]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
[PATCH] vm: try_to_free_pages unused argument
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/nodemask.h>
36#include <linux/vmalloc.h>
37
38#include <asm/tlbflush.h>
39#include "internal.h"
40
41/*
42 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43 * initializer cleaner
44 */
45nodemask_t node_online_map = { { [0] = 1UL } };
7223a93a 46EXPORT_SYMBOL(node_online_map);
1da177e4 47nodemask_t node_possible_map = NODE_MASK_ALL;
7223a93a 48EXPORT_SYMBOL(node_possible_map);
1da177e4
LT
49struct pglist_data *pgdat_list;
50unsigned long totalram_pages;
51unsigned long totalhigh_pages;
52long nr_swap_pages;
53
54/*
55 * results with 256, 32 in the lowmem_reserve sysctl:
56 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57 * 1G machine -> (16M dma, 784M normal, 224M high)
58 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
61 */
62int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
63
64EXPORT_SYMBOL(totalram_pages);
65EXPORT_SYMBOL(nr_swap_pages);
66
67/*
68 * Used by page_zone() to look up the address of the struct zone whose
69 * id is encoded in the upper bits of page->flags
70 */
71struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)];
72EXPORT_SYMBOL(zone_table);
73
e7c8d5c9
CL
74#ifdef CONFIG_NUMA
75static struct per_cpu_pageset
76 pageset_table[MAX_NR_ZONES*MAX_NUMNODES*NR_CPUS] __initdata;
77#endif
78
1da177e4
LT
79static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
80int min_free_kbytes = 1024;
81
82unsigned long __initdata nr_kernel_pages;
83unsigned long __initdata nr_all_pages;
84
85/*
86 * Temporary debugging check for pages not lying within a given zone.
87 */
88static int bad_range(struct zone *zone, struct page *page)
89{
90 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
91 return 1;
92 if (page_to_pfn(page) < zone->zone_start_pfn)
93 return 1;
94#ifdef CONFIG_HOLES_IN_ZONE
95 if (!pfn_valid(page_to_pfn(page)))
96 return 1;
97#endif
98 if (zone != page_zone(page))
99 return 1;
100 return 0;
101}
102
103static void bad_page(const char *function, struct page *page)
104{
105 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
106 function, current->comm, page);
107 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
108 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
109 page->mapping, page_mapcount(page), page_count(page));
110 printk(KERN_EMERG "Backtrace:\n");
111 dump_stack();
112 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
113 page->flags &= ~(1 << PG_private |
114 1 << PG_locked |
115 1 << PG_lru |
116 1 << PG_active |
117 1 << PG_dirty |
118 1 << PG_swapcache |
119 1 << PG_writeback);
120 set_page_count(page, 0);
121 reset_page_mapcount(page);
122 page->mapping = NULL;
123 tainted |= TAINT_BAD_PAGE;
124}
125
126#ifndef CONFIG_HUGETLB_PAGE
127#define prep_compound_page(page, order) do { } while (0)
128#define destroy_compound_page(page, order) do { } while (0)
129#else
130/*
131 * Higher-order pages are called "compound pages". They are structured thusly:
132 *
133 * The first PAGE_SIZE page is called the "head page".
134 *
135 * The remaining PAGE_SIZE pages are called "tail pages".
136 *
137 * All pages have PG_compound set. All pages have their ->private pointing at
138 * the head page (even the head page has this).
139 *
140 * The first tail page's ->mapping, if non-zero, holds the address of the
141 * compound page's put_page() function.
142 *
143 * The order of the allocation is stored in the first tail page's ->index
144 * This is only for debug at present. This usage means that zero-order pages
145 * may not be compound.
146 */
147static void prep_compound_page(struct page *page, unsigned long order)
148{
149 int i;
150 int nr_pages = 1 << order;
151
152 page[1].mapping = NULL;
153 page[1].index = order;
154 for (i = 0; i < nr_pages; i++) {
155 struct page *p = page + i;
156
157 SetPageCompound(p);
158 p->private = (unsigned long)page;
159 }
160}
161
162static void destroy_compound_page(struct page *page, unsigned long order)
163{
164 int i;
165 int nr_pages = 1 << order;
166
167 if (!PageCompound(page))
168 return;
169
170 if (page[1].index != order)
171 bad_page(__FUNCTION__, page);
172
173 for (i = 0; i < nr_pages; i++) {
174 struct page *p = page + i;
175
176 if (!PageCompound(p))
177 bad_page(__FUNCTION__, page);
178 if (p->private != (unsigned long)page)
179 bad_page(__FUNCTION__, page);
180 ClearPageCompound(p);
181 }
182}
183#endif /* CONFIG_HUGETLB_PAGE */
184
185/*
186 * function for dealing with page's order in buddy system.
187 * zone->lock is already acquired when we use these.
188 * So, we don't need atomic page->flags operations here.
189 */
190static inline unsigned long page_order(struct page *page) {
191 return page->private;
192}
193
194static inline void set_page_order(struct page *page, int order) {
195 page->private = order;
196 __SetPagePrivate(page);
197}
198
199static inline void rmv_page_order(struct page *page)
200{
201 __ClearPagePrivate(page);
202 page->private = 0;
203}
204
205/*
206 * Locate the struct page for both the matching buddy in our
207 * pair (buddy1) and the combined O(n+1) page they form (page).
208 *
209 * 1) Any buddy B1 will have an order O twin B2 which satisfies
210 * the following equation:
211 * B2 = B1 ^ (1 << O)
212 * For example, if the starting buddy (buddy2) is #8 its order
213 * 1 buddy is #10:
214 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
215 *
216 * 2) Any buddy B will have an order O+1 parent P which
217 * satisfies the following equation:
218 * P = B & ~(1 << O)
219 *
220 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
221 */
222static inline struct page *
223__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
224{
225 unsigned long buddy_idx = page_idx ^ (1 << order);
226
227 return page + (buddy_idx - page_idx);
228}
229
230static inline unsigned long
231__find_combined_index(unsigned long page_idx, unsigned int order)
232{
233 return (page_idx & ~(1 << order));
234}
235
236/*
237 * This function checks whether a page is free && is the buddy
238 * we can do coalesce a page and its buddy if
239 * (a) the buddy is free &&
240 * (b) the buddy is on the buddy system &&
241 * (c) a page and its buddy have the same order.
242 * for recording page's order, we use page->private and PG_private.
243 *
244 */
245static inline int page_is_buddy(struct page *page, int order)
246{
247 if (PagePrivate(page) &&
248 (page_order(page) == order) &&
249 !PageReserved(page) &&
250 page_count(page) == 0)
251 return 1;
252 return 0;
253}
254
255/*
256 * Freeing function for a buddy system allocator.
257 *
258 * The concept of a buddy system is to maintain direct-mapped table
259 * (containing bit values) for memory blocks of various "orders".
260 * The bottom level table contains the map for the smallest allocatable
261 * units of memory (here, pages), and each level above it describes
262 * pairs of units from the levels below, hence, "buddies".
263 * At a high level, all that happens here is marking the table entry
264 * at the bottom level available, and propagating the changes upward
265 * as necessary, plus some accounting needed to play nicely with other
266 * parts of the VM system.
267 * At each level, we keep a list of pages, which are heads of continuous
268 * free pages of length of (1 << order) and marked with PG_Private.Page's
269 * order is recorded in page->private field.
270 * So when we are allocating or freeing one, we can derive the state of the
271 * other. That is, if we allocate a small block, and both were
272 * free, the remainder of the region must be split into blocks.
273 * If a block is freed, and its buddy is also free, then this
274 * triggers coalescing into a block of larger size.
275 *
276 * -- wli
277 */
278
279static inline void __free_pages_bulk (struct page *page,
280 struct zone *zone, unsigned int order)
281{
282 unsigned long page_idx;
283 int order_size = 1 << order;
284
285 if (unlikely(order))
286 destroy_compound_page(page, order);
287
288 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
289
290 BUG_ON(page_idx & (order_size - 1));
291 BUG_ON(bad_range(zone, page));
292
293 zone->free_pages += order_size;
294 while (order < MAX_ORDER-1) {
295 unsigned long combined_idx;
296 struct free_area *area;
297 struct page *buddy;
298
299 combined_idx = __find_combined_index(page_idx, order);
300 buddy = __page_find_buddy(page, page_idx, order);
301
302 if (bad_range(zone, buddy))
303 break;
304 if (!page_is_buddy(buddy, order))
305 break; /* Move the buddy up one level. */
306 list_del(&buddy->lru);
307 area = zone->free_area + order;
308 area->nr_free--;
309 rmv_page_order(buddy);
310 page = page + (combined_idx - page_idx);
311 page_idx = combined_idx;
312 order++;
313 }
314 set_page_order(page, order);
315 list_add(&page->lru, &zone->free_area[order].free_list);
316 zone->free_area[order].nr_free++;
317}
318
319static inline void free_pages_check(const char *function, struct page *page)
320{
321 if ( page_mapcount(page) ||
322 page->mapping != NULL ||
323 page_count(page) != 0 ||
324 (page->flags & (
325 1 << PG_lru |
326 1 << PG_private |
327 1 << PG_locked |
328 1 << PG_active |
329 1 << PG_reclaim |
330 1 << PG_slab |
331 1 << PG_swapcache |
332 1 << PG_writeback )))
333 bad_page(function, page);
334 if (PageDirty(page))
335 ClearPageDirty(page);
336}
337
338/*
339 * Frees a list of pages.
