a238ab5b 35#include <linux/ratelimit.h>
5a3135c2 36#include <linux/oom.h>
1da177e4
LT
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
97500a4a 48#include <linux/random.h>
c713216d
MG
49#include <linux/sort.h>
50#include <linux/pfn.h>
3fcfab16 51#include <linux/backing-dev.h>
933e312e 52#include <linux/fault-inject.h>
a5d76b54 53#include <linux/page-isolation.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
f920e413 61#include <linux/mmu_notifier.h>
041d3a8c 62#include <linux/migrate.h>
949f7ec5 63#include <linux/hugetlb.h>
8bd75c77 64#include <linux/sched/rt.h>
5b3cc15a 65#include <linux/sched/mm.h>
48c96a36 66#include <linux/page_owner.h>
df4e817b 67#include <linux/page_table_check.h>
0e1cc95b 68#include <linux/kthread.h>
4949148a 69#include <linux/memcontrol.h>
42c269c8 70#include <linux/ftrace.h>
d92a8cfc 71#include <linux/lockdep.h>
556b969a 72#include <linux/nmi.h>
eb414681 73#include <linux/psi.h>
e4443149 74#include <linux/padata.h>
4aab2be0 75#include <linux/khugepaged.h>
ba8f3587 76#include <linux/buffer_head.h>
5bf18281 77#include <linux/delayacct.h>
7ee3d4e8 78#include <asm/sections.h>
1da177e4 79#include <asm/tlbflush.h>
ac924c60 80#include <asm/div64.h>
1da177e4 81#include "internal.h"
e900a918 82#include "shuffle.h"
36e66c55 83#include "page_reporting.h"
014bb1de 84#include "swap.h"
1da177e4 85
f04a5d5d
DH
86/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87typedef int __bitwise fpi_t;
88
89/* No special request */
90#define FPI_NONE ((__force fpi_t)0)
91
92/*
93 * Skip free page reporting notification for the (possibly merged) page.
94 * This does not hinder free page reporting from grabbing the page,
95 * reporting it and marking it "reported" - it only skips notifying
96 * the free page reporting infrastructure about a newly freed page. For
97 * example, used when temporarily pulling a page from a freelist and
98 * putting it back unmodified.
99 */
100#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
101
47b6a24a
DH
102/*
103 * Place the (possibly merged) page to the tail of the freelist. Will ignore
104 * page shuffling (relevant code - e.g., memory onlining - is expected to
105 * shuffle the whole zone).
106 *
107 * Note: No code should rely on this flag for correctness - it's purely
108 * to allow for optimizations when handing back either fresh pages
109 * (memory onlining) or untouched pages (page isolation, free page
110 * reporting).
111 */
112#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
113
2c335680
AK
114/*
115 * Don't poison memory with KASAN (only for the tag-based modes).
116 * During boot, all non-reserved memblock memory is exposed to page_alloc.
117 * Poisoning all that memory lengthens boot time, especially on systems with
118 * large amount of RAM. This flag is used to skip that poisoning.
119 * This is only done for the tag-based KASAN modes, as those are able to
120 * detect memory corruptions with the memory tags assigned by default.
121 * All memory allocated normally after boot gets poisoned as usual.
122 */
123#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
124
c8e251fa
CS
125/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 127#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 128
dbbee9d5
MG
129struct pagesets {
130 local_lock_t lock;
dbbee9d5 131};
273ba85b 132static DEFINE_PER_CPU(struct pagesets, pagesets) = {
dbbee9d5
MG
133 .lock = INIT_LOCAL_LOCK(lock),
134};
c8e251fa 135
72812019
LS
136#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
137DEFINE_PER_CPU(int, numa_node);
138EXPORT_PER_CPU_SYMBOL(numa_node);
139#endif
140
4518085e
KW
141DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
142
7aac7898
LS
143#ifdef CONFIG_HAVE_MEMORYLESS_NODES
144/*
145 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
146 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
147 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
148 * defined in <linux/topology.h>.
149 */
150DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
151EXPORT_PER_CPU_SYMBOL(_numa_mem_);
152#endif
153
bd233f53 154/* work_structs for global per-cpu drains */
d9367bd0
WY
155struct pcpu_drain {
156 struct zone *zone;
157 struct work_struct work;
158};
8b885f53
JY
159static DEFINE_MUTEX(pcpu_drain_mutex);
160static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 161
38addce8 162#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 163volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
164EXPORT_SYMBOL(latent_entropy);
165#endif
166
1da177e4 167/*
13808910 168 * Array of node states.
1da177e4 169 */
13808910
CL
170nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
171 [N_POSSIBLE] = NODE_MASK_ALL,
172 [N_ONLINE] = { { [0] = 1UL } },
173#ifndef CONFIG_NUMA
174 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
175#ifdef CONFIG_HIGHMEM
176 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 177#endif
20b2f52b 178 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
179 [N_CPU] = { { [0] = 1UL } },
180#endif /* NUMA */
181};
182EXPORT_SYMBOL(node_states);
183
ca79b0c2
AK
184atomic_long_t _totalram_pages __read_mostly;
185EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 186unsigned long totalreserve_pages __read_mostly;
e48322ab 187unsigned long totalcma_pages __read_mostly;
ab8fabd4 188
74f44822 189int percpu_pagelist_high_fraction;
dcce284a 190gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 191DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
192EXPORT_SYMBOL(init_on_alloc);
193
51cba1eb 194DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
195EXPORT_SYMBOL(init_on_free);
196
04013513
VB
197static bool _init_on_alloc_enabled_early __read_mostly
198 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
199static int __init early_init_on_alloc(char *buf)
200{
6471384a 201
04013513 202 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
203}
204early_param("init_on_alloc", early_init_on_alloc);
205
04013513
VB
206static bool _init_on_free_enabled_early __read_mostly
207 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
208static int __init early_init_on_free(char *buf)
209{
04013513 210 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
211}
212early_param("init_on_free", early_init_on_free);
1da177e4 213
bb14c2c7
VB
214/*
215 * A cached value of the page's pageblock's migratetype, used when the page is
216 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
217 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
218 * Also the migratetype set in the page does not necessarily match the pcplist
219 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
220 * other index - this ensures that it will be put on the correct CMA freelist.
221 */
222static inline int get_pcppage_migratetype(struct page *page)
223{
224 return page->index;
225}
226
227static inline void set_pcppage_migratetype(struct page *page, int migratetype)
228{
229 page->index = migratetype;
230}
231
452aa699
RW
232#ifdef CONFIG_PM_SLEEP
233/*
234 * The following functions are used by the suspend/hibernate code to temporarily
235 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
236 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
237 * they should always be called with system_transition_mutex held
238 * (gfp_allowed_mask also should only be modified with system_transition_mutex
239 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
240 * with that modification).
452aa699 241 */
c9e664f1
RW
242
243static gfp_t saved_gfp_mask;
244
245void pm_restore_gfp_mask(void)
452aa699 246{
55f2503c 247 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
248 if (saved_gfp_mask) {
249 gfp_allowed_mask = saved_gfp_mask;
250 saved_gfp_mask = 0;
251 }
452aa699
RW
252}
253
c9e664f1 254void pm_restrict_gfp_mask(void)
452aa699 255{
55f2503c 256 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
257 WARN_ON(saved_gfp_mask);
258 saved_gfp_mask = gfp_allowed_mask;
d0164adc 259 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 260}
f90ac398
MG
261
262bool pm_suspended_storage(void)
263{
d0164adc 264 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
265 return false;
266 return true;
267}
452aa699
RW
268#endif /* CONFIG_PM_SLEEP */
269
d9c23400 270#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 271unsigned int pageblock_order __read_mostly;
d9c23400
MG
272#endif
273
7fef431b
DH
274static void __free_pages_ok(struct page *page, unsigned int order,
275 fpi_t fpi_flags);
a226f6c8 276
1da177e4
LT
277/*
278 * results with 256, 32 in the lowmem_reserve sysctl:
279 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
280 * 1G machine -> (16M dma, 784M normal, 224M high)
281 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
282 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 283 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
284 *
285 * TBD: should special case ZONE_DMA32 machines here - in those we normally
286 * don't need any ZONE_NORMAL reservation
1da177e4 287 */
d3cda233 288int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 289#ifdef CONFIG_ZONE_DMA
d3cda233 290 [ZONE_DMA] = 256,
4b51d669 291#endif
fb0e7942 292#ifdef CONFIG_ZONE_DMA32
d3cda233 293 [ZONE_DMA32] = 256,
fb0e7942 294#endif
d3cda233 295 [ZONE_NORMAL] = 32,
e53ef38d 296#ifdef CONFIG_HIGHMEM
d3cda233 297 [ZONE_HIGHMEM] = 0,
e53ef38d 298#endif
d3cda233 299 [ZONE_MOVABLE] = 0,
2f1b6248 300};
1da177e4 301
15ad7cdc 302static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 303#ifdef CONFIG_ZONE_DMA
2f1b6248 304 "DMA",
4b51d669 305#endif
fb0e7942 306#ifdef CONFIG_ZONE_DMA32
2f1b6248 307 "DMA32",
fb0e7942 308#endif
2f1b6248 309 "Normal",
e53ef38d 310#ifdef CONFIG_HIGHMEM
2a1e274a 311 "HighMem",
e53ef38d 312#endif
2a1e274a 313 "Movable",
033fbae9
DW
314#ifdef CONFIG_ZONE_DEVICE
315 "Device",
316#endif
2f1b6248
CL
317};
318
c999fbd3 319const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
320 "Unmovable",
321 "Movable",
322 "Reclaimable",
323 "HighAtomic",
324#ifdef CONFIG_CMA
325 "CMA",
326#endif
327#ifdef CONFIG_MEMORY_ISOLATION
328 "Isolate",
329#endif
330};
331
ae70eddd
AK
332compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
333 [NULL_COMPOUND_DTOR] = NULL,
334 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 335#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 336 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 337#endif
9a982250 338#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 339 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 340#endif
f1e61557
KS
341};
342
1da177e4 343int min_free_kbytes = 1024;
42aa83cb 344int user_min_free_kbytes = -1;
1c30844d 345int watermark_boost_factor __read_mostly = 15000;
795ae7a0 346int watermark_scale_factor = 10;
1da177e4 347
bbe5d993
OS
348static unsigned long nr_kernel_pages __initdata;
349static unsigned long nr_all_pages __initdata;
350static unsigned long dma_reserve __initdata;
1da177e4 351
bbe5d993
OS
352static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
353static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 354static unsigned long required_kernelcore __initdata;
a5c6d650 355static unsigned long required_kernelcore_percent __initdata;
7f16f91f 356static unsigned long required_movablecore __initdata;
a5c6d650 357static unsigned long required_movablecore_percent __initdata;
bbe5d993 358static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 359static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
360
361/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
362int movable_zone;
363EXPORT_SYMBOL(movable_zone);
c713216d 364
418508c1 365#if MAX_NUMNODES > 1
b9726c26 366unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 367unsigned int nr_online_nodes __read_mostly = 1;
418508c1 368EXPORT_SYMBOL(nr_node_ids);
62bc62a8 369EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
370#endif
371
9ef9acb0
MG
372int page_group_by_mobility_disabled __read_mostly;
373
3a80a7fa 374#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
375/*
376 * During boot we initialize deferred pages on-demand, as needed, but once
377 * page_alloc_init_late() has finished, the deferred pages are all initialized,
378 * and we can permanently disable that path.
379 */
380static DEFINE_STATIC_KEY_TRUE(deferred_pages);
381
94ae8b83 382static inline bool deferred_pages_enabled(void)
3c0c12cc 383{
94ae8b83 384 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
385}
386
3a80a7fa 387/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 388static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 389{
ef70b6f4
MG
390 int nid = early_pfn_to_nid(pfn);
391
392 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
393 return true;
394
395 return false;
396}
397
398/*
d3035be4 399 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
400 * later in the boot cycle when it can be parallelised.
401 */
d3035be4
PT
402static bool __meminit
403defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 404{
d3035be4
PT
405 static unsigned long prev_end_pfn, nr_initialised;
406
407 /*
408 * prev_end_pfn static that contains the end of previous zone
409 * No need to protect because called very early in boot before smp_init.
410 */
411 if (prev_end_pfn != end_pfn) {
412 prev_end_pfn = end_pfn;
413 nr_initialised = 0;
414 }
415
3c2c6488 416 /* Always populate low zones for address-constrained allocations */
d3035be4 417 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 418 return false;
23b68cfa 419
dc2da7b4
BH
420 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
421 return true;
23b68cfa
WY
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
94ae8b83 435static inline bool deferred_pages_enabled(void)
2c335680 436{
94ae8b83 437 return false;
2c335680 438}
3c0c12cc 439
3a80a7fa
MG
440static inline bool early_page_uninitialised(unsigned long pfn)
441{
442 return false;
443}
444
d3035be4 445static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 446{
d3035be4 447 return false;
3a80a7fa
MG
448}
449#endif
450
0b423ca2 451/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 452static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
453 unsigned long pfn)
454{
455#ifdef CONFIG_SPARSEMEM
f1eca35a 456 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
457#else
458 return page_zone(page)->pageblock_flags;
459#endif /* CONFIG_SPARSEMEM */
460}
461
ca891f41 462static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
463{
464#ifdef CONFIG_SPARSEMEM
465 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
466#else
467 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 468#endif /* CONFIG_SPARSEMEM */
399b795b 469 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
470}
471
535b81e2 472static __always_inline
ca891f41 473unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 474 unsigned long pfn,
0b423ca2
MG
475 unsigned long mask)
476{
477 unsigned long *bitmap;
478 unsigned long bitidx, word_bitidx;
479 unsigned long word;
480
481 bitmap = get_pageblock_bitmap(page, pfn);
482 bitidx = pfn_to_bitidx(page, pfn);
483 word_bitidx = bitidx / BITS_PER_LONG;
484 bitidx &= (BITS_PER_LONG-1);
485
486 word = bitmap[word_bitidx];
d93d5ab9 487 return (word >> bitidx) & mask;
0b423ca2
MG
488}
489
a00cda3f
MCC
490/**
491 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
492 * @page: The page within the block of interest
493 * @pfn: The target page frame number
494 * @mask: mask of bits that the caller is interested in
495 *
496 * Return: pageblock_bits flags
497 */
ca891f41
MWO
498unsigned long get_pfnblock_flags_mask(const struct page *page,
499 unsigned long pfn, unsigned long mask)
0b423ca2 500{
535b81e2 501 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
502}
503
ca891f41
MWO
504static __always_inline int get_pfnblock_migratetype(const struct page *page,
505 unsigned long pfn)
0b423ca2 506{
535b81e2 507 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
0b423ca2
MG
515 * @mask: mask of bits that the caller is interested in
516 */
517void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
518 unsigned long pfn,
0b423ca2
MG
519 unsigned long mask)
520{
521 unsigned long *bitmap;
522 unsigned long bitidx, word_bitidx;
523 unsigned long old_word, word;
524
525 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 526 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
527
528 bitmap = get_pageblock_bitmap(page, pfn);
529 bitidx = pfn_to_bitidx(page, pfn);
530 word_bitidx = bitidx / BITS_PER_LONG;
531 bitidx &= (BITS_PER_LONG-1);
532
533 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
534
d93d5ab9
WY
535 mask <<= bitidx;
536 flags <<= bitidx;
0b423ca2
MG
537
538 word = READ_ONCE(bitmap[word_bitidx]);
539 for (;;) {
540 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
541 if (word == old_word)
542 break;
543 word = old_word;
544 }
545}
3a80a7fa 546
ee6f509c 547void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 548{
5d0f3f72
KM
549 if (unlikely(page_group_by_mobility_disabled &&
550 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
551 migratetype = MIGRATE_UNMOVABLE;
552
d93d5ab9 553 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 554 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
555}
556
13e7444b 557#ifdef CONFIG_DEBUG_VM
c6a57e19 558static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 559{
bdc8cb98
DH
560 int ret = 0;
561 unsigned seq;
562 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 563 unsigned long sp, start_pfn;
c6a57e19 564
bdc8cb98
DH
565 do {
566 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
567 start_pfn = zone->zone_start_pfn;
568 sp = zone->spanned_pages;
108bcc96 569 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
570 ret = 1;
571 } while (zone_span_seqretry(zone, seq));
572
b5e6a5a2 573 if (ret)
613813e8
DH
574 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
575 pfn, zone_to_nid(zone), zone->name,
576 start_pfn, start_pfn + sp);
b5e6a5a2 577
bdc8cb98 578 return ret;
c6a57e19
DH
579}
580
581static int page_is_consistent(struct zone *zone, struct page *page)
582{
1da177e4 583 if (zone != page_zone(page))
c6a57e19
DH
584 return 0;
585
586 return 1;
587}
588/*
589 * Temporary debugging check for pages not lying within a given zone.
590 */
d73d3c9f 591static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
592{
593 if (page_outside_zone_boundaries(zone, page))
1da177e4 594 return 1;
c6a57e19
DH
595 if (!page_is_consistent(zone, page))
596 return 1;
597
1da177e4
LT
598 return 0;
599}
13e7444b 600#else
d73d3c9f 601static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
602{
603 return 0;
604}
605#endif
606
82a3241a 607static void bad_page(struct page *page, const char *reason)
1da177e4 608{
d936cf9b
HD
609 static unsigned long resume;
610 static unsigned long nr_shown;
611 static unsigned long nr_unshown;
612
613 /*
614 * Allow a burst of 60 reports, then keep quiet for that minute;
615 * or allow a steady drip of one report per second.
616 */
617 if (nr_shown == 60) {
618 if (time_before(jiffies, resume)) {
619 nr_unshown++;
620 goto out;
621 }
622 if (nr_unshown) {
ff8e8116 623 pr_alert(
1e9e6365 624 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
625 nr_unshown);
626 nr_unshown = 0;
627 }
628 nr_shown = 0;
629 }
630 if (nr_shown++ == 0)
631 resume = jiffies + 60 * HZ;
632
ff8e8116 633 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 634 current->comm, page_to_pfn(page));
d2f07ec0 635 dump_page(page, reason);
3dc14741 636
4f31888c 637 print_modules();
1da177e4 638 dump_stack();
d936cf9b 639out:
8cc3b392 640 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 641 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 642 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
643}
644
44042b44
MG
645static inline unsigned int order_to_pindex(int migratetype, int order)
646{
647 int base = order;
648
649#ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 if (order > PAGE_ALLOC_COSTLY_ORDER) {
651 VM_BUG_ON(order != pageblock_order);
652 base = PAGE_ALLOC_COSTLY_ORDER + 1;
653 }
654#else
655 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
656#endif
657
658 return (MIGRATE_PCPTYPES * base) + migratetype;
659}
660
661static inline int pindex_to_order(unsigned int pindex)
662{
663 int order = pindex / MIGRATE_PCPTYPES;
664
665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ea808b4e 666 if (order > PAGE_ALLOC_COSTLY_ORDER)
44042b44 667 order = pageblock_order;
44042b44
MG
668#else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670#endif
671
672 return order;
673}
674
675static inline bool pcp_allowed_order(unsigned int order)
676{
677 if (order <= PAGE_ALLOC_COSTLY_ORDER)
678 return true;
679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 if (order == pageblock_order)
681 return true;
682#endif
683 return false;
684}
685
21d02f8f
MG
686static inline void free_the_page(struct page *page, unsigned int order)
687{
44042b44
MG
688 if (pcp_allowed_order(order)) /* Via pcp? */
689 free_unref_page(page, order);
21d02f8f
MG
690 else
691 __free_pages_ok(page, order, FPI_NONE);
692}
693
1da177e4
LT
694/*
695 * Higher-order pages are called "compound pages". They are structured thusly:
696 *
1d798ca3 697 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 698 *
1d798ca3
KS
699 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
700 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 701 *
1d798ca3
KS
702 * The first tail page's ->compound_dtor holds the offset in array of compound
703 * page destructors. See compound_page_dtors.
1da177e4 704 *
1d798ca3 705 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 706 * This usage means that zero-order pages may not be compound.
1da177e4 707 */
d98c7a09 708
9a982250 709void free_compound_page(struct page *page)
d98c7a09 710{
bbc6b703 711 mem_cgroup_uncharge(page_folio(page));
44042b44 712 free_the_page(page, compound_order(page));
d98c7a09
HD
713}
714
5b24eeef
JM
715static void prep_compound_head(struct page *page, unsigned int order)
716{
717 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
718 set_compound_order(page, order);
719 atomic_set(compound_mapcount_ptr(page), -1);
5232c63f 720 atomic_set(compound_pincount_ptr(page), 0);
5b24eeef
JM
721}
722
723static void prep_compound_tail(struct page *head, int tail_idx)
724{
725 struct page *p = head + tail_idx;
726
727 p->mapping = TAIL_MAPPING;
728 set_compound_head(p, head);
729}
730
d00181b9 731void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
732{
733 int i;
734 int nr_pages = 1 << order;
735
18229df5 736 __SetPageHead(page);
5b24eeef
JM
737 for (i = 1; i < nr_pages; i++)
738 prep_compound_tail(page, i);
1378a5ee 739
5b24eeef 740 prep_compound_head(page, order);
18229df5
AW
741}
742
c0a32fc5
SG
743#ifdef CONFIG_DEBUG_PAGEALLOC
744unsigned int _debug_guardpage_minorder;
96a2b03f 745
8e57f8ac
VB
746bool _debug_pagealloc_enabled_early __read_mostly
747 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
748EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 749DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 750EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
751
752DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 753
031bc574
JK
754static int __init early_debug_pagealloc(char *buf)
755{
8e57f8ac 756 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
757}
758early_param("debug_pagealloc", early_debug_pagealloc);
759
c0a32fc5
SG
760static int __init debug_guardpage_minorder_setup(char *buf)
761{
762 unsigned long res;
763
764 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 765 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
766 return 0;
767 }
768 _debug_guardpage_minorder = res;
1170532b 769 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
770 return 0;
771}
f1c1e9f7 772early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 773
acbc15a4 774static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 775 unsigned int order, int migratetype)
c0a32fc5 776{
e30825f1 777 if (!debug_guardpage_enabled())
acbc15a4
JK
778 return false;
779
780 if (order >= debug_guardpage_minorder())
781 return false;
e30825f1 782
3972f6bb 783 __SetPageGuard(page);
2847cf95
JK
784 INIT_LIST_HEAD(&page->lru);
785 set_page_private(page, order);
786 /* Guard pages are not available for any usage */
787 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
788
789 return true;
c0a32fc5
SG
790}
791
2847cf95
JK
792static inline void clear_page_guard(struct zone *zone, struct page *page,
793 unsigned int order, int migratetype)
c0a32fc5 794{
e30825f1
JK
795 if (!debug_guardpage_enabled())
796 return;
797
3972f6bb 798 __ClearPageGuard(page);
e30825f1 799
2847cf95
JK
800 set_page_private(page, 0);
801 if (!is_migrate_isolate(migratetype))
802 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
803}
804#else
acbc15a4
JK
805static inline bool set_page_guard(struct zone *zone, struct page *page,
806 unsigned int order, int migratetype) { return false; }
2847cf95
JK
807static inline void clear_page_guard(struct zone *zone, struct page *page,
808 unsigned int order, int migratetype) {}
c0a32fc5
SG
809#endif
810
04013513
VB
811/*
812 * Enable static keys related to various memory debugging and hardening options.
813 * Some override others, and depend on early params that are evaluated in the
814 * order of appearance. So we need to first gather the full picture of what was
815 * enabled, and then make decisions.
816 */
817void init_mem_debugging_and_hardening(void)
818{
9df65f52
ST
819 bool page_poisoning_requested = false;
820
821#ifdef CONFIG_PAGE_POISONING
822 /*
823 * Page poisoning is debug page alloc for some arches. If
824 * either of those options are enabled, enable poisoning.
825 */
826 if (page_poisoning_enabled() ||
827 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
828 debug_pagealloc_enabled())) {
829 static_branch_enable(&_page_poisoning_enabled);
830 page_poisoning_requested = true;
831 }
832#endif
833
69e5d322
ST
834 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
835 page_poisoning_requested) {
836 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
837 "will take precedence over init_on_alloc and init_on_free\n");
838 _init_on_alloc_enabled_early = false;
839 _init_on_free_enabled_early = false;
04013513
VB
840 }
841
69e5d322
ST
842 if (_init_on_alloc_enabled_early)
843 static_branch_enable(&init_on_alloc);
844 else
845 static_branch_disable(&init_on_alloc);
846
847 if (_init_on_free_enabled_early)
848 static_branch_enable(&init_on_free);
849 else
850 static_branch_disable(&init_on_free);
851
04013513
VB
852#ifdef CONFIG_DEBUG_PAGEALLOC
853 if (!debug_pagealloc_enabled())
854 return;
855
856 static_branch_enable(&_debug_pagealloc_enabled);
857
858 if (!debug_guardpage_minorder())
859 return;
860
861 static_branch_enable(&_debug_guardpage_enabled);
862#endif
863}
864
ab130f91 865static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 866{
4c21e2f2 867 set_page_private(page, order);
676165a8 868 __SetPageBuddy(page);
1da177e4
LT
869}
870
5e1f0f09
MG
871#ifdef CONFIG_COMPACTION
872static inline struct capture_control *task_capc(struct zone *zone)
873{
874 struct capture_control *capc = current->capture_control;
875
deba0487 876 return unlikely(capc) &&
5e1f0f09
MG
877 !(current->flags & PF_KTHREAD) &&
878 !capc->page &&
deba0487 879 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
880}
881
882static inline bool
883compaction_capture(struct capture_control *capc, struct page *page,
884 int order, int migratetype)
885{
886 if (!capc || order != capc->cc->order)
887 return false;
888
889 /* Do not accidentally pollute CMA or isolated regions*/
890 if (is_migrate_cma(migratetype) ||
891 is_migrate_isolate(migratetype))
892 return false;
893
894 /*
f0953a1b 895 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
896 * This might let an unmovable request use a reclaimable pageblock
897 * and vice-versa but no more than normal fallback logic which can
898 * have trouble finding a high-order free page.
899 */
900 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
901 return false;
902
903 capc->page = page;
904 return true;
905}
906
907#else
908static inline struct capture_control *task_capc(struct zone *zone)
909{
910 return NULL;
911}
912
913static inline bool
914compaction_capture(struct capture_control *capc, struct page *page,
915 int order, int migratetype)
916{
917 return false;
918}
919#endif /* CONFIG_COMPACTION */
920
6ab01363
AD
921/* Used for pages not on another list */
922static inline void add_to_free_list(struct page *page, struct zone *zone,
923 unsigned int order, int migratetype)
924{
925 struct free_area *area = &zone->free_area[order];
926
927 list_add(&page->lru, &area->free_list[migratetype]);
928 area->nr_free++;
929}
930
931/* Used for pages not on another list */
932static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
933 unsigned int order, int migratetype)
934{
935 struct free_area *area = &zone->free_area[order];
936
937 list_add_tail(&page->lru, &area->free_list[migratetype]);
938 area->nr_free++;
939}
940
293ffa5e
DH
941/*
942 * Used for pages which are on another list. Move the pages to the tail
943 * of the list - so the moved pages won't immediately be considered for
944 * allocation again (e.g., optimization for memory onlining).
945 */
6ab01363
AD
946static inline void move_to_free_list(struct page *page, struct zone *zone,
947 unsigned int order, int migratetype)
948{
949 struct free_area *area = &zone->free_area[order];
950
293ffa5e 951 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
952}
953
954static inline void del_page_from_free_list(struct page *page, struct zone *zone,
955 unsigned int order)
956{
36e66c55
AD
957 /* clear reported state and update reported page count */
958 if (page_reported(page))
959 __ClearPageReported(page);
960
6ab01363
AD
961 list_del(&page->lru);
962 __ClearPageBuddy(page);
963 set_page_private(page, 0);
964 zone->free_area[order].nr_free--;
965}
966
a2129f24
AD
967/*
968 * If this is not the largest possible page, check if the buddy
969 * of the next-highest order is free. If it is, it's possible
970 * that pages are being freed that will coalesce soon. In case,
971 * that is happening, add the free page to the tail of the list
972 * so it's less likely to be used soon and more likely to be merged
973 * as a higher order page
974 */
975static inline bool
976buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
977 struct page *page, unsigned int order)
978{
8170ac47
ZY
979 unsigned long higher_page_pfn;
980 struct page *higher_page;
a2129f24
AD
981
982 if (order >= MAX_ORDER - 2)
983 return false;
984
8170ac47
ZY
985 higher_page_pfn = buddy_pfn & pfn;
986 higher_page = page + (higher_page_pfn - pfn);
a2129f24 987
8170ac47
ZY
988 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
989 NULL) != NULL;
a2129f24
AD
990}
991
1da177e4
LT
992/*
993 * Freeing function for a buddy system allocator.
994 *
995 * The concept of a buddy system is to maintain direct-mapped table
996 * (containing bit values) for memory blocks of various "orders".
997 * The bottom level table contains the map for the smallest allocatable
998 * units of memory (here, pages), and each level above it describes
999 * pairs of units from the levels below, hence, "buddies".
1000 * At a high level, all that happens here is marking the table entry
1001 * at the bottom level available, and propagating the changes upward
1002 * as necessary, plus some accounting needed to play nicely with other
1003 * parts of the VM system.
1004 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1005 * free pages of length of (1 << order) and marked with PageBuddy.
1006 * Page's order is recorded in page_private(page) field.
1da177e4 1007 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1008 * other. That is, if we allocate a small block, and both were
1009 * free, the remainder of the region must be split into blocks.
1da177e4 1010 * If a block is freed, and its buddy is also free, then this
5f63b720 1011 * triggers coalescing into a block of larger size.
1da177e4 1012 *
6d49e352 1013 * -- nyc
1da177e4
LT
1014 */
1015
48db57f8 1016static inline void __free_one_page(struct page *page,
dc4b0caf 1017 unsigned long pfn,
ed0ae21d 1018 struct zone *zone, unsigned int order,
f04a5d5d 1019 int migratetype, fpi_t fpi_flags)
1da177e4 1020{
a2129f24 1021 struct capture_control *capc = task_capc(zone);
3f649ab7 1022 unsigned long buddy_pfn;
a2129f24 1023 unsigned long combined_pfn;
a2129f24
AD
1024 struct page *buddy;
1025 bool to_tail;
d9dddbf5 1026
d29bb978 1027 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1028 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1029
ed0ae21d 1030 VM_BUG_ON(migratetype == -1);
d9dddbf5 1031 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1032 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1033
76741e77 1034 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1035 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1036
bb0e28eb 1037 while (order < MAX_ORDER - 1) {
5e1f0f09
MG
1038 if (compaction_capture(capc, page, order, migratetype)) {
1039 __mod_zone_freepage_state(zone, -(1 << order),
1040 migratetype);
1041 return;
1042 }
13ad59df 1043
8170ac47
ZY
1044 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1045 if (!buddy)
d9dddbf5 1046 goto done_merging;
bb0e28eb
ZY
1047
1048 if (unlikely(order >= pageblock_order)) {
1049 /*
1050 * We want to prevent merge between freepages on pageblock
1051 * without fallbacks and normal pageblock. Without this,
1052 * pageblock isolation could cause incorrect freepage or CMA
1053 * accounting or HIGHATOMIC accounting.
1054 */
1055 int buddy_mt = get_pageblock_migratetype(buddy);
1056
1057 if (migratetype != buddy_mt
1058 && (!migratetype_is_mergeable(migratetype) ||
1059 !migratetype_is_mergeable(buddy_mt)))
1060 goto done_merging;
1061 }
1062
c0a32fc5
SG
1063 /*
1064 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1065 * merge with it and move up one order.
1066 */
b03641af 1067 if (page_is_guard(buddy))
2847cf95 1068 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1069 else
6ab01363 1070 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1071 combined_pfn = buddy_pfn & pfn;
1072 page = page + (combined_pfn - pfn);
1073 pfn = combined_pfn;
1da177e4
LT
1074 order++;
1075 }
d9dddbf5
VB
1076
1077done_merging:
ab130f91 1078 set_buddy_order(page, order);
6dda9d55 1079
47b6a24a
DH
1080 if (fpi_flags & FPI_TO_TAIL)
1081 to_tail = true;
1082 else if (is_shuffle_order(order))
a2129f24 1083 to_tail = shuffle_pick_tail();
97500a4a 1084 else
a2129f24 1085 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1086
a2129f24 1087 if (to_tail)
6ab01363 1088 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1089 else
6ab01363 1090 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1091
1092 /* Notify page reporting subsystem of freed page */
f04a5d5d 1093 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1094 page_reporting_notify_free(order);
1da177e4
LT
1095}
1096
b2c9e2fb
ZY
1097/**
1098 * split_free_page() -- split a free page at split_pfn_offset
1099 * @free_page: the original free page
1100 * @order: the order of the page
1101 * @split_pfn_offset: split offset within the page
1102 *
1103 * It is used when the free page crosses two pageblocks with different migratetypes
1104 * at split_pfn_offset within the page. The split free page will be put into
1105 * separate migratetype lists afterwards. Otherwise, the function achieves
1106 * nothing.
1107 */
1108void split_free_page(struct page *free_page,
1109 int order, unsigned long split_pfn_offset)
1110{
1111 struct zone *zone = page_zone(free_page);
1112 unsigned long free_page_pfn = page_to_pfn(free_page);
1113 unsigned long pfn;
1114 unsigned long flags;
1115 int free_page_order;
1116
1117 spin_lock_irqsave(&zone->lock, flags);
1118 del_page_from_free_list(free_page, zone, order);
1119 for (pfn = free_page_pfn;
1120 pfn < free_page_pfn + (1UL << order);) {
1121 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1122
1123 free_page_order = ffs(split_pfn_offset) - 1;
1124 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1125 mt, FPI_NONE);
1126 pfn += 1UL << free_page_order;
1127 split_pfn_offset -= (1UL << free_page_order);
1128 /* we have done the first part, now switch to second part */
1129 if (split_pfn_offset == 0)
1130 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1131 }
1132 spin_unlock_irqrestore(&zone->lock, flags);
1133}
7bfec6f4
MG
1134/*
1135 * A bad page could be due to a number of fields. Instead of multiple branches,
1136 * try and check multiple fields with one check. The caller must do a detailed
1137 * check if necessary.
1138 */
1139static inline bool page_expected_state(struct page *page,
1140 unsigned long check_flags)
1141{
1142 if (unlikely(atomic_read(&page->_mapcount) != -1))
1143 return false;
1144
1145 if (unlikely((unsigned long)page->mapping |
1146 page_ref_count(page) |
1147#ifdef CONFIG_MEMCG
48060834 1148 page->memcg_data |
7bfec6f4
MG
1149#endif
1150 (page->flags & check_flags)))
1151 return false;
1152
1153 return true;
1154}
1155
58b7f119 1156static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1157{
82a3241a 1158 const char *bad_reason = NULL;
f0b791a3 1159
53f9263b 1160 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1161 bad_reason = "nonzero mapcount";
1162 if (unlikely(page->mapping != NULL))
1163 bad_reason = "non-NULL mapping";
fe896d18 1164 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1165 bad_reason = "nonzero _refcount";
58b7f119
WY
1166 if (unlikely(page->flags & flags)) {
1167 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1168 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1169 else
1170 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1171 }
9edad6ea 1172#ifdef CONFIG_MEMCG
48060834 1173 if (unlikely(page->memcg_data))
9edad6ea
JW
1174 bad_reason = "page still charged to cgroup";
1175#endif
58b7f119
WY
1176 return bad_reason;
1177}
1178
1179static void check_free_page_bad(struct page *page)
1180{
1181 bad_page(page,
1182 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1183}
1184
534fe5e3 1185static inline int check_free_page(struct page *page)
bb552ac6 1186{
da838d4f 1187 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1188 return 0;
bb552ac6
MG
1189
1190 /* Something has gone sideways, find it */
0d0c48a2 1191 check_free_page_bad(page);
7bfec6f4 1192 return 1;
1da177e4
LT
1193}
1194
4db7548c
MG
1195static int free_tail_pages_check(struct page *head_page, struct page *page)
1196{
1197 int ret = 1;
1198
1199 /*
1200 * We rely page->lru.next never has bit 0 set, unless the page
1201 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1202 */
1203 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1204
1205 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1206 ret = 0;
1207 goto out;
1208 }
1209 switch (page - head_page) {
1210 case 1:
4da1984e 1211 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1212 if (unlikely(compound_mapcount(page))) {
82a3241a 1213 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1214 goto out;
1215 }
1216 break;
1217 case 2:
1218 /*
1219 * the second tail page: ->mapping is
fa3015b7 1220 * deferred_list.next -- ignore value.
4db7548c
MG
1221 */
1222 break;
1223 default:
1224 if (page->mapping != TAIL_MAPPING) {
82a3241a 1225 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1226 goto out;
1227 }
1228 break;
1229 }
1230 if (unlikely(!PageTail(page))) {
82a3241a 1231 bad_page(page, "PageTail not set");
4db7548c
MG
1232 goto out;
1233 }
1234 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1235 bad_page(page, "compound_head not consistent");
4db7548c
MG
1236 goto out;
1237 }
1238 ret = 0;
1239out:
1240 page->mapping = NULL;
1241 clear_compound_head(page);
1242 return ret;
1243}
1244
94ae8b83
AK
1245/*
1246 * Skip KASAN memory poisoning when either:
1247 *
1248 * 1. Deferred memory initialization has not yet completed,
1249 * see the explanation below.
1250 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1251 * see the comment next to it.
1252 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1253 * see the comment next to it.
1254 *
1255 * Poisoning pages during deferred memory init will greatly lengthen the
1256 * process and cause problem in large memory systems as the deferred pages
1257 * initialization is done with interrupt disabled.
1258 *
1259 * Assuming that there will be no reference to those newly initialized
1260 * pages before they are ever allocated, this should have no effect on
1261 * KASAN memory tracking as the poison will be properly inserted at page
1262 * allocation time. The only corner case is when pages are allocated by
1263 * on-demand allocation and then freed again before the deferred pages
1264 * initialization is done, but this is not likely to happen.
