]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
mm/page_alloc: explicitly define how __GFP_HIGH non-blocking allocations accesses...
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/swap.h>
bf181c58 22#include <linux/swapops.h>
1da177e4
LT
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
10ed273f 25#include <linux/jiffies.h>
edbe7d23 26#include <linux/memblock.h>
1da177e4 27#include <linux/compiler.h>
9f158333 28#include <linux/kernel.h>
b8c73fc2 29#include <linux/kasan.h>
b073d7f8 30#include <linux/kmsan.h>
1da177e4
LT
31#include <linux/module.h>
32#include <linux/suspend.h>
33#include <linux/pagevec.h>
34#include <linux/blkdev.h>
35#include <linux/slab.h>
a238ab5b 36#include <linux/ratelimit.h>
5a3135c2 37#include <linux/oom.h>
1da177e4
LT
38#include <linux/topology.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/cpuset.h>
bdc8cb98 42#include <linux/memory_hotplug.h>
1da177e4
LT
43#include <linux/nodemask.h>
44#include <linux/vmalloc.h>
a6cccdc3 45#include <linux/vmstat.h>
4be38e35 46#include <linux/mempolicy.h>
4b94ffdc 47#include <linux/memremap.h>
6811378e 48#include <linux/stop_machine.h>
97500a4a 49#include <linux/random.h>
c713216d
MG
50#include <linux/sort.h>
51#include <linux/pfn.h>
3fcfab16 52#include <linux/backing-dev.h>
933e312e 53#include <linux/fault-inject.h>
a5d76b54 54#include <linux/page-isolation.h>
3ac7fe5a 55#include <linux/debugobjects.h>
dbb1f81c 56#include <linux/kmemleak.h>
56de7263 57#include <linux/compaction.h>
0d3d062a 58#include <trace/events/kmem.h>
d379f01d 59#include <trace/events/oom.h>
268bb0ce 60#include <linux/prefetch.h>
6e543d57 61#include <linux/mm_inline.h>
f920e413 62#include <linux/mmu_notifier.h>
041d3a8c 63#include <linux/migrate.h>
949f7ec5 64#include <linux/hugetlb.h>
8bd75c77 65#include <linux/sched/rt.h>
5b3cc15a 66#include <linux/sched/mm.h>
48c96a36 67#include <linux/page_owner.h>
df4e817b 68#include <linux/page_table_check.h>
0e1cc95b 69#include <linux/kthread.h>
4949148a 70#include <linux/memcontrol.h>
42c269c8 71#include <linux/ftrace.h>
d92a8cfc 72#include <linux/lockdep.h>
556b969a 73#include <linux/nmi.h>
eb414681 74#include <linux/psi.h>
e4443149 75#include <linux/padata.h>
4aab2be0 76#include <linux/khugepaged.h>
ba8f3587 77#include <linux/buffer_head.h>
5bf18281 78#include <linux/delayacct.h>
7ee3d4e8 79#include <asm/sections.h>
1da177e4 80#include <asm/tlbflush.h>
ac924c60 81#include <asm/div64.h>
1da177e4 82#include "internal.h"
e900a918 83#include "shuffle.h"
36e66c55 84#include "page_reporting.h"
014bb1de 85#include "swap.h"
1da177e4 86
f04a5d5d
DH
87/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88typedef int __bitwise fpi_t;
89
90/* No special request */
91#define FPI_NONE ((__force fpi_t)0)
92
93/*
94 * Skip free page reporting notification for the (possibly merged) page.
95 * This does not hinder free page reporting from grabbing the page,
96 * reporting it and marking it "reported" - it only skips notifying
97 * the free page reporting infrastructure about a newly freed page. For
98 * example, used when temporarily pulling a page from a freelist and
99 * putting it back unmodified.
100 */
101#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
102
47b6a24a
DH
103/*
104 * Place the (possibly merged) page to the tail of the freelist. Will ignore
105 * page shuffling (relevant code - e.g., memory onlining - is expected to
106 * shuffle the whole zone).
107 *
108 * Note: No code should rely on this flag for correctness - it's purely
109 * to allow for optimizations when handing back either fresh pages
110 * (memory onlining) or untouched pages (page isolation, free page
111 * reporting).
112 */
113#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
114
2c335680
AK
115/*
116 * Don't poison memory with KASAN (only for the tag-based modes).
117 * During boot, all non-reserved memblock memory is exposed to page_alloc.
118 * Poisoning all that memory lengthens boot time, especially on systems with
119 * large amount of RAM. This flag is used to skip that poisoning.
120 * This is only done for the tag-based KASAN modes, as those are able to
121 * detect memory corruptions with the memory tags assigned by default.
122 * All memory allocated normally after boot gets poisoned as usual.
123 */
124#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
125
c8e251fa
CS
126/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 128#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 129
4b23a68f
MG
130#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131/*
132 * On SMP, spin_trylock is sufficient protection.
133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134 */
135#define pcp_trylock_prepare(flags) do { } while (0)
136#define pcp_trylock_finish(flag) do { } while (0)
137#else
138
139/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140#define pcp_trylock_prepare(flags) local_irq_save(flags)
141#define pcp_trylock_finish(flags) local_irq_restore(flags)
142#endif
143
01b44456
MG
144/*
145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146 * a migration causing the wrong PCP to be locked and remote memory being
147 * potentially allocated, pin the task to the CPU for the lookup+lock.
148 * preempt_disable is used on !RT because it is faster than migrate_disable.
149 * migrate_disable is used on RT because otherwise RT spinlock usage is
150 * interfered with and a high priority task cannot preempt the allocator.
151 */
152#ifndef CONFIG_PREEMPT_RT
153#define pcpu_task_pin() preempt_disable()
154#define pcpu_task_unpin() preempt_enable()
155#else
156#define pcpu_task_pin() migrate_disable()
157#define pcpu_task_unpin() migrate_enable()
158#endif
c8e251fa 159
01b44456
MG
160/*
161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162 * Return value should be used with equivalent unlock helper.
163 */
164#define pcpu_spin_lock(type, member, ptr) \
165({ \
166 type *_ret; \
167 pcpu_task_pin(); \
168 _ret = this_cpu_ptr(ptr); \
169 spin_lock(&_ret->member); \
170 _ret; \
171})
172
57490774 173#define pcpu_spin_trylock(type, member, ptr) \
01b44456
MG
174({ \
175 type *_ret; \
176 pcpu_task_pin(); \
177 _ret = this_cpu_ptr(ptr); \
57490774 178 if (!spin_trylock(&_ret->member)) { \
01b44456
MG
179 pcpu_task_unpin(); \
180 _ret = NULL; \
181 } \
182 _ret; \
183})
184
185#define pcpu_spin_unlock(member, ptr) \
186({ \
187 spin_unlock(&ptr->member); \
188 pcpu_task_unpin(); \
189})
190
01b44456
MG
191/* struct per_cpu_pages specific helpers. */
192#define pcp_spin_lock(ptr) \
193 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
194
57490774
MG
195#define pcp_spin_trylock(ptr) \
196 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
01b44456
MG
197
198#define pcp_spin_unlock(ptr) \
199 pcpu_spin_unlock(lock, ptr)
200
72812019
LS
201#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
202DEFINE_PER_CPU(int, numa_node);
203EXPORT_PER_CPU_SYMBOL(numa_node);
204#endif
205
4518085e
KW
206DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
207
7aac7898
LS
208#ifdef CONFIG_HAVE_MEMORYLESS_NODES
209/*
210 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
211 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
212 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
213 * defined in <linux/topology.h>.
214 */
215DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
216EXPORT_PER_CPU_SYMBOL(_numa_mem_);
217#endif
218
8b885f53 219static DEFINE_MUTEX(pcpu_drain_mutex);
bd233f53 220
38addce8 221#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 222volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
223EXPORT_SYMBOL(latent_entropy);
224#endif
225
1da177e4 226/*
13808910 227 * Array of node states.
1da177e4 228 */
13808910
CL
229nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
230 [N_POSSIBLE] = NODE_MASK_ALL,
231 [N_ONLINE] = { { [0] = 1UL } },
232#ifndef CONFIG_NUMA
233 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
234#ifdef CONFIG_HIGHMEM
235 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 236#endif
20b2f52b 237 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
238 [N_CPU] = { { [0] = 1UL } },
239#endif /* NUMA */
240};
241EXPORT_SYMBOL(node_states);
242
ca79b0c2
AK
243atomic_long_t _totalram_pages __read_mostly;
244EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 245unsigned long totalreserve_pages __read_mostly;
e48322ab 246unsigned long totalcma_pages __read_mostly;
ab8fabd4 247
74f44822 248int percpu_pagelist_high_fraction;
dcce284a 249gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 250DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
251EXPORT_SYMBOL(init_on_alloc);
252
51cba1eb 253DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
254EXPORT_SYMBOL(init_on_free);
255
04013513
VB
256static bool _init_on_alloc_enabled_early __read_mostly
257 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
258static int __init early_init_on_alloc(char *buf)
259{
6471384a 260
04013513 261 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
262}
263early_param("init_on_alloc", early_init_on_alloc);
264
04013513
VB
265static bool _init_on_free_enabled_early __read_mostly
266 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
267static int __init early_init_on_free(char *buf)
268{
04013513 269 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
270}
271early_param("init_on_free", early_init_on_free);
1da177e4 272
bb14c2c7
VB
273/*
274 * A cached value of the page's pageblock's migratetype, used when the page is
275 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
276 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
277 * Also the migratetype set in the page does not necessarily match the pcplist
278 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
279 * other index - this ensures that it will be put on the correct CMA freelist.
280 */
281static inline int get_pcppage_migratetype(struct page *page)
282{
283 return page->index;
284}
285
286static inline void set_pcppage_migratetype(struct page *page, int migratetype)
287{
288 page->index = migratetype;
289}
290
452aa699
RW
291#ifdef CONFIG_PM_SLEEP
292/*
293 * The following functions are used by the suspend/hibernate code to temporarily
294 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
295 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
296 * they should always be called with system_transition_mutex held
297 * (gfp_allowed_mask also should only be modified with system_transition_mutex
298 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
299 * with that modification).
452aa699 300 */
c9e664f1
RW
301
302static gfp_t saved_gfp_mask;
303
304void pm_restore_gfp_mask(void)
452aa699 305{
55f2503c 306 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
307 if (saved_gfp_mask) {
308 gfp_allowed_mask = saved_gfp_mask;
309 saved_gfp_mask = 0;
310 }
452aa699
RW
311}
312
c9e664f1 313void pm_restrict_gfp_mask(void)
452aa699 314{
55f2503c 315 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
316 WARN_ON(saved_gfp_mask);
317 saved_gfp_mask = gfp_allowed_mask;
d0164adc 318 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 319}
f90ac398
MG
320
321bool pm_suspended_storage(void)
322{
d0164adc 323 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
324 return false;
325 return true;
326}
452aa699
RW
327#endif /* CONFIG_PM_SLEEP */
328
d9c23400 329#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 330unsigned int pageblock_order __read_mostly;
d9c23400
MG
331#endif
332
7fef431b
DH
333static void __free_pages_ok(struct page *page, unsigned int order,
334 fpi_t fpi_flags);
a226f6c8 335
1da177e4
LT
336/*
337 * results with 256, 32 in the lowmem_reserve sysctl:
338 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
339 * 1G machine -> (16M dma, 784M normal, 224M high)
340 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
341 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 342 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
343 *
344 * TBD: should special case ZONE_DMA32 machines here - in those we normally
345 * don't need any ZONE_NORMAL reservation
1da177e4 346 */
d3cda233 347int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 348#ifdef CONFIG_ZONE_DMA
d3cda233 349 [ZONE_DMA] = 256,
4b51d669 350#endif
fb0e7942 351#ifdef CONFIG_ZONE_DMA32
d3cda233 352 [ZONE_DMA32] = 256,
fb0e7942 353#endif
d3cda233 354 [ZONE_NORMAL] = 32,
e53ef38d 355#ifdef CONFIG_HIGHMEM
d3cda233 356 [ZONE_HIGHMEM] = 0,
e53ef38d 357#endif
d3cda233 358 [ZONE_MOVABLE] = 0,
2f1b6248 359};
1da177e4 360
15ad7cdc 361static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 362#ifdef CONFIG_ZONE_DMA
2f1b6248 363 "DMA",
4b51d669 364#endif
fb0e7942 365#ifdef CONFIG_ZONE_DMA32
2f1b6248 366 "DMA32",
fb0e7942 367#endif
2f1b6248 368 "Normal",
e53ef38d 369#ifdef CONFIG_HIGHMEM
2a1e274a 370 "HighMem",
e53ef38d 371#endif
2a1e274a 372 "Movable",
033fbae9
DW
373#ifdef CONFIG_ZONE_DEVICE
374 "Device",
375#endif
2f1b6248
CL
376};
377
c999fbd3 378const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
379 "Unmovable",
380 "Movable",
381 "Reclaimable",
382 "HighAtomic",
383#ifdef CONFIG_CMA
384 "CMA",
385#endif
386#ifdef CONFIG_MEMORY_ISOLATION
387 "Isolate",
388#endif
389};
390
ae70eddd
AK
391compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
392 [NULL_COMPOUND_DTOR] = NULL,
393 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 394#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 395 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 396#endif
9a982250 397#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 398 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 399#endif
f1e61557
KS
400};
401
1da177e4 402int min_free_kbytes = 1024;
42aa83cb 403int user_min_free_kbytes = -1;
1c30844d 404int watermark_boost_factor __read_mostly = 15000;
795ae7a0 405int watermark_scale_factor = 10;
1da177e4 406
bbe5d993
OS
407static unsigned long nr_kernel_pages __initdata;
408static unsigned long nr_all_pages __initdata;
409static unsigned long dma_reserve __initdata;
1da177e4 410
bbe5d993
OS
411static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
412static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 413static unsigned long required_kernelcore __initdata;
a5c6d650 414static unsigned long required_kernelcore_percent __initdata;
7f16f91f 415static unsigned long required_movablecore __initdata;
a5c6d650 416static unsigned long required_movablecore_percent __initdata;
bbe5d993 417static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
902c2d91 418bool mirrored_kernelcore __initdata_memblock;
0ee332c1
TH
419
420/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
421int movable_zone;
422EXPORT_SYMBOL(movable_zone);
c713216d 423
418508c1 424#if MAX_NUMNODES > 1
b9726c26 425unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 426unsigned int nr_online_nodes __read_mostly = 1;
418508c1 427EXPORT_SYMBOL(nr_node_ids);
62bc62a8 428EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
429#endif
430
9ef9acb0
MG
431int page_group_by_mobility_disabled __read_mostly;
432
3a80a7fa 433#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
434/*
435 * During boot we initialize deferred pages on-demand, as needed, but once
436 * page_alloc_init_late() has finished, the deferred pages are all initialized,
437 * and we can permanently disable that path.
438 */
439static DEFINE_STATIC_KEY_TRUE(deferred_pages);
440
94ae8b83 441static inline bool deferred_pages_enabled(void)
3c0c12cc 442{
94ae8b83 443 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
444}
445
fc574488
MRI
446/* Returns true if the struct page for the pfn is initialised */
447static inline bool __meminit early_page_initialised(unsigned long pfn)
3a80a7fa 448{
ef70b6f4
MG
449 int nid = early_pfn_to_nid(pfn);
450
451 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
fc574488 452 return false;
3a80a7fa 453
fc574488 454 return true;
3a80a7fa
MG
455}
456
457/*
d3035be4 458 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
459 * later in the boot cycle when it can be parallelised.
460 */
d3035be4
PT
461static bool __meminit
462defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 463{
d3035be4
PT
464 static unsigned long prev_end_pfn, nr_initialised;
465
c4f20f14
LZ
466 if (early_page_ext_enabled())
467 return false;
d3035be4
PT
468 /*
469 * prev_end_pfn static that contains the end of previous zone
470 * No need to protect because called very early in boot before smp_init.
471 */
472 if (prev_end_pfn != end_pfn) {
473 prev_end_pfn = end_pfn;
474 nr_initialised = 0;
475 }
476
3c2c6488 477 /* Always populate low zones for address-constrained allocations */
d3035be4 478 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 479 return false;
23b68cfa 480
dc2da7b4
BH
481 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
482 return true;
23b68cfa
WY
483 /*
484 * We start only with one section of pages, more pages are added as
485 * needed until the rest of deferred pages are initialized.
486 */
d3035be4 487 nr_initialised++;
23b68cfa 488 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
489 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
490 NODE_DATA(nid)->first_deferred_pfn = pfn;
491 return true;
3a80a7fa 492 }
d3035be4 493 return false;
3a80a7fa
MG
494}
495#else
94ae8b83 496static inline bool deferred_pages_enabled(void)
2c335680 497{
94ae8b83 498 return false;
2c335680 499}
3c0c12cc 500
fc574488 501static inline bool early_page_initialised(unsigned long pfn)
3a80a7fa 502{
fc574488 503 return true;
3a80a7fa
MG
504}
505
d3035be4 506static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 507{
d3035be4 508 return false;
3a80a7fa
MG
509}
510#endif
511
0b423ca2 512/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 513static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
514 unsigned long pfn)
515{
516#ifdef CONFIG_SPARSEMEM
f1eca35a 517 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
518#else
519 return page_zone(page)->pageblock_flags;
520#endif /* CONFIG_SPARSEMEM */
521}
522
ca891f41 523static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
524{
525#ifdef CONFIG_SPARSEMEM
526 pfn &= (PAGES_PER_SECTION-1);
0b423ca2 527#else
4f9bc69a 528 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
0b423ca2 529#endif /* CONFIG_SPARSEMEM */
399b795b 530 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
531}
532
535b81e2 533static __always_inline
ca891f41 534unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 535 unsigned long pfn,
0b423ca2
MG
536 unsigned long mask)
537{
538 unsigned long *bitmap;
539 unsigned long bitidx, word_bitidx;
540 unsigned long word;
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
1c563432
MK
546 /*
547 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
548 * a consistent read of the memory array, so that results, even though
549 * racy, are not corrupted.
550 */
551 word = READ_ONCE(bitmap[word_bitidx]);
d93d5ab9 552 return (word >> bitidx) & mask;
0b423ca2
MG
553}
554
a00cda3f
MCC
555/**
556 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
557 * @page: The page within the block of interest
558 * @pfn: The target page frame number
559 * @mask: mask of bits that the caller is interested in
560 *
561 * Return: pageblock_bits flags
562 */
ca891f41
MWO
563unsigned long get_pfnblock_flags_mask(const struct page *page,
564 unsigned long pfn, unsigned long mask)
0b423ca2 565{
535b81e2 566 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
567}
568
ca891f41
MWO
569static __always_inline int get_pfnblock_migratetype(const struct page *page,
570 unsigned long pfn)
0b423ca2 571{
535b81e2 572 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
573}
574
575/**
576 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
577 * @page: The page within the block of interest
578 * @flags: The flags to set
579 * @pfn: The target page frame number
0b423ca2
MG
580 * @mask: mask of bits that the caller is interested in
581 */
582void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
583 unsigned long pfn,
0b423ca2
MG
584 unsigned long mask)
585{
586 unsigned long *bitmap;
587 unsigned long bitidx, word_bitidx;
04ec0061 588 unsigned long word;
0b423ca2
MG
589
590 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 591 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
592
593 bitmap = get_pageblock_bitmap(page, pfn);
594 bitidx = pfn_to_bitidx(page, pfn);
595 word_bitidx = bitidx / BITS_PER_LONG;
596 bitidx &= (BITS_PER_LONG-1);
597
598 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
599
d93d5ab9
WY
600 mask <<= bitidx;
601 flags <<= bitidx;
0b423ca2
MG
602
603 word = READ_ONCE(bitmap[word_bitidx]);
04ec0061
UB
604 do {
605 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
0b423ca2 606}
3a80a7fa 607
ee6f509c 608void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 609{
5d0f3f72
KM
610 if (unlikely(page_group_by_mobility_disabled &&
611 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
612 migratetype = MIGRATE_UNMOVABLE;
613
d93d5ab9 614 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 615 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
616}
617
13e7444b 618#ifdef CONFIG_DEBUG_VM
c6a57e19 619static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 620{
bdc8cb98
DH
621 int ret = 0;
622 unsigned seq;
623 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 624 unsigned long sp, start_pfn;
c6a57e19 625
bdc8cb98
DH
626 do {
627 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
628 start_pfn = zone->zone_start_pfn;
629 sp = zone->spanned_pages;
108bcc96 630 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
631 ret = 1;
632 } while (zone_span_seqretry(zone, seq));
633
b5e6a5a2 634 if (ret)
613813e8
DH
635 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
636 pfn, zone_to_nid(zone), zone->name,
637 start_pfn, start_pfn + sp);
b5e6a5a2 638
bdc8cb98 639 return ret;
c6a57e19
DH
640}
641
642static int page_is_consistent(struct zone *zone, struct page *page)
643{
1da177e4 644 if (zone != page_zone(page))
c6a57e19
DH
645 return 0;
646
647 return 1;
648}
649/*
650 * Temporary debugging check for pages not lying within a given zone.
651 */
d73d3c9f 652static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
653{
654 if (page_outside_zone_boundaries(zone, page))
1da177e4 655 return 1;
c6a57e19
DH
656 if (!page_is_consistent(zone, page))
657 return 1;
658
1da177e4
LT
659 return 0;
660}
13e7444b 661#else
d73d3c9f 662static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
663{
664 return 0;
665}
666#endif
667
82a3241a 668static void bad_page(struct page *page, const char *reason)
1da177e4 669{
d936cf9b
HD
670 static unsigned long resume;
671 static unsigned long nr_shown;
672 static unsigned long nr_unshown;
673
674 /*
675 * Allow a burst of 60 reports, then keep quiet for that minute;
676 * or allow a steady drip of one report per second.
677 */
678 if (nr_shown == 60) {
679 if (time_before(jiffies, resume)) {
680 nr_unshown++;
681 goto out;
682 }
683 if (nr_unshown) {
ff8e8116 684 pr_alert(
1e9e6365 685 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
686 nr_unshown);
687 nr_unshown = 0;
688 }
689 nr_shown = 0;
690 }
691 if (nr_shown++ == 0)
692 resume = jiffies + 60 * HZ;
693
ff8e8116 694 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 695 current->comm, page_to_pfn(page));
d2f07ec0 696 dump_page(page, reason);
3dc14741 697
4f31888c 698 print_modules();
1da177e4 699 dump_stack();
d936cf9b 700out:
8cc3b392 701 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 702 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 703 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
704}
705
44042b44
MG
706static inline unsigned int order_to_pindex(int migratetype, int order)
707{
708 int base = order;
709
710#ifdef CONFIG_TRANSPARENT_HUGEPAGE
711 if (order > PAGE_ALLOC_COSTLY_ORDER) {
712 VM_BUG_ON(order != pageblock_order);
5d0a661d 713 return NR_LOWORDER_PCP_LISTS;
44042b44
MG
714 }
715#else
716 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
717#endif
718
719 return (MIGRATE_PCPTYPES * base) + migratetype;
720}
721
722static inline int pindex_to_order(unsigned int pindex)
723{
724 int order = pindex / MIGRATE_PCPTYPES;
725
726#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5d0a661d 727 if (pindex == NR_LOWORDER_PCP_LISTS)
44042b44 728 order = pageblock_order;
44042b44
MG
729#else
730 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
731#endif
732
733 return order;
734}
735
736static inline bool pcp_allowed_order(unsigned int order)
737{
738 if (order <= PAGE_ALLOC_COSTLY_ORDER)
739 return true;
740#ifdef CONFIG_TRANSPARENT_HUGEPAGE
741 if (order == pageblock_order)
742 return true;
743#endif
744 return false;
745}
746
21d02f8f
MG
747static inline void free_the_page(struct page *page, unsigned int order)
748{
44042b44
MG
749 if (pcp_allowed_order(order)) /* Via pcp? */
750 free_unref_page(page, order);
21d02f8f
MG
751 else
752 __free_pages_ok(page, order, FPI_NONE);
753}
754
1da177e4
LT
755/*
756 * Higher-order pages are called "compound pages". They are structured thusly:
757 *
1d798ca3 758 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 759 *
1d798ca3
KS
760 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
761 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 762 *
1d798ca3
KS
763 * The first tail page's ->compound_dtor holds the offset in array of compound
764 * page destructors. See compound_page_dtors.
1da177e4 765 *
1d798ca3 766 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 767 * This usage means that zero-order pages may not be compound.
1da177e4 768 */
d98c7a09 769
9a982250 770void free_compound_page(struct page *page)
d98c7a09 771{
bbc6b703 772 mem_cgroup_uncharge(page_folio(page));
44042b44 773 free_the_page(page, compound_order(page));
d98c7a09
HD
774}
775
5b24eeef
JM
776static void prep_compound_head(struct page *page, unsigned int order)
777{
94688e8e
MWO
778 struct folio *folio = (struct folio *)page;
779
5b24eeef
JM
780 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
781 set_compound_order(page, order);
65a689f3
MWO
782 atomic_set(&folio->_entire_mapcount, -1);
783 atomic_set(&folio->_nr_pages_mapped, 0);
94688e8e 784 atomic_set(&folio->_pincount, 0);
5b24eeef
JM
785}
786
787static void prep_compound_tail(struct page *head, int tail_idx)
788{
789 struct page *p = head + tail_idx;
790
791 p->mapping = TAIL_MAPPING;
792 set_compound_head(p, head);
5aae9265 793 set_page_private(p, 0);
5b24eeef
JM
794}
795
d00181b9 796void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
797{
798 int i;
799 int nr_pages = 1 << order;
800
18229df5 801 __SetPageHead(page);
5b24eeef
JM
802 for (i = 1; i < nr_pages; i++)
803 prep_compound_tail(page, i);
1378a5ee 804
5b24eeef 805 prep_compound_head(page, order);
18229df5
AW
806}
807
5375336c
MWO
808void destroy_large_folio(struct folio *folio)
809{
a60d5942 810 enum compound_dtor_id dtor = folio->_folio_dtor;
5375336c
MWO
811
812 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
813 compound_page_dtors[dtor](&folio->page);
814}
815
c0a32fc5
SG
816#ifdef CONFIG_DEBUG_PAGEALLOC
817unsigned int _debug_guardpage_minorder;
96a2b03f 818
8e57f8ac
VB
819bool _debug_pagealloc_enabled_early __read_mostly
820 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
821EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 822DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 823EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
824
825DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 826
031bc574
JK
827static int __init early_debug_pagealloc(char *buf)
828{
8e57f8ac 829 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
830}
831early_param("debug_pagealloc", early_debug_pagealloc);
832
c0a32fc5
SG
833static int __init debug_guardpage_minorder_setup(char *buf)
834{
835 unsigned long res;
836
837 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 838 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
839 return 0;
840 }
841 _debug_guardpage_minorder = res;
1170532b 842 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
843 return 0;
844}
f1c1e9f7 845early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 846
acbc15a4 847static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 848 unsigned int order, int migratetype)
c0a32fc5 849{
e30825f1 850 if (!debug_guardpage_enabled())
acbc15a4
JK
851 return false;
852
853 if (order >= debug_guardpage_minorder())
854 return false;
e30825f1 855
3972f6bb 856 __SetPageGuard(page);
bf75f200 857 INIT_LIST_HEAD(&page->buddy_list);
2847cf95
JK
858 set_page_private(page, order);
859 /* Guard pages are not available for any usage */
b3618455
ML
860 if (!is_migrate_isolate(migratetype))
861 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
862
863 return true;
c0a32fc5
SG
864}
865
2847cf95
JK
866static inline void clear_page_guard(struct zone *zone, struct page *page,
867 unsigned int order, int migratetype)
c0a32fc5 868{
e30825f1
JK
869 if (!debug_guardpage_enabled())
870 return;
871
3972f6bb 872 __ClearPageGuard(page);
e30825f1 873
2847cf95
JK
874 set_page_private(page, 0);
875 if (!is_migrate_isolate(migratetype))
876 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
877}
878#else
acbc15a4
JK
879static inline bool set_page_guard(struct zone *zone, struct page *page,
880 unsigned int order, int migratetype) { return false; }
2847cf95
JK
881static inline void clear_page_guard(struct zone *zone, struct page *page,
882 unsigned int order, int migratetype) {}
c0a32fc5
SG
883#endif
884
04013513
VB
885/*
886 * Enable static keys related to various memory debugging and hardening options.
887 * Some override others, and depend on early params that are evaluated in the
888 * order of appearance. So we need to first gather the full picture of what was
889 * enabled, and then make decisions.
890 */
5749fcc5 891void __init init_mem_debugging_and_hardening(void)
04013513 892{
9df65f52
ST
893 bool page_poisoning_requested = false;
894
895#ifdef CONFIG_PAGE_POISONING
896 /*
897 * Page poisoning is debug page alloc for some arches. If
898 * either of those options are enabled, enable poisoning.
899 */
900 if (page_poisoning_enabled() ||
901 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
902 debug_pagealloc_enabled())) {
903 static_branch_enable(&_page_poisoning_enabled);
904 page_poisoning_requested = true;
905 }
906#endif
907
69e5d322
ST
908 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
909 page_poisoning_requested) {
910 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
911 "will take precedence over init_on_alloc and init_on_free\n");
912 _init_on_alloc_enabled_early = false;
913 _init_on_free_enabled_early = false;
04013513
VB
914 }
915
69e5d322
ST
916 if (_init_on_alloc_enabled_early)
917 static_branch_enable(&init_on_alloc);
918 else
919 static_branch_disable(&init_on_alloc);
920
921 if (_init_on_free_enabled_early)
922 static_branch_enable(&init_on_free);
923 else
924 static_branch_disable(&init_on_free);
925
42eaa27d
AP
926 if (IS_ENABLED(CONFIG_KMSAN) &&
927 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
928 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
929
04013513
VB
930#ifdef CONFIG_DEBUG_PAGEALLOC
931 if (!debug_pagealloc_enabled())
932 return;
933
934 static_branch_enable(&_debug_pagealloc_enabled);
935
936 if (!debug_guardpage_minorder())
937 return;
938
939 static_branch_enable(&_debug_guardpage_enabled);
940#endif
941}
942
ab130f91 943static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 944{
4c21e2f2 945 set_page_private(page, order);
676165a8 946 __SetPageBuddy(page);
1da177e4
LT
947}
948
5e1f0f09
MG
949#ifdef CONFIG_COMPACTION
950static inline struct capture_control *task_capc(struct zone *zone)
951{
952 struct capture_control *capc = current->capture_control;
953
deba0487 954 return unlikely(capc) &&
5e1f0f09
MG
955 !(current->flags & PF_KTHREAD) &&
956 !capc->page &&
deba0487 957 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
958}
959
960static inline bool
961compaction_capture(struct capture_control *capc, struct page *page,
962 int order, int migratetype)
963{
964 if (!capc || order != capc->cc->order)
965 return false;
966
967 /* Do not accidentally pollute CMA or isolated regions*/
968 if (is_migrate_cma(migratetype) ||
969 is_migrate_isolate(migratetype))
970 return false;
971
972 /*
f0953a1b 973 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
974 * This might let an unmovable request use a reclaimable pageblock
975 * and vice-versa but no more than normal fallback logic which can
976 * have trouble finding a high-order free page.