340 * Assumes all pages on list are in same zone, and of same order.
341 * count is the number of pages to free, or 0 for all on the list.
342 *
343 * If the zone was previously in an "all pages pinned" state then look to
344 * see if this freeing clears that state.
345 *
346 * And clear the zone's pages_scanned counter, to hold off the "all pages are
347 * pinned" detection logic.
348 */
349static int
350free_pages_bulk(struct zone *zone, int count,
351 struct list_head *list, unsigned int order)
352{
353 unsigned long flags;
354 struct page *page = NULL;
355 int ret = 0;
356
357 spin_lock_irqsave(&zone->lock, flags);
358 zone->all_unreclaimable = 0;
359 zone->pages_scanned = 0;
360 while (!list_empty(list) && count--) {
361 page = list_entry(list->prev, struct page, lru);
362 /* have to delete it as __free_pages_bulk list manipulates */
363 list_del(&page->lru);
364 __free_pages_bulk(page, zone, order);
365 ret++;
366 }
367 spin_unlock_irqrestore(&zone->lock, flags);
368 return ret;
369}
370
371void __free_pages_ok(struct page *page, unsigned int order)
372{
373 LIST_HEAD(list);
374 int i;
375
376 arch_free_page(page, order);
377
378 mod_page_state(pgfree, 1 << order);
379
380#ifndef CONFIG_MMU
381 if (order > 0)
382 for (i = 1 ; i < (1 << order) ; ++i)
383 __put_page(page + i);
384#endif
385
386 for (i = 0 ; i < (1 << order) ; ++i)
387 free_pages_check(__FUNCTION__, page + i);
388 list_add(&page->lru, &list);
389 kernel_map_pages(page, 1<<order, 0);
390 free_pages_bulk(page_zone(page), 1, &list, order);
391}
392
393
394/*
395 * The order of subdivision here is critical for the IO subsystem.
396 * Please do not alter this order without good reasons and regression
397 * testing. Specifically, as large blocks of memory are subdivided,
398 * the order in which smaller blocks are delivered depends on the order
399 * they're subdivided in this function. This is the primary factor
400 * influencing the order in which pages are delivered to the IO
401 * subsystem according to empirical testing, and this is also justified
402 * by considering the behavior of a buddy system containing a single
403 * large block of memory acted on by a series of small allocations.
404 * This behavior is a critical factor in sglist merging's success.
405 *
406 * -- wli
407 */
408static inline struct page *
409expand(struct zone *zone, struct page *page,
410 int low, int high, struct free_area *area)
411{
412 unsigned long size = 1 << high;
413
414 while (high > low) {
415 area--;
416 high--;
417 size >>= 1;
418 BUG_ON(bad_range(zone, &page[size]));
419 list_add(&page[size].lru, &area->free_list);
420 area->nr_free++;
421 set_page_order(&page[size], high);
422 }
423 return page;
424}
425
426void set_page_refs(struct page *page, int order)
427{
428#ifdef CONFIG_MMU
429 set_page_count(page, 1);
430#else
431 int i;
432
433 /*
434 * We need to reference all the pages for this order, otherwise if
435 * anyone accesses one of the pages with (get/put) it will be freed.
436 * - eg: access_process_vm()
437 */
438 for (i = 0; i < (1 << order); i++)
439 set_page_count(page + i, 1);
440#endif /* CONFIG_MMU */
441}
442
443/*
444 * This page is about to be returned from the page allocator
445 */
446static void prep_new_page(struct page *page, int order)
447{
448 if (page->mapping || page_mapcount(page) ||
449 (page->flags & (
450 1 << PG_private |
451 1 << PG_locked |
452 1 << PG_lru |
453 1 << PG_active |
454 1 << PG_dirty |
455 1 << PG_reclaim |
456 1 << PG_swapcache |
457 1 << PG_writeback )))
458 bad_page(__FUNCTION__, page);
459
460 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
461 1 << PG_referenced | 1 << PG_arch_1 |
462 1 << PG_checked | 1 << PG_mappedtodisk);
463 page->private = 0;
464 set_page_refs(page, order);
465 kernel_map_pages(page, 1 << order, 1);
466}
467
468/*
469 * Do the hard work of removing an element from the buddy allocator.
470 * Call me with the zone->lock already held.
471 */
472static struct page *__rmqueue(struct zone *zone, unsigned int order)
473{
474 struct free_area * area;
475 unsigned int current_order;
476 struct page *page;
477
478 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
479 area = zone->free_area + current_order;
480 if (list_empty(&area->free_list))
481 continue;
482
483 page = list_entry(area->free_list.next, struct page, lru);
484 list_del(&page->lru);
485 rmv_page_order(page);
486 area->nr_free--;
487 zone->free_pages -= 1UL << order;
488 return expand(zone, page, order, current_order, area);
489 }
490
491 return NULL;
492}
493
494/*
495 * Obtain a specified number of elements from the buddy allocator, all under
496 * a single hold of the lock, for efficiency. Add them to the supplied list.
497 * Returns the number of new pages which were placed at *list.
498 */
499static int rmqueue_bulk(struct zone *zone, unsigned int order,
500 unsigned long count, struct list_head *list)
501{
502 unsigned long flags;
503 int i;
504 int allocated = 0;
505 struct page *page;
506
507 spin_lock_irqsave(&zone->lock, flags);
508 for (i = 0; i < count; ++i) {
509 page = __rmqueue(zone, order);
510 if (page == NULL)
511 break;
512 allocated++;
513 list_add_tail(&page->lru, list);
514 }
515 spin_unlock_irqrestore(&zone->lock, flags);
516 return allocated;
517}
518
519#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
520static void __drain_pages(unsigned int cpu)
521{
522 struct zone *zone;
523 int i;
524
525 for_each_zone(zone) {
526 struct per_cpu_pageset *pset;
527
e7c8d5c9 528 pset = zone_pcp(zone, cpu);
1da177e4
LT
529 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
530 struct per_cpu_pages *pcp;
531
532 pcp = &pset->pcp[i];
533 pcp->count -= free_pages_bulk(zone, pcp->count,
534 &pcp->list, 0);
535 }
536 }
537}
538#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
539
540#ifdef CONFIG_PM
541
542void mark_free_pages(struct zone *zone)
543{
544 unsigned long zone_pfn, flags;
545 int order;
546 struct list_head *curr;
547
548 if (!zone->spanned_pages)
549 return;
550
551 spin_lock_irqsave(&zone->lock, flags);
552 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
553 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
554
555 for (order = MAX_ORDER - 1; order >= 0; --order)
556 list_for_each(curr, &zone->free_area[order].free_list) {
557 unsigned long start_pfn, i;
558
559 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
560
561 for (i=0; i < (1<<order); i++)
562 SetPageNosaveFree(pfn_to_page(start_pfn+i));
563 }
564 spin_unlock_irqrestore(&zone->lock, flags);
565}
566
567/*
568 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
569 */
570void drain_local_pages(void)
571{
572 unsigned long flags;
573
574 local_irq_save(flags);
575 __drain_pages(smp_processor_id());
576 local_irq_restore(flags);
577}
578#endif /* CONFIG_PM */
579
580static void zone_statistics(struct zonelist *zonelist, struct zone *z)
581{
582#ifdef CONFIG_NUMA
583 unsigned long flags;
584 int cpu;
585 pg_data_t *pg = z->zone_pgdat;
586 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
587 struct per_cpu_pageset *p;
588
589 local_irq_save(flags);
590 cpu = smp_processor_id();
e7c8d5c9 591 p = zone_pcp(z,cpu);
1da177e4 592 if (pg == orig) {
e7c8d5c9 593 p->numa_hit++;
1da177e4
LT
594 } else {
595 p->numa_miss++;
e7c8d5c9 596 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
597 }
598 if (pg == NODE_DATA(numa_node_id()))
599 p->local_node++;
600 else
601 p->other_node++;
602 local_irq_restore(flags);
603#endif
604}
605
606/*
607 * Free a 0-order page
608 */
609static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
610static void fastcall free_hot_cold_page(struct page *page, int cold)
611{
612 struct zone *zone = page_zone(page);
613 struct per_cpu_pages *pcp;
614 unsigned long flags;
615
616 arch_free_page(page, 0);
617
618 kernel_map_pages(page, 1, 0);
619 inc_page_state(pgfree);
620 if (PageAnon(page))
621 page->mapping = NULL;
622 free_pages_check(__FUNCTION__, page);
e7c8d5c9 623 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4
LT
624 local_irq_save(flags);
625 if (pcp->count >= pcp->high)
626 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
627 list_add(&page->lru, &pcp->list);
628 pcp->count++;
629 local_irq_restore(flags);
630 put_cpu();
631}
632
633void fastcall free_hot_page(struct page *page)
634{
635 free_hot_cold_page(page, 0);
636}
637
638void fastcall free_cold_page(struct page *page)
639{
640 free_hot_cold_page(page, 1);
641}
642
643static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
644{
645 int i;
646
647 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
648 for(i = 0; i < (1 << order); i++)
649 clear_highpage(page + i);
650}
651
652/*
653 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
654 * we cheat by calling it from here, in the order > 0 path. Saves a branch
655 * or two.