1265 */
1266static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1267{
1268 return deferred_pages_enabled() ||
1269 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1270 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1271 PageSkipKASanPoison(page);
1272}
1273
5b2c0713 1274static void kernel_init_free_pages(struct page *page, int numpages)
6471384a
AP
1275{
1276 int i;
1277
9e15afa5
QC
1278 /* s390's use of memset() could override KASAN redzones. */
1279 kasan_disable_current();
aa1ef4d7 1280 for (i = 0; i < numpages; i++) {
acb35b17 1281 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1282 page_kasan_tag_reset(page + i);
6471384a 1283 clear_highpage(page + i);
acb35b17 1284 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1285 }
9e15afa5 1286 kasan_enable_current();
6471384a
AP
1287}
1288
e2769dbd 1289static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1290 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1291{
e2769dbd 1292 int bad = 0;
c3525330 1293 bool init = want_init_on_free();
4db7548c 1294
4db7548c
MG
1295 VM_BUG_ON_PAGE(PageTail(page), page);
1296
e2769dbd 1297 trace_mm_page_free(page, order);
e2769dbd 1298
79f5f8fa
OS
1299 if (unlikely(PageHWPoison(page)) && !order) {
1300 /*
1301 * Do not let hwpoison pages hit pcplists/buddy
1302 * Untie memcg state and reset page's owner
1303 */
18b2db3b 1304 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1305 __memcg_kmem_uncharge_page(page, order);
1306 reset_page_owner(page, order);
df4e817b 1307 page_table_check_free(page, order);
79f5f8fa
OS
1308 return false;
1309 }
1310
e2769dbd
MG
1311 /*
1312 * Check tail pages before head page information is cleared to
1313 * avoid checking PageCompound for order-0 pages.
1314 */
1315 if (unlikely(order)) {
1316 bool compound = PageCompound(page);
1317 int i;
1318
1319 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1320
eac96c3e 1321 if (compound) {
9a73f61b 1322 ClearPageDoubleMap(page);
eac96c3e
YS
1323 ClearPageHasHWPoisoned(page);
1324 }
e2769dbd
MG
1325 for (i = 1; i < (1 << order); i++) {
1326 if (compound)
1327 bad += free_tail_pages_check(page, page + i);
534fe5e3 1328 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1329 bad++;
1330 continue;
1331 }
1332 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1333 }
1334 }
bda807d4 1335 if (PageMappingFlags(page))
4db7548c 1336 page->mapping = NULL;
18b2db3b 1337 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1338 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1339 if (check_free)
534fe5e3 1340 bad += check_free_page(page);
e2769dbd
MG
1341 if (bad)
1342 return false;
4db7548c 1343
e2769dbd
MG
1344 page_cpupid_reset_last(page);
1345 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1346 reset_page_owner(page, order);
df4e817b 1347 page_table_check_free(page, order);
4db7548c
MG
1348
1349 if (!PageHighMem(page)) {
1350 debug_check_no_locks_freed(page_address(page),
e2769dbd 1351 PAGE_SIZE << order);
4db7548c 1352 debug_check_no_obj_freed(page_address(page),
e2769dbd 1353 PAGE_SIZE << order);
4db7548c 1354 }
6471384a 1355
8db26a3d
VB
1356 kernel_poison_pages(page, 1 << order);
1357
f9d79e8d 1358 /*
1bb5eab3 1359 * As memory initialization might be integrated into KASAN,
7c13c163 1360 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1361 * kept together to avoid discrepancies in behavior.
1362 *
f9d79e8d
AK
1363 * With hardware tag-based KASAN, memory tags must be set before the
1364 * page becomes unavailable via debug_pagealloc or arch_free_page.
1365 */
487a32ec 1366 if (!should_skip_kasan_poison(page, fpi_flags)) {
c3525330 1367 kasan_poison_pages(page, order, init);
f9d79e8d 1368
db8a0477
AK
1369 /* Memory is already initialized if KASAN did it internally. */
1370 if (kasan_has_integrated_init())
1371 init = false;
1372 }
1373 if (init)
1374 kernel_init_free_pages(page, 1 << order);
1375
234fdce8
QC
1376 /*
1377 * arch_free_page() can make the page's contents inaccessible. s390
1378 * does this. So nothing which can access the page's contents should
1379 * happen after this.
1380 */
1381 arch_free_page(page, order);
1382
77bc7fd6 1383 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1384
4db7548c
MG
1385 return true;
1386}
1387
e2769dbd 1388#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1389/*
1390 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1391 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1392 * moved from pcp lists to free lists.
1393 */
44042b44 1394static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1395{
44042b44 1396 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1397}
1398
4462b32c 1399static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1400{
8e57f8ac 1401 if (debug_pagealloc_enabled_static())
534fe5e3 1402 return check_free_page(page);
4462b32c
VB
1403 else
1404 return false;
e2769dbd
MG
1405}
1406#else
4462b32c
VB
1407/*
1408 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1409 * moving from pcp lists to free list in order to reduce overhead. With
1410 * debug_pagealloc enabled, they are checked also immediately when being freed
1411 * to the pcp lists.
1412 */
44042b44 1413static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1414{
8e57f8ac 1415 if (debug_pagealloc_enabled_static())
44042b44 1416 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1417 else
44042b44 1418 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1419}
1420
4db7548c
MG
1421static bool bulkfree_pcp_prepare(struct page *page)
1422{
534fe5e3 1423 return check_free_page(page);
4db7548c
MG
1424}
1425#endif /* CONFIG_DEBUG_VM */
1426
1da177e4 1427/*
5f8dcc21 1428 * Frees a number of pages from the PCP lists
7cba630b 1429 * Assumes all pages on list are in same zone.
207f36ee 1430 * count is the number of pages to free.
1da177e4 1431 */
5f8dcc21 1432static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1433 struct per_cpu_pages *pcp,
1434 int pindex)
1da177e4 1435{
35b6d770
MG
1436 int min_pindex = 0;
1437 int max_pindex = NR_PCP_LISTS - 1;
44042b44 1438 unsigned int order;
3777999d 1439 bool isolated_pageblocks;
8b10b465 1440 struct page *page;
f2260e6b 1441
88e8ac11
CTR
1442 /*
1443 * Ensure proper count is passed which otherwise would stuck in the
1444 * below while (list_empty(list)) loop.
1445 */
1446 count = min(pcp->count, count);
d61372bc
MG
1447
1448 /* Ensure requested pindex is drained first. */
1449 pindex = pindex - 1;
1450
8b10b465
MG
1451 /*
1452 * local_lock_irq held so equivalent to spin_lock_irqsave for
1453 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1454 */
1455 spin_lock(&zone->lock);
1456 isolated_pageblocks = has_isolate_pageblock(zone);
1457
44042b44 1458 while (count > 0) {
5f8dcc21 1459 struct list_head *list;
fd56eef2 1460 int nr_pages;
5f8dcc21 1461
fd56eef2 1462 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1463 do {
35b6d770
MG
1464 if (++pindex > max_pindex)
1465 pindex = min_pindex;
44042b44 1466 list = &pcp->lists[pindex];
35b6d770
MG
1467 if (!list_empty(list))
1468 break;
1469
1470 if (pindex == max_pindex)
1471 max_pindex--;
1472 if (pindex == min_pindex)
1473 min_pindex++;
1474 } while (1);
48db57f8 1475
44042b44 1476 order = pindex_to_order(pindex);
fd56eef2 1477 nr_pages = 1 << order;
44042b44 1478 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
a6f9edd6 1479 do {
8b10b465
MG
1480 int mt;
1481
a16601c5 1482 page = list_last_entry(list, struct page, lru);
8b10b465
MG
1483 mt = get_pcppage_migratetype(page);
1484
0a5f4e5b 1485 /* must delete to avoid corrupting pcp list */
a6f9edd6 1486 list_del(&page->lru);
fd56eef2
MG
1487 count -= nr_pages;
1488 pcp->count -= nr_pages;
aa016d14 1489
4db7548c
MG
1490 if (bulkfree_pcp_prepare(page))
1491 continue;
1492
8b10b465
MG
1493 /* MIGRATE_ISOLATE page should not go to pcplists */
1494 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1495 /* Pageblock could have been isolated meanwhile */
1496 if (unlikely(isolated_pageblocks))
1497 mt = get_pageblock_migratetype(page);
0a5f4e5b 1498
8b10b465
MG
1499 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1500 trace_mm_page_pcpu_drain(page, order, mt);
1501 } while (count > 0 && !list_empty(list));
0a5f4e5b 1502 }
8b10b465 1503
d34b0733 1504 spin_unlock(&zone->lock);
1da177e4
LT
1505}
1506
dc4b0caf
MG
1507static void free_one_page(struct zone *zone,
1508 struct page *page, unsigned long pfn,
7aeb09f9 1509 unsigned int order,
7fef431b 1510 int migratetype, fpi_t fpi_flags)
1da177e4 1511{
df1acc85
MG
1512 unsigned long flags;
1513
1514 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1515 if (unlikely(has_isolate_pageblock(zone) ||
1516 is_migrate_isolate(migratetype))) {
1517 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1518 }
7fef431b 1519 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1520 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1521}
1522
1e8ce83c 1523static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1524 unsigned long zone, int nid)
1e8ce83c 1525{
d0dc12e8 1526 mm_zero_struct_page(page);
1e8ce83c 1527 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1528 init_page_count(page);
1529 page_mapcount_reset(page);
1530 page_cpupid_reset_last(page);
2813b9c0 1531 page_kasan_tag_reset(page);
1e8ce83c 1532
1e8ce83c
RH
1533 INIT_LIST_HEAD(&page->lru);
1534#ifdef WANT_PAGE_VIRTUAL
1535 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1536 if (!is_highmem_idx(zone))
1537 set_page_address(page, __va(pfn << PAGE_SHIFT));
1538#endif
1539}
1540
7e18adb4 1541#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1542static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1543{
1544 pg_data_t *pgdat;
1545 int nid, zid;
1546
1547 if (!early_page_uninitialised(pfn))
1548 return;
1549
1550 nid = early_pfn_to_nid(pfn);
1551 pgdat = NODE_DATA(nid);
1552
1553 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1554 struct zone *zone = &pgdat->node_zones[zid];
1555
86fb05b9 1556 if (zone_spans_pfn(zone, pfn))
7e18adb4
MG
1557 break;
1558 }
d0dc12e8 1559 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1560}
1561#else
1562static inline void init_reserved_page(unsigned long pfn)
1563{
1564}
1565#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1566
92923ca3
NZ
1567/*
1568 * Initialised pages do not have PageReserved set. This function is
1569 * called for each range allocated by the bootmem allocator and
1570 * marks the pages PageReserved. The remaining valid pages are later
1571 * sent to the buddy page allocator.
1572 */
4b50bcc7 1573void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1574{
1575 unsigned long start_pfn = PFN_DOWN(start);
1576 unsigned long end_pfn = PFN_UP(end);
1577
7e18adb4
MG
1578 for (; start_pfn < end_pfn; start_pfn++) {
1579 if (pfn_valid(start_pfn)) {
1580 struct page *page = pfn_to_page(start_pfn);
1581
1582 init_reserved_page(start_pfn);
1d798ca3
KS
1583
1584 /* Avoid false-positive PageTail() */
1585 INIT_LIST_HEAD(&page->lru);
1586
d483da5b
AD
1587 /*
1588 * no need for atomic set_bit because the struct
1589 * page is not visible yet so nobody should
1590 * access it yet.
1591 */
1592 __SetPageReserved(page);
7e18adb4
MG
1593 }
1594 }
92923ca3
NZ
1595}
1596
7fef431b
DH
1597static void __free_pages_ok(struct page *page, unsigned int order,
1598 fpi_t fpi_flags)
ec95f53a 1599{
d34b0733 1600 unsigned long flags;
95e34412 1601 int migratetype;
dc4b0caf 1602 unsigned long pfn = page_to_pfn(page);
56f0e661 1603 struct zone *zone = page_zone(page);
ec95f53a 1604
2c335680 1605 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1606 return;
1607
cfc47a28 1608 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1609
56f0e661 1610 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1611 if (unlikely(has_isolate_pageblock(zone) ||
1612 is_migrate_isolate(migratetype))) {
1613 migratetype = get_pfnblock_migratetype(page, pfn);
1614 }
1615 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1616 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1617
d34b0733 1618 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1619}
1620
a9cd410a 1621void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1622{
c3993076 1623 unsigned int nr_pages = 1 << order;
e2d0bd2b 1624 struct page *p = page;
c3993076 1625 unsigned int loop;
a226f6c8 1626
7fef431b
DH
1627 /*
1628 * When initializing the memmap, __init_single_page() sets the refcount
1629 * of all pages to 1 ("allocated"/"not free"). We have to set the
1630 * refcount of all involved pages to 0.
1631 */
e2d0bd2b
YL
1632 prefetchw(p);
1633 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1634 prefetchw(p + 1);
c3993076
JW
1635 __ClearPageReserved(p);
1636 set_page_count(p, 0);
a226f6c8 1637 }
e2d0bd2b
YL
1638 __ClearPageReserved(p);
1639 set_page_count(p, 0);
c3993076 1640
9705bea5 1641 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1642
1643 /*
1644 * Bypass PCP and place fresh pages right to the tail, primarily
1645 * relevant for memory onlining.
1646 */
2c335680 1647 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1648}
1649
a9ee6cf5 1650#ifdef CONFIG_NUMA
7ace9917 1651
03e92a5e
MR
1652/*
1653 * During memory init memblocks map pfns to nids. The search is expensive and
1654 * this caches recent lookups. The implementation of __early_pfn_to_nid
1655 * treats start/end as pfns.
1656 */
1657struct mminit_pfnnid_cache {
1658 unsigned long last_start;
1659 unsigned long last_end;
1660 int last_nid;
1661};
75a592a4 1662
03e92a5e 1663static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1664
1665/*
1666 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1667 */
03e92a5e 1668static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1669 struct mminit_pfnnid_cache *state)
75a592a4 1670{
6f24fbd3 1671 unsigned long start_pfn, end_pfn;
75a592a4
MG
1672 int nid;
1673
6f24fbd3
MR
1674 if (state->last_start <= pfn && pfn < state->last_end)
1675 return state->last_nid;
1676
1677 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1678 if (nid != NUMA_NO_NODE) {
1679 state->last_start = start_pfn;
1680 state->last_end = end_pfn;
1681 state->last_nid = nid;
1682 }
7ace9917
MG
1683
1684 return nid;
75a592a4 1685}
75a592a4 1686
75a592a4 1687int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1688{
7ace9917 1689 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1690 int nid;
1691
7ace9917 1692 spin_lock(&early_pfn_lock);
56ec43d8 1693 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1694 if (nid < 0)
e4568d38 1695 nid = first_online_node;
7ace9917 1696 spin_unlock(&early_pfn_lock);
75a592a4 1697
7ace9917 1698 return nid;
75a592a4 1699}
a9ee6cf5 1700#endif /* CONFIG_NUMA */
75a592a4 1701
7c2ee349 1702void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1703 unsigned int order)
1704{
1705 if (early_page_uninitialised(pfn))
1706 return;
a9cd410a 1707 __free_pages_core(page, order);
3a80a7fa
MG
1708}
1709
7cf91a98
JK
1710/*
1711 * Check that the whole (or subset of) a pageblock given by the interval of
1712 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1713 * with the migration of free compaction scanner.
7cf91a98
JK
1714 *
1715 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1716 *
1717 * It's possible on some configurations to have a setup like node0 node1 node0
1718 * i.e. it's possible that all pages within a zones range of pages do not
1719 * belong to a single zone. We assume that a border between node0 and node1
1720 * can occur within a single pageblock, but not a node0 node1 node0
1721 * interleaving within a single pageblock. It is therefore sufficient to check
1722 * the first and last page of a pageblock and avoid checking each individual
1723 * page in a pageblock.
1724 */
1725struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1726 unsigned long end_pfn, struct zone *zone)
1727{
1728 struct page *start_page;
1729 struct page *end_page;
1730
1731 /* end_pfn is one past the range we are checking */
1732 end_pfn--;
1733
1734 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1735 return NULL;
1736
2d070eab
MH
1737 start_page = pfn_to_online_page(start_pfn);
1738 if (!start_page)
1739 return NULL;
7cf91a98
JK
1740
1741 if (page_zone(start_page) != zone)
1742 return NULL;
1743
1744 end_page = pfn_to_page(end_pfn);
1745
1746 /* This gives a shorter code than deriving page_zone(end_page) */
1747 if (page_zone_id(start_page) != page_zone_id(end_page))
1748 return NULL;
1749
1750 return start_page;
1751}
1752
1753void set_zone_contiguous(struct zone *zone)
1754{
1755 unsigned long block_start_pfn = zone->zone_start_pfn;
1756 unsigned long block_end_pfn;
1757
1758 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1759 for (; block_start_pfn < zone_end_pfn(zone);
1760 block_start_pfn = block_end_pfn,
1761 block_end_pfn += pageblock_nr_pages) {
1762
1763 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1764
1765 if (!__pageblock_pfn_to_page(block_start_pfn,
1766 block_end_pfn, zone))
1767 return;
e84fe99b 1768 cond_resched();
7cf91a98
JK
1769 }
1770
1771 /* We confirm that there is no hole */
1772 zone->contiguous = true;
1773}
1774
1775void clear_zone_contiguous(struct zone *zone)
1776{
1777 zone->contiguous = false;
1778}
1779
7e18adb4 1780#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1781static void __init deferred_free_range(unsigned long pfn,
1782 unsigned long nr_pages)
a4de83dd 1783{
2f47a91f
PT
1784 struct page *page;
1785 unsigned long i;
a4de83dd 1786
2f47a91f 1787 if (!nr_pages)
a4de83dd
MG
1788 return;
1789
2f47a91f
PT
1790 page = pfn_to_page(pfn);
1791
a4de83dd 1792 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1793 if (nr_pages == pageblock_nr_pages &&
1794 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1795 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1796 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1797 return;
1798 }
1799
e780149b
XQ
1800 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1801 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1802 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1803 __free_pages_core(page, 0);
e780149b 1804 }
a4de83dd
MG
1805}
1806
d3cd131d
NS
1807/* Completion tracking for deferred_init_memmap() threads */
1808static atomic_t pgdat_init_n_undone __initdata;
1809static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1810
1811static inline void __init pgdat_init_report_one_done(void)
1812{
1813 if (atomic_dec_and_test(&pgdat_init_n_undone))
1814 complete(&pgdat_init_all_done_comp);
1815}
0e1cc95b 1816
2f47a91f 1817/*
80b1f41c
PT
1818 * Returns true if page needs to be initialized or freed to buddy allocator.
1819 *
1820 * First we check if pfn is valid on architectures where it is possible to have
1821 * holes within pageblock_nr_pages. On systems where it is not possible, this
1822 * function is optimized out.
1823 *
1824 * Then, we check if a current large page is valid by only checking the validity
1825 * of the head pfn.
2f47a91f 1826 */
56ec43d8 1827static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1828{
80b1f41c
PT
1829 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1830 return false;
80b1f41c
PT
1831 return true;
1832}
2f47a91f 1833
80b1f41c
PT
1834/*
1835 * Free pages to buddy allocator. Try to free aligned pages in
1836 * pageblock_nr_pages sizes.
1837 */
56ec43d8 1838static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1839 unsigned long end_pfn)
1840{
80b1f41c
PT
1841 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1842 unsigned long nr_free = 0;
2f47a91f 1843
80b1f41c 1844 for (; pfn < end_pfn; pfn++) {
56ec43d8 1845 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1846 deferred_free_range(pfn - nr_free, nr_free);
1847 nr_free = 0;
1848 } else if (!(pfn & nr_pgmask)) {
1849 deferred_free_range(pfn - nr_free, nr_free);
1850 nr_free = 1;
80b1f41c
PT
1851 } else {
1852 nr_free++;
1853 }
1854 }
1855 /* Free the last block of pages to allocator */
1856 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1857}
1858
80b1f41c
PT
1859/*
1860 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1861 * by performing it only once every pageblock_nr_pages.
1862 * Return number of pages initialized.
1863 */
56ec43d8 1864static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1865 unsigned long pfn,
1866 unsigned long end_pfn)
2f47a91f 1867{
2f47a91f 1868 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1869 int nid = zone_to_nid(zone);
2f47a91f 1870 unsigned long nr_pages = 0;
56ec43d8 1871 int zid = zone_idx(zone);
2f47a91f 1872 struct page *page = NULL;
2f47a91f 1873
80b1f41c 1874 for (; pfn < end_pfn; pfn++) {
56ec43d8 1875 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1876 page = NULL;
2f47a91f 1877 continue;
80b1f41c 1878 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1879 page = pfn_to_page(pfn);
80b1f41c
PT
1880 } else {
1881 page++;
2f47a91f 1882 }
d0dc12e8 1883 __init_single_page(page, pfn, zid, nid);
80b1f41c 1884 nr_pages++;
2f47a91f 1885 }
80b1f41c 1886 return (nr_pages);
2f47a91f
PT
1887}
1888
0e56acae
AD
1889/*
1890 * This function is meant to pre-load the iterator for the zone init.
1891 * Specifically it walks through the ranges until we are caught up to the
1892 * first_init_pfn value and exits there. If we never encounter the value we
1893 * return false indicating there are no valid ranges left.
1894 */
1895static bool __init
1896deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1897 unsigned long *spfn, unsigned long *epfn,
1898 unsigned long first_init_pfn)
1899{
1900 u64 j;
1901
1902 /*
1903 * Start out by walking through the ranges in this zone that have
1904 * already been initialized. We don't need to do anything with them
1905 * so we just need to flush them out of the system.
1906 */
1907 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1908 if (*epfn <= first_init_pfn)
1909 continue;
1910 if (*spfn < first_init_pfn)
1911 *spfn = first_init_pfn;
1912 *i = j;
1913 return true;
1914 }
1915
1916 return false;
1917}
1918
1919/*
1920 * Initialize and free pages. We do it in two loops: first we initialize
1921 * struct page, then free to buddy allocator, because while we are
1922 * freeing pages we can access pages that are ahead (computing buddy
1923 * page in __free_one_page()).
1924 *
1925 * In order to try and keep some memory in the cache we have the loop
1926 * broken along max page order boundaries. This way we will not cause
1927 * any issues with the buddy page computation.
1928 */
1929static unsigned long __init
1930deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1931 unsigned long *end_pfn)
1932{
1933 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1934 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1935 unsigned long nr_pages = 0;
1936 u64 j = *i;
1937
1938 /* First we loop through and initialize the page values */
1939 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1940 unsigned long t;
1941
1942 if (mo_pfn <= *start_pfn)
1943 break;
1944
1945 t = min(mo_pfn, *end_pfn);
1946 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1947
1948 if (mo_pfn < *end_pfn) {
1949 *start_pfn = mo_pfn;
1950 break;
1951 }
1952 }
1953
1954 /* Reset values and now loop through freeing pages as needed */
1955 swap(j, *i);
1956
1957 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1958 unsigned long t;
1959
1960 if (mo_pfn <= spfn)
1961 break;
1962
1963 t = min(mo_pfn, epfn);
1964 deferred_free_pages(spfn, t);
1965
1966 if (mo_pfn <= epfn)
1967 break;
1968 }
1969
1970 return nr_pages;
1971}
1972
e4443149
DJ
1973static void __init
1974deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1975 void *arg)
1976{
1977 unsigned long spfn, epfn;
1978 struct zone *zone = arg;
1979 u64 i;
1980
1981 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1982
1983 /*
1984 * Initialize and free pages in MAX_ORDER sized increments so that we
1985 * can avoid introducing any issues with the buddy allocator.
1986 */
1987 while (spfn < end_pfn) {
1988 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1989 cond_resched();
1990 }
1991}
1992
ecd09650
DJ
1993/* An arch may override for more concurrency. */
1994__weak int __init
1995deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1996{
1997 return 1;
1998}
1999
7e18adb4 2000/* Initialise remaining memory on a node */
0e1cc95b 2001static int __init deferred_init_memmap(void *data)
7e18adb4 2002{
0e1cc95b 2003 pg_data_t *pgdat = data;
0e56acae 2004 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 2005 unsigned long spfn = 0, epfn = 0;
0e56acae 2006 unsigned long first_init_pfn, flags;
7e18adb4 2007 unsigned long start = jiffies;
7e18adb4 2008 struct zone *zone;
e4443149 2009 int zid, max_threads;
2f47a91f 2010 u64 i;
7e18adb4 2011
3a2d7fa8
PT
2012 /* Bind memory initialisation thread to a local node if possible */
2013 if (!cpumask_empty(cpumask))
2014 set_cpus_allowed_ptr(current, cpumask);
2015
2016 pgdat_resize_lock(pgdat, &flags);
2017 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2018 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2019 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2020 pgdat_init_report_one_done();
0e1cc95b
MG
2021 return 0;
2022 }
2023
7e18adb4
MG
2024 /* Sanity check boundaries */
2025 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2026 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2027 pgdat->first_deferred_pfn = ULONG_MAX;
2028
3d060856
PT
2029 /*
2030 * Once we unlock here, the zone cannot be grown anymore, thus if an
2031 * interrupt thread must allocate this early in boot, zone must be
2032 * pre-grown prior to start of deferred page initialization.
2033 */
2034 pgdat_resize_unlock(pgdat, &flags);
2035
7e18adb4
MG
2036 /* Only the highest zone is deferred so find it */
2037 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2038 zone = pgdat->node_zones + zid;
2039 if (first_init_pfn < zone_end_pfn(zone))
2040 break;
2041 }
0e56acae
AD
2042
2043 /* If the zone is empty somebody else may have cleared out the zone */
2044 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2045 first_init_pfn))
2046 goto zone_empty;
7e18adb4 2047
ecd09650 2048 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2049
117003c3 2050 while (spfn < epfn) {
e4443149
DJ
2051 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2052 struct padata_mt_job job = {
2053 .thread_fn = deferred_init_memmap_chunk,
2054 .fn_arg = zone,
2055 .start = spfn,
2056 .size = epfn_align - spfn,
2057 .align = PAGES_PER_SECTION,
2058 .min_chunk = PAGES_PER_SECTION,
2059 .max_threads = max_threads,
2060 };
2061
2062 padata_do_multithreaded(&job);
2063 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2064 epfn_align);
117003c3 2065 }
0e56acae 2066zone_empty:
7e18adb4
MG
2067 /* Sanity check that the next zone really is unpopulated */
2068 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2069
89c7c402
DJ
2070 pr_info("node %d deferred pages initialised in %ums\n",
2071 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2072
2073 pgdat_init_report_one_done();
0e1cc95b
MG
2074 return 0;
2075}
c9e97a19 2076
c9e97a19
PT
2077/*
2078 * If this zone has deferred pages, try to grow it by initializing enough
2079 * deferred pages to satisfy the allocation specified by order, rounded up to
2080 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2081 * of SECTION_SIZE bytes by initializing struct pages in increments of
2082 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2083 *
2084 * Return true when zone was grown, otherwise return false. We return true even
2085 * when we grow less than requested, to let the caller decide if there are
2086 * enough pages to satisfy the allocation.
2087 *
2088 * Note: We use noinline because this function is needed only during boot, and
2089 * it is called from a __ref function _deferred_grow_zone. This way we are
2090 * making sure that it is not inlined into permanent text section.
2091 */
2092static noinline bool __init
2093deferred_grow_zone(struct zone *zone, unsigned int order)
2094{
c9e97a19 2095 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2096 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2097 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2098 unsigned long spfn, epfn, flags;
2099 unsigned long nr_pages = 0;
c9e97a19
PT
2100 u64 i;
2101
2102 /* Only the last zone may have deferred pages */
2103 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2104 return false;
2105
2106 pgdat_resize_lock(pgdat, &flags);
2107
c9e97a19
PT
2108 /*
2109 * If someone grew this zone while we were waiting for spinlock, return
2110 * true, as there might be enough pages already.
2111 */
2112 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2113 pgdat_resize_unlock(pgdat, &flags);
2114 return true;
2115 }
2116
0e56acae
AD
2117 /* If the zone is empty somebody else may have cleared out the zone */
2118 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2119 first_deferred_pfn)) {
2120 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2121 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2122 /* Retry only once. */
2123 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2124 }
2125
0e56acae
AD
2126 /*
2127 * Initialize and free pages in MAX_ORDER sized increments so
2128 * that we can avoid introducing any issues with the buddy
2129 * allocator.
2130 */
2131 while (spfn < epfn) {
2132 /* update our first deferred PFN for this section */
2133 first_deferred_pfn = spfn;
2134
2135 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2136 touch_nmi_watchdog();
c9e97a19 2137
0e56acae
AD
2138 /* We should only stop along section boundaries */
2139 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2140 continue;
c9e97a19 2141
0e56acae 2142 /* If our quota has been met we can stop here */
c9e97a19
PT
2143 if (nr_pages >= nr_pages_needed)
2144 break;
2145 }
2146
0e56acae 2147 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2148 pgdat_resize_unlock(pgdat, &flags);
2149
2150 return nr_pages > 0;
2151}
2152
2153/*
2154 * deferred_grow_zone() is __init, but it is called from
2155 * get_page_from_freelist() during early boot until deferred_pages permanently
2156 * disables this call. This is why we have refdata wrapper to avoid warning,
2157 * and to ensure that the function body gets unloaded.
2158 */
2159static bool __ref
2160_deferred_grow_zone(struct zone *zone, unsigned int order)
2161{
2162 return deferred_grow_zone(zone, order);
2163}
2164
7cf91a98 2165#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2166
2167void __init page_alloc_init_late(void)
2168{
7cf91a98 2169 struct zone *zone;
e900a918 2170 int nid;
7cf91a98
JK
2171
2172#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2173
d3cd131d
NS
2174 /* There will be num_node_state(N_MEMORY) threads */
2175 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2176 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2177 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2178 }
2179
2180 /* Block until all are initialised */
d3cd131d 2181 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2182
c9e97a19
PT
2183 /*
2184 * We initialized the rest of the deferred pages. Permanently disable
2185 * on-demand struct page initialization.
2186 */
2187 static_branch_disable(&deferred_pages);
2188
4248b0da
MG
2189 /* Reinit limits that are based on free pages after the kernel is up */
2190 files_maxfiles_init();
7cf91a98 2191#endif
350e88ba 2192
ba8f3587
LF
2193 buffer_init();
2194
3010f876
PT
2195 /* Discard memblock private memory */
2196 memblock_discard();
7cf91a98 2197
e900a918
DW
2198 for_each_node_state(nid, N_MEMORY)
2199 shuffle_free_memory(NODE_DATA(nid));
2200
7cf91a98
JK
2201 for_each_populated_zone(zone)
2202 set_zone_contiguous(zone);
7e18adb4 2203}
7e18adb4 2204
47118af0 2205#ifdef CONFIG_CMA
9cf510a5 2206/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2207void __init init_cma_reserved_pageblock(struct page *page)
2208{
2209 unsigned i = pageblock_nr_pages;
2210 struct page *p = page;
2211
2212 do {
2213 __ClearPageReserved(p);
2214 set_page_count(p, 0);
d883c6cf 2215 } while (++p, --i);
47118af0 2216
47118af0 2217 set_pageblock_migratetype(page, MIGRATE_CMA);
b3d40a2b
DH
2218 set_page_refcounted(page);
2219 __free_pages(page, pageblock_order);
dc78327c 2220
3dcc0571 2221 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2222 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2223}
2224#endif
1da177e4
LT
2225
2226/*
2227 * The order of subdivision here is critical for the IO subsystem.
2228 * Please do not alter this order without good reasons and regression
2229 * testing. Specifically, as large blocks of memory are subdivided,
2230 * the order in which smaller blocks are delivered depends on the order
2231 * they're subdivided in this function. This is the primary factor
2232 * influencing the order in which pages are delivered to the IO
2233 * subsystem according to empirical testing, and this is also justified
2234 * by considering the behavior of a buddy system containing a single
2235 * large block of memory acted on by a series of small allocations.
2236 * This behavior is a critical factor in sglist merging's success.
2237 *
6d49e352 2238 * -- nyc
1da177e4 2239 */
085cc7d5 2240static inline void expand(struct zone *zone, struct page *page,
6ab01363 2241 int low, int high, int migratetype)
1da177e4
LT
2242{
2243 unsigned long size = 1 << high;
2244
2245 while (high > low) {
1da177e4
LT
2246 high--;
2247 size >>= 1;
309381fe 2248 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2249
acbc15a4
JK
2250 /*
2251 * Mark as guard pages (or page), that will allow to
2252 * merge back to allocator when buddy will be freed.
2253 * Corresponding page table entries will not be touched,
2254 * pages will stay not present in virtual address space
2255 */
2256 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2257 continue;
acbc15a4 2258
6ab01363 2259 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2260 set_buddy_order(&page[size], high);
1da177e4 2261 }
1da177e4
LT
2262}
2263
4e611801 2264static void check_new_page_bad(struct page *page)
1da177e4 2265{
f4c18e6f 2266 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2267 /* Don't complain about hwpoisoned pages */
2268 page_mapcount_reset(page); /* remove PageBuddy */
2269 return;
f4c18e6f 2270 }
58b7f119
WY
2271
2272 bad_page(page,
2273 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2274}
2275
2276/*
2277 * This page is about to be returned from the page allocator
2278 */
2279static inline int check_new_page(struct page *page)
2280{
2281 if (likely(page_expected_state(page,
2282 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2283 return 0;
2284
2285 check_new_page_bad(page);
2286 return 1;
2a7684a2
WF
2287}
2288
77fe7f13
MG
2289static bool check_new_pages(struct page *page, unsigned int order)
2290{
2291 int i;
2292 for (i = 0; i < (1 << order); i++) {
2293 struct page *p = page + i;
2294
2295 if (unlikely(check_new_page(p)))
2296 return true;
2297 }
2298
2299 return false;
2300}
2301
479f854a 2302#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2303/*
2304 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2305 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2306 * also checked when pcp lists are refilled from the free lists.
2307 */
77fe7f13 2308static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2309{
8e57f8ac 2310 if (debug_pagealloc_enabled_static())
77fe7f13 2311 return check_new_pages(page, order);
4462b32c
VB
2312 else
2313 return false;
479f854a
MG
2314}
2315
77fe7f13 2316static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2317{
77fe7f13 2318 return check_new_pages(page, order);
479f854a
MG
2319}
2320#else
4462b32c
VB
2321/*
2322 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2323 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2324 * enabled, they are also checked when being allocated from the pcp lists.
2325 */
77fe7f13 2326static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2327{
77fe7f13 2328 return check_new_pages(page, order);
479f854a 2329}
77fe7f13 2330static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2331{
8e57f8ac 2332 if (debug_pagealloc_enabled_static())
77fe7f13 2333 return check_new_pages(page, order);
4462b32c
VB
2334 else
2335 return false;
479f854a
MG
2336}
2337#endif /* CONFIG_DEBUG_VM */
2338
53ae233c
AK
2339static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2340{
2341 /* Don't skip if a software KASAN mode is enabled. */
2342 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2343 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2344 return false;
2345
2346 /* Skip, if hardware tag-based KASAN is not enabled. */
2347 if (!kasan_hw_tags_enabled())
2348 return true;
2349
2350 /*
2351 * With hardware tag-based KASAN enabled, skip if either:
2352 *
2353 * 1. Memory tags have already been cleared via tag_clear_highpage().
2354 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2355 */
2356 return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2357}
2358
9353ffa6
AK
2359static inline bool should_skip_init(gfp_t flags)
2360{
2361 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2362 if (!kasan_hw_tags_enabled())
2363 return false;
2364
2365 /* For hardware tag-based KASAN, skip if requested. */
2366 return (flags & __GFP_SKIP_ZERO);
2367}
2368
46f24fd8
JK
2369inline void post_alloc_hook(struct page *page, unsigned int order,
2370 gfp_t gfp_flags)
2371{
9353ffa6
AK
2372 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2373 !should_skip_init(gfp_flags);
b42090ae
AK
2374 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2375
46f24fd8
JK
2376 set_page_private(page, 0);
2377 set_page_refcounted(page);
2378
2379 arch_alloc_page(page, order);
77bc7fd6 2380 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2381
2382 /*
2383 * Page unpoisoning must happen before memory initialization.
2384 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2385 * allocations and the page unpoisoning code will complain.
2386 */
8db26a3d 2387 kernel_unpoison_pages(page, 1 << order);
862b6dee 2388
1bb5eab3
AK
2389 /*
2390 * As memory initialization might be integrated into KASAN,
b42090ae 2391 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
2392 * kept together to avoid discrepancies in behavior.
2393 */
9294b128
AK
2394
2395 /*
2396 * If memory tags should be zeroed (which happens only when memory
2397 * should be initialized as well).
2398 */
2399 if (init_tags) {
2400 int i;
2401
2402 /* Initialize both memory and tags. */
2403 for (i = 0; i != 1 << order; ++i)
2404 tag_clear_highpage(page + i);
2405
2406 /* Note that memory is already initialized by the loop above. */
2407 init = false;
2408 }
53ae233c
AK
2409 if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2410 /* Unpoison shadow memory or set memory tags. */
e9d0ca92 2411 kasan_unpoison_pages(page, order, init);
7e3cbba6 2412
e9d0ca92
AK
2413 /* Note that memory is already initialized by KASAN. */
2414 if (kasan_has_integrated_init())
7e3cbba6 2415 init = false;
7a3b8353 2416 }
7e3cbba6
AK
2417 /* If memory is still not initialized, do it now. */
2418 if (init)
2419 kernel_init_free_pages(page, 1 << order);
89b27116
AK
2420 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2421 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2422 SetPageSkipKASanPoison(page);
1bb5eab3
AK
2423
2424 set_page_owner(page, order, gfp_flags);
df4e817b 2425 page_table_check_alloc(page, order);
46f24fd8
JK
2426}
2427
479f854a 2428static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2429 unsigned int alloc_flags)
2a7684a2 2430{
46f24fd8 2431 post_alloc_hook(page, order, gfp_flags);
17cf4406 2432
17cf4406
NP
2433 if (order && (gfp_flags & __GFP_COMP))
2434 prep_compound_page(page, order);
2435
75379191 2436 /*
2f064f34 2437 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2438 * allocate the page. The expectation is that the caller is taking
2439 * steps that will free more memory. The caller should avoid the page
2440 * being used for !PFMEMALLOC purposes.