977 */
978 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
979 return false;
980
981 capc->page = page;
982 return true;
983}
984
985#else
986static inline struct capture_control *task_capc(struct zone *zone)
987{
988 return NULL;
989}
990
991static inline bool
992compaction_capture(struct capture_control *capc, struct page *page,
993 int order, int migratetype)
994{
995 return false;
996}
997#endif /* CONFIG_COMPACTION */
998
6ab01363
AD
999/* Used for pages not on another list */
1000static inline void add_to_free_list(struct page *page, struct zone *zone,
1001 unsigned int order, int migratetype)
1002{
1003 struct free_area *area = &zone->free_area[order];
1004
bf75f200 1005 list_add(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
1006 area->nr_free++;
1007}
1008
1009/* Used for pages not on another list */
1010static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1011 unsigned int order, int migratetype)
1012{
1013 struct free_area *area = &zone->free_area[order];
1014
bf75f200 1015 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
1016 area->nr_free++;
1017}
1018
293ffa5e
DH
1019/*
1020 * Used for pages which are on another list. Move the pages to the tail
1021 * of the list - so the moved pages won't immediately be considered for
1022 * allocation again (e.g., optimization for memory onlining).
1023 */
6ab01363
AD
1024static inline void move_to_free_list(struct page *page, struct zone *zone,
1025 unsigned int order, int migratetype)
1026{
1027 struct free_area *area = &zone->free_area[order];
1028
bf75f200 1029 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
1030}
1031
1032static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1033 unsigned int order)
1034{
36e66c55
AD
1035 /* clear reported state and update reported page count */
1036 if (page_reported(page))
1037 __ClearPageReported(page);
1038
bf75f200 1039 list_del(&page->buddy_list);
6ab01363
AD
1040 __ClearPageBuddy(page);
1041 set_page_private(page, 0);
1042 zone->free_area[order].nr_free--;
1043}
1044
a2129f24
AD
1045/*
1046 * If this is not the largest possible page, check if the buddy
1047 * of the next-highest order is free. If it is, it's possible
1048 * that pages are being freed that will coalesce soon. In case,
1049 * that is happening, add the free page to the tail of the list
1050 * so it's less likely to be used soon and more likely to be merged
1051 * as a higher order page
1052 */
1053static inline bool
1054buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1055 struct page *page, unsigned int order)
1056{
8170ac47
ZY
1057 unsigned long higher_page_pfn;
1058 struct page *higher_page;
a2129f24
AD
1059
1060 if (order >= MAX_ORDER - 2)
1061 return false;
1062
8170ac47
ZY
1063 higher_page_pfn = buddy_pfn & pfn;
1064 higher_page = page + (higher_page_pfn - pfn);
a2129f24 1065
8170ac47
ZY
1066 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1067 NULL) != NULL;
a2129f24
AD
1068}
1069
1da177e4
LT
1070/*
1071 * Freeing function for a buddy system allocator.
1072 *
1073 * The concept of a buddy system is to maintain direct-mapped table
1074 * (containing bit values) for memory blocks of various "orders".
1075 * The bottom level table contains the map for the smallest allocatable
1076 * units of memory (here, pages), and each level above it describes
1077 * pairs of units from the levels below, hence, "buddies".
1078 * At a high level, all that happens here is marking the table entry
1079 * at the bottom level available, and propagating the changes upward
1080 * as necessary, plus some accounting needed to play nicely with other
1081 * parts of the VM system.
1082 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1083 * free pages of length of (1 << order) and marked with PageBuddy.
1084 * Page's order is recorded in page_private(page) field.
1da177e4 1085 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1086 * other. That is, if we allocate a small block, and both were
1087 * free, the remainder of the region must be split into blocks.
1da177e4 1088 * If a block is freed, and its buddy is also free, then this
5f63b720 1089 * triggers coalescing into a block of larger size.
1da177e4 1090 *
6d49e352 1091 * -- nyc
1da177e4
LT
1092 */
1093
48db57f8 1094static inline void __free_one_page(struct page *page,
dc4b0caf 1095 unsigned long pfn,
ed0ae21d 1096 struct zone *zone, unsigned int order,
f04a5d5d 1097 int migratetype, fpi_t fpi_flags)
1da177e4 1098{
a2129f24 1099 struct capture_control *capc = task_capc(zone);
dae37a5d 1100 unsigned long buddy_pfn = 0;
a2129f24 1101 unsigned long combined_pfn;
a2129f24
AD
1102 struct page *buddy;
1103 bool to_tail;
d9dddbf5 1104
d29bb978 1105 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1106 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1107
ed0ae21d 1108 VM_BUG_ON(migratetype == -1);
d9dddbf5 1109 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1110 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1111
76741e77 1112 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1113 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1114
bb0e28eb 1115 while (order < MAX_ORDER - 1) {
5e1f0f09
MG
1116 if (compaction_capture(capc, page, order, migratetype)) {
1117 __mod_zone_freepage_state(zone, -(1 << order),
1118 migratetype);
1119 return;
1120 }
13ad59df 1121
8170ac47
ZY
1122 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1123 if (!buddy)
d9dddbf5 1124 goto done_merging;
bb0e28eb
ZY
1125
1126 if (unlikely(order >= pageblock_order)) {
1127 /*
1128 * We want to prevent merge between freepages on pageblock
1129 * without fallbacks and normal pageblock. Without this,
1130 * pageblock isolation could cause incorrect freepage or CMA
1131 * accounting or HIGHATOMIC accounting.
1132 */
1133 int buddy_mt = get_pageblock_migratetype(buddy);
1134
1135 if (migratetype != buddy_mt
1136 && (!migratetype_is_mergeable(migratetype) ||
1137 !migratetype_is_mergeable(buddy_mt)))
1138 goto done_merging;
1139 }
1140
c0a32fc5
SG
1141 /*
1142 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1143 * merge with it and move up one order.
1144 */
b03641af 1145 if (page_is_guard(buddy))
2847cf95 1146 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1147 else
6ab01363 1148 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1149 combined_pfn = buddy_pfn & pfn;
1150 page = page + (combined_pfn - pfn);
1151 pfn = combined_pfn;
1da177e4
LT
1152 order++;
1153 }
d9dddbf5
VB
1154
1155done_merging:
ab130f91 1156 set_buddy_order(page, order);
6dda9d55 1157
47b6a24a
DH
1158 if (fpi_flags & FPI_TO_TAIL)
1159 to_tail = true;
1160 else if (is_shuffle_order(order))
a2129f24 1161 to_tail = shuffle_pick_tail();
97500a4a 1162 else
a2129f24 1163 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1164
a2129f24 1165 if (to_tail)
6ab01363 1166 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1167 else
6ab01363 1168 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1169
1170 /* Notify page reporting subsystem of freed page */
f04a5d5d 1171 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1172 page_reporting_notify_free(order);
1da177e4
LT
1173}
1174
b2c9e2fb
ZY
1175/**
1176 * split_free_page() -- split a free page at split_pfn_offset
1177 * @free_page: the original free page
1178 * @order: the order of the page
1179 * @split_pfn_offset: split offset within the page
1180 *
86d28b07
ZY
1181 * Return -ENOENT if the free page is changed, otherwise 0
1182 *
b2c9e2fb
ZY
1183 * It is used when the free page crosses two pageblocks with different migratetypes
1184 * at split_pfn_offset within the page. The split free page will be put into
1185 * separate migratetype lists afterwards. Otherwise, the function achieves
1186 * nothing.
1187 */
86d28b07
ZY
1188int split_free_page(struct page *free_page,
1189 unsigned int order, unsigned long split_pfn_offset)
b2c9e2fb
ZY
1190{
1191 struct zone *zone = page_zone(free_page);
1192 unsigned long free_page_pfn = page_to_pfn(free_page);
1193 unsigned long pfn;
1194 unsigned long flags;
1195 int free_page_order;
86d28b07
ZY
1196 int mt;
1197 int ret = 0;
b2c9e2fb 1198
88ee1343 1199 if (split_pfn_offset == 0)
86d28b07 1200 return ret;
88ee1343 1201
b2c9e2fb 1202 spin_lock_irqsave(&zone->lock, flags);
86d28b07
ZY
1203
1204 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1205 ret = -ENOENT;
1206 goto out;
1207 }
1208
1209 mt = get_pageblock_migratetype(free_page);
1210 if (likely(!is_migrate_isolate(mt)))
1211 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1212
b2c9e2fb
ZY
1213 del_page_from_free_list(free_page, zone, order);
1214 for (pfn = free_page_pfn;
1215 pfn < free_page_pfn + (1UL << order);) {
1216 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1217
86d28b07 1218 free_page_order = min_t(unsigned int,
88ee1343
ZY
1219 pfn ? __ffs(pfn) : order,
1220 __fls(split_pfn_offset));
b2c9e2fb
ZY
1221 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1222 mt, FPI_NONE);
1223 pfn += 1UL << free_page_order;
1224 split_pfn_offset -= (1UL << free_page_order);
1225 /* we have done the first part, now switch to second part */
1226 if (split_pfn_offset == 0)
1227 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1228 }
86d28b07 1229out:
b2c9e2fb 1230 spin_unlock_irqrestore(&zone->lock, flags);
86d28b07 1231 return ret;
b2c9e2fb 1232}
7bfec6f4
MG
1233/*
1234 * A bad page could be due to a number of fields. Instead of multiple branches,
1235 * try and check multiple fields with one check. The caller must do a detailed
1236 * check if necessary.
1237 */
1238static inline bool page_expected_state(struct page *page,
1239 unsigned long check_flags)
1240{
1241 if (unlikely(atomic_read(&page->_mapcount) != -1))
1242 return false;
1243
1244 if (unlikely((unsigned long)page->mapping |
1245 page_ref_count(page) |
1246#ifdef CONFIG_MEMCG
48060834 1247 page->memcg_data |
7bfec6f4
MG
1248#endif
1249 (page->flags & check_flags)))
1250 return false;
1251
1252 return true;
1253}
1254
58b7f119 1255static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1256{
82a3241a 1257 const char *bad_reason = NULL;
f0b791a3 1258
53f9263b 1259 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1260 bad_reason = "nonzero mapcount";
1261 if (unlikely(page->mapping != NULL))
1262 bad_reason = "non-NULL mapping";
fe896d18 1263 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1264 bad_reason = "nonzero _refcount";
58b7f119
WY
1265 if (unlikely(page->flags & flags)) {
1266 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1267 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1268 else
1269 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1270 }
9edad6ea 1271#ifdef CONFIG_MEMCG
48060834 1272 if (unlikely(page->memcg_data))
9edad6ea
JW
1273 bad_reason = "page still charged to cgroup";
1274#endif
58b7f119
WY
1275 return bad_reason;
1276}
1277
a8368cd8 1278static void free_page_is_bad_report(struct page *page)
58b7f119
WY
1279{
1280 bad_page(page,
1281 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1282}
1283
a8368cd8 1284static inline bool free_page_is_bad(struct page *page)
bb552ac6 1285{
da838d4f 1286 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
a8368cd8 1287 return false;
bb552ac6
MG
1288
1289 /* Something has gone sideways, find it */
a8368cd8
AM
1290 free_page_is_bad_report(page);
1291 return true;
1da177e4
LT
1292}
1293
4db7548c
MG
1294static int free_tail_pages_check(struct page *head_page, struct page *page)
1295{
94688e8e 1296 struct folio *folio = (struct folio *)head_page;
4db7548c
MG
1297 int ret = 1;
1298
1299 /*
1300 * We rely page->lru.next never has bit 0 set, unless the page
1301 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1302 */
1303 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1304
1305 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1306 ret = 0;
1307 goto out;
1308 }
1309 switch (page - head_page) {
1310 case 1:
cb67f428 1311 /* the first tail page: these may be in place of ->mapping */
65a689f3
MWO
1312 if (unlikely(folio_entire_mapcount(folio))) {
1313 bad_page(page, "nonzero entire_mapcount");
4db7548c
MG
1314 goto out;
1315 }
65a689f3
MWO
1316 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1317 bad_page(page, "nonzero nr_pages_mapped");
cb67f428
HD
1318 goto out;
1319 }
94688e8e
MWO
1320 if (unlikely(atomic_read(&folio->_pincount))) {
1321 bad_page(page, "nonzero pincount");
cb67f428
HD
1322 goto out;
1323 }
4db7548c
MG
1324 break;
1325 case 2:
1326 /*
1327 * the second tail page: ->mapping is
fa3015b7 1328 * deferred_list.next -- ignore value.
4db7548c
MG
1329 */
1330 break;
1331 default:
1332 if (page->mapping != TAIL_MAPPING) {
82a3241a 1333 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1334 goto out;
1335 }
1336 break;
1337 }
1338 if (unlikely(!PageTail(page))) {
82a3241a 1339 bad_page(page, "PageTail not set");
4db7548c
MG
1340 goto out;
1341 }
1342 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1343 bad_page(page, "compound_head not consistent");
4db7548c
MG
1344 goto out;
1345 }
1346 ret = 0;
1347out:
1348 page->mapping = NULL;
1349 clear_compound_head(page);
1350 return ret;
1351}
1352
94ae8b83
AK
1353/*
1354 * Skip KASAN memory poisoning when either:
1355 *
1356 * 1. Deferred memory initialization has not yet completed,
1357 * see the explanation below.
1358 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1359 * see the comment next to it.
1360 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1361 * see the comment next to it.
44383cef
AK
1362 * 4. The allocation is excluded from being checked due to sampling,
1363 * see the call to kasan_unpoison_pages.
94ae8b83
AK
1364 *
1365 * Poisoning pages during deferred memory init will greatly lengthen the
1366 * process and cause problem in large memory systems as the deferred pages
1367 * initialization is done with interrupt disabled.
1368 *
1369 * Assuming that there will be no reference to those newly initialized
1370 * pages before they are ever allocated, this should have no effect on
1371 * KASAN memory tracking as the poison will be properly inserted at page
1372 * allocation time. The only corner case is when pages are allocated by
1373 * on-demand allocation and then freed again before the deferred pages
1374 * initialization is done, but this is not likely to happen.
1375 */
1376static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1377{
1378 return deferred_pages_enabled() ||
1379 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1380 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1381 PageSkipKASanPoison(page);
1382}
1383
aeaec8e2 1384static void kernel_init_pages(struct page *page, int numpages)
6471384a
AP
1385{
1386 int i;
1387
9e15afa5
QC
1388 /* s390's use of memset() could override KASAN redzones. */
1389 kasan_disable_current();
d9da8f6c
AK
1390 for (i = 0; i < numpages; i++)
1391 clear_highpage_kasan_tagged(page + i);
9e15afa5 1392 kasan_enable_current();
6471384a
AP
1393}
1394
e2769dbd 1395static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1396 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1397{
e2769dbd 1398 int bad = 0;
c3525330 1399 bool init = want_init_on_free();
4db7548c 1400
4db7548c
MG
1401 VM_BUG_ON_PAGE(PageTail(page), page);
1402
e2769dbd 1403 trace_mm_page_free(page, order);
b073d7f8 1404 kmsan_free_page(page, order);
e2769dbd 1405
79f5f8fa
OS
1406 if (unlikely(PageHWPoison(page)) && !order) {
1407 /*
1408 * Do not let hwpoison pages hit pcplists/buddy
1409 * Untie memcg state and reset page's owner
1410 */
18b2db3b 1411 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1412 __memcg_kmem_uncharge_page(page, order);
1413 reset_page_owner(page, order);
df4e817b 1414 page_table_check_free(page, order);
79f5f8fa
OS
1415 return false;
1416 }
1417
e2769dbd
MG
1418 /*
1419 * Check tail pages before head page information is cleared to
1420 * avoid checking PageCompound for order-0 pages.
1421 */
1422 if (unlikely(order)) {
1423 bool compound = PageCompound(page);
1424 int i;
1425
1426 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1427
cb67f428 1428 if (compound)
eac96c3e 1429 ClearPageHasHWPoisoned(page);
e2769dbd
MG
1430 for (i = 1; i < (1 << order); i++) {
1431 if (compound)
1432 bad += free_tail_pages_check(page, page + i);
a8368cd8 1433 if (unlikely(free_page_is_bad(page + i))) {
e2769dbd
MG
1434 bad++;
1435 continue;
1436 }
1437 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1438 }
1439 }
bda807d4 1440 if (PageMappingFlags(page))
4db7548c 1441 page->mapping = NULL;
18b2db3b 1442 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1443 __memcg_kmem_uncharge_page(page, order);
a8368cd8
AM
1444 if (check_free && free_page_is_bad(page))
1445 bad++;
e2769dbd
MG
1446 if (bad)
1447 return false;
4db7548c 1448
e2769dbd
MG
1449 page_cpupid_reset_last(page);
1450 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1451 reset_page_owner(page, order);
df4e817b 1452 page_table_check_free(page, order);
4db7548c
MG
1453
1454 if (!PageHighMem(page)) {
1455 debug_check_no_locks_freed(page_address(page),
e2769dbd 1456 PAGE_SIZE << order);
4db7548c 1457 debug_check_no_obj_freed(page_address(page),
e2769dbd 1458 PAGE_SIZE << order);
4db7548c 1459 }
6471384a 1460
8db26a3d
VB
1461 kernel_poison_pages(page, 1 << order);
1462
f9d79e8d 1463 /*
1bb5eab3 1464 * As memory initialization might be integrated into KASAN,
7c13c163 1465 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1466 * kept together to avoid discrepancies in behavior.
1467 *
f9d79e8d
AK
1468 * With hardware tag-based KASAN, memory tags must be set before the
1469 * page becomes unavailable via debug_pagealloc or arch_free_page.
1470 */
487a32ec 1471 if (!should_skip_kasan_poison(page, fpi_flags)) {
c3525330 1472 kasan_poison_pages(page, order, init);
f9d79e8d 1473
db8a0477
AK
1474 /* Memory is already initialized if KASAN did it internally. */
1475 if (kasan_has_integrated_init())
1476 init = false;
1477 }
1478 if (init)
aeaec8e2 1479 kernel_init_pages(page, 1 << order);
db8a0477 1480
234fdce8
QC
1481 /*
1482 * arch_free_page() can make the page's contents inaccessible. s390
1483 * does this. So nothing which can access the page's contents should
1484 * happen after this.
1485 */
1486 arch_free_page(page, order);
1487
77bc7fd6 1488 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1489
4db7548c
MG
1490 return true;
1491}
1492
e2769dbd 1493#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1494/*
1495 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1496 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1497 * moved from pcp lists to free lists.
1498 */
44042b44 1499static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1500{
44042b44 1501 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1502}
1503
d452289f 1504/* return true if this page has an inappropriate state */
4462b32c 1505static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1506{
8e57f8ac 1507 if (debug_pagealloc_enabled_static())
a8368cd8 1508 return free_page_is_bad(page);
4462b32c
VB
1509 else
1510 return false;
e2769dbd
MG
1511}
1512#else
4462b32c
VB
1513/*
1514 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1515 * moving from pcp lists to free list in order to reduce overhead. With
1516 * debug_pagealloc enabled, they are checked also immediately when being freed
1517 * to the pcp lists.
1518 */
44042b44 1519static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1520{
8e57f8ac 1521 if (debug_pagealloc_enabled_static())
44042b44 1522 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1523 else
44042b44 1524 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1525}
1526
4db7548c
MG
1527static bool bulkfree_pcp_prepare(struct page *page)
1528{
a8368cd8 1529 return free_page_is_bad(page);
4db7548c
MG
1530}
1531#endif /* CONFIG_DEBUG_VM */
1532
1da177e4 1533/*
5f8dcc21 1534 * Frees a number of pages from the PCP lists
7cba630b 1535 * Assumes all pages on list are in same zone.
207f36ee 1536 * count is the number of pages to free.
1da177e4 1537 */
5f8dcc21 1538static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1539 struct per_cpu_pages *pcp,
1540 int pindex)
1da177e4 1541{
57490774 1542 unsigned long flags;
35b6d770
MG
1543 int min_pindex = 0;
1544 int max_pindex = NR_PCP_LISTS - 1;
44042b44 1545 unsigned int order;
3777999d 1546 bool isolated_pageblocks;
8b10b465 1547 struct page *page;
f2260e6b 1548
88e8ac11
CTR
1549 /*
1550 * Ensure proper count is passed which otherwise would stuck in the
1551 * below while (list_empty(list)) loop.
1552 */
1553 count = min(pcp->count, count);
d61372bc
MG
1554
1555 /* Ensure requested pindex is drained first. */
1556 pindex = pindex - 1;
1557
57490774 1558 spin_lock_irqsave(&zone->lock, flags);
8b10b465
MG
1559 isolated_pageblocks = has_isolate_pageblock(zone);
1560
44042b44 1561 while (count > 0) {
5f8dcc21 1562 struct list_head *list;
fd56eef2 1563 int nr_pages;
5f8dcc21 1564
fd56eef2 1565 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1566 do {
35b6d770
MG
1567 if (++pindex > max_pindex)
1568 pindex = min_pindex;
44042b44 1569 list = &pcp->lists[pindex];
35b6d770
MG
1570 if (!list_empty(list))
1571 break;
1572
1573 if (pindex == max_pindex)
1574 max_pindex--;
1575 if (pindex == min_pindex)
1576 min_pindex++;
1577 } while (1);
48db57f8 1578
44042b44 1579 order = pindex_to_order(pindex);
fd56eef2 1580 nr_pages = 1 << order;
a6f9edd6 1581 do {
8b10b465
MG
1582 int mt;
1583
bf75f200 1584 page = list_last_entry(list, struct page, pcp_list);
8b10b465
MG
1585 mt = get_pcppage_migratetype(page);
1586
0a5f4e5b 1587 /* must delete to avoid corrupting pcp list */
bf75f200 1588 list_del(&page->pcp_list);
fd56eef2
MG
1589 count -= nr_pages;
1590 pcp->count -= nr_pages;
aa016d14 1591
4db7548c
MG
1592 if (bulkfree_pcp_prepare(page))
1593 continue;
1594
8b10b465
MG
1595 /* MIGRATE_ISOLATE page should not go to pcplists */
1596 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1597 /* Pageblock could have been isolated meanwhile */
1598 if (unlikely(isolated_pageblocks))
1599 mt = get_pageblock_migratetype(page);
0a5f4e5b 1600
8b10b465
MG
1601 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1602 trace_mm_page_pcpu_drain(page, order, mt);
1603 } while (count > 0 && !list_empty(list));
0a5f4e5b 1604 }
8b10b465 1605
57490774 1606 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4
LT
1607}
1608
dc4b0caf
MG
1609static void free_one_page(struct zone *zone,
1610 struct page *page, unsigned long pfn,
7aeb09f9 1611 unsigned int order,
7fef431b 1612 int migratetype, fpi_t fpi_flags)
1da177e4 1613{
df1acc85
MG
1614 unsigned long flags;
1615
1616 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1617 if (unlikely(has_isolate_pageblock(zone) ||
1618 is_migrate_isolate(migratetype))) {
1619 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1620 }
7fef431b 1621 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1622 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1623}
1624
1e8ce83c 1625static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1626 unsigned long zone, int nid)
1e8ce83c 1627{
d0dc12e8 1628 mm_zero_struct_page(page);
1e8ce83c 1629 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1630 init_page_count(page);
1631 page_mapcount_reset(page);
1632 page_cpupid_reset_last(page);
2813b9c0 1633 page_kasan_tag_reset(page);
1e8ce83c 1634
1e8ce83c
RH
1635 INIT_LIST_HEAD(&page->lru);
1636#ifdef WANT_PAGE_VIRTUAL
1637 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1638 if (!is_highmem_idx(zone))
1639 set_page_address(page, __va(pfn << PAGE_SHIFT));
1640#endif
1641}
1642
7e18adb4 1643#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1644static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1645{
1646 pg_data_t *pgdat;
1647 int nid, zid;
1648
fc574488 1649 if (early_page_initialised(pfn))
7e18adb4
MG
1650 return;
1651
1652 nid = early_pfn_to_nid(pfn);
1653 pgdat = NODE_DATA(nid);
1654
1655 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1656 struct zone *zone = &pgdat->node_zones[zid];
1657
86fb05b9 1658 if (zone_spans_pfn(zone, pfn))
7e18adb4
MG
1659 break;
1660 }
d0dc12e8 1661 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1662}
1663#else
1664static inline void init_reserved_page(unsigned long pfn)
1665{
1666}
1667#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1668
92923ca3
NZ
1669/*
1670 * Initialised pages do not have PageReserved set. This function is
1671 * called for each range allocated by the bootmem allocator and
1672 * marks the pages PageReserved. The remaining valid pages are later
1673 * sent to the buddy page allocator.
1674 */
4b50bcc7 1675void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1676{
1677 unsigned long start_pfn = PFN_DOWN(start);
1678 unsigned long end_pfn = PFN_UP(end);
1679
7e18adb4
MG
1680 for (; start_pfn < end_pfn; start_pfn++) {
1681 if (pfn_valid(start_pfn)) {
1682 struct page *page = pfn_to_page(start_pfn);
1683
1684 init_reserved_page(start_pfn);
1d798ca3
KS
1685
1686 /* Avoid false-positive PageTail() */
1687 INIT_LIST_HEAD(&page->lru);
1688
d483da5b
AD
1689 /*
1690 * no need for atomic set_bit because the struct
1691 * page is not visible yet so nobody should
1692 * access it yet.
1693 */
1694 __SetPageReserved(page);
7e18adb4
MG
1695 }
1696 }
92923ca3
NZ
1697}
1698
7fef431b
DH
1699static void __free_pages_ok(struct page *page, unsigned int order,
1700 fpi_t fpi_flags)
ec95f53a 1701{
d34b0733 1702 unsigned long flags;
95e34412 1703 int migratetype;
dc4b0caf 1704 unsigned long pfn = page_to_pfn(page);
56f0e661 1705 struct zone *zone = page_zone(page);
ec95f53a 1706
2c335680 1707 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1708 return;
1709
ac4b2901
DW
1710 /*
1711 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1712 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1713 * This will reduce the lock holding time.
1714 */
cfc47a28 1715 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1716
56f0e661 1717 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1718 if (unlikely(has_isolate_pageblock(zone) ||
1719 is_migrate_isolate(migratetype))) {
1720 migratetype = get_pfnblock_migratetype(page, pfn);
1721 }
1722 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1723 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1724
d34b0733 1725 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1726}
1727
a9cd410a 1728void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1729{
c3993076 1730 unsigned int nr_pages = 1 << order;
e2d0bd2b 1731 struct page *p = page;
c3993076 1732 unsigned int loop;
a226f6c8 1733
7fef431b
DH
1734 /*
1735 * When initializing the memmap, __init_single_page() sets the refcount
1736 * of all pages to 1 ("allocated"/"not free"). We have to set the
1737 * refcount of all involved pages to 0.
1738 */
e2d0bd2b
YL
1739 prefetchw(p);
1740 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1741 prefetchw(p + 1);
c3993076
JW
1742 __ClearPageReserved(p);
1743 set_page_count(p, 0);
a226f6c8 1744 }
e2d0bd2b
YL
1745 __ClearPageReserved(p);
1746 set_page_count(p, 0);
c3993076 1747
9705bea5 1748 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1749
1750 /*
1751 * Bypass PCP and place fresh pages right to the tail, primarily
1752 * relevant for memory onlining.
1753 */
2c335680 1754 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1755}
1756
a9ee6cf5 1757#ifdef CONFIG_NUMA
7ace9917 1758
03e92a5e
MR
1759/*
1760 * During memory init memblocks map pfns to nids. The search is expensive and
1761 * this caches recent lookups. The implementation of __early_pfn_to_nid
1762 * treats start/end as pfns.
1763 */
1764struct mminit_pfnnid_cache {
1765 unsigned long last_start;
1766 unsigned long last_end;
1767 int last_nid;
1768};
75a592a4 1769
03e92a5e 1770static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1771
1772/*
1773 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1774 */
03e92a5e 1775static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1776 struct mminit_pfnnid_cache *state)
75a592a4 1777{
6f24fbd3 1778 unsigned long start_pfn, end_pfn;
75a592a4
MG
1779 int nid;
1780
6f24fbd3
MR
1781 if (state->last_start <= pfn && pfn < state->last_end)
1782 return state->last_nid;
1783
1784 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1785 if (nid != NUMA_NO_NODE) {
1786 state->last_start = start_pfn;
1787 state->last_end = end_pfn;
1788 state->last_nid = nid;
1789 }
7ace9917
MG
1790
1791 return nid;
75a592a4 1792}
75a592a4 1793
75a592a4 1794int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1795{
7ace9917 1796 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1797 int nid;
1798
7ace9917 1799 spin_lock(&early_pfn_lock);
56ec43d8 1800 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1801 if (nid < 0)
e4568d38 1802 nid = first_online_node;
7ace9917 1803 spin_unlock(&early_pfn_lock);
75a592a4 1804
7ace9917 1805 return nid;
75a592a4 1806}
a9ee6cf5 1807#endif /* CONFIG_NUMA */
75a592a4 1808
7c2ee349 1809void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1810 unsigned int order)
1811{
fc574488 1812 if (!early_page_initialised(pfn))
3a80a7fa 1813 return;
3c206509
AP
1814 if (!kmsan_memblock_free_pages(page, order)) {
1815 /* KMSAN will take care of these pages. */
1816 return;
1817 }
a9cd410a 1818 __free_pages_core(page, order);
3a80a7fa
MG
1819}
1820
7cf91a98
JK
1821/*
1822 * Check that the whole (or subset of) a pageblock given by the interval of
1823 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1824 * with the migration of free compaction scanner.
7cf91a98
JK
1825 *
1826 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1827 *
1828 * It's possible on some configurations to have a setup like node0 node1 node0
1829 * i.e. it's possible that all pages within a zones range of pages do not
1830 * belong to a single zone. We assume that a border between node0 and node1
1831 * can occur within a single pageblock, but not a node0 node1 node0
1832 * interleaving within a single pageblock. It is therefore sufficient to check
1833 * the first and last page of a pageblock and avoid checking each individual
1834 * page in a pageblock.
1835 */
1836struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1837 unsigned long end_pfn, struct zone *zone)
1838{
1839 struct page *start_page;
1840 struct page *end_page;
1841
1842 /* end_pfn is one past the range we are checking */
1843 end_pfn--;
1844
1845 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1846 return NULL;
1847
2d070eab
MH
1848 start_page = pfn_to_online_page(start_pfn);
1849 if (!start_page)
1850 return NULL;
7cf91a98
JK
1851
1852 if (page_zone(start_page) != zone)
1853 return NULL;
1854
1855 end_page = pfn_to_page(end_pfn);
1856
1857 /* This gives a shorter code than deriving page_zone(end_page) */
1858 if (page_zone_id(start_page) != page_zone_id(end_page))
1859 return NULL;
1860
1861 return start_page;
1862}
1863
1864void set_zone_contiguous(struct zone *zone)
1865{
1866 unsigned long block_start_pfn = zone->zone_start_pfn;
1867 unsigned long block_end_pfn;
1868
4f9bc69a 1869 block_end_pfn = pageblock_end_pfn(block_start_pfn);
7cf91a98
JK
1870 for (; block_start_pfn < zone_end_pfn(zone);
1871 block_start_pfn = block_end_pfn,
1872 block_end_pfn += pageblock_nr_pages) {
1873
1874 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1875
1876 if (!__pageblock_pfn_to_page(block_start_pfn,
1877 block_end_pfn, zone))
1878 return;
e84fe99b 1879 cond_resched();
7cf91a98
JK
1880 }
1881
1882 /* We confirm that there is no hole */
1883 zone->contiguous = true;
1884}
1885
1886void clear_zone_contiguous(struct zone *zone)
1887{
1888 zone->contiguous = false;
1889}
1890
7e18adb4 1891#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1892static void __init deferred_free_range(unsigned long pfn,
1893 unsigned long nr_pages)
a4de83dd 1894{
2f47a91f
PT
1895 struct page *page;
1896 unsigned long i;
a4de83dd 1897
2f47a91f 1898 if (!nr_pages)
a4de83dd
MG
1899 return;
1900
2f47a91f
PT
1901 page = pfn_to_page(pfn);
1902
a4de83dd 1903 /* Free a large naturally-aligned chunk if possible */
ee0913c4 1904 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
ac5d2539 1905 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1906 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1907 return;
1908 }
1909
e780149b 1910 for (i = 0; i < nr_pages; i++, page++, pfn++) {
ee0913c4 1911 if (pageblock_aligned(pfn))
e780149b 1912 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1913 __free_pages_core(page, 0);
e780149b 1914 }
a4de83dd
MG
1915}
1916
d3cd131d
NS
1917/* Completion tracking for deferred_init_memmap() threads */
1918static atomic_t pgdat_init_n_undone __initdata;
1919static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1920
1921static inline void __init pgdat_init_report_one_done(void)
1922{
1923 if (atomic_dec_and_test(&pgdat_init_n_undone))
1924 complete(&pgdat_init_all_done_comp);
1925}
0e1cc95b 1926
2f47a91f 1927/*
80b1f41c
PT
1928 * Returns true if page needs to be initialized or freed to buddy allocator.