656 */
657static struct page *
658buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
659{
660 unsigned long flags;
661 struct page *page = NULL;
662 int cold = !!(gfp_flags & __GFP_COLD);
663
664 if (order == 0) {
665 struct per_cpu_pages *pcp;
666
e7c8d5c9 667 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4
LT
668 local_irq_save(flags);
669 if (pcp->count <= pcp->low)
670 pcp->count += rmqueue_bulk(zone, 0,
671 pcp->batch, &pcp->list);
672 if (pcp->count) {
673 page = list_entry(pcp->list.next, struct page, lru);
674 list_del(&page->lru);
675 pcp->count--;
676 }
677 local_irq_restore(flags);
678 put_cpu();
679 }
680
681 if (page == NULL) {
682 spin_lock_irqsave(&zone->lock, flags);
683 page = __rmqueue(zone, order);
684 spin_unlock_irqrestore(&zone->lock, flags);
685 }
686
687 if (page != NULL) {
688 BUG_ON(bad_range(zone, page));
689 mod_page_state_zone(zone, pgalloc, 1 << order);
690 prep_new_page(page, order);
691
692 if (gfp_flags & __GFP_ZERO)
693 prep_zero_page(page, order, gfp_flags);
694
695 if (order && (gfp_flags & __GFP_COMP))
696 prep_compound_page(page, order);
697 }
698 return page;
699}
700
701/*
702 * Return 1 if free pages are above 'mark'. This takes into account the order
703 * of the allocation.
704 */
705int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
706 int classzone_idx, int can_try_harder, int gfp_high)
707{
708 /* free_pages my go negative - that's OK */
709 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
710 int o;
711
712 if (gfp_high)
713 min -= min / 2;
714 if (can_try_harder)
715 min -= min / 4;
716
717 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
718 return 0;
719 for (o = 0; o < order; o++) {
720 /* At the next order, this order's pages become unavailable */
721 free_pages -= z->free_area[o].nr_free << o;
722
723 /* Require fewer higher order pages to be free */
724 min >>= 1;
725
726 if (free_pages <= min)
727 return 0;
728 }
729 return 1;
730}
731
753ee728
MH
732static inline int
733should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
734{
735 if (!z->reclaim_pages)
736 return 0;
0c35bbad
MH
737 if (gfp_mask & __GFP_NORECLAIM)
738 return 0;
753ee728
MH
739 return 1;
740}
741
1da177e4
LT
742/*
743 * This is the 'heart' of the zoned buddy allocator.
744 */
745struct page * fastcall
746__alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
747 struct zonelist *zonelist)
748{
749 const int wait = gfp_mask & __GFP_WAIT;
750 struct zone **zones, *z;
751 struct page *page;
752 struct reclaim_state reclaim_state;
753 struct task_struct *p = current;
754 int i;
755 int classzone_idx;
756 int do_retry;
757 int can_try_harder;
758 int did_some_progress;
759
760 might_sleep_if(wait);
761
762 /*
763 * The caller may dip into page reserves a bit more if the caller
764 * cannot run direct reclaim, or is the caller has realtime scheduling
765 * policy
766 */
767 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
768
769 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
770
771 if (unlikely(zones[0] == NULL)) {
772 /* Should this ever happen?? */
773 return NULL;
774 }
775
776 classzone_idx = zone_idx(zones[0]);
777
753ee728 778restart:
1da177e4
LT
779 /* Go through the zonelist once, looking for a zone with enough free */
780 for (i = 0; (z = zones[i]) != NULL; i++) {
753ee728 781 int do_reclaim = should_reclaim_zone(z, gfp_mask);
1da177e4
LT
782
783 if (!cpuset_zone_allowed(z))
784 continue;
785
753ee728
MH
786 /*
787 * If the zone is to attempt early page reclaim then this loop
788 * will try to reclaim pages and check the watermark a second
789 * time before giving up and falling back to the next zone.
790 */
791zone_reclaim_retry:
792 if (!zone_watermark_ok(z, order, z->pages_low,
793 classzone_idx, 0, 0)) {
794 if (!do_reclaim)
795 continue;
796 else {
797 zone_reclaim(z, gfp_mask, order);
798 /* Only try reclaim once */
799 do_reclaim = 0;
800 goto zone_reclaim_retry;
801 }
802 }
803
1da177e4
LT
804 page = buffered_rmqueue(z, order, gfp_mask);
805 if (page)
806 goto got_pg;
807 }
808
809 for (i = 0; (z = zones[i]) != NULL; i++)
810 wakeup_kswapd(z, order);
811
812 /*
813 * Go through the zonelist again. Let __GFP_HIGH and allocations
814 * coming from realtime tasks to go deeper into reserves
815 *
816 * This is the last chance, in general, before the goto nopage.
817 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
818 */
819 for (i = 0; (z = zones[i]) != NULL; i++) {
820 if (!zone_watermark_ok(z, order, z->pages_min,
821 classzone_idx, can_try_harder,
822 gfp_mask & __GFP_HIGH))
823 continue;
824
825 if (wait && !cpuset_zone_allowed(z))
826 continue;
827
828 page = buffered_rmqueue(z, order, gfp_mask);
829 if (page)
830 goto got_pg;
831 }
832
833 /* This allocation should allow future memory freeing. */
b84a35be
NP
834
835 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
836 && !in_interrupt()) {
837 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
838 /* go through the zonelist yet again, ignoring mins */
839 for (i = 0; (z = zones[i]) != NULL; i++) {
840 if (!cpuset_zone_allowed(z))
841 continue;
842 page = buffered_rmqueue(z, order, gfp_mask);
843 if (page)
844 goto got_pg;
845 }
1da177e4
LT
846 }
847 goto nopage;
848 }
849
850 /* Atomic allocations - we can't balance anything */
851 if (!wait)
852 goto nopage;
853
854rebalance:
855 cond_resched();
856
857 /* We now go into synchronous reclaim */
858 p->flags |= PF_MEMALLOC;
859 reclaim_state.reclaimed_slab = 0;
860 p->reclaim_state = &reclaim_state;
861
1ad539b2 862 did_some_progress = try_to_free_pages(zones, gfp_mask);
1da177e4
LT
863
864 p->reclaim_state = NULL;
865 p->flags &= ~PF_MEMALLOC;
866
867 cond_resched();
868
869 if (likely(did_some_progress)) {
870 /*
871 * Go through the zonelist yet one more time, keep
872 * very high watermark here, this is only to catch
873 * a parallel oom killing, we must fail if we're still
874 * under heavy pressure.
875 */
876 for (i = 0; (z = zones[i]) != NULL; i++) {
877 if (!zone_watermark_ok(z, order, z->pages_min,
878 classzone_idx, can_try_harder,
879 gfp_mask & __GFP_HIGH))
880 continue;
881
882 if (!cpuset_zone_allowed(z))
883 continue;
884
885 page = buffered_rmqueue(z, order, gfp_mask);
886 if (page)
887 goto got_pg;
888 }
889 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
890 /*
891 * Go through the zonelist yet one more time, keep
892 * very high watermark here, this is only to catch
893 * a parallel oom killing, we must fail if we're still
894 * under heavy pressure.
895 */
896 for (i = 0; (z = zones[i]) != NULL; i++) {
897 if (!zone_watermark_ok(z, order, z->pages_high,
898 classzone_idx, 0, 0))
899 continue;
900
901 if (!cpuset_zone_allowed(z))
902 continue;
903
904 page = buffered_rmqueue(z, order, gfp_mask);
905 if (page)
906 goto got_pg;
907 }
908
909 out_of_memory(gfp_mask);
910 goto restart;
911 }
912
913 /*
914 * Don't let big-order allocations loop unless the caller explicitly
915 * requests that. Wait for some write requests to complete then retry.
916 *
917 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
918 * <= 3, but that may not be true in other implementations.
919 */
920 do_retry = 0;
921 if (!(gfp_mask & __GFP_NORETRY)) {
922 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
923 do_retry = 1;
924 if (gfp_mask & __GFP_NOFAIL)
925 do_retry = 1;
926 }
927 if (do_retry) {
928 blk_congestion_wait(WRITE, HZ/50);
929 goto rebalance;
930 }
931
932nopage:
933 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
934 printk(KERN_WARNING "%s: page allocation failure."
935 " order:%d, mode:0x%x\n",
936 p->comm, order, gfp_mask);
937 dump_stack();
938 }
939 return NULL;
940got_pg:
941 zone_statistics(zonelist, z);
942 return page;
943}
944
945EXPORT_SYMBOL(__alloc_pages);
946
947/*
948 * Common helper functions.