2441 */
2f064f34
MH
2442 if (alloc_flags & ALLOC_NO_WATERMARKS)
2443 set_page_pfmemalloc(page);
2444 else
2445 clear_page_pfmemalloc(page);
1da177e4
LT
2446}
2447
56fd56b8
MG
2448/*
2449 * Go through the free lists for the given migratetype and remove
2450 * the smallest available page from the freelists
2451 */
85ccc8fa 2452static __always_inline
728ec980 2453struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2454 int migratetype)
2455{
2456 unsigned int current_order;
b8af2941 2457 struct free_area *area;
56fd56b8
MG
2458 struct page *page;
2459
2460 /* Find a page of the appropriate size in the preferred list */
2461 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2462 area = &(zone->free_area[current_order]);
b03641af 2463 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2464 if (!page)
2465 continue;
6ab01363
AD
2466 del_page_from_free_list(page, zone, current_order);
2467 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2468 set_pcppage_migratetype(page, migratetype);
10e0f753
WY
2469 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2470 pcp_allowed_order(order) &&
2471 migratetype < MIGRATE_PCPTYPES);
56fd56b8
MG
2472 return page;
2473 }
2474
2475 return NULL;
2476}
2477
2478
b2a0ac88
MG
2479/*
2480 * This array describes the order lists are fallen back to when
2481 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
2482 *
2483 * The other migratetypes do not have fallbacks.
b2a0ac88 2484 */
da415663 2485static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2486 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2487 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2488 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
b2a0ac88
MG
2489};
2490
dc67647b 2491#ifdef CONFIG_CMA
85ccc8fa 2492static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2493 unsigned int order)
2494{
2495 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2496}
2497#else
2498static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2499 unsigned int order) { return NULL; }
2500#endif
2501
c361be55 2502/*
293ffa5e 2503 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2504 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2505 * boundary. If alignment is required, use move_freepages_block()
2506 */
02aa0cdd 2507static int move_freepages(struct zone *zone,
39ddb991 2508 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2509 int migratetype, int *num_movable)
c361be55
MG
2510{
2511 struct page *page;
39ddb991 2512 unsigned long pfn;
d00181b9 2513 unsigned int order;
d100313f 2514 int pages_moved = 0;
c361be55 2515
39ddb991 2516 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2517 page = pfn_to_page(pfn);
c361be55 2518 if (!PageBuddy(page)) {
02aa0cdd
VB
2519 /*
2520 * We assume that pages that could be isolated for
2521 * migration are movable. But we don't actually try
2522 * isolating, as that would be expensive.
2523 */
2524 if (num_movable &&
2525 (PageLRU(page) || __PageMovable(page)))
2526 (*num_movable)++;
39ddb991 2527 pfn++;
c361be55
MG
2528 continue;
2529 }
2530
cd961038
DR
2531 /* Make sure we are not inadvertently changing nodes */
2532 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2533 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2534
ab130f91 2535 order = buddy_order(page);
6ab01363 2536 move_to_free_list(page, zone, order, migratetype);
39ddb991 2537 pfn += 1 << order;
d100313f 2538 pages_moved += 1 << order;
c361be55
MG
2539 }
2540
d100313f 2541 return pages_moved;
c361be55
MG
2542}
2543
ee6f509c 2544int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2545 int migratetype, int *num_movable)
c361be55 2546{
39ddb991 2547 unsigned long start_pfn, end_pfn, pfn;
c361be55 2548
4a222127
DR
2549 if (num_movable)
2550 *num_movable = 0;
2551
39ddb991
KW
2552 pfn = page_to_pfn(page);
2553 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2554 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2555
2556 /* Do not cross zone boundaries */
108bcc96 2557 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2558 start_pfn = pfn;
108bcc96 2559 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2560 return 0;
2561
39ddb991 2562 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2563 num_movable);
c361be55
MG
2564}
2565
2f66a68f
MG
2566static void change_pageblock_range(struct page *pageblock_page,
2567 int start_order, int migratetype)
2568{
2569 int nr_pageblocks = 1 << (start_order - pageblock_order);
2570
2571 while (nr_pageblocks--) {
2572 set_pageblock_migratetype(pageblock_page, migratetype);
2573 pageblock_page += pageblock_nr_pages;
2574 }
2575}
2576
fef903ef 2577/*
9c0415eb
VB
2578 * When we are falling back to another migratetype during allocation, try to
2579 * steal extra free pages from the same pageblocks to satisfy further
2580 * allocations, instead of polluting multiple pageblocks.
2581 *
2582 * If we are stealing a relatively large buddy page, it is likely there will
2583 * be more free pages in the pageblock, so try to steal them all. For
2584 * reclaimable and unmovable allocations, we steal regardless of page size,
2585 * as fragmentation caused by those allocations polluting movable pageblocks
2586 * is worse than movable allocations stealing from unmovable and reclaimable
2587 * pageblocks.
fef903ef 2588 */
4eb7dce6
JK
2589static bool can_steal_fallback(unsigned int order, int start_mt)
2590{
2591 /*
2592 * Leaving this order check is intended, although there is
2593 * relaxed order check in next check. The reason is that
2594 * we can actually steal whole pageblock if this condition met,
2595 * but, below check doesn't guarantee it and that is just heuristic
2596 * so could be changed anytime.
2597 */
2598 if (order >= pageblock_order)
2599 return true;
2600
2601 if (order >= pageblock_order / 2 ||
2602 start_mt == MIGRATE_RECLAIMABLE ||
2603 start_mt == MIGRATE_UNMOVABLE ||
2604 page_group_by_mobility_disabled)
2605 return true;
2606
2607 return false;
2608}
2609
597c8920 2610static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2611{
2612 unsigned long max_boost;
2613
2614 if (!watermark_boost_factor)
597c8920 2615 return false;
14f69140
HW
2616 /*
2617 * Don't bother in zones that are unlikely to produce results.
2618 * On small machines, including kdump capture kernels running
2619 * in a small area, boosting the watermark can cause an out of
2620 * memory situation immediately.
2621 */
2622 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2623 return false;
1c30844d
MG
2624
2625 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2626 watermark_boost_factor, 10000);
94b3334c
MG
2627
2628 /*
2629 * high watermark may be uninitialised if fragmentation occurs
2630 * very early in boot so do not boost. We do not fall
2631 * through and boost by pageblock_nr_pages as failing
2632 * allocations that early means that reclaim is not going
2633 * to help and it may even be impossible to reclaim the
2634 * boosted watermark resulting in a hang.
2635 */
2636 if (!max_boost)
597c8920 2637 return false;
94b3334c 2638
1c30844d
MG
2639 max_boost = max(pageblock_nr_pages, max_boost);
2640
2641 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2642 max_boost);
597c8920
JW
2643
2644 return true;
1c30844d
MG
2645}
2646
4eb7dce6
JK
2647/*
2648 * This function implements actual steal behaviour. If order is large enough,
2649 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2650 * pageblock to our migratetype and determine how many already-allocated pages
2651 * are there in the pageblock with a compatible migratetype. If at least half
2652 * of pages are free or compatible, we can change migratetype of the pageblock
2653 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2654 */
2655static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2656 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2657{
ab130f91 2658 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2659 int free_pages, movable_pages, alike_pages;
2660 int old_block_type;
2661
2662 old_block_type = get_pageblock_migratetype(page);
fef903ef 2663
3bc48f96
VB
2664 /*
2665 * This can happen due to races and we want to prevent broken
2666 * highatomic accounting.
2667 */
02aa0cdd 2668 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2669 goto single_page;
2670
fef903ef
SB
2671 /* Take ownership for orders >= pageblock_order */
2672 if (current_order >= pageblock_order) {
2673 change_pageblock_range(page, current_order, start_type);
3bc48f96 2674 goto single_page;
fef903ef
SB
2675 }
2676
1c30844d
MG
2677 /*
2678 * Boost watermarks to increase reclaim pressure to reduce the
2679 * likelihood of future fallbacks. Wake kswapd now as the node
2680 * may be balanced overall and kswapd will not wake naturally.
2681 */
597c8920 2682 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2683 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2684
3bc48f96
VB
2685 /* We are not allowed to try stealing from the whole block */
2686 if (!whole_block)
2687 goto single_page;
2688
02aa0cdd
VB
2689 free_pages = move_freepages_block(zone, page, start_type,
2690 &movable_pages);
2691 /*
2692 * Determine how many pages are compatible with our allocation.
2693 * For movable allocation, it's the number of movable pages which
2694 * we just obtained. For other types it's a bit more tricky.
2695 */
2696 if (start_type == MIGRATE_MOVABLE) {
2697 alike_pages = movable_pages;
2698 } else {
2699 /*
2700 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2701 * to MOVABLE pageblock, consider all non-movable pages as
2702 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2703 * vice versa, be conservative since we can't distinguish the
2704 * exact migratetype of non-movable pages.
2705 */
2706 if (old_block_type == MIGRATE_MOVABLE)
2707 alike_pages = pageblock_nr_pages
2708 - (free_pages + movable_pages);
2709 else
2710 alike_pages = 0;
2711 }
2712
3bc48f96 2713 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2714 if (!free_pages)
3bc48f96 2715 goto single_page;
fef903ef 2716
02aa0cdd
VB
2717 /*
2718 * If a sufficient number of pages in the block are either free or of
2719 * comparable migratability as our allocation, claim the whole block.
2720 */
2721 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2722 page_group_by_mobility_disabled)
2723 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2724
2725 return;
2726
2727single_page:
6ab01363 2728 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2729}
2730
2149cdae
JK
2731/*
2732 * Check whether there is a suitable fallback freepage with requested order.
2733 * If only_stealable is true, this function returns fallback_mt only if
2734 * we can steal other freepages all together. This would help to reduce
2735 * fragmentation due to mixed migratetype pages in one pageblock.
2736 */
2737int find_suitable_fallback(struct free_area *area, unsigned int order,
2738 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2739{
2740 int i;
2741 int fallback_mt;
2742
2743 if (area->nr_free == 0)
2744 return -1;
2745
2746 *can_steal = false;
2747 for (i = 0;; i++) {
2748 fallback_mt = fallbacks[migratetype][i];
974a786e 2749 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2750 break;
2751
b03641af 2752 if (free_area_empty(area, fallback_mt))
4eb7dce6 2753 continue;
fef903ef 2754
4eb7dce6
JK
2755 if (can_steal_fallback(order, migratetype))
2756 *can_steal = true;
2757
2149cdae
JK
2758 if (!only_stealable)
2759 return fallback_mt;
2760
2761 if (*can_steal)
2762 return fallback_mt;
fef903ef 2763 }
4eb7dce6
JK
2764
2765 return -1;
fef903ef
SB
2766}
2767
0aaa29a5
MG
2768/*
2769 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2770 * there are no empty page blocks that contain a page with a suitable order
2771 */
2772static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2773 unsigned int alloc_order)
2774{
2775 int mt;
2776 unsigned long max_managed, flags;
2777
2778 /*
2779 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2780 * Check is race-prone but harmless.
2781 */
9705bea5 2782 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2783 if (zone->nr_reserved_highatomic >= max_managed)
2784 return;
2785
2786 spin_lock_irqsave(&zone->lock, flags);
2787
2788 /* Recheck the nr_reserved_highatomic limit under the lock */
2789 if (zone->nr_reserved_highatomic >= max_managed)
2790 goto out_unlock;
2791
2792 /* Yoink! */
2793 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2794 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2795 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
2796 zone->nr_reserved_highatomic += pageblock_nr_pages;
2797 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2798 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2799 }
2800
2801out_unlock:
2802 spin_unlock_irqrestore(&zone->lock, flags);
2803}
2804
2805/*
2806 * Used when an allocation is about to fail under memory pressure. This
2807 * potentially hurts the reliability of high-order allocations when under
2808 * intense memory pressure but failed atomic allocations should be easier
2809 * to recover from than an OOM.
29fac03b
MK
2810 *
2811 * If @force is true, try to unreserve a pageblock even though highatomic
2812 * pageblock is exhausted.
0aaa29a5 2813 */
29fac03b
MK
2814static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2815 bool force)
0aaa29a5
MG
2816{
2817 struct zonelist *zonelist = ac->zonelist;
2818 unsigned long flags;
2819 struct zoneref *z;
2820 struct zone *zone;
2821 struct page *page;
2822 int order;
04c8716f 2823 bool ret;
0aaa29a5 2824
97a225e6 2825 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2826 ac->nodemask) {
29fac03b
MK
2827 /*
2828 * Preserve at least one pageblock unless memory pressure
2829 * is really high.
2830 */
2831 if (!force && zone->nr_reserved_highatomic <=
2832 pageblock_nr_pages)
0aaa29a5
MG
2833 continue;
2834
2835 spin_lock_irqsave(&zone->lock, flags);
2836 for (order = 0; order < MAX_ORDER; order++) {
2837 struct free_area *area = &(zone->free_area[order]);
2838
b03641af 2839 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2840 if (!page)
0aaa29a5
MG
2841 continue;
2842
0aaa29a5 2843 /*
4855e4a7
MK
2844 * In page freeing path, migratetype change is racy so
2845 * we can counter several free pages in a pageblock
f0953a1b 2846 * in this loop although we changed the pageblock type
4855e4a7
MK
2847 * from highatomic to ac->migratetype. So we should
2848 * adjust the count once.
0aaa29a5 2849 */
a6ffdc07 2850 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2851 /*
2852 * It should never happen but changes to
2853 * locking could inadvertently allow a per-cpu
2854 * drain to add pages to MIGRATE_HIGHATOMIC
2855 * while unreserving so be safe and watch for
2856 * underflows.
2857 */
2858 zone->nr_reserved_highatomic -= min(
2859 pageblock_nr_pages,
2860 zone->nr_reserved_highatomic);
2861 }
0aaa29a5
MG
2862
2863 /*
2864 * Convert to ac->migratetype and avoid the normal
2865 * pageblock stealing heuristics. Minimally, the caller
2866 * is doing the work and needs the pages. More
2867 * importantly, if the block was always converted to
2868 * MIGRATE_UNMOVABLE or another type then the number
2869 * of pageblocks that cannot be completely freed
2870 * may increase.
2871 */
2872 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2873 ret = move_freepages_block(zone, page, ac->migratetype,
2874 NULL);
29fac03b
MK
2875 if (ret) {
2876 spin_unlock_irqrestore(&zone->lock, flags);
2877 return ret;
2878 }
0aaa29a5
MG
2879 }
2880 spin_unlock_irqrestore(&zone->lock, flags);
2881 }
04c8716f
MK
2882
2883 return false;
0aaa29a5
MG
2884}
2885
3bc48f96
VB
2886/*
2887 * Try finding a free buddy page on the fallback list and put it on the free
2888 * list of requested migratetype, possibly along with other pages from the same
2889 * block, depending on fragmentation avoidance heuristics. Returns true if
2890 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2891 *
2892 * The use of signed ints for order and current_order is a deliberate
2893 * deviation from the rest of this file, to make the for loop
2894 * condition simpler.
3bc48f96 2895 */
85ccc8fa 2896static __always_inline bool
6bb15450
MG
2897__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2898 unsigned int alloc_flags)
b2a0ac88 2899{
b8af2941 2900 struct free_area *area;
b002529d 2901 int current_order;
6bb15450 2902 int min_order = order;
b2a0ac88 2903 struct page *page;
4eb7dce6
JK
2904 int fallback_mt;
2905 bool can_steal;
b2a0ac88 2906
6bb15450
MG
2907 /*
2908 * Do not steal pages from freelists belonging to other pageblocks
2909 * i.e. orders < pageblock_order. If there are no local zones free,
2910 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2911 */
2912 if (alloc_flags & ALLOC_NOFRAGMENT)
2913 min_order = pageblock_order;
2914
7a8f58f3
VB
2915 /*
2916 * Find the largest available free page in the other list. This roughly
2917 * approximates finding the pageblock with the most free pages, which
2918 * would be too costly to do exactly.
2919 */
6bb15450 2920 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2921 --current_order) {
4eb7dce6
JK
2922 area = &(zone->free_area[current_order]);
2923 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2924 start_migratetype, false, &can_steal);
4eb7dce6
JK
2925 if (fallback_mt == -1)
2926 continue;
b2a0ac88 2927
7a8f58f3
VB
2928 /*
2929 * We cannot steal all free pages from the pageblock and the
2930 * requested migratetype is movable. In that case it's better to
2931 * steal and split the smallest available page instead of the
2932 * largest available page, because even if the next movable
2933 * allocation falls back into a different pageblock than this
2934 * one, it won't cause permanent fragmentation.
2935 */
2936 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2937 && current_order > order)
2938 goto find_smallest;
b2a0ac88 2939
7a8f58f3
VB
2940 goto do_steal;
2941 }
e0fff1bd 2942
7a8f58f3 2943 return false;
e0fff1bd 2944
7a8f58f3
VB
2945find_smallest:
2946 for (current_order = order; current_order < MAX_ORDER;
2947 current_order++) {
2948 area = &(zone->free_area[current_order]);
2949 fallback_mt = find_suitable_fallback(area, current_order,
2950 start_migratetype, false, &can_steal);
2951 if (fallback_mt != -1)
2952 break;
b2a0ac88
MG
2953 }
2954
7a8f58f3
VB
2955 /*
2956 * This should not happen - we already found a suitable fallback
2957 * when looking for the largest page.
2958 */
2959 VM_BUG_ON(current_order == MAX_ORDER);
2960
2961do_steal:
b03641af 2962 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2963
1c30844d
MG
2964 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2965 can_steal);
7a8f58f3
VB
2966
2967 trace_mm_page_alloc_extfrag(page, order, current_order,
2968 start_migratetype, fallback_mt);
2969
2970 return true;
2971
b2a0ac88
MG
2972}
2973
56fd56b8 2974/*
1da177e4
LT
2975 * Do the hard work of removing an element from the buddy allocator.
2976 * Call me with the zone->lock already held.
2977 */
85ccc8fa 2978static __always_inline struct page *
6bb15450
MG
2979__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2980 unsigned int alloc_flags)
1da177e4 2981{
1da177e4
LT
2982 struct page *page;
2983
ce8f86ee
H
2984 if (IS_ENABLED(CONFIG_CMA)) {
2985 /*
2986 * Balance movable allocations between regular and CMA areas by
2987 * allocating from CMA when over half of the zone's free memory
2988 * is in the CMA area.
2989 */
2990 if (alloc_flags & ALLOC_CMA &&
2991 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2992 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2993 page = __rmqueue_cma_fallback(zone, order);
2994 if (page)
10e0f753 2995 return page;
ce8f86ee 2996 }
16867664 2997 }
3bc48f96 2998retry:
56fd56b8 2999 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 3000 if (unlikely(!page)) {
8510e69c 3001 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
3002 page = __rmqueue_cma_fallback(zone, order);
3003
6bb15450
MG
3004 if (!page && __rmqueue_fallback(zone, order, migratetype,
3005 alloc_flags))
3bc48f96 3006 goto retry;
728ec980 3007 }
b2a0ac88 3008 return page;
1da177e4
LT
3009}
3010
5f63b720 3011/*
1da177e4
LT
3012 * Obtain a specified number of elements from the buddy allocator, all under
3013 * a single hold of the lock, for efficiency. Add them to the supplied list.
3014 * Returns the number of new pages which were placed at *list.
3015 */
5f63b720 3016static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 3017 unsigned long count, struct list_head *list,
6bb15450 3018 int migratetype, unsigned int alloc_flags)
1da177e4 3019{
cb66bede 3020 int i, allocated = 0;
5f63b720 3021
dbbee9d5
MG
3022 /*
3023 * local_lock_irq held so equivalent to spin_lock_irqsave for
3024 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3025 */
d34b0733 3026 spin_lock(&zone->lock);
1da177e4 3027 for (i = 0; i < count; ++i) {
6bb15450
MG
3028 struct page *page = __rmqueue(zone, order, migratetype,
3029 alloc_flags);
085cc7d5 3030 if (unlikely(page == NULL))
1da177e4 3031 break;
81eabcbe 3032
77fe7f13 3033 if (unlikely(check_pcp_refill(page, order)))
479f854a
MG
3034 continue;
3035
81eabcbe 3036 /*
0fac3ba5
VB
3037 * Split buddy pages returned by expand() are received here in
3038 * physical page order. The page is added to the tail of
3039 * caller's list. From the callers perspective, the linked list
3040 * is ordered by page number under some conditions. This is
3041 * useful for IO devices that can forward direction from the
3042 * head, thus also in the physical page order. This is useful
3043 * for IO devices that can merge IO requests if the physical
3044 * pages are ordered properly.
81eabcbe 3045 */
0fac3ba5 3046 list_add_tail(&page->lru, list);
cb66bede 3047 allocated++;
bb14c2c7 3048 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3049 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3050 -(1 << order));
1da177e4 3051 }
a6de734b
MG
3052
3053 /*
3054 * i pages were removed from the buddy list even if some leak due
3055 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3056 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3057 * pages added to the pcp list.
3058 */
f2260e6b 3059 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 3060 spin_unlock(&zone->lock);
cb66bede 3061 return allocated;
1da177e4
LT
3062}
3063
4ae7c039 3064#ifdef CONFIG_NUMA
8fce4d8e 3065/*
4037d452
CL
3066 * Called from the vmstat counter updater to drain pagesets of this
3067 * currently executing processor on remote nodes after they have
3068 * expired.
3069 *
879336c3
CL
3070 * Note that this function must be called with the thread pinned to
3071 * a single processor.
8fce4d8e 3072 */
4037d452 3073void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3074{
4ae7c039 3075 unsigned long flags;
7be12fc9 3076 int to_drain, batch;
4ae7c039 3077
dbbee9d5 3078 local_lock_irqsave(&pagesets.lock, flags);
4db0c3c2 3079 batch = READ_ONCE(pcp->batch);
7be12fc9 3080 to_drain = min(pcp->count, batch);
77ba9062 3081 if (to_drain > 0)
fd56eef2 3082 free_pcppages_bulk(zone, to_drain, pcp, 0);
dbbee9d5 3083 local_unlock_irqrestore(&pagesets.lock, flags);
4ae7c039
CL
3084}
3085#endif
3086
9f8f2172 3087/*
93481ff0 3088 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3089 *
3090 * The processor must either be the current processor and the
3091 * thread pinned to the current processor or a processor that
3092 * is not online.
3093 */
93481ff0 3094static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3095{
c54ad30c 3096 unsigned long flags;
93481ff0 3097 struct per_cpu_pages *pcp;
1da177e4 3098
dbbee9d5 3099 local_lock_irqsave(&pagesets.lock, flags);
1da177e4 3100
28f836b6 3101 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
77ba9062 3102 if (pcp->count)
fd56eef2 3103 free_pcppages_bulk(zone, pcp->count, pcp, 0);
28f836b6 3104
dbbee9d5 3105 local_unlock_irqrestore(&pagesets.lock, flags);
93481ff0 3106}
3dfa5721 3107
93481ff0
VB
3108/*
3109 * Drain pcplists of all zones on the indicated processor.
3110 *
3111 * The processor must either be the current processor and the
3112 * thread pinned to the current processor or a processor that
3113 * is not online.
3114 */
3115static void drain_pages(unsigned int cpu)
3116{
3117 struct zone *zone;
3118
3119 for_each_populated_zone(zone) {
3120 drain_pages_zone(cpu, zone);
1da177e4
LT
3121 }
3122}
1da177e4 3123
9f8f2172
CL
3124/*
3125 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3126 *
3127 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3128 * the single zone's pages.
9f8f2172 3129 */
93481ff0 3130void drain_local_pages(struct zone *zone)
9f8f2172 3131{
93481ff0
VB
3132 int cpu = smp_processor_id();
3133
3134 if (zone)
3135 drain_pages_zone(cpu, zone);
3136 else
3137 drain_pages(cpu);
9f8f2172
CL
3138}
3139
0ccce3b9
MG
3140static void drain_local_pages_wq(struct work_struct *work)
3141{
d9367bd0
WY
3142 struct pcpu_drain *drain;
3143
3144 drain = container_of(work, struct pcpu_drain, work);
3145
a459eeb7
MH
3146 /*
3147 * drain_all_pages doesn't use proper cpu hotplug protection so
3148 * we can race with cpu offline when the WQ can move this from
3149 * a cpu pinned worker to an unbound one. We can operate on a different
f0953a1b 3150 * cpu which is alright but we also have to make sure to not move to
a459eeb7
MH
3151 * a different one.
3152 */
9c25cbfc 3153 migrate_disable();
d9367bd0 3154 drain_local_pages(drain->zone);
9c25cbfc 3155 migrate_enable();
0ccce3b9
MG
3156}
3157
9f8f2172 3158/*
ec6e8c7e
VB
3159 * The implementation of drain_all_pages(), exposing an extra parameter to
3160 * drain on all cpus.
93481ff0 3161 *
ec6e8c7e
VB
3162 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3163 * not empty. The check for non-emptiness can however race with a free to
3164 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3165 * that need the guarantee that every CPU has drained can disable the
3166 * optimizing racy check.
9f8f2172 3167 */
3b1f3658 3168static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3169{
74046494 3170 int cpu;
74046494
GBY
3171
3172 /*
041711ce 3173 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3174 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3175 */
3176 static cpumask_t cpus_with_pcps;
3177
ce612879
MH
3178 /*
3179 * Make sure nobody triggers this path before mm_percpu_wq is fully
3180 * initialized.
3181 */
3182 if (WARN_ON_ONCE(!mm_percpu_wq))
3183 return;
3184
bd233f53
MG
3185 /*
3186 * Do not drain if one is already in progress unless it's specific to
3187 * a zone. Such callers are primarily CMA and memory hotplug and need
3188 * the drain to be complete when the call returns.
3189 */
3190 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3191 if (!zone)
3192 return;
3193 mutex_lock(&pcpu_drain_mutex);
3194 }
0ccce3b9 3195
74046494
GBY
3196 /*
3197 * We don't care about racing with CPU hotplug event
3198 * as offline notification will cause the notified
3199 * cpu to drain that CPU pcps and on_each_cpu_mask
3200 * disables preemption as part of its processing
3201 */
3202 for_each_online_cpu(cpu) {
28f836b6 3203 struct per_cpu_pages *pcp;
93481ff0 3204 struct zone *z;
74046494 3205 bool has_pcps = false;
93481ff0 3206
ec6e8c7e
VB
3207 if (force_all_cpus) {
3208 /*
3209 * The pcp.count check is racy, some callers need a
3210 * guarantee that no cpu is missed.
3211 */
3212 has_pcps = true;
3213 } else if (zone) {
28f836b6
MG
3214 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3215 if (pcp->count)
74046494 3216 has_pcps = true;
93481ff0
VB
3217 } else {
3218 for_each_populated_zone(z) {
28f836b6
MG
3219 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3220 if (pcp->count) {
93481ff0
VB
3221 has_pcps = true;
3222 break;
3223 }
74046494
GBY
3224 }
3225 }
93481ff0 3226
74046494
GBY
3227 if (has_pcps)
3228 cpumask_set_cpu(cpu, &cpus_with_pcps);
3229 else
3230 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3231 }
0ccce3b9 3232
bd233f53 3233 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3234 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3235
3236 drain->zone = zone;
3237 INIT_WORK(&drain->work, drain_local_pages_wq);
3238 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3239 }
bd233f53 3240 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3241 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3242
3243 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3244}
3245
ec6e8c7e
VB
3246/*
3247 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3248 *
3249 * When zone parameter is non-NULL, spill just the single zone's pages.
3250 *
3251 * Note that this can be extremely slow as the draining happens in a workqueue.
3252 */
3253void drain_all_pages(struct zone *zone)
3254{
3255 __drain_all_pages(zone, false);
3256}
3257
296699de 3258#ifdef CONFIG_HIBERNATION
1da177e4 3259
556b969a
CY
3260/*
3261 * Touch the watchdog for every WD_PAGE_COUNT pages.
3262 */
3263#define WD_PAGE_COUNT (128*1024)
3264
1da177e4
LT
3265void mark_free_pages(struct zone *zone)
3266{
556b969a 3267 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3268 unsigned long flags;
7aeb09f9 3269 unsigned int order, t;
86760a2c 3270 struct page *page;
1da177e4 3271
8080fc03 3272 if (zone_is_empty(zone))
1da177e4
LT
3273 return;
3274
3275 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3276
108bcc96 3277 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3278 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3279 if (pfn_valid(pfn)) {
86760a2c 3280 page = pfn_to_page(pfn);
ba6b0979 3281
556b969a
CY
3282 if (!--page_count) {
3283 touch_nmi_watchdog();
3284 page_count = WD_PAGE_COUNT;
3285 }
3286
ba6b0979
JK
3287 if (page_zone(page) != zone)
3288 continue;
3289
7be98234
RW
3290 if (!swsusp_page_is_forbidden(page))
3291 swsusp_unset_page_free(page);
f623f0db 3292 }
1da177e4 3293
b2a0ac88 3294 for_each_migratetype_order(order, t) {
86760a2c
GT
3295 list_for_each_entry(page,
3296 &zone->free_area[order].free_list[t], lru) {
f623f0db 3297 unsigned long i;
1da177e4 3298
86760a2c 3299 pfn = page_to_pfn(page);
556b969a
CY
3300 for (i = 0; i < (1UL << order); i++) {
3301 if (!--page_count) {
3302 touch_nmi_watchdog();
3303 page_count = WD_PAGE_COUNT;
3304 }
7be98234 3305 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3306 }
f623f0db 3307 }
b2a0ac88 3308 }
1da177e4
LT
3309 spin_unlock_irqrestore(&zone->lock, flags);
3310}
e2c55dc8 3311#endif /* CONFIG_PM */
1da177e4 3312
44042b44
MG
3313static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3314 unsigned int order)
1da177e4 3315{
5f8dcc21 3316 int migratetype;
1da177e4 3317
44042b44 3318 if (!free_pcp_prepare(page, order))
9cca35d4 3319 return false;
689bcebf 3320
dc4b0caf 3321 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3322 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3323 return true;
3324}
3325
f26b3fa0
MG
3326static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3327 bool free_high)
3b12e7e9
MG
3328{
3329 int min_nr_free, max_nr_free;
3330
f26b3fa0
MG
3331 /* Free everything if batch freeing high-order pages. */
3332 if (unlikely(free_high))
3333 return pcp->count;
3334
3b12e7e9
MG
3335 /* Check for PCP disabled or boot pageset */
3336 if (unlikely(high < batch))
3337 return 1;
3338
3339 /* Leave at least pcp->batch pages on the list */
3340 min_nr_free = batch;
3341 max_nr_free = high - batch;
3342
3343 /*
3344 * Double the number of pages freed each time there is subsequent
3345 * freeing of pages without any allocation.
3346 */
3347 batch <<= pcp->free_factor;
3348 if (batch < max_nr_free)
3349 pcp->free_factor++;
3350 batch = clamp(batch, min_nr_free, max_nr_free);
3351
3352 return batch;
3353}
3354
f26b3fa0
MG
3355static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3356 bool free_high)
c49c2c47
MG
3357{
3358 int high = READ_ONCE(pcp->high);
3359
f26b3fa0 3360 if (unlikely(!high || free_high))
c49c2c47
MG
3361 return 0;
3362
3363 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3364 return high;
3365
3366 /*
3367 * If reclaim is active, limit the number of pages that can be
3368 * stored on pcp lists
3369 */
3370 return min(READ_ONCE(pcp->batch) << 2, high);
3371}
3372
56651377
NSJ
3373static void free_unref_page_commit(struct page *page, int migratetype,
3374 unsigned int order)
9cca35d4
MG
3375{
3376 struct zone *zone = page_zone(page);
3377 struct per_cpu_pages *pcp;
3b12e7e9 3378 int high;
44042b44 3379 int pindex;
f26b3fa0 3380 bool free_high;
9cca35d4 3381
d34b0733 3382 __count_vm_event(PGFREE);
28f836b6 3383 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44
MG
3384 pindex = order_to_pindex(migratetype, order);
3385 list_add(&page->lru, &pcp->lists[pindex]);
3386 pcp->count += 1 << order;
f26b3fa0
MG
3387
3388 /*
3389 * As high-order pages other than THP's stored on PCP can contribute
3390 * to fragmentation, limit the number stored when PCP is heavily
3391 * freeing without allocation. The remainder after bulk freeing
3392 * stops will be drained from vmstat refresh context.
3393 */
3394 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3395
3396 high = nr_pcp_high(pcp, zone, free_high);
3b12e7e9
MG
3397 if (pcp->count >= high) {
3398 int batch = READ_ONCE(pcp->batch);
3399
f26b3fa0 3400 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3b12e7e9 3401 }
9cca35d4 3402}
5f8dcc21 3403
9cca35d4 3404/*
44042b44 3405 * Free a pcp page
9cca35d4 3406 */
44042b44 3407void free_unref_page(struct page *page, unsigned int order)
9cca35d4
MG
3408{
3409 unsigned long flags;
3410 unsigned long pfn = page_to_pfn(page);
df1acc85 3411 int migratetype;
9cca35d4 3412
44042b44 3413 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3414 return;
da456f14 3415
5f8dcc21
MG
3416 /*
3417 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3418 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3419 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3420 * areas back if necessary. Otherwise, we may have to free
3421 * excessively into the page allocator
3422 */
df1acc85
MG
3423 migratetype = get_pcppage_migratetype(page);
3424 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3425 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3426 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3427 return;
5f8dcc21
MG
3428 }
3429 migratetype = MIGRATE_MOVABLE;
3430 }
3431
dbbee9d5 3432 local_lock_irqsave(&pagesets.lock, flags);
56651377 3433 free_unref_page_commit(page, migratetype, order);
dbbee9d5 3434 local_unlock_irqrestore(&pagesets.lock, flags);
1da177e4
LT
3435}
3436
cc59850e
KK
3437/*
3438 * Free a list of 0-order pages
3439 */
2d4894b5 3440void free_unref_page_list(struct list_head *list)
cc59850e
KK
3441{
3442 struct page *page, *next;
56651377 3443 unsigned long flags;
c24ad77d 3444 int batch_count = 0;
df1acc85 3445 int migratetype;
9cca35d4
MG
3446
3447 /* Prepare pages for freeing */
3448 list_for_each_entry_safe(page, next, list, lru) {
56651377 3449 unsigned long pfn = page_to_pfn(page);
053cfda1 3450 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 3451 list_del(&page->lru);
053cfda1
ML
3452 continue;
3453 }
df1acc85
MG
3454
3455 /*
3456 * Free isolated pages directly to the allocator, see
3457 * comment in free_unref_page.
3458 */
3459 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3460 if (unlikely(is_migrate_isolate(migratetype))) {
3461 list_del(&page->lru);
3462 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3463 continue;
df1acc85 3464 }
9cca35d4 3465 }
cc59850e 3466
dbbee9d5 3467 local_lock_irqsave(&pagesets.lock, flags);
cc59850e 3468 list_for_each_entry_safe(page, next, list, lru) {
47aef601
DB
3469 /*
3470 * Non-isolated types over MIGRATE_PCPTYPES get added
3471 * to the MIGRATE_MOVABLE pcp list.
3472 */
df1acc85 3473 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3474 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3475 migratetype = MIGRATE_MOVABLE;
3476
2d4894b5 3477 trace_mm_page_free_batched(page);
56651377 3478 free_unref_page_commit(page, migratetype, 0);
c24ad77d
LS
3479
3480 /*
3481 * Guard against excessive IRQ disabled times when we get
3482 * a large list of pages to free.
3483 */
3484 if (++batch_count == SWAP_CLUSTER_MAX) {
dbbee9d5 3485 local_unlock_irqrestore(&pagesets.lock, flags);
c24ad77d 3486 batch_count = 0;
dbbee9d5 3487 local_lock_irqsave(&pagesets.lock, flags);
c24ad77d 3488 }
cc59850e 3489 }
dbbee9d5 3490 local_unlock_irqrestore(&pagesets.lock, flags);
cc59850e
KK
3491}
3492
8dfcc9ba
NP
3493/*
3494 * split_page takes a non-compound higher-order page, and splits it into
3495 * n (1<<order) sub-pages: page[0..n]
3496 * Each sub-page must be freed individually.
3497 *
3498 * Note: this is probably too low level an operation for use in drivers.
3499 * Please consult with lkml before using this in your driver.
3500 */
3501void split_page(struct page *page, unsigned int order)
3502{
3503 int i;
3504
309381fe
SL
3505 VM_BUG_ON_PAGE(PageCompound(page), page);
3506 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3507
a9627bc5 3508 for (i = 1; i < (1 << order); i++)
7835e98b 3509 set_page_refcounted(page + i);
8fb156c9 3510 split_page_owner(page, 1 << order);
e1baddf8 3511 split_page_memcg(page, 1 << order);
8dfcc9ba 3512}
5853ff23 3513EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3514
3c605096 3515int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3516{
748446bb
MG
3517 unsigned long watermark;
3518 struct zone *zone;
2139cbe6 3519 int mt;
748446bb
MG
3520
3521 BUG_ON(!PageBuddy(page));
3522
3523 zone = page_zone(page);
2e30abd1 3524 mt = get_pageblock_migratetype(page);
748446bb 3525
194159fb 3526 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3527 /*
3528 * Obey watermarks as if the page was being allocated. We can
3529 * emulate a high-order watermark check with a raised order-0
3530 * watermark, because we already know our high-order page
3531 * exists.
3532 */
fd1444b2 3533 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3534 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3535 return 0;
3536
8fb74b9f 3537 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3538 }
748446bb
MG
3539
3540 /* Remove page from free list */
b03641af 3541
6ab01363 3542 del_page_from_free_list(page, zone, order);
2139cbe6 3543
400bc7fd 3544 /*
3545 * Set the pageblock if the isolated page is at least half of a
3546 * pageblock
3547 */
748446bb
MG
3548 if (order >= pageblock_order - 1) {
3549 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3550 for (; page < endpage; page += pageblock_nr_pages) {
3551 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
3552 /*
3553 * Only change normal pageblocks (i.e., they can merge
3554 * with others)
3555 */
3556 if (migratetype_is_mergeable(mt))
47118af0
MN
3557 set_pageblock_migratetype(page,
3558 MIGRATE_MOVABLE);
3559 }
748446bb
MG
3560 }
3561
f3a14ced 3562
8fb74b9f 3563 return 1UL << order;
1fb3f8ca
MG
3564}
3565
624f58d8
AD
3566/**
3567 * __putback_isolated_page - Return a now-isolated page back where we got it
3568 * @page: Page that was isolated
3569 * @order: Order of the isolated page
e6a0a7ad 3570 * @mt: The page's pageblock's migratetype
624f58d8
AD
3571 *
3572 * This function is meant to return a page pulled from the free lists via
3573 * __isolate_free_page back to the free lists they were pulled from.
3574 */
3575void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3576{
3577 struct zone *zone = page_zone(page);
3578
3579 /* zone lock should be held when this function is called */
3580 lockdep_assert_held(&zone->lock);
3581
3582 /* Return isolated page to tail of freelist. */
f04a5d5d 3583 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3584 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3585}
3586
060e7417
MG
3587/*
3588 * Update NUMA hit/miss statistics
3589 *
3590 * Must be called with interrupts disabled.