1929 *
c9b3637f 1930 * We check if a current large page is valid by only checking the validity
80b1f41c 1931 * of the head pfn.
2f47a91f 1932 */
56ec43d8 1933static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1934{
ee0913c4 1935 if (pageblock_aligned(pfn) && !pfn_valid(pfn))
80b1f41c 1936 return false;
80b1f41c
PT
1937 return true;
1938}
2f47a91f 1939
80b1f41c
PT
1940/*
1941 * Free pages to buddy allocator. Try to free aligned pages in
1942 * pageblock_nr_pages sizes.
1943 */
56ec43d8 1944static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1945 unsigned long end_pfn)
1946{
80b1f41c 1947 unsigned long nr_free = 0;
2f47a91f 1948
80b1f41c 1949 for (; pfn < end_pfn; pfn++) {
56ec43d8 1950 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1951 deferred_free_range(pfn - nr_free, nr_free);
1952 nr_free = 0;
ee0913c4 1953 } else if (pageblock_aligned(pfn)) {
80b1f41c
PT
1954 deferred_free_range(pfn - nr_free, nr_free);
1955 nr_free = 1;
80b1f41c
PT
1956 } else {
1957 nr_free++;
1958 }
1959 }
1960 /* Free the last block of pages to allocator */
1961 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1962}
1963
80b1f41c
PT
1964/*
1965 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1966 * by performing it only once every pageblock_nr_pages.
1967 * Return number of pages initialized.
1968 */
56ec43d8 1969static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1970 unsigned long pfn,
1971 unsigned long end_pfn)
2f47a91f 1972{
56ec43d8 1973 int nid = zone_to_nid(zone);
2f47a91f 1974 unsigned long nr_pages = 0;
56ec43d8 1975 int zid = zone_idx(zone);
2f47a91f 1976 struct page *page = NULL;
2f47a91f 1977
80b1f41c 1978 for (; pfn < end_pfn; pfn++) {
56ec43d8 1979 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1980 page = NULL;
2f47a91f 1981 continue;
ee0913c4 1982 } else if (!page || pageblock_aligned(pfn)) {
2f47a91f 1983 page = pfn_to_page(pfn);
80b1f41c
PT
1984 } else {
1985 page++;
2f47a91f 1986 }
d0dc12e8 1987 __init_single_page(page, pfn, zid, nid);
80b1f41c 1988 nr_pages++;
2f47a91f 1989 }
80b1f41c 1990 return (nr_pages);
2f47a91f
PT
1991}
1992
0e56acae
AD
1993/*
1994 * This function is meant to pre-load the iterator for the zone init.
1995 * Specifically it walks through the ranges until we are caught up to the
1996 * first_init_pfn value and exits there. If we never encounter the value we
1997 * return false indicating there are no valid ranges left.
1998 */
1999static bool __init
2000deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2001 unsigned long *spfn, unsigned long *epfn,
2002 unsigned long first_init_pfn)
2003{
2004 u64 j;
2005
2006 /*
2007 * Start out by walking through the ranges in this zone that have
2008 * already been initialized. We don't need to do anything with them
2009 * so we just need to flush them out of the system.
2010 */
2011 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2012 if (*epfn <= first_init_pfn)
2013 continue;
2014 if (*spfn < first_init_pfn)
2015 *spfn = first_init_pfn;
2016 *i = j;
2017 return true;
2018 }
2019
2020 return false;
2021}
2022
2023/*
2024 * Initialize and free pages. We do it in two loops: first we initialize
2025 * struct page, then free to buddy allocator, because while we are
2026 * freeing pages we can access pages that are ahead (computing buddy
2027 * page in __free_one_page()).
2028 *
2029 * In order to try and keep some memory in the cache we have the loop
2030 * broken along max page order boundaries. This way we will not cause
2031 * any issues with the buddy page computation.
2032 */
2033static unsigned long __init
2034deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2035 unsigned long *end_pfn)
2036{
2037 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2038 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2039 unsigned long nr_pages = 0;
2040 u64 j = *i;
2041
2042 /* First we loop through and initialize the page values */
2043 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2044 unsigned long t;
2045
2046 if (mo_pfn <= *start_pfn)
2047 break;
2048
2049 t = min(mo_pfn, *end_pfn);
2050 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2051
2052 if (mo_pfn < *end_pfn) {
2053 *start_pfn = mo_pfn;
2054 break;
2055 }
2056 }
2057
2058 /* Reset values and now loop through freeing pages as needed */
2059 swap(j, *i);
2060
2061 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2062 unsigned long t;
2063
2064 if (mo_pfn <= spfn)
2065 break;
2066
2067 t = min(mo_pfn, epfn);
2068 deferred_free_pages(spfn, t);
2069
2070 if (mo_pfn <= epfn)
2071 break;
2072 }
2073
2074 return nr_pages;
2075}
2076
e4443149
DJ
2077static void __init
2078deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2079 void *arg)
2080{
2081 unsigned long spfn, epfn;
2082 struct zone *zone = arg;
2083 u64 i;
2084
2085 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2086
2087 /*
2088 * Initialize and free pages in MAX_ORDER sized increments so that we
2089 * can avoid introducing any issues with the buddy allocator.
2090 */
2091 while (spfn < end_pfn) {
2092 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2093 cond_resched();
2094 }
2095}
2096
ecd09650
DJ
2097/* An arch may override for more concurrency. */
2098__weak int __init
2099deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2100{
2101 return 1;
2102}
2103
7e18adb4 2104/* Initialise remaining memory on a node */
0e1cc95b 2105static int __init deferred_init_memmap(void *data)
7e18adb4 2106{
0e1cc95b 2107 pg_data_t *pgdat = data;
0e56acae 2108 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 2109 unsigned long spfn = 0, epfn = 0;
0e56acae 2110 unsigned long first_init_pfn, flags;
7e18adb4 2111 unsigned long start = jiffies;
7e18adb4 2112 struct zone *zone;
e4443149 2113 int zid, max_threads;
2f47a91f 2114 u64 i;
7e18adb4 2115
3a2d7fa8
PT
2116 /* Bind memory initialisation thread to a local node if possible */
2117 if (!cpumask_empty(cpumask))
2118 set_cpus_allowed_ptr(current, cpumask);
2119
2120 pgdat_resize_lock(pgdat, &flags);
2121 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2122 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2123 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2124 pgdat_init_report_one_done();
0e1cc95b
MG
2125 return 0;
2126 }
2127
7e18adb4
MG
2128 /* Sanity check boundaries */
2129 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2130 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2131 pgdat->first_deferred_pfn = ULONG_MAX;
2132
3d060856
PT
2133 /*
2134 * Once we unlock here, the zone cannot be grown anymore, thus if an
2135 * interrupt thread must allocate this early in boot, zone must be
2136 * pre-grown prior to start of deferred page initialization.
2137 */
2138 pgdat_resize_unlock(pgdat, &flags);
2139
7e18adb4
MG
2140 /* Only the highest zone is deferred so find it */
2141 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2142 zone = pgdat->node_zones + zid;
2143 if (first_init_pfn < zone_end_pfn(zone))
2144 break;
2145 }
0e56acae
AD
2146
2147 /* If the zone is empty somebody else may have cleared out the zone */
2148 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2149 first_init_pfn))
2150 goto zone_empty;
7e18adb4 2151
ecd09650 2152 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2153
117003c3 2154 while (spfn < epfn) {
e4443149
DJ
2155 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2156 struct padata_mt_job job = {
2157 .thread_fn = deferred_init_memmap_chunk,
2158 .fn_arg = zone,
2159 .start = spfn,
2160 .size = epfn_align - spfn,
2161 .align = PAGES_PER_SECTION,
2162 .min_chunk = PAGES_PER_SECTION,
2163 .max_threads = max_threads,
2164 };
2165
2166 padata_do_multithreaded(&job);
2167 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2168 epfn_align);
117003c3 2169 }
0e56acae 2170zone_empty:
7e18adb4
MG
2171 /* Sanity check that the next zone really is unpopulated */
2172 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2173
89c7c402
DJ
2174 pr_info("node %d deferred pages initialised in %ums\n",
2175 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2176
2177 pgdat_init_report_one_done();
0e1cc95b
MG
2178 return 0;
2179}
c9e97a19 2180
c9e97a19
PT
2181/*
2182 * If this zone has deferred pages, try to grow it by initializing enough
2183 * deferred pages to satisfy the allocation specified by order, rounded up to
2184 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2185 * of SECTION_SIZE bytes by initializing struct pages in increments of
2186 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2187 *
2188 * Return true when zone was grown, otherwise return false. We return true even
2189 * when we grow less than requested, to let the caller decide if there are
2190 * enough pages to satisfy the allocation.
2191 *
2192 * Note: We use noinline because this function is needed only during boot, and
2193 * it is called from a __ref function _deferred_grow_zone. This way we are
2194 * making sure that it is not inlined into permanent text section.
2195 */
2196static noinline bool __init
2197deferred_grow_zone(struct zone *zone, unsigned int order)
2198{
c9e97a19 2199 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2200 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2201 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2202 unsigned long spfn, epfn, flags;
2203 unsigned long nr_pages = 0;
c9e97a19
PT
2204 u64 i;
2205
2206 /* Only the last zone may have deferred pages */
2207 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2208 return false;
2209
2210 pgdat_resize_lock(pgdat, &flags);
2211
c9e97a19
PT
2212 /*
2213 * If someone grew this zone while we were waiting for spinlock, return
2214 * true, as there might be enough pages already.
2215 */
2216 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2217 pgdat_resize_unlock(pgdat, &flags);
2218 return true;
2219 }
2220
0e56acae
AD
2221 /* If the zone is empty somebody else may have cleared out the zone */
2222 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2223 first_deferred_pfn)) {
2224 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2225 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2226 /* Retry only once. */
2227 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2228 }
2229
0e56acae
AD
2230 /*
2231 * Initialize and free pages in MAX_ORDER sized increments so
2232 * that we can avoid introducing any issues with the buddy
2233 * allocator.
2234 */
2235 while (spfn < epfn) {
2236 /* update our first deferred PFN for this section */
2237 first_deferred_pfn = spfn;
2238
2239 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2240 touch_nmi_watchdog();
c9e97a19 2241
0e56acae
AD
2242 /* We should only stop along section boundaries */
2243 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2244 continue;
c9e97a19 2245
0e56acae 2246 /* If our quota has been met we can stop here */
c9e97a19
PT
2247 if (nr_pages >= nr_pages_needed)
2248 break;
2249 }
2250
0e56acae 2251 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2252 pgdat_resize_unlock(pgdat, &flags);
2253
2254 return nr_pages > 0;
2255}
2256
2257/*
2258 * deferred_grow_zone() is __init, but it is called from
2259 * get_page_from_freelist() during early boot until deferred_pages permanently
2260 * disables this call. This is why we have refdata wrapper to avoid warning,
2261 * and to ensure that the function body gets unloaded.
2262 */
2263static bool __ref
2264_deferred_grow_zone(struct zone *zone, unsigned int order)
2265{
2266 return deferred_grow_zone(zone, order);
2267}
2268
7cf91a98 2269#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2270
2271void __init page_alloc_init_late(void)
2272{
7cf91a98 2273 struct zone *zone;
e900a918 2274 int nid;
7cf91a98
JK
2275
2276#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2277
d3cd131d
NS
2278 /* There will be num_node_state(N_MEMORY) threads */
2279 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2280 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2281 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2282 }
2283
2284 /* Block until all are initialised */
d3cd131d 2285 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2286
c9e97a19
PT
2287 /*
2288 * We initialized the rest of the deferred pages. Permanently disable
2289 * on-demand struct page initialization.
2290 */
2291 static_branch_disable(&deferred_pages);
2292
4248b0da
MG
2293 /* Reinit limits that are based on free pages after the kernel is up */
2294 files_maxfiles_init();
7cf91a98 2295#endif
350e88ba 2296
ba8f3587
LF
2297 buffer_init();
2298
3010f876
PT
2299 /* Discard memblock private memory */
2300 memblock_discard();
7cf91a98 2301
e900a918
DW
2302 for_each_node_state(nid, N_MEMORY)
2303 shuffle_free_memory(NODE_DATA(nid));
2304
7cf91a98
JK
2305 for_each_populated_zone(zone)
2306 set_zone_contiguous(zone);
7e18adb4 2307}
7e18adb4 2308
47118af0 2309#ifdef CONFIG_CMA
9cf510a5 2310/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2311void __init init_cma_reserved_pageblock(struct page *page)
2312{
2313 unsigned i = pageblock_nr_pages;
2314 struct page *p = page;
2315
2316 do {
2317 __ClearPageReserved(p);
2318 set_page_count(p, 0);
d883c6cf 2319 } while (++p, --i);
47118af0 2320
47118af0 2321 set_pageblock_migratetype(page, MIGRATE_CMA);
b3d40a2b
DH
2322 set_page_refcounted(page);
2323 __free_pages(page, pageblock_order);
dc78327c 2324
3dcc0571 2325 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2326 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2327}
2328#endif
1da177e4
LT
2329
2330/*
2331 * The order of subdivision here is critical for the IO subsystem.
2332 * Please do not alter this order without good reasons and regression
2333 * testing. Specifically, as large blocks of memory are subdivided,
2334 * the order in which smaller blocks are delivered depends on the order
2335 * they're subdivided in this function. This is the primary factor
2336 * influencing the order in which pages are delivered to the IO
2337 * subsystem according to empirical testing, and this is also justified
2338 * by considering the behavior of a buddy system containing a single
2339 * large block of memory acted on by a series of small allocations.
2340 * This behavior is a critical factor in sglist merging's success.
2341 *
6d49e352 2342 * -- nyc
1da177e4 2343 */
085cc7d5 2344static inline void expand(struct zone *zone, struct page *page,
6ab01363 2345 int low, int high, int migratetype)
1da177e4
LT
2346{
2347 unsigned long size = 1 << high;
2348
2349 while (high > low) {
1da177e4
LT
2350 high--;
2351 size >>= 1;
309381fe 2352 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2353
acbc15a4
JK
2354 /*
2355 * Mark as guard pages (or page), that will allow to
2356 * merge back to allocator when buddy will be freed.
2357 * Corresponding page table entries will not be touched,
2358 * pages will stay not present in virtual address space
2359 */
2360 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2361 continue;
acbc15a4 2362
6ab01363 2363 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2364 set_buddy_order(&page[size], high);
1da177e4 2365 }
1da177e4
LT
2366}
2367
4e611801 2368static void check_new_page_bad(struct page *page)
1da177e4 2369{
f4c18e6f 2370 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2371 /* Don't complain about hwpoisoned pages */
2372 page_mapcount_reset(page); /* remove PageBuddy */
2373 return;
f4c18e6f 2374 }
58b7f119
WY
2375
2376 bad_page(page,
2377 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2378}
2379
2380/*
2381 * This page is about to be returned from the page allocator
2382 */
2383static inline int check_new_page(struct page *page)
2384{
2385 if (likely(page_expected_state(page,
2386 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2387 return 0;
2388
2389 check_new_page_bad(page);
2390 return 1;
2a7684a2
WF
2391}
2392
77fe7f13
MG
2393static bool check_new_pages(struct page *page, unsigned int order)
2394{
2395 int i;
2396 for (i = 0; i < (1 << order); i++) {
2397 struct page *p = page + i;
2398
2399 if (unlikely(check_new_page(p)))
2400 return true;
2401 }
2402
2403 return false;
2404}
2405
479f854a 2406#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2407/*
2408 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2409 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2410 * also checked when pcp lists are refilled from the free lists.
2411 */
77fe7f13 2412static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2413{
8e57f8ac 2414 if (debug_pagealloc_enabled_static())
77fe7f13 2415 return check_new_pages(page, order);
4462b32c
VB
2416 else
2417 return false;
479f854a
MG
2418}
2419
77fe7f13 2420static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2421{
77fe7f13 2422 return check_new_pages(page, order);
479f854a
MG
2423}
2424#else
4462b32c
VB
2425/*
2426 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2427 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2428 * enabled, they are also checked when being allocated from the pcp lists.
2429 */
77fe7f13 2430static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2431{
77fe7f13 2432 return check_new_pages(page, order);
479f854a 2433}
77fe7f13 2434static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2435{
8e57f8ac 2436 if (debug_pagealloc_enabled_static())
77fe7f13 2437 return check_new_pages(page, order);
4462b32c
VB
2438 else
2439 return false;
479f854a
MG
2440}
2441#endif /* CONFIG_DEBUG_VM */
2442
6d05141a 2443static inline bool should_skip_kasan_unpoison(gfp_t flags)
53ae233c
AK
2444{
2445 /* Don't skip if a software KASAN mode is enabled. */
2446 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2447 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2448 return false;
2449
2450 /* Skip, if hardware tag-based KASAN is not enabled. */
2451 if (!kasan_hw_tags_enabled())
2452 return true;
2453
2454 /*
6d05141a
CM
2455 * With hardware tag-based KASAN enabled, skip if this has been
2456 * requested via __GFP_SKIP_KASAN_UNPOISON.
53ae233c 2457 */
6d05141a 2458 return flags & __GFP_SKIP_KASAN_UNPOISON;
53ae233c
AK
2459}
2460
9353ffa6
AK
2461static inline bool should_skip_init(gfp_t flags)
2462{
2463 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2464 if (!kasan_hw_tags_enabled())
2465 return false;
2466
2467 /* For hardware tag-based KASAN, skip if requested. */
2468 return (flags & __GFP_SKIP_ZERO);
2469}
2470
46f24fd8
JK
2471inline void post_alloc_hook(struct page *page, unsigned int order,
2472 gfp_t gfp_flags)
2473{
9353ffa6
AK
2474 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2475 !should_skip_init(gfp_flags);
44383cef
AK
2476 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2477 bool reset_tags = !zero_tags;
70c248ac 2478 int i;
b42090ae 2479
46f24fd8
JK
2480 set_page_private(page, 0);
2481 set_page_refcounted(page);
2482
2483 arch_alloc_page(page, order);
77bc7fd6 2484 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2485
2486 /*
2487 * Page unpoisoning must happen before memory initialization.
2488 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2489 * allocations and the page unpoisoning code will complain.
2490 */
8db26a3d 2491 kernel_unpoison_pages(page, 1 << order);
862b6dee 2492
1bb5eab3
AK
2493 /*
2494 * As memory initialization might be integrated into KASAN,
b42090ae 2495 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
2496 * kept together to avoid discrepancies in behavior.
2497 */
9294b128
AK
2498
2499 /*
44383cef
AK
2500 * If memory tags should be zeroed
2501 * (which happens only when memory should be initialized as well).
9294b128 2502 */
44383cef 2503 if (zero_tags) {
9294b128
AK
2504 /* Initialize both memory and tags. */
2505 for (i = 0; i != 1 << order; ++i)
2506 tag_clear_highpage(page + i);
2507
44383cef 2508 /* Take note that memory was initialized by the loop above. */
9294b128
AK
2509 init = false;
2510 }
6d05141a 2511 if (!should_skip_kasan_unpoison(gfp_flags)) {
44383cef
AK
2512 /* Try unpoisoning (or setting tags) and initializing memory. */
2513 if (kasan_unpoison_pages(page, order, init)) {
2514 /* Take note that memory was initialized by KASAN. */
2515 if (kasan_has_integrated_init())
2516 init = false;
2517 /* Take note that memory tags were set by KASAN. */
2518 reset_tags = false;
2519 } else {
2520 /*
2521 * KASAN decided to exclude this allocation from being
2522 * poisoned due to sampling. Skip poisoning as well.
2523 */
2524 SetPageSkipKASanPoison(page);
2525 }
2526 }
2527 /*
2528 * If memory tags have not been set, reset the page tags to ensure
2529 * page_address() dereferencing does not fault.
2530 */
2531 if (reset_tags) {
70c248ac
CM
2532 for (i = 0; i != 1 << order; ++i)
2533 page_kasan_tag_reset(page + i);
7a3b8353 2534 }
44383cef 2535 /* If memory is still not initialized, initialize it now. */
7e3cbba6 2536 if (init)
aeaec8e2 2537 kernel_init_pages(page, 1 << order);
89b27116
AK
2538 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2539 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2540 SetPageSkipKASanPoison(page);
1bb5eab3
AK
2541
2542 set_page_owner(page, order, gfp_flags);
df4e817b 2543 page_table_check_alloc(page, order);
46f24fd8
JK
2544}
2545
479f854a 2546static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2547 unsigned int alloc_flags)
2a7684a2 2548{
46f24fd8 2549 post_alloc_hook(page, order, gfp_flags);
17cf4406 2550
17cf4406
NP
2551 if (order && (gfp_flags & __GFP_COMP))
2552 prep_compound_page(page, order);
2553
75379191 2554 /*
2f064f34 2555 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2556 * allocate the page. The expectation is that the caller is taking
2557 * steps that will free more memory. The caller should avoid the page
2558 * being used for !PFMEMALLOC purposes.
2559 */
2f064f34
MH
2560 if (alloc_flags & ALLOC_NO_WATERMARKS)
2561 set_page_pfmemalloc(page);
2562 else
2563 clear_page_pfmemalloc(page);
1da177e4
LT
2564}
2565
56fd56b8
MG
2566/*
2567 * Go through the free lists for the given migratetype and remove
2568 * the smallest available page from the freelists
2569 */
85ccc8fa 2570static __always_inline
728ec980 2571struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2572 int migratetype)
2573{
2574 unsigned int current_order;
b8af2941 2575 struct free_area *area;
56fd56b8
MG
2576 struct page *page;
2577
2578 /* Find a page of the appropriate size in the preferred list */
2579 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2580 area = &(zone->free_area[current_order]);
b03641af 2581 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2582 if (!page)
2583 continue;
6ab01363
AD
2584 del_page_from_free_list(page, zone, current_order);
2585 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2586 set_pcppage_migratetype(page, migratetype);
10e0f753
WY
2587 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2588 pcp_allowed_order(order) &&
2589 migratetype < MIGRATE_PCPTYPES);
56fd56b8
MG
2590 return page;
2591 }
2592
2593 return NULL;
2594}
2595
2596
b2a0ac88
MG
2597/*
2598 * This array describes the order lists are fallen back to when
2599 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
2600 *
2601 * The other migratetypes do not have fallbacks.
b2a0ac88 2602 */
da415663 2603static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2604 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2605 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2606 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
b2a0ac88
MG
2607};
2608
dc67647b 2609#ifdef CONFIG_CMA
85ccc8fa 2610static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2611 unsigned int order)
2612{
2613 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2614}
2615#else
2616static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2617 unsigned int order) { return NULL; }
2618#endif
2619
c361be55 2620/*
293ffa5e 2621 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2622 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2623 * boundary. If alignment is required, use move_freepages_block()
2624 */
02aa0cdd 2625static int move_freepages(struct zone *zone,
39ddb991 2626 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2627 int migratetype, int *num_movable)
c361be55
MG
2628{
2629 struct page *page;
39ddb991 2630 unsigned long pfn;
d00181b9 2631 unsigned int order;
d100313f 2632 int pages_moved = 0;
c361be55 2633
39ddb991 2634 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2635 page = pfn_to_page(pfn);
c361be55 2636 if (!PageBuddy(page)) {
02aa0cdd
VB
2637 /*
2638 * We assume that pages that could be isolated for
2639 * migration are movable. But we don't actually try
2640 * isolating, as that would be expensive.
2641 */
2642 if (num_movable &&
2643 (PageLRU(page) || __PageMovable(page)))
2644 (*num_movable)++;
39ddb991 2645 pfn++;
c361be55
MG
2646 continue;
2647 }
2648
cd961038
DR
2649 /* Make sure we are not inadvertently changing nodes */
2650 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2651 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2652
ab130f91 2653 order = buddy_order(page);
6ab01363 2654 move_to_free_list(page, zone, order, migratetype);
39ddb991 2655 pfn += 1 << order;
d100313f 2656 pages_moved += 1 << order;
c361be55
MG
2657 }
2658
d100313f 2659 return pages_moved;
c361be55
MG
2660}
2661
ee6f509c 2662int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2663 int migratetype, int *num_movable)
c361be55 2664{
39ddb991 2665 unsigned long start_pfn, end_pfn, pfn;
c361be55 2666
4a222127
DR
2667 if (num_movable)
2668 *num_movable = 0;
2669
39ddb991 2670 pfn = page_to_pfn(page);
4f9bc69a
KW
2671 start_pfn = pageblock_start_pfn(pfn);
2672 end_pfn = pageblock_end_pfn(pfn) - 1;
c361be55
MG
2673
2674 /* Do not cross zone boundaries */
108bcc96 2675 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2676 start_pfn = pfn;
108bcc96 2677 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2678 return 0;
2679
39ddb991 2680 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2681 num_movable);
c361be55
MG
2682}
2683
2f66a68f
MG
2684static void change_pageblock_range(struct page *pageblock_page,
2685 int start_order, int migratetype)
2686{
2687 int nr_pageblocks = 1 << (start_order - pageblock_order);
2688
2689 while (nr_pageblocks--) {
2690 set_pageblock_migratetype(pageblock_page, migratetype);
2691 pageblock_page += pageblock_nr_pages;
2692 }
2693}
2694
fef903ef 2695/*
9c0415eb
VB
2696 * When we are falling back to another migratetype during allocation, try to
2697 * steal extra free pages from the same pageblocks to satisfy further
2698 * allocations, instead of polluting multiple pageblocks.
2699 *
2700 * If we are stealing a relatively large buddy page, it is likely there will
2701 * be more free pages in the pageblock, so try to steal them all. For
2702 * reclaimable and unmovable allocations, we steal regardless of page size,
2703 * as fragmentation caused by those allocations polluting movable pageblocks
2704 * is worse than movable allocations stealing from unmovable and reclaimable
2705 * pageblocks.
fef903ef 2706 */
4eb7dce6
JK
2707static bool can_steal_fallback(unsigned int order, int start_mt)
2708{
2709 /*
2710 * Leaving this order check is intended, although there is
2711 * relaxed order check in next check. The reason is that
2712 * we can actually steal whole pageblock if this condition met,
2713 * but, below check doesn't guarantee it and that is just heuristic
2714 * so could be changed anytime.
2715 */
2716 if (order >= pageblock_order)
2717 return true;
2718
2719 if (order >= pageblock_order / 2 ||
2720 start_mt == MIGRATE_RECLAIMABLE ||
2721 start_mt == MIGRATE_UNMOVABLE ||
2722 page_group_by_mobility_disabled)
2723 return true;
2724
2725 return false;
2726}
2727
597c8920 2728static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2729{
2730 unsigned long max_boost;
2731
2732 if (!watermark_boost_factor)
597c8920 2733 return false;
14f69140
HW
2734 /*
2735 * Don't bother in zones that are unlikely to produce results.
2736 * On small machines, including kdump capture kernels running
2737 * in a small area, boosting the watermark can cause an out of
2738 * memory situation immediately.
2739 */
2740 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2741 return false;
1c30844d
MG
2742
2743 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2744 watermark_boost_factor, 10000);
94b3334c
MG
2745
2746 /*
2747 * high watermark may be uninitialised if fragmentation occurs
2748 * very early in boot so do not boost. We do not fall
2749 * through and boost by pageblock_nr_pages as failing
2750 * allocations that early means that reclaim is not going
2751 * to help and it may even be impossible to reclaim the
2752 * boosted watermark resulting in a hang.
2753 */
2754 if (!max_boost)
597c8920 2755 return false;
94b3334c 2756
1c30844d
MG
2757 max_boost = max(pageblock_nr_pages, max_boost);
2758
2759 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2760 max_boost);
597c8920
JW
2761
2762 return true;
1c30844d
MG
2763}
2764
4eb7dce6
JK
2765/*
2766 * This function implements actual steal behaviour. If order is large enough,
2767 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2768 * pageblock to our migratetype and determine how many already-allocated pages
2769 * are there in the pageblock with a compatible migratetype. If at least half
2770 * of pages are free or compatible, we can change migratetype of the pageblock
2771 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2772 */
2773static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2774 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2775{
ab130f91 2776 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2777 int free_pages, movable_pages, alike_pages;
2778 int old_block_type;
2779
2780 old_block_type = get_pageblock_migratetype(page);
fef903ef 2781
3bc48f96
VB
2782 /*
2783 * This can happen due to races and we want to prevent broken
2784 * highatomic accounting.
2785 */
02aa0cdd 2786 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2787 goto single_page;
2788
fef903ef
SB
2789 /* Take ownership for orders >= pageblock_order */
2790 if (current_order >= pageblock_order) {
2791 change_pageblock_range(page, current_order, start_type);
3bc48f96 2792 goto single_page;
fef903ef
SB
2793 }
2794
1c30844d
MG
2795 /*
2796 * Boost watermarks to increase reclaim pressure to reduce the
2797 * likelihood of future fallbacks. Wake kswapd now as the node
2798 * may be balanced overall and kswapd will not wake naturally.
2799 */
597c8920 2800 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2801 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2802
3bc48f96
VB
2803 /* We are not allowed to try stealing from the whole block */
2804 if (!whole_block)
2805 goto single_page;
2806
02aa0cdd
VB
2807 free_pages = move_freepages_block(zone, page, start_type,
2808 &movable_pages);
2809 /*
2810 * Determine how many pages are compatible with our allocation.
2811 * For movable allocation, it's the number of movable pages which
2812 * we just obtained. For other types it's a bit more tricky.
2813 */
2814 if (start_type == MIGRATE_MOVABLE) {
2815 alike_pages = movable_pages;
2816 } else {
2817 /*
2818 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2819 * to MOVABLE pageblock, consider all non-movable pages as
2820 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2821 * vice versa, be conservative since we can't distinguish the
2822 * exact migratetype of non-movable pages.
2823 */
2824 if (old_block_type == MIGRATE_MOVABLE)
2825 alike_pages = pageblock_nr_pages
2826 - (free_pages + movable_pages);
2827 else
2828 alike_pages = 0;
2829 }
2830
3bc48f96 2831 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2832 if (!free_pages)
3bc48f96 2833 goto single_page;
fef903ef 2834
02aa0cdd
VB
2835 /*
2836 * If a sufficient number of pages in the block are either free or of
2837 * comparable migratability as our allocation, claim the whole block.
2838 */
2839 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2840 page_group_by_mobility_disabled)
2841 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2842
2843 return;
2844
2845single_page:
6ab01363 2846 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2847}
2848
2149cdae
JK
2849/*
2850 * Check whether there is a suitable fallback freepage with requested order.
2851 * If only_stealable is true, this function returns fallback_mt only if
2852 * we can steal other freepages all together. This would help to reduce
2853 * fragmentation due to mixed migratetype pages in one pageblock.