949 */
950fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
951{
952 struct page * page;
953 page = alloc_pages(gfp_mask, order);
954 if (!page)
955 return 0;
956 return (unsigned long) page_address(page);
957}
958
959EXPORT_SYMBOL(__get_free_pages);
960
961fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
962{
963 struct page * page;
964
965 /*
966 * get_zeroed_page() returns a 32-bit address, which cannot represent
967 * a highmem page
968 */
969 BUG_ON(gfp_mask & __GFP_HIGHMEM);
970
971 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
972 if (page)
973 return (unsigned long) page_address(page);
974 return 0;
975}
976
977EXPORT_SYMBOL(get_zeroed_page);
978
979void __pagevec_free(struct pagevec *pvec)
980{
981 int i = pagevec_count(pvec);
982
983 while (--i >= 0)
984 free_hot_cold_page(pvec->pages[i], pvec->cold);
985}
986
987fastcall void __free_pages(struct page *page, unsigned int order)
988{
989 if (!PageReserved(page) && put_page_testzero(page)) {
990 if (order == 0)
991 free_hot_page(page);
992 else
993 __free_pages_ok(page, order);
994 }
995}
996
997EXPORT_SYMBOL(__free_pages);
998
999fastcall void free_pages(unsigned long addr, unsigned int order)
1000{
1001 if (addr != 0) {
1002 BUG_ON(!virt_addr_valid((void *)addr));
1003 __free_pages(virt_to_page((void *)addr), order);
1004 }
1005}
1006
1007EXPORT_SYMBOL(free_pages);
1008
1009/*
1010 * Total amount of free (allocatable) RAM:
1011 */
1012unsigned int nr_free_pages(void)
1013{
1014 unsigned int sum = 0;
1015 struct zone *zone;
1016
1017 for_each_zone(zone)
1018 sum += zone->free_pages;
1019
1020 return sum;
1021}
1022
1023EXPORT_SYMBOL(nr_free_pages);
1024
1025#ifdef CONFIG_NUMA
1026unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1027{
1028 unsigned int i, sum = 0;
1029
1030 for (i = 0; i < MAX_NR_ZONES; i++)
1031 sum += pgdat->node_zones[i].free_pages;
1032
1033 return sum;
1034}
1035#endif
1036
1037static unsigned int nr_free_zone_pages(int offset)
1038{
1039 pg_data_t *pgdat;
1040 unsigned int sum = 0;
1041
1042 for_each_pgdat(pgdat) {
1043 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1044 struct zone **zonep = zonelist->zones;
1045 struct zone *zone;
1046
1047 for (zone = *zonep++; zone; zone = *zonep++) {
1048 unsigned long size = zone->present_pages;
1049 unsigned long high = zone->pages_high;
1050 if (size > high)
1051 sum += size - high;
1052 }
1053 }
1054
1055 return sum;
1056}
1057
1058/*
1059 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1060 */
1061unsigned int nr_free_buffer_pages(void)
1062{
1063 return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1064}
1065
1066/*
1067 * Amount of free RAM allocatable within all zones
1068 */
1069unsigned int nr_free_pagecache_pages(void)
1070{
1071 return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1072}
1073
1074#ifdef CONFIG_HIGHMEM
1075unsigned int nr_free_highpages (void)
1076{
1077 pg_data_t *pgdat;
1078 unsigned int pages = 0;
1079
1080 for_each_pgdat(pgdat)
1081 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1082
1083 return pages;
1084}
1085#endif
1086
1087#ifdef CONFIG_NUMA
1088static void show_node(struct zone *zone)
1089{
1090 printk("Node %d ", zone->zone_pgdat->node_id);
1091}
1092#else
1093#define show_node(zone) do { } while (0)
1094#endif
1095
1096/*
1097 * Accumulate the page_state information across all CPUs.
1098 * The result is unavoidably approximate - it can change
1099 * during and after execution of this function.
1100 */
1101static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1102
1103atomic_t nr_pagecache = ATOMIC_INIT(0);
1104EXPORT_SYMBOL(nr_pagecache);
1105#ifdef CONFIG_SMP
1106DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1107#endif
1108
1109void __get_page_state(struct page_state *ret, int nr)
1110{
1111 int cpu = 0;
1112
1113 memset(ret, 0, sizeof(*ret));
1114
1115 cpu = first_cpu(cpu_online_map);
1116 while (cpu < NR_CPUS) {
1117 unsigned long *in, *out, off;
1118
1119 in = (unsigned long *)&per_cpu(page_states, cpu);
1120
1121 cpu = next_cpu(cpu, cpu_online_map);
1122
1123 if (cpu < NR_CPUS)
1124 prefetch(&per_cpu(page_states, cpu));
1125
1126 out = (unsigned long *)ret;
1127 for (off = 0; off < nr; off++)
1128 *out++ += *in++;
1129 }
1130}
1131
1132void get_page_state(struct page_state *ret)
1133{
1134 int nr;
1135
1136 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1137 nr /= sizeof(unsigned long);
1138
1139 __get_page_state(ret, nr + 1);
1140}
1141
1142void get_full_page_state(struct page_state *ret)
1143{
1144 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
1145}
1146
1147unsigned long __read_page_state(unsigned offset)
1148{
1149 unsigned long ret = 0;
1150 int cpu;
1151
1152 for_each_online_cpu(cpu) {
1153 unsigned long in;
1154
1155 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1156 ret += *((unsigned long *)in);
1157 }
1158 return ret;
1159}
1160
1161void __mod_page_state(unsigned offset, unsigned long delta)
1162{
1163 unsigned long flags;
1164 void* ptr;
1165
1166 local_irq_save(flags);
1167 ptr = &__get_cpu_var(page_states);
1168 *(unsigned long*)(ptr + offset) += delta;
1169 local_irq_restore(flags);
1170}
1171
1172EXPORT_SYMBOL(__mod_page_state);
1173
1174void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1175 unsigned long *free, struct pglist_data *pgdat)
1176{
1177 struct zone *zones = pgdat->node_zones;
1178 int i;
1179
1180 *active = 0;
1181 *inactive = 0;
1182 *free = 0;
1183 for (i = 0; i < MAX_NR_ZONES; i++) {
1184 *active += zones[i].nr_active;
1185 *inactive += zones[i].nr_inactive;
1186 *free += zones[i].free_pages;
1187 }
1188}
1189
1190void get_zone_counts(unsigned long *active,
1191 unsigned long *inactive, unsigned long *free)
1192{
1193 struct pglist_data *pgdat;
1194
1195 *active = 0;
1196 *inactive = 0;
1197 *free = 0;
1198 for_each_pgdat(pgdat) {
1199 unsigned long l, m, n;
1200 __get_zone_counts(&l, &m, &n, pgdat);
1201 *active += l;
1202 *inactive += m;
1203 *free += n;
1204 }
1205}
1206
1207void si_meminfo(struct sysinfo *val)
1208{
1209 val->totalram = totalram_pages;
1210 val->sharedram = 0;
1211 val->freeram = nr_free_pages();
1212 val->bufferram = nr_blockdev_pages();
1213#ifdef CONFIG_HIGHMEM
1214 val->totalhigh = totalhigh_pages;
1215 val->freehigh = nr_free_highpages();
1216#else
1217 val->totalhigh = 0;
1218 val->freehigh = 0;
1219#endif
1220 val->mem_unit = PAGE_SIZE;
1221}
1222
1223EXPORT_SYMBOL(si_meminfo);
1224
1225#ifdef CONFIG_NUMA
1226void si_meminfo_node(struct sysinfo *val, int nid)
1227{
1228 pg_data_t *pgdat = NODE_DATA(nid);
1229
1230 val->totalram = pgdat->node_present_pages;
1231 val->freeram = nr_free_pages_pgdat(pgdat);
1232 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1233 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1234 val->mem_unit = PAGE_SIZE;
1235}
1236#endif
1237
1238#define K(x) ((x) << (PAGE_SHIFT-10))
1239
1240/*
1241 * Show free area list (used inside shift_scroll-lock stuff)
1242 * We also calculate the percentage fragmentation. We do this by counting the
1243 * memory on each free list with the exception of the first item on the list.
1244 */
1245void show_free_areas(void)
1246{
1247 struct page_state ps;
1248 int cpu, temperature;
1249 unsigned long active;
1250 unsigned long inactive;
1251 unsigned long free;
1252 struct zone *zone;
1253
1254 for_each_zone(zone) {
1255 show_node(zone);
1256 printk("%s per-cpu:", zone->name);
1257
1258 if (!zone->present_pages) {
1259 printk(" empty\n");
1260 continue;
1261 } else
1262 printk("\n");
1263
1264 for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1265 struct per_cpu_pageset *pageset;
1266
1267 if (!cpu_possible(cpu))
1268 continue;
1269
e7c8d5c9 1270 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1271
1272 for (temperature = 0; temperature < 2; temperature++)
1273 printk("cpu %d %s: low %d, high %d, batch %d\n",
1274 cpu,
1275 temperature ? "cold" : "hot",
1276 pageset->pcp[temperature].low,
1277 pageset->pcp[temperature].high,
1278 pageset->pcp[temperature].batch);
1279 }
1280 }
1281
1282 get_page_state(&ps);
1283 get_zone_counts(&active, &inactive, &free);
1284
1285 printk("\nFree pages: %11ukB (%ukB HighMem)\n",
1286 K(nr_free_pages()),
1287 K(nr_free_highpages()));
1288
1289 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1290 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1291 active,
1292 inactive,
1293 ps.nr_dirty,
1294 ps.nr_writeback,
1295 ps.nr_unstable,
1296 nr_free_pages(),
1297 ps.nr_slab,
1298 ps.nr_mapped,
1299 ps.nr_page_table_pages);
1300
1301 for_each_zone(zone) {
1302 int i;
1303
1304 show_node(zone);
1305 printk("%s"
1306 " free:%lukB"
1307 " min:%lukB"
1308 " low:%lukB"
1309 " high:%lukB"
1310 " active:%lukB"
1311 " inactive:%lukB"
1312 " present:%lukB"
1313 " pages_scanned:%lu"
1314 " all_unreclaimable? %s"
1315 "\n",
1316 zone->name,
1317 K(zone->free_pages),
1318 K(zone->pages_min),
1319 K(zone->pages_low),
1320 K(zone->pages_high),
1321 K(zone->nr_active),
1322 K(zone->nr_inactive),
1323 K(zone->present_pages),
1324 zone->pages_scanned,
1325 (zone->all_unreclaimable ? "yes" : "no")
1326 );
1327 printk("lowmem_reserve[]:");
1328 for (i = 0; i < MAX_NR_ZONES; i++)
1329 printk(" %lu", zone->lowmem_reserve[i]);
1330 printk("\n");
1331 }
1332
1333 for_each_zone(zone) {
1334 unsigned long nr, flags, order, total = 0;
1335
1336 show_node(zone);
1337 printk("%s: ", zone->name);
1338 if (!zone->present_pages) {
1339 printk("empty\n");
1340 continue;
1341 }
1342
1343 spin_lock_irqsave(&zone->lock, flags);
1344 for (order = 0; order < MAX_ORDER; order++) {
1345 nr = zone->free_area[order].nr_free;
1346 total += nr << order;
1347 printk("%lu*%lukB ", nr, K(1UL) << order);
1348 }
1349 spin_unlock_irqrestore(&zone->lock, flags);
1350 printk("= %lukB\n", K(total));
1351 }
1352
1353 show_swap_cache_info();
1354}
1355
1356/*
1357 * Builds allocation fallback zone lists.