060e7417 3591 */
3e23060b
MG
3592static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3593 long nr_account)
060e7417
MG
3594{
3595#ifdef CONFIG_NUMA
3a321d2a 3596 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3597
4518085e
KW
3598 /* skip numa counters update if numa stats is disabled */
3599 if (!static_branch_likely(&vm_numa_stat_key))
3600 return;
3601
c1093b74 3602 if (zone_to_nid(z) != numa_node_id())
060e7417 3603 local_stat = NUMA_OTHER;
060e7417 3604
c1093b74 3605 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3606 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3607 else {
3e23060b
MG
3608 __count_numa_events(z, NUMA_MISS, nr_account);
3609 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3610 }
3e23060b 3611 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3612#endif
3613}
3614
066b2393 3615/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3616static inline
44042b44
MG
3617struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3618 int migratetype,
6bb15450 3619 unsigned int alloc_flags,
453f85d4 3620 struct per_cpu_pages *pcp,
066b2393
MG
3621 struct list_head *list)
3622{
3623 struct page *page;
3624
3625 do {
3626 if (list_empty(list)) {
44042b44
MG
3627 int batch = READ_ONCE(pcp->batch);
3628 int alloced;
3629
3630 /*
3631 * Scale batch relative to order if batch implies
3632 * free pages can be stored on the PCP. Batch can
3633 * be 1 for small zones or for boot pagesets which
3634 * should never store free pages as the pages may
3635 * belong to arbitrary zones.
3636 */
3637 if (batch > 1)
3638 batch = max(batch >> order, 2);
3639 alloced = rmqueue_bulk(zone, order,
3640 batch, list,
6bb15450 3641 migratetype, alloc_flags);
44042b44
MG
3642
3643 pcp->count += alloced << order;
066b2393
MG
3644 if (unlikely(list_empty(list)))
3645 return NULL;
3646 }
3647
453f85d4 3648 page = list_first_entry(list, struct page, lru);
066b2393 3649 list_del(&page->lru);
44042b44 3650 pcp->count -= 1 << order;
77fe7f13 3651 } while (check_new_pcp(page, order));
066b2393
MG
3652
3653 return page;
3654}
3655
3656/* Lock and remove page from the per-cpu list */
3657static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44
MG
3658 struct zone *zone, unsigned int order,
3659 gfp_t gfp_flags, int migratetype,
3660 unsigned int alloc_flags)
066b2393
MG
3661{
3662 struct per_cpu_pages *pcp;
3663 struct list_head *list;
066b2393 3664 struct page *page;
d34b0733 3665 unsigned long flags;
066b2393 3666
dbbee9d5 3667 local_lock_irqsave(&pagesets.lock, flags);
3b12e7e9
MG
3668
3669 /*
3670 * On allocation, reduce the number of pages that are batch freed.
3671 * See nr_pcp_free() where free_factor is increased for subsequent
3672 * frees.
3673 */
28f836b6 3674 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3b12e7e9 3675 pcp->free_factor >>= 1;
44042b44
MG
3676 list = &pcp->lists[order_to_pindex(migratetype, order)];
3677 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
43c95bcc 3678 local_unlock_irqrestore(&pagesets.lock, flags);
066b2393 3679 if (page) {
1c52e6d0 3680 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3e23060b 3681 zone_statistics(preferred_zone, zone, 1);
066b2393 3682 }
066b2393
MG
3683 return page;
3684}
3685
1da177e4 3686/*
75379191 3687 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3688 */
0a15c3e9 3689static inline
066b2393 3690struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3691 struct zone *zone, unsigned int order,
c603844b
MG
3692 gfp_t gfp_flags, unsigned int alloc_flags,
3693 int migratetype)
1da177e4
LT
3694{
3695 unsigned long flags;
689bcebf 3696 struct page *page;
1da177e4 3697
44042b44 3698 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3699 /*
3700 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3701 * we need to skip it when CMA area isn't allowed.
3702 */
3703 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3704 migratetype != MIGRATE_MOVABLE) {
44042b44
MG
3705 page = rmqueue_pcplist(preferred_zone, zone, order,
3706 gfp_flags, migratetype, alloc_flags);
1d91df85
JK
3707 goto out;
3708 }
066b2393 3709 }
83b9355b 3710
066b2393
MG
3711 /*
3712 * We most definitely don't want callers attempting to
3713 * allocate greater than order-1 page units with __GFP_NOFAIL.
3714 */
3715 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
0aaa29a5 3716
066b2393
MG
3717 do {
3718 page = NULL;
3313204c 3719 spin_lock_irqsave(&zone->lock, flags);
1d91df85
JK
3720 /*
3721 * order-0 request can reach here when the pcplist is skipped
3722 * due to non-CMA allocation context. HIGHATOMIC area is
3723 * reserved for high-order atomic allocation, so order-0
3724 * request should skip it.
3725 */
10e0f753 3726 if (order > 0 && alloc_flags & ALLOC_HARDER)
066b2393 3727 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3313204c 3728 if (!page) {
6bb15450 3729 page = __rmqueue(zone, order, migratetype, alloc_flags);
3313204c
ED
3730 if (!page)
3731 goto failed;
3732 }
3733 __mod_zone_freepage_state(zone, -(1 << order),
3734 get_pcppage_migratetype(page));
3735 spin_unlock_irqrestore(&zone->lock, flags);
3736 } while (check_new_pages(page, order));
1da177e4 3737
16709d1d 3738 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3739 zone_statistics(preferred_zone, zone, 1);
1da177e4 3740
066b2393 3741out:
73444bc4
MG
3742 /* Separate test+clear to avoid unnecessary atomics */
3743 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3744 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3745 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3746 }
3747
066b2393 3748 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3749 return page;
a74609fa
NP
3750
3751failed:
43c95bcc 3752 spin_unlock_irqrestore(&zone->lock, flags);
a74609fa 3753 return NULL;
1da177e4
LT
3754}
3755
933e312e
AM
3756#ifdef CONFIG_FAIL_PAGE_ALLOC
3757
b2588c4b 3758static struct {
933e312e
AM
3759 struct fault_attr attr;
3760
621a5f7a 3761 bool ignore_gfp_highmem;
71baba4b 3762 bool ignore_gfp_reclaim;
54114994 3763 u32 min_order;
933e312e
AM
3764} fail_page_alloc = {
3765 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3766 .ignore_gfp_reclaim = true,
621a5f7a 3767 .ignore_gfp_highmem = true,
54114994 3768 .min_order = 1,
933e312e
AM
3769};
3770
3771static int __init setup_fail_page_alloc(char *str)
3772{
3773 return setup_fault_attr(&fail_page_alloc.attr, str);
3774}
3775__setup("fail_page_alloc=", setup_fail_page_alloc);
3776
af3b8544 3777static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3778{
54114994 3779 if (order < fail_page_alloc.min_order)
deaf386e 3780 return false;
933e312e 3781 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3782 return false;
933e312e 3783 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3784 return false;
71baba4b
MG
3785 if (fail_page_alloc.ignore_gfp_reclaim &&
3786 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3787 return false;
933e312e
AM
3788
3789 return should_fail(&fail_page_alloc.attr, 1 << order);
3790}
3791
3792#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3793
3794static int __init fail_page_alloc_debugfs(void)
3795{
0825a6f9 3796 umode_t mode = S_IFREG | 0600;
933e312e 3797 struct dentry *dir;
933e312e 3798
dd48c085
AM
3799 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3800 &fail_page_alloc.attr);
b2588c4b 3801
d9f7979c
GKH
3802 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3803 &fail_page_alloc.ignore_gfp_reclaim);
3804 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3805 &fail_page_alloc.ignore_gfp_highmem);
3806 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3807
d9f7979c 3808 return 0;
933e312e
AM
3809}
3810
3811late_initcall(fail_page_alloc_debugfs);
3812
3813#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3814
3815#else /* CONFIG_FAIL_PAGE_ALLOC */
3816
af3b8544 3817static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3818{
deaf386e 3819 return false;
933e312e
AM
3820}
3821
3822#endif /* CONFIG_FAIL_PAGE_ALLOC */
3823
54aa3866 3824noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3825{
3826 return __should_fail_alloc_page(gfp_mask, order);
3827}
3828ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3829
f27ce0e1
JK
3830static inline long __zone_watermark_unusable_free(struct zone *z,
3831 unsigned int order, unsigned int alloc_flags)
3832{
3833 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3834 long unusable_free = (1 << order) - 1;
3835
3836 /*
3837 * If the caller does not have rights to ALLOC_HARDER then subtract
3838 * the high-atomic reserves. This will over-estimate the size of the
3839 * atomic reserve but it avoids a search.
3840 */
3841 if (likely(!alloc_harder))
3842 unusable_free += z->nr_reserved_highatomic;
3843
3844#ifdef CONFIG_CMA
3845 /* If allocation can't use CMA areas don't use free CMA pages */
3846 if (!(alloc_flags & ALLOC_CMA))
3847 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3848#endif
3849
3850 return unusable_free;
3851}
3852
1da177e4 3853/*
97a16fc8
MG
3854 * Return true if free base pages are above 'mark'. For high-order checks it
3855 * will return true of the order-0 watermark is reached and there is at least
3856 * one free page of a suitable size. Checking now avoids taking the zone lock
3857 * to check in the allocation paths if no pages are free.
1da177e4 3858 */
86a294a8 3859bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3860 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3861 long free_pages)
1da177e4 3862{
d23ad423 3863 long min = mark;
1da177e4 3864 int o;
cd04ae1e 3865 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3866
0aaa29a5 3867 /* free_pages may go negative - that's OK */
f27ce0e1 3868 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3869
7fb1d9fc 3870 if (alloc_flags & ALLOC_HIGH)
1da177e4 3871 min -= min / 2;
0aaa29a5 3872
f27ce0e1 3873 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3874 /*
3875 * OOM victims can try even harder than normal ALLOC_HARDER
3876 * users on the grounds that it's definitely going to be in
3877 * the exit path shortly and free memory. Any allocation it
3878 * makes during the free path will be small and short-lived.
3879 */
3880 if (alloc_flags & ALLOC_OOM)
3881 min -= min / 2;
3882 else
3883 min -= min / 4;
3884 }
3885
97a16fc8
MG
3886 /*
3887 * Check watermarks for an order-0 allocation request. If these
3888 * are not met, then a high-order request also cannot go ahead
3889 * even if a suitable page happened to be free.
3890 */
97a225e6 3891 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3892 return false;
1da177e4 3893
97a16fc8
MG
3894 /* If this is an order-0 request then the watermark is fine */
3895 if (!order)
3896 return true;
3897
3898 /* For a high-order request, check at least one suitable page is free */
3899 for (o = order; o < MAX_ORDER; o++) {
3900 struct free_area *area = &z->free_area[o];
3901 int mt;
3902
3903 if (!area->nr_free)
3904 continue;
3905
97a16fc8 3906 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3907 if (!free_area_empty(area, mt))
97a16fc8
MG
3908 return true;
3909 }
3910
3911#ifdef CONFIG_CMA
d883c6cf 3912 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3913 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3914 return true;
d883c6cf 3915 }
97a16fc8 3916#endif
76089d00 3917 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3918 return true;
1da177e4 3919 }
97a16fc8 3920 return false;
88f5acf8
MG
3921}
3922
7aeb09f9 3923bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3924 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3925{
97a225e6 3926 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3927 zone_page_state(z, NR_FREE_PAGES));
3928}
3929
48ee5f36 3930static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3931 unsigned long mark, int highest_zoneidx,
f80b08fc 3932 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3933{
f27ce0e1 3934 long free_pages;
d883c6cf 3935
f27ce0e1 3936 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3937
3938 /*
3939 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3940 * need to be calculated.
48ee5f36 3941 */
f27ce0e1
JK
3942 if (!order) {
3943 long fast_free;
3944
3945 fast_free = free_pages;
3946 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3947 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3948 return true;
3949 }
48ee5f36 3950
f80b08fc
CTR
3951 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3952 free_pages))
3953 return true;
3954 /*
3955 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3956 * when checking the min watermark. The min watermark is the
3957 * point where boosting is ignored so that kswapd is woken up
3958 * when below the low watermark.
3959 */
3960 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3961 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3962 mark = z->_watermark[WMARK_MIN];
3963 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3964 alloc_flags, free_pages);
3965 }
3966
3967 return false;
48ee5f36
MG
3968}
3969
7aeb09f9 3970bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3971 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3972{
3973 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3974
3975 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3976 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3977
97a225e6 3978 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3979 free_pages);
1da177e4
LT
3980}
3981
9276b1bc 3982#ifdef CONFIG_NUMA
61bb6cd2
GU
3983int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3984
957f822a
DR
3985static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3986{
e02dc017 3987 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3988 node_reclaim_distance;
957f822a 3989}
9276b1bc 3990#else /* CONFIG_NUMA */
957f822a
DR
3991static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3992{
3993 return true;
3994}
9276b1bc
PJ
3995#endif /* CONFIG_NUMA */
3996
6bb15450
MG
3997/*
3998 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3999 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4000 * premature use of a lower zone may cause lowmem pressure problems that
4001 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4002 * probably too small. It only makes sense to spread allocations to avoid
4003 * fragmentation between the Normal and DMA32 zones.
4004 */
4005static inline unsigned int
0a79cdad 4006alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 4007{
736838e9 4008 unsigned int alloc_flags;
0a79cdad 4009
736838e9
MN
4010 /*
4011 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4012 * to save a branch.
4013 */
4014 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
4015
4016#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
4017 if (!zone)
4018 return alloc_flags;
4019
6bb15450 4020 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 4021 return alloc_flags;
6bb15450
MG
4022
4023 /*
4024 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4025 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4026 * on UMA that if Normal is populated then so is DMA32.
4027 */
4028 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4029 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 4030 return alloc_flags;
6bb15450 4031
8118b82e 4032 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
4033#endif /* CONFIG_ZONE_DMA32 */
4034 return alloc_flags;
6bb15450 4035}
6bb15450 4036
8e3560d9
PT
4037/* Must be called after current_gfp_context() which can change gfp_mask */
4038static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4039 unsigned int alloc_flags)
8510e69c
JK
4040{
4041#ifdef CONFIG_CMA
8e3560d9 4042 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 4043 alloc_flags |= ALLOC_CMA;
8510e69c
JK
4044#endif
4045 return alloc_flags;
4046}
4047
7fb1d9fc 4048/*
0798e519 4049 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4050 * a page.
4051 */
4052static struct page *
a9263751
VB
4053get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4054 const struct alloc_context *ac)
753ee728 4055{
6bb15450 4056 struct zoneref *z;
5117f45d 4057 struct zone *zone;
8a87d695
WY
4058 struct pglist_data *last_pgdat = NULL;
4059 bool last_pgdat_dirty_ok = false;
6bb15450 4060 bool no_fallback;
3b8c0be4 4061
6bb15450 4062retry:
7fb1d9fc 4063 /*
9276b1bc 4064 * Scan zonelist, looking for a zone with enough free.
344736f2 4065 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 4066 */
6bb15450
MG
4067 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4068 z = ac->preferred_zoneref;
30d8ec73
MN
4069 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4070 ac->nodemask) {
be06af00 4071 struct page *page;
e085dbc5
JW
4072 unsigned long mark;
4073
664eedde
MG
4074 if (cpusets_enabled() &&
4075 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4076 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4077 continue;
a756cf59
JW
4078 /*
4079 * When allocating a page cache page for writing, we
281e3726
MG
4080 * want to get it from a node that is within its dirty
4081 * limit, such that no single node holds more than its
a756cf59 4082 * proportional share of globally allowed dirty pages.
281e3726 4083 * The dirty limits take into account the node's
a756cf59
JW
4084 * lowmem reserves and high watermark so that kswapd
4085 * should be able to balance it without having to
4086 * write pages from its LRU list.
4087 *
a756cf59 4088 * XXX: For now, allow allocations to potentially
281e3726 4089 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4090 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4091 * which is important when on a NUMA setup the allowed
281e3726 4092 * nodes are together not big enough to reach the
a756cf59 4093 * global limit. The proper fix for these situations
281e3726 4094 * will require awareness of nodes in the
a756cf59
JW
4095 * dirty-throttling and the flusher threads.
4096 */
3b8c0be4 4097 if (ac->spread_dirty_pages) {
8a87d695
WY
4098 if (last_pgdat != zone->zone_pgdat) {
4099 last_pgdat = zone->zone_pgdat;
4100 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4101 }
3b8c0be4 4102
8a87d695 4103 if (!last_pgdat_dirty_ok)
3b8c0be4 4104 continue;
3b8c0be4 4105 }
7fb1d9fc 4106
6bb15450
MG
4107 if (no_fallback && nr_online_nodes > 1 &&
4108 zone != ac->preferred_zoneref->zone) {
4109 int local_nid;
4110
4111 /*
4112 * If moving to a remote node, retry but allow
4113 * fragmenting fallbacks. Locality is more important
4114 * than fragmentation avoidance.
4115 */
4116 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4117 if (zone_to_nid(zone) != local_nid) {
4118 alloc_flags &= ~ALLOC_NOFRAGMENT;
4119 goto retry;
4120 }
4121 }
4122
a9214443 4123 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4124 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4125 ac->highest_zoneidx, alloc_flags,
4126 gfp_mask)) {
fa5e084e
MG
4127 int ret;
4128
c9e97a19
PT
4129#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4130 /*
4131 * Watermark failed for this zone, but see if we can
4132 * grow this zone if it contains deferred pages.
4133 */
4134 if (static_branch_unlikely(&deferred_pages)) {
4135 if (_deferred_grow_zone(zone, order))
4136 goto try_this_zone;
4137 }
4138#endif
5dab2911
MG
4139 /* Checked here to keep the fast path fast */
4140 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4141 if (alloc_flags & ALLOC_NO_WATERMARKS)
4142 goto try_this_zone;
4143
202e35db 4144 if (!node_reclaim_enabled() ||
c33d6c06 4145 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4146 continue;
4147
a5f5f91d 4148 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4149 switch (ret) {
a5f5f91d 4150 case NODE_RECLAIM_NOSCAN:
fa5e084e 4151 /* did not scan */
cd38b115 4152 continue;
a5f5f91d 4153 case NODE_RECLAIM_FULL:
fa5e084e 4154 /* scanned but unreclaimable */
cd38b115 4155 continue;
fa5e084e
MG
4156 default:
4157 /* did we reclaim enough */
fed2719e 4158 if (zone_watermark_ok(zone, order, mark,
97a225e6 4159 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4160 goto try_this_zone;
4161
fed2719e 4162 continue;
0798e519 4163 }
7fb1d9fc
RS
4164 }
4165
fa5e084e 4166try_this_zone:
066b2393 4167 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4168 gfp_mask, alloc_flags, ac->migratetype);
75379191 4169 if (page) {
479f854a 4170 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4171
4172 /*
4173 * If this is a high-order atomic allocation then check
4174 * if the pageblock should be reserved for the future
4175 */
4176 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4177 reserve_highatomic_pageblock(page, zone, order);
4178
75379191 4179 return page;
c9e97a19
PT
4180 } else {
4181#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4182 /* Try again if zone has deferred pages */
4183 if (static_branch_unlikely(&deferred_pages)) {
4184 if (_deferred_grow_zone(zone, order))
4185 goto try_this_zone;
4186 }
4187#endif
75379191 4188 }
54a6eb5c 4189 }
9276b1bc 4190
6bb15450
MG
4191 /*
4192 * It's possible on a UMA machine to get through all zones that are
4193 * fragmented. If avoiding fragmentation, reset and try again.
4194 */
4195 if (no_fallback) {
4196 alloc_flags &= ~ALLOC_NOFRAGMENT;
4197 goto retry;
4198 }
4199
4ffeaf35 4200 return NULL;
753ee728
MH
4201}
4202
9af744d7 4203static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4204{
a238ab5b 4205 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4206
4207 /*
4208 * This documents exceptions given to allocations in certain
4209 * contexts that are allowed to allocate outside current's set
4210 * of allowed nodes.
4211 */
4212 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4213 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4214 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4215 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4216 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4217 filter &= ~SHOW_MEM_FILTER_NODES;
4218
9af744d7 4219 show_mem(filter, nodemask);
aa187507
MH
4220}
4221
a8e99259 4222void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4223{
4224 struct va_format vaf;
4225 va_list args;
1be334e5 4226 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4227
c4dc63f0
BH
4228 if ((gfp_mask & __GFP_NOWARN) ||
4229 !__ratelimit(&nopage_rs) ||
4230 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
4231 return;
4232
7877cdcc
MH
4233 va_start(args, fmt);
4234 vaf.fmt = fmt;
4235 vaf.va = &args;
ef8444ea 4236 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4237 current->comm, &vaf, gfp_mask, &gfp_mask,
4238 nodemask_pr_args(nodemask));
7877cdcc 4239 va_end(args);
3ee9a4f0 4240
a8e99259 4241 cpuset_print_current_mems_allowed();
ef8444ea 4242 pr_cont("\n");
a238ab5b 4243 dump_stack();
685dbf6f 4244 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4245}
4246
6c18ba7a
MH
4247static inline struct page *
4248__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4249 unsigned int alloc_flags,
4250 const struct alloc_context *ac)
4251{
4252 struct page *page;
4253
4254 page = get_page_from_freelist(gfp_mask, order,
4255 alloc_flags|ALLOC_CPUSET, ac);
4256 /*
4257 * fallback to ignore cpuset restriction if our nodes
4258 * are depleted
4259 */
4260 if (!page)
4261 page = get_page_from_freelist(gfp_mask, order,
4262 alloc_flags, ac);
4263
4264 return page;
4265}
4266
11e33f6a
MG
4267static inline struct page *
4268__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4269 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4270{
6e0fc46d
DR
4271 struct oom_control oc = {
4272 .zonelist = ac->zonelist,
4273 .nodemask = ac->nodemask,
2a966b77 4274 .memcg = NULL,
6e0fc46d
DR
4275 .gfp_mask = gfp_mask,
4276 .order = order,
6e0fc46d 4277 };
11e33f6a
MG
4278 struct page *page;
4279
9879de73
JW
4280 *did_some_progress = 0;
4281
9879de73 4282 /*
dc56401f
JW
4283 * Acquire the oom lock. If that fails, somebody else is
4284 * making progress for us.
9879de73 4285 */
dc56401f 4286 if (!mutex_trylock(&oom_lock)) {
9879de73 4287 *did_some_progress = 1;
11e33f6a 4288 schedule_timeout_uninterruptible(1);
1da177e4
LT
4289 return NULL;
4290 }
6b1de916 4291
11e33f6a
MG
4292 /*
4293 * Go through the zonelist yet one more time, keep very high watermark
4294 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4295 * we're still under heavy pressure. But make sure that this reclaim
4296 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4297 * allocation which will never fail due to oom_lock already held.
11e33f6a 4298 */
e746bf73
TH
4299 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4300 ~__GFP_DIRECT_RECLAIM, order,
4301 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4302 if (page)
11e33f6a
MG
4303 goto out;
4304
06ad276a
MH
4305 /* Coredumps can quickly deplete all memory reserves */
4306 if (current->flags & PF_DUMPCORE)
4307 goto out;
4308 /* The OOM killer will not help higher order allocs */
4309 if (order > PAGE_ALLOC_COSTLY_ORDER)
4310 goto out;
dcda9b04
MH
4311 /*
4312 * We have already exhausted all our reclaim opportunities without any
4313 * success so it is time to admit defeat. We will skip the OOM killer
4314 * because it is very likely that the caller has a more reasonable
4315 * fallback than shooting a random task.
cfb4a541
MN
4316 *
4317 * The OOM killer may not free memory on a specific node.
dcda9b04 4318 */
cfb4a541 4319 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4320 goto out;
06ad276a 4321 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4322 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4323 goto out;
4324 if (pm_suspended_storage())
4325 goto out;
4326 /*
4327 * XXX: GFP_NOFS allocations should rather fail than rely on
4328 * other request to make a forward progress.
4329 * We are in an unfortunate situation where out_of_memory cannot
4330 * do much for this context but let's try it to at least get
4331 * access to memory reserved if the current task is killed (see
4332 * out_of_memory). Once filesystems are ready to handle allocation
4333 * failures more gracefully we should just bail out here.
4334 */
4335
3c2c6488 4336 /* Exhausted what can be done so it's blame time */
5020e285 4337 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4338 *did_some_progress = 1;
5020e285 4339
6c18ba7a
MH
4340 /*
4341 * Help non-failing allocations by giving them access to memory
4342 * reserves
4343 */
4344 if (gfp_mask & __GFP_NOFAIL)
4345 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4346 ALLOC_NO_WATERMARKS, ac);
5020e285 4347 }
11e33f6a 4348out:
dc56401f 4349 mutex_unlock(&oom_lock);
11e33f6a
MG
4350 return page;
4351}
4352
33c2d214 4353/*
baf2f90b 4354 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4355 * killer is consider as the only way to move forward.
4356 */
4357#define MAX_COMPACT_RETRIES 16
4358
56de7263
MG
4359#ifdef CONFIG_COMPACTION
4360/* Try memory compaction for high-order allocations before reclaim */
4361static struct page *
4362__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4363 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4364 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4365{
5e1f0f09 4366 struct page *page = NULL;
eb414681 4367 unsigned long pflags;
499118e9 4368 unsigned int noreclaim_flag;
53853e2d
VB
4369
4370 if (!order)
66199712 4371 return NULL;
66199712 4372
eb414681 4373 psi_memstall_enter(&pflags);
5bf18281 4374 delayacct_compact_start();
499118e9 4375 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4376
c5d01d0d 4377 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4378 prio, &page);
eb414681 4379
499118e9 4380 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4381 psi_memstall_leave(&pflags);
5bf18281 4382 delayacct_compact_end();
56de7263 4383
06dac2f4
CTR
4384 if (*compact_result == COMPACT_SKIPPED)
4385 return NULL;
98dd3b48
VB
4386 /*
4387 * At least in one zone compaction wasn't deferred or skipped, so let's
4388 * count a compaction stall
4389 */
4390 count_vm_event(COMPACTSTALL);
8fb74b9f 4391
5e1f0f09
MG
4392 /* Prep a captured page if available */
4393 if (page)
4394 prep_new_page(page, order, gfp_mask, alloc_flags);
4395
4396 /* Try get a page from the freelist if available */
4397 if (!page)
4398 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4399
98dd3b48
VB
4400 if (page) {
4401 struct zone *zone = page_zone(page);
53853e2d 4402
98dd3b48
VB
4403 zone->compact_blockskip_flush = false;
4404 compaction_defer_reset(zone, order, true);
4405 count_vm_event(COMPACTSUCCESS);
4406 return page;
4407 }
56de7263 4408
98dd3b48
VB
4409 /*
4410 * It's bad if compaction run occurs and fails. The most likely reason
4411 * is that pages exist, but not enough to satisfy watermarks.
4412 */
4413 count_vm_event(COMPACTFAIL);
66199712 4414
98dd3b48 4415 cond_resched();
56de7263
MG
4416
4417 return NULL;
4418}
33c2d214 4419
3250845d
VB
4420static inline bool
4421should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4422 enum compact_result compact_result,
4423 enum compact_priority *compact_priority,
d9436498 4424 int *compaction_retries)
3250845d
VB
4425{
4426 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4427 int min_priority;
65190cff
MH
4428 bool ret = false;
4429 int retries = *compaction_retries;
4430 enum compact_priority priority = *compact_priority;
3250845d
VB
4431
4432 if (!order)
4433 return false;
4434
691d9497
AT
4435 if (fatal_signal_pending(current))
4436 return false;
4437
d9436498
VB
4438 if (compaction_made_progress(compact_result))
4439 (*compaction_retries)++;
4440
3250845d
VB
4441 /*
4442 * compaction considers all the zone as desperately out of memory
4443 * so it doesn't really make much sense to retry except when the
4444 * failure could be caused by insufficient priority
4445 */
d9436498
VB
4446 if (compaction_failed(compact_result))
4447 goto check_priority;
3250845d 4448
49433085
VB
4449 /*
4450 * compaction was skipped because there are not enough order-0 pages
4451 * to work with, so we retry only if it looks like reclaim can help.
4452 */
4453 if (compaction_needs_reclaim(compact_result)) {
4454 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4455 goto out;
4456 }
4457
3250845d
VB
4458 /*
4459 * make sure the compaction wasn't deferred or didn't bail out early
4460 * due to locks contention before we declare that we should give up.
49433085
VB
4461 * But the next retry should use a higher priority if allowed, so
4462 * we don't just keep bailing out endlessly.
3250845d 4463 */
65190cff 4464 if (compaction_withdrawn(compact_result)) {
49433085 4465 goto check_priority;
65190cff 4466 }
3250845d
VB
4467
4468 /*
dcda9b04 4469 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4470 * costly ones because they are de facto nofail and invoke OOM
4471 * killer to move on while costly can fail and users are ready
4472 * to cope with that. 1/4 retries is rather arbitrary but we
4473 * would need much more detailed feedback from compaction to
4474 * make a better decision.
4475 */
4476 if (order > PAGE_ALLOC_COSTLY_ORDER)
4477 max_retries /= 4;
65190cff
MH
4478 if (*compaction_retries <= max_retries) {
4479 ret = true;
4480 goto out;
4481 }
3250845d 4482
d9436498
VB
4483 /*
4484 * Make sure there are attempts at the highest priority if we exhausted
4485 * all retries or failed at the lower priorities.
4486 */
4487check_priority:
c2033b00
VB
4488 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4489 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4490
c2033b00 4491 if (*compact_priority > min_priority) {
d9436498
VB
4492 (*compact_priority)--;
4493 *compaction_retries = 0;
65190cff 4494 ret = true;
d9436498 4495 }
65190cff
MH
4496out:
4497 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4498 return ret;
3250845d 4499}
56de7263
MG
4500#else
4501static inline struct page *
4502__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4503 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4504 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4505{
33c2d214 4506 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4507 return NULL;
4508}
33c2d214
MH
4509
4510static inline bool
86a294a8
MH
4511should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4512 enum compact_result compact_result,
a5508cd8 4513 enum compact_priority *compact_priority,
d9436498 4514 int *compaction_retries)
33c2d214 4515{
31e49bfd
MH
4516 struct zone *zone;
4517 struct zoneref *z;
4518
4519 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4520 return false;
4521
4522 /*
4523 * There are setups with compaction disabled which would prefer to loop
4524 * inside the allocator rather than hit the oom killer prematurely.
4525 * Let's give them a good hope and keep retrying while the order-0
4526 * watermarks are OK.
4527 */
97a225e6
JK
4528 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4529 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4530 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4531 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4532 return true;
4533 }
33c2d214
MH
4534 return false;
4535}
3250845d 4536#endif /* CONFIG_COMPACTION */
56de7263 4537
d92a8cfc 4538#ifdef CONFIG_LOCKDEP
93781325 4539static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4540 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4541
f920e413 4542static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4543{
d92a8cfc
PZ
4544 /* no reclaim without waiting on it */
4545 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4546 return false;
4547
4548 /* this guy won't enter reclaim */
2e517d68 4549 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4550 return false;
4551
d92a8cfc
PZ
4552 if (gfp_mask & __GFP_NOLOCKDEP)
4553 return false;
4554
4555 return true;
4556}
4557
4f3eaf45 4558void __fs_reclaim_acquire(unsigned long ip)
93781325 4559{
4f3eaf45 4560 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4561}
4562
4f3eaf45 4563void __fs_reclaim_release(unsigned long ip)
93781325 4564{
4f3eaf45 4565 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4566}
4567
d92a8cfc
PZ
4568void fs_reclaim_acquire(gfp_t gfp_mask)
4569{
f920e413
SV
4570 gfp_mask = current_gfp_context(gfp_mask);
4571
4572 if (__need_reclaim(gfp_mask)) {
4573 if (gfp_mask & __GFP_FS)
4f3eaf45 4574 __fs_reclaim_acquire(_RET_IP_);
f920e413
SV
4575
4576#ifdef CONFIG_MMU_NOTIFIER
4577 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4578 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4579#endif
4580
4581 }
d92a8cfc
PZ
4582}
4583EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4584
4585void fs_reclaim_release(gfp_t gfp_mask)
4586{
f920e413
SV
4587 gfp_mask = current_gfp_context(gfp_mask);
4588
4589 if (__need_reclaim(gfp_mask)) {
4590 if (gfp_mask & __GFP_FS)
4f3eaf45 4591 __fs_reclaim_release(_RET_IP_);
f920e413 4592 }
d92a8cfc
PZ
4593}
4594EXPORT_SYMBOL_GPL(fs_reclaim_release);
4595#endif
4596
bba90710 4597/* Perform direct synchronous page reclaim */
2187e17b 4598static unsigned long
a9263751
VB
4599__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4600 const struct alloc_context *ac)
11e33f6a 4601{
499118e9 4602 unsigned int noreclaim_flag;
fa7fc75f 4603 unsigned long progress;
11e33f6a
MG
4604
4605 cond_resched();
4606
4607 /* We now go into synchronous reclaim */
4608 cpuset_memory_pressure_bump();
d92a8cfc 4609 fs_reclaim_acquire(gfp_mask);
93781325 4610 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4611
a9263751
VB
4612 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4613 ac->nodemask);
11e33f6a 4614
499118e9 4615 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4616 fs_reclaim_release(gfp_mask);
11e33f6a
MG
4617
4618 cond_resched();
4619
bba90710
MS
4620 return progress;
4621}
4622
4623/* The really slow allocator path where we enter direct reclaim */
4624static inline struct page *
4625__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4626 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4627 unsigned long *did_some_progress)
bba90710
MS
4628{
4629 struct page *page = NULL;
fa7fc75f 4630 unsigned long pflags;
bba90710
MS
4631 bool drained = false;
4632
fa7fc75f 4633 psi_memstall_enter(&pflags);
a9263751 4634 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 4635 if (unlikely(!(*did_some_progress)))
fa7fc75f 4636 goto out;
11e33f6a 4637
9ee493ce 4638retry:
31a6c190 4639 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4640
4641 /*
4642 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4643 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4644 * Shrink them and try again
9ee493ce
MG
4645 */
4646 if (!page && !drained) {
29fac03b 4647 unreserve_highatomic_pageblock(ac, false);
93481ff0 4648 drain_all_pages(NULL);
9ee493ce
MG
4649 drained = true;
4650 goto retry;
4651 }
fa7fc75f
SB
4652out:
4653 psi_memstall_leave(&pflags);
9ee493ce 4654
11e33f6a
MG
4655 return page;
4656}
4657
5ecd9d40
DR
4658static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4659 const struct alloc_context *ac)
3a025760
JW
4660{
4661 struct zoneref *z;
4662 struct zone *zone;
e1a55637 4663 pg_data_t *last_pgdat = NULL;
97a225e6 4664 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4665
97a225e6 4666 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4667 ac->nodemask) {
bc53008e
WY
4668 if (!managed_zone(zone))
4669 continue;
d137a7cb 4670 if (last_pgdat != zone->zone_pgdat) {
97a225e6 4671 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
d137a7cb
CW
4672 last_pgdat = zone->zone_pgdat;
4673 }
e1a55637 4674 }
3a025760
JW
4675}
4676
c603844b 4677static inline unsigned int
341ce06f
PZ
4678gfp_to_alloc_flags(gfp_t gfp_mask)
4679{
c603844b 4680 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4681
736838e9
MN
4682 /*
4683 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4684 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4685 * to save two branches.
4686 */
e6223a3b 4687 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4688 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4689
341ce06f
PZ
4690 /*
4691 * The caller may dip into page reserves a bit more if the caller
4692 * cannot run direct reclaim, or if the caller has realtime scheduling
4693 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4694 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4695 */
736838e9
MN
4696 alloc_flags |= (__force int)
4697 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4698
d0164adc 4699 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4700 /*
b104a35d
DR
4701 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4702 * if it can't schedule.
5c3240d9 4703 */
b104a35d 4704 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4705 alloc_flags |= ALLOC_HARDER;
523b9458 4706 /*
b104a35d 4707 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4708 * comment for __cpuset_node_allowed().
523b9458 4709 */
341ce06f 4710 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4711 } else if (unlikely(rt_task(current)) && in_task())
341ce06f
PZ
4712 alloc_flags |= ALLOC_HARDER;
4713
8e3560d9 4714 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4715
341ce06f
PZ
4716 return alloc_flags;
4717}
4718
cd04ae1e 4719static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4720{
cd04ae1e
MH
4721 if (!tsk_is_oom_victim(tsk))
4722 return false;
4723
4724 /*
4725 * !MMU doesn't have oom reaper so give access to memory reserves
4726 * only to the thread with TIF_MEMDIE set
4727 */
4728 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4729 return false;
4730
cd04ae1e
MH
4731 return true;
4732}
4733
4734/*
4735 * Distinguish requests which really need access to full memory
4736 * reserves from oom victims which can live with a portion of it
4737 */
4738static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4739{
4740 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4741 return 0;
31a6c190 4742 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4743 return ALLOC_NO_WATERMARKS;
31a6c190 4744 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4745 return ALLOC_NO_WATERMARKS;
4746 if (!in_interrupt()) {
4747 if (current->flags & PF_MEMALLOC)
4748 return ALLOC_NO_WATERMARKS;
4749 else if (oom_reserves_allowed(current))
4750 return ALLOC_OOM;
4751 }
31a6c190 4752
cd04ae1e
MH
4753 return 0;
4754}
4755
4756bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4757{
4758 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4759}
4760
0a0337e0
MH
4761/*
4762 * Checks whether it makes sense to retry the reclaim to make a forward progress
4763 * for the given allocation request.
491d79ae
JW
4764 *
4765 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4766 * without success, or when we couldn't even meet the watermark if we
4767 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4768 *
4769 * Returns true if a retry is viable or false to enter the oom path.
4770 */
4771static inline bool
4772should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4773 struct alloc_context *ac, int alloc_flags,
423b452e 4774 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4775{
4776 struct zone *zone;
4777 struct zoneref *z;
15f570bf 4778 bool ret = false;
0a0337e0 4779
423b452e
VB
4780 /*
4781 * Costly allocations might have made a progress but this doesn't mean
4782 * their order will become available due to high fragmentation so
4783 * always increment the no progress counter for them
4784 */
4785 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4786 *no_progress_loops = 0;
4787 else
4788 (*no_progress_loops)++;
4789
0a0337e0
MH
4790 /*
4791 * Make sure we converge to OOM if we cannot make any progress
4792 * several times in the row.