2854 */
2855int find_suitable_fallback(struct free_area *area, unsigned int order,
2856 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2857{
2858 int i;
2859 int fallback_mt;
2860
2861 if (area->nr_free == 0)
2862 return -1;
2863
2864 *can_steal = false;
2865 for (i = 0;; i++) {
2866 fallback_mt = fallbacks[migratetype][i];
974a786e 2867 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2868 break;
2869
b03641af 2870 if (free_area_empty(area, fallback_mt))
4eb7dce6 2871 continue;
fef903ef 2872
4eb7dce6
JK
2873 if (can_steal_fallback(order, migratetype))
2874 *can_steal = true;
2875
2149cdae
JK
2876 if (!only_stealable)
2877 return fallback_mt;
2878
2879 if (*can_steal)
2880 return fallback_mt;
fef903ef 2881 }
4eb7dce6
JK
2882
2883 return -1;
fef903ef
SB
2884}
2885
0aaa29a5
MG
2886/*
2887 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2888 * there are no empty page blocks that contain a page with a suitable order
2889 */
2890static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2891 unsigned int alloc_order)
2892{
2893 int mt;
2894 unsigned long max_managed, flags;
2895
2896 /*
2897 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2898 * Check is race-prone but harmless.
2899 */
9705bea5 2900 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2901 if (zone->nr_reserved_highatomic >= max_managed)
2902 return;
2903
2904 spin_lock_irqsave(&zone->lock, flags);
2905
2906 /* Recheck the nr_reserved_highatomic limit under the lock */
2907 if (zone->nr_reserved_highatomic >= max_managed)
2908 goto out_unlock;
2909
2910 /* Yoink! */
2911 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2912 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2913 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
2914 zone->nr_reserved_highatomic += pageblock_nr_pages;
2915 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2916 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2917 }
2918
2919out_unlock:
2920 spin_unlock_irqrestore(&zone->lock, flags);
2921}
2922
2923/*
2924 * Used when an allocation is about to fail under memory pressure. This
2925 * potentially hurts the reliability of high-order allocations when under
2926 * intense memory pressure but failed atomic allocations should be easier
2927 * to recover from than an OOM.
29fac03b
MK
2928 *
2929 * If @force is true, try to unreserve a pageblock even though highatomic
2930 * pageblock is exhausted.
0aaa29a5 2931 */
29fac03b
MK
2932static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2933 bool force)
0aaa29a5
MG
2934{
2935 struct zonelist *zonelist = ac->zonelist;
2936 unsigned long flags;
2937 struct zoneref *z;
2938 struct zone *zone;
2939 struct page *page;
2940 int order;
04c8716f 2941 bool ret;
0aaa29a5 2942
97a225e6 2943 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2944 ac->nodemask) {
29fac03b
MK
2945 /*
2946 * Preserve at least one pageblock unless memory pressure
2947 * is really high.
2948 */
2949 if (!force && zone->nr_reserved_highatomic <=
2950 pageblock_nr_pages)
0aaa29a5
MG
2951 continue;
2952
2953 spin_lock_irqsave(&zone->lock, flags);
2954 for (order = 0; order < MAX_ORDER; order++) {
2955 struct free_area *area = &(zone->free_area[order]);
2956
b03641af 2957 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2958 if (!page)
0aaa29a5
MG
2959 continue;
2960
0aaa29a5 2961 /*
4855e4a7
MK
2962 * In page freeing path, migratetype change is racy so
2963 * we can counter several free pages in a pageblock
f0953a1b 2964 * in this loop although we changed the pageblock type
4855e4a7
MK
2965 * from highatomic to ac->migratetype. So we should
2966 * adjust the count once.
0aaa29a5 2967 */
a6ffdc07 2968 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2969 /*
2970 * It should never happen but changes to
2971 * locking could inadvertently allow a per-cpu
2972 * drain to add pages to MIGRATE_HIGHATOMIC
2973 * while unreserving so be safe and watch for
2974 * underflows.
2975 */
2976 zone->nr_reserved_highatomic -= min(
2977 pageblock_nr_pages,
2978 zone->nr_reserved_highatomic);
2979 }
0aaa29a5
MG
2980
2981 /*
2982 * Convert to ac->migratetype and avoid the normal
2983 * pageblock stealing heuristics. Minimally, the caller
2984 * is doing the work and needs the pages. More
2985 * importantly, if the block was always converted to
2986 * MIGRATE_UNMOVABLE or another type then the number
2987 * of pageblocks that cannot be completely freed
2988 * may increase.
2989 */
2990 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2991 ret = move_freepages_block(zone, page, ac->migratetype,
2992 NULL);
29fac03b
MK
2993 if (ret) {
2994 spin_unlock_irqrestore(&zone->lock, flags);
2995 return ret;
2996 }
0aaa29a5
MG
2997 }
2998 spin_unlock_irqrestore(&zone->lock, flags);
2999 }
04c8716f
MK
3000
3001 return false;
0aaa29a5
MG
3002}
3003
3bc48f96
VB
3004/*
3005 * Try finding a free buddy page on the fallback list and put it on the free
3006 * list of requested migratetype, possibly along with other pages from the same
3007 * block, depending on fragmentation avoidance heuristics. Returns true if
3008 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
3009 *
3010 * The use of signed ints for order and current_order is a deliberate
3011 * deviation from the rest of this file, to make the for loop
3012 * condition simpler.
3bc48f96 3013 */
85ccc8fa 3014static __always_inline bool
6bb15450
MG
3015__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3016 unsigned int alloc_flags)
b2a0ac88 3017{
b8af2941 3018 struct free_area *area;
b002529d 3019 int current_order;
6bb15450 3020 int min_order = order;
b2a0ac88 3021 struct page *page;
4eb7dce6
JK
3022 int fallback_mt;
3023 bool can_steal;
b2a0ac88 3024
6bb15450
MG
3025 /*
3026 * Do not steal pages from freelists belonging to other pageblocks
3027 * i.e. orders < pageblock_order. If there are no local zones free,
3028 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3029 */
e933dc4a 3030 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
6bb15450
MG
3031 min_order = pageblock_order;
3032
7a8f58f3
VB
3033 /*
3034 * Find the largest available free page in the other list. This roughly
3035 * approximates finding the pageblock with the most free pages, which
3036 * would be too costly to do exactly.
3037 */
6bb15450 3038 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 3039 --current_order) {
4eb7dce6
JK
3040 area = &(zone->free_area[current_order]);
3041 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 3042 start_migratetype, false, &can_steal);
4eb7dce6
JK
3043 if (fallback_mt == -1)
3044 continue;
b2a0ac88 3045
7a8f58f3
VB
3046 /*
3047 * We cannot steal all free pages from the pageblock and the
3048 * requested migratetype is movable. In that case it's better to
3049 * steal and split the smallest available page instead of the
3050 * largest available page, because even if the next movable
3051 * allocation falls back into a different pageblock than this
3052 * one, it won't cause permanent fragmentation.
3053 */
3054 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3055 && current_order > order)
3056 goto find_smallest;
b2a0ac88 3057
7a8f58f3
VB
3058 goto do_steal;
3059 }
e0fff1bd 3060
7a8f58f3 3061 return false;
e0fff1bd 3062
7a8f58f3
VB
3063find_smallest:
3064 for (current_order = order; current_order < MAX_ORDER;
3065 current_order++) {
3066 area = &(zone->free_area[current_order]);
3067 fallback_mt = find_suitable_fallback(area, current_order,
3068 start_migratetype, false, &can_steal);
3069 if (fallback_mt != -1)
3070 break;
b2a0ac88
MG
3071 }
3072
7a8f58f3
VB
3073 /*
3074 * This should not happen - we already found a suitable fallback
3075 * when looking for the largest page.
3076 */
3077 VM_BUG_ON(current_order == MAX_ORDER);
3078
3079do_steal:
b03641af 3080 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 3081
1c30844d
MG
3082 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3083 can_steal);
7a8f58f3
VB
3084
3085 trace_mm_page_alloc_extfrag(page, order, current_order,
3086 start_migratetype, fallback_mt);
3087
3088 return true;
3089
b2a0ac88
MG
3090}
3091
56fd56b8 3092/*
1da177e4
LT
3093 * Do the hard work of removing an element from the buddy allocator.
3094 * Call me with the zone->lock already held.
3095 */
85ccc8fa 3096static __always_inline struct page *
6bb15450
MG
3097__rmqueue(struct zone *zone, unsigned int order, int migratetype,
3098 unsigned int alloc_flags)
1da177e4 3099{
1da177e4
LT
3100 struct page *page;
3101
ce8f86ee
H
3102 if (IS_ENABLED(CONFIG_CMA)) {
3103 /*
3104 * Balance movable allocations between regular and CMA areas by
3105 * allocating from CMA when over half of the zone's free memory
3106 * is in the CMA area.
3107 */
3108 if (alloc_flags & ALLOC_CMA &&
3109 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3110 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3111 page = __rmqueue_cma_fallback(zone, order);
3112 if (page)
10e0f753 3113 return page;
ce8f86ee 3114 }
16867664 3115 }
3bc48f96 3116retry:
56fd56b8 3117 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 3118 if (unlikely(!page)) {
8510e69c 3119 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
3120 page = __rmqueue_cma_fallback(zone, order);
3121
6bb15450
MG
3122 if (!page && __rmqueue_fallback(zone, order, migratetype,
3123 alloc_flags))
3bc48f96 3124 goto retry;
728ec980 3125 }
b2a0ac88 3126 return page;
1da177e4
LT
3127}
3128
5f63b720 3129/*
1da177e4
LT
3130 * Obtain a specified number of elements from the buddy allocator, all under
3131 * a single hold of the lock, for efficiency. Add them to the supplied list.
3132 * Returns the number of new pages which were placed at *list.
3133 */
5f63b720 3134static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 3135 unsigned long count, struct list_head *list,
6bb15450 3136 int migratetype, unsigned int alloc_flags)
1da177e4 3137{
57490774 3138 unsigned long flags;
cb66bede 3139 int i, allocated = 0;
5f63b720 3140
57490774 3141 spin_lock_irqsave(&zone->lock, flags);
1da177e4 3142 for (i = 0; i < count; ++i) {
6bb15450
MG
3143 struct page *page = __rmqueue(zone, order, migratetype,
3144 alloc_flags);
085cc7d5 3145 if (unlikely(page == NULL))
1da177e4 3146 break;
81eabcbe 3147
77fe7f13 3148 if (unlikely(check_pcp_refill(page, order)))
479f854a
MG
3149 continue;
3150
81eabcbe 3151 /*
0fac3ba5
VB
3152 * Split buddy pages returned by expand() are received here in
3153 * physical page order. The page is added to the tail of
3154 * caller's list. From the callers perspective, the linked list
3155 * is ordered by page number under some conditions. This is
3156 * useful for IO devices that can forward direction from the
3157 * head, thus also in the physical page order. This is useful
3158 * for IO devices that can merge IO requests if the physical
3159 * pages are ordered properly.
81eabcbe 3160 */
bf75f200 3161 list_add_tail(&page->pcp_list, list);
cb66bede 3162 allocated++;
bb14c2c7 3163 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3164 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3165 -(1 << order));
1da177e4 3166 }
a6de734b
MG
3167
3168 /*
3169 * i pages were removed from the buddy list even if some leak due
3170 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3171 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3172 * pages added to the pcp list.
3173 */
f2260e6b 3174 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
57490774 3175 spin_unlock_irqrestore(&zone->lock, flags);
cb66bede 3176 return allocated;
1da177e4
LT
3177}
3178
4ae7c039 3179#ifdef CONFIG_NUMA
8fce4d8e 3180/*
4037d452
CL
3181 * Called from the vmstat counter updater to drain pagesets of this
3182 * currently executing processor on remote nodes after they have
3183 * expired.
8fce4d8e 3184 */
4037d452 3185void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3186{
7be12fc9 3187 int to_drain, batch;
4ae7c039 3188
4db0c3c2 3189 batch = READ_ONCE(pcp->batch);
7be12fc9 3190 to_drain = min(pcp->count, batch);
4b23a68f 3191 if (to_drain > 0) {
57490774 3192 spin_lock(&pcp->lock);
fd56eef2 3193 free_pcppages_bulk(zone, to_drain, pcp, 0);
57490774 3194 spin_unlock(&pcp->lock);
4b23a68f 3195 }
4ae7c039
CL
3196}
3197#endif
3198
9f8f2172 3199/*
93481ff0 3200 * Drain pcplists of the indicated processor and zone.
9f8f2172 3201 */
93481ff0 3202static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3203{
93481ff0 3204 struct per_cpu_pages *pcp;
1da177e4 3205
28f836b6 3206 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
4b23a68f 3207 if (pcp->count) {
57490774 3208 spin_lock(&pcp->lock);
4b23a68f 3209 free_pcppages_bulk(zone, pcp->count, pcp, 0);
57490774 3210 spin_unlock(&pcp->lock);
4b23a68f 3211 }
93481ff0 3212}
3dfa5721 3213
93481ff0
VB
3214/*
3215 * Drain pcplists of all zones on the indicated processor.
93481ff0
VB
3216 */
3217static void drain_pages(unsigned int cpu)
3218{
3219 struct zone *zone;
3220
3221 for_each_populated_zone(zone) {
3222 drain_pages_zone(cpu, zone);
1da177e4
LT
3223 }
3224}
1da177e4 3225
9f8f2172
CL
3226/*
3227 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3228 */
93481ff0 3229void drain_local_pages(struct zone *zone)
9f8f2172 3230{
93481ff0
VB
3231 int cpu = smp_processor_id();
3232
3233 if (zone)
3234 drain_pages_zone(cpu, zone);
3235 else
3236 drain_pages(cpu);
9f8f2172
CL
3237}
3238
3239/*
ec6e8c7e
VB
3240 * The implementation of drain_all_pages(), exposing an extra parameter to
3241 * drain on all cpus.
93481ff0 3242 *
ec6e8c7e
VB
3243 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3244 * not empty. The check for non-emptiness can however race with a free to
3245 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3246 * that need the guarantee that every CPU has drained can disable the
3247 * optimizing racy check.
9f8f2172 3248 */
3b1f3658 3249static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3250{
74046494 3251 int cpu;
74046494
GBY
3252
3253 /*
041711ce 3254 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3255 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3256 */
3257 static cpumask_t cpus_with_pcps;
3258
bd233f53
MG
3259 /*
3260 * Do not drain if one is already in progress unless it's specific to
3261 * a zone. Such callers are primarily CMA and memory hotplug and need
3262 * the drain to be complete when the call returns.
3263 */
3264 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3265 if (!zone)
3266 return;
3267 mutex_lock(&pcpu_drain_mutex);
3268 }
0ccce3b9 3269
74046494
GBY
3270 /*
3271 * We don't care about racing with CPU hotplug event
3272 * as offline notification will cause the notified
3273 * cpu to drain that CPU pcps and on_each_cpu_mask
3274 * disables preemption as part of its processing
3275 */
3276 for_each_online_cpu(cpu) {
28f836b6 3277 struct per_cpu_pages *pcp;
93481ff0 3278 struct zone *z;
74046494 3279 bool has_pcps = false;
93481ff0 3280
ec6e8c7e
VB
3281 if (force_all_cpus) {
3282 /*
3283 * The pcp.count check is racy, some callers need a
3284 * guarantee that no cpu is missed.
3285 */
3286 has_pcps = true;
3287 } else if (zone) {
28f836b6
MG
3288 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3289 if (pcp->count)
74046494 3290 has_pcps = true;
93481ff0
VB
3291 } else {
3292 for_each_populated_zone(z) {
28f836b6
MG
3293 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3294 if (pcp->count) {
93481ff0
VB
3295 has_pcps = true;
3296 break;
3297 }
74046494
GBY
3298 }
3299 }
93481ff0 3300
74046494
GBY
3301 if (has_pcps)
3302 cpumask_set_cpu(cpu, &cpus_with_pcps);
3303 else
3304 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3305 }
0ccce3b9 3306
bd233f53 3307 for_each_cpu(cpu, &cpus_with_pcps) {
443c2acc
NSJ
3308 if (zone)
3309 drain_pages_zone(cpu, zone);
3310 else
3311 drain_pages(cpu);
0ccce3b9 3312 }
bd233f53
MG
3313
3314 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3315}
3316
ec6e8c7e
VB
3317/*
3318 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3319 *
3320 * When zone parameter is non-NULL, spill just the single zone's pages.
ec6e8c7e
VB
3321 */
3322void drain_all_pages(struct zone *zone)
3323{
3324 __drain_all_pages(zone, false);
3325}
3326
296699de 3327#ifdef CONFIG_HIBERNATION
1da177e4 3328
556b969a
CY
3329/*
3330 * Touch the watchdog for every WD_PAGE_COUNT pages.
3331 */
3332#define WD_PAGE_COUNT (128*1024)
3333
1da177e4
LT
3334void mark_free_pages(struct zone *zone)
3335{
556b969a 3336 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3337 unsigned long flags;
7aeb09f9 3338 unsigned int order, t;
86760a2c 3339 struct page *page;
1da177e4 3340
8080fc03 3341 if (zone_is_empty(zone))
1da177e4
LT
3342 return;
3343
3344 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3345
108bcc96 3346 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3347 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3348 if (pfn_valid(pfn)) {
86760a2c 3349 page = pfn_to_page(pfn);
ba6b0979 3350
556b969a
CY
3351 if (!--page_count) {
3352 touch_nmi_watchdog();
3353 page_count = WD_PAGE_COUNT;
3354 }
3355
ba6b0979
JK
3356 if (page_zone(page) != zone)
3357 continue;
3358
7be98234
RW
3359 if (!swsusp_page_is_forbidden(page))
3360 swsusp_unset_page_free(page);
f623f0db 3361 }
1da177e4 3362
b2a0ac88 3363 for_each_migratetype_order(order, t) {
86760a2c 3364 list_for_each_entry(page,
bf75f200 3365 &zone->free_area[order].free_list[t], buddy_list) {
f623f0db 3366 unsigned long i;
1da177e4 3367
86760a2c 3368 pfn = page_to_pfn(page);
556b969a
CY
3369 for (i = 0; i < (1UL << order); i++) {
3370 if (!--page_count) {
3371 touch_nmi_watchdog();
3372 page_count = WD_PAGE_COUNT;
3373 }
7be98234 3374 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3375 }
f623f0db 3376 }
b2a0ac88 3377 }
1da177e4
LT
3378 spin_unlock_irqrestore(&zone->lock, flags);
3379}
e2c55dc8 3380#endif /* CONFIG_PM */
1da177e4 3381
44042b44
MG
3382static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3383 unsigned int order)
1da177e4 3384{
5f8dcc21 3385 int migratetype;
1da177e4 3386
44042b44 3387 if (!free_pcp_prepare(page, order))
9cca35d4 3388 return false;
689bcebf 3389
dc4b0caf 3390 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3391 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3392 return true;
3393}
3394
f26b3fa0
MG
3395static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3396 bool free_high)
3b12e7e9
MG
3397{
3398 int min_nr_free, max_nr_free;
3399
f26b3fa0
MG
3400 /* Free everything if batch freeing high-order pages. */
3401 if (unlikely(free_high))
3402 return pcp->count;
3403
3b12e7e9
MG
3404 /* Check for PCP disabled or boot pageset */
3405 if (unlikely(high < batch))
3406 return 1;
3407
3408 /* Leave at least pcp->batch pages on the list */
3409 min_nr_free = batch;
3410 max_nr_free = high - batch;
3411
3412 /*
3413 * Double the number of pages freed each time there is subsequent
3414 * freeing of pages without any allocation.
3415 */
3416 batch <<= pcp->free_factor;
3417 if (batch < max_nr_free)
3418 pcp->free_factor++;
3419 batch = clamp(batch, min_nr_free, max_nr_free);
3420
3421 return batch;
3422}
3423
f26b3fa0
MG
3424static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3425 bool free_high)
c49c2c47
MG
3426{
3427 int high = READ_ONCE(pcp->high);
3428
f26b3fa0 3429 if (unlikely(!high || free_high))
c49c2c47
MG
3430 return 0;
3431
3432 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3433 return high;
3434
3435 /*
3436 * If reclaim is active, limit the number of pages that can be
3437 * stored on pcp lists
3438 */
3439 return min(READ_ONCE(pcp->batch) << 2, high);
3440}
3441
4b23a68f
MG
3442static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3443 struct page *page, int migratetype,
56651377 3444 unsigned int order)
9cca35d4 3445{
3b12e7e9 3446 int high;
44042b44 3447 int pindex;
f26b3fa0 3448 bool free_high;
9cca35d4 3449
15cd9004 3450 __count_vm_events(PGFREE, 1 << order);
44042b44 3451 pindex = order_to_pindex(migratetype, order);
bf75f200 3452 list_add(&page->pcp_list, &pcp->lists[pindex]);
44042b44 3453 pcp->count += 1 << order;
f26b3fa0
MG
3454
3455 /*
3456 * As high-order pages other than THP's stored on PCP can contribute
3457 * to fragmentation, limit the number stored when PCP is heavily
3458 * freeing without allocation. The remainder after bulk freeing
3459 * stops will be drained from vmstat refresh context.
3460 */
3461 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3462
3463 high = nr_pcp_high(pcp, zone, free_high);
3b12e7e9
MG
3464 if (pcp->count >= high) {
3465 int batch = READ_ONCE(pcp->batch);
3466
f26b3fa0 3467 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3b12e7e9 3468 }
9cca35d4 3469}
5f8dcc21 3470
9cca35d4 3471/*
44042b44 3472 * Free a pcp page
9cca35d4 3473 */
44042b44 3474void free_unref_page(struct page *page, unsigned int order)
9cca35d4 3475{
4b23a68f
MG
3476 unsigned long __maybe_unused UP_flags;
3477 struct per_cpu_pages *pcp;
3478 struct zone *zone;
9cca35d4 3479 unsigned long pfn = page_to_pfn(page);
df1acc85 3480 int migratetype;
9cca35d4 3481
44042b44 3482 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3483 return;
da456f14 3484
5f8dcc21
MG
3485 /*
3486 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3487 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3488 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3489 * areas back if necessary. Otherwise, we may have to free
3490 * excessively into the page allocator
3491 */
df1acc85
MG
3492 migratetype = get_pcppage_migratetype(page);
3493 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3494 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3495 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3496 return;
5f8dcc21
MG
3497 }
3498 migratetype = MIGRATE_MOVABLE;
3499 }
3500
4b23a68f
MG
3501 zone = page_zone(page);
3502 pcp_trylock_prepare(UP_flags);
57490774 3503 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 3504 if (pcp) {
4b23a68f 3505 free_unref_page_commit(zone, pcp, page, migratetype, order);
57490774 3506 pcp_spin_unlock(pcp);
4b23a68f
MG
3507 } else {
3508 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3509 }
3510 pcp_trylock_finish(UP_flags);
1da177e4
LT
3511}
3512
cc59850e
KK
3513/*
3514 * Free a list of 0-order pages
3515 */
2d4894b5 3516void free_unref_page_list(struct list_head *list)
cc59850e 3517{
57490774 3518 unsigned long __maybe_unused UP_flags;
cc59850e 3519 struct page *page, *next;
4b23a68f
MG
3520 struct per_cpu_pages *pcp = NULL;
3521 struct zone *locked_zone = NULL;
c24ad77d 3522 int batch_count = 0;
df1acc85 3523 int migratetype;
9cca35d4
MG
3524
3525 /* Prepare pages for freeing */
3526 list_for_each_entry_safe(page, next, list, lru) {
56651377 3527 unsigned long pfn = page_to_pfn(page);
053cfda1 3528 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 3529 list_del(&page->lru);
053cfda1
ML
3530 continue;
3531 }
df1acc85
MG
3532
3533 /*
3534 * Free isolated pages directly to the allocator, see
3535 * comment in free_unref_page.
3536 */
3537 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3538 if (unlikely(is_migrate_isolate(migratetype))) {
3539 list_del(&page->lru);
3540 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3541 continue;
df1acc85 3542 }
9cca35d4 3543 }
cc59850e
KK
3544
3545 list_for_each_entry_safe(page, next, list, lru) {
4b23a68f
MG
3546 struct zone *zone = page_zone(page);
3547
c3e58a70 3548 list_del(&page->lru);
57490774 3549 migratetype = get_pcppage_migratetype(page);
c3e58a70 3550
a4bafffb
MG
3551 /*
3552 * Either different zone requiring a different pcp lock or
3553 * excessive lock hold times when freeing a large list of
3554 * pages.
3555 */
3556 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
57490774
MG
3557 if (pcp) {
3558 pcp_spin_unlock(pcp);
3559 pcp_trylock_finish(UP_flags);
3560 }
01b44456 3561
a4bafffb
MG
3562 batch_count = 0;
3563
57490774
MG
3564 /*
3565 * trylock is necessary as pages may be getting freed
3566 * from IRQ or SoftIRQ context after an IO completion.
3567 */
3568 pcp_trylock_prepare(UP_flags);
3569 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3570 if (unlikely(!pcp)) {
3571 pcp_trylock_finish(UP_flags);
3572 free_one_page(zone, page, page_to_pfn(page),
3573 0, migratetype, FPI_NONE);
3574 locked_zone = NULL;
3575 continue;
3576 }
4b23a68f 3577 locked_zone = zone;
4b23a68f
MG
3578 }
3579
47aef601
DB
3580 /*
3581 * Non-isolated types over MIGRATE_PCPTYPES get added
3582 * to the MIGRATE_MOVABLE pcp list.
3583 */
47aef601
DB
3584 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3585 migratetype = MIGRATE_MOVABLE;
3586
2d4894b5 3587 trace_mm_page_free_batched(page);
4b23a68f 3588 free_unref_page_commit(zone, pcp, page, migratetype, 0);
a4bafffb 3589 batch_count++;
cc59850e 3590 }
4b23a68f 3591
57490774
MG
3592 if (pcp) {
3593 pcp_spin_unlock(pcp);
3594 pcp_trylock_finish(UP_flags);
3595 }
cc59850e
KK
3596}
3597
8dfcc9ba
NP
3598/*
3599 * split_page takes a non-compound higher-order page, and splits it into
3600 * n (1<<order) sub-pages: page[0..n]
3601 * Each sub-page must be freed individually.
3602 *
3603 * Note: this is probably too low level an operation for use in drivers.
3604 * Please consult with lkml before using this in your driver.
3605 */
3606void split_page(struct page *page, unsigned int order)
3607{
3608 int i;
3609
309381fe
SL
3610 VM_BUG_ON_PAGE(PageCompound(page), page);
3611 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3612
a9627bc5 3613 for (i = 1; i < (1 << order); i++)
7835e98b 3614 set_page_refcounted(page + i);
8fb156c9 3615 split_page_owner(page, 1 << order);
e1baddf8 3616 split_page_memcg(page, 1 << order);
8dfcc9ba 3617}
5853ff23 3618EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3619
3c605096 3620int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3621{
9a157dd8
KW
3622 struct zone *zone = page_zone(page);
3623 int mt = get_pageblock_migratetype(page);
748446bb 3624
194159fb 3625 if (!is_migrate_isolate(mt)) {
9a157dd8 3626 unsigned long watermark;
8348faf9
VB
3627 /*
3628 * Obey watermarks as if the page was being allocated. We can
3629 * emulate a high-order watermark check with a raised order-0
3630 * watermark, because we already know our high-order page
3631 * exists.
3632 */
fd1444b2 3633 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3634 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3635 return 0;
3636
8fb74b9f 3637 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3638 }
748446bb 3639
6ab01363 3640 del_page_from_free_list(page, zone, order);
2139cbe6 3641
400bc7fd 3642 /*
3643 * Set the pageblock if the isolated page is at least half of a
3644 * pageblock
3645 */
748446bb
MG
3646 if (order >= pageblock_order - 1) {
3647 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3648 for (; page < endpage; page += pageblock_nr_pages) {
3649 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
3650 /*
3651 * Only change normal pageblocks (i.e., they can merge
3652 * with others)
3653 */
3654 if (migratetype_is_mergeable(mt))
47118af0
MN
3655 set_pageblock_migratetype(page,
3656 MIGRATE_MOVABLE);
3657 }
748446bb
MG
3658 }
3659
8fb74b9f 3660 return 1UL << order;
1fb3f8ca
MG
3661}
3662
624f58d8
AD
3663/**
3664 * __putback_isolated_page - Return a now-isolated page back where we got it
3665 * @page: Page that was isolated
3666 * @order: Order of the isolated page
e6a0a7ad 3667 * @mt: The page's pageblock's migratetype
624f58d8
AD
3668 *
3669 * This function is meant to return a page pulled from the free lists via
3670 * __isolate_free_page back to the free lists they were pulled from.
3671 */
3672void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3673{
3674 struct zone *zone = page_zone(page);
3675
3676 /* zone lock should be held when this function is called */
3677 lockdep_assert_held(&zone->lock);
3678
3679 /* Return isolated page to tail of freelist. */
f04a5d5d 3680 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3681 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3682}
3683
060e7417
MG
3684/*
3685 * Update NUMA hit/miss statistics
060e7417 3686 */
3e23060b
MG
3687static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3688 long nr_account)
060e7417
MG
3689{
3690#ifdef CONFIG_NUMA
3a321d2a 3691 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3692
4518085e
KW
3693 /* skip numa counters update if numa stats is disabled */
3694 if (!static_branch_likely(&vm_numa_stat_key))
3695 return;
3696
c1093b74 3697 if (zone_to_nid(z) != numa_node_id())
060e7417 3698 local_stat = NUMA_OTHER;
060e7417 3699
c1093b74 3700 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3701 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3702 else {
3e23060b
MG
3703 __count_numa_events(z, NUMA_MISS, nr_account);
3704 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3705 }
3e23060b 3706 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3707#endif
3708}
3709
589d9973
MG
3710static __always_inline
3711struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3712 unsigned int order, unsigned int alloc_flags,
3713 int migratetype)
3714{
3715 struct page *page;
3716 unsigned long flags;
3717
3718 do {
3719 page = NULL;
3720 spin_lock_irqsave(&zone->lock, flags);
3721 /*
3722 * order-0 request can reach here when the pcplist is skipped
3723 * due to non-CMA allocation context. HIGHATOMIC area is
3724 * reserved for high-order atomic allocation, so order-0
3725 * request should skip it.
3726 */
eb2e2b42 3727 if (alloc_flags & ALLOC_HIGHATOMIC)
589d9973
MG
3728 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3729 if (!page) {
3730 page = __rmqueue(zone, order, migratetype, alloc_flags);
eb2e2b42
MG
3731
3732 /*
3733 * If the allocation fails, allow OOM handling access
3734 * to HIGHATOMIC reserves as failing now is worse than
3735 * failing a high-order atomic allocation in the
3736 * future.
3737 */
3738 if (!page && (alloc_flags & ALLOC_OOM))
3739 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3740
589d9973
MG
3741 if (!page) {
3742 spin_unlock_irqrestore(&zone->lock, flags);
3743 return NULL;
3744 }
3745 }
3746 __mod_zone_freepage_state(zone, -(1 << order),
3747 get_pcppage_migratetype(page));
3748 spin_unlock_irqrestore(&zone->lock, flags);
3749 } while (check_new_pages(page, order));
3750
3751 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3752 zone_statistics(preferred_zone, zone, 1);
3753
3754 return page;
3755}
3756
066b2393 3757/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3758static inline
44042b44
MG
3759struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3760 int migratetype,
6bb15450 3761 unsigned int alloc_flags,
453f85d4 3762 struct per_cpu_pages *pcp,
066b2393
MG
3763 struct list_head *list)
3764{
3765 struct page *page;
3766
3767 do {
3768 if (list_empty(list)) {
44042b44
MG
3769 int batch = READ_ONCE(pcp->batch);
3770 int alloced;
3771
3772 /*
3773 * Scale batch relative to order if batch implies
3774 * free pages can be stored on the PCP. Batch can
3775 * be 1 for small zones or for boot pagesets which
3776 * should never store free pages as the pages may
3777 * belong to arbitrary zones.