1358 */
1359static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1360{
1361 switch (k) {
1362 struct zone *zone;
1363 default:
1364 BUG();
1365 case ZONE_HIGHMEM:
1366 zone = pgdat->node_zones + ZONE_HIGHMEM;
1367 if (zone->present_pages) {
1368#ifndef CONFIG_HIGHMEM
1369 BUG();
1370#endif
1371 zonelist->zones[j++] = zone;
1372 }
1373 case ZONE_NORMAL:
1374 zone = pgdat->node_zones + ZONE_NORMAL;
1375 if (zone->present_pages)
1376 zonelist->zones[j++] = zone;
1377 case ZONE_DMA:
1378 zone = pgdat->node_zones + ZONE_DMA;
1379 if (zone->present_pages)
1380 zonelist->zones[j++] = zone;
1381 }
1382
1383 return j;
1384}
1385
1386#ifdef CONFIG_NUMA
1387#define MAX_NODE_LOAD (num_online_nodes())
1388static int __initdata node_load[MAX_NUMNODES];
1389/**
4dc3b16b 1390 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1391 * @node: node whose fallback list we're appending
1392 * @used_node_mask: nodemask_t of already used nodes
1393 *
1394 * We use a number of factors to determine which is the next node that should
1395 * appear on a given node's fallback list. The node should not have appeared
1396 * already in @node's fallback list, and it should be the next closest node
1397 * according to the distance array (which contains arbitrary distance values
1398 * from each node to each node in the system), and should also prefer nodes
1399 * with no CPUs, since presumably they'll have very little allocation pressure
1400 * on them otherwise.
1401 * It returns -1 if no node is found.
1402 */
1403static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1404{
1405 int i, n, val;
1406 int min_val = INT_MAX;
1407 int best_node = -1;
1408
1409 for_each_online_node(i) {
1410 cpumask_t tmp;
1411
1412 /* Start from local node */
1413 n = (node+i) % num_online_nodes();
1414
1415 /* Don't want a node to appear more than once */
1416 if (node_isset(n, *used_node_mask))
1417 continue;
1418
1419 /* Use the local node if we haven't already */
1420 if (!node_isset(node, *used_node_mask)) {
1421 best_node = node;
1422 break;
1423 }
1424
1425 /* Use the distance array to find the distance */
1426 val = node_distance(node, n);
1427
1428 /* Give preference to headless and unused nodes */
1429 tmp = node_to_cpumask(n);
1430 if (!cpus_empty(tmp))
1431 val += PENALTY_FOR_NODE_WITH_CPUS;
1432
1433 /* Slight preference for less loaded node */
1434 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1435 val += node_load[n];
1436
1437 if (val < min_val) {
1438 min_val = val;
1439 best_node = n;
1440 }
1441 }
1442
1443 if (best_node >= 0)
1444 node_set(best_node, *used_node_mask);
1445
1446 return best_node;
1447}
1448
1449static void __init build_zonelists(pg_data_t *pgdat)
1450{
1451 int i, j, k, node, local_node;
1452 int prev_node, load;
1453 struct zonelist *zonelist;
1454 nodemask_t used_mask;
1455
1456 /* initialize zonelists */
1457 for (i = 0; i < GFP_ZONETYPES; i++) {
1458 zonelist = pgdat->node_zonelists + i;
1459 zonelist->zones[0] = NULL;
1460 }
1461
1462 /* NUMA-aware ordering of nodes */
1463 local_node = pgdat->node_id;
1464 load = num_online_nodes();
1465 prev_node = local_node;
1466 nodes_clear(used_mask);
1467 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1468 /*
1469 * We don't want to pressure a particular node.
1470 * So adding penalty to the first node in same
1471 * distance group to make it round-robin.
1472 */
1473 if (node_distance(local_node, node) !=
1474 node_distance(local_node, prev_node))
1475 node_load[node] += load;
1476 prev_node = node;
1477 load--;
1478 for (i = 0; i < GFP_ZONETYPES; i++) {
1479 zonelist = pgdat->node_zonelists + i;
1480 for (j = 0; zonelist->zones[j] != NULL; j++);
1481
1482 k = ZONE_NORMAL;
1483 if (i & __GFP_HIGHMEM)
1484 k = ZONE_HIGHMEM;
1485 if (i & __GFP_DMA)
1486 k = ZONE_DMA;
1487
1488 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1489 zonelist->zones[j] = NULL;
1490 }
1491 }
1492}
1493
1494#else /* CONFIG_NUMA */
1495
1496static void __init build_zonelists(pg_data_t *pgdat)
1497{
1498 int i, j, k, node, local_node;
1499
1500 local_node = pgdat->node_id;
1501 for (i = 0; i < GFP_ZONETYPES; i++) {
1502 struct zonelist *zonelist;
1503
1504 zonelist = pgdat->node_zonelists + i;
1505
1506 j = 0;
1507 k = ZONE_NORMAL;
1508 if (i & __GFP_HIGHMEM)
1509 k = ZONE_HIGHMEM;
1510 if (i & __GFP_DMA)
1511 k = ZONE_DMA;
1512
1513 j = build_zonelists_node(pgdat, zonelist, j, k);
1514 /*
1515 * Now we build the zonelist so that it contains the zones
1516 * of all the other nodes.
1517 * We don't want to pressure a particular node, so when
1518 * building the zones for node N, we make sure that the
1519 * zones coming right after the local ones are those from
1520 * node N+1 (modulo N)
1521 */
1522 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1523 if (!node_online(node))
1524 continue;
1525 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1526 }
1527 for (node = 0; node < local_node; node++) {
1528 if (!node_online(node))
1529 continue;
1530 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1531 }
1532
1533 zonelist->zones[j] = NULL;
1534 }
1535}
1536
1537#endif /* CONFIG_NUMA */
1538
1539void __init build_all_zonelists(void)
1540{
1541 int i;
1542
1543 for_each_online_node(i)
1544 build_zonelists(NODE_DATA(i));
1545 printk("Built %i zonelists\n", num_online_nodes());
1546 cpuset_init_current_mems_allowed();
1547}
1548
1549/*
1550 * Helper functions to size the waitqueue hash table.
1551 * Essentially these want to choose hash table sizes sufficiently
1552 * large so that collisions trying to wait on pages are rare.
1553 * But in fact, the number of active page waitqueues on typical
1554 * systems is ridiculously low, less than 200. So this is even
1555 * conservative, even though it seems large.
1556 *
1557 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1558 * waitqueues, i.e. the size of the waitq table given the number of pages.
1559 */
1560#define PAGES_PER_WAITQUEUE 256
1561
1562static inline unsigned long wait_table_size(unsigned long pages)
1563{
1564 unsigned long size = 1;
1565
1566 pages /= PAGES_PER_WAITQUEUE;
1567
1568 while (size < pages)
1569 size <<= 1;
1570
1571 /*
1572 * Once we have dozens or even hundreds of threads sleeping
1573 * on IO we've got bigger problems than wait queue collision.
1574 * Limit the size of the wait table to a reasonable size.
1575 */
1576 size = min(size, 4096UL);
1577
1578 return max(size, 4UL);
1579}
1580
1581/*
1582 * This is an integer logarithm so that shifts can be used later
1583 * to extract the more random high bits from the multiplicative
1584 * hash function before the remainder is taken.
1585 */
1586static inline unsigned long wait_table_bits(unsigned long size)
1587{
1588 return ffz(~size);
1589}
1590
1591#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1592
1593static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1594 unsigned long *zones_size, unsigned long *zholes_size)
1595{
1596 unsigned long realtotalpages, totalpages = 0;
1597 int i;
1598
1599 for (i = 0; i < MAX_NR_ZONES; i++)
1600 totalpages += zones_size[i];
1601 pgdat->node_spanned_pages = totalpages;
1602
1603 realtotalpages = totalpages;
1604 if (zholes_size)
1605 for (i = 0; i < MAX_NR_ZONES; i++)
1606 realtotalpages -= zholes_size[i];
1607 pgdat->node_present_pages = realtotalpages;
1608 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1609}
1610
1611
1612/*
1613 * Initially all pages are reserved - free ones are freed
1614 * up by free_all_bootmem() once the early boot process is
1615 * done. Non-atomic initialization, single-pass.