4793 */
04c8716f
MK
4794 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4795 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4796 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4797 }
0a0337e0 4798
bca67592
MG
4799 /*
4800 * Keep reclaiming pages while there is a chance this will lead
4801 * somewhere. If none of the target zones can satisfy our allocation
4802 * request even if all reclaimable pages are considered then we are
4803 * screwed and have to go OOM.
0a0337e0 4804 */
97a225e6
JK
4805 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4806 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4807 unsigned long available;
ede37713 4808 unsigned long reclaimable;
d379f01d
MH
4809 unsigned long min_wmark = min_wmark_pages(zone);
4810 bool wmark;
0a0337e0 4811
5a1c84b4 4812 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4813 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4814
4815 /*
491d79ae
JW
4816 * Would the allocation succeed if we reclaimed all
4817 * reclaimable pages?
0a0337e0 4818 */
d379f01d 4819 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4820 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4821 trace_reclaim_retry_zone(z, order, reclaimable,
4822 available, min_wmark, *no_progress_loops, wmark);
4823 if (wmark) {
15f570bf 4824 ret = true;
132b0d21 4825 break;
0a0337e0
MH
4826 }
4827 }
4828
15f570bf
MH
4829 /*
4830 * Memory allocation/reclaim might be called from a WQ context and the
4831 * current implementation of the WQ concurrency control doesn't
4832 * recognize that a particular WQ is congested if the worker thread is
4833 * looping without ever sleeping. Therefore we have to do a short sleep
4834 * here rather than calling cond_resched().
4835 */
4836 if (current->flags & PF_WQ_WORKER)
4837 schedule_timeout_uninterruptible(1);
4838 else
4839 cond_resched();
4840 return ret;
0a0337e0
MH
4841}
4842
902b6281
VB
4843static inline bool
4844check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4845{
4846 /*
4847 * It's possible that cpuset's mems_allowed and the nodemask from
4848 * mempolicy don't intersect. This should be normally dealt with by
4849 * policy_nodemask(), but it's possible to race with cpuset update in
4850 * such a way the check therein was true, and then it became false
4851 * before we got our cpuset_mems_cookie here.
4852 * This assumes that for all allocations, ac->nodemask can come only
4853 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4854 * when it does not intersect with the cpuset restrictions) or the
4855 * caller can deal with a violated nodemask.
4856 */
4857 if (cpusets_enabled() && ac->nodemask &&
4858 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4859 ac->nodemask = NULL;
4860 return true;
4861 }
4862
4863 /*
4864 * When updating a task's mems_allowed or mempolicy nodemask, it is
4865 * possible to race with parallel threads in such a way that our
4866 * allocation can fail while the mask is being updated. If we are about
4867 * to fail, check if the cpuset changed during allocation and if so,
4868 * retry.
4869 */
4870 if (read_mems_allowed_retry(cpuset_mems_cookie))
4871 return true;
4872
4873 return false;
4874}
4875
11e33f6a
MG
4876static inline struct page *
4877__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4878 struct alloc_context *ac)
11e33f6a 4879{
d0164adc 4880 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4881 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4882 struct page *page = NULL;
c603844b 4883 unsigned int alloc_flags;
11e33f6a 4884 unsigned long did_some_progress;
5ce9bfef 4885 enum compact_priority compact_priority;
c5d01d0d 4886 enum compact_result compact_result;
5ce9bfef
VB
4887 int compaction_retries;
4888 int no_progress_loops;
5ce9bfef 4889 unsigned int cpuset_mems_cookie;
cd04ae1e 4890 int reserve_flags;
1da177e4 4891
d0164adc
MG
4892 /*
4893 * We also sanity check to catch abuse of atomic reserves being used by
4894 * callers that are not in atomic context.
4895 */
4896 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4897 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4898 gfp_mask &= ~__GFP_ATOMIC;
4899
5ce9bfef
VB
4900retry_cpuset:
4901 compaction_retries = 0;
4902 no_progress_loops = 0;
4903 compact_priority = DEF_COMPACT_PRIORITY;
4904 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4905
4906 /*
4907 * The fast path uses conservative alloc_flags to succeed only until
4908 * kswapd needs to be woken up, and to avoid the cost of setting up
4909 * alloc_flags precisely. So we do that now.
4910 */
4911 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4912
e47483bc
VB
4913 /*
4914 * We need to recalculate the starting point for the zonelist iterator
4915 * because we might have used different nodemask in the fast path, or
4916 * there was a cpuset modification and we are retrying - otherwise we
4917 * could end up iterating over non-eligible zones endlessly.
4918 */
4919 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4920 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4921 if (!ac->preferred_zoneref->zone)
4922 goto nopage;
4923
8ca1b5a4
FT
4924 /*
4925 * Check for insane configurations where the cpuset doesn't contain
4926 * any suitable zone to satisfy the request - e.g. non-movable
4927 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4928 */
4929 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4930 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4931 ac->highest_zoneidx,
4932 &cpuset_current_mems_allowed);
4933 if (!z->zone)
4934 goto nopage;
4935 }
4936
0a79cdad 4937 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4938 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4939
4940 /*
4941 * The adjusted alloc_flags might result in immediate success, so try
4942 * that first
4943 */
4944 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4945 if (page)
4946 goto got_pg;
4947
a8161d1e
VB
4948 /*
4949 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4950 * that we have enough base pages and don't need to reclaim. For non-
4951 * movable high-order allocations, do that as well, as compaction will
4952 * try prevent permanent fragmentation by migrating from blocks of the
4953 * same migratetype.
4954 * Don't try this for allocations that are allowed to ignore
4955 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4956 */
282722b0
VB
4957 if (can_direct_reclaim &&
4958 (costly_order ||
4959 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4960 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4961 page = __alloc_pages_direct_compact(gfp_mask, order,
4962 alloc_flags, ac,
a5508cd8 4963 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4964 &compact_result);
4965 if (page)
4966 goto got_pg;
4967
cc638f32
VB
4968 /*
4969 * Checks for costly allocations with __GFP_NORETRY, which
4970 * includes some THP page fault allocations
4971 */
4972 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4973 /*
4974 * If allocating entire pageblock(s) and compaction
4975 * failed because all zones are below low watermarks
4976 * or is prohibited because it recently failed at this
3f36d866
DR
4977 * order, fail immediately unless the allocator has
4978 * requested compaction and reclaim retry.
b39d0ee2
DR
4979 *
4980 * Reclaim is
4981 * - potentially very expensive because zones are far
4982 * below their low watermarks or this is part of very
4983 * bursty high order allocations,
4984 * - not guaranteed to help because isolate_freepages()
4985 * may not iterate over freed pages as part of its
4986 * linear scan, and
4987 * - unlikely to make entire pageblocks free on its
4988 * own.
4989 */
4990 if (compact_result == COMPACT_SKIPPED ||
4991 compact_result == COMPACT_DEFERRED)
4992 goto nopage;
a8161d1e 4993
a8161d1e 4994 /*
3eb2771b
VB
4995 * Looks like reclaim/compaction is worth trying, but
4996 * sync compaction could be very expensive, so keep
25160354 4997 * using async compaction.
a8161d1e 4998 */
a5508cd8 4999 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
5000 }
5001 }
23771235 5002
31a6c190 5003retry:
23771235 5004 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 5005 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 5006 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 5007
cd04ae1e
MH
5008 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5009 if (reserve_flags)
8e3560d9 5010 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
23771235 5011
e46e7b77 5012 /*
d6a24df0
VB
5013 * Reset the nodemask and zonelist iterators if memory policies can be
5014 * ignored. These allocations are high priority and system rather than
5015 * user oriented.
e46e7b77 5016 */
cd04ae1e 5017 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 5018 ac->nodemask = NULL;
e46e7b77 5019 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5020 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
5021 }
5022
23771235 5023 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 5024 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
5025 if (page)
5026 goto got_pg;
1da177e4 5027
d0164adc 5028 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 5029 if (!can_direct_reclaim)
1da177e4
LT
5030 goto nopage;
5031
9a67f648
MH
5032 /* Avoid recursion of direct reclaim */
5033 if (current->flags & PF_MEMALLOC)
6583bb64
DR
5034 goto nopage;
5035
a8161d1e
VB
5036 /* Try direct reclaim and then allocating */
5037 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5038 &did_some_progress);
5039 if (page)
5040 goto got_pg;
5041
5042 /* Try direct compaction and then allocating */
a9263751 5043 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 5044 compact_priority, &compact_result);
56de7263
MG
5045 if (page)
5046 goto got_pg;
75f30861 5047
9083905a
JW
5048 /* Do not loop if specifically requested */
5049 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5050 goto nopage;
9083905a 5051
0a0337e0
MH
5052 /*
5053 * Do not retry costly high order allocations unless they are
dcda9b04 5054 * __GFP_RETRY_MAYFAIL
0a0337e0 5055 */
dcda9b04 5056 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5057 goto nopage;
0a0337e0 5058
0a0337e0 5059 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5060 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5061 goto retry;
5062
33c2d214
MH
5063 /*
5064 * It doesn't make any sense to retry for the compaction if the order-0
5065 * reclaim is not able to make any progress because the current
5066 * implementation of the compaction depends on the sufficient amount
5067 * of free memory (see __compaction_suitable)
5068 */
5069 if (did_some_progress > 0 &&
86a294a8 5070 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5071 compact_result, &compact_priority,
d9436498 5072 &compaction_retries))
33c2d214
MH
5073 goto retry;
5074
902b6281
VB
5075
5076 /* Deal with possible cpuset update races before we start OOM killing */
5077 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
5078 goto retry_cpuset;
5079
9083905a
JW
5080 /* Reclaim has failed us, start killing things */
5081 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5082 if (page)
5083 goto got_pg;
5084
9a67f648 5085 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5086 if (tsk_is_oom_victim(current) &&
8510e69c 5087 (alloc_flags & ALLOC_OOM ||
c288983d 5088 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5089 goto nopage;
5090
9083905a 5091 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5092 if (did_some_progress) {
5093 no_progress_loops = 0;
9083905a 5094 goto retry;
0a0337e0 5095 }
9083905a 5096
1da177e4 5097nopage:
902b6281
VB
5098 /* Deal with possible cpuset update races before we fail */
5099 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
5100 goto retry_cpuset;
5101
9a67f648
MH
5102 /*
5103 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5104 * we always retry
5105 */
5106 if (gfp_mask & __GFP_NOFAIL) {
5107 /*
5108 * All existing users of the __GFP_NOFAIL are blockable, so warn
5109 * of any new users that actually require GFP_NOWAIT
5110 */
5111 if (WARN_ON_ONCE(!can_direct_reclaim))
5112 goto fail;
5113
5114 /*
5115 * PF_MEMALLOC request from this context is rather bizarre
5116 * because we cannot reclaim anything and only can loop waiting
5117 * for somebody to do a work for us
5118 */
5119 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5120
5121 /*
5122 * non failing costly orders are a hard requirement which we
5123 * are not prepared for much so let's warn about these users
5124 * so that we can identify them and convert them to something
5125 * else.
5126 */
5127 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5128
6c18ba7a
MH
5129 /*
5130 * Help non-failing allocations by giving them access to memory
5131 * reserves but do not use ALLOC_NO_WATERMARKS because this
5132 * could deplete whole memory reserves which would just make
5133 * the situation worse
5134 */
5135 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5136 if (page)
5137 goto got_pg;
5138
9a67f648
MH
5139 cond_resched();
5140 goto retry;
5141 }
5142fail:
a8e99259 5143 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5144 "page allocation failure: order:%u", order);
1da177e4 5145got_pg:
072bb0aa 5146 return page;
1da177e4 5147}
11e33f6a 5148
9cd75558 5149static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5150 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5151 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5152 unsigned int *alloc_flags)
11e33f6a 5153{
97a225e6 5154 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5155 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5156 ac->nodemask = nodemask;
01c0bfe0 5157 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5158
682a3385 5159 if (cpusets_enabled()) {
8e6a930b 5160 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5161 /*
5162 * When we are in the interrupt context, it is irrelevant
5163 * to the current task context. It means that any node ok.
5164 */
88dc6f20 5165 if (in_task() && !ac->nodemask)
9cd75558 5166 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5167 else
5168 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5169 }
5170
d92a8cfc
PZ
5171 fs_reclaim_acquire(gfp_mask);
5172 fs_reclaim_release(gfp_mask);
11e33f6a 5173
d0164adc 5174 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
5175
5176 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5177 return false;
11e33f6a 5178
8e3560d9 5179 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5180
c9ab0c4f 5181 /* Dirty zone balancing only done in the fast path */
9cd75558 5182 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5183
e46e7b77
MG
5184 /*
5185 * The preferred zone is used for statistics but crucially it is
5186 * also used as the starting point for the zonelist iterator. It
5187 * may get reset for allocations that ignore memory policies.
5188 */
9cd75558 5189 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5190 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5191
5192 return true;
9cd75558
MG
5193}
5194
387ba26f 5195/*
0f87d9d3 5196 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5197 * @gfp: GFP flags for the allocation
5198 * @preferred_nid: The preferred NUMA node ID to allocate from
5199 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5200 * @nr_pages: The number of pages desired on the list or array
5201 * @page_list: Optional list to store the allocated pages
5202 * @page_array: Optional array to store the pages
387ba26f
MG
5203 *
5204 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5205 * allocate nr_pages quickly. Pages are added to page_list if page_list
5206 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5207 *
0f87d9d3
MG
5208 * For lists, nr_pages is the number of pages that should be allocated.
5209 *
5210 * For arrays, only NULL elements are populated with pages and nr_pages
5211 * is the maximum number of pages that will be stored in the array.
5212 *
5213 * Returns the number of pages on the list or array.
387ba26f
MG
5214 */
5215unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5216 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5217 struct list_head *page_list,
5218 struct page **page_array)
387ba26f
MG
5219{
5220 struct page *page;
5221 unsigned long flags;
5222 struct zone *zone;
5223 struct zoneref *z;
5224 struct per_cpu_pages *pcp;
5225 struct list_head *pcp_list;
5226 struct alloc_context ac;
5227 gfp_t alloc_gfp;
5228 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5229 int nr_populated = 0, nr_account = 0;
387ba26f 5230
0f87d9d3
MG
5231 /*
5232 * Skip populated array elements to determine if any pages need
5233 * to be allocated before disabling IRQs.
5234 */
b08e50dd 5235 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5236 nr_populated++;
5237
06147843
CL
5238 /* No pages requested? */
5239 if (unlikely(nr_pages <= 0))
5240 goto out;
5241
b3b64ebd
MG
5242 /* Already populated array? */
5243 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5244 goto out;
b3b64ebd 5245
8dcb3060
SB
5246 /* Bulk allocator does not support memcg accounting. */
5247 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5248 goto failed;
5249
387ba26f 5250 /* Use the single page allocator for one page. */
0f87d9d3 5251 if (nr_pages - nr_populated == 1)
387ba26f
MG
5252 goto failed;
5253
187ad460
MG
5254#ifdef CONFIG_PAGE_OWNER
5255 /*
5256 * PAGE_OWNER may recurse into the allocator to allocate space to
5257 * save the stack with pagesets.lock held. Releasing/reacquiring
5258 * removes much of the performance benefit of bulk allocation so
5259 * force the caller to allocate one page at a time as it'll have
5260 * similar performance to added complexity to the bulk allocator.
5261 */
5262 if (static_branch_unlikely(&page_owner_inited))
5263 goto failed;
5264#endif
5265
387ba26f
MG
5266 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5267 gfp &= gfp_allowed_mask;
5268 alloc_gfp = gfp;
5269 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5270 goto out;
387ba26f
MG
5271 gfp = alloc_gfp;
5272
5273 /* Find an allowed local zone that meets the low watermark. */
5274 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5275 unsigned long mark;
5276
5277 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5278 !__cpuset_zone_allowed(zone, gfp)) {
5279 continue;
5280 }
5281
5282 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5283 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5284 goto failed;
5285 }
5286
5287 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5288 if (zone_watermark_fast(zone, 0, mark,
5289 zonelist_zone_idx(ac.preferred_zoneref),
5290 alloc_flags, gfp)) {
5291 break;
5292 }
5293 }
5294
5295 /*
5296 * If there are no allowed local zones that meets the watermarks then
5297 * try to allocate a single page and reclaim if necessary.
5298 */
ce76f9a1 5299 if (unlikely(!zone))
387ba26f
MG
5300 goto failed;
5301
5302 /* Attempt the batch allocation */
dbbee9d5 5303 local_lock_irqsave(&pagesets.lock, flags);
28f836b6 5304 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44 5305 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
387ba26f 5306
0f87d9d3
MG
5307 while (nr_populated < nr_pages) {
5308
5309 /* Skip existing pages */
5310 if (page_array && page_array[nr_populated]) {
5311 nr_populated++;
5312 continue;
5313 }
5314
44042b44 5315 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5316 pcp, pcp_list);
ce76f9a1 5317 if (unlikely(!page)) {
387ba26f 5318 /* Try and get at least one page */
0f87d9d3 5319 if (!nr_populated)
387ba26f
MG
5320 goto failed_irq;
5321 break;
5322 }
3e23060b 5323 nr_account++;
387ba26f
MG
5324
5325 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5326 if (page_list)
5327 list_add(&page->lru, page_list);
5328 else
5329 page_array[nr_populated] = page;
5330 nr_populated++;
387ba26f
MG
5331 }
5332
43c95bcc
MG
5333 local_unlock_irqrestore(&pagesets.lock, flags);
5334
3e23060b
MG
5335 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5336 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5337
06147843 5338out:
0f87d9d3 5339 return nr_populated;
387ba26f
MG
5340
5341failed_irq:
dbbee9d5 5342 local_unlock_irqrestore(&pagesets.lock, flags);
387ba26f
MG
5343
5344failed:
5345 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5346 if (page) {
0f87d9d3
MG
5347 if (page_list)
5348 list_add(&page->lru, page_list);
5349 else
5350 page_array[nr_populated] = page;
5351 nr_populated++;
387ba26f
MG
5352 }
5353
06147843 5354 goto out;
387ba26f
MG
5355}
5356EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5357
9cd75558
MG
5358/*
5359 * This is the 'heart' of the zoned buddy allocator.
5360 */
84172f4b 5361struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5362 nodemask_t *nodemask)
9cd75558
MG
5363{
5364 struct page *page;
5365 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5366 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5367 struct alloc_context ac = { };
5368
c63ae43b
MH
5369 /*
5370 * There are several places where we assume that the order value is sane
5371 * so bail out early if the request is out of bound.
5372 */
5373 if (unlikely(order >= MAX_ORDER)) {
6e5e0f28 5374 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
c63ae43b
MH
5375 return NULL;
5376 }
5377
6e5e0f28 5378 gfp &= gfp_allowed_mask;
da6df1b0
PT
5379 /*
5380 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5381 * resp. GFP_NOIO which has to be inherited for all allocation requests
5382 * from a particular context which has been marked by
8e3560d9
PT
5383 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5384 * movable zones are not used during allocation.
da6df1b0
PT
5385 */
5386 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5387 alloc_gfp = gfp;
5388 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5389 &alloc_gfp, &alloc_flags))
9cd75558
MG
5390 return NULL;
5391
6bb15450
MG
5392 /*
5393 * Forbid the first pass from falling back to types that fragment
5394 * memory until all local zones are considered.
5395 */
6e5e0f28 5396 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5397
5117f45d 5398 /* First allocation attempt */
8e6a930b 5399 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5400 if (likely(page))
5401 goto out;
11e33f6a 5402
da6df1b0 5403 alloc_gfp = gfp;
4fcb0971 5404 ac.spread_dirty_pages = false;
23f086f9 5405
4741526b
MG
5406 /*
5407 * Restore the original nodemask if it was potentially replaced with
5408 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5409 */
97ce86f9 5410 ac.nodemask = nodemask;
16096c25 5411
8e6a930b 5412 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5413
4fcb0971 5414out:
6e5e0f28
MWO
5415 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5416 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5417 __free_pages(page, order);
5418 page = NULL;
4949148a
VD
5419 }
5420
8e6a930b 5421 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5422
11e33f6a 5423 return page;
1da177e4 5424}
84172f4b 5425EXPORT_SYMBOL(__alloc_pages);
1da177e4 5426
cc09cb13
MWO
5427struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5428 nodemask_t *nodemask)
5429{
5430 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5431 preferred_nid, nodemask);
5432
5433 if (page && order > 1)
5434 prep_transhuge_page(page);
5435 return (struct folio *)page;
5436}
5437EXPORT_SYMBOL(__folio_alloc);
5438
1da177e4 5439/*
9ea9a680
MH
5440 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5441 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5442 * you need to access high mem.
1da177e4 5443 */
920c7a5d 5444unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5445{
945a1113
AM
5446 struct page *page;
5447
9ea9a680 5448 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5449 if (!page)
5450 return 0;
5451 return (unsigned long) page_address(page);
5452}
1da177e4
LT
5453EXPORT_SYMBOL(__get_free_pages);
5454
920c7a5d 5455unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5456{
945a1113 5457 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5458}
1da177e4
LT
5459EXPORT_SYMBOL(get_zeroed_page);
5460
7f194fbb
MWO
5461/**
5462 * __free_pages - Free pages allocated with alloc_pages().
5463 * @page: The page pointer returned from alloc_pages().
5464 * @order: The order of the allocation.
5465 *
5466 * This function can free multi-page allocations that are not compound
5467 * pages. It does not check that the @order passed in matches that of
5468 * the allocation, so it is easy to leak memory. Freeing more memory
5469 * than was allocated will probably emit a warning.
5470 *
5471 * If the last reference to this page is speculative, it will be released
5472 * by put_page() which only frees the first page of a non-compound
5473 * allocation. To prevent the remaining pages from being leaked, we free
5474 * the subsequent pages here. If you want to use the page's reference
5475 * count to decide when to free the allocation, you should allocate a
5476 * compound page, and use put_page() instead of __free_pages().
5477 *
5478 * Context: May be called in interrupt context or while holding a normal
5479 * spinlock, but not in NMI context or while holding a raw spinlock.
5480 */
742aa7fb
AL
5481void __free_pages(struct page *page, unsigned int order)
5482{
5483 if (put_page_testzero(page))
5484 free_the_page(page, order);
e320d301
MWO
5485 else if (!PageHead(page))
5486 while (order-- > 0)
5487 free_the_page(page + (1 << order), order);
742aa7fb 5488}
1da177e4
LT
5489EXPORT_SYMBOL(__free_pages);
5490
920c7a5d 5491void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5492{
5493 if (addr != 0) {
725d704e 5494 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5495 __free_pages(virt_to_page((void *)addr), order);
5496 }
5497}
5498
5499EXPORT_SYMBOL(free_pages);
5500
b63ae8ca
AD
5501/*
5502 * Page Fragment:
5503 * An arbitrary-length arbitrary-offset area of memory which resides
5504 * within a 0 or higher order page. Multiple fragments within that page
5505 * are individually refcounted, in the page's reference counter.
5506 *
5507 * The page_frag functions below provide a simple allocation framework for
5508 * page fragments. This is used by the network stack and network device
5509 * drivers to provide a backing region of memory for use as either an
5510 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5511 */
2976db80
AD
5512static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5513 gfp_t gfp_mask)
b63ae8ca
AD
5514{
5515 struct page *page = NULL;
5516 gfp_t gfp = gfp_mask;
5517
5518#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5519 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5520 __GFP_NOMEMALLOC;
5521 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5522 PAGE_FRAG_CACHE_MAX_ORDER);
5523 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5524#endif
5525 if (unlikely(!page))
5526 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5527
5528 nc->va = page ? page_address(page) : NULL;
5529
5530 return page;
5531}
5532
2976db80 5533void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5534{
5535 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5536
742aa7fb
AL
5537 if (page_ref_sub_and_test(page, count))
5538 free_the_page(page, compound_order(page));
44fdffd7 5539}
2976db80 5540EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5541
b358e212
KH
5542void *page_frag_alloc_align(struct page_frag_cache *nc,
5543 unsigned int fragsz, gfp_t gfp_mask,
5544 unsigned int align_mask)
b63ae8ca
AD
5545{
5546 unsigned int size = PAGE_SIZE;
5547 struct page *page;
5548 int offset;
5549
5550 if (unlikely(!nc->va)) {
5551refill:
2976db80 5552 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5553 if (!page)
5554 return NULL;
5555
5556#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5557 /* if size can vary use size else just use PAGE_SIZE */
5558 size = nc->size;
5559#endif
5560 /* Even if we own the page, we do not use atomic_set().
5561 * This would break get_page_unless_zero() users.
5562 */
86447726 5563 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5564
5565 /* reset page count bias and offset to start of new frag */
2f064f34 5566 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5567 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5568 nc->offset = size;
5569 }
5570
5571 offset = nc->offset - fragsz;
5572 if (unlikely(offset < 0)) {
5573 page = virt_to_page(nc->va);
5574
fe896d18 5575 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5576 goto refill;
5577
d8c19014
DZ
5578 if (unlikely(nc->pfmemalloc)) {
5579 free_the_page(page, compound_order(page));
5580 goto refill;
5581 }
5582
b63ae8ca
AD
5583#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5584 /* if size can vary use size else just use PAGE_SIZE */
5585 size = nc->size;
5586#endif
5587 /* OK, page count is 0, we can safely set it */
86447726 5588 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5589
5590 /* reset page count bias and offset to start of new frag */
86447726 5591 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5592 offset = size - fragsz;
5593 }
5594
5595 nc->pagecnt_bias--;
b358e212 5596 offset &= align_mask;
b63ae8ca
AD
5597 nc->offset = offset;
5598
5599 return nc->va + offset;
5600}
b358e212 5601EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5602
5603/*
5604 * Frees a page fragment allocated out of either a compound or order 0 page.
5605 */
8c2dd3e4 5606void page_frag_free(void *addr)
b63ae8ca
AD
5607{
5608 struct page *page = virt_to_head_page(addr);
5609
742aa7fb
AL
5610 if (unlikely(put_page_testzero(page)))
5611 free_the_page(page, compound_order(page));
b63ae8ca 5612}
8c2dd3e4 5613EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5614
d00181b9
KS
5615static void *make_alloc_exact(unsigned long addr, unsigned int order,
5616 size_t size)
ee85c2e1
AK
5617{
5618 if (addr) {
5619 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5620 unsigned long used = addr + PAGE_ALIGN(size);
5621
5622 split_page(virt_to_page((void *)addr), order);
5623 while (used < alloc_end) {
5624 free_page(used);
5625 used += PAGE_SIZE;
5626 }
5627 }
5628 return (void *)addr;
5629}
5630
2be0ffe2
TT
5631/**
5632 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5633 * @size: the number of bytes to allocate
63931eb9 5634 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5635 *
5636 * This function is similar to alloc_pages(), except that it allocates the
5637 * minimum number of pages to satisfy the request. alloc_pages() can only
5638 * allocate memory in power-of-two pages.
5639 *
5640 * This function is also limited by MAX_ORDER.
5641 *
5642 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5643 *
5644 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5645 */
5646void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5647{
5648 unsigned int order = get_order(size);
5649 unsigned long addr;
5650
ba7f1b9e
ML
5651 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5652 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 5653
2be0ffe2 5654 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5655 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5656}
5657EXPORT_SYMBOL(alloc_pages_exact);
5658
ee85c2e1
AK
5659/**
5660 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5661 * pages on a node.
b5e6ab58 5662 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5663 * @size: the number of bytes to allocate
63931eb9 5664 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5665 *
5666 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5667 * back.
a862f68a
MR
5668 *
5669 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5670 */
e1931811 5671void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5672{
d00181b9 5673 unsigned int order = get_order(size);
63931eb9
VB
5674 struct page *p;
5675
ba7f1b9e
ML
5676 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5677 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
5678
5679 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5680 if (!p)
5681 return NULL;
5682 return make_alloc_exact((unsigned long)page_address(p), order, size);
5683}
ee85c2e1 5684
2be0ffe2
TT
5685/**
5686 * free_pages_exact - release memory allocated via alloc_pages_exact()
5687 * @virt: the value returned by alloc_pages_exact.
5688 * @size: size of allocation, same value as passed to alloc_pages_exact().
5689 *
5690 * Release the memory allocated by a previous call to alloc_pages_exact.
5691 */
5692void free_pages_exact(void *virt, size_t size)
5693{
5694 unsigned long addr = (unsigned long)virt;
5695 unsigned long end = addr + PAGE_ALIGN(size);
5696
5697 while (addr < end) {
5698 free_page(addr);
5699 addr += PAGE_SIZE;
5700 }
5701}
5702EXPORT_SYMBOL(free_pages_exact);
5703
e0fb5815
ZY
5704/**
5705 * nr_free_zone_pages - count number of pages beyond high watermark
5706 * @offset: The zone index of the highest zone
5707 *
a862f68a 5708 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5709 * high watermark within all zones at or below a given zone index. For each
5710 * zone, the number of pages is calculated as:
0e056eb5
MCC
5711 *
5712 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5713 *
5714 * Return: number of pages beyond high watermark.
e0fb5815 5715 */
ebec3862 5716static unsigned long nr_free_zone_pages(int offset)
1da177e4 5717{
dd1a239f 5718 struct zoneref *z;
54a6eb5c
MG
5719 struct zone *zone;
5720
e310fd43 5721 /* Just pick one node, since fallback list is circular */
ebec3862 5722 unsigned long sum = 0;
1da177e4 5723
0e88460d 5724 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5725
54a6eb5c 5726 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5727 unsigned long size = zone_managed_pages(zone);
41858966 5728 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5729 if (size > high)
5730 sum += size - high;
1da177e4
LT
5731 }
5732
5733 return sum;
5734}
5735
e0fb5815
ZY
5736/**
5737 * nr_free_buffer_pages - count number of pages beyond high watermark
5738 *
5739 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5740 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5741 *
5742 * Return: number of pages beyond high watermark within ZONE_DMA and
5743 * ZONE_NORMAL.
1da177e4 5744 */
ebec3862 5745unsigned long nr_free_buffer_pages(void)
1da177e4 5746{
af4ca457 5747 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5748}
c2f1a551 5749EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5750
08e0f6a9 5751static inline void show_node(struct zone *zone)
1da177e4 5752{
e5adfffc 5753 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5754 printk("Node %d ", zone_to_nid(zone));
1da177e4 5755}
1da177e4 5756
d02bd27b
IR
5757long si_mem_available(void)
5758{
5759 long available;
5760 unsigned long pagecache;
5761 unsigned long wmark_low = 0;
5762 unsigned long pages[NR_LRU_LISTS];
b29940c1 5763 unsigned long reclaimable;
d02bd27b
IR
5764 struct zone *zone;
5765 int lru;
5766
5767 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5768 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5769
5770 for_each_zone(zone)
a9214443 5771 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5772
5773 /*
5774 * Estimate the amount of memory available for userspace allocations,
5775 * without causing swapping.
5776 */
c41f012a 5777 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5778
5779 /*
5780 * Not all the page cache can be freed, otherwise the system will
5781 * start swapping. Assume at least half of the page cache, or the
5782 * low watermark worth of cache, needs to stay.
5783 */
5784 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5785 pagecache -= min(pagecache / 2, wmark_low);
5786 available += pagecache;
5787
5788 /*
b29940c1
VB
5789 * Part of the reclaimable slab and other kernel memory consists of
5790 * items that are in use, and cannot be freed. Cap this estimate at the
5791 * low watermark.
d02bd27b 5792 */
d42f3245
RG
5793 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5794 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5795 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5796
d02bd27b
IR
5797 if (available < 0)
5798 available = 0;
5799 return available;
5800}
5801EXPORT_SYMBOL_GPL(si_mem_available);
5802
1da177e4
LT
5803void si_meminfo(struct sysinfo *val)
5804{
ca79b0c2 5805 val->totalram = totalram_pages();
11fb9989 5806 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5807 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5808 val->bufferram = nr_blockdev_pages();
ca79b0c2 5809 val->totalhigh = totalhigh_pages();
1da177e4 5810 val->freehigh = nr_free_highpages();
1da177e4
LT
5811 val->mem_unit = PAGE_SIZE;
5812}
5813
5814EXPORT_SYMBOL(si_meminfo);
5815
5816#ifdef CONFIG_NUMA
5817void si_meminfo_node(struct sysinfo *val, int nid)
5818{
cdd91a77
JL
5819 int zone_type; /* needs to be signed */
5820 unsigned long managed_pages = 0;
fc2bd799
JK
5821 unsigned long managed_highpages = 0;
5822 unsigned long free_highpages = 0;
1da177e4
LT
5823 pg_data_t *pgdat = NODE_DATA(nid);
5824
cdd91a77 5825 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5826 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5827 val->totalram = managed_pages;
11fb9989 5828 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5829 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5830#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5831 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5832 struct zone *zone = &pgdat->node_zones[zone_type];
5833
5834 if (is_highmem(zone)) {
9705bea5 5835 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5836 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5837 }
5838 }
5839 val->totalhigh = managed_highpages;
5840 val->freehigh = free_highpages;
98d2b0eb 5841#else
fc2bd799
JK
5842 val->totalhigh = managed_highpages;
5843 val->freehigh = free_highpages;
98d2b0eb 5844#endif
1da177e4
LT
5845 val->mem_unit = PAGE_SIZE;
5846}
5847#endif
5848
ddd588b5 5849/*
7bf02ea2
DR
5850 * Determine whether the node should be displayed or not, depending on whether
5851 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5852 */
9af744d7 5853static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5854{
ddd588b5 5855 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5856 return false;
ddd588b5 5857
9af744d7
MH
5858 /*
5859 * no node mask - aka implicit memory numa policy. Do not bother with
5860 * the synchronization - read_mems_allowed_begin - because we do not
5861 * have to be precise here.
5862 */
5863 if (!nodemask)
5864 nodemask = &cpuset_current_mems_allowed;
5865
5866 return !node_isset(nid, *nodemask);
ddd588b5
DR
5867}
5868
1da177e4
LT
5869#define K(x) ((x) << (PAGE_SHIFT-10))
5870
377e4f16
RV
5871static void show_migration_types(unsigned char type)
5872{
5873 static const char types[MIGRATE_TYPES] = {
5874 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5875 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5876 [MIGRATE_RECLAIMABLE] = 'E',
5877 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5878#ifdef CONFIG_CMA
5879 [MIGRATE_CMA] = 'C',
5880#endif
194159fb 5881#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5882 [MIGRATE_ISOLATE] = 'I',
194159fb 5883#endif
377e4f16
RV
5884 };
5885 char tmp[MIGRATE_TYPES + 1];
5886 char *p = tmp;
5887 int i;
5888
5889 for (i = 0; i < MIGRATE_TYPES; i++) {
5890 if (type & (1 << i))
5891 *p++ = types[i];
5892 }
5893
5894 *p = '\0';
1f84a18f 5895 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5896}
5897
1da177e4
LT
5898/*
5899 * Show free area list (used inside shift_scroll-lock stuff)
5900 * We also calculate the percentage fragmentation. We do this by counting the
5901 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5902 *
5903 * Bits in @filter:
5904 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5905 * cpuset.
1da177e4 5906 */
9af744d7 5907void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5908{
d1bfcdb8 5909 unsigned long free_pcp = 0;
c7241913 5910 int cpu;
1da177e4 5911 struct zone *zone;
599d0c95 5912 pg_data_t *pgdat;
1da177e4 5913
ee99c71c 5914 for_each_populated_zone(zone) {
9af744d7 5915 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5916 continue;
d1bfcdb8 5917
761b0677 5918 for_each_online_cpu(cpu)
28f836b6 5919 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
5920 }
5921
a731286d
KM
5922 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5923 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5924 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5925 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5926 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
eb2169ce 5927 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 5928 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5929 global_node_page_state(NR_ACTIVE_ANON),
5930 global_node_page_state(NR_INACTIVE_ANON),
5931 global_node_page_state(NR_ISOLATED_ANON),
5932 global_node_page_state(NR_ACTIVE_FILE),
5933 global_node_page_state(NR_INACTIVE_FILE),
5934 global_node_page_state(NR_ISOLATED_FILE),
5935 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5936 global_node_page_state(NR_FILE_DIRTY),
5937 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5938 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5939 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5940 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5941 global_node_page_state(NR_SHMEM),
f0c0c115 5942 global_node_page_state(NR_PAGETABLE),
c41f012a 5943 global_zone_page_state(NR_BOUNCE),
eb2169ce 5944 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 5945 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5946 free_pcp,
c41f012a 5947 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5948
599d0c95 5949 for_each_online_pgdat(pgdat) {
9af744d7 5950 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5951 continue;
5952
599d0c95
MG
5953 printk("Node %d"
5954 " active_anon:%lukB"
5955 " inactive_anon:%lukB"
5956 " active_file:%lukB"
5957 " inactive_file:%lukB"
5958 " unevictable:%lukB"
5959 " isolated(anon):%lukB"
5960 " isolated(file):%lukB"
50658e2e 5961 " mapped:%lukB"
11fb9989
MG
5962 " dirty:%lukB"
5963 " writeback:%lukB"
5964 " shmem:%lukB"
5965#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5966 " shmem_thp: %lukB"
5967 " shmem_pmdmapped: %lukB"
5968 " anon_thp: %lukB"
5969#endif
5970 " writeback_tmp:%lukB"
991e7673
SB
5971 " kernel_stack:%lukB"
5972#ifdef CONFIG_SHADOW_CALL_STACK
5973 " shadow_call_stack:%lukB"
5974#endif
f0c0c115 5975 " pagetables:%lukB"
599d0c95
MG
5976 " all_unreclaimable? %s"
5977 "\n",
5978 pgdat->node_id,
5979 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5980 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5981 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5982 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5983 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5984 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5985 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5986 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5987 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5988 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5989 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5990#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5991 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5992 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5993 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5994#endif
11fb9989 5995 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5996 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5997#ifdef CONFIG_SHADOW_CALL_STACK
5998 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5999#endif
f0c0c115 6000 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
6001 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6002 "yes" : "no");
599d0c95
MG
6003 }
6004
ee99c71c 6005 for_each_populated_zone(zone) {
1da177e4
LT
6006 int i;
6007
9af744d7 6008 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6009 continue;
d1bfcdb8
KK
6010
6011 free_pcp = 0;
6012 for_each_online_cpu(cpu)
28f836b6 6013 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 6014
1da177e4 6015 show_node(zone);
1f84a18f
JP
6016 printk(KERN_CONT
6017 "%s"
1da177e4 6018 " free:%lukB"
a6ea8b5b 6019 " boost:%lukB"
1da177e4
LT
6020 " min:%lukB"
6021 " low:%lukB"
6022 " high:%lukB"
e47b346a 6023 " reserved_highatomic:%luKB"
71c799f4
MK
6024 " active_anon:%lukB"
6025 " inactive_anon:%lukB"
6026 " active_file:%lukB"
6027 " inactive_file:%lukB"
6028 " unevictable:%lukB"
5a1c84b4 6029 " writepending:%lukB"
1da177e4 6030 " present:%lukB"
9feedc9d 6031 " managed:%lukB"
4a0aa73f 6032 " mlocked:%lukB"
4a0aa73f 6033 " bounce:%lukB"
d1bfcdb8
KK
6034 " free_pcp:%lukB"
6035 " local_pcp:%ukB"
d1ce749a 6036 " free_cma:%lukB"
1da177e4
LT
6037 "\n",
6038 zone->name,
88f5acf8 6039 K(zone_page_state(zone, NR_FREE_PAGES)),
a6ea8b5b 6040 K(zone->watermark_boost),
41858966
MG
6041 K(min_wmark_pages(zone)),
6042 K(low_wmark_pages(zone)),
6043 K(high_wmark_pages(zone)),
e47b346a 6044 K(zone->nr_reserved_highatomic),
71c799f4
MK
6045 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6046 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6047 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6048 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6049 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6050 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6051 K(zone->present_pages),
9705bea5 6052 K(zone_managed_pages(zone)),
4a0aa73f 6053 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6054 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6055 K(free_pcp),
28f836b6 6056 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6057 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6058 printk("lowmem_reserve[]:");
6059 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6060 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6061 printk(KERN_CONT "\n");
1da177e4
LT
6062 }
6063
ee99c71c 6064 for_each_populated_zone(zone) {
d00181b9
KS
6065 unsigned int order;
6066 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6067 unsigned char types[MAX_ORDER];
1da177e4 6068
9af744d7 6069 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6070 continue;
1da177e4 6071 show_node(zone);
1f84a18f 6072 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6073
6074 spin_lock_irqsave(&zone->lock, flags);
6075 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6076 struct free_area *area = &zone->free_area[order];
6077 int type;
6078
6079 nr[order] = area->nr_free;
8f9de51a 6080 total += nr[order] << order;
377e4f16
RV
6081
6082 types[order] = 0;
6083 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6084 if (!free_area_empty(area, type))
377e4f16
RV
6085 types[order] |= 1 << type;
6086 }
1da177e4
LT
6087 }
6088 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6089 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6090 printk(KERN_CONT "%lu*%lukB ",
6091 nr[order], K(1UL) << order);
377e4f16
RV
6092 if (nr[order])
6093 show_migration_types(types[order]);
6094 }
1f84a18f 6095 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6096 }
6097
949f7ec5
DR
6098 hugetlb_show_meminfo();
6099
11fb9989 6100 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6101
1da177e4
LT
6102 show_swap_cache_info();
6103}
6104
19770b32
MG
6105static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6106{
6107 zoneref->zone = zone;
6108 zoneref->zone_idx = zone_idx(zone);
6109}
6110
1da177e4
LT
6111/*
6112 * Builds allocation fallback zone lists.