3778 */
3779 if (batch > 1)
3780 batch = max(batch >> order, 2);
3781 alloced = rmqueue_bulk(zone, order,
3782 batch, list,
6bb15450 3783 migratetype, alloc_flags);
44042b44
MG
3784
3785 pcp->count += alloced << order;
066b2393
MG
3786 if (unlikely(list_empty(list)))
3787 return NULL;
3788 }
3789
bf75f200
MG
3790 page = list_first_entry(list, struct page, pcp_list);
3791 list_del(&page->pcp_list);
44042b44 3792 pcp->count -= 1 << order;
77fe7f13 3793 } while (check_new_pcp(page, order));
066b2393
MG
3794
3795 return page;
3796}
3797
3798/* Lock and remove page from the per-cpu list */
3799static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44 3800 struct zone *zone, unsigned int order,
663d0cfd 3801 int migratetype, unsigned int alloc_flags)
066b2393
MG
3802{
3803 struct per_cpu_pages *pcp;
3804 struct list_head *list;
066b2393 3805 struct page *page;
4b23a68f 3806 unsigned long __maybe_unused UP_flags;
066b2393 3807
57490774 3808 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 3809 pcp_trylock_prepare(UP_flags);
57490774 3810 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 3811 if (!pcp) {
4b23a68f 3812 pcp_trylock_finish(UP_flags);
4b23a68f
MG
3813 return NULL;
3814 }
3b12e7e9
MG
3815
3816 /*
3817 * On allocation, reduce the number of pages that are batch freed.
3818 * See nr_pcp_free() where free_factor is increased for subsequent
3819 * frees.
3820 */
3b12e7e9 3821 pcp->free_factor >>= 1;
44042b44
MG
3822 list = &pcp->lists[order_to_pindex(migratetype, order)];
3823 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
57490774 3824 pcp_spin_unlock(pcp);
4b23a68f 3825 pcp_trylock_finish(UP_flags);
066b2393 3826 if (page) {
15cd9004 3827 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3828 zone_statistics(preferred_zone, zone, 1);
066b2393 3829 }
066b2393
MG
3830 return page;
3831}
3832
1da177e4 3833/*
a57ae9ef
RX
3834 * Allocate a page from the given zone.
3835 * Use pcplists for THP or "cheap" high-order allocations.
1da177e4 3836 */
b073d7f8
AP
3837
3838/*
3839 * Do not instrument rmqueue() with KMSAN. This function may call
3840 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3841 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3842 * may call rmqueue() again, which will result in a deadlock.
1da177e4 3843 */
b073d7f8 3844__no_sanitize_memory
0a15c3e9 3845static inline
066b2393 3846struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3847 struct zone *zone, unsigned int order,
c603844b
MG
3848 gfp_t gfp_flags, unsigned int alloc_flags,
3849 int migratetype)
1da177e4 3850{
689bcebf 3851 struct page *page;
1da177e4 3852
589d9973
MG
3853 /*
3854 * We most definitely don't want callers attempting to
3855 * allocate greater than order-1 page units with __GFP_NOFAIL.
3856 */
3857 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3858
44042b44 3859 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3860 /*
3861 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3862 * we need to skip it when CMA area isn't allowed.
3863 */
3864 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3865 migratetype != MIGRATE_MOVABLE) {
44042b44 3866 page = rmqueue_pcplist(preferred_zone, zone, order,
663d0cfd 3867 migratetype, alloc_flags);
4b23a68f
MG
3868 if (likely(page))
3869 goto out;
1d91df85 3870 }
066b2393 3871 }
83b9355b 3872
589d9973
MG
3873 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3874 migratetype);
1da177e4 3875
066b2393 3876out:
73444bc4 3877 /* Separate test+clear to avoid unnecessary atomics */
e2a66c21 3878 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
73444bc4
MG
3879 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3880 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3881 }
3882
066b2393 3883 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4
LT
3884 return page;
3885}
3886
933e312e
AM
3887#ifdef CONFIG_FAIL_PAGE_ALLOC
3888
b2588c4b 3889static struct {
933e312e
AM
3890 struct fault_attr attr;
3891
621a5f7a 3892 bool ignore_gfp_highmem;
71baba4b 3893 bool ignore_gfp_reclaim;
54114994 3894 u32 min_order;
933e312e
AM
3895} fail_page_alloc = {
3896 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3897 .ignore_gfp_reclaim = true,
621a5f7a 3898 .ignore_gfp_highmem = true,
54114994 3899 .min_order = 1,
933e312e
AM
3900};
3901
3902static int __init setup_fail_page_alloc(char *str)
3903{
3904 return setup_fault_attr(&fail_page_alloc.attr, str);
3905}
3906__setup("fail_page_alloc=", setup_fail_page_alloc);
3907
af3b8544 3908static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3909{
ea4452de
QZ
3910 int flags = 0;
3911
54114994 3912 if (order < fail_page_alloc.min_order)
deaf386e 3913 return false;
933e312e 3914 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3915 return false;
933e312e 3916 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3917 return false;
71baba4b
MG
3918 if (fail_page_alloc.ignore_gfp_reclaim &&
3919 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3920 return false;
933e312e 3921
ea4452de 3922 /* See comment in __should_failslab() */
3f913fc5 3923 if (gfp_mask & __GFP_NOWARN)
ea4452de 3924 flags |= FAULT_NOWARN;
3f913fc5 3925
ea4452de 3926 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
933e312e
AM
3927}
3928
3929#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3930
3931static int __init fail_page_alloc_debugfs(void)
3932{
0825a6f9 3933 umode_t mode = S_IFREG | 0600;
933e312e 3934 struct dentry *dir;
933e312e 3935
dd48c085
AM
3936 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3937 &fail_page_alloc.attr);
b2588c4b 3938
d9f7979c
GKH
3939 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3940 &fail_page_alloc.ignore_gfp_reclaim);
3941 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3942 &fail_page_alloc.ignore_gfp_highmem);
3943 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3944
d9f7979c 3945 return 0;
933e312e
AM
3946}
3947
3948late_initcall(fail_page_alloc_debugfs);
3949
3950#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3951
3952#else /* CONFIG_FAIL_PAGE_ALLOC */
3953
af3b8544 3954static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3955{
deaf386e 3956 return false;
933e312e
AM
3957}
3958
3959#endif /* CONFIG_FAIL_PAGE_ALLOC */
3960
54aa3866 3961noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3962{
3963 return __should_fail_alloc_page(gfp_mask, order);
3964}
3965ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3966
f27ce0e1
JK
3967static inline long __zone_watermark_unusable_free(struct zone *z,
3968 unsigned int order, unsigned int alloc_flags)
3969{
f27ce0e1
JK
3970 long unusable_free = (1 << order) - 1;
3971
3972 /*
ab350885
MG
3973 * If the caller does not have rights to reserves below the min
3974 * watermark then subtract the high-atomic reserves. This will
3975 * over-estimate the size of the atomic reserve but it avoids a search.
f27ce0e1 3976 */
ab350885 3977 if (likely(!(alloc_flags & ALLOC_RESERVES)))
f27ce0e1
JK
3978 unusable_free += z->nr_reserved_highatomic;
3979
3980#ifdef CONFIG_CMA
3981 /* If allocation can't use CMA areas don't use free CMA pages */
3982 if (!(alloc_flags & ALLOC_CMA))
3983 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3984#endif
3985
3986 return unusable_free;
3987}
3988
1da177e4 3989/*
97a16fc8
MG
3990 * Return true if free base pages are above 'mark'. For high-order checks it
3991 * will return true of the order-0 watermark is reached and there is at least
3992 * one free page of a suitable size. Checking now avoids taking the zone lock
3993 * to check in the allocation paths if no pages are free.
1da177e4 3994 */
86a294a8 3995bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3996 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3997 long free_pages)
1da177e4 3998{
d23ad423 3999 long min = mark;
1da177e4
LT
4000 int o;
4001
0aaa29a5 4002 /* free_pages may go negative - that's OK */
f27ce0e1 4003 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 4004
ab350885
MG
4005 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
4006 /*
4007 * __GFP_HIGH allows access to 50% of the min reserve as well
4008 * as OOM.
4009 */
1ebbb218 4010 if (alloc_flags & ALLOC_MIN_RESERVE) {
ab350885 4011 min -= min / 2;
0aaa29a5 4012
1ebbb218
MG
4013 /*
4014 * Non-blocking allocations (e.g. GFP_ATOMIC) can
4015 * access more reserves than just __GFP_HIGH. Other
4016 * non-blocking allocations requests such as GFP_NOWAIT
4017 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
4018 * access to the min reserve.
4019 */
4020 if (alloc_flags & ALLOC_NON_BLOCK)
4021 min -= min / 4;
4022 }
ab350885
MG
4023
4024 /*
4025 * OOM victims can try even harder than the normal reserve
cd04ae1e
MH
4026 * users on the grounds that it's definitely going to be in
4027 * the exit path shortly and free memory. Any allocation it
4028 * makes during the free path will be small and short-lived.
4029 */
4030 if (alloc_flags & ALLOC_OOM)
4031 min -= min / 2;
cd04ae1e
MH
4032 }
4033
97a16fc8
MG
4034 /*
4035 * Check watermarks for an order-0 allocation request. If these
4036 * are not met, then a high-order request also cannot go ahead
4037 * even if a suitable page happened to be free.
4038 */
97a225e6 4039 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 4040 return false;
1da177e4 4041
97a16fc8
MG
4042 /* If this is an order-0 request then the watermark is fine */
4043 if (!order)
4044 return true;
4045
4046 /* For a high-order request, check at least one suitable page is free */
4047 for (o = order; o < MAX_ORDER; o++) {
4048 struct free_area *area = &z->free_area[o];
4049 int mt;
4050
4051 if (!area->nr_free)
4052 continue;
4053
97a16fc8 4054 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 4055 if (!free_area_empty(area, mt))
97a16fc8
MG
4056 return true;
4057 }
4058
4059#ifdef CONFIG_CMA
d883c6cf 4060 if ((alloc_flags & ALLOC_CMA) &&
b03641af 4061 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 4062 return true;
d883c6cf 4063 }
97a16fc8 4064#endif
eb2e2b42
MG
4065 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
4066 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
b050e376 4067 return true;
eb2e2b42 4068 }
1da177e4 4069 }
97a16fc8 4070 return false;
88f5acf8
MG
4071}
4072
7aeb09f9 4073bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 4074 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 4075{
97a225e6 4076 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
4077 zone_page_state(z, NR_FREE_PAGES));
4078}
4079
48ee5f36 4080static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 4081 unsigned long mark, int highest_zoneidx,
f80b08fc 4082 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 4083{
f27ce0e1 4084 long free_pages;
d883c6cf 4085
f27ce0e1 4086 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
4087
4088 /*
4089 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 4090 * need to be calculated.
48ee5f36 4091 */
f27ce0e1 4092 if (!order) {
9282012f
JK
4093 long usable_free;
4094 long reserved;
f27ce0e1 4095
9282012f
JK
4096 usable_free = free_pages;
4097 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4098
4099 /* reserved may over estimate high-atomic reserves. */
4100 usable_free -= min(usable_free, reserved);
4101 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
f27ce0e1
JK
4102 return true;
4103 }
48ee5f36 4104
f80b08fc
CTR
4105 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4106 free_pages))
4107 return true;
4108 /*
4109 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4110 * when checking the min watermark. The min watermark is the
4111 * point where boosting is ignored so that kswapd is woken up
4112 * when below the low watermark.
4113 */
4114 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4115 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4116 mark = z->_watermark[WMARK_MIN];
4117 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4118 alloc_flags, free_pages);
4119 }
4120
4121 return false;
48ee5f36
MG
4122}
4123
7aeb09f9 4124bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 4125 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
4126{
4127 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4128
4129 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4130 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4131
97a225e6 4132 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 4133 free_pages);
1da177e4
LT
4134}
4135
9276b1bc 4136#ifdef CONFIG_NUMA
61bb6cd2
GU
4137int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4138
957f822a
DR
4139static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4140{
e02dc017 4141 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 4142 node_reclaim_distance;
957f822a 4143}
9276b1bc 4144#else /* CONFIG_NUMA */
957f822a
DR
4145static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4146{
4147 return true;
4148}
9276b1bc
PJ
4149#endif /* CONFIG_NUMA */
4150
6bb15450
MG
4151/*
4152 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4153 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4154 * premature use of a lower zone may cause lowmem pressure problems that
4155 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4156 * probably too small. It only makes sense to spread allocations to avoid
4157 * fragmentation between the Normal and DMA32 zones.
4158 */
4159static inline unsigned int
0a79cdad 4160alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 4161{
736838e9 4162 unsigned int alloc_flags;
0a79cdad 4163
736838e9
MN
4164 /*
4165 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4166 * to save a branch.
4167 */
4168 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
4169
4170#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
4171 if (!zone)
4172 return alloc_flags;
4173
6bb15450 4174 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 4175 return alloc_flags;
6bb15450
MG
4176
4177 /*
4178 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4179 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4180 * on UMA that if Normal is populated then so is DMA32.
4181 */
4182 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4183 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 4184 return alloc_flags;
6bb15450 4185
8118b82e 4186 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
4187#endif /* CONFIG_ZONE_DMA32 */
4188 return alloc_flags;
6bb15450 4189}
6bb15450 4190
8e3560d9
PT
4191/* Must be called after current_gfp_context() which can change gfp_mask */
4192static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4193 unsigned int alloc_flags)
8510e69c
JK
4194{
4195#ifdef CONFIG_CMA
8e3560d9 4196 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 4197 alloc_flags |= ALLOC_CMA;
8510e69c
JK
4198#endif
4199 return alloc_flags;
4200}
4201
7fb1d9fc 4202/*
0798e519 4203 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4204 * a page.
4205 */
4206static struct page *
a9263751
VB
4207get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4208 const struct alloc_context *ac)
753ee728 4209{
6bb15450 4210 struct zoneref *z;
5117f45d 4211 struct zone *zone;
8a87d695
WY
4212 struct pglist_data *last_pgdat = NULL;
4213 bool last_pgdat_dirty_ok = false;
6bb15450 4214 bool no_fallback;
3b8c0be4 4215
6bb15450 4216retry:
7fb1d9fc 4217 /*
9276b1bc 4218 * Scan zonelist, looking for a zone with enough free.
189cdcfe 4219 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
7fb1d9fc 4220 */
6bb15450
MG
4221 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4222 z = ac->preferred_zoneref;
30d8ec73
MN
4223 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4224 ac->nodemask) {
be06af00 4225 struct page *page;
e085dbc5
JW
4226 unsigned long mark;
4227
664eedde
MG
4228 if (cpusets_enabled() &&
4229 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4230 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4231 continue;
a756cf59
JW
4232 /*
4233 * When allocating a page cache page for writing, we
281e3726
MG
4234 * want to get it from a node that is within its dirty
4235 * limit, such that no single node holds more than its
a756cf59 4236 * proportional share of globally allowed dirty pages.
281e3726 4237 * The dirty limits take into account the node's
a756cf59
JW
4238 * lowmem reserves and high watermark so that kswapd
4239 * should be able to balance it without having to
4240 * write pages from its LRU list.
4241 *
a756cf59 4242 * XXX: For now, allow allocations to potentially
281e3726 4243 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4244 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4245 * which is important when on a NUMA setup the allowed
281e3726 4246 * nodes are together not big enough to reach the
a756cf59 4247 * global limit. The proper fix for these situations
281e3726 4248 * will require awareness of nodes in the
a756cf59
JW
4249 * dirty-throttling and the flusher threads.
4250 */
3b8c0be4 4251 if (ac->spread_dirty_pages) {
8a87d695
WY
4252 if (last_pgdat != zone->zone_pgdat) {
4253 last_pgdat = zone->zone_pgdat;
4254 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4255 }
3b8c0be4 4256
8a87d695 4257 if (!last_pgdat_dirty_ok)
3b8c0be4 4258 continue;
3b8c0be4 4259 }
7fb1d9fc 4260
6bb15450
MG
4261 if (no_fallback && nr_online_nodes > 1 &&
4262 zone != ac->preferred_zoneref->zone) {
4263 int local_nid;
4264
4265 /*
4266 * If moving to a remote node, retry but allow
4267 * fragmenting fallbacks. Locality is more important
4268 * than fragmentation avoidance.
4269 */
4270 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4271 if (zone_to_nid(zone) != local_nid) {
4272 alloc_flags &= ~ALLOC_NOFRAGMENT;
4273 goto retry;
4274 }
4275 }
4276
a9214443 4277 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4278 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4279 ac->highest_zoneidx, alloc_flags,
4280 gfp_mask)) {
fa5e084e
MG
4281 int ret;
4282
c9e97a19
PT
4283#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4284 /*
4285 * Watermark failed for this zone, but see if we can
4286 * grow this zone if it contains deferred pages.
4287 */
4288 if (static_branch_unlikely(&deferred_pages)) {
4289 if (_deferred_grow_zone(zone, order))
4290 goto try_this_zone;
4291 }
4292#endif
5dab2911
MG
4293 /* Checked here to keep the fast path fast */
4294 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4295 if (alloc_flags & ALLOC_NO_WATERMARKS)
4296 goto try_this_zone;
4297
202e35db 4298 if (!node_reclaim_enabled() ||
c33d6c06 4299 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4300 continue;
4301
a5f5f91d 4302 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4303 switch (ret) {
a5f5f91d 4304 case NODE_RECLAIM_NOSCAN:
fa5e084e 4305 /* did not scan */
cd38b115 4306 continue;
a5f5f91d 4307 case NODE_RECLAIM_FULL:
fa5e084e 4308 /* scanned but unreclaimable */
cd38b115 4309 continue;
fa5e084e
MG
4310 default:
4311 /* did we reclaim enough */
fed2719e 4312 if (zone_watermark_ok(zone, order, mark,
97a225e6 4313 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4314 goto try_this_zone;
4315
fed2719e 4316 continue;
0798e519 4317 }
7fb1d9fc
RS
4318 }
4319
fa5e084e 4320try_this_zone:
066b2393 4321 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4322 gfp_mask, alloc_flags, ac->migratetype);
75379191 4323 if (page) {
479f854a 4324 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4325
4326 /*
4327 * If this is a high-order atomic allocation then check
4328 * if the pageblock should be reserved for the future
4329 */
eb2e2b42 4330 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
0aaa29a5
MG
4331 reserve_highatomic_pageblock(page, zone, order);
4332
75379191 4333 return page;
c9e97a19
PT
4334 } else {
4335#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4336 /* Try again if zone has deferred pages */
4337 if (static_branch_unlikely(&deferred_pages)) {
4338 if (_deferred_grow_zone(zone, order))
4339 goto try_this_zone;
4340 }
4341#endif
75379191 4342 }
54a6eb5c 4343 }
9276b1bc 4344
6bb15450
MG
4345 /*
4346 * It's possible on a UMA machine to get through all zones that are
4347 * fragmented. If avoiding fragmentation, reset and try again.
4348 */
4349 if (no_fallback) {
4350 alloc_flags &= ~ALLOC_NOFRAGMENT;
4351 goto retry;
4352 }
4353
4ffeaf35 4354 return NULL;
753ee728
MH
4355}
4356
9af744d7 4357static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4358{
a238ab5b 4359 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4360
4361 /*
4362 * This documents exceptions given to allocations in certain
4363 * contexts that are allowed to allocate outside current's set
4364 * of allowed nodes.
4365 */
4366 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4367 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4368 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4369 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4370 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4371 filter &= ~SHOW_MEM_FILTER_NODES;
4372
974f4367 4373 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
aa187507
MH
4374}
4375
a8e99259 4376void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4377{
4378 struct va_format vaf;
4379 va_list args;
1be334e5 4380 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4381
c4dc63f0
BH
4382 if ((gfp_mask & __GFP_NOWARN) ||
4383 !__ratelimit(&nopage_rs) ||
4384 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
4385 return;
4386
7877cdcc
MH
4387 va_start(args, fmt);
4388 vaf.fmt = fmt;
4389 vaf.va = &args;
ef8444ea 4390 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4391 current->comm, &vaf, gfp_mask, &gfp_mask,
4392 nodemask_pr_args(nodemask));
7877cdcc 4393 va_end(args);
3ee9a4f0 4394
a8e99259 4395 cpuset_print_current_mems_allowed();
ef8444ea 4396 pr_cont("\n");
a238ab5b 4397 dump_stack();
685dbf6f 4398 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4399}
4400
6c18ba7a
MH
4401static inline struct page *
4402__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4403 unsigned int alloc_flags,
4404 const struct alloc_context *ac)
4405{
4406 struct page *page;
4407
4408 page = get_page_from_freelist(gfp_mask, order,
4409 alloc_flags|ALLOC_CPUSET, ac);
4410 /*
4411 * fallback to ignore cpuset restriction if our nodes
4412 * are depleted
4413 */
4414 if (!page)
4415 page = get_page_from_freelist(gfp_mask, order,
4416 alloc_flags, ac);
4417
4418 return page;
4419}
4420
11e33f6a
MG
4421static inline struct page *
4422__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4423 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4424{
6e0fc46d
DR
4425 struct oom_control oc = {
4426 .zonelist = ac->zonelist,
4427 .nodemask = ac->nodemask,
2a966b77 4428 .memcg = NULL,
6e0fc46d
DR
4429 .gfp_mask = gfp_mask,
4430 .order = order,
6e0fc46d 4431 };
11e33f6a
MG
4432 struct page *page;
4433
9879de73
JW
4434 *did_some_progress = 0;
4435
9879de73 4436 /*
dc56401f
JW
4437 * Acquire the oom lock. If that fails, somebody else is
4438 * making progress for us.
9879de73 4439 */
dc56401f 4440 if (!mutex_trylock(&oom_lock)) {
9879de73 4441 *did_some_progress = 1;
11e33f6a 4442 schedule_timeout_uninterruptible(1);
1da177e4
LT
4443 return NULL;
4444 }
6b1de916 4445
11e33f6a
MG
4446 /*
4447 * Go through the zonelist yet one more time, keep very high watermark
4448 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4449 * we're still under heavy pressure. But make sure that this reclaim
4450 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4451 * allocation which will never fail due to oom_lock already held.
11e33f6a 4452 */
e746bf73
TH
4453 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4454 ~__GFP_DIRECT_RECLAIM, order,
4455 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4456 if (page)
11e33f6a
MG
4457 goto out;
4458
06ad276a
MH
4459 /* Coredumps can quickly deplete all memory reserves */
4460 if (current->flags & PF_DUMPCORE)
4461 goto out;
4462 /* The OOM killer will not help higher order allocs */
4463 if (order > PAGE_ALLOC_COSTLY_ORDER)
4464 goto out;
dcda9b04
MH
4465 /*
4466 * We have already exhausted all our reclaim opportunities without any
4467 * success so it is time to admit defeat. We will skip the OOM killer
4468 * because it is very likely that the caller has a more reasonable
4469 * fallback than shooting a random task.
cfb4a541
MN
4470 *
4471 * The OOM killer may not free memory on a specific node.
dcda9b04 4472 */
cfb4a541 4473 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4474 goto out;
06ad276a 4475 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4476 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4477 goto out;
4478 if (pm_suspended_storage())
4479 goto out;
4480 /*
4481 * XXX: GFP_NOFS allocations should rather fail than rely on
4482 * other request to make a forward progress.
4483 * We are in an unfortunate situation where out_of_memory cannot
4484 * do much for this context but let's try it to at least get
4485 * access to memory reserved if the current task is killed (see
4486 * out_of_memory). Once filesystems are ready to handle allocation
4487 * failures more gracefully we should just bail out here.
4488 */
4489
3c2c6488 4490 /* Exhausted what can be done so it's blame time */
3f913fc5
QZ
4491 if (out_of_memory(&oc) ||
4492 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
c32b3cbe 4493 *did_some_progress = 1;
5020e285 4494
6c18ba7a
MH
4495 /*
4496 * Help non-failing allocations by giving them access to memory
4497 * reserves
4498 */
4499 if (gfp_mask & __GFP_NOFAIL)
4500 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4501 ALLOC_NO_WATERMARKS, ac);
5020e285 4502 }
11e33f6a 4503out:
dc56401f 4504 mutex_unlock(&oom_lock);
11e33f6a
MG
4505 return page;
4506}
4507
33c2d214 4508/*
baf2f90b 4509 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4510 * killer is consider as the only way to move forward.
4511 */
4512#define MAX_COMPACT_RETRIES 16
4513
56de7263
MG
4514#ifdef CONFIG_COMPACTION
4515/* Try memory compaction for high-order allocations before reclaim */
4516static struct page *
4517__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4518 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4519 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4520{
5e1f0f09 4521 struct page *page = NULL;
eb414681 4522 unsigned long pflags;
499118e9 4523 unsigned int noreclaim_flag;
53853e2d
VB
4524
4525 if (!order)
66199712 4526 return NULL;
66199712 4527
eb414681 4528 psi_memstall_enter(&pflags);
5bf18281 4529 delayacct_compact_start();
499118e9 4530 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4531
c5d01d0d 4532 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4533 prio, &page);
eb414681 4534
499118e9 4535 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4536 psi_memstall_leave(&pflags);
5bf18281 4537 delayacct_compact_end();
56de7263 4538
06dac2f4
CTR
4539 if (*compact_result == COMPACT_SKIPPED)
4540 return NULL;
98dd3b48
VB
4541 /*
4542 * At least in one zone compaction wasn't deferred or skipped, so let's
4543 * count a compaction stall
4544 */
4545 count_vm_event(COMPACTSTALL);
8fb74b9f 4546
5e1f0f09
MG
4547 /* Prep a captured page if available */
4548 if (page)
4549 prep_new_page(page, order, gfp_mask, alloc_flags);
4550
4551 /* Try get a page from the freelist if available */
4552 if (!page)
4553 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4554
98dd3b48
VB
4555 if (page) {
4556 struct zone *zone = page_zone(page);
53853e2d 4557
98dd3b48
VB
4558 zone->compact_blockskip_flush = false;
4559 compaction_defer_reset(zone, order, true);
4560 count_vm_event(COMPACTSUCCESS);
4561 return page;
4562 }
56de7263 4563
98dd3b48
VB
4564 /*
4565 * It's bad if compaction run occurs and fails. The most likely reason
4566 * is that pages exist, but not enough to satisfy watermarks.
4567 */
4568 count_vm_event(COMPACTFAIL);
66199712 4569
98dd3b48 4570 cond_resched();
56de7263
MG
4571
4572 return NULL;
4573}
33c2d214 4574
3250845d
VB
4575static inline bool
4576should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4577 enum compact_result compact_result,
4578 enum compact_priority *compact_priority,
d9436498 4579 int *compaction_retries)
3250845d
VB
4580{
4581 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4582 int min_priority;
65190cff
MH
4583 bool ret = false;
4584 int retries = *compaction_retries;
4585 enum compact_priority priority = *compact_priority;
3250845d
VB
4586
4587 if (!order)
4588 return false;
4589
691d9497
AT
4590 if (fatal_signal_pending(current))
4591 return false;
4592
d9436498
VB
4593 if (compaction_made_progress(compact_result))
4594 (*compaction_retries)++;
4595
3250845d
VB
4596 /*
4597 * compaction considers all the zone as desperately out of memory
4598 * so it doesn't really make much sense to retry except when the
4599 * failure could be caused by insufficient priority
4600 */
d9436498
VB
4601 if (compaction_failed(compact_result))
4602 goto check_priority;
3250845d 4603
49433085
VB
4604 /*
4605 * compaction was skipped because there are not enough order-0 pages
4606 * to work with, so we retry only if it looks like reclaim can help.
4607 */
4608 if (compaction_needs_reclaim(compact_result)) {
4609 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4610 goto out;
4611 }
4612
3250845d
VB
4613 /*
4614 * make sure the compaction wasn't deferred or didn't bail out early
4615 * due to locks contention before we declare that we should give up.
49433085
VB
4616 * But the next retry should use a higher priority if allowed, so
4617 * we don't just keep bailing out endlessly.
3250845d 4618 */
65190cff 4619 if (compaction_withdrawn(compact_result)) {
49433085 4620 goto check_priority;
65190cff 4621 }
3250845d
VB
4622
4623 /*
dcda9b04 4624 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4625 * costly ones because they are de facto nofail and invoke OOM
4626 * killer to move on while costly can fail and users are ready
4627 * to cope with that. 1/4 retries is rather arbitrary but we
4628 * would need much more detailed feedback from compaction to
4629 * make a better decision.
4630 */
4631 if (order > PAGE_ALLOC_COSTLY_ORDER)
4632 max_retries /= 4;
65190cff
MH
4633 if (*compaction_retries <= max_retries) {
4634 ret = true;
4635 goto out;
4636 }
3250845d 4637
d9436498
VB
4638 /*
4639 * Make sure there are attempts at the highest priority if we exhausted
4640 * all retries or failed at the lower priorities.
4641 */
4642check_priority:
c2033b00
VB
4643 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4644 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4645
c2033b00 4646 if (*compact_priority > min_priority) {
d9436498
VB
4647 (*compact_priority)--;
4648 *compaction_retries = 0;
65190cff 4649 ret = true;
d9436498 4650 }
65190cff
MH
4651out:
4652 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4653 return ret;
3250845d 4654}
56de7263
MG
4655#else
4656static inline struct page *
4657__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4658 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4659 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4660{
33c2d214 4661 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4662 return NULL;
4663}
33c2d214
MH
4664
4665static inline bool
86a294a8
MH
4666should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4667 enum compact_result compact_result,
a5508cd8 4668 enum compact_priority *compact_priority,
d9436498 4669 int *compaction_retries)
33c2d214 4670{
31e49bfd
MH
4671 struct zone *zone;
4672 struct zoneref *z;
4673
4674 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4675 return false;
4676
4677 /*
4678 * There are setups with compaction disabled which would prefer to loop
4679 * inside the allocator rather than hit the oom killer prematurely.
4680 * Let's give them a good hope and keep retrying while the order-0
4681 * watermarks are OK.
4682 */
97a225e6
JK
4683 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4684 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4685 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4686 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4687 return true;
4688 }
33c2d214
MH
4689 return false;
4690}
3250845d 4691#endif /* CONFIG_COMPACTION */
56de7263 4692
d92a8cfc 4693#ifdef CONFIG_LOCKDEP
93781325 4694static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4695 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4696
f920e413 4697static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4698{
d92a8cfc
PZ
4699 /* no reclaim without waiting on it */
4700 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4701 return false;
4702
4703 /* this guy won't enter reclaim */
2e517d68 4704 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4705 return false;
4706
d92a8cfc
PZ
4707 if (gfp_mask & __GFP_NOLOCKDEP)
4708 return false;
4709
4710 return true;
4711}
4712
4f3eaf45 4713void __fs_reclaim_acquire(unsigned long ip)
93781325 4714{
4f3eaf45 4715 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4716}
4717
4f3eaf45 4718void __fs_reclaim_release(unsigned long ip)
93781325 4719{
4f3eaf45 4720 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4721}
4722
d92a8cfc
PZ
4723void fs_reclaim_acquire(gfp_t gfp_mask)
4724{
f920e413
DV
4725 gfp_mask = current_gfp_context(gfp_mask);
4726
4727 if (__need_reclaim(gfp_mask)) {
4728 if (gfp_mask & __GFP_FS)
4f3eaf45 4729 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
4730
4731#ifdef CONFIG_MMU_NOTIFIER
4732 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4733 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4734#endif
4735
4736 }
d92a8cfc
PZ
4737}
4738EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4739
4740void fs_reclaim_release(gfp_t gfp_mask)
4741{
f920e413
DV
4742 gfp_mask = current_gfp_context(gfp_mask);
4743
4744 if (__need_reclaim(gfp_mask)) {
4745 if (gfp_mask & __GFP_FS)
4f3eaf45 4746 __fs_reclaim_release(_RET_IP_);
f920e413 4747 }
d92a8cfc
PZ
4748}
4749EXPORT_SYMBOL_GPL(fs_reclaim_release);
4750#endif
4751
3d36424b
MG
4752/*
4753 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4754 * have been rebuilt so allocation retries. Reader side does not lock and
4755 * retries the allocation if zonelist changes. Writer side is protected by the
4756 * embedded spin_lock.