1616 */
1617void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1618 unsigned long start_pfn)
1619{
1620 struct page *start = pfn_to_page(start_pfn);
1621 struct page *page;
1622
1623 for (page = start; page < (start + size); page++) {
1624 set_page_zone(page, NODEZONE(nid, zone));
1625 set_page_count(page, 0);
1626 reset_page_mapcount(page);
1627 SetPageReserved(page);
1628 INIT_LIST_HEAD(&page->lru);
1629#ifdef WANT_PAGE_VIRTUAL
1630 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1631 if (!is_highmem_idx(zone))
1632 set_page_address(page, __va(start_pfn << PAGE_SHIFT));
1633#endif
1634 start_pfn++;
1635 }
1636}
1637
1638void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1639 unsigned long size)
1640{
1641 int order;
1642 for (order = 0; order < MAX_ORDER ; order++) {
1643 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1644 zone->free_area[order].nr_free = 0;
1645 }
1646}
1647
1648#ifndef __HAVE_ARCH_MEMMAP_INIT
1649#define memmap_init(size, nid, zone, start_pfn) \
1650 memmap_init_zone((size), (nid), (zone), (start_pfn))
1651#endif
1652
e7c8d5c9
CL
1653static int __devinit zone_batchsize(struct zone *zone)
1654{
1655 int batch;
1656
1657 /*
1658 * The per-cpu-pages pools are set to around 1000th of the
1659 * size of the zone. But no more than 1/4 of a meg - there's
1660 * no point in going beyond the size of L2 cache.
1661 *
1662 * OK, so we don't know how big the cache is. So guess.
1663 */
1664 batch = zone->present_pages / 1024;
1665 if (batch * PAGE_SIZE > 256 * 1024)
1666 batch = (256 * 1024) / PAGE_SIZE;
1667 batch /= 4; /* We effectively *= 4 below */
1668 if (batch < 1)
1669 batch = 1;
1670
1671 /*
1672 * Clamp the batch to a 2^n - 1 value. Having a power
1673 * of 2 value was found to be more likely to have
1674 * suboptimal cache aliasing properties in some cases.
1675 *
1676 * For example if 2 tasks are alternately allocating
1677 * batches of pages, one task can end up with a lot
1678 * of pages of one half of the possible page colors
1679 * and the other with pages of the other colors.
1680 */
1681 batch = (1 << fls(batch + batch/2)) - 1;
1682 return batch;
1683}
1684
1685#ifdef CONFIG_NUMA
1686/*
1687 * Dynamicaly allocate memory for the
1688 * per cpu pageset array in struct zone.
1689 */
1690static int __devinit process_zones(int cpu)
1691{
1692 struct zone *zone, *dzone;
1693 int i;
1694
1695 for_each_zone(zone) {
1696 struct per_cpu_pageset *npageset = NULL;
1697
1698 npageset = kmalloc_node(sizeof(struct per_cpu_pageset),
1699 GFP_KERNEL, cpu_to_node(cpu));
1700 if (!npageset) {
1701 zone->pageset[cpu] = NULL;
1702 goto bad;
1703 }
1704
1705 if (zone->pageset[cpu]) {
1706 memcpy(npageset, zone->pageset[cpu],
1707 sizeof(struct per_cpu_pageset));
1708
1709 /* Relocate lists */
1710 for (i = 0; i < 2; i++) {
1711 INIT_LIST_HEAD(&npageset->pcp[i].list);
1712 list_splice(&zone->pageset[cpu]->pcp[i].list,
1713 &npageset->pcp[i].list);
1714 }
1715 } else {
1716 struct per_cpu_pages *pcp;
1717 unsigned long batch;
1718
1719 batch = zone_batchsize(zone);
1720
1721 pcp = &npageset->pcp[0]; /* hot */
1722 pcp->count = 0;
1723 pcp->low = 2 * batch;
1724 pcp->high = 6 * batch;
1725 pcp->batch = 1 * batch;
1726 INIT_LIST_HEAD(&pcp->list);
1727
1728 pcp = &npageset->pcp[1]; /* cold*/
1729 pcp->count = 0;
1730 pcp->low = 0;
1731 pcp->high = 2 * batch;
1732 pcp->batch = 1 * batch;
1733 INIT_LIST_HEAD(&pcp->list);
1734 }
1735 zone->pageset[cpu] = npageset;
1736 }
1737
1738 return 0;
1739bad:
1740 for_each_zone(dzone) {
1741 if (dzone == zone)
1742 break;
1743 kfree(dzone->pageset[cpu]);
1744 dzone->pageset[cpu] = NULL;
1745 }
1746 return -ENOMEM;
1747}
1748
1749static inline void free_zone_pagesets(int cpu)
1750{
1751#ifdef CONFIG_NUMA
1752 struct zone *zone;
1753
1754 for_each_zone(zone) {
1755 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1756
1757 zone_pcp(zone, cpu) = NULL;
1758 kfree(pset);
1759 }
1760#endif
1761}
1762
1763static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1764 unsigned long action,
1765 void *hcpu)
1766{
1767 int cpu = (long)hcpu;
1768 int ret = NOTIFY_OK;
1769
1770 switch (action) {
1771 case CPU_UP_PREPARE:
1772 if (process_zones(cpu))
1773 ret = NOTIFY_BAD;
1774 break;
1775#ifdef CONFIG_HOTPLUG_CPU
1776 case CPU_DEAD:
1777 free_zone_pagesets(cpu);
1778 break;
1779#endif
1780 default:
1781 break;
1782 }
1783 return ret;
1784}
1785
1786static struct notifier_block pageset_notifier =
1787 { &pageset_cpuup_callback, NULL, 0 };
1788
1789void __init setup_per_cpu_pageset()
1790{
1791 int err;
1792
1793 /* Initialize per_cpu_pageset for cpu 0.
1794 * A cpuup callback will do this for every cpu
1795 * as it comes online
1796 */
1797 err = process_zones(smp_processor_id());
1798 BUG_ON(err);
1799 register_cpu_notifier(&pageset_notifier);
1800}
1801
1802#endif
1803
1da177e4
LT
1804/*
1805 * Set up the zone data structures:
1806 * - mark all pages reserved
1807 * - mark all memory queues empty
1808 * - clear the memory bitmaps
1809 */
1810static void __init free_area_init_core(struct pglist_data *pgdat,
1811 unsigned long *zones_size, unsigned long *zholes_size)
1812{
1813 unsigned long i, j;
1814 const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
1815 int cpu, nid = pgdat->node_id;
1816 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1817
1818 pgdat->nr_zones = 0;
1819 init_waitqueue_head(&pgdat->kswapd_wait);
1820 pgdat->kswapd_max_order = 0;
1821
1822 for (j = 0; j < MAX_NR_ZONES; j++) {
1823 struct zone *zone = pgdat->node_zones + j;
1824 unsigned long size, realsize;
1825 unsigned long batch;
1826
1827 zone_table[NODEZONE(nid, j)] = zone;
1828 realsize = size = zones_size[j];
1829 if (zholes_size)
1830 realsize -= zholes_size[j];
1831
1832 if (j == ZONE_DMA || j == ZONE_NORMAL)
1833 nr_kernel_pages += realsize;
1834 nr_all_pages += realsize;
1835
1836 zone->spanned_pages = size;
1837 zone->present_pages = realsize;
1838 zone->name = zone_names[j];
1839 spin_lock_init(&zone->lock);
1840 spin_lock_init(&zone->lru_lock);
1841 zone->zone_pgdat = pgdat;
1842 zone->free_pages = 0;
1843
1844 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1845
e7c8d5c9 1846 batch = zone_batchsize(zone);
8e30f272 1847
1da177e4
LT
1848 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1849 struct per_cpu_pages *pcp;
e7c8d5c9
CL
1850#ifdef CONFIG_NUMA
1851 struct per_cpu_pageset *pgset;
1852 pgset = &pageset_table[nid*MAX_NR_ZONES*NR_CPUS +
1853 (j * NR_CPUS) + cpu];
1854
1855 zone->pageset[cpu] = pgset;
1856#else
1857 struct per_cpu_pageset *pgset = zone_pcp(zone, cpu);
1858#endif
1da177e4 1859
e7c8d5c9 1860 pcp = &pgset->pcp[0]; /* hot */
1da177e4
LT
1861 pcp->count = 0;
1862 pcp->low = 2 * batch;
1863 pcp->high = 6 * batch;
1864 pcp->batch = 1 * batch;
1865 INIT_LIST_HEAD(&pcp->list);
1866
e7c8d5c9 1867 pcp = &pgset->pcp[1]; /* cold */
1da177e4
LT
1868 pcp->count = 0;
1869 pcp->low = 0;
1870 pcp->high = 2 * batch;
1871 pcp->batch = 1 * batch;
1872 INIT_LIST_HEAD(&pcp->list);
1873 }
1874 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1875 zone_names[j], realsize, batch);
1876 INIT_LIST_HEAD(&zone->active_list);
1877 INIT_LIST_HEAD(&zone->inactive_list);
1878 zone->nr_scan_active = 0;
1879 zone->nr_scan_inactive = 0;
1880 zone->nr_active = 0;
1881 zone->nr_inactive = 0;
1e7e5a90 1882 atomic_set(&zone->reclaim_in_progress, -1);
1da177e4
LT
1883 if (!size)
1884 continue;
1885
1886 /*
1887 * The per-page waitqueue mechanism uses hashed waitqueues
1888 * per zone.