1a93205b
CL
6113 *
6114 * Add all populated zones of a node to the zonelist.
1da177e4 6115 */
9d3be21b 6116static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6117{
1a93205b 6118 struct zone *zone;
bc732f1d 6119 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6120 int nr_zones = 0;
02a68a5e
CL
6121
6122 do {
2f6726e5 6123 zone_type--;
070f8032 6124 zone = pgdat->node_zones + zone_type;
e553f62f 6125 if (populated_zone(zone)) {
9d3be21b 6126 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6127 check_highest_zone(zone_type);
1da177e4 6128 }
2f6726e5 6129 } while (zone_type);
bc732f1d 6130
070f8032 6131 return nr_zones;
1da177e4
LT
6132}
6133
6134#ifdef CONFIG_NUMA
f0c0b2b8
KH
6135
6136static int __parse_numa_zonelist_order(char *s)
6137{
c9bff3ee 6138 /*
f0953a1b 6139 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6140 * out to be just not useful. Let's keep the warning in place
6141 * if somebody still use the cmd line parameter so that we do
6142 * not fail it silently
6143 */
6144 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6145 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6146 return -EINVAL;
6147 }
6148 return 0;
6149}
6150
c9bff3ee
MH
6151char numa_zonelist_order[] = "Node";
6152
f0c0b2b8
KH
6153/*
6154 * sysctl handler for numa_zonelist_order
6155 */
cccad5b9 6156int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6157 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6158{
32927393
CH
6159 if (write)
6160 return __parse_numa_zonelist_order(buffer);
6161 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6162}
6163
6164
f0c0b2b8
KH
6165static int node_load[MAX_NUMNODES];
6166
1da177e4 6167/**
4dc3b16b 6168 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6169 * @node: node whose fallback list we're appending
6170 * @used_node_mask: nodemask_t of already used nodes
6171 *
6172 * We use a number of factors to determine which is the next node that should
6173 * appear on a given node's fallback list. The node should not have appeared
6174 * already in @node's fallback list, and it should be the next closest node
6175 * according to the distance array (which contains arbitrary distance values
6176 * from each node to each node in the system), and should also prefer nodes
6177 * with no CPUs, since presumably they'll have very little allocation pressure
6178 * on them otherwise.
a862f68a
MR
6179 *
6180 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6181 */
79c28a41 6182int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6183{
4cf808eb 6184 int n, val;
1da177e4 6185 int min_val = INT_MAX;
00ef2d2f 6186 int best_node = NUMA_NO_NODE;
1da177e4 6187
4cf808eb
LT
6188 /* Use the local node if we haven't already */
6189 if (!node_isset(node, *used_node_mask)) {
6190 node_set(node, *used_node_mask);
6191 return node;
6192 }
1da177e4 6193
4b0ef1fe 6194 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6195
6196 /* Don't want a node to appear more than once */
6197 if (node_isset(n, *used_node_mask))
6198 continue;
6199
1da177e4
LT
6200 /* Use the distance array to find the distance */
6201 val = node_distance(node, n);
6202
4cf808eb
LT
6203 /* Penalize nodes under us ("prefer the next node") */
6204 val += (n < node);
6205
1da177e4 6206 /* Give preference to headless and unused nodes */
b630749f 6207 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6208 val += PENALTY_FOR_NODE_WITH_CPUS;
6209
6210 /* Slight preference for less loaded node */
37931324 6211 val *= MAX_NUMNODES;
1da177e4
LT
6212 val += node_load[n];
6213
6214 if (val < min_val) {
6215 min_val = val;
6216 best_node = n;
6217 }
6218 }
6219
6220 if (best_node >= 0)
6221 node_set(best_node, *used_node_mask);
6222
6223 return best_node;
6224}
6225
f0c0b2b8
KH
6226
6227/*
6228 * Build zonelists ordered by node and zones within node.
6229 * This results in maximum locality--normal zone overflows into local
6230 * DMA zone, if any--but risks exhausting DMA zone.
6231 */
9d3be21b
MH
6232static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6233 unsigned nr_nodes)
1da177e4 6234{
9d3be21b
MH
6235 struct zoneref *zonerefs;
6236 int i;
6237
6238 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6239
6240 for (i = 0; i < nr_nodes; i++) {
6241 int nr_zones;
6242
6243 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6244
9d3be21b
MH
6245 nr_zones = build_zonerefs_node(node, zonerefs);
6246 zonerefs += nr_zones;
6247 }
6248 zonerefs->zone = NULL;
6249 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6250}
6251
523b9458
CL
6252/*
6253 * Build gfp_thisnode zonelists
6254 */
6255static void build_thisnode_zonelists(pg_data_t *pgdat)
6256{
9d3be21b
MH
6257 struct zoneref *zonerefs;
6258 int nr_zones;
523b9458 6259
9d3be21b
MH
6260 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6261 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6262 zonerefs += nr_zones;
6263 zonerefs->zone = NULL;
6264 zonerefs->zone_idx = 0;
523b9458
CL
6265}
6266
f0c0b2b8
KH
6267/*
6268 * Build zonelists ordered by zone and nodes within zones.
6269 * This results in conserving DMA zone[s] until all Normal memory is
6270 * exhausted, but results in overflowing to remote node while memory
6271 * may still exist in local DMA zone.
6272 */
f0c0b2b8 6273
f0c0b2b8
KH
6274static void build_zonelists(pg_data_t *pgdat)
6275{
9d3be21b 6276 static int node_order[MAX_NUMNODES];
37931324 6277 int node, nr_nodes = 0;
d0ddf49b 6278 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6279 int local_node, prev_node;
1da177e4
LT
6280
6281 /* NUMA-aware ordering of nodes */
6282 local_node = pgdat->node_id;
1da177e4 6283 prev_node = local_node;
f0c0b2b8 6284
f0c0b2b8 6285 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6286 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6287 /*
6288 * We don't want to pressure a particular node.
6289 * So adding penalty to the first node in same
6290 * distance group to make it round-robin.
6291 */
957f822a
DR
6292 if (node_distance(local_node, node) !=
6293 node_distance(local_node, prev_node))
37931324 6294 node_load[node] += 1;
f0c0b2b8 6295
9d3be21b 6296 node_order[nr_nodes++] = node;
1da177e4 6297 prev_node = node;
1da177e4 6298 }
523b9458 6299
9d3be21b 6300 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6301 build_thisnode_zonelists(pgdat);
6cf25392
BR
6302 pr_info("Fallback order for Node %d: ", local_node);
6303 for (node = 0; node < nr_nodes; node++)
6304 pr_cont("%d ", node_order[node]);
6305 pr_cont("\n");
1da177e4
LT
6306}
6307
7aac7898
LS
6308#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6309/*
6310 * Return node id of node used for "local" allocations.
6311 * I.e., first node id of first zone in arg node's generic zonelist.
6312 * Used for initializing percpu 'numa_mem', which is used primarily
6313 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6314 */
6315int local_memory_node(int node)
6316{
c33d6c06 6317 struct zoneref *z;
7aac7898 6318
c33d6c06 6319 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6320 gfp_zone(GFP_KERNEL),
c33d6c06 6321 NULL);
c1093b74 6322 return zone_to_nid(z->zone);
7aac7898
LS
6323}
6324#endif
f0c0b2b8 6325
6423aa81
JK
6326static void setup_min_unmapped_ratio(void);
6327static void setup_min_slab_ratio(void);
1da177e4
LT
6328#else /* CONFIG_NUMA */
6329
f0c0b2b8 6330static void build_zonelists(pg_data_t *pgdat)
1da177e4 6331{
19655d34 6332 int node, local_node;
9d3be21b
MH
6333 struct zoneref *zonerefs;
6334 int nr_zones;
1da177e4
LT
6335
6336 local_node = pgdat->node_id;
1da177e4 6337
9d3be21b
MH
6338 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6339 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6340 zonerefs += nr_zones;
1da177e4 6341
54a6eb5c
MG
6342 /*
6343 * Now we build the zonelist so that it contains the zones
6344 * of all the other nodes.
6345 * We don't want to pressure a particular node, so when
6346 * building the zones for node N, we make sure that the
6347 * zones coming right after the local ones are those from
6348 * node N+1 (modulo N)
6349 */
6350 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6351 if (!node_online(node))
6352 continue;
9d3be21b
MH
6353 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6354 zonerefs += nr_zones;
1da177e4 6355 }
54a6eb5c
MG
6356 for (node = 0; node < local_node; node++) {
6357 if (!node_online(node))
6358 continue;
9d3be21b
MH
6359 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6360 zonerefs += nr_zones;
54a6eb5c
MG
6361 }
6362
9d3be21b
MH
6363 zonerefs->zone = NULL;
6364 zonerefs->zone_idx = 0;
1da177e4
LT
6365}
6366
6367#endif /* CONFIG_NUMA */
6368
99dcc3e5
CL
6369/*
6370 * Boot pageset table. One per cpu which is going to be used for all
6371 * zones and all nodes. The parameters will be set in such a way
6372 * that an item put on a list will immediately be handed over to
6373 * the buddy list. This is safe since pageset manipulation is done
6374 * with interrupts disabled.
6375 *
6376 * The boot_pagesets must be kept even after bootup is complete for
6377 * unused processors and/or zones. They do play a role for bootstrapping
6378 * hotplugged processors.
6379 *
6380 * zoneinfo_show() and maybe other functions do
6381 * not check if the processor is online before following the pageset pointer.
6382 * Other parts of the kernel may not check if the zone is available.
6383 */
28f836b6 6384static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6385/* These effectively disable the pcplists in the boot pageset completely */
6386#define BOOT_PAGESET_HIGH 0
6387#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6388static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6389static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
09f49dca 6390DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6391
11cd8638 6392static void __build_all_zonelists(void *data)
1da177e4 6393{
6811378e 6394 int nid;
afb6ebb3 6395 int __maybe_unused cpu;
9adb62a5 6396 pg_data_t *self = data;
b93e0f32
MH
6397 static DEFINE_SPINLOCK(lock);
6398
6399 spin_lock(&lock);
9276b1bc 6400
7f9cfb31
BL
6401#ifdef CONFIG_NUMA
6402 memset(node_load, 0, sizeof(node_load));
6403#endif
9adb62a5 6404
c1152583
WY
6405 /*
6406 * This node is hotadded and no memory is yet present. So just
6407 * building zonelists is fine - no need to touch other nodes.
6408 */
9adb62a5
JL
6409 if (self && !node_online(self->node_id)) {
6410 build_zonelists(self);
c1152583 6411 } else {
09f49dca
MH
6412 /*
6413 * All possible nodes have pgdat preallocated
6414 * in free_area_init
6415 */
6416 for_each_node(nid) {
c1152583 6417 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6418
c1152583
WY
6419 build_zonelists(pgdat);
6420 }
99dcc3e5 6421
7aac7898
LS
6422#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6423 /*
6424 * We now know the "local memory node" for each node--
6425 * i.e., the node of the first zone in the generic zonelist.
6426 * Set up numa_mem percpu variable for on-line cpus. During
6427 * boot, only the boot cpu should be on-line; we'll init the
6428 * secondary cpus' numa_mem as they come on-line. During
6429 * node/memory hotplug, we'll fixup all on-line cpus.
6430 */
d9c9a0b9 6431 for_each_online_cpu(cpu)
7aac7898 6432 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6433#endif
d9c9a0b9 6434 }
b93e0f32
MH
6435
6436 spin_unlock(&lock);
6811378e
YG
6437}
6438
061f67bc
RV
6439static noinline void __init
6440build_all_zonelists_init(void)
6441{
afb6ebb3
MH
6442 int cpu;
6443
061f67bc 6444 __build_all_zonelists(NULL);
afb6ebb3
MH
6445
6446 /*
6447 * Initialize the boot_pagesets that are going to be used
6448 * for bootstrapping processors. The real pagesets for
6449 * each zone will be allocated later when the per cpu
6450 * allocator is available.
6451 *
6452 * boot_pagesets are used also for bootstrapping offline
6453 * cpus if the system is already booted because the pagesets
6454 * are needed to initialize allocators on a specific cpu too.
6455 * F.e. the percpu allocator needs the page allocator which
6456 * needs the percpu allocator in order to allocate its pagesets
6457 * (a chicken-egg dilemma).
6458 */
6459 for_each_possible_cpu(cpu)
28f836b6 6460 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6461
061f67bc
RV
6462 mminit_verify_zonelist();
6463 cpuset_init_current_mems_allowed();
6464}
6465
4eaf3f64 6466/*
4eaf3f64 6467 * unless system_state == SYSTEM_BOOTING.
061f67bc 6468 *
72675e13 6469 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6470 * [protected by SYSTEM_BOOTING].
4eaf3f64 6471 */
72675e13 6472void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6473{
0a18e607
DH
6474 unsigned long vm_total_pages;
6475
6811378e 6476 if (system_state == SYSTEM_BOOTING) {
061f67bc 6477 build_all_zonelists_init();
6811378e 6478 } else {
11cd8638 6479 __build_all_zonelists(pgdat);
6811378e
YG
6480 /* cpuset refresh routine should be here */
6481 }
56b9413b
DH
6482 /* Get the number of free pages beyond high watermark in all zones. */
6483 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6484 /*
6485 * Disable grouping by mobility if the number of pages in the
6486 * system is too low to allow the mechanism to work. It would be
6487 * more accurate, but expensive to check per-zone. This check is
6488 * made on memory-hotadd so a system can start with mobility
6489 * disabled and enable it later
6490 */
d9c23400 6491 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6492 page_group_by_mobility_disabled = 1;
6493 else
6494 page_group_by_mobility_disabled = 0;
6495
ce0725f7 6496 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6497 nr_online_nodes,
756a025f
JP
6498 page_group_by_mobility_disabled ? "off" : "on",
6499 vm_total_pages);
f0c0b2b8 6500#ifdef CONFIG_NUMA
f88dfff5 6501 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6502#endif
1da177e4
LT
6503}
6504
a9a9e77f
PT
6505/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6506static bool __meminit
6507overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6508{
a9a9e77f
PT
6509 static struct memblock_region *r;
6510
6511 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6512 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6513 for_each_mem_region(r) {
a9a9e77f
PT
6514 if (*pfn < memblock_region_memory_end_pfn(r))
6515 break;
6516 }
6517 }
6518 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6519 memblock_is_mirror(r)) {
6520 *pfn = memblock_region_memory_end_pfn(r);
6521 return true;
6522 }
6523 }
a9a9e77f
PT
6524 return false;
6525}
6526
1da177e4
LT
6527/*
6528 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6529 * up by memblock_free_all() once the early boot process is
1da177e4 6530 * done. Non-atomic initialization, single-pass.
d882c006
DH
6531 *
6532 * All aligned pageblocks are initialized to the specified migratetype
6533 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6534 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6535 */
ab28cb6e 6536void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6537 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6538 enum meminit_context context,
6539 struct vmem_altmap *altmap, int migratetype)
1da177e4 6540{
a9a9e77f 6541 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6542 struct page *page;
1da177e4 6543
22b31eec
HD
6544 if (highest_memmap_pfn < end_pfn - 1)
6545 highest_memmap_pfn = end_pfn - 1;
6546
966cf44f 6547#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6548 /*
6549 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6550 * memory. We limit the total number of pages to initialize to just
6551 * those that might contain the memory mapping. We will defer the
6552 * ZONE_DEVICE page initialization until after we have released
6553 * the hotplug lock.
4b94ffdc 6554 */
966cf44f
AD
6555 if (zone == ZONE_DEVICE) {
6556 if (!altmap)
6557 return;
6558
6559 if (start_pfn == altmap->base_pfn)
6560 start_pfn += altmap->reserve;
6561 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6562 }
6563#endif
4b94ffdc 6564
948c436e 6565 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6566 /*
b72d0ffb
AM
6567 * There can be holes in boot-time mem_map[]s handed to this
6568 * function. They do not exist on hotplugged memory.
a2f3aa02 6569 */
c1d0da83 6570 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6571 if (overlap_memmap_init(zone, &pfn))
6572 continue;
dc2da7b4 6573 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6574 break;
a2f3aa02 6575 }
ac5d2539 6576
d0dc12e8
PT
6577 page = pfn_to_page(pfn);
6578 __init_single_page(page, pfn, zone, nid);
c1d0da83 6579 if (context == MEMINIT_HOTPLUG)
d483da5b 6580 __SetPageReserved(page);
d0dc12e8 6581
ac5d2539 6582 /*
d882c006
DH
6583 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6584 * such that unmovable allocations won't be scattered all
6585 * over the place during system boot.
ac5d2539 6586 */
4eb29bd9 6587 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6588 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6589 cond_resched();
ac5d2539 6590 }
948c436e 6591 pfn++;
1da177e4
LT
6592 }
6593}
6594
966cf44f 6595#ifdef CONFIG_ZONE_DEVICE
46487e00
JM
6596static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6597 unsigned long zone_idx, int nid,
6598 struct dev_pagemap *pgmap)
6599{
6600
6601 __init_single_page(page, pfn, zone_idx, nid);
6602
6603 /*
6604 * Mark page reserved as it will need to wait for onlining
6605 * phase for it to be fully associated with a zone.
6606 *
6607 * We can use the non-atomic __set_bit operation for setting
6608 * the flag as we are still initializing the pages.
6609 */
6610 __SetPageReserved(page);
6611
6612 /*
6613 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6614 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6615 * ever freed or placed on a driver-private list.
6616 */
6617 page->pgmap = pgmap;
6618 page->zone_device_data = NULL;
6619
6620 /*
6621 * Mark the block movable so that blocks are reserved for
6622 * movable at startup. This will force kernel allocations
6623 * to reserve their blocks rather than leaking throughout
6624 * the address space during boot when many long-lived
6625 * kernel allocations are made.
6626 *
6627 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6628 * because this is done early in section_activate()
6629 */
6630 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6631 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6632 cond_resched();
6633 }
6634}
6635
6fd3620b
JM
6636/*
6637 * With compound page geometry and when struct pages are stored in ram most
6638 * tail pages are reused. Consequently, the amount of unique struct pages to
6639 * initialize is a lot smaller that the total amount of struct pages being
6640 * mapped. This is a paired / mild layering violation with explicit knowledge
6641 * of how the sparse_vmemmap internals handle compound pages in the lack
6642 * of an altmap. See vmemmap_populate_compound_pages().
6643 */
6644static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6645 unsigned long nr_pages)
6646{
6647 return is_power_of_2(sizeof(struct page)) &&
6648 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6649}
6650
c4386bd8
JM
6651static void __ref memmap_init_compound(struct page *head,
6652 unsigned long head_pfn,
6653 unsigned long zone_idx, int nid,
6654 struct dev_pagemap *pgmap,
6655 unsigned long nr_pages)
6656{
6657 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6658 unsigned int order = pgmap->vmemmap_shift;
6659
6660 __SetPageHead(head);
6661 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6662 struct page *page = pfn_to_page(pfn);
6663
6664 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6665 prep_compound_tail(head, pfn - head_pfn);
6666 set_page_count(page, 0);
6667
6668 /*
6669 * The first tail page stores compound_mapcount_ptr() and
6670 * compound_order() and the second tail page stores
6671 * compound_pincount_ptr(). Call prep_compound_head() after
6672 * the first and second tail pages have been initialized to
6673 * not have the data overwritten.
6674 */
6675 if (pfn == head_pfn + 2)
6676 prep_compound_head(head, order);
6677 }
6678}
6679
966cf44f
AD
6680void __ref memmap_init_zone_device(struct zone *zone,
6681 unsigned long start_pfn,
1f8d75c1 6682 unsigned long nr_pages,
966cf44f
AD
6683 struct dev_pagemap *pgmap)
6684{
1f8d75c1 6685 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6686 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6687 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
c4386bd8 6688 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
966cf44f
AD
6689 unsigned long zone_idx = zone_idx(zone);
6690 unsigned long start = jiffies;
6691 int nid = pgdat->node_id;
6692
46d945ae 6693 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6694 return;
6695
6696 /*
122e093c 6697 * The call to memmap_init should have already taken care
966cf44f
AD
6698 * of the pages reserved for the memmap, so we can just jump to
6699 * the end of that region and start processing the device pages.
6700 */
514caf23 6701 if (altmap) {
966cf44f 6702 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6703 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6704 }
6705
c4386bd8 6706 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
966cf44f
AD
6707 struct page *page = pfn_to_page(pfn);
6708
46487e00 6709 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
c4386bd8
JM
6710
6711 if (pfns_per_compound == 1)
6712 continue;
6713
6714 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6fd3620b 6715 compound_nr_pages(altmap, pfns_per_compound));
966cf44f
AD
6716 }
6717
fdc029b1 6718 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6719 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6720}
6721
6722#endif
1e548deb 6723static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6724{
7aeb09f9 6725 unsigned int order, t;
b2a0ac88
MG
6726 for_each_migratetype_order(order, t) {
6727 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6728 zone->free_area[order].nr_free = 0;
6729 }
6730}
6731
0740a50b
MR
6732/*
6733 * Only struct pages that correspond to ranges defined by memblock.memory
6734 * are zeroed and initialized by going through __init_single_page() during
122e093c 6735 * memmap_init_zone_range().
0740a50b
MR
6736 *
6737 * But, there could be struct pages that correspond to holes in
6738 * memblock.memory. This can happen because of the following reasons:
6739 * - physical memory bank size is not necessarily the exact multiple of the
6740 * arbitrary section size
6741 * - early reserved memory may not be listed in memblock.memory
6742 * - memory layouts defined with memmap= kernel parameter may not align
6743 * nicely with memmap sections
6744 *
6745 * Explicitly initialize those struct pages so that:
6746 * - PG_Reserved is set
6747 * - zone and node links point to zone and node that span the page if the
6748 * hole is in the middle of a zone
6749 * - zone and node links point to adjacent zone/node if the hole falls on
6750 * the zone boundary; the pages in such holes will be prepended to the
6751 * zone/node above the hole except for the trailing pages in the last
6752 * section that will be appended to the zone/node below.
6753 */
122e093c
MR
6754static void __init init_unavailable_range(unsigned long spfn,
6755 unsigned long epfn,
6756 int zone, int node)
0740a50b
MR
6757{
6758 unsigned long pfn;
6759 u64 pgcnt = 0;
6760
6761 for (pfn = spfn; pfn < epfn; pfn++) {
6762 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6763 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6764 + pageblock_nr_pages - 1;
6765 continue;
6766 }
6767 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6768 __SetPageReserved(pfn_to_page(pfn));
6769 pgcnt++;
6770 }
6771
122e093c
MR
6772 if (pgcnt)
6773 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6774 node, zone_names[zone], pgcnt);
0740a50b 6775}
0740a50b 6776
122e093c
MR
6777static void __init memmap_init_zone_range(struct zone *zone,
6778 unsigned long start_pfn,
6779 unsigned long end_pfn,
6780 unsigned long *hole_pfn)
dfb3ccd0 6781{
3256ff83
BH
6782 unsigned long zone_start_pfn = zone->zone_start_pfn;
6783 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
6784 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6785
6786 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6787 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6788
6789 if (start_pfn >= end_pfn)
6790 return;
6791
6792 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6793 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6794
6795 if (*hole_pfn < start_pfn)
6796 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6797
6798 *hole_pfn = end_pfn;
6799}
6800
6801static void __init memmap_init(void)
6802{
73a6e474 6803 unsigned long start_pfn, end_pfn;
122e093c 6804 unsigned long hole_pfn = 0;
b346075f 6805 int i, j, zone_id = 0, nid;
73a6e474 6806
122e093c
MR
6807 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6808 struct pglist_data *node = NODE_DATA(nid);
73a6e474 6809
122e093c
MR
6810 for (j = 0; j < MAX_NR_ZONES; j++) {
6811 struct zone *zone = node->node_zones + j;
0740a50b 6812
122e093c
MR
6813 if (!populated_zone(zone))
6814 continue;
0740a50b 6815
122e093c
MR
6816 memmap_init_zone_range(zone, start_pfn, end_pfn,
6817 &hole_pfn);
6818 zone_id = j;
6819 }
73a6e474 6820 }
0740a50b
MR
6821
6822#ifdef CONFIG_SPARSEMEM
6823 /*
122e093c
MR
6824 * Initialize the memory map for hole in the range [memory_end,
6825 * section_end].
6826 * Append the pages in this hole to the highest zone in the last
6827 * node.
6828 * The call to init_unavailable_range() is outside the ifdef to
6829 * silence the compiler warining about zone_id set but not used;
6830 * for FLATMEM it is a nop anyway
0740a50b 6831 */
122e093c 6832 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 6833 if (hole_pfn < end_pfn)
0740a50b 6834#endif
122e093c 6835 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 6836}
1da177e4 6837
c803b3c8
MR
6838void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6839 phys_addr_t min_addr, int nid, bool exact_nid)
6840{
6841 void *ptr;
6842
6843 if (exact_nid)
6844 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6845 MEMBLOCK_ALLOC_ACCESSIBLE,
6846 nid);
6847 else
6848 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6849 MEMBLOCK_ALLOC_ACCESSIBLE,
6850 nid);
6851
6852 if (ptr && size > 0)
6853 page_init_poison(ptr, size);
6854
6855 return ptr;
6856}
6857
7cd2b0a3 6858static int zone_batchsize(struct zone *zone)
e7c8d5c9 6859{
3a6be87f 6860#ifdef CONFIG_MMU
e7c8d5c9
CL
6861 int batch;
6862
6863 /*
b92ca18e
MG
6864 * The number of pages to batch allocate is either ~0.1%
6865 * of the zone or 1MB, whichever is smaller. The batch
6866 * size is striking a balance between allocation latency
6867 * and zone lock contention.
e7c8d5c9 6868 */
b92ca18e 6869 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
e7c8d5c9
CL
6870 batch /= 4; /* We effectively *= 4 below */
6871 if (batch < 1)
6872 batch = 1;
6873
6874 /*
0ceaacc9
NP
6875 * Clamp the batch to a 2^n - 1 value. Having a power
6876 * of 2 value was found to be more likely to have
6877 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6878 *
0ceaacc9
NP
6879 * For example if 2 tasks are alternately allocating
6880 * batches of pages, one task can end up with a lot
6881 * of pages of one half of the possible page colors
6882 * and the other with pages of the other colors.
e7c8d5c9 6883 */
9155203a 6884 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6885
e7c8d5c9 6886 return batch;
3a6be87f
DH
6887
6888#else
6889 /* The deferral and batching of frees should be suppressed under NOMMU
6890 * conditions.
6891 *
6892 * The problem is that NOMMU needs to be able to allocate large chunks
6893 * of contiguous memory as there's no hardware page translation to
6894 * assemble apparent contiguous memory from discontiguous pages.
6895 *
6896 * Queueing large contiguous runs of pages for batching, however,
6897 * causes the pages to actually be freed in smaller chunks. As there
6898 * can be a significant delay between the individual batches being
6899 * recycled, this leads to the once large chunks of space being
6900 * fragmented and becoming unavailable for high-order allocations.
6901 */
6902 return 0;
6903#endif
e7c8d5c9
CL
6904}
6905
04f8cfea 6906static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
6907{
6908#ifdef CONFIG_MMU
6909 int high;
203c06ee 6910 int nr_split_cpus;
74f44822
MG
6911 unsigned long total_pages;
6912
6913 if (!percpu_pagelist_high_fraction) {
6914 /*
6915 * By default, the high value of the pcp is based on the zone
6916 * low watermark so that if they are full then background
6917 * reclaim will not be started prematurely.
6918 */
6919 total_pages = low_wmark_pages(zone);
6920 } else {
6921 /*
6922 * If percpu_pagelist_high_fraction is configured, the high
6923 * value is based on a fraction of the managed pages in the
6924 * zone.
6925 */
6926 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6927 }
b92ca18e
MG
6928
6929 /*
74f44822
MG
6930 * Split the high value across all online CPUs local to the zone. Note
6931 * that early in boot that CPUs may not be online yet and that during
6932 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
6933 * onlined. For memory nodes that have no CPUs, split pcp->high across
6934 * all online CPUs to mitigate the risk that reclaim is triggered
6935 * prematurely due to pages stored on pcp lists.
b92ca18e 6936 */
203c06ee
MG
6937 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6938 if (!nr_split_cpus)
6939 nr_split_cpus = num_online_cpus();
6940 high = total_pages / nr_split_cpus;
b92ca18e
MG
6941
6942 /*
6943 * Ensure high is at least batch*4. The multiple is based on the
6944 * historical relationship between high and batch.
6945 */
6946 high = max(high, batch << 2);
6947
6948 return high;
6949#else
6950 return 0;
6951#endif
6952}
6953
8d7a8fa9 6954/*
5c3ad2eb
VB
6955 * pcp->high and pcp->batch values are related and generally batch is lower
6956 * than high. They are also related to pcp->count such that count is lower
6957 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6958 *
5c3ad2eb
VB
6959 * However, guaranteeing these relations at all times would require e.g. write
6960 * barriers here but also careful usage of read barriers at the read side, and
6961 * thus be prone to error and bad for performance. Thus the update only prevents
6962 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6963 * can cope with those fields changing asynchronously, and fully trust only the
6964 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6965 *
6966 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6967 * outside of boot time (or some other assurance that no concurrent updaters
6968 * exist).
6969 */
6970static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6971 unsigned long batch)
6972{
5c3ad2eb
VB
6973 WRITE_ONCE(pcp->batch, batch);
6974 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6975}
6976
28f836b6 6977static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 6978{
44042b44 6979 int pindex;
2caaad41 6980
28f836b6
MG
6981 memset(pcp, 0, sizeof(*pcp));
6982 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 6983
44042b44
MG
6984 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6985 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 6986
69a8396a
VB
6987 /*
6988 * Set batch and high values safe for a boot pageset. A true percpu
6989 * pageset's initialization will update them subsequently. Here we don't
6990 * need to be as careful as pageset_update() as nobody can access the
6991 * pageset yet.
6992 */
952eaf81
VB
6993 pcp->high = BOOT_PAGESET_HIGH;
6994 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 6995 pcp->free_factor = 0;
88c90dbc
CS
6996}
6997
3b1f3658 6998static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6999 unsigned long batch)
7000{
28f836b6 7001 struct per_cpu_pages *pcp;
ec6e8c7e
VB
7002 int cpu;
7003
7004 for_each_possible_cpu(cpu) {
28f836b6
MG
7005 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7006 pageset_update(pcp, high, batch);
ec6e8c7e
VB
7007 }
7008}
7009
8ad4b1fb 7010/*
0a8b4f1d 7011 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 7012 * zone based on the zone's size.
8ad4b1fb 7013 */
04f8cfea 7014static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 7015{
b92ca18e 7016 int new_high, new_batch;
7115ac6e 7017
b92ca18e 7018 new_batch = max(1, zone_batchsize(zone));
04f8cfea 7019 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 7020
952eaf81
VB
7021 if (zone->pageset_high == new_high &&
7022 zone->pageset_batch == new_batch)
7023 return;
7024
7025 zone->pageset_high = new_high;
7026 zone->pageset_batch = new_batch;
7027
ec6e8c7e 7028 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
7029}
7030
72675e13 7031void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
7032{
7033 int cpu;
0a8b4f1d 7034
28f836b6
MG
7035 /* Size may be 0 on !SMP && !NUMA */
7036 if (sizeof(struct per_cpu_zonestat) > 0)
7037 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7038
7039 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 7040 for_each_possible_cpu(cpu) {
28f836b6
MG
7041 struct per_cpu_pages *pcp;
7042 struct per_cpu_zonestat *pzstats;
7043
7044 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7045 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7046 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
7047 }
7048
04f8cfea 7049 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
7050}
7051
2caaad41 7052/*
99dcc3e5
CL
7053 * Allocate per cpu pagesets and initialize them.
7054 * Before this call only boot pagesets were available.
e7c8d5c9 7055 */
99dcc3e5 7056void __init setup_per_cpu_pageset(void)
e7c8d5c9 7057{
b4911ea2 7058 struct pglist_data *pgdat;
99dcc3e5 7059 struct zone *zone;
b418a0f9 7060 int __maybe_unused cpu;
e7c8d5c9 7061
319774e2
WF
7062 for_each_populated_zone(zone)
7063 setup_zone_pageset(zone);
b4911ea2 7064
b418a0f9
SD
7065#ifdef CONFIG_NUMA
7066 /*
7067 * Unpopulated zones continue using the boot pagesets.
7068 * The numa stats for these pagesets need to be reset.
7069 * Otherwise, they will end up skewing the stats of
7070 * the nodes these zones are associated with.
7071 */
7072 for_each_possible_cpu(cpu) {
28f836b6 7073 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
7074 memset(pzstats->vm_numa_event, 0,
7075 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
7076 }
7077#endif
7078
b4911ea2
MG
7079 for_each_online_pgdat(pgdat)
7080 pgdat->per_cpu_nodestats =
7081 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
7082}
7083
c09b4240 7084static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 7085{
99dcc3e5
CL
7086 /*
7087 * per cpu subsystem is not up at this point. The following code
7088 * relies on the ability of the linker to provide the
7089 * offset of a (static) per cpu variable into the per cpu area.