4757 */
4758static DEFINE_SEQLOCK(zonelist_update_seq);
4759
4760static unsigned int zonelist_iter_begin(void)
4761{
4762 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4763 return read_seqbegin(&zonelist_update_seq);
4764
4765 return 0;
4766}
4767
4768static unsigned int check_retry_zonelist(unsigned int seq)
4769{
4770 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4771 return read_seqretry(&zonelist_update_seq, seq);
4772
4773 return seq;
4774}
4775
bba90710 4776/* Perform direct synchronous page reclaim */
2187e17b 4777static unsigned long
a9263751
VB
4778__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4779 const struct alloc_context *ac)
11e33f6a 4780{
499118e9 4781 unsigned int noreclaim_flag;
fa7fc75f 4782 unsigned long progress;
11e33f6a
MG
4783
4784 cond_resched();
4785
4786 /* We now go into synchronous reclaim */
4787 cpuset_memory_pressure_bump();
d92a8cfc 4788 fs_reclaim_acquire(gfp_mask);
93781325 4789 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4790
a9263751
VB
4791 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4792 ac->nodemask);
11e33f6a 4793
499118e9 4794 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4795 fs_reclaim_release(gfp_mask);
11e33f6a
MG
4796
4797 cond_resched();
4798
bba90710
MS
4799 return progress;
4800}
4801
4802/* The really slow allocator path where we enter direct reclaim */
4803static inline struct page *
4804__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4805 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4806 unsigned long *did_some_progress)
bba90710
MS
4807{
4808 struct page *page = NULL;
fa7fc75f 4809 unsigned long pflags;
bba90710
MS
4810 bool drained = false;
4811
fa7fc75f 4812 psi_memstall_enter(&pflags);
a9263751 4813 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 4814 if (unlikely(!(*did_some_progress)))
fa7fc75f 4815 goto out;
11e33f6a 4816
9ee493ce 4817retry:
31a6c190 4818 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4819
4820 /*
4821 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4822 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4823 * Shrink them and try again
9ee493ce
MG
4824 */
4825 if (!page && !drained) {
29fac03b 4826 unreserve_highatomic_pageblock(ac, false);
93481ff0 4827 drain_all_pages(NULL);
9ee493ce
MG
4828 drained = true;
4829 goto retry;
4830 }
fa7fc75f
SB
4831out:
4832 psi_memstall_leave(&pflags);
9ee493ce 4833
11e33f6a
MG
4834 return page;
4835}
4836
5ecd9d40
DR
4837static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4838 const struct alloc_context *ac)
3a025760
JW
4839{
4840 struct zoneref *z;
4841 struct zone *zone;
e1a55637 4842 pg_data_t *last_pgdat = NULL;
97a225e6 4843 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4844
97a225e6 4845 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4846 ac->nodemask) {
bc53008e
WY
4847 if (!managed_zone(zone))
4848 continue;
d137a7cb 4849 if (last_pgdat != zone->zone_pgdat) {
97a225e6 4850 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
d137a7cb
CW
4851 last_pgdat = zone->zone_pgdat;
4852 }
e1a55637 4853 }
3a025760
JW
4854}
4855
c603844b 4856static inline unsigned int
eb2e2b42 4857gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
341ce06f 4858{
c603844b 4859 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4860
736838e9 4861 /*
524c4807 4862 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
736838e9
MN
4863 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4864 * to save two branches.
4865 */
524c4807 4866 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
736838e9 4867 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4868
341ce06f
PZ
4869 /*
4870 * The caller may dip into page reserves a bit more if the caller
4871 * cannot run direct reclaim, or if the caller has realtime scheduling
4872 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1ebbb218 4873 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
341ce06f 4874 */
736838e9
MN
4875 alloc_flags |= (__force int)
4876 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4877
1ebbb218 4878 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
5c3240d9 4879 /*
b104a35d
DR
4880 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4881 * if it can't schedule.
5c3240d9 4882 */
eb2e2b42 4883 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1ebbb218 4884 alloc_flags |= ALLOC_NON_BLOCK;
eb2e2b42
MG
4885
4886 if (order > 0)
4887 alloc_flags |= ALLOC_HIGHATOMIC;
4888 }
4889
523b9458 4890 /*
1ebbb218
MG
4891 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4892 * GFP_ATOMIC) rather than fail, see the comment for
4893 * __cpuset_node_allowed().
523b9458 4894 */
1ebbb218
MG
4895 if (alloc_flags & ALLOC_MIN_RESERVE)
4896 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4897 } else if (unlikely(rt_task(current)) && in_task())
c988dcbe 4898 alloc_flags |= ALLOC_MIN_RESERVE;
341ce06f 4899
8e3560d9 4900 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4901
341ce06f
PZ
4902 return alloc_flags;
4903}
4904
cd04ae1e 4905static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4906{
cd04ae1e
MH
4907 if (!tsk_is_oom_victim(tsk))
4908 return false;
4909
4910 /*
4911 * !MMU doesn't have oom reaper so give access to memory reserves
4912 * only to the thread with TIF_MEMDIE set
4913 */
4914 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4915 return false;
4916
cd04ae1e
MH
4917 return true;
4918}
4919
4920/*
4921 * Distinguish requests which really need access to full memory
4922 * reserves from oom victims which can live with a portion of it
4923 */
4924static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4925{
4926 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4927 return 0;
31a6c190 4928 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4929 return ALLOC_NO_WATERMARKS;
31a6c190 4930 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4931 return ALLOC_NO_WATERMARKS;
4932 if (!in_interrupt()) {
4933 if (current->flags & PF_MEMALLOC)
4934 return ALLOC_NO_WATERMARKS;
4935 else if (oom_reserves_allowed(current))
4936 return ALLOC_OOM;
4937 }
31a6c190 4938
cd04ae1e
MH
4939 return 0;
4940}
4941
4942bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4943{
4944 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4945}
4946
0a0337e0
MH
4947/*
4948 * Checks whether it makes sense to retry the reclaim to make a forward progress
4949 * for the given allocation request.
491d79ae
JW
4950 *
4951 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4952 * without success, or when we couldn't even meet the watermark if we
4953 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4954 *
4955 * Returns true if a retry is viable or false to enter the oom path.
4956 */
4957static inline bool
4958should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4959 struct alloc_context *ac, int alloc_flags,
423b452e 4960 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4961{
4962 struct zone *zone;
4963 struct zoneref *z;
15f570bf 4964 bool ret = false;
0a0337e0 4965
423b452e
VB
4966 /*
4967 * Costly allocations might have made a progress but this doesn't mean
4968 * their order will become available due to high fragmentation so
4969 * always increment the no progress counter for them
4970 */
4971 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4972 *no_progress_loops = 0;
4973 else
4974 (*no_progress_loops)++;
4975
0a0337e0
MH
4976 /*
4977 * Make sure we converge to OOM if we cannot make any progress
4978 * several times in the row.
4979 */
04c8716f
MK
4980 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4981 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4982 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4983 }
0a0337e0 4984
bca67592
MG
4985 /*
4986 * Keep reclaiming pages while there is a chance this will lead
4987 * somewhere. If none of the target zones can satisfy our allocation
4988 * request even if all reclaimable pages are considered then we are
4989 * screwed and have to go OOM.
0a0337e0 4990 */
97a225e6
JK
4991 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4992 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4993 unsigned long available;
ede37713 4994 unsigned long reclaimable;
d379f01d
MH
4995 unsigned long min_wmark = min_wmark_pages(zone);
4996 bool wmark;
0a0337e0 4997
5a1c84b4 4998 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4999 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
5000
5001 /*
491d79ae
JW
5002 * Would the allocation succeed if we reclaimed all
5003 * reclaimable pages?
0a0337e0 5004 */
d379f01d 5005 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 5006 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
5007 trace_reclaim_retry_zone(z, order, reclaimable,
5008 available, min_wmark, *no_progress_loops, wmark);
5009 if (wmark) {
15f570bf 5010 ret = true;
132b0d21 5011 break;
0a0337e0
MH
5012 }
5013 }
5014
15f570bf
MH
5015 /*
5016 * Memory allocation/reclaim might be called from a WQ context and the
5017 * current implementation of the WQ concurrency control doesn't
5018 * recognize that a particular WQ is congested if the worker thread is
5019 * looping without ever sleeping. Therefore we have to do a short sleep
5020 * here rather than calling cond_resched().
5021 */
5022 if (current->flags & PF_WQ_WORKER)
5023 schedule_timeout_uninterruptible(1);
5024 else
5025 cond_resched();
5026 return ret;
0a0337e0
MH
5027}
5028
902b6281
VB
5029static inline bool
5030check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
5031{
5032 /*
5033 * It's possible that cpuset's mems_allowed and the nodemask from
5034 * mempolicy don't intersect. This should be normally dealt with by
5035 * policy_nodemask(), but it's possible to race with cpuset update in
5036 * such a way the check therein was true, and then it became false
5037 * before we got our cpuset_mems_cookie here.
5038 * This assumes that for all allocations, ac->nodemask can come only
5039 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5040 * when it does not intersect with the cpuset restrictions) or the
5041 * caller can deal with a violated nodemask.
5042 */
5043 if (cpusets_enabled() && ac->nodemask &&
5044 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5045 ac->nodemask = NULL;
5046 return true;
5047 }
5048
5049 /*
5050 * When updating a task's mems_allowed or mempolicy nodemask, it is
5051 * possible to race with parallel threads in such a way that our
5052 * allocation can fail while the mask is being updated. If we are about
5053 * to fail, check if the cpuset changed during allocation and if so,
5054 * retry.
5055 */
5056 if (read_mems_allowed_retry(cpuset_mems_cookie))
5057 return true;
5058
5059 return false;
5060}
5061
11e33f6a
MG
5062static inline struct page *
5063__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 5064 struct alloc_context *ac)
11e33f6a 5065{
d0164adc 5066 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 5067 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 5068 struct page *page = NULL;
c603844b 5069 unsigned int alloc_flags;
11e33f6a 5070 unsigned long did_some_progress;
5ce9bfef 5071 enum compact_priority compact_priority;
c5d01d0d 5072 enum compact_result compact_result;
5ce9bfef
VB
5073 int compaction_retries;
5074 int no_progress_loops;
5ce9bfef 5075 unsigned int cpuset_mems_cookie;
3d36424b 5076 unsigned int zonelist_iter_cookie;
cd04ae1e 5077 int reserve_flags;
1da177e4 5078
d0164adc
MG
5079 /*
5080 * We also sanity check to catch abuse of atomic reserves being used by
5081 * callers that are not in atomic context.
5082 */
5083 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5084 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5085 gfp_mask &= ~__GFP_ATOMIC;
5086
3d36424b 5087restart:
5ce9bfef
VB
5088 compaction_retries = 0;
5089 no_progress_loops = 0;
5090 compact_priority = DEF_COMPACT_PRIORITY;
5091 cpuset_mems_cookie = read_mems_allowed_begin();
3d36424b 5092 zonelist_iter_cookie = zonelist_iter_begin();
9a67f648
MH
5093
5094 /*
5095 * The fast path uses conservative alloc_flags to succeed only until
5096 * kswapd needs to be woken up, and to avoid the cost of setting up
5097 * alloc_flags precisely. So we do that now.
5098 */
eb2e2b42 5099 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
9a67f648 5100
e47483bc
VB
5101 /*
5102 * We need to recalculate the starting point for the zonelist iterator
5103 * because we might have used different nodemask in the fast path, or
5104 * there was a cpuset modification and we are retrying - otherwise we
5105 * could end up iterating over non-eligible zones endlessly.
5106 */
5107 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5108 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
5109 if (!ac->preferred_zoneref->zone)
5110 goto nopage;
5111
8ca1b5a4
FT
5112 /*
5113 * Check for insane configurations where the cpuset doesn't contain
5114 * any suitable zone to satisfy the request - e.g. non-movable
5115 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5116 */
5117 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5118 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5119 ac->highest_zoneidx,
5120 &cpuset_current_mems_allowed);
5121 if (!z->zone)
5122 goto nopage;
5123 }
5124
0a79cdad 5125 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 5126 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
5127
5128 /*
5129 * The adjusted alloc_flags might result in immediate success, so try
5130 * that first
5131 */
5132 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5133 if (page)
5134 goto got_pg;
5135
a8161d1e
VB
5136 /*
5137 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
5138 * that we have enough base pages and don't need to reclaim. For non-
5139 * movable high-order allocations, do that as well, as compaction will
5140 * try prevent permanent fragmentation by migrating from blocks of the
5141 * same migratetype.
5142 * Don't try this for allocations that are allowed to ignore
5143 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 5144 */
282722b0
VB
5145 if (can_direct_reclaim &&
5146 (costly_order ||
5147 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5148 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
5149 page = __alloc_pages_direct_compact(gfp_mask, order,
5150 alloc_flags, ac,
a5508cd8 5151 INIT_COMPACT_PRIORITY,
a8161d1e
VB
5152 &compact_result);
5153 if (page)
5154 goto got_pg;
5155
cc638f32
VB
5156 /*
5157 * Checks for costly allocations with __GFP_NORETRY, which
5158 * includes some THP page fault allocations
5159 */
5160 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
5161 /*
5162 * If allocating entire pageblock(s) and compaction
5163 * failed because all zones are below low watermarks
5164 * or is prohibited because it recently failed at this
3f36d866
DR
5165 * order, fail immediately unless the allocator has
5166 * requested compaction and reclaim retry.
b39d0ee2
DR
5167 *
5168 * Reclaim is
5169 * - potentially very expensive because zones are far
5170 * below their low watermarks or this is part of very
5171 * bursty high order allocations,
5172 * - not guaranteed to help because isolate_freepages()
5173 * may not iterate over freed pages as part of its
5174 * linear scan, and
5175 * - unlikely to make entire pageblocks free on its
5176 * own.
5177 */
5178 if (compact_result == COMPACT_SKIPPED ||
5179 compact_result == COMPACT_DEFERRED)
5180 goto nopage;
a8161d1e 5181
a8161d1e 5182 /*
3eb2771b
VB
5183 * Looks like reclaim/compaction is worth trying, but
5184 * sync compaction could be very expensive, so keep
25160354 5185 * using async compaction.
a8161d1e 5186 */
a5508cd8 5187 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
5188 }
5189 }
23771235 5190
31a6c190 5191retry:
23771235 5192 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 5193 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 5194 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 5195
cd04ae1e
MH
5196 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5197 if (reserve_flags)
ce96fa62
ML
5198 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5199 (alloc_flags & ALLOC_KSWAPD);
23771235 5200
e46e7b77 5201 /*
d6a24df0
VB
5202 * Reset the nodemask and zonelist iterators if memory policies can be
5203 * ignored. These allocations are high priority and system rather than
5204 * user oriented.
e46e7b77 5205 */
cd04ae1e 5206 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 5207 ac->nodemask = NULL;
e46e7b77 5208 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5209 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
5210 }
5211
23771235 5212 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 5213 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
5214 if (page)
5215 goto got_pg;
1da177e4 5216
d0164adc 5217 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 5218 if (!can_direct_reclaim)
1da177e4
LT
5219 goto nopage;
5220
9a67f648
MH
5221 /* Avoid recursion of direct reclaim */
5222 if (current->flags & PF_MEMALLOC)
6583bb64
DR
5223 goto nopage;
5224
a8161d1e
VB
5225 /* Try direct reclaim and then allocating */
5226 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5227 &did_some_progress);
5228 if (page)
5229 goto got_pg;
5230
5231 /* Try direct compaction and then allocating */
a9263751 5232 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 5233 compact_priority, &compact_result);
56de7263
MG
5234 if (page)
5235 goto got_pg;
75f30861 5236
9083905a
JW
5237 /* Do not loop if specifically requested */
5238 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5239 goto nopage;
9083905a 5240
0a0337e0
MH
5241 /*
5242 * Do not retry costly high order allocations unless they are
dcda9b04 5243 * __GFP_RETRY_MAYFAIL
0a0337e0 5244 */
dcda9b04 5245 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5246 goto nopage;
0a0337e0 5247
0a0337e0 5248 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5249 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5250 goto retry;
5251
33c2d214
MH
5252 /*
5253 * It doesn't make any sense to retry for the compaction if the order-0
5254 * reclaim is not able to make any progress because the current
5255 * implementation of the compaction depends on the sufficient amount
5256 * of free memory (see __compaction_suitable)
5257 */
5258 if (did_some_progress > 0 &&
86a294a8 5259 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5260 compact_result, &compact_priority,
d9436498 5261 &compaction_retries))
33c2d214
MH
5262 goto retry;
5263
902b6281 5264
3d36424b
MG
5265 /*
5266 * Deal with possible cpuset update races or zonelist updates to avoid
5267 * a unnecessary OOM kill.
5268 */
5269 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5270 check_retry_zonelist(zonelist_iter_cookie))
5271 goto restart;
e47483bc 5272
9083905a
JW
5273 /* Reclaim has failed us, start killing things */
5274 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5275 if (page)
5276 goto got_pg;
5277
9a67f648 5278 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5279 if (tsk_is_oom_victim(current) &&
8510e69c 5280 (alloc_flags & ALLOC_OOM ||
c288983d 5281 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5282 goto nopage;
5283
9083905a 5284 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5285 if (did_some_progress) {
5286 no_progress_loops = 0;
9083905a 5287 goto retry;
0a0337e0 5288 }
9083905a 5289
1da177e4 5290nopage:
3d36424b
MG
5291 /*
5292 * Deal with possible cpuset update races or zonelist updates to avoid
5293 * a unnecessary OOM kill.
5294 */
5295 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5296 check_retry_zonelist(zonelist_iter_cookie))
5297 goto restart;
5ce9bfef 5298
9a67f648
MH
5299 /*
5300 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5301 * we always retry
5302 */
5303 if (gfp_mask & __GFP_NOFAIL) {
5304 /*
5305 * All existing users of the __GFP_NOFAIL are blockable, so warn
5306 * of any new users that actually require GFP_NOWAIT
5307 */
3f913fc5 5308 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
9a67f648
MH
5309 goto fail;
5310
5311 /*
5312 * PF_MEMALLOC request from this context is rather bizarre
5313 * because we cannot reclaim anything and only can loop waiting
5314 * for somebody to do a work for us
5315 */
3f913fc5 5316 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
9a67f648
MH
5317
5318 /*
5319 * non failing costly orders are a hard requirement which we
5320 * are not prepared for much so let's warn about these users
5321 * so that we can identify them and convert them to something
5322 * else.
5323 */
896c4d52 5324 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
9a67f648 5325
6c18ba7a 5326 /*
1ebbb218
MG
5327 * Help non-failing allocations by giving some access to memory
5328 * reserves normally used for high priority non-blocking
5329 * allocations but do not use ALLOC_NO_WATERMARKS because this
6c18ba7a 5330 * could deplete whole memory reserves which would just make
1ebbb218 5331 * the situation worse.
6c18ba7a 5332 */
1ebbb218 5333 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
6c18ba7a
MH
5334 if (page)
5335 goto got_pg;
5336
9a67f648
MH
5337 cond_resched();
5338 goto retry;
5339 }
5340fail:
a8e99259 5341 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5342 "page allocation failure: order:%u", order);
1da177e4 5343got_pg:
072bb0aa 5344 return page;
1da177e4 5345}
11e33f6a 5346
9cd75558 5347static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5348 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5349 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5350 unsigned int *alloc_flags)
11e33f6a 5351{
97a225e6 5352 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5353 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5354 ac->nodemask = nodemask;
01c0bfe0 5355 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5356
682a3385 5357 if (cpusets_enabled()) {
8e6a930b 5358 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5359 /*
5360 * When we are in the interrupt context, it is irrelevant
5361 * to the current task context. It means that any node ok.
5362 */
88dc6f20 5363 if (in_task() && !ac->nodemask)
9cd75558 5364 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5365 else
5366 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5367 }
5368
446ec838 5369 might_alloc(gfp_mask);
11e33f6a
MG
5370
5371 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5372 return false;
11e33f6a 5373
8e3560d9 5374 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5375
c9ab0c4f 5376 /* Dirty zone balancing only done in the fast path */
9cd75558 5377 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5378
e46e7b77
MG
5379 /*
5380 * The preferred zone is used for statistics but crucially it is
5381 * also used as the starting point for the zonelist iterator. It
5382 * may get reset for allocations that ignore memory policies.
5383 */
9cd75558 5384 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5385 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5386
5387 return true;
9cd75558
MG
5388}
5389
387ba26f 5390/*
0f87d9d3 5391 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5392 * @gfp: GFP flags for the allocation
5393 * @preferred_nid: The preferred NUMA node ID to allocate from
5394 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5395 * @nr_pages: The number of pages desired on the list or array
5396 * @page_list: Optional list to store the allocated pages
5397 * @page_array: Optional array to store the pages
387ba26f
MG
5398 *
5399 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5400 * allocate nr_pages quickly. Pages are added to page_list if page_list
5401 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5402 *
0f87d9d3
MG
5403 * For lists, nr_pages is the number of pages that should be allocated.
5404 *
5405 * For arrays, only NULL elements are populated with pages and nr_pages
5406 * is the maximum number of pages that will be stored in the array.
5407 *
5408 * Returns the number of pages on the list or array.
387ba26f
MG
5409 */
5410unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5411 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5412 struct list_head *page_list,
5413 struct page **page_array)
387ba26f
MG
5414{
5415 struct page *page;
4b23a68f 5416 unsigned long __maybe_unused UP_flags;
387ba26f
MG
5417 struct zone *zone;
5418 struct zoneref *z;
5419 struct per_cpu_pages *pcp;
5420 struct list_head *pcp_list;
5421 struct alloc_context ac;
5422 gfp_t alloc_gfp;
5423 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5424 int nr_populated = 0, nr_account = 0;
387ba26f 5425
0f87d9d3
MG
5426 /*
5427 * Skip populated array elements to determine if any pages need
5428 * to be allocated before disabling IRQs.
5429 */
b08e50dd 5430 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5431 nr_populated++;
5432
06147843
CL
5433 /* No pages requested? */
5434 if (unlikely(nr_pages <= 0))
5435 goto out;
5436
b3b64ebd
MG
5437 /* Already populated array? */
5438 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5439 goto out;
b3b64ebd 5440
8dcb3060
SB
5441 /* Bulk allocator does not support memcg accounting. */
5442 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5443 goto failed;
5444
387ba26f 5445 /* Use the single page allocator for one page. */
0f87d9d3 5446 if (nr_pages - nr_populated == 1)
387ba26f
MG
5447 goto failed;
5448
187ad460
MG
5449#ifdef CONFIG_PAGE_OWNER
5450 /*
5451 * PAGE_OWNER may recurse into the allocator to allocate space to
5452 * save the stack with pagesets.lock held. Releasing/reacquiring
5453 * removes much of the performance benefit of bulk allocation so
5454 * force the caller to allocate one page at a time as it'll have
5455 * similar performance to added complexity to the bulk allocator.
5456 */
5457 if (static_branch_unlikely(&page_owner_inited))
5458 goto failed;
5459#endif
5460
387ba26f
MG
5461 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5462 gfp &= gfp_allowed_mask;
5463 alloc_gfp = gfp;
5464 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5465 goto out;
387ba26f
MG
5466 gfp = alloc_gfp;
5467
5468 /* Find an allowed local zone that meets the low watermark. */
5469 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5470 unsigned long mark;
5471
5472 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5473 !__cpuset_zone_allowed(zone, gfp)) {
5474 continue;
5475 }
5476
5477 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5478 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5479 goto failed;
5480 }
5481
5482 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5483 if (zone_watermark_fast(zone, 0, mark,
5484 zonelist_zone_idx(ac.preferred_zoneref),
5485 alloc_flags, gfp)) {
5486 break;
5487 }
5488 }
5489
5490 /*
5491 * If there are no allowed local zones that meets the watermarks then
5492 * try to allocate a single page and reclaim if necessary.
5493 */
ce76f9a1 5494 if (unlikely(!zone))
387ba26f
MG
5495 goto failed;
5496
57490774 5497 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 5498 pcp_trylock_prepare(UP_flags);
57490774 5499 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 5500 if (!pcp)
4b23a68f 5501 goto failed_irq;
387ba26f 5502
387ba26f 5503 /* Attempt the batch allocation */
44042b44 5504 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
0f87d9d3
MG
5505 while (nr_populated < nr_pages) {
5506
5507 /* Skip existing pages */
5508 if (page_array && page_array[nr_populated]) {
5509 nr_populated++;
5510 continue;
5511 }
5512
44042b44 5513 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5514 pcp, pcp_list);
ce76f9a1 5515 if (unlikely(!page)) {
c572e488 5516 /* Try and allocate at least one page */
4b23a68f 5517 if (!nr_account) {
57490774 5518 pcp_spin_unlock(pcp);
387ba26f 5519 goto failed_irq;
4b23a68f 5520 }
387ba26f
MG
5521 break;
5522 }
3e23060b 5523 nr_account++;
387ba26f
MG
5524
5525 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5526 if (page_list)
5527 list_add(&page->lru, page_list);
5528 else
5529 page_array[nr_populated] = page;
5530 nr_populated++;
387ba26f
MG
5531 }
5532
57490774 5533 pcp_spin_unlock(pcp);
4b23a68f 5534 pcp_trylock_finish(UP_flags);
43c95bcc 5535
3e23060b
MG
5536 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5537 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5538
06147843 5539out:
0f87d9d3 5540 return nr_populated;
387ba26f
MG
5541
5542failed_irq:
4b23a68f 5543 pcp_trylock_finish(UP_flags);
387ba26f
MG
5544
5545failed:
5546 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5547 if (page) {
0f87d9d3
MG
5548 if (page_list)
5549 list_add(&page->lru, page_list);
5550 else
5551 page_array[nr_populated] = page;
5552 nr_populated++;
387ba26f
MG
5553 }
5554
06147843 5555 goto out;
387ba26f
MG
5556}
5557EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5558
9cd75558
MG
5559/*
5560 * This is the 'heart' of the zoned buddy allocator.
5561 */
84172f4b 5562struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5563 nodemask_t *nodemask)
9cd75558
MG
5564{
5565 struct page *page;
5566 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5567 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5568 struct alloc_context ac = { };
5569
c63ae43b
MH
5570 /*
5571 * There are several places where we assume that the order value is sane
5572 * so bail out early if the request is out of bound.
5573 */
3f913fc5 5574 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
c63ae43b 5575 return NULL;
c63ae43b 5576
6e5e0f28 5577 gfp &= gfp_allowed_mask;
da6df1b0
PT
5578 /*
5579 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5580 * resp. GFP_NOIO which has to be inherited for all allocation requests
5581 * from a particular context which has been marked by
8e3560d9
PT
5582 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5583 * movable zones are not used during allocation.
da6df1b0
PT
5584 */
5585 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5586 alloc_gfp = gfp;
5587 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5588 &alloc_gfp, &alloc_flags))
9cd75558
MG
5589 return NULL;
5590
6bb15450
MG
5591 /*
5592 * Forbid the first pass from falling back to types that fragment
5593 * memory until all local zones are considered.
5594 */
6e5e0f28 5595 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5596
5117f45d 5597 /* First allocation attempt */
8e6a930b 5598 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5599 if (likely(page))
5600 goto out;
11e33f6a 5601
da6df1b0 5602 alloc_gfp = gfp;
4fcb0971 5603 ac.spread_dirty_pages = false;
23f086f9 5604
4741526b
MG
5605 /*
5606 * Restore the original nodemask if it was potentially replaced with
5607 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5608 */
97ce86f9 5609 ac.nodemask = nodemask;
16096c25 5610
8e6a930b 5611 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5612
4fcb0971 5613out:
6e5e0f28
MWO
5614 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5615 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5616 __free_pages(page, order);
5617 page = NULL;
4949148a
VD
5618 }
5619
8e6a930b 5620 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
b073d7f8 5621 kmsan_alloc_page(page, order, alloc_gfp);
4fcb0971 5622
11e33f6a 5623 return page;
1da177e4 5624}
84172f4b 5625EXPORT_SYMBOL(__alloc_pages);
1da177e4 5626
cc09cb13
MWO
5627struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5628 nodemask_t *nodemask)
5629{
5630 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5631 preferred_nid, nodemask);
5632
5633 if (page && order > 1)
5634 prep_transhuge_page(page);
5635 return (struct folio *)page;
5636}
5637EXPORT_SYMBOL(__folio_alloc);
5638
1da177e4 5639/*
9ea9a680
MH
5640 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5641 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5642 * you need to access high mem.
1da177e4 5643 */
920c7a5d 5644unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5645{
945a1113
AM
5646 struct page *page;
5647
9ea9a680 5648 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5649 if (!page)
5650 return 0;
5651 return (unsigned long) page_address(page);
5652}
1da177e4
LT
5653EXPORT_SYMBOL(__get_free_pages);
5654
920c7a5d 5655unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5656{
945a1113 5657 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5658}
1da177e4
LT
5659EXPORT_SYMBOL(get_zeroed_page);
5660
7f194fbb
MWO
5661/**
5662 * __free_pages - Free pages allocated with alloc_pages().
5663 * @page: The page pointer returned from alloc_pages().
5664 * @order: The order of the allocation.
5665 *
5666 * This function can free multi-page allocations that are not compound
5667 * pages. It does not check that the @order passed in matches that of
5668 * the allocation, so it is easy to leak memory. Freeing more memory
5669 * than was allocated will probably emit a warning.
5670 *
5671 * If the last reference to this page is speculative, it will be released
5672 * by put_page() which only frees the first page of a non-compound
5673 * allocation. To prevent the remaining pages from being leaked, we free
5674 * the subsequent pages here. If you want to use the page's reference
5675 * count to decide when to free the allocation, you should allocate a
5676 * compound page, and use put_page() instead of __free_pages().
5677 *
5678 * Context: May be called in interrupt context or while holding a normal
5679 * spinlock, but not in NMI context or while holding a raw spinlock.
5680 */
742aa7fb
AL
5681void __free_pages(struct page *page, unsigned int order)
5682{
5683 if (put_page_testzero(page))
5684 free_the_page(page, order);
e320d301
MWO
5685 else if (!PageHead(page))
5686 while (order-- > 0)
5687 free_the_page(page + (1 << order), order);
742aa7fb 5688}
1da177e4
LT
5689EXPORT_SYMBOL(__free_pages);
5690
920c7a5d 5691void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5692{
5693 if (addr != 0) {
725d704e 5694 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5695 __free_pages(virt_to_page((void *)addr), order);
5696 }
5697}
5698
5699EXPORT_SYMBOL(free_pages);
5700
b63ae8ca
AD
5701/*
5702 * Page Fragment:
5703 * An arbitrary-length arbitrary-offset area of memory which resides
5704 * within a 0 or higher order page. Multiple fragments within that page
5705 * are individually refcounted, in the page's reference counter.