1889 */
1890 zone->wait_table_size = wait_table_size(size);
1891 zone->wait_table_bits =
1892 wait_table_bits(zone->wait_table_size);
1893 zone->wait_table = (wait_queue_head_t *)
1894 alloc_bootmem_node(pgdat, zone->wait_table_size
1895 * sizeof(wait_queue_head_t));
1896
1897 for(i = 0; i < zone->wait_table_size; ++i)
1898 init_waitqueue_head(zone->wait_table + i);
1899
1900 pgdat->nr_zones = j+1;
1901
1902 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1903 zone->zone_start_pfn = zone_start_pfn;
1904
1905 if ((zone_start_pfn) & (zone_required_alignment-1))
1906 printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n");
1907
1908 memmap_init(size, nid, j, zone_start_pfn);
1909
1910 zone_start_pfn += size;
1911
1912 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1913 }
1914}
1915
1916static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1917{
1918 unsigned long size;
1919
1920 /* Skip empty nodes */
1921 if (!pgdat->node_spanned_pages)
1922 return;
1923
1924 /* ia64 gets its own node_mem_map, before this, without bootmem */
1925 if (!pgdat->node_mem_map) {
1926 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1927 pgdat->node_mem_map = alloc_bootmem_node(pgdat, size);
1928 }
1929#ifndef CONFIG_DISCONTIGMEM
1930 /*
1931 * With no DISCONTIG, the global mem_map is just set as node 0's
1932 */
1933 if (pgdat == NODE_DATA(0))
1934 mem_map = NODE_DATA(0)->node_mem_map;
1935#endif
1936}
1937
1938void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1939 unsigned long *zones_size, unsigned long node_start_pfn,
1940 unsigned long *zholes_size)
1941{
1942 pgdat->node_id = nid;
1943 pgdat->node_start_pfn = node_start_pfn;
1944 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1945
1946 alloc_node_mem_map(pgdat);
1947
1948 free_area_init_core(pgdat, zones_size, zholes_size);
1949}
1950
1951#ifndef CONFIG_DISCONTIGMEM
1952static bootmem_data_t contig_bootmem_data;
1953struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
1954
1955EXPORT_SYMBOL(contig_page_data);
1956
1957void __init free_area_init(unsigned long *zones_size)
1958{
1959 free_area_init_node(0, &contig_page_data, zones_size,
1960 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
1961}
1962#endif
1963
1964#ifdef CONFIG_PROC_FS
1965
1966#include <linux/seq_file.h>
1967
1968static void *frag_start(struct seq_file *m, loff_t *pos)
1969{
1970 pg_data_t *pgdat;
1971 loff_t node = *pos;
1972
1973 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
1974 --node;
1975
1976 return pgdat;
1977}
1978
1979static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1980{
1981 pg_data_t *pgdat = (pg_data_t *)arg;
1982
1983 (*pos)++;
1984 return pgdat->pgdat_next;
1985}
1986
1987static void frag_stop(struct seq_file *m, void *arg)
1988{
1989}
1990
1991/*
1992 * This walks the free areas for each zone.
1993 */
1994static int frag_show(struct seq_file *m, void *arg)
1995{
1996 pg_data_t *pgdat = (pg_data_t *)arg;
1997 struct zone *zone;
1998 struct zone *node_zones = pgdat->node_zones;
1999 unsigned long flags;
2000 int order;
2001
2002 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2003 if (!zone->present_pages)
2004 continue;
2005
2006 spin_lock_irqsave(&zone->lock, flags);
2007 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2008 for (order = 0; order < MAX_ORDER; ++order)
2009 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2010 spin_unlock_irqrestore(&zone->lock, flags);
2011 seq_putc(m, '\n');
2012 }
2013 return 0;
2014}
2015
2016struct seq_operations fragmentation_op = {
2017 .start = frag_start,
2018 .next = frag_next,
2019 .stop = frag_stop,
2020 .show = frag_show,
2021};
2022
295ab934
ND
2023/*
2024 * Output information about zones in @pgdat.
2025 */
2026static int zoneinfo_show(struct seq_file *m, void *arg)
2027{
2028 pg_data_t *pgdat = arg;
2029 struct zone *zone;
2030 struct zone *node_zones = pgdat->node_zones;
2031 unsigned long flags;
2032
2033 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2034 int i;
2035
2036 if (!zone->present_pages)
2037 continue;
2038
2039 spin_lock_irqsave(&zone->lock, flags);
2040 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2041 seq_printf(m,
2042 "\n pages free %lu"
2043 "\n min %lu"
2044 "\n low %lu"
2045 "\n high %lu"
2046 "\n active %lu"
2047 "\n inactive %lu"
2048 "\n scanned %lu (a: %lu i: %lu)"
2049 "\n spanned %lu"
2050 "\n present %lu",
2051 zone->free_pages,
2052 zone->pages_min,
2053 zone->pages_low,
2054 zone->pages_high,
2055 zone->nr_active,
2056 zone->nr_inactive,
2057 zone->pages_scanned,
2058 zone->nr_scan_active, zone->nr_scan_inactive,
2059 zone->spanned_pages,
2060 zone->present_pages);
2061 seq_printf(m,
2062 "\n protection: (%lu",
2063 zone->lowmem_reserve[0]);
2064 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2065 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2066 seq_printf(m,
2067 ")"
2068 "\n pagesets");
2069 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2070 struct per_cpu_pageset *pageset;
2071 int j;
2072
e7c8d5c9 2073 pageset = zone_pcp(zone, i);
295ab934
ND
2074 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2075 if (pageset->pcp[j].count)
2076 break;
2077 }
2078 if (j == ARRAY_SIZE(pageset->pcp))
2079 continue;
2080 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2081 seq_printf(m,
2082 "\n cpu: %i pcp: %i"
2083 "\n count: %i"
2084 "\n low: %i"
2085 "\n high: %i"
2086 "\n batch: %i",
2087 i, j,
2088 pageset->pcp[j].count,
2089 pageset->pcp[j].low,
2090 pageset->pcp[j].high,
2091 pageset->pcp[j].batch);
2092 }
2093#ifdef CONFIG_NUMA
2094 seq_printf(m,
2095 "\n numa_hit: %lu"
2096 "\n numa_miss: %lu"
2097 "\n numa_foreign: %lu"
2098 "\n interleave_hit: %lu"
2099 "\n local_node: %lu"
2100 "\n other_node: %lu",
2101 pageset->numa_hit,
2102 pageset->numa_miss,
2103 pageset->numa_foreign,
2104 pageset->interleave_hit,
2105 pageset->local_node,
2106 pageset->other_node);
2107#endif
2108 }
2109 seq_printf(m,
2110 "\n all_unreclaimable: %u"
2111 "\n prev_priority: %i"
2112 "\n temp_priority: %i"
2113 "\n start_pfn: %lu",
2114 zone->all_unreclaimable,
2115 zone->prev_priority,
2116 zone->temp_priority,
2117 zone->zone_start_pfn);
2118 spin_unlock_irqrestore(&zone->lock, flags);
2119 seq_putc(m, '\n');
2120 }
2121 return 0;
2122}
2123
2124struct seq_operations zoneinfo_op = {
2125 .start = frag_start, /* iterate over all zones. The same as in
2126 * fragmentation. */
2127 .next = frag_next,
2128 .stop = frag_stop,
2129 .show = zoneinfo_show,
2130};
2131
1da177e4
LT
2132static char *vmstat_text[] = {
2133 "nr_dirty",
2134 "nr_writeback",
2135 "nr_unstable",
2136 "nr_page_table_pages",
2137 "nr_mapped",
2138 "nr_slab",
2139
2140 "pgpgin",
2141 "pgpgout",
2142 "pswpin",
2143 "pswpout",
2144 "pgalloc_high",
2145
2146 "pgalloc_normal",
2147 "pgalloc_dma",
2148 "pgfree",
2149 "pgactivate",
2150 "pgdeactivate",
2151
2152 "pgfault",
2153 "pgmajfault",
2154 "pgrefill_high",
2155 "pgrefill_normal",
2156 "pgrefill_dma",
2157
2158 "pgsteal_high",
2159 "pgsteal_normal",
2160 "pgsteal_dma",
2161 "pgscan_kswapd_high",
2162 "pgscan_kswapd_normal",
2163
2164 "pgscan_kswapd_dma",
2165 "pgscan_direct_high",
2166 "pgscan_direct_normal",
2167 "pgscan_direct_dma",
2168 "pginodesteal",
2169
2170 "slabs_scanned",
2171 "kswapd_steal",
2172 "kswapd_inodesteal",
2173 "pageoutrun",
2174 "allocstall",
2175
2176 "pgrotated",
edfbe2b0 2177 "nr_bounce",
1da177e4
LT
2178};
2179
2180static void *vmstat_start(struct seq_file *m, loff_t *pos)
2181{
2182 struct page_state *ps;
2183
2184 if (*pos >= ARRAY_SIZE(vmstat_text))
2185 return NULL;
2186
2187 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2188 m->private = ps;
2189 if (!ps)
2190 return ERR_PTR(-ENOMEM);
2191 get_full_page_state(ps);
2192 ps->pgpgin /= 2; /* sectors -> kbytes */
2193 ps->pgpgout /= 2;
2194 return (unsigned long *)ps + *pos;
2195}
2196
2197static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2198{
2199 (*pos)++;
2200 if (*pos >= ARRAY_SIZE(vmstat_text))
2201 return NULL;
2202 return (unsigned long *)m->private + *pos;
2203}
2204
2205static int vmstat_show(struct seq_file *m, void *arg)
2206{
2207 unsigned long *l = arg;
2208 unsigned long off = l - (unsigned long *)m->private;
2209
2210 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2211 return 0;
2212}
2213
2214static void vmstat_stop(struct seq_file *m, void *arg)
2215{
2216 kfree(m->private);
2217 m->private = NULL;
2218}
2219
2220struct seq_operations vmstat_op = {
2221 .start = vmstat_start,
2222 .next = vmstat_next,
2223 .stop = vmstat_stop,
2224 .show = vmstat_show,
2225};
2226
2227#endif /* CONFIG_PROC_FS */
2228
2229#ifdef CONFIG_HOTPLUG_CPU
2230static int page_alloc_cpu_notify(struct notifier_block *self,
2231 unsigned long action, void *hcpu)
2232{
2233 int cpu = (unsigned long)hcpu;
2234 long *count;
2235 unsigned long *src, *dest;
2236
2237 if (action == CPU_DEAD) {
2238 int i;
2239
2240 /* Drain local pagecache count. */
2241 count = &per_cpu(nr_pagecache_local, cpu);
2242 atomic_add(*count, &nr_pagecache);
2243 *count = 0;
2244 local_irq_disable();
2245 __drain_pages(cpu);
2246
2247 /* Add dead cpu's page_states to our own. */
2248 dest = (unsigned long *)&__get_cpu_var(page_states);
2249 src = (unsigned long *)&per_cpu(page_states, cpu);
2250
2251 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2252 i++) {
2253 dest[i] += src[i];
2254 src[i] = 0;
2255 }
2256
2257 local_irq_enable();
2258 }
2259 return NOTIFY_OK;
2260}
2261#endif /* CONFIG_HOTPLUG_CPU */
2262
2263void __init page_alloc_init(void)
2264{
2265 hotcpu_notifier(page_alloc_cpu_notify, 0);
2266}
2267
2268/*
2269 * setup_per_zone_lowmem_reserve - called whenever
2270 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2271 * has a correct pages reserved value, so an adequate number of
2272 * pages are left in the zone after a successful __alloc_pages().