7090 */
28f836b6
MG
7091 zone->per_cpu_pageset = &boot_pageset;
7092 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
7093 zone->pageset_high = BOOT_PAGESET_HIGH;
7094 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 7095
b38a8725 7096 if (populated_zone(zone))
9660ecaa
HK
7097 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7098 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
7099}
7100
dc0bbf3b 7101void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 7102 unsigned long zone_start_pfn,
b171e409 7103 unsigned long size)
ed8ece2e
DH
7104{
7105 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7106 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7107
8f416836
WY
7108 if (zone_idx > pgdat->nr_zones)
7109 pgdat->nr_zones = zone_idx;
ed8ece2e 7110
ed8ece2e
DH
7111 zone->zone_start_pfn = zone_start_pfn;
7112
708614e6
MG
7113 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7114 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7115 pgdat->node_id,
7116 (unsigned long)zone_idx(zone),
7117 zone_start_pfn, (zone_start_pfn + size));
7118
1e548deb 7119 zone_init_free_lists(zone);
9dcb8b68 7120 zone->initialized = 1;
ed8ece2e
DH
7121}
7122
c713216d
MG
7123/**
7124 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7125 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7126 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7127 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7128 *
7129 * It returns the start and end page frame of a node based on information
7d018176 7130 * provided by memblock_set_node(). If called for a node
c713216d 7131 * with no available memory, a warning is printed and the start and end
88ca3b94 7132 * PFNs will be 0.
c713216d 7133 */
bbe5d993 7134void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7135 unsigned long *start_pfn, unsigned long *end_pfn)
7136{
c13291a5 7137 unsigned long this_start_pfn, this_end_pfn;
c713216d 7138 int i;
c13291a5 7139
c713216d
MG
7140 *start_pfn = -1UL;
7141 *end_pfn = 0;
7142
c13291a5
TH
7143 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7144 *start_pfn = min(*start_pfn, this_start_pfn);
7145 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7146 }
7147
633c0666 7148 if (*start_pfn == -1UL)
c713216d 7149 *start_pfn = 0;
c713216d
MG
7150}
7151
2a1e274a
MG
7152/*
7153 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7154 * assumption is made that zones within a node are ordered in monotonic
7155 * increasing memory addresses so that the "highest" populated zone is used
7156 */
b69a7288 7157static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7158{
7159 int zone_index;
7160 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7161 if (zone_index == ZONE_MOVABLE)
7162 continue;
7163
7164 if (arch_zone_highest_possible_pfn[zone_index] >
7165 arch_zone_lowest_possible_pfn[zone_index])
7166 break;
7167 }
7168
7169 VM_BUG_ON(zone_index == -1);
7170 movable_zone = zone_index;
7171}
7172
7173/*
7174 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7175 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7176 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7177 * in each node depending on the size of each node and how evenly kernelcore
7178 * is distributed. This helper function adjusts the zone ranges
7179 * provided by the architecture for a given node by using the end of the
7180 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7181 * zones within a node are in order of monotonic increases memory addresses
7182 */
bbe5d993 7183static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7184 unsigned long zone_type,
7185 unsigned long node_start_pfn,
7186 unsigned long node_end_pfn,
7187 unsigned long *zone_start_pfn,
7188 unsigned long *zone_end_pfn)
7189{
7190 /* Only adjust if ZONE_MOVABLE is on this node */
7191 if (zone_movable_pfn[nid]) {
7192 /* Size ZONE_MOVABLE */
7193 if (zone_type == ZONE_MOVABLE) {
7194 *zone_start_pfn = zone_movable_pfn[nid];
7195 *zone_end_pfn = min(node_end_pfn,
7196 arch_zone_highest_possible_pfn[movable_zone]);
7197
e506b996
XQ
7198 /* Adjust for ZONE_MOVABLE starting within this range */
7199 } else if (!mirrored_kernelcore &&
7200 *zone_start_pfn < zone_movable_pfn[nid] &&
7201 *zone_end_pfn > zone_movable_pfn[nid]) {
7202 *zone_end_pfn = zone_movable_pfn[nid];
7203
2a1e274a
MG
7204 /* Check if this whole range is within ZONE_MOVABLE */
7205 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7206 *zone_start_pfn = *zone_end_pfn;
7207 }
7208}
7209
c713216d
MG
7210/*
7211 * Return the number of pages a zone spans in a node, including holes
7212 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7213 */
bbe5d993 7214static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7215 unsigned long zone_type,
7960aedd
ZY
7216 unsigned long node_start_pfn,
7217 unsigned long node_end_pfn,
d91749c1 7218 unsigned long *zone_start_pfn,
854e8848 7219 unsigned long *zone_end_pfn)
c713216d 7220{
299c83dc
LF
7221 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7222 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7223 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7224 if (!node_start_pfn && !node_end_pfn)
7225 return 0;
7226
7960aedd 7227 /* Get the start and end of the zone */
299c83dc
LF
7228 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7229 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7230 adjust_zone_range_for_zone_movable(nid, zone_type,
7231 node_start_pfn, node_end_pfn,
d91749c1 7232 zone_start_pfn, zone_end_pfn);
c713216d
MG
7233
7234 /* Check that this node has pages within the zone's required range */
d91749c1 7235 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7236 return 0;
7237
7238 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7239 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7240 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7241
7242 /* Return the spanned pages */
d91749c1 7243 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7244}
7245
7246/*
7247 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7248 * then all holes in the requested range will be accounted for.
c713216d 7249 */
bbe5d993 7250unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7251 unsigned long range_start_pfn,
7252 unsigned long range_end_pfn)
7253{
96e907d1
TH
7254 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7255 unsigned long start_pfn, end_pfn;
7256 int i;
c713216d 7257
96e907d1
TH
7258 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7259 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7260 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7261 nr_absent -= end_pfn - start_pfn;
c713216d 7262 }
96e907d1 7263 return nr_absent;
c713216d
MG
7264}
7265
7266/**
7267 * absent_pages_in_range - Return number of page frames in holes within a range
7268 * @start_pfn: The start PFN to start searching for holes
7269 * @end_pfn: The end PFN to stop searching for holes
7270 *
a862f68a 7271 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7272 */
7273unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7274 unsigned long end_pfn)
7275{
7276 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7277}
7278
7279/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7280static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7281 unsigned long zone_type,
7960aedd 7282 unsigned long node_start_pfn,
854e8848 7283 unsigned long node_end_pfn)
c713216d 7284{
96e907d1
TH
7285 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7286 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7287 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7288 unsigned long nr_absent;
9c7cd687 7289
b5685e92 7290 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7291 if (!node_start_pfn && !node_end_pfn)
7292 return 0;
7293
96e907d1
TH
7294 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7295 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7296
2a1e274a
MG
7297 adjust_zone_range_for_zone_movable(nid, zone_type,
7298 node_start_pfn, node_end_pfn,
7299 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7300 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7301
7302 /*
7303 * ZONE_MOVABLE handling.
7304 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7305 * and vice versa.
7306 */
e506b996
XQ
7307 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7308 unsigned long start_pfn, end_pfn;
7309 struct memblock_region *r;
7310
cc6de168 7311 for_each_mem_region(r) {
e506b996
XQ
7312 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7313 zone_start_pfn, zone_end_pfn);
7314 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7315 zone_start_pfn, zone_end_pfn);
7316
7317 if (zone_type == ZONE_MOVABLE &&
7318 memblock_is_mirror(r))
7319 nr_absent += end_pfn - start_pfn;
7320
7321 if (zone_type == ZONE_NORMAL &&
7322 !memblock_is_mirror(r))
7323 nr_absent += end_pfn - start_pfn;
342332e6
TI
7324 }
7325 }
7326
7327 return nr_absent;
c713216d 7328}
0e0b864e 7329
bbe5d993 7330static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7331 unsigned long node_start_pfn,
854e8848 7332 unsigned long node_end_pfn)
c713216d 7333{
febd5949 7334 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7335 enum zone_type i;
7336
febd5949
GZ
7337 for (i = 0; i < MAX_NR_ZONES; i++) {
7338 struct zone *zone = pgdat->node_zones + i;
d91749c1 7339 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7340 unsigned long spanned, absent;
febd5949 7341 unsigned long size, real_size;
c713216d 7342
854e8848
MR
7343 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7344 node_start_pfn,
7345 node_end_pfn,
7346 &zone_start_pfn,
7347 &zone_end_pfn);
7348 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7349 node_start_pfn,
7350 node_end_pfn);
3f08a302
MR
7351
7352 size = spanned;
7353 real_size = size - absent;
7354
d91749c1
TI
7355 if (size)
7356 zone->zone_start_pfn = zone_start_pfn;
7357 else
7358 zone->zone_start_pfn = 0;
febd5949
GZ
7359 zone->spanned_pages = size;
7360 zone->present_pages = real_size;
4b097002
DH
7361#if defined(CONFIG_MEMORY_HOTPLUG)
7362 zone->present_early_pages = real_size;
7363#endif
febd5949
GZ
7364
7365 totalpages += size;
7366 realtotalpages += real_size;
7367 }
7368
7369 pgdat->node_spanned_pages = totalpages;
c713216d 7370 pgdat->node_present_pages = realtotalpages;
9660ecaa 7371 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7372}
7373
835c134e
MG
7374#ifndef CONFIG_SPARSEMEM
7375/*
7376 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7377 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7378 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7379 * round what is now in bits to nearest long in bits, then return it in
7380 * bytes.
7381 */
7c45512d 7382static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7383{
7384 unsigned long usemapsize;
7385
7c45512d 7386 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7387 usemapsize = roundup(zonesize, pageblock_nr_pages);
7388 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7389 usemapsize *= NR_PAGEBLOCK_BITS;
7390 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7391
7392 return usemapsize / 8;
7393}
7394
7010a6ec 7395static void __ref setup_usemap(struct zone *zone)
835c134e 7396{
7010a6ec
BH
7397 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7398 zone->spanned_pages);
835c134e 7399 zone->pageblock_flags = NULL;
23a7052a 7400 if (usemapsize) {
6782832e 7401 zone->pageblock_flags =
26fb3dae 7402 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7403 zone_to_nid(zone));
23a7052a
MR
7404 if (!zone->pageblock_flags)
7405 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7406 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7407 }
835c134e
MG
7408}
7409#else
7010a6ec 7410static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7411#endif /* CONFIG_SPARSEMEM */
7412
d9c23400 7413#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7414
d9c23400 7415/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7416void __init set_pageblock_order(void)
d9c23400 7417{
b3d40a2b 7418 unsigned int order = MAX_ORDER - 1;
955c1cd7 7419
d9c23400
MG
7420 /* Check that pageblock_nr_pages has not already been setup */
7421 if (pageblock_order)
7422 return;
7423
b3d40a2b
DH
7424 /* Don't let pageblocks exceed the maximum allocation granularity. */
7425 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
955c1cd7 7426 order = HUGETLB_PAGE_ORDER;
955c1cd7 7427
d9c23400
MG
7428 /*
7429 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7430 * This value may be variable depending on boot parameters on IA64 and
7431 * powerpc.
d9c23400
MG
7432 */
7433 pageblock_order = order;
7434}
7435#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7436
ba72cb8c
MG
7437/*
7438 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7439 * is unused as pageblock_order is set at compile-time. See
7440 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7441 * the kernel config
ba72cb8c 7442 */
03e85f9d 7443void __init set_pageblock_order(void)
ba72cb8c 7444{
ba72cb8c 7445}
d9c23400
MG
7446
7447#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7448
03e85f9d 7449static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7450 unsigned long present_pages)
01cefaef
JL
7451{
7452 unsigned long pages = spanned_pages;
7453
7454 /*
7455 * Provide a more accurate estimation if there are holes within
7456 * the zone and SPARSEMEM is in use. If there are holes within the
7457 * zone, each populated memory region may cost us one or two extra
7458 * memmap pages due to alignment because memmap pages for each
89d790ab 7459 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7460 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7461 */
7462 if (spanned_pages > present_pages + (present_pages >> 4) &&
7463 IS_ENABLED(CONFIG_SPARSEMEM))
7464 pages = present_pages;
7465
7466 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7467}
7468
ace1db39
OS
7469#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7470static void pgdat_init_split_queue(struct pglist_data *pgdat)
7471{
364c1eeb
YS
7472 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7473
7474 spin_lock_init(&ds_queue->split_queue_lock);
7475 INIT_LIST_HEAD(&ds_queue->split_queue);
7476 ds_queue->split_queue_len = 0;
ace1db39
OS
7477}
7478#else
7479static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7480#endif
7481
7482#ifdef CONFIG_COMPACTION
7483static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7484{
7485 init_waitqueue_head(&pgdat->kcompactd_wait);
7486}
7487#else
7488static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7489#endif
7490
03e85f9d 7491static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7492{
8cd7c588
MG
7493 int i;
7494
208d54e5 7495 pgdat_resize_init(pgdat);
ace1db39 7496
ace1db39
OS
7497 pgdat_init_split_queue(pgdat);
7498 pgdat_init_kcompactd(pgdat);
7499
1da177e4 7500 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7501 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7502
8cd7c588
MG
7503 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7504 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7505
eefa864b 7506 pgdat_page_ext_init(pgdat);
867e5e1d 7507 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7508}
7509
7510static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7511 unsigned long remaining_pages)
7512{
9705bea5 7513 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7514 zone_set_nid(zone, nid);
7515 zone->name = zone_names[idx];
7516 zone->zone_pgdat = NODE_DATA(nid);
7517 spin_lock_init(&zone->lock);
7518 zone_seqlock_init(zone);
7519 zone_pcp_init(zone);
7520}
7521
7522/*
7523 * Set up the zone data structures
7524 * - init pgdat internals
7525 * - init all zones belonging to this node
7526 *
7527 * NOTE: this function is only called during memory hotplug
7528 */
7529#ifdef CONFIG_MEMORY_HOTPLUG
70b5b46a 7530void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
03e85f9d 7531{
70b5b46a 7532 int nid = pgdat->node_id;
03e85f9d 7533 enum zone_type z;
70b5b46a 7534 int cpu;
03e85f9d
OS
7535
7536 pgdat_init_internals(pgdat);
70b5b46a
MH
7537
7538 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7539 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7540
7541 /*
7542 * Reset the nr_zones, order and highest_zoneidx before reuse.
7543 * Note that kswapd will init kswapd_highest_zoneidx properly
7544 * when it starts in the near future.
7545 */
7546 pgdat->nr_zones = 0;
7547 pgdat->kswapd_order = 0;
7548 pgdat->kswapd_highest_zoneidx = 0;
7549 pgdat->node_start_pfn = 0;
7550 for_each_online_cpu(cpu) {
7551 struct per_cpu_nodestat *p;
7552
7553 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7554 memset(p, 0, sizeof(*p));
7555 }
7556
03e85f9d
OS
7557 for (z = 0; z < MAX_NR_ZONES; z++)
7558 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7559}
7560#endif
7561
7562/*
7563 * Set up the zone data structures:
7564 * - mark all pages reserved
7565 * - mark all memory queues empty
7566 * - clear the memory bitmaps
7567 *
7568 * NOTE: pgdat should get zeroed by caller.
7569 * NOTE: this function is only called during early init.
7570 */
7571static void __init free_area_init_core(struct pglist_data *pgdat)
7572{
7573 enum zone_type j;
7574 int nid = pgdat->node_id;
5f63b720 7575
03e85f9d 7576 pgdat_init_internals(pgdat);
385386cf
JW
7577 pgdat->per_cpu_nodestats = &boot_nodestats;
7578
1da177e4
LT
7579 for (j = 0; j < MAX_NR_ZONES; j++) {
7580 struct zone *zone = pgdat->node_zones + j;
e6943859 7581 unsigned long size, freesize, memmap_pages;
1da177e4 7582
febd5949 7583 size = zone->spanned_pages;
e6943859 7584 freesize = zone->present_pages;
1da177e4 7585
0e0b864e 7586 /*
9feedc9d 7587 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7588 * is used by this zone for memmap. This affects the watermark
7589 * and per-cpu initialisations
7590 */
e6943859 7591 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7592 if (!is_highmem_idx(j)) {
7593 if (freesize >= memmap_pages) {
7594 freesize -= memmap_pages;
7595 if (memmap_pages)
9660ecaa
HK
7596 pr_debug(" %s zone: %lu pages used for memmap\n",
7597 zone_names[j], memmap_pages);
ba914f48 7598 } else
e47aa905 7599 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7600 zone_names[j], memmap_pages, freesize);
7601 }
0e0b864e 7602
6267276f 7603 /* Account for reserved pages */
9feedc9d
JL
7604 if (j == 0 && freesize > dma_reserve) {
7605 freesize -= dma_reserve;
9660ecaa 7606 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7607 }
7608
98d2b0eb 7609 if (!is_highmem_idx(j))
9feedc9d 7610 nr_kernel_pages += freesize;
01cefaef
JL
7611 /* Charge for highmem memmap if there are enough kernel pages */
7612 else if (nr_kernel_pages > memmap_pages * 2)
7613 nr_kernel_pages -= memmap_pages;
9feedc9d 7614 nr_all_pages += freesize;
1da177e4 7615
9feedc9d
JL
7616 /*
7617 * Set an approximate value for lowmem here, it will be adjusted
7618 * when the bootmem allocator frees pages into the buddy system.
7619 * And all highmem pages will be managed by the buddy system.
7620 */
03e85f9d 7621 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7622
d883c6cf 7623 if (!size)
1da177e4
LT
7624 continue;
7625
955c1cd7 7626 set_pageblock_order();
7010a6ec 7627 setup_usemap(zone);
9699ee7b 7628 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7629 }
7630}
7631
43b02ba9 7632#ifdef CONFIG_FLATMEM
3b446da6 7633static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7634{
b0aeba74 7635 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7636 unsigned long __maybe_unused offset = 0;
7637
1da177e4
LT
7638 /* Skip empty nodes */
7639 if (!pgdat->node_spanned_pages)
7640 return;
7641
b0aeba74
TL
7642 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7643 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7644 /* ia64 gets its own node_mem_map, before this, without bootmem */
7645 if (!pgdat->node_mem_map) {
b0aeba74 7646 unsigned long size, end;
d41dee36
AW
7647 struct page *map;
7648
e984bb43
BP
7649 /*
7650 * The zone's endpoints aren't required to be MAX_ORDER
7651 * aligned but the node_mem_map endpoints must be in order
7652 * for the buddy allocator to function correctly.
7653 */
108bcc96 7654 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7655 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7656 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7657 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7658 pgdat->node_id, false);
23a7052a
MR
7659 if (!map)
7660 panic("Failed to allocate %ld bytes for node %d memory map\n",
7661 size, pgdat->node_id);
a1c34a3b 7662 pgdat->node_mem_map = map + offset;
1da177e4 7663 }
0cd842f9
OS
7664 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7665 __func__, pgdat->node_id, (unsigned long)pgdat,
7666 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7667#ifndef CONFIG_NUMA
1da177e4
LT
7668 /*
7669 * With no DISCONTIG, the global mem_map is just set as node 0's
7670 */
c713216d 7671 if (pgdat == NODE_DATA(0)) {
1da177e4 7672 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7673 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7674 mem_map -= offset;
c713216d 7675 }
1da177e4
LT
7676#endif
7677}
0cd842f9 7678#else
3b446da6 7679static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7680#endif /* CONFIG_FLATMEM */
1da177e4 7681
0188dc98
OS
7682#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7683static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7684{
0188dc98
OS
7685 pgdat->first_deferred_pfn = ULONG_MAX;
7686}
7687#else
7688static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7689#endif
7690
854e8848 7691static void __init free_area_init_node(int nid)
1da177e4 7692{
9109fb7b 7693 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7694 unsigned long start_pfn = 0;
7695 unsigned long end_pfn = 0;
9109fb7b 7696
88fdf75d 7697 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7698 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7699
854e8848 7700 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7701
1da177e4 7702 pgdat->node_id = nid;
854e8848 7703 pgdat->node_start_pfn = start_pfn;
75ef7184 7704 pgdat->per_cpu_nodestats = NULL;
854e8848 7705
7c30daac
MH
7706 if (start_pfn != end_pfn) {
7707 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7708 (u64)start_pfn << PAGE_SHIFT,
7709 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7710 } else {
7711 pr_info("Initmem setup node %d as memoryless\n", nid);
7712 }
7713
854e8848 7714 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7715
7716 alloc_node_mem_map(pgdat);
0188dc98 7717 pgdat_set_deferred_range(pgdat);
1da177e4 7718
7f3eb55b 7719 free_area_init_core(pgdat);
1da177e4
LT
7720}
7721
1ca75fa7 7722static void __init free_area_init_memoryless_node(int nid)
3f08a302 7723{
854e8848 7724 free_area_init_node(nid);
3f08a302
MR
7725}
7726
418508c1
MS
7727#if MAX_NUMNODES > 1
7728/*
7729 * Figure out the number of possible node ids.
7730 */
f9872caf 7731void __init setup_nr_node_ids(void)
418508c1 7732{
904a9553 7733 unsigned int highest;
418508c1 7734
904a9553 7735 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7736 nr_node_ids = highest + 1;
7737}
418508c1
MS
7738#endif
7739
1e01979c
TH
7740/**
7741 * node_map_pfn_alignment - determine the maximum internode alignment
7742 *
7743 * This function should be called after node map is populated and sorted.
7744 * It calculates the maximum power of two alignment which can distinguish
7745 * all the nodes.
7746 *
7747 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7748 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7749 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7750 * shifted, 1GiB is enough and this function will indicate so.
7751 *
7752 * This is used to test whether pfn -> nid mapping of the chosen memory
7753 * model has fine enough granularity to avoid incorrect mapping for the
7754 * populated node map.
7755 *
a862f68a 7756 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7757 * requirement (single node).
7758 */
7759unsigned long __init node_map_pfn_alignment(void)
7760{
7761 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7762 unsigned long start, end, mask;
98fa15f3 7763 int last_nid = NUMA_NO_NODE;
c13291a5 7764 int i, nid;
1e01979c 7765
c13291a5 7766 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7767 if (!start || last_nid < 0 || last_nid == nid) {
7768 last_nid = nid;
7769 last_end = end;
7770 continue;
7771 }
7772
7773 /*
7774 * Start with a mask granular enough to pin-point to the
7775 * start pfn and tick off bits one-by-one until it becomes
7776 * too coarse to separate the current node from the last.
7777 */
7778 mask = ~((1 << __ffs(start)) - 1);
7779 while (mask && last_end <= (start & (mask << 1)))
7780 mask <<= 1;
7781
7782 /* accumulate all internode masks */
7783 accl_mask |= mask;
7784 }
7785
7786 /* convert mask to number of pages */
7787 return ~accl_mask + 1;
7788}
7789
c713216d
MG
7790/**
7791 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7792 *
a862f68a 7793 * Return: the minimum PFN based on information provided via
7d018176 7794 * memblock_set_node().
c713216d
MG
7795 */
7796unsigned long __init find_min_pfn_with_active_regions(void)
7797{
8a1b25fe 7798 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7799}
7800
37b07e41
LS
7801/*
7802 * early_calculate_totalpages()
7803 * Sum pages in active regions for movable zone.
4b0ef1fe 7804 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7805 */
484f51f8 7806static unsigned long __init early_calculate_totalpages(void)
7e63efef 7807{
7e63efef 7808 unsigned long totalpages = 0;
c13291a5
TH
7809 unsigned long start_pfn, end_pfn;
7810 int i, nid;
7811
7812 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7813 unsigned long pages = end_pfn - start_pfn;
7e63efef 7814
37b07e41
LS
7815 totalpages += pages;
7816 if (pages)
4b0ef1fe 7817 node_set_state(nid, N_MEMORY);
37b07e41 7818 }
b8af2941 7819 return totalpages;
7e63efef
MG
7820}
7821
2a1e274a
MG
7822/*
7823 * Find the PFN the Movable zone begins in each node. Kernel memory
7824 * is spread evenly between nodes as long as the nodes have enough
7825 * memory. When they don't, some nodes will have more kernelcore than
7826 * others
7827 */
b224ef85 7828static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7829{
7830 int i, nid;
7831 unsigned long usable_startpfn;
7832 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7833 /* save the state before borrow the nodemask */
4b0ef1fe 7834 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7835 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7836 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7837 struct memblock_region *r;
b2f3eebe
TC
7838
7839 /* Need to find movable_zone earlier when movable_node is specified. */
7840 find_usable_zone_for_movable();
7841
7842 /*
7843 * If movable_node is specified, ignore kernelcore and movablecore
7844 * options.
7845 */
7846 if (movable_node_is_enabled()) {
cc6de168 7847 for_each_mem_region(r) {
136199f0 7848 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7849 continue;
7850
d622abf7 7851 nid = memblock_get_region_node(r);
b2f3eebe 7852
136199f0 7853 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7854 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7855 min(usable_startpfn, zone_movable_pfn[nid]) :
7856 usable_startpfn;
7857 }
7858
7859 goto out2;
7860 }
2a1e274a 7861
342332e6
TI
7862 /*
7863 * If kernelcore=mirror is specified, ignore movablecore option
7864 */
7865 if (mirrored_kernelcore) {
7866 bool mem_below_4gb_not_mirrored = false;
7867
cc6de168 7868 for_each_mem_region(r) {
342332e6
TI
7869 if (memblock_is_mirror(r))
7870 continue;
7871
d622abf7 7872 nid = memblock_get_region_node(r);
342332e6
TI
7873
7874 usable_startpfn = memblock_region_memory_base_pfn(r);
7875
aa282a15 7876 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
342332e6
TI
7877 mem_below_4gb_not_mirrored = true;
7878 continue;
7879 }
7880
7881 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7882 min(usable_startpfn, zone_movable_pfn[nid]) :
7883 usable_startpfn;
7884 }
7885
7886 if (mem_below_4gb_not_mirrored)
633bf2fe 7887 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7888
7889 goto out2;
7890 }
7891
7e63efef 7892 /*
a5c6d650
DR
7893 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7894 * amount of necessary memory.
7895 */
7896 if (required_kernelcore_percent)
7897 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7898 10000UL;
7899 if (required_movablecore_percent)
7900 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7901 10000UL;
7902
7903 /*
7904 * If movablecore= was specified, calculate what size of
7e63efef
MG
7905 * kernelcore that corresponds so that memory usable for
7906 * any allocation type is evenly spread. If both kernelcore
7907 * and movablecore are specified, then the value of kernelcore
7908 * will be used for required_kernelcore if it's greater than
7909 * what movablecore would have allowed.
7910 */
7911 if (required_movablecore) {
7e63efef
MG
7912 unsigned long corepages;
7913
7914 /*
7915 * Round-up so that ZONE_MOVABLE is at least as large as what
7916 * was requested by the user
7917 */
7918 required_movablecore =
7919 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7920 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7921 corepages = totalpages - required_movablecore;
7922
7923 required_kernelcore = max(required_kernelcore, corepages);
7924 }
7925
bde304bd
XQ
7926 /*
7927 * If kernelcore was not specified or kernelcore size is larger
7928 * than totalpages, there is no ZONE_MOVABLE.
7929 */
7930 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7931 goto out;
2a1e274a
MG
7932
7933 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7934 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7935
7936restart:
7937 /* Spread kernelcore memory as evenly as possible throughout nodes */
7938 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7939 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7940 unsigned long start_pfn, end_pfn;
7941
2a1e274a
MG
7942 /*
7943 * Recalculate kernelcore_node if the division per node
7944 * now exceeds what is necessary to satisfy the requested
7945 * amount of memory for the kernel
7946 */
7947 if (required_kernelcore < kernelcore_node)
7948 kernelcore_node = required_kernelcore / usable_nodes;
7949
7950 /*
7951 * As the map is walked, we track how much memory is usable
7952 * by the kernel using kernelcore_remaining. When it is
7953 * 0, the rest of the node is usable by ZONE_MOVABLE
7954 */
7955 kernelcore_remaining = kernelcore_node;
7956
7957 /* Go through each range of PFNs within this node */
c13291a5 7958 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7959 unsigned long size_pages;
7960
c13291a5 7961 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7962 if (start_pfn >= end_pfn)
7963 continue;
7964
7965 /* Account for what is only usable for kernelcore */
7966 if (start_pfn < usable_startpfn) {
7967 unsigned long kernel_pages;
7968 kernel_pages = min(end_pfn, usable_startpfn)
7969 - start_pfn;
7970
7971 kernelcore_remaining -= min(kernel_pages,
7972 kernelcore_remaining);
7973 required_kernelcore -= min(kernel_pages,
7974 required_kernelcore);
7975
7976 /* Continue if range is now fully accounted */
7977 if (end_pfn <= usable_startpfn) {
7978
7979 /*
7980 * Push zone_movable_pfn to the end so
7981 * that if we have to rebalance
7982 * kernelcore across nodes, we will
7983 * not double account here
7984 */
7985 zone_movable_pfn[nid] = end_pfn;
7986 continue;
7987 }
7988 start_pfn = usable_startpfn;
7989 }
7990
7991 /*
7992 * The usable PFN range for ZONE_MOVABLE is from
7993 * start_pfn->end_pfn. Calculate size_pages as the
7994 * number of pages used as kernelcore
7995 */
7996 size_pages = end_pfn - start_pfn;
7997 if (size_pages > kernelcore_remaining)
7998 size_pages = kernelcore_remaining;
7999 zone_movable_pfn[nid] = start_pfn + size_pages;
8000
8001 /*
8002 * Some kernelcore has been met, update counts and
8003 * break if the kernelcore for this node has been
b8af2941 8004 * satisfied
2a1e274a
MG
8005 */
8006 required_kernelcore -= min(required_kernelcore,
8007 size_pages);
8008 kernelcore_remaining -= size_pages;
8009 if (!kernelcore_remaining)
8010 break;
8011 }
8012 }
8013
8014 /*
8015 * If there is still required_kernelcore, we do another pass with one
8016 * less node in the count. This will push zone_movable_pfn[nid] further
8017 * along on the nodes that still have memory until kernelcore is
b8af2941 8018 * satisfied
2a1e274a
MG
8019 */
8020 usable_nodes--;
8021 if (usable_nodes && required_kernelcore > usable_nodes)
8022 goto restart;
8023
b2f3eebe 8024out2:
2a1e274a 8025 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
ddbc84f3
AP
8026 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8027 unsigned long start_pfn, end_pfn;
8028
2a1e274a
MG
8029 zone_movable_pfn[nid] =
8030 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 8031
ddbc84f3
AP
8032 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8033 if (zone_movable_pfn[nid] >= end_pfn)
8034 zone_movable_pfn[nid] = 0;
8035 }
8036
20e6926d 8037out:
66918dcd 8038 /* restore the node_state */
4b0ef1fe 8039 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
8040}
8041
4b0ef1fe
LJ
8042/* Any regular or high memory on that node ? */
8043static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 8044{
37b07e41
LS
8045 enum zone_type zone_type;
8046
4b0ef1fe 8047 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 8048 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 8049 if (populated_zone(zone)) {
7b0e0c0e
OS
8050 if (IS_ENABLED(CONFIG_HIGHMEM))
8051 node_set_state(nid, N_HIGH_MEMORY);
8052 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 8053 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
8054 break;
8055 }
37b07e41 8056 }
37b07e41
LS
8057}
8058
51930df5 8059/*
f0953a1b 8060 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
8061 * such cases we allow max_zone_pfn sorted in the descending order
8062 */
8063bool __weak arch_has_descending_max_zone_pfns(void)
8064{
8065 return false;
8066}
8067
c713216d 8068/**
9691a071 8069 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 8070 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
8071 *
8072 * This will call free_area_init_node() for each active node in the system.
7d018176 8073 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
8074 * zone in each node and their holes is calculated. If the maximum PFN
8075 * between two adjacent zones match, it is assumed that the zone is empty.
8076 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8077 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8078 * starts where the previous one ended. For example, ZONE_DMA32 starts
8079 * at arch_max_dma_pfn.
8080 */
9691a071 8081void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 8082{
c13291a5 8083 unsigned long start_pfn, end_pfn;
51930df5
MR
8084 int i, nid, zone;
8085 bool descending;
a6af2bc3 8086
c713216d
MG
8087 /* Record where the zone boundaries are */
8088 memset(arch_zone_lowest_possible_pfn, 0,
8089 sizeof(arch_zone_lowest_possible_pfn));
8090 memset(arch_zone_highest_possible_pfn, 0,
8091 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
8092
8093 start_pfn = find_min_pfn_with_active_regions();
51930df5 8094 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
8095
8096 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
8097 if (descending)
8098 zone = MAX_NR_ZONES - i - 1;
8099 else
8100 zone = i;
8101
8102 if (zone == ZONE_MOVABLE)
2a1e274a 8103 continue;
90cae1fe 8104
51930df5
MR
8105 end_pfn = max(max_zone_pfn[zone], start_pfn);
8106 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8107 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
8108
8109 start_pfn = end_pfn;
c713216d 8110 }
2a1e274a
MG
8111
8112 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8113 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 8114 find_zone_movable_pfns_for_nodes();
c713216d 8115
c713216d 8116 /* Print out the zone ranges */
f88dfff5 8117 pr_info("Zone ranges:\n");
2a1e274a
MG
8118 for (i = 0; i < MAX_NR_ZONES; i++) {
8119 if (i == ZONE_MOVABLE)
8120 continue;
f88dfff5 8121 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
8122 if (arch_zone_lowest_possible_pfn[i] ==
8123 arch_zone_highest_possible_pfn[i])
f88dfff5 8124 pr_cont("empty\n");
72f0ba02 8125 else
8d29e18a
JG
8126 pr_cont("[mem %#018Lx-%#018Lx]\n",
8127 (u64)arch_zone_lowest_possible_pfn[i]
8128 << PAGE_SHIFT,
8129 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 8130 << PAGE_SHIFT) - 1);
2a1e274a
MG
8131 }
8132
8133 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 8134 pr_info("Movable zone start for each node\n");
2a1e274a
MG
8135 for (i = 0; i < MAX_NUMNODES; i++) {
8136 if (zone_movable_pfn[i])
8d29e18a
JG
8137 pr_info(" Node %d: %#018Lx\n", i,
8138 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 8139 }
c713216d 8140
f46edbd1
DW
8141 /*
8142 * Print out the early node map, and initialize the
8143 * subsection-map relative to active online memory ranges to
8144 * enable future "sub-section" extensions of the memory map.
8145 */
f88dfff5 8146 pr_info("Early memory node ranges\n");
f46edbd1 8147 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8148 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8149 (u64)start_pfn << PAGE_SHIFT,
8150 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8151 subsection_map_init(start_pfn, end_pfn - start_pfn);
8152 }
c713216d
MG
8153
8154 /* Initialise every node */
708614e6 8155 mminit_verify_pageflags_layout();
8ef82866 8156 setup_nr_node_ids();
09f49dca
MH
8157 for_each_node(nid) {
8158 pg_data_t *pgdat;
8159
8160 if (!node_online(nid)) {
8161 pr_info("Initializing node %d as memoryless\n", nid);
8162
8163 /* Allocator not initialized yet */
8164 pgdat = arch_alloc_nodedata(nid);
8165 if (!pgdat) {
8166 pr_err("Cannot allocate %zuB for node %d.\n",
8167 sizeof(*pgdat), nid);
8168 continue;
8169 }
8170 arch_refresh_nodedata(nid, pgdat);
8171 free_area_init_memoryless_node(nid);
8172
8173 /*
8174 * We do not want to confuse userspace by sysfs
8175 * files/directories for node without any memory
8176 * attached to it, so this node is not marked as
8177 * N_MEMORY and not marked online so that no sysfs
8178 * hierarchy will be created via register_one_node for
8179 * it. The pgdat will get fully initialized by
8180 * hotadd_init_pgdat() when memory is hotplugged into
8181 * this node.
8182 */
8183 continue;
8184 }
8185
8186 pgdat = NODE_DATA(nid);
854e8848 8187 free_area_init_node(nid);
37b07e41
LS
8188
8189 /* Any memory on that node */
8190 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8191 node_set_state(nid, N_MEMORY);
8192 check_for_memory(pgdat, nid);
c713216d 8193 }
122e093c
MR
8194
8195 memmap_init();
c713216d 8196}
2a1e274a 8197
a5c6d650
DR
8198static int __init cmdline_parse_core(char *p, unsigned long *core,
8199 unsigned long *percent)
2a1e274a
MG
8200{
8201 unsigned long long coremem;
a5c6d650
DR
8202 char *endptr;
8203
2a1e274a
MG
8204 if (!p)
8205 return -EINVAL;
8206
a5c6d650
DR
8207 /* Value may be a percentage of total memory, otherwise bytes */
8208 coremem = simple_strtoull(p, &endptr, 0);
8209 if (*endptr == '%') {
8210 /* Paranoid check for percent values greater than 100 */
8211 WARN_ON(coremem > 100);
2a1e274a 8212
a5c6d650
DR
8213 *percent = coremem;
8214 } else {
8215 coremem = memparse(p, &p);
8216 /* Paranoid check that UL is enough for the coremem value */
8217 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8218
a5c6d650
DR
8219 *core = coremem >> PAGE_SHIFT;
8220 *percent = 0UL;
8221 }
2a1e274a
MG
8222 return 0;
8223}
ed7ed365 8224
7e63efef
MG
8225/*
8226 * kernelcore=size sets the amount of memory for use for allocations that
8227 * cannot be reclaimed or migrated.
8228 */
8229static int __init cmdline_parse_kernelcore(char *p)
8230{
342332e6
TI
8231 /* parse kernelcore=mirror */
8232 if (parse_option_str(p, "mirror")) {
8233 mirrored_kernelcore = true;
8234 return 0;
8235 }
8236
a5c6d650
DR
8237 return cmdline_parse_core(p, &required_kernelcore,
8238 &required_kernelcore_percent);
7e63efef
MG
8239}
8240
8241/*
8242 * movablecore=size sets the amount of memory for use for allocations that
8243 * can be reclaimed or migrated.
8244 */
8245static int __init cmdline_parse_movablecore(char *p)
8246{
a5c6d650
DR
8247 return cmdline_parse_core(p, &required_movablecore,
8248 &required_movablecore_percent);
7e63efef
MG
8249}
8250
ed7ed365 8251early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8252early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8253
c3d5f5f0
JL
8254void adjust_managed_page_count(struct page *page, long count)
8255{
9705bea5 8256 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8257 totalram_pages_add(count);
3dcc0571
JL
8258#ifdef CONFIG_HIGHMEM
8259 if (PageHighMem(page))
ca79b0c2 8260 totalhigh_pages_add(count);
3dcc0571 8261#endif
c3d5f5f0 8262}
3dcc0571 8263EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8264
e5cb113f 8265unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8266{
11199692
JL
8267 void *pos;
8268 unsigned long pages = 0;
69afade7 8269
11199692
JL
8270 start = (void *)PAGE_ALIGN((unsigned long)start);
8271 end = (void *)((unsigned long)end & PAGE_MASK);
8272 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8273 struct page *page = virt_to_page(pos);
8274 void *direct_map_addr;
8275
8276 /*
8277 * 'direct_map_addr' might be different from 'pos'
8278 * because some architectures' virt_to_page()
8279 * work with aliases. Getting the direct map
8280 * address ensures that we get a _writeable_
8281 * alias for the memset().
8282 */
8283 direct_map_addr = page_address(page);
c746170d
VF
8284 /*
8285 * Perform a kasan-unchecked memset() since this memory
8286 * has not been initialized.
8287 */
8288 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8289 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8290 memset(direct_map_addr, poison, PAGE_SIZE);
8291
8292 free_reserved_page(page);
69afade7
JL
8293 }
8294
8295 if (pages && s)
ff7ed9e4 8296 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
8297
8298 return pages;
8299}
8300
1f9d03c5 8301void __init mem_init_print_info(void)
7ee3d4e8
JL
8302{
8303 unsigned long physpages, codesize, datasize, rosize, bss_size;
8304 unsigned long init_code_size, init_data_size;
8305
8306 physpages = get_num_physpages();
8307 codesize = _etext - _stext;
8308 datasize = _edata - _sdata;
8309 rosize = __end_rodata - __start_rodata;
8310 bss_size = __bss_stop - __bss_start;
8311 init_data_size = __init_end - __init_begin;
8312 init_code_size = _einittext - _sinittext;
8313
8314 /*
8315 * Detect special cases and adjust section sizes accordingly:
8316 * 1) .init.* may be embedded into .data sections
8317 * 2) .init.text.* may be out of [__init_begin, __init_end],
8318 * please refer to arch/tile/kernel/vmlinux.lds.S.
8319 * 3) .rodata.* may be embedded into .text or .data sections.
8320 */
8321#define adj_init_size(start, end, size, pos, adj) \
b8af2941 8322 do { \
ca831f29 8323 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
b8af2941
PK
8324 size -= adj; \
8325 } while (0)
7ee3d4e8
JL
8326
8327 adj_init_size(__init_begin, __init_end, init_data_size,
8328 _sinittext, init_code_size);
8329 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8330 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8331 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8332 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8333
8334#undef adj_init_size
8335
756a025f 8336 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8337#ifdef CONFIG_HIGHMEM
756a025f 8338 ", %luK highmem"
7ee3d4e8 8339#endif
1f9d03c5 8340 ")\n",
ff7ed9e4 8341 K(nr_free_pages()), K(physpages),
756a025f
JP
8342 codesize >> 10, datasize >> 10, rosize >> 10,
8343 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ff7ed9e4
ML
8344 K(physpages - totalram_pages() - totalcma_pages),
8345 K(totalcma_pages)
7ee3d4e8 8346#ifdef CONFIG_HIGHMEM
ff7ed9e4 8347 , K(totalhigh_pages())
7ee3d4e8 8348#endif
1f9d03c5 8349 );
7ee3d4e8
JL
8350}
8351
0e0b864e 8352/**
88ca3b94
RD
8353 * set_dma_reserve - set the specified number of pages reserved in the first zone
8354 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8355 *
013110a7 8356 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8357 * In the DMA zone, a significant percentage may be consumed by kernel image
8358 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8359 * function may optionally be used to account for unfreeable pages in the
8360 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8361 * smaller per-cpu batchsize.
0e0b864e
MG
8362 */
8363void __init set_dma_reserve(unsigned long new_dma_reserve)
8364{
8365 dma_reserve = new_dma_reserve;
8366}
8367
005fd4bb 8368static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8369{
04f8cfea 8370 struct zone *zone;
1da177e4 8371
005fd4bb 8372 lru_add_drain_cpu(cpu);
adb11e78 8373 mlock_page_drain_remote(cpu);
005fd4bb 8374 drain_pages(cpu);
9f8f2172 8375
005fd4bb
SAS
8376 /*
8377 * Spill the event counters of the dead processor
8378 * into the current processors event counters.
8379 * This artificially elevates the count of the current
8380 * processor.
8381 */
8382 vm_events_fold_cpu(cpu);
9f8f2172 8383
005fd4bb
SAS
8384 /*
8385 * Zero the differential counters of the dead processor
8386 * so that the vm statistics are consistent.
8387 *
8388 * This is only okay since the processor is dead and cannot
8389 * race with what we are doing.
8390 */
8391 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8392
8393 for_each_populated_zone(zone)
8394 zone_pcp_update(zone, 0);
8395
8396 return 0;
8397}
8398
8399static int page_alloc_cpu_online(unsigned int cpu)
8400{
8401 struct zone *zone;
8402
8403 for_each_populated_zone(zone)
8404 zone_pcp_update(zone, 1);
005fd4bb 8405 return 0;
1da177e4 8406}
1da177e4 8407
e03a5125
NP
8408#ifdef CONFIG_NUMA
8409int hashdist = HASHDIST_DEFAULT;
8410
8411static int __init set_hashdist(char *str)
8412{
8413 if (!str)
8414 return 0;
8415 hashdist = simple_strtoul(str, &str, 0);
8416 return 1;
8417}
8418__setup("hashdist=", set_hashdist);
8419#endif
8420
1da177e4
LT
8421void __init page_alloc_init(void)
8422{
005fd4bb
SAS
8423 int ret;
8424
e03a5125
NP
8425#ifdef CONFIG_NUMA
8426 if (num_node_state(N_MEMORY) == 1)
8427 hashdist = 0;
8428#endif
8429
04f8cfea
MG
8430 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8431 "mm/page_alloc:pcp",
8432 page_alloc_cpu_online,
005fd4bb
SAS
8433 page_alloc_cpu_dead);
8434 WARN_ON(ret < 0);
1da177e4
LT
8435}
8436
cb45b0e9 8437/*
34b10060 8438 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8439 * or min_free_kbytes changes.
8440 */
8441static void calculate_totalreserve_pages(void)
8442{
8443 struct pglist_data *pgdat;
8444 unsigned long reserve_pages = 0;
2f6726e5 8445 enum zone_type i, j;
cb45b0e9
HA
8446
8447 for_each_online_pgdat(pgdat) {
281e3726
MG
8448
8449 pgdat->totalreserve_pages = 0;
8450
cb45b0e9
HA
8451 for (i = 0; i < MAX_NR_ZONES; i++) {
8452 struct zone *zone = pgdat->node_zones + i;
3484b2de 8453 long max = 0;
9705bea5 8454 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8455
8456 /* Find valid and maximum lowmem_reserve in the zone */
8457 for (j = i; j < MAX_NR_ZONES; j++) {
8458 if (zone->lowmem_reserve[j] > max)
8459 max = zone->lowmem_reserve[j];
8460 }
8461
41858966
MG
8462 /* we treat the high watermark as reserved pages. */
8463 max += high_wmark_pages(zone);
cb45b0e9 8464
3d6357de
AK
8465 if (max > managed_pages)
8466 max = managed_pages;
a8d01437 8467
281e3726 8468 pgdat->totalreserve_pages += max;
a8d01437 8469
cb45b0e9
HA
8470 reserve_pages += max;
8471 }
8472 }
8473 totalreserve_pages = reserve_pages;
8474}
8475
1da177e4
LT
8476/*
8477 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8478 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8479 * has a correct pages reserved value, so an adequate number of
8480 * pages are left in the zone after a successful __alloc_pages().
8481 */
8482static void setup_per_zone_lowmem_reserve(void)
8483{
8484 struct pglist_data *pgdat;
470c61d7 8485 enum zone_type i, j;
1da177e4 8486
ec936fc5 8487 for_each_online_pgdat(pgdat) {
470c61d7
LS
8488 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8489 struct zone *zone = &pgdat->node_zones[i];
8490 int ratio = sysctl_lowmem_reserve_ratio[i];
8491 bool clear = !ratio || !zone_managed_pages(zone);
8492 unsigned long managed_pages = 0;
8493
8494 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8495 struct zone *upper_zone = &pgdat->node_zones[j];
8496
8497 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8498
f7ec1044
LS
8499 if (clear)
8500 zone->lowmem_reserve[j] = 0;
8501 else
470c61d7 8502 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8503 }
8504 }
8505 }
cb45b0e9
HA
8506
8507 /* update totalreserve_pages */
8508 calculate_totalreserve_pages();
1da177e4
LT
8509}
8510
cfd3da1e 8511static void __setup_per_zone_wmarks(void)
1da177e4
LT
8512{
8513 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8514 unsigned long lowmem_pages = 0;
8515 struct zone *zone;
8516 unsigned long flags;
8517
8518 /* Calculate total number of !ZONE_HIGHMEM pages */
8519 for_each_zone(zone) {
8520 if (!is_highmem(zone))
9705bea5 8521 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8522 }
8523
8524 for_each_zone(zone) {
ac924c60
AM
8525 u64 tmp;
8526
1125b4e3 8527 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8528 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8529 do_div(tmp, lowmem_pages);
1da177e4
LT
8530 if (is_highmem(zone)) {
8531 /*
669ed175
NP
8532 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8533 * need highmem pages, so cap pages_min to a small
8534 * value here.
8535 *
41858966 8536 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8537 * deltas control async page reclaim, and so should
669ed175 8538 * not be capped for highmem.
1da177e4 8539 */
90ae8d67 8540 unsigned long min_pages;
1da177e4 8541
9705bea5 8542 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8543 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8544 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8545 } else {
669ed175
NP
8546 /*
8547 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8548 * proportionate to the zone's size.
8549 */
a9214443 8550 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8551 }
8552
795ae7a0
JW
8553 /*
8554 * Set the kswapd watermarks distance according to the
8555 * scale factor in proportion to available memory, but
8556 * ensure a minimum size on small systems.
8557 */
8558 tmp = max_t(u64, tmp >> 2,
9705bea5 8559 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8560 watermark_scale_factor, 10000));
8561
aa092591 8562 zone->watermark_boost = 0;
a9214443 8563 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
HY
8564 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8565 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 8566
1125b4e3 8567 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8568 }
cb45b0e9
HA
8569
8570 /* update totalreserve_pages */
8571 calculate_totalreserve_pages();
1da177e4
LT
8572}
8573
cfd3da1e
MG
8574/**
8575 * setup_per_zone_wmarks - called when min_free_kbytes changes
8576 * or when memory is hot-{added|removed}
8577 *
8578 * Ensures that the watermark[min,low,high] values for each zone are set
8579 * correctly with respect to min_free_kbytes.
8580 */
8581void setup_per_zone_wmarks(void)
8582{
b92ca18e 8583 struct zone *zone;
b93e0f32
MH
8584 static DEFINE_SPINLOCK(lock);
8585
8586 spin_lock(&lock);
cfd3da1e 8587 __setup_per_zone_wmarks();
b93e0f32 8588 spin_unlock(&lock);
b92ca18e
MG
8589
8590 /*
8591 * The watermark size have changed so update the pcpu batch
8592 * and high limits or the limits may be inappropriate.
8593 */
8594 for_each_zone(zone)
04f8cfea 8595 zone_pcp_update(zone, 0);
cfd3da1e
MG
8596}
8597
1da177e4
LT
8598/*
8599 * Initialise min_free_kbytes.
8600 *
8601 * For small machines we want it small (128k min). For large machines
8beeae86 8602 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8603 * bandwidth does not increase linearly with machine size. We use
8604 *
b8af2941 8605 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8606 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8607 *
8608 * which yields
8609 *
8610 * 16MB: 512k
8611 * 32MB: 724k
8612 * 64MB: 1024k
8613 * 128MB: 1448k
8614 * 256MB: 2048k
8615 * 512MB: 2896k
8616 * 1024MB: 4096k
8617 * 2048MB: 5792k
8618 * 4096MB: 8192k
8619 * 8192MB: 11584k
8620 * 16384MB: 16384k
8621 */
bd3400ea 8622void calculate_min_free_kbytes(void)
1da177e4
LT
8623{
8624 unsigned long lowmem_kbytes;
5f12733e 8625 int new_min_free_kbytes;
1da177e4
LT
8626
8627 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8628 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8629
59d336bd
WS
8630 if (new_min_free_kbytes > user_min_free_kbytes)
8631 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8632 else
5f12733e
MH
8633 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8634 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 8635
bd3400ea
LF
8636}
8637
8638int __meminit init_per_zone_wmark_min(void)
8639{
8640 calculate_min_free_kbytes();
bc75d33f 8641 setup_per_zone_wmarks();
a6cccdc3 8642 refresh_zone_stat_thresholds();
1da177e4 8643 setup_per_zone_lowmem_reserve();
6423aa81
JK
8644
8645#ifdef CONFIG_NUMA
8646 setup_min_unmapped_ratio();
8647 setup_min_slab_ratio();
8648#endif
8649
4aab2be0
VB
8650 khugepaged_min_free_kbytes_update();
8651
1da177e4
LT
8652 return 0;
8653}
e08d3fdf 8654postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8655
8656/*
b8af2941 8657 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8658 * that we can call two helper functions whenever min_free_kbytes
8659 * changes.
8660 */
cccad5b9 8661int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8662 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8663{
da8c757b
HP
8664 int rc;
8665
8666 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8667 if (rc)
8668 return rc;
8669
5f12733e
MH
8670 if (write) {
8671 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8672 setup_per_zone_wmarks();
5f12733e 8673 }
1da177e4
LT
8674 return 0;
8675}
8676
795ae7a0 8677int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8678 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8679{
8680 int rc;
8681
8682 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8683 if (rc)
8684 return rc;
8685
8686 if (write)
8687 setup_per_zone_wmarks();
8688
8689 return 0;
8690}
8691
9614634f 8692#ifdef CONFIG_NUMA
6423aa81 8693static void setup_min_unmapped_ratio(void)
9614634f 8694{
6423aa81 8695 pg_data_t *pgdat;
9614634f 8696 struct zone *zone;
9614634f 8697
a5f5f91d 8698 for_each_online_pgdat(pgdat)
81cbcbc2 8699 pgdat->min_unmapped_pages = 0;
a5f5f91d 8700
9614634f 8701 for_each_zone(zone)
9705bea5
AK
8702 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8703 sysctl_min_unmapped_ratio) / 100;
9614634f 8704}
0ff38490 8705
6423aa81
JK
8706
8707int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8708 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8709{
0ff38490
CL
8710 int rc;
8711
8d65af78 8712 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8713 if (rc)
8714 return rc;
8715
6423aa81
JK
8716 setup_min_unmapped_ratio();
8717
8718 return 0;
8719}
8720
8721static void setup_min_slab_ratio(void)
8722{
8723 pg_data_t *pgdat;
8724 struct zone *zone;
8725
a5f5f91d
MG
8726 for_each_online_pgdat(pgdat)
8727 pgdat->min_slab_pages = 0;
8728
0ff38490 8729 for_each_zone(zone)
9705bea5
AK
8730 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8731 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8732}
8733
8734int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8735 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8736{
8737 int rc;
8738
8739 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8740 if (rc)
8741 return rc;
8742
8743 setup_min_slab_ratio();
8744
0ff38490
CL
8745 return 0;
8746}
9614634f
CL
8747#endif
8748
1da177e4
LT
8749/*
8750 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8751 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8752 * whenever sysctl_lowmem_reserve_ratio changes.
8753 *
8754 * The reserve ratio obviously has absolutely no relation with the
41858966 8755 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8756 * if in function of the boot time zone sizes.
8757 */
cccad5b9 8758int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8759 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8760{
86aaf255
BH
8761 int i;
8762
8d65af78 8763 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8764
8765 for (i = 0; i < MAX_NR_ZONES; i++) {
8766 if (sysctl_lowmem_reserve_ratio[i] < 1)
8767 sysctl_lowmem_reserve_ratio[i] = 0;
8768 }
8769
1da177e4
LT
8770 setup_per_zone_lowmem_reserve();
8771 return 0;
8772}
8773
8ad4b1fb 8774/*
74f44822
MG
8775 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8776 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 8777 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8778 */
74f44822
MG
8779int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8780 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8781{
8782 struct zone *zone;
74f44822 8783 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
8784 int ret;
8785
7cd2b0a3 8786 mutex_lock(&pcp_batch_high_lock);
74f44822 8787 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 8788
8d65af78 8789 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8790 if (!write || ret < 0)
8791 goto out;
8792
8793 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
8794 if (percpu_pagelist_high_fraction &&
8795 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8796 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
8797 ret = -EINVAL;
8798 goto out;
8799 }
8800
8801 /* No change? */
74f44822 8802 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 8803 goto out;
c8e251fa 8804
cb1ef534 8805 for_each_populated_zone(zone)
74f44822 8806 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 8807out:
c8e251fa 8808 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8809 return ret;
8ad4b1fb
RS
8810}
8811
f6f34b43
SD
8812#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8813/*
8814 * Returns the number of pages that arch has reserved but
8815 * is not known to alloc_large_system_hash().
8816 */
8817static unsigned long __init arch_reserved_kernel_pages(void)
8818{
8819 return 0;
8820}
8821#endif
8822
9017217b
PT
8823/*
8824 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8825 * machines. As memory size is increased the scale is also increased but at
8826 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8827 * quadruples the scale is increased by one, which means the size of hash table
8828 * only doubles, instead of quadrupling as well.
8829 * Because 32-bit systems cannot have large physical memory, where this scaling
8830 * makes sense, it is disabled on such platforms.
8831 */
8832#if __BITS_PER_LONG > 32
8833#define ADAPT_SCALE_BASE (64ul << 30)
8834#define ADAPT_SCALE_SHIFT 2
8835#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8836#endif
8837
1da177e4
LT
8838/*
8839 * allocate a large system hash table from bootmem
8840 * - it is assumed that the hash table must contain an exact power-of-2
8841 * quantity of entries
8842 * - limit is the number of hash buckets, not the total allocation size
8843 */
8844void *__init alloc_large_system_hash(const char *tablename,
8845 unsigned long bucketsize,
8846 unsigned long numentries,
8847 int scale,
8848 int flags,
8849 unsigned int *_hash_shift,
8850 unsigned int *_hash_mask,
31fe62b9
TB
8851 unsigned long low_limit,
8852 unsigned long high_limit)
1da177e4 8853{
31fe62b9 8854 unsigned long long max = high_limit;
1da177e4
LT
8855 unsigned long log2qty, size;
8856 void *table = NULL;
3749a8f0 8857 gfp_t gfp_flags;
ec11408a 8858 bool virt;
121e6f32 8859 bool huge;
1da177e4
LT
8860
8861 /* allow the kernel cmdline to have a say */
8862 if (!numentries) {
8863 /* round applicable memory size up to nearest megabyte */
04903664 8864 numentries = nr_kernel_pages;
f6f34b43 8865 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8866
8867 /* It isn't necessary when PAGE_SIZE >= 1MB */
8868 if (PAGE_SHIFT < 20)
8869 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8870
9017217b
PT
8871#if __BITS_PER_LONG > 32
8872 if (!high_limit) {
8873 unsigned long adapt;
8874
8875 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8876 adapt <<= ADAPT_SCALE_SHIFT)
8877 scale++;
8878 }
8879#endif
8880
1da177e4
LT
8881 /* limit to 1 bucket per 2^scale bytes of low memory */
8882 if (scale > PAGE_SHIFT)
8883 numentries >>= (scale - PAGE_SHIFT);
8884 else
8885 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8886
8887 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8888 if (unlikely(flags & HASH_SMALL)) {
8889 /* Makes no sense without HASH_EARLY */
8890 WARN_ON(!(flags & HASH_EARLY));
8891 if (!(numentries >> *_hash_shift)) {
8892 numentries = 1UL << *_hash_shift;
8893 BUG_ON(!numentries);
8894 }
8895 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8896 numentries = PAGE_SIZE / bucketsize;
1da177e4 8897 }
6e692ed3 8898 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8899
8900 /* limit allocation size to 1/16 total memory by default */
8901 if (max == 0) {
8902 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8903 do_div(max, bucketsize);
8904 }
074b8517 8905 max = min(max, 0x80000000ULL);
1da177e4 8906
31fe62b9
TB
8907 if (numentries < low_limit)
8908 numentries = low_limit;
1da177e4
LT
8909 if (numentries > max)
8910 numentries = max;
8911
f0d1b0b3 8912 log2qty = ilog2(numentries);
1da177e4 8913
3749a8f0 8914 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8915 do {
ec11408a 8916 virt = false;
1da177e4 8917 size = bucketsize << log2qty;
ea1f5f37
PT
8918 if (flags & HASH_EARLY) {
8919 if (flags & HASH_ZERO)
26fb3dae 8920 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8921 else
7e1c4e27
MR
8922 table = memblock_alloc_raw(size,
8923 SMP_CACHE_BYTES);
ec11408a 8924 } else if (get_order(size) >= MAX_ORDER || hashdist) {
f2edd118 8925 table = vmalloc_huge(size, gfp_flags);
ec11408a 8926 virt = true;
084f7e23
ED
8927 if (table)
8928 huge = is_vm_area_hugepages(table);
ea1f5f37 8929 } else {
1037b83b
ED
8930 /*
8931 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8932 * some pages at the end of hash table which
8933 * alloc_pages_exact() automatically does
1037b83b 8934 */
ec11408a
NP
8935 table = alloc_pages_exact(size, gfp_flags);
8936 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8937 }
8938 } while (!table && size > PAGE_SIZE && --log2qty);
8939
8940 if (!table)
8941 panic("Failed to allocate %s hash table\n", tablename);
8942
ec11408a
NP
8943 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8944 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8945 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8946
8947 if (_hash_shift)
8948 *_hash_shift = log2qty;
8949 if (_hash_mask)
8950 *_hash_mask = (1 << log2qty) - 1;
8951
8952 return table;
8953}
a117e66e 8954
8df995f6 8955#ifdef CONFIG_CONTIG_ALLOC
a1394bdd
MK
8956#if defined(CONFIG_DYNAMIC_DEBUG) || \
8957 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8958/* Usage: See admin-guide/dynamic-debug-howto.rst */
8959static void alloc_contig_dump_pages(struct list_head *page_list)
8960{
8961 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8962
8963 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8964 struct page *page;
8965
8966 dump_stack();
8967 list_for_each_entry(page, page_list, lru)
8968 dump_page(page, "migration failure");
8969 }
8970}
8971#else
8972static inline void alloc_contig_dump_pages(struct list_head *page_list)
8973{
8974}
8975#endif
8976
041d3a8c 8977/* [start, end) must belong to a single zone. */
b2c9e2fb 8978int __alloc_contig_migrate_range(struct compact_control *cc,
bb13ffeb 8979 unsigned long start, unsigned long end)
041d3a8c
MN
8980{
8981 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8982 unsigned int nr_reclaimed;
041d3a8c
MN
8983 unsigned long pfn = start;
8984 unsigned int tries = 0;
8985 int ret = 0;
8b94e0b8
JK
8986 struct migration_target_control mtc = {
8987 .nid = zone_to_nid(cc->zone),
8988 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8989 };
041d3a8c 8990
361a2a22 8991 lru_cache_disable();
041d3a8c 8992
bb13ffeb 8993 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8994 if (fatal_signal_pending(current)) {
8995 ret = -EINTR;
8996 break;
8997 }
8998
bb13ffeb
MG
8999 if (list_empty(&cc->migratepages)) {
9000 cc->nr_migratepages = 0;
c2ad7a1f
OS
9001 ret = isolate_migratepages_range(cc, pfn, end);
9002 if (ret && ret != -EAGAIN)
041d3a8c 9003 break;
c2ad7a1f 9004 pfn = cc->migrate_pfn;
041d3a8c
MN
9005 tries = 0;
9006 } else if (++tries == 5) {
c8e28b47 9007 ret = -EBUSY;
041d3a8c
MN
9008 break;
9009 }
9010
beb51eaa
MK
9011 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9012 &cc->migratepages);
9013 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 9014
8b94e0b8 9015 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 9016 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
9017
9018 /*
9019 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9020 * to retry again over this error, so do the same here.
9021 */
9022 if (ret == -ENOMEM)
9023 break;
041d3a8c 9024 }
d479960e 9025
361a2a22 9026 lru_cache_enable();
2a6f5124 9027 if (ret < 0) {
151e084a
MK
9028 if (ret == -EBUSY)
9029 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
9030 putback_movable_pages(&cc->migratepages);
9031 return ret;
9032 }
9033 return 0;
041d3a8c
MN
9034}
9035
9036/**
9037 * alloc_contig_range() -- tries to allocate given range of pages
9038 * @start: start PFN to allocate
9039 * @end: one-past-the-last PFN to allocate
f0953a1b 9040 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9041 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9042 * in range must have the same migratetype and it must
9043 * be either of the two.
ca96b625 9044 * @gfp_mask: GFP mask to use during compaction
041d3a8c 9045 *
11ac3e87
ZY
9046 * The PFN range does not have to be pageblock aligned. The PFN range must
9047 * belong to a single zone.
041d3a8c 9048 *
2c7452a0
MK
9049 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9050 * pageblocks in the range. Once isolated, the pageblocks should not
9051 * be modified by others.
041d3a8c 9052 *
a862f68a 9053 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9054 * pages which PFN is in [start, end) are allocated for the caller and
9055 * need to be freed with free_contig_range().
9056 */
0815f3d8 9057int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9058 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9059{
041d3a8c 9060 unsigned long outer_start, outer_end;
b2c9e2fb 9061 int order;
d00181b9 9062 int ret = 0;
041d3a8c 9063
bb13ffeb
MG
9064 struct compact_control cc = {
9065 .nr_migratepages = 0,
9066 .order = -1,
9067 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9068 .mode = MIGRATE_SYNC,
bb13ffeb 9069 .ignore_skip_hint = true,
2583d671 9070 .no_set_skip_hint = true,
7dea19f9 9071 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9072 .alloc_contig = true,
bb13ffeb
MG
9073 };
9074 INIT_LIST_HEAD(&cc.migratepages);
9075
041d3a8c
MN
9076 /*
9077 * What we do here is we mark all pageblocks in range as
9078 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9079 * have different sizes, and due to the way page allocator
b2c9e2fb 9080 * work, start_isolate_page_range() has special handlings for this.
041d3a8c
MN
9081 *
9082 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9083 * migrate the pages from an unaligned range (ie. pages that
b2c9e2fb 9084 * we are interested in). This will put all the pages in
041d3a8c
MN
9085 * range back to page allocator as MIGRATE_ISOLATE.
9086 *
9087 * When this is done, we take the pages in range from page
9088 * allocator removing them from the buddy system. This way
9089 * page allocator will never consider using them.
9090 *
9091 * This lets us mark the pageblocks back as
9092 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9093 * aligned range but not in the unaligned, original range are
9094 * put back to page allocator so that buddy can use them.
9095 */
9096
6e263fff 9097 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
3fa0c7c7 9098 if (ret)
b2c9e2fb 9099 goto done;
041d3a8c 9100
7612921f
VB
9101 drain_all_pages(cc.zone);
9102
8ef5849f
JK
9103 /*
9104 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9105 * So, just fall through. test_pages_isolated() has a tracepoint
9106 * which will report the busy page.
9107 *
9108 * It is possible that busy pages could become available before
9109 * the call to test_pages_isolated, and the range will actually be
9110 * allocated. So, if we fall through be sure to clear ret so that
9111 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9112 */
bb13ffeb 9113 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9114 if (ret && ret != -EBUSY)
041d3a8c 9115 goto done;
68d68ff6 9116 ret = 0;
041d3a8c
MN
9117
9118 /*
b2c9e2fb 9119 * Pages from [start, end) are within a pageblock_nr_pages
041d3a8c
MN
9120 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9121 * more, all pages in [start, end) are free in page allocator.
9122 * What we are going to do is to allocate all pages from
9123 * [start, end) (that is remove them from page allocator).
9124 *
9125 * The only problem is that pages at the beginning and at the
9126 * end of interesting range may be not aligned with pages that
9127 * page allocator holds, ie. they can be part of higher order
9128 * pages. Because of this, we reserve the bigger range and
9129 * once this is done free the pages we are not interested in.
9130 *
9131 * We don't have to hold zone->lock here because the pages are
9132 * isolated thus they won't get removed from buddy.
9133 */
9134
041d3a8c
MN
9135 order = 0;
9136 outer_start = start;
9137 while (!PageBuddy(pfn_to_page(outer_start))) {
9138 if (++order >= MAX_ORDER) {
8ef5849f
JK
9139 outer_start = start;
9140 break;
041d3a8c
MN
9141 }
9142 outer_start &= ~0UL << order;
9143 }
9144
8ef5849f 9145 if (outer_start != start) {
ab130f91 9146 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9147
9148 /*
9149 * outer_start page could be small order buddy page and
9150 * it doesn't include start page. Adjust outer_start
9151 * in this case to report failed page properly
9152 * on tracepoint in test_pages_isolated()
9153 */
9154 if (outer_start + (1UL << order) <= start)
9155 outer_start = start;
9156 }
9157
041d3a8c 9158 /* Make sure the range is really isolated. */
756d25be 9159 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9160 ret = -EBUSY;
9161 goto done;
9162 }
9163
49f223a9 9164 /* Grab isolated pages from freelists. */
bb13ffeb 9165 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9166 if (!outer_end) {
9167 ret = -EBUSY;
9168 goto done;
9169 }
9170
9171 /* Free head and tail (if any) */
9172 if (start != outer_start)
9173 free_contig_range(outer_start, start - outer_start);
9174 if (end != outer_end)
9175 free_contig_range(end, outer_end - end);
9176
9177done:
6e263fff 9178 undo_isolate_page_range(start, end, migratetype);
041d3a8c
MN
9179 return ret;
9180}
255f5985 9181EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9182
9183static int __alloc_contig_pages(unsigned long start_pfn,
9184 unsigned long nr_pages, gfp_t gfp_mask)
9185{
9186 unsigned long end_pfn = start_pfn + nr_pages;
9187
9188 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9189 gfp_mask);
9190}
9191
9192static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9193 unsigned long nr_pages)
9194{
9195 unsigned long i, end_pfn = start_pfn + nr_pages;
9196 struct page *page;
9197
9198 for (i = start_pfn; i < end_pfn; i++) {
9199 page = pfn_to_online_page(i);
9200 if (!page)
9201 return false;
9202
9203 if (page_zone(page) != z)
9204 return false;
9205
9206 if (PageReserved(page))
9207 return false;
5e27a2df
AK
9208 }
9209 return true;
9210}
9211
9212static bool zone_spans_last_pfn(const struct zone *zone,
9213 unsigned long start_pfn, unsigned long nr_pages)
9214{
9215 unsigned long last_pfn = start_pfn + nr_pages - 1;
9216
9217 return zone_spans_pfn(zone, last_pfn);
9218}
9219
9220/**
9221 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9222 * @nr_pages: Number of contiguous pages to allocate
9223 * @gfp_mask: GFP mask to limit search and used during compaction
9224 * @nid: Target node
9225 * @nodemask: Mask for other possible nodes
9226 *
9227 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9228 * on an applicable zonelist to find a contiguous pfn range which can then be
9229 * tried for allocation with alloc_contig_range(). This routine is intended
9230 * for allocation requests which can not be fulfilled with the buddy allocator.
9231 *
9232 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
9233 * power of two, then allocated range is also guaranteed to be aligned to same
9234 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
9235 *
9236 * Allocated pages can be freed with free_contig_range() or by manually calling
9237 * __free_page() on each allocated page.
9238 *
9239 * Return: pointer to contiguous pages on success, or NULL if not successful.
9240 */
9241struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9242 int nid, nodemask_t *nodemask)
9243{
9244 unsigned long ret, pfn, flags;
9245 struct zonelist *zonelist;
9246 struct zone *zone;
9247 struct zoneref *z;
9248
9249 zonelist = node_zonelist(nid, gfp_mask);
9250 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9251 gfp_zone(gfp_mask), nodemask) {
9252 spin_lock_irqsave(&zone->lock, flags);
9253
9254 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9255 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9256 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9257 /*
9258 * We release the zone lock here because
9259 * alloc_contig_range() will also lock the zone
9260 * at some point. If there's an allocation
9261 * spinning on this lock, it may win the race
9262 * and cause alloc_contig_range() to fail...
9263 */
9264 spin_unlock_irqrestore(&zone->lock, flags);
9265 ret = __alloc_contig_pages(pfn, nr_pages,
9266 gfp_mask);
9267 if (!ret)
9268 return pfn_to_page(pfn);
9269 spin_lock_irqsave(&zone->lock, flags);
9270 }
9271 pfn += nr_pages;
9272 }
9273 spin_unlock_irqrestore(&zone->lock, flags);
9274 }
9275 return NULL;
9276}
4eb0716e 9277#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9278
78fa5150 9279void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9280{
78fa5150 9281 unsigned long count = 0;
bcc2b02f
MS
9282
9283 for (; nr_pages--; pfn++) {
9284 struct page *page = pfn_to_page(pfn);
9285
9286 count += page_count(page) != 1;
9287 __free_page(page);
9288 }
78fa5150 9289 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9290}
255f5985 9291EXPORT_SYMBOL(free_contig_range);
041d3a8c 9292
0a647f38
CS
9293/*
9294 * The zone indicated has a new number of managed_pages; batch sizes and percpu
f0953a1b 9295 * page high values need to be recalculated.
0a647f38 9296 */
04f8cfea 9297void zone_pcp_update(struct zone *zone, int cpu_online)
4ed7e022 9298{
c8e251fa 9299 mutex_lock(&pcp_batch_high_lock);
04f8cfea 9300 zone_set_pageset_high_and_batch(zone, cpu_online);
c8e251fa 9301 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 9302}
4ed7e022 9303
ec6e8c7e
VB
9304/*
9305 * Effectively disable pcplists for the zone by setting the high limit to 0
9306 * and draining all cpus. A concurrent page freeing on another CPU that's about
9307 * to put the page on pcplist will either finish before the drain and the page
9308 * will be drained, or observe the new high limit and skip the pcplist.
9309 *
9310 * Must be paired with a call to zone_pcp_enable().
9311 */
9312void zone_pcp_disable(struct zone *zone)
9313{
9314 mutex_lock(&pcp_batch_high_lock);
9315 __zone_set_pageset_high_and_batch(zone, 0, 1);
9316 __drain_all_pages(zone, true);
9317}
9318
9319void zone_pcp_enable(struct zone *zone)
9320{
9321 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9322 mutex_unlock(&pcp_batch_high_lock);
9323}
9324
340175b7
JL
9325void zone_pcp_reset(struct zone *zone)
9326{
5a883813 9327 int cpu;
28f836b6 9328 struct per_cpu_zonestat *pzstats;
340175b7 9329
28f836b6 9330 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9331 for_each_online_cpu(cpu) {
28f836b6
MG
9332 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9333 drain_zonestat(zone, pzstats);
5a883813 9334 }
28f836b6
MG
9335 free_percpu(zone->per_cpu_pageset);
9336 free_percpu(zone->per_cpu_zonestats);
9337 zone->per_cpu_pageset = &boot_pageset;
9338 zone->per_cpu_zonestats = &boot_zonestats;
340175b7 9339 }
340175b7
JL
9340}
9341
6dcd73d7 9342#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9343/*
257bea71
DH
9344 * All pages in the range must be in a single zone, must not contain holes,
9345 * must span full sections, and must be isolated before calling this function.
0c0e6195 9346 */
257bea71 9347void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9348{
257bea71 9349 unsigned long pfn = start_pfn;
0c0e6195
KH
9350 struct page *page;
9351 struct zone *zone;
0ee5f4f3 9352 unsigned int order;
0c0e6195 9353 unsigned long flags;
5557c766 9354
2d070eab 9355 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9356 zone = page_zone(pfn_to_page(pfn));
9357 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9358 while (pfn < end_pfn) {
0c0e6195 9359 page = pfn_to_page(pfn);
b023f468
WC
9360 /*
9361 * The HWPoisoned page may be not in buddy system, and
9362 * page_count() is not 0.
9363 */
9364 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9365 pfn++;
b023f468
WC
9366 continue;
9367 }
aa218795
DH
9368 /*
9369 * At this point all remaining PageOffline() pages have a
9370 * reference count of 0 and can simply be skipped.
9371 */
9372 if (PageOffline(page)) {
9373 BUG_ON(page_count(page));
9374 BUG_ON(PageBuddy(page));
9375 pfn++;
aa218795
DH
9376 continue;
9377 }
b023f468 9378
0c0e6195
KH
9379 BUG_ON(page_count(page));
9380 BUG_ON(!PageBuddy(page));
ab130f91 9381 order = buddy_order(page);
6ab01363 9382 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9383 pfn += (1 << order);
9384 }
9385 spin_unlock_irqrestore(&zone->lock, flags);
9386}
9387#endif
8d22ba1b 9388
8446b59b
ED
9389/*
9390 * This function returns a stable result only if called under zone lock.
9391 */
8d22ba1b
WF
9392bool is_free_buddy_page(struct page *page)
9393{
8d22ba1b 9394 unsigned long pfn = page_to_pfn(page);
7aeb09f9 9395 unsigned int order;
8d22ba1b 9396
8d22ba1b
WF
9397 for (order = 0; order < MAX_ORDER; order++) {
9398 struct page *page_head = page - (pfn & ((1 << order) - 1));
9399
8446b59b
ED
9400 if (PageBuddy(page_head) &&
9401 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
9402 break;
9403 }
8d22ba1b
WF
9404
9405 return order < MAX_ORDER;
9406}
a581865e 9407EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
9408
9409#ifdef CONFIG_MEMORY_FAILURE
9410/*
06be6ff3
OS
9411 * Break down a higher-order page in sub-pages, and keep our target out of
9412 * buddy allocator.
d4ae9916 9413 */
06be6ff3
OS
9414static void break_down_buddy_pages(struct zone *zone, struct page *page,
9415 struct page *target, int low, int high,
9416 int migratetype)
9417{
9418 unsigned long size = 1 << high;
9419 struct page *current_buddy, *next_page;
9420
9421 while (high > low) {
9422 high--;
9423 size >>= 1;
9424
9425 if (target >= &page[size]) {
9426 next_page = page + size;
9427 current_buddy = page;
9428 } else {
9429 next_page = page;
9430 current_buddy = page + size;
9431 }
9432
9433 if (set_page_guard(zone, current_buddy, high, migratetype))
9434 continue;
9435
9436 if (current_buddy != target) {
9437 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9438 set_buddy_order(current_buddy, high);
06be6ff3
OS
9439 page = next_page;
9440 }
9441 }
9442}
9443
9444/*
9445 * Take a page that will be marked as poisoned off the buddy allocator.
9446 */
9447bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9448{
9449 struct zone *zone = page_zone(page);
9450 unsigned long pfn = page_to_pfn(page);
9451 unsigned long flags;
9452 unsigned int order;
06be6ff3 9453 bool ret = false;
d4ae9916
NH
9454
9455 spin_lock_irqsave(&zone->lock, flags);
9456 for (order = 0; order < MAX_ORDER; order++) {
9457 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9458 int page_order = buddy_order(page_head);
d4ae9916 9459
ab130f91 9460 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9461 unsigned long pfn_head = page_to_pfn(page_head);
9462 int migratetype = get_pfnblock_migratetype(page_head,
9463 pfn_head);
9464
ab130f91 9465 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9466 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9467 page_order, migratetype);
bf181c58 9468 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
9469 if (!is_migrate_isolate(migratetype))
9470 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9471 ret = true;
d4ae9916
NH
9472 break;
9473 }
06be6ff3
OS
9474 if (page_count(page_head) > 0)
9475 break;
d4ae9916
NH
9476 }
9477 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9478 return ret;
d4ae9916 9479}
bf181c58
NH
9480
9481/*
9482 * Cancel takeoff done by take_page_off_buddy().
9483 */
9484bool put_page_back_buddy(struct page *page)
9485{
9486 struct zone *zone = page_zone(page);
9487 unsigned long pfn = page_to_pfn(page);
9488 unsigned long flags;
9489 int migratetype = get_pfnblock_migratetype(page, pfn);
9490 bool ret = false;
9491
9492 spin_lock_irqsave(&zone->lock, flags);
9493 if (put_page_testzero(page)) {
9494 ClearPageHWPoisonTakenOff(page);
9495 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9496 if (TestClearPageHWPoison(page)) {
bf181c58
NH
9497 ret = true;
9498 }
9499 }
9500 spin_unlock_irqrestore(&zone->lock, flags);
9501
9502 return ret;
9503}
d4ae9916 9504#endif
62b31070
BH
9505
9506#ifdef CONFIG_ZONE_DMA
9507bool has_managed_dma(void)
9508{
9509 struct pglist_data *pgdat;
9510
9511 for_each_online_pgdat(pgdat) {
9512 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9513
9514 if (managed_zone(zone))
9515 return true;
9516 }
9517 return false;
9518}
9519#endif /* CONFIG_ZONE_DMA */