5706 *
5707 * The page_frag functions below provide a simple allocation framework for
5708 * page fragments. This is used by the network stack and network device
5709 * drivers to provide a backing region of memory for use as either an
5710 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5711 */
2976db80
AD
5712static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5713 gfp_t gfp_mask)
b63ae8ca
AD
5714{
5715 struct page *page = NULL;
5716 gfp_t gfp = gfp_mask;
5717
5718#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5719 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5720 __GFP_NOMEMALLOC;
5721 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5722 PAGE_FRAG_CACHE_MAX_ORDER);
5723 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5724#endif
5725 if (unlikely(!page))
5726 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5727
5728 nc->va = page ? page_address(page) : NULL;
5729
5730 return page;
5731}
5732
2976db80 5733void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5734{
5735 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5736
742aa7fb
AL
5737 if (page_ref_sub_and_test(page, count))
5738 free_the_page(page, compound_order(page));
44fdffd7 5739}
2976db80 5740EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5741
b358e212
KH
5742void *page_frag_alloc_align(struct page_frag_cache *nc,
5743 unsigned int fragsz, gfp_t gfp_mask,
5744 unsigned int align_mask)
b63ae8ca
AD
5745{
5746 unsigned int size = PAGE_SIZE;
5747 struct page *page;
5748 int offset;
5749
5750 if (unlikely(!nc->va)) {
5751refill:
2976db80 5752 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5753 if (!page)
5754 return NULL;
5755
5756#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5757 /* if size can vary use size else just use PAGE_SIZE */
5758 size = nc->size;
5759#endif
5760 /* Even if we own the page, we do not use atomic_set().
5761 * This would break get_page_unless_zero() users.
5762 */
86447726 5763 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5764
5765 /* reset page count bias and offset to start of new frag */
2f064f34 5766 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5767 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5768 nc->offset = size;
5769 }
5770
5771 offset = nc->offset - fragsz;
5772 if (unlikely(offset < 0)) {
5773 page = virt_to_page(nc->va);
5774
fe896d18 5775 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5776 goto refill;
5777
d8c19014
DZ
5778 if (unlikely(nc->pfmemalloc)) {
5779 free_the_page(page, compound_order(page));
5780 goto refill;
5781 }
5782
b63ae8ca
AD
5783#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5784 /* if size can vary use size else just use PAGE_SIZE */
5785 size = nc->size;
5786#endif
5787 /* OK, page count is 0, we can safely set it */
86447726 5788 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5789
5790 /* reset page count bias and offset to start of new frag */
86447726 5791 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca 5792 offset = size - fragsz;
dac22531
ML
5793 if (unlikely(offset < 0)) {
5794 /*
5795 * The caller is trying to allocate a fragment
5796 * with fragsz > PAGE_SIZE but the cache isn't big
5797 * enough to satisfy the request, this may
5798 * happen in low memory conditions.
5799 * We don't release the cache page because
5800 * it could make memory pressure worse
5801 * so we simply return NULL here.
5802 */
5803 return NULL;
5804 }
b63ae8ca
AD
5805 }
5806
5807 nc->pagecnt_bias--;
b358e212 5808 offset &= align_mask;
b63ae8ca
AD
5809 nc->offset = offset;
5810
5811 return nc->va + offset;
5812}
b358e212 5813EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5814
5815/*
5816 * Frees a page fragment allocated out of either a compound or order 0 page.
5817 */
8c2dd3e4 5818void page_frag_free(void *addr)
b63ae8ca
AD
5819{
5820 struct page *page = virt_to_head_page(addr);
5821
742aa7fb
AL
5822 if (unlikely(put_page_testzero(page)))
5823 free_the_page(page, compound_order(page));
b63ae8ca 5824}
8c2dd3e4 5825EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5826
d00181b9
KS
5827static void *make_alloc_exact(unsigned long addr, unsigned int order,
5828 size_t size)
ee85c2e1
AK
5829{
5830 if (addr) {
df48a5f7
LH
5831 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5832 struct page *page = virt_to_page((void *)addr);
5833 struct page *last = page + nr;
5834
5835 split_page_owner(page, 1 << order);
5836 split_page_memcg(page, 1 << order);
5837 while (page < --last)
5838 set_page_refcounted(last);
5839
5840 last = page + (1UL << order);
5841 for (page += nr; page < last; page++)
5842 __free_pages_ok(page, 0, FPI_TO_TAIL);
ee85c2e1
AK
5843 }
5844 return (void *)addr;
5845}
5846
2be0ffe2
TT
5847/**
5848 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5849 * @size: the number of bytes to allocate
63931eb9 5850 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5851 *
5852 * This function is similar to alloc_pages(), except that it allocates the
5853 * minimum number of pages to satisfy the request. alloc_pages() can only
5854 * allocate memory in power-of-two pages.
5855 *
5856 * This function is also limited by MAX_ORDER.
5857 *
5858 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5859 *
5860 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5861 */
5862void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5863{
5864 unsigned int order = get_order(size);
5865 unsigned long addr;
5866
ba7f1b9e
ML
5867 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5868 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 5869
2be0ffe2 5870 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5871 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5872}
5873EXPORT_SYMBOL(alloc_pages_exact);
5874
ee85c2e1
AK
5875/**
5876 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5877 * pages on a node.
b5e6ab58 5878 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5879 * @size: the number of bytes to allocate
63931eb9 5880 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5881 *
5882 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5883 * back.
a862f68a
MR
5884 *
5885 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5886 */
e1931811 5887void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5888{
d00181b9 5889 unsigned int order = get_order(size);
63931eb9
VB
5890 struct page *p;
5891
ba7f1b9e
ML
5892 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5893 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
5894
5895 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5896 if (!p)
5897 return NULL;
5898 return make_alloc_exact((unsigned long)page_address(p), order, size);
5899}
ee85c2e1 5900
2be0ffe2
TT
5901/**
5902 * free_pages_exact - release memory allocated via alloc_pages_exact()
5903 * @virt: the value returned by alloc_pages_exact.
5904 * @size: size of allocation, same value as passed to alloc_pages_exact().
5905 *
5906 * Release the memory allocated by a previous call to alloc_pages_exact.
5907 */
5908void free_pages_exact(void *virt, size_t size)
5909{
5910 unsigned long addr = (unsigned long)virt;
5911 unsigned long end = addr + PAGE_ALIGN(size);
5912
5913 while (addr < end) {
5914 free_page(addr);
5915 addr += PAGE_SIZE;
5916 }
5917}
5918EXPORT_SYMBOL(free_pages_exact);
5919
e0fb5815
ZY
5920/**
5921 * nr_free_zone_pages - count number of pages beyond high watermark
5922 * @offset: The zone index of the highest zone
5923 *
a862f68a 5924 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5925 * high watermark within all zones at or below a given zone index. For each
5926 * zone, the number of pages is calculated as:
0e056eb5
MCC
5927 *
5928 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5929 *
5930 * Return: number of pages beyond high watermark.
e0fb5815 5931 */
ebec3862 5932static unsigned long nr_free_zone_pages(int offset)
1da177e4 5933{
dd1a239f 5934 struct zoneref *z;
54a6eb5c
MG
5935 struct zone *zone;
5936
e310fd43 5937 /* Just pick one node, since fallback list is circular */
ebec3862 5938 unsigned long sum = 0;
1da177e4 5939
0e88460d 5940 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5941
54a6eb5c 5942 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5943 unsigned long size = zone_managed_pages(zone);
41858966 5944 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5945 if (size > high)
5946 sum += size - high;
1da177e4
LT
5947 }
5948
5949 return sum;
5950}
5951
e0fb5815
ZY
5952/**
5953 * nr_free_buffer_pages - count number of pages beyond high watermark
5954 *
5955 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5956 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5957 *
5958 * Return: number of pages beyond high watermark within ZONE_DMA and
5959 * ZONE_NORMAL.
1da177e4 5960 */
ebec3862 5961unsigned long nr_free_buffer_pages(void)
1da177e4 5962{
af4ca457 5963 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5964}
c2f1a551 5965EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5966
08e0f6a9 5967static inline void show_node(struct zone *zone)
1da177e4 5968{
e5adfffc 5969 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5970 printk("Node %d ", zone_to_nid(zone));
1da177e4 5971}
1da177e4 5972
d02bd27b
IR
5973long si_mem_available(void)
5974{
5975 long available;
5976 unsigned long pagecache;
5977 unsigned long wmark_low = 0;
5978 unsigned long pages[NR_LRU_LISTS];
b29940c1 5979 unsigned long reclaimable;
d02bd27b
IR
5980 struct zone *zone;
5981 int lru;
5982
5983 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5984 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5985
5986 for_each_zone(zone)
a9214443 5987 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5988
5989 /*
5990 * Estimate the amount of memory available for userspace allocations,
ade63b41 5991 * without causing swapping or OOM.
d02bd27b 5992 */
c41f012a 5993 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5994
5995 /*
5996 * Not all the page cache can be freed, otherwise the system will
ade63b41
YY
5997 * start swapping or thrashing. Assume at least half of the page
5998 * cache, or the low watermark worth of cache, needs to stay.
d02bd27b
IR
5999 */
6000 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
6001 pagecache -= min(pagecache / 2, wmark_low);
6002 available += pagecache;
6003
6004 /*
b29940c1
VB
6005 * Part of the reclaimable slab and other kernel memory consists of
6006 * items that are in use, and cannot be freed. Cap this estimate at the
6007 * low watermark.
d02bd27b 6008 */
d42f3245
RG
6009 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
6010 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 6011 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 6012
d02bd27b
IR
6013 if (available < 0)
6014 available = 0;
6015 return available;
6016}
6017EXPORT_SYMBOL_GPL(si_mem_available);
6018
1da177e4
LT
6019void si_meminfo(struct sysinfo *val)
6020{
ca79b0c2 6021 val->totalram = totalram_pages();
11fb9989 6022 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 6023 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 6024 val->bufferram = nr_blockdev_pages();
ca79b0c2 6025 val->totalhigh = totalhigh_pages();
1da177e4 6026 val->freehigh = nr_free_highpages();
1da177e4
LT
6027 val->mem_unit = PAGE_SIZE;
6028}
6029
6030EXPORT_SYMBOL(si_meminfo);
6031
6032#ifdef CONFIG_NUMA
6033void si_meminfo_node(struct sysinfo *val, int nid)
6034{
cdd91a77
JL
6035 int zone_type; /* needs to be signed */
6036 unsigned long managed_pages = 0;
fc2bd799
JK
6037 unsigned long managed_highpages = 0;
6038 unsigned long free_highpages = 0;
1da177e4
LT
6039 pg_data_t *pgdat = NODE_DATA(nid);
6040
cdd91a77 6041 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 6042 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 6043 val->totalram = managed_pages;
11fb9989 6044 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 6045 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 6046#ifdef CONFIG_HIGHMEM
fc2bd799
JK
6047 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6048 struct zone *zone = &pgdat->node_zones[zone_type];
6049
6050 if (is_highmem(zone)) {
9705bea5 6051 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
6052 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6053 }
6054 }
6055 val->totalhigh = managed_highpages;
6056 val->freehigh = free_highpages;
98d2b0eb 6057#else
fc2bd799
JK
6058 val->totalhigh = managed_highpages;
6059 val->freehigh = free_highpages;
98d2b0eb 6060#endif
1da177e4
LT
6061 val->mem_unit = PAGE_SIZE;
6062}
6063#endif
6064
ddd588b5 6065/*
7bf02ea2
DR
6066 * Determine whether the node should be displayed or not, depending on whether
6067 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 6068 */
9af744d7 6069static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 6070{
ddd588b5 6071 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 6072 return false;
ddd588b5 6073
9af744d7
MH
6074 /*
6075 * no node mask - aka implicit memory numa policy. Do not bother with
6076 * the synchronization - read_mems_allowed_begin - because we do not
6077 * have to be precise here.
6078 */
6079 if (!nodemask)
6080 nodemask = &cpuset_current_mems_allowed;
6081
6082 return !node_isset(nid, *nodemask);
ddd588b5
DR
6083}
6084
1da177e4
LT
6085#define K(x) ((x) << (PAGE_SHIFT-10))
6086
377e4f16
RV
6087static void show_migration_types(unsigned char type)
6088{
6089 static const char types[MIGRATE_TYPES] = {
6090 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 6091 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
6092 [MIGRATE_RECLAIMABLE] = 'E',
6093 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
6094#ifdef CONFIG_CMA
6095 [MIGRATE_CMA] = 'C',
6096#endif
194159fb 6097#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 6098 [MIGRATE_ISOLATE] = 'I',
194159fb 6099#endif
377e4f16
RV
6100 };
6101 char tmp[MIGRATE_TYPES + 1];
6102 char *p = tmp;
6103 int i;
6104
6105 for (i = 0; i < MIGRATE_TYPES; i++) {
6106 if (type & (1 << i))
6107 *p++ = types[i];
6108 }
6109
6110 *p = '\0';
1f84a18f 6111 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
6112}
6113
974f4367
MH
6114static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6115{
6116 int zone_idx;
6117 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6118 if (zone_managed_pages(pgdat->node_zones + zone_idx))
6119 return true;
6120 return false;
6121}
6122
1da177e4
LT
6123/*
6124 * Show free area list (used inside shift_scroll-lock stuff)
6125 * We also calculate the percentage fragmentation. We do this by counting the
6126 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
6127 *
6128 * Bits in @filter:
6129 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6130 * cpuset.
1da177e4 6131 */
974f4367 6132void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
1da177e4 6133{
d1bfcdb8 6134 unsigned long free_pcp = 0;
dcadcf1c 6135 int cpu, nid;
1da177e4 6136 struct zone *zone;
599d0c95 6137 pg_data_t *pgdat;
1da177e4 6138
ee99c71c 6139 for_each_populated_zone(zone) {
974f4367
MH
6140 if (zone_idx(zone) > max_zone_idx)
6141 continue;
9af744d7 6142 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6143 continue;
d1bfcdb8 6144
761b0677 6145 for_each_online_cpu(cpu)
28f836b6 6146 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
6147 }
6148
a731286d
KM
6149 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6150 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 6151 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 6152 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
ebc97a52
YA
6153 " mapped:%lu shmem:%lu pagetables:%lu\n"
6154 " sec_pagetables:%lu bounce:%lu\n"
eb2169ce 6155 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 6156 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
6157 global_node_page_state(NR_ACTIVE_ANON),
6158 global_node_page_state(NR_INACTIVE_ANON),
6159 global_node_page_state(NR_ISOLATED_ANON),
6160 global_node_page_state(NR_ACTIVE_FILE),
6161 global_node_page_state(NR_INACTIVE_FILE),
6162 global_node_page_state(NR_ISOLATED_FILE),
6163 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
6164 global_node_page_state(NR_FILE_DIRTY),
6165 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
6166 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6167 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 6168 global_node_page_state(NR_FILE_MAPPED),
11fb9989 6169 global_node_page_state(NR_SHMEM),
f0c0c115 6170 global_node_page_state(NR_PAGETABLE),
ebc97a52 6171 global_node_page_state(NR_SECONDARY_PAGETABLE),
c41f012a 6172 global_zone_page_state(NR_BOUNCE),
eb2169ce 6173 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 6174 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 6175 free_pcp,
c41f012a 6176 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 6177
599d0c95 6178 for_each_online_pgdat(pgdat) {
9af744d7 6179 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb 6180 continue;
974f4367
MH
6181 if (!node_has_managed_zones(pgdat, max_zone_idx))
6182 continue;
c02e50bb 6183
599d0c95
MG
6184 printk("Node %d"
6185 " active_anon:%lukB"
6186 " inactive_anon:%lukB"
6187 " active_file:%lukB"
6188 " inactive_file:%lukB"
6189 " unevictable:%lukB"
6190 " isolated(anon):%lukB"
6191 " isolated(file):%lukB"
50658e2e 6192 " mapped:%lukB"
11fb9989
MG
6193 " dirty:%lukB"
6194 " writeback:%lukB"
6195 " shmem:%lukB"
6196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6197 " shmem_thp: %lukB"
6198 " shmem_pmdmapped: %lukB"
6199 " anon_thp: %lukB"
6200#endif
6201 " writeback_tmp:%lukB"
991e7673
SB
6202 " kernel_stack:%lukB"
6203#ifdef CONFIG_SHADOW_CALL_STACK
6204 " shadow_call_stack:%lukB"
6205#endif
f0c0c115 6206 " pagetables:%lukB"
ebc97a52 6207 " sec_pagetables:%lukB"
599d0c95
MG
6208 " all_unreclaimable? %s"
6209 "\n",
6210 pgdat->node_id,
6211 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6212 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6213 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6214 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6215 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6216 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6217 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 6218 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
6219 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6220 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 6221 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 6222#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 6223 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 6224 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 6225 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 6226#endif
11fb9989 6227 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
6228 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6229#ifdef CONFIG_SHADOW_CALL_STACK
6230 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6231#endif
f0c0c115 6232 K(node_page_state(pgdat, NR_PAGETABLE)),
ebc97a52 6233 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
c73322d0
JW
6234 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6235 "yes" : "no");
599d0c95
MG
6236 }
6237
ee99c71c 6238 for_each_populated_zone(zone) {
1da177e4
LT
6239 int i;
6240
974f4367
MH
6241 if (zone_idx(zone) > max_zone_idx)
6242 continue;
9af744d7 6243 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6244 continue;
d1bfcdb8
KK
6245
6246 free_pcp = 0;
6247 for_each_online_cpu(cpu)
28f836b6 6248 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 6249
1da177e4 6250 show_node(zone);
1f84a18f
JP
6251 printk(KERN_CONT
6252 "%s"
1da177e4 6253 " free:%lukB"
a6ea8b5b 6254 " boost:%lukB"
1da177e4
LT
6255 " min:%lukB"
6256 " low:%lukB"
6257 " high:%lukB"
e47b346a 6258 " reserved_highatomic:%luKB"
71c799f4
MK
6259 " active_anon:%lukB"
6260 " inactive_anon:%lukB"
6261 " active_file:%lukB"
6262 " inactive_file:%lukB"
6263 " unevictable:%lukB"
5a1c84b4 6264 " writepending:%lukB"
1da177e4 6265 " present:%lukB"
9feedc9d 6266 " managed:%lukB"
4a0aa73f 6267 " mlocked:%lukB"
4a0aa73f 6268 " bounce:%lukB"
d1bfcdb8
KK
6269 " free_pcp:%lukB"
6270 " local_pcp:%ukB"
d1ce749a 6271 " free_cma:%lukB"
1da177e4
LT
6272 "\n",
6273 zone->name,
88f5acf8 6274 K(zone_page_state(zone, NR_FREE_PAGES)),
a6ea8b5b 6275 K(zone->watermark_boost),
41858966
MG
6276 K(min_wmark_pages(zone)),
6277 K(low_wmark_pages(zone)),
6278 K(high_wmark_pages(zone)),
e47b346a 6279 K(zone->nr_reserved_highatomic),
71c799f4
MK
6280 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6281 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6282 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6283 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6284 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6285 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6286 K(zone->present_pages),
9705bea5 6287 K(zone_managed_pages(zone)),
4a0aa73f 6288 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6289 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6290 K(free_pcp),
28f836b6 6291 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6292 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6293 printk("lowmem_reserve[]:");
6294 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6295 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6296 printk(KERN_CONT "\n");
1da177e4
LT
6297 }
6298
ee99c71c 6299 for_each_populated_zone(zone) {
d00181b9
KS
6300 unsigned int order;
6301 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6302 unsigned char types[MAX_ORDER];
1da177e4 6303
974f4367
MH
6304 if (zone_idx(zone) > max_zone_idx)
6305 continue;
9af744d7 6306 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6307 continue;
1da177e4 6308 show_node(zone);
1f84a18f 6309 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6310
6311 spin_lock_irqsave(&zone->lock, flags);
6312 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6313 struct free_area *area = &zone->free_area[order];
6314 int type;
6315
6316 nr[order] = area->nr_free;
8f9de51a 6317 total += nr[order] << order;
377e4f16
RV
6318
6319 types[order] = 0;
6320 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6321 if (!free_area_empty(area, type))
377e4f16
RV
6322 types[order] |= 1 << type;
6323 }
1da177e4
LT
6324 }
6325 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6326 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6327 printk(KERN_CONT "%lu*%lukB ",
6328 nr[order], K(1UL) << order);
377e4f16
RV
6329 if (nr[order])
6330 show_migration_types(types[order]);
6331 }
1f84a18f 6332 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6333 }
6334
dcadcf1c
GL
6335 for_each_online_node(nid) {
6336 if (show_mem_node_skip(filter, nid, nodemask))
6337 continue;
6338 hugetlb_show_meminfo_node(nid);
6339 }
949f7ec5 6340
11fb9989 6341 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6342
1da177e4
LT
6343 show_swap_cache_info();
6344}
6345
19770b32
MG
6346static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6347{
6348 zoneref->zone = zone;
6349 zoneref->zone_idx = zone_idx(zone);
6350}
6351
1da177e4
LT
6352/*
6353 * Builds allocation fallback zone lists.
1a93205b
CL
6354 *
6355 * Add all populated zones of a node to the zonelist.
1da177e4 6356 */
9d3be21b 6357static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6358{
1a93205b 6359 struct zone *zone;
bc732f1d 6360 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6361 int nr_zones = 0;
02a68a5e
CL
6362
6363 do {
2f6726e5 6364 zone_type--;
070f8032 6365 zone = pgdat->node_zones + zone_type;
e553f62f 6366 if (populated_zone(zone)) {
9d3be21b 6367 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6368 check_highest_zone(zone_type);
1da177e4 6369 }
2f6726e5 6370 } while (zone_type);
bc732f1d 6371
070f8032 6372 return nr_zones;
1da177e4
LT
6373}
6374
6375#ifdef CONFIG_NUMA
f0c0b2b8
KH
6376
6377static int __parse_numa_zonelist_order(char *s)
6378{
c9bff3ee 6379 /*
f0953a1b 6380 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6381 * out to be just not useful. Let's keep the warning in place
6382 * if somebody still use the cmd line parameter so that we do
6383 * not fail it silently
6384 */
6385 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6386 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6387 return -EINVAL;
6388 }
6389 return 0;
6390}
6391
c9bff3ee
MH
6392char numa_zonelist_order[] = "Node";
6393
f0c0b2b8
KH
6394/*
6395 * sysctl handler for numa_zonelist_order
6396 */
cccad5b9 6397int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6398 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6399{
32927393
CH
6400 if (write)
6401 return __parse_numa_zonelist_order(buffer);
6402 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6403}
6404
6405
f0c0b2b8
KH
6406static int node_load[MAX_NUMNODES];
6407
1da177e4 6408/**
4dc3b16b 6409 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6410 * @node: node whose fallback list we're appending
6411 * @used_node_mask: nodemask_t of already used nodes
6412 *
6413 * We use a number of factors to determine which is the next node that should
6414 * appear on a given node's fallback list. The node should not have appeared
6415 * already in @node's fallback list, and it should be the next closest node
6416 * according to the distance array (which contains arbitrary distance values
6417 * from each node to each node in the system), and should also prefer nodes
6418 * with no CPUs, since presumably they'll have very little allocation pressure
6419 * on them otherwise.
a862f68a
MR
6420 *
6421 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6422 */
79c28a41 6423int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6424{
4cf808eb 6425 int n, val;
1da177e4 6426 int min_val = INT_MAX;
00ef2d2f 6427 int best_node = NUMA_NO_NODE;
1da177e4 6428
4cf808eb
LT
6429 /* Use the local node if we haven't already */
6430 if (!node_isset(node, *used_node_mask)) {
6431 node_set(node, *used_node_mask);
6432 return node;
6433 }
1da177e4 6434
4b0ef1fe 6435 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6436
6437 /* Don't want a node to appear more than once */
6438 if (node_isset(n, *used_node_mask))
6439 continue;
6440
1da177e4
LT
6441 /* Use the distance array to find the distance */
6442 val = node_distance(node, n);
6443
4cf808eb
LT
6444 /* Penalize nodes under us ("prefer the next node") */
6445 val += (n < node);
6446
1da177e4 6447 /* Give preference to headless and unused nodes */
b630749f 6448 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6449 val += PENALTY_FOR_NODE_WITH_CPUS;
6450
6451 /* Slight preference for less loaded node */
37931324 6452 val *= MAX_NUMNODES;
1da177e4
LT
6453 val += node_load[n];
6454
6455 if (val < min_val) {
6456 min_val = val;
6457 best_node = n;
6458 }
6459 }
6460
6461 if (best_node >= 0)
6462 node_set(best_node, *used_node_mask);
6463
6464 return best_node;
6465}
6466
f0c0b2b8
KH
6467
6468/*
6469 * Build zonelists ordered by node and zones within node.
6470 * This results in maximum locality--normal zone overflows into local
6471 * DMA zone, if any--but risks exhausting DMA zone.
6472 */
9d3be21b
MH
6473static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6474 unsigned nr_nodes)
1da177e4 6475{
9d3be21b
MH
6476 struct zoneref *zonerefs;
6477 int i;
6478
6479 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6480
6481 for (i = 0; i < nr_nodes; i++) {
6482 int nr_zones;
6483
6484 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6485
9d3be21b
MH
6486 nr_zones = build_zonerefs_node(node, zonerefs);
6487 zonerefs += nr_zones;
6488 }
6489 zonerefs->zone = NULL;
6490 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6491}
6492
523b9458
CL
6493/*
6494 * Build gfp_thisnode zonelists
6495 */
6496static void build_thisnode_zonelists(pg_data_t *pgdat)
6497{
9d3be21b
MH
6498 struct zoneref *zonerefs;
6499 int nr_zones;
523b9458 6500
9d3be21b
MH
6501 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6502 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6503 zonerefs += nr_zones;
6504 zonerefs->zone = NULL;
6505 zonerefs->zone_idx = 0;
523b9458
CL
6506}
6507
f0c0b2b8
KH
6508/*
6509 * Build zonelists ordered by zone and nodes within zones.
6510 * This results in conserving DMA zone[s] until all Normal memory is
6511 * exhausted, but results in overflowing to remote node while memory
6512 * may still exist in local DMA zone.
6513 */
f0c0b2b8 6514
f0c0b2b8
KH
6515static void build_zonelists(pg_data_t *pgdat)
6516{
9d3be21b 6517 static int node_order[MAX_NUMNODES];
37931324 6518 int node, nr_nodes = 0;
d0ddf49b 6519 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6520 int local_node, prev_node;
1da177e4
LT
6521
6522 /* NUMA-aware ordering of nodes */
6523 local_node = pgdat->node_id;
1da177e4 6524 prev_node = local_node;
f0c0b2b8 6525
f0c0b2b8 6526 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6527 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6528 /*
6529 * We don't want to pressure a particular node.
6530 * So adding penalty to the first node in same
6531 * distance group to make it round-robin.
6532 */
957f822a
DR
6533 if (node_distance(local_node, node) !=
6534 node_distance(local_node, prev_node))
37931324 6535 node_load[node] += 1;
f0c0b2b8 6536
9d3be21b 6537 node_order[nr_nodes++] = node;
1da177e4 6538 prev_node = node;
1da177e4 6539 }
523b9458 6540
9d3be21b 6541 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6542 build_thisnode_zonelists(pgdat);
6cf25392
BR
6543 pr_info("Fallback order for Node %d: ", local_node);
6544 for (node = 0; node < nr_nodes; node++)
6545 pr_cont("%d ", node_order[node]);
6546 pr_cont("\n");
1da177e4
LT
6547}
6548
7aac7898
LS
6549#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6550/*
6551 * Return node id of node used for "local" allocations.
6552 * I.e., first node id of first zone in arg node's generic zonelist.
6553 * Used for initializing percpu 'numa_mem', which is used primarily
6554 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6555 */
6556int local_memory_node(int node)
6557{
c33d6c06 6558 struct zoneref *z;
7aac7898 6559
c33d6c06 6560 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6561 gfp_zone(GFP_KERNEL),
c33d6c06 6562 NULL);
c1093b74 6563 return zone_to_nid(z->zone);
7aac7898
LS
6564}
6565#endif
f0c0b2b8 6566
6423aa81
JK
6567static void setup_min_unmapped_ratio(void);
6568static void setup_min_slab_ratio(void);
1da177e4
LT
6569#else /* CONFIG_NUMA */
6570
f0c0b2b8 6571static void build_zonelists(pg_data_t *pgdat)
1da177e4 6572{
19655d34 6573 int node, local_node;
9d3be21b
MH
6574 struct zoneref *zonerefs;
6575 int nr_zones;
1da177e4
LT
6576
6577 local_node = pgdat->node_id;
1da177e4 6578
9d3be21b
MH
6579 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6580 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6581 zonerefs += nr_zones;
1da177e4 6582
54a6eb5c
MG
6583 /*
6584 * Now we build the zonelist so that it contains the zones
6585 * of all the other nodes.
6586 * We don't want to pressure a particular node, so when
6587 * building the zones for node N, we make sure that the
6588 * zones coming right after the local ones are those from
6589 * node N+1 (modulo N)
6590 */
6591 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6592 if (!node_online(node))
6593 continue;
9d3be21b
MH
6594 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6595 zonerefs += nr_zones;
1da177e4 6596 }
54a6eb5c
MG
6597 for (node = 0; node < local_node; node++) {
6598 if (!node_online(node))
6599 continue;
9d3be21b
MH
6600 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6601 zonerefs += nr_zones;
54a6eb5c
MG
6602 }
6603
9d3be21b
MH
6604 zonerefs->zone = NULL;
6605 zonerefs->zone_idx = 0;
1da177e4
LT
6606}
6607
6608#endif /* CONFIG_NUMA */
6609
99dcc3e5
CL
6610/*
6611 * Boot pageset table. One per cpu which is going to be used for all
6612 * zones and all nodes. The parameters will be set in such a way
6613 * that an item put on a list will immediately be handed over to
6614 * the buddy list. This is safe since pageset manipulation is done
6615 * with interrupts disabled.
6616 *
6617 * The boot_pagesets must be kept even after bootup is complete for
6618 * unused processors and/or zones. They do play a role for bootstrapping
6619 * hotplugged processors.
6620 *
6621 * zoneinfo_show() and maybe other functions do
6622 * not check if the processor is online before following the pageset pointer.
6623 * Other parts of the kernel may not check if the zone is available.
6624 */
28f836b6 6625static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6626/* These effectively disable the pcplists in the boot pageset completely */
6627#define BOOT_PAGESET_HIGH 0
6628#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6629static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6630static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6dc2c87a 6631static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6632
11cd8638 6633static void __build_all_zonelists(void *data)
1da177e4 6634{
6811378e 6635 int nid;
afb6ebb3 6636 int __maybe_unused cpu;
9adb62a5 6637 pg_data_t *self = data;
b93e0f32 6638
3d36424b 6639 write_seqlock(&zonelist_update_seq);
9276b1bc 6640
7f9cfb31
BL
6641#ifdef CONFIG_NUMA
6642 memset(node_load, 0, sizeof(node_load));
6643#endif
9adb62a5 6644
c1152583
WY
6645 /*
6646 * This node is hotadded and no memory is yet present. So just
6647 * building zonelists is fine - no need to touch other nodes.
6648 */
9adb62a5
JL
6649 if (self && !node_online(self->node_id)) {
6650 build_zonelists(self);
c1152583 6651 } else {
09f49dca
MH
6652 /*
6653 * All possible nodes have pgdat preallocated
6654 * in free_area_init
6655 */
6656 for_each_node(nid) {
c1152583 6657 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6658
c1152583
WY
6659 build_zonelists(pgdat);
6660 }
99dcc3e5 6661
7aac7898
LS
6662#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6663 /*
6664 * We now know the "local memory node" for each node--
6665 * i.e., the node of the first zone in the generic zonelist.
6666 * Set up numa_mem percpu variable for on-line cpus. During
6667 * boot, only the boot cpu should be on-line; we'll init the
6668 * secondary cpus' numa_mem as they come on-line. During
6669 * node/memory hotplug, we'll fixup all on-line cpus.
6670 */
d9c9a0b9 6671 for_each_online_cpu(cpu)
7aac7898 6672 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6673#endif
d9c9a0b9 6674 }
b93e0f32 6675
3d36424b 6676 write_sequnlock(&zonelist_update_seq);
6811378e
YG
6677}
6678
061f67bc
RV
6679static noinline void __init
6680build_all_zonelists_init(void)
6681{
afb6ebb3
MH
6682 int cpu;
6683
061f67bc 6684 __build_all_zonelists(NULL);
afb6ebb3
MH
6685
6686 /*
6687 * Initialize the boot_pagesets that are going to be used
6688 * for bootstrapping processors. The real pagesets for
6689 * each zone will be allocated later when the per cpu
6690 * allocator is available.
6691 *
6692 * boot_pagesets are used also for bootstrapping offline
6693 * cpus if the system is already booted because the pagesets
6694 * are needed to initialize allocators on a specific cpu too.
6695 * F.e. the percpu allocator needs the page allocator which
6696 * needs the percpu allocator in order to allocate its pagesets
6697 * (a chicken-egg dilemma).
6698 */
6699 for_each_possible_cpu(cpu)
28f836b6 6700 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6701
061f67bc
RV
6702 mminit_verify_zonelist();
6703 cpuset_init_current_mems_allowed();
6704}
6705
4eaf3f64 6706/*
4eaf3f64 6707 * unless system_state == SYSTEM_BOOTING.
061f67bc 6708 *
72675e13 6709 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6710 * [protected by SYSTEM_BOOTING].
4eaf3f64 6711 */
72675e13 6712void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6713{
0a18e607
DH
6714 unsigned long vm_total_pages;
6715
6811378e 6716 if (system_state == SYSTEM_BOOTING) {
061f67bc 6717 build_all_zonelists_init();
6811378e 6718 } else {
11cd8638 6719 __build_all_zonelists(pgdat);
6811378e
YG
6720 /* cpuset refresh routine should be here */
6721 }
56b9413b
DH
6722 /* Get the number of free pages beyond high watermark in all zones. */
6723 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6724 /*
6725 * Disable grouping by mobility if the number of pages in the
6726 * system is too low to allow the mechanism to work. It would be
6727 * more accurate, but expensive to check per-zone. This check is
6728 * made on memory-hotadd so a system can start with mobility
6729 * disabled and enable it later
6730 */
d9c23400 6731 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6732 page_group_by_mobility_disabled = 1;
6733 else
6734 page_group_by_mobility_disabled = 0;
6735
ce0725f7 6736 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6737 nr_online_nodes,
756a025f
JP
6738 page_group_by_mobility_disabled ? "off" : "on",
6739 vm_total_pages);
f0c0b2b8 6740#ifdef CONFIG_NUMA
f88dfff5 6741 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6742#endif
1da177e4
LT
6743}
6744
a9a9e77f
PT
6745/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6746static bool __meminit
6747overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6748{
a9a9e77f
PT
6749 static struct memblock_region *r;
6750
6751 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6752 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6753 for_each_mem_region(r) {
a9a9e77f
PT
6754 if (*pfn < memblock_region_memory_end_pfn(r))
6755 break;
6756 }
6757 }
6758 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6759 memblock_is_mirror(r)) {
6760 *pfn = memblock_region_memory_end_pfn(r);
6761 return true;
6762 }
6763 }
a9a9e77f
PT
6764 return false;
6765}
6766
1da177e4
LT
6767/*
6768 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6769 * up by memblock_free_all() once the early boot process is
1da177e4 6770 * done. Non-atomic initialization, single-pass.
d882c006
DH
6771 *
6772 * All aligned pageblocks are initialized to the specified migratetype
6773 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6774 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6775 */
ab28cb6e 6776void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6777 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6778 enum meminit_context context,
6779 struct vmem_altmap *altmap, int migratetype)
1da177e4 6780{
a9a9e77f 6781 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6782 struct page *page;
1da177e4 6783
22b31eec
HD
6784 if (highest_memmap_pfn < end_pfn - 1)
6785 highest_memmap_pfn = end_pfn - 1;
6786
966cf44f 6787#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6788 /*
6789 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6790 * memory. We limit the total number of pages to initialize to just
6791 * those that might contain the memory mapping. We will defer the
6792 * ZONE_DEVICE page initialization until after we have released
6793 * the hotplug lock.
4b94ffdc 6794 */
966cf44f
AD
6795 if (zone == ZONE_DEVICE) {
6796 if (!altmap)
6797 return;
6798
6799 if (start_pfn == altmap->base_pfn)
6800 start_pfn += altmap->reserve;
6801 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6802 }
6803#endif
4b94ffdc 6804
948c436e 6805 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6806 /*
b72d0ffb
AM
6807 * There can be holes in boot-time mem_map[]s handed to this
6808 * function. They do not exist on hotplugged memory.
a2f3aa02 6809 */
c1d0da83 6810 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6811 if (overlap_memmap_init(zone, &pfn))
6812 continue;
dc2da7b4 6813 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6814 break;
a2f3aa02 6815 }
ac5d2539 6816
d0dc12e8
PT
6817 page = pfn_to_page(pfn);
6818 __init_single_page(page, pfn, zone, nid);
c1d0da83 6819 if (context == MEMINIT_HOTPLUG)
d483da5b 6820 __SetPageReserved(page);
d0dc12e8 6821
ac5d2539 6822 /*
d882c006
DH
6823 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6824 * such that unmovable allocations won't be scattered all
6825 * over the place during system boot.
ac5d2539 6826 */
ee0913c4 6827 if (pageblock_aligned(pfn)) {
d882c006 6828 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6829 cond_resched();
ac5d2539 6830 }
948c436e 6831 pfn++;
1da177e4
LT
6832 }
6833}
6834
966cf44f 6835#ifdef CONFIG_ZONE_DEVICE
46487e00
JM
6836static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6837 unsigned long zone_idx, int nid,
6838 struct dev_pagemap *pgmap)
6839{
6840
6841 __init_single_page(page, pfn, zone_idx, nid);
6842
6843 /*
6844 * Mark page reserved as it will need to wait for onlining
6845 * phase for it to be fully associated with a zone.
6846 *
6847 * We can use the non-atomic __set_bit operation for setting
6848 * the flag as we are still initializing the pages.
6849 */
6850 __SetPageReserved(page);
6851
6852 /*
6853 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6854 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6855 * ever freed or placed on a driver-private list.
6856 */
6857 page->pgmap = pgmap;
6858 page->zone_device_data = NULL;
6859
6860 /*
6861 * Mark the block movable so that blocks are reserved for
6862 * movable at startup. This will force kernel allocations
6863 * to reserve their blocks rather than leaking throughout
6864 * the address space during boot when many long-lived
6865 * kernel allocations are made.
6866 *
6867 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6868 * because this is done early in section_activate()
6869 */
ee0913c4 6870 if (pageblock_aligned(pfn)) {
46487e00
JM
6871 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6872 cond_resched();
6873 }
ef233450
AP
6874
6875 /*
6876 * ZONE_DEVICE pages are released directly to the driver page allocator
6877 * which will set the page count to 1 when allocating the page.
6878 */
6879 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6880 pgmap->type == MEMORY_DEVICE_COHERENT)
6881 set_page_count(page, 0);
46487e00
JM
6882}
6883
6fd3620b
JM
6884/*
6885 * With compound page geometry and when struct pages are stored in ram most
6886 * tail pages are reused. Consequently, the amount of unique struct pages to
6887 * initialize is a lot smaller that the total amount of struct pages being
6888 * mapped. This is a paired / mild layering violation with explicit knowledge
6889 * of how the sparse_vmemmap internals handle compound pages in the lack
6890 * of an altmap. See vmemmap_populate_compound_pages().
6891 */
6892static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6893 unsigned long nr_pages)
6894{
6895 return is_power_of_2(sizeof(struct page)) &&
6896 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6897}
6898
c4386bd8
JM
6899static void __ref memmap_init_compound(struct page *head,
6900 unsigned long head_pfn,
6901 unsigned long zone_idx, int nid,
6902 struct dev_pagemap *pgmap,
6903 unsigned long nr_pages)
6904{
6905 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6906 unsigned int order = pgmap->vmemmap_shift;
6907
6908 __SetPageHead(head);
6909 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6910 struct page *page = pfn_to_page(pfn);
6911
6912 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6913 prep_compound_tail(head, pfn - head_pfn);
6914 set_page_count(page, 0);
6915
6916 /*
cb67f428
HD
6917 * The first tail page stores important compound page info.
6918 * Call prep_compound_head() after the first tail page has
6919 * been initialized, to not have the data overwritten.
c4386bd8 6920 */
cb67f428 6921 if (pfn == head_pfn + 1)
c4386bd8
JM
6922 prep_compound_head(head, order);
6923 }
6924}
6925
966cf44f
AD
6926void __ref memmap_init_zone_device(struct zone *zone,
6927 unsigned long start_pfn,
1f8d75c1 6928 unsigned long nr_pages,
966cf44f
AD
6929 struct dev_pagemap *pgmap)
6930{
1f8d75c1 6931 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6932 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6933 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
c4386bd8 6934 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
966cf44f
AD
6935 unsigned long zone_idx = zone_idx(zone);
6936 unsigned long start = jiffies;
6937 int nid = pgdat->node_id;
6938
c0352904 6939 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
966cf44f
AD
6940 return;
6941
6942 /*
122e093c 6943 * The call to memmap_init should have already taken care
966cf44f
AD
6944 * of the pages reserved for the memmap, so we can just jump to
6945 * the end of that region and start processing the device pages.
6946 */
514caf23 6947 if (altmap) {
966cf44f 6948 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6949 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6950 }
6951
c4386bd8 6952 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
966cf44f
AD
6953 struct page *page = pfn_to_page(pfn);
6954
46487e00 6955 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
c4386bd8
JM
6956
6957 if (pfns_per_compound == 1)
6958 continue;
6959
6960 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6fd3620b 6961 compound_nr_pages(altmap, pfns_per_compound));
966cf44f
AD
6962 }
6963
fdc029b1 6964 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6965 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6966}
6967
6968#endif
1e548deb 6969static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6970{
7aeb09f9 6971 unsigned int order, t;
b2a0ac88
MG
6972 for_each_migratetype_order(order, t) {
6973 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6974 zone->free_area[order].nr_free = 0;
6975 }
6976}
6977
0740a50b
MR
6978/*
6979 * Only struct pages that correspond to ranges defined by memblock.memory
6980 * are zeroed and initialized by going through __init_single_page() during
122e093c 6981 * memmap_init_zone_range().
0740a50b
MR
6982 *
6983 * But, there could be struct pages that correspond to holes in
6984 * memblock.memory. This can happen because of the following reasons:
6985 * - physical memory bank size is not necessarily the exact multiple of the
6986 * arbitrary section size
6987 * - early reserved memory may not be listed in memblock.memory
6988 * - memory layouts defined with memmap= kernel parameter may not align
6989 * nicely with memmap sections
6990 *
6991 * Explicitly initialize those struct pages so that:
6992 * - PG_Reserved is set
6993 * - zone and node links point to zone and node that span the page if the
6994 * hole is in the middle of a zone
6995 * - zone and node links point to adjacent zone/node if the hole falls on
6996 * the zone boundary; the pages in such holes will be prepended to the
6997 * zone/node above the hole except for the trailing pages in the last
6998 * section that will be appended to the zone/node below.
6999 */
122e093c
MR
7000static void __init init_unavailable_range(unsigned long spfn,
7001 unsigned long epfn,
7002 int zone, int node)
0740a50b
MR
7003{
7004 unsigned long pfn;
7005 u64 pgcnt = 0;
7006
7007 for (pfn = spfn; pfn < epfn; pfn++) {
4f9bc69a
KW
7008 if (!pfn_valid(pageblock_start_pfn(pfn))) {
7009 pfn = pageblock_end_pfn(pfn) - 1;
0740a50b
MR
7010 continue;
7011 }
7012 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
7013 __SetPageReserved(pfn_to_page(pfn));
7014 pgcnt++;
7015 }
7016
122e093c
MR
7017 if (pgcnt)
7018 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
7019 node, zone_names[zone], pgcnt);
0740a50b 7020}
0740a50b 7021
122e093c
MR
7022static void __init memmap_init_zone_range(struct zone *zone,
7023 unsigned long start_pfn,
7024 unsigned long end_pfn,
7025 unsigned long *hole_pfn)
dfb3ccd0 7026{
3256ff83
BH
7027 unsigned long zone_start_pfn = zone->zone_start_pfn;
7028 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
7029 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
7030
7031 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
7032 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
7033
7034 if (start_pfn >= end_pfn)
7035 return;
7036
7037 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7038 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7039
7040 if (*hole_pfn < start_pfn)
7041 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7042
7043 *hole_pfn = end_pfn;
7044}
7045
7046static void __init memmap_init(void)
7047{
73a6e474 7048 unsigned long start_pfn, end_pfn;
122e093c 7049 unsigned long hole_pfn = 0;
b346075f 7050 int i, j, zone_id = 0, nid;
73a6e474 7051
122e093c
MR
7052 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7053 struct pglist_data *node = NODE_DATA(nid);
73a6e474 7054
122e093c
MR
7055 for (j = 0; j < MAX_NR_ZONES; j++) {
7056 struct zone *zone = node->node_zones + j;
0740a50b 7057
122e093c
MR
7058 if (!populated_zone(zone))
7059 continue;
0740a50b 7060
122e093c
MR
7061 memmap_init_zone_range(zone, start_pfn, end_pfn,
7062 &hole_pfn);
7063 zone_id = j;
7064 }
73a6e474 7065 }
0740a50b
MR
7066
7067#ifdef CONFIG_SPARSEMEM
7068 /*
122e093c
MR
7069 * Initialize the memory map for hole in the range [memory_end,
7070 * section_end].
7071 * Append the pages in this hole to the highest zone in the last
7072 * node.
7073 * The call to init_unavailable_range() is outside the ifdef to
7074 * silence the compiler warining about zone_id set but not used;
7075 * for FLATMEM it is a nop anyway
0740a50b 7076 */
122e093c 7077 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 7078 if (hole_pfn < end_pfn)
0740a50b 7079#endif
122e093c 7080 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 7081}
1da177e4 7082
c803b3c8
MR
7083void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7084 phys_addr_t min_addr, int nid, bool exact_nid)
7085{
7086 void *ptr;
7087
7088 if (exact_nid)
7089 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7090 MEMBLOCK_ALLOC_ACCESSIBLE,
7091 nid);
7092 else
7093 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7094 MEMBLOCK_ALLOC_ACCESSIBLE,
7095 nid);
7096
7097 if (ptr && size > 0)
7098 page_init_poison(ptr, size);
7099
7100 return ptr;
7101}
7102
7cd2b0a3 7103static int zone_batchsize(struct zone *zone)
e7c8d5c9 7104{
3a6be87f 7105#ifdef CONFIG_MMU
e7c8d5c9
CL
7106 int batch;
7107
7108 /*
b92ca18e
MG
7109 * The number of pages to batch allocate is either ~0.1%
7110 * of the zone or 1MB, whichever is smaller. The batch
7111 * size is striking a balance between allocation latency
7112 * and zone lock contention.
e7c8d5c9 7113 */
c940e020 7114 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
e7c8d5c9
CL
7115 batch /= 4; /* We effectively *= 4 below */
7116 if (batch < 1)
7117 batch = 1;
7118
7119 /*
0ceaacc9
NP
7120 * Clamp the batch to a 2^n - 1 value. Having a power
7121 * of 2 value was found to be more likely to have
7122 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 7123 *
0ceaacc9
NP
7124 * For example if 2 tasks are alternately allocating
7125 * batches of pages, one task can end up with a lot
7126 * of pages of one half of the possible page colors
7127 * and the other with pages of the other colors.
e7c8d5c9 7128 */
9155203a 7129 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 7130
e7c8d5c9 7131 return batch;
3a6be87f
DH
7132
7133#else
7134 /* The deferral and batching of frees should be suppressed under NOMMU
7135 * conditions.
7136 *
7137 * The problem is that NOMMU needs to be able to allocate large chunks
7138 * of contiguous memory as there's no hardware page translation to
7139 * assemble apparent contiguous memory from discontiguous pages.
7140 *
7141 * Queueing large contiguous runs of pages for batching, however,
7142 * causes the pages to actually be freed in smaller chunks. As there
7143 * can be a significant delay between the individual batches being
7144 * recycled, this leads to the once large chunks of space being
7145 * fragmented and becoming unavailable for high-order allocations.
7146 */
7147 return 0;
7148#endif
e7c8d5c9
CL
7149}
7150
04f8cfea 7151static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
7152{
7153#ifdef CONFIG_MMU
7154 int high;
203c06ee 7155 int nr_split_cpus;
74f44822
MG
7156 unsigned long total_pages;
7157
7158 if (!percpu_pagelist_high_fraction) {
7159 /*
7160 * By default, the high value of the pcp is based on the zone
7161 * low watermark so that if they are full then background
7162 * reclaim will not be started prematurely.
7163 */
7164 total_pages = low_wmark_pages(zone);
7165 } else {
7166 /*
7167 * If percpu_pagelist_high_fraction is configured, the high
7168 * value is based on a fraction of the managed pages in the
7169 * zone.
7170 */
7171 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7172 }
b92ca18e
MG
7173
7174 /*
74f44822
MG
7175 * Split the high value across all online CPUs local to the zone. Note
7176 * that early in boot that CPUs may not be online yet and that during
7177 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
7178 * onlined. For memory nodes that have no CPUs, split pcp->high across
7179 * all online CPUs to mitigate the risk that reclaim is triggered
7180 * prematurely due to pages stored on pcp lists.
b92ca18e 7181 */
203c06ee
MG
7182 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7183 if (!nr_split_cpus)
7184 nr_split_cpus = num_online_cpus();
7185 high = total_pages / nr_split_cpus;
b92ca18e
MG
7186
7187 /*
7188 * Ensure high is at least batch*4. The multiple is based on the
7189 * historical relationship between high and batch.
7190 */
7191 high = max(high, batch << 2);
7192
7193 return high;
7194#else
7195 return 0;
7196#endif
7197}
7198
8d7a8fa9 7199/*
5c3ad2eb
VB
7200 * pcp->high and pcp->batch values are related and generally batch is lower
7201 * than high. They are also related to pcp->count such that count is lower
7202 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 7203 *
5c3ad2eb
VB
7204 * However, guaranteeing these relations at all times would require e.g. write
7205 * barriers here but also careful usage of read barriers at the read side, and
7206 * thus be prone to error and bad for performance. Thus the update only prevents
7207 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7208 * can cope with those fields changing asynchronously, and fully trust only the
7209 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
7210 *
7211 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7212 * outside of boot time (or some other assurance that no concurrent updaters
7213 * exist).
7214 */
7215static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7216 unsigned long batch)
7217{
5c3ad2eb
VB
7218 WRITE_ONCE(pcp->batch, batch);
7219 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
7220}
7221
28f836b6 7222static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 7223{
44042b44 7224 int pindex;
2caaad41 7225
28f836b6
MG
7226 memset(pcp, 0, sizeof(*pcp));
7227 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 7228
4b23a68f 7229 spin_lock_init(&pcp->lock);
44042b44
MG
7230 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7231 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 7232
69a8396a
VB
7233 /*
7234 * Set batch and high values safe for a boot pageset. A true percpu
7235 * pageset's initialization will update them subsequently. Here we don't
7236 * need to be as careful as pageset_update() as nobody can access the
7237 * pageset yet.
7238 */
952eaf81
VB
7239 pcp->high = BOOT_PAGESET_HIGH;
7240 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 7241 pcp->free_factor = 0;
88c90dbc
CS
7242}
7243
3b1f3658 7244static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
7245 unsigned long batch)
7246{
28f836b6 7247 struct per_cpu_pages *pcp;
ec6e8c7e
VB
7248 int cpu;
7249
7250 for_each_possible_cpu(cpu) {
28f836b6
MG
7251 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7252 pageset_update(pcp, high, batch);
ec6e8c7e
VB
7253 }
7254}
7255
8ad4b1fb 7256/*
0a8b4f1d 7257 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 7258 * zone based on the zone's size.
8ad4b1fb 7259 */
04f8cfea 7260static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 7261{
b92ca18e 7262 int new_high, new_batch;
7115ac6e 7263
b92ca18e 7264 new_batch = max(1, zone_batchsize(zone));
04f8cfea 7265 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 7266
952eaf81
VB
7267 if (zone->pageset_high == new_high &&
7268 zone->pageset_batch == new_batch)
7269 return;
7270
7271 zone->pageset_high = new_high;
7272 zone->pageset_batch = new_batch;
7273
ec6e8c7e 7274 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
7275}
7276
72675e13 7277void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
7278{
7279 int cpu;
0a8b4f1d 7280
28f836b6
MG
7281 /* Size may be 0 on !SMP && !NUMA */
7282 if (sizeof(struct per_cpu_zonestat) > 0)
7283 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7284
7285 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 7286 for_each_possible_cpu(cpu) {
28f836b6
MG
7287 struct per_cpu_pages *pcp;
7288 struct per_cpu_zonestat *pzstats;
7289
7290 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7291 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7292 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
7293 }
7294
04f8cfea 7295 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
7296}
7297
b89f1735
ML
7298/*
7299 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7300 * page high values need to be recalculated.
7301 */
7302static void zone_pcp_update(struct zone *zone, int cpu_online)
7303{
7304 mutex_lock(&pcp_batch_high_lock);
7305 zone_set_pageset_high_and_batch(zone, cpu_online);
7306 mutex_unlock(&pcp_batch_high_lock);
7307}
7308
2caaad41 7309/*
99dcc3e5
CL
7310 * Allocate per cpu pagesets and initialize them.
7311 * Before this call only boot pagesets were available.
e7c8d5c9 7312 */
99dcc3e5 7313void __init setup_per_cpu_pageset(void)
e7c8d5c9 7314{
b4911ea2 7315 struct pglist_data *pgdat;
99dcc3e5 7316 struct zone *zone;
b418a0f9 7317 int __maybe_unused cpu;
e7c8d5c9 7318
319774e2
WF
7319 for_each_populated_zone(zone)
7320 setup_zone_pageset(zone);
b4911ea2 7321
b418a0f9
SD
7322#ifdef CONFIG_NUMA
7323 /*
7324 * Unpopulated zones continue using the boot pagesets.
7325 * The numa stats for these pagesets need to be reset.
7326 * Otherwise, they will end up skewing the stats of
7327 * the nodes these zones are associated with.
7328 */
7329 for_each_possible_cpu(cpu) {
28f836b6 7330 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
7331 memset(pzstats->vm_numa_event, 0,
7332 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
7333 }
7334#endif
7335
b4911ea2
MG
7336 for_each_online_pgdat(pgdat)
7337 pgdat->per_cpu_nodestats =
7338 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
7339}
7340
c09b4240 7341static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 7342{
99dcc3e5
CL
7343 /*
7344 * per cpu subsystem is not up at this point. The following code
7345 * relies on the ability of the linker to provide the
7346 * offset of a (static) per cpu variable into the per cpu area.
7347 */
28f836b6
MG
7348 zone->per_cpu_pageset = &boot_pageset;
7349 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
7350 zone->pageset_high = BOOT_PAGESET_HIGH;
7351 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 7352
b38a8725 7353 if (populated_zone(zone))
9660ecaa
HK
7354 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7355 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
7356}
7357
dc0bbf3b 7358void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 7359 unsigned long zone_start_pfn,
b171e409 7360 unsigned long size)
ed8ece2e
DH
7361{
7362 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7363 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7364
8f416836
WY
7365 if (zone_idx > pgdat->nr_zones)
7366 pgdat->nr_zones = zone_idx;
ed8ece2e 7367
ed8ece2e
DH
7368 zone->zone_start_pfn = zone_start_pfn;
7369
708614e6
MG
7370 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7371 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7372 pgdat->node_id,
7373 (unsigned long)zone_idx(zone),
7374 zone_start_pfn, (zone_start_pfn + size));
7375
1e548deb 7376 zone_init_free_lists(zone);
9dcb8b68 7377 zone->initialized = 1;
ed8ece2e
DH
7378}
7379
c713216d
MG
7380/**
7381 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7382 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7383 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7384 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7385 *
7386 * It returns the start and end page frame of a node based on information
7d018176 7387 * provided by memblock_set_node(). If called for a node
c713216d 7388 * with no available memory, a warning is printed and the start and end
88ca3b94 7389 * PFNs will be 0.
c713216d 7390 */
bbe5d993 7391void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7392 unsigned long *start_pfn, unsigned long *end_pfn)
7393{
c13291a5 7394 unsigned long this_start_pfn, this_end_pfn;
c713216d 7395 int i;
c13291a5 7396
c713216d
MG
7397 *start_pfn = -1UL;
7398 *end_pfn = 0;
7399
c13291a5
TH
7400 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7401 *start_pfn = min(*start_pfn, this_start_pfn);
7402 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7403 }
7404
633c0666 7405 if (*start_pfn == -1UL)
c713216d 7406 *start_pfn = 0;
c713216d
MG
7407}
7408
2a1e274a
MG
7409/*
7410 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7411 * assumption is made that zones within a node are ordered in monotonic
7412 * increasing memory addresses so that the "highest" populated zone is used
7413 */
b69a7288 7414static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7415{
7416 int zone_index;
7417 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7418 if (zone_index == ZONE_MOVABLE)
7419 continue;
7420
7421 if (arch_zone_highest_possible_pfn[zone_index] >
7422 arch_zone_lowest_possible_pfn[zone_index])
7423 break;
7424 }
7425
7426 VM_BUG_ON(zone_index == -1);
7427 movable_zone = zone_index;
7428}
7429
7430/*
7431 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7432 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7433 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7434 * in each node depending on the size of each node and how evenly kernelcore
7435 * is distributed. This helper function adjusts the zone ranges
7436 * provided by the architecture for a given node by using the end of the
7437 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7438 * zones within a node are in order of monotonic increases memory addresses
7439 */
bbe5d993 7440static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7441 unsigned long zone_type,
7442 unsigned long node_start_pfn,
7443 unsigned long node_end_pfn,
7444 unsigned long *zone_start_pfn,
7445 unsigned long *zone_end_pfn)
7446{
7447 /* Only adjust if ZONE_MOVABLE is on this node */
7448 if (zone_movable_pfn[nid]) {
7449 /* Size ZONE_MOVABLE */
7450 if (zone_type == ZONE_MOVABLE) {
7451 *zone_start_pfn = zone_movable_pfn[nid];
7452 *zone_end_pfn = min(node_end_pfn,
7453 arch_zone_highest_possible_pfn[movable_zone]);
7454
e506b996
XQ
7455 /* Adjust for ZONE_MOVABLE starting within this range */
7456 } else if (!mirrored_kernelcore &&
7457 *zone_start_pfn < zone_movable_pfn[nid] &&
7458 *zone_end_pfn > zone_movable_pfn[nid]) {
7459 *zone_end_pfn = zone_movable_pfn[nid];
7460
2a1e274a
MG
7461 /* Check if this whole range is within ZONE_MOVABLE */
7462 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7463 *zone_start_pfn = *zone_end_pfn;
7464 }
7465}
7466
c713216d
MG
7467/*
7468 * Return the number of pages a zone spans in a node, including holes
7469 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7470 */
bbe5d993 7471static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7472 unsigned long zone_type,
7960aedd
ZY
7473 unsigned long node_start_pfn,
7474 unsigned long node_end_pfn,
d91749c1 7475 unsigned long *zone_start_pfn,
854e8848 7476 unsigned long *zone_end_pfn)
c713216d 7477{
299c83dc
LF
7478 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7479 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7480 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7481 if (!node_start_pfn && !node_end_pfn)
7482 return 0;
7483
7960aedd 7484 /* Get the start and end of the zone */
299c83dc
LF
7485 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7486 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7487 adjust_zone_range_for_zone_movable(nid, zone_type,
7488 node_start_pfn, node_end_pfn,
d91749c1 7489 zone_start_pfn, zone_end_pfn);
c713216d
MG
7490
7491 /* Check that this node has pages within the zone's required range */
d91749c1 7492 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7493 return 0;
7494
7495 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7496 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7497 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7498
7499 /* Return the spanned pages */
d91749c1 7500 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7501}
7502
7503/*
7504 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7505 * then all holes in the requested range will be accounted for.
c713216d 7506 */
bbe5d993 7507unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7508 unsigned long range_start_pfn,
7509 unsigned long range_end_pfn)
7510{
96e907d1
TH
7511 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7512 unsigned long start_pfn, end_pfn;
7513 int i;
c713216d 7514
96e907d1
TH
7515 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7516 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7517 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7518 nr_absent -= end_pfn - start_pfn;
c713216d 7519 }
96e907d1 7520 return nr_absent;
c713216d
MG
7521}
7522
7523/**
7524 * absent_pages_in_range - Return number of page frames in holes within a range
7525 * @start_pfn: The start PFN to start searching for holes
7526 * @end_pfn: The end PFN to stop searching for holes
7527 *
a862f68a 7528 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7529 */
7530unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7531 unsigned long end_pfn)
7532{
7533 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7534}
7535
7536/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7537static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7538 unsigned long zone_type,
7960aedd 7539 unsigned long node_start_pfn,
854e8848 7540 unsigned long node_end_pfn)
c713216d 7541{
96e907d1
TH
7542 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7543 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7544 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7545 unsigned long nr_absent;
9c7cd687 7546
b5685e92 7547 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7548 if (!node_start_pfn && !node_end_pfn)
7549 return 0;
7550
96e907d1
TH
7551 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7552 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7553
2a1e274a
MG
7554 adjust_zone_range_for_zone_movable(nid, zone_type,
7555 node_start_pfn, node_end_pfn,
7556 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7557 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7558
7559 /*
7560 * ZONE_MOVABLE handling.
7561 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7562 * and vice versa.
7563 */
e506b996
XQ
7564 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7565 unsigned long start_pfn, end_pfn;
7566 struct memblock_region *r;
7567
cc6de168 7568 for_each_mem_region(r) {
e506b996
XQ
7569 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7570 zone_start_pfn, zone_end_pfn);
7571 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7572 zone_start_pfn, zone_end_pfn);
7573
7574 if (zone_type == ZONE_MOVABLE &&
7575 memblock_is_mirror(r))
7576 nr_absent += end_pfn - start_pfn;
7577
7578 if (zone_type == ZONE_NORMAL &&
7579 !memblock_is_mirror(r))
7580 nr_absent += end_pfn - start_pfn;
342332e6
TI
7581 }
7582 }
7583
7584 return nr_absent;
c713216d 7585}
0e0b864e 7586
bbe5d993 7587static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7588 unsigned long node_start_pfn,
854e8848 7589 unsigned long node_end_pfn)
c713216d 7590{
febd5949 7591 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7592 enum zone_type i;
7593
febd5949
GZ
7594 for (i = 0; i < MAX_NR_ZONES; i++) {
7595 struct zone *zone = pgdat->node_zones + i;
d91749c1 7596 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7597 unsigned long spanned, absent;
febd5949 7598 unsigned long size, real_size;
c713216d 7599
854e8848
MR
7600 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7601 node_start_pfn,
7602 node_end_pfn,
7603 &zone_start_pfn,
7604 &zone_end_pfn);
7605 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7606 node_start_pfn,
7607 node_end_pfn);
3f08a302
MR
7608
7609 size = spanned;
7610 real_size = size - absent;
7611
d91749c1
TI
7612 if (size)
7613 zone->zone_start_pfn = zone_start_pfn;
7614 else
7615 zone->zone_start_pfn = 0;
febd5949
GZ
7616 zone->spanned_pages = size;
7617 zone->present_pages = real_size;
4b097002
DH
7618#if defined(CONFIG_MEMORY_HOTPLUG)
7619 zone->present_early_pages = real_size;
7620#endif
febd5949
GZ
7621
7622 totalpages