2273 */
2274static void setup_per_zone_lowmem_reserve(void)
2275{
2276 struct pglist_data *pgdat;
2277 int j, idx;
2278
2279 for_each_pgdat(pgdat) {
2280 for (j = 0; j < MAX_NR_ZONES; j++) {
2281 struct zone *zone = pgdat->node_zones + j;
2282 unsigned long present_pages = zone->present_pages;
2283
2284 zone->lowmem_reserve[j] = 0;
2285
2286 for (idx = j-1; idx >= 0; idx--) {
2287 struct zone *lower_zone;
2288
2289 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2290 sysctl_lowmem_reserve_ratio[idx] = 1;
2291
2292 lower_zone = pgdat->node_zones + idx;
2293 lower_zone->lowmem_reserve[j] = present_pages /
2294 sysctl_lowmem_reserve_ratio[idx];
2295 present_pages += lower_zone->present_pages;
2296 }
2297 }
2298 }
2299}
2300
2301/*
2302 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2303 * that the pages_{min,low,high} values for each zone are set correctly
2304 * with respect to min_free_kbytes.
2305 */
2306static void setup_per_zone_pages_min(void)
2307{
2308 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2309 unsigned long lowmem_pages = 0;
2310 struct zone *zone;
2311 unsigned long flags;
2312
2313 /* Calculate total number of !ZONE_HIGHMEM pages */
2314 for_each_zone(zone) {
2315 if (!is_highmem(zone))
2316 lowmem_pages += zone->present_pages;
2317 }
2318
2319 for_each_zone(zone) {
2320 spin_lock_irqsave(&zone->lru_lock, flags);
2321 if (is_highmem(zone)) {
2322 /*
2323 * Often, highmem doesn't need to reserve any pages.
2324 * But the pages_min/low/high values are also used for
2325 * batching up page reclaim activity so we need a
2326 * decent value here.
2327 */
2328 int min_pages;
2329
2330 min_pages = zone->present_pages / 1024;
2331 if (min_pages < SWAP_CLUSTER_MAX)
2332 min_pages = SWAP_CLUSTER_MAX;
2333 if (min_pages > 128)
2334 min_pages = 128;
2335 zone->pages_min = min_pages;
2336 } else {
295ab934 2337 /* if it's a lowmem zone, reserve a number of pages
1da177e4
LT
2338 * proportionate to the zone's size.
2339 */
295ab934 2340 zone->pages_min = (pages_min * zone->present_pages) /
1da177e4
LT
2341 lowmem_pages;
2342 }
2343
2344 /*
2345 * When interpreting these watermarks, just keep in mind that:
2346 * zone->pages_min == (zone->pages_min * 4) / 4;
2347 */
2348 zone->pages_low = (zone->pages_min * 5) / 4;
2349 zone->pages_high = (zone->pages_min * 6) / 4;
2350 spin_unlock_irqrestore(&zone->lru_lock, flags);
2351 }
2352}
2353
2354/*
2355 * Initialise min_free_kbytes.
2356 *
2357 * For small machines we want it small (128k min). For large machines
2358 * we want it large (64MB max). But it is not linear, because network
2359 * bandwidth does not increase linearly with machine size. We use
2360 *
2361 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2362 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2363 *
2364 * which yields
2365 *
2366 * 16MB: 512k
2367 * 32MB: 724k
2368 * 64MB: 1024k
2369 * 128MB: 1448k
2370 * 256MB: 2048k
2371 * 512MB: 2896k
2372 * 1024MB: 4096k
2373 * 2048MB: 5792k
2374 * 4096MB: 8192k
2375 * 8192MB: 11584k
2376 * 16384MB: 16384k
2377 */
2378static int __init init_per_zone_pages_min(void)
2379{
2380 unsigned long lowmem_kbytes;
2381
2382 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2383
2384 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2385 if (min_free_kbytes < 128)
2386 min_free_kbytes = 128;
2387 if (min_free_kbytes > 65536)
2388 min_free_kbytes = 65536;
2389 setup_per_zone_pages_min();
2390 setup_per_zone_lowmem_reserve();
2391 return 0;
2392}
2393module_init(init_per_zone_pages_min)
2394
2395/*
2396 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2397 * that we can call two helper functions whenever min_free_kbytes
2398 * changes.
2399 */
2400int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2401 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2402{
2403 proc_dointvec(table, write, file, buffer, length, ppos);
2404 setup_per_zone_pages_min();
2405 return 0;
2406}
2407
2408/*
2409 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2410 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2411 * whenever sysctl_lowmem_reserve_ratio changes.
2412 *
2413 * The reserve ratio obviously has absolutely no relation with the
2414 * pages_min watermarks. The lowmem reserve ratio can only make sense
2415 * if in function of the boot time zone sizes.
2416 */
2417int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2418 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2419{
2420 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2421 setup_per_zone_lowmem_reserve();
2422 return 0;
2423}
2424
2425__initdata int hashdist = HASHDIST_DEFAULT;
2426
2427#ifdef CONFIG_NUMA
2428static int __init set_hashdist(char *str)
2429{
2430 if (!str)
2431 return 0;
2432 hashdist = simple_strtoul(str, &str, 0);
2433 return 1;
2434}
2435__setup("hashdist=", set_hashdist);
2436#endif
2437
2438/*
2439 * allocate a large system hash table from bootmem
2440 * - it is assumed that the hash table must contain an exact power-of-2
2441 * quantity of entries
2442 * - limit is the number of hash buckets, not the total allocation size
2443 */
2444void *__init alloc_large_system_hash(const char *tablename,
2445 unsigned long bucketsize,
2446 unsigned long numentries,
2447 int scale,
2448 int flags,
2449 unsigned int *_hash_shift,
2450 unsigned int *_hash_mask,
2451 unsigned long limit)
2452{
2453 unsigned long long max = limit;
2454 unsigned long log2qty, size;
2455 void *table = NULL;
2456
2457 /* allow the kernel cmdline to have a say */
2458 if (!numentries) {
2459 /* round applicable memory size up to nearest megabyte */
2460 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2461 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2462 numentries >>= 20 - PAGE_SHIFT;
2463 numentries <<= 20 - PAGE_SHIFT;
2464
2465 /* limit to 1 bucket per 2^scale bytes of low memory */
2466 if (scale > PAGE_SHIFT)
2467 numentries >>= (scale - PAGE_SHIFT);
2468 else
2469 numentries <<= (PAGE_SHIFT - scale);
2470 }
2471 /* rounded up to nearest power of 2 in size */
2472 numentries = 1UL << (long_log2(numentries) + 1);
2473
2474 /* limit allocation size to 1/16 total memory by default */
2475 if (max == 0) {
2476 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2477 do_div(max, bucketsize);
2478 }
2479
2480 if (numentries > max)
2481 numentries = max;
2482
2483 log2qty = long_log2(numentries);
2484
2485 do {
2486 size = bucketsize << log2qty;
2487 if (flags & HASH_EARLY)
2488 table = alloc_bootmem(size);
2489 else if (hashdist)
2490 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2491 else {
2492 unsigned long order;
2493 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2494 ;
2495 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2496 }
2497 } while (!table && size > PAGE_SIZE && --log2qty);
2498
2499 if (!table)
2500 panic("Failed to allocate %s hash table\n", tablename);
2501
2502 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2503 tablename,
2504 (1U << log2qty),
2505 long_log2(size) - PAGE_SHIFT,
2506 size);
2507
2508 if (_hash_shift)
2509 *_hash_shift = log2qty;
2510 if (_hash_mask)
2511 *_hash_mask = (1 << log2qty) - 1;
2512
2513 return table;
2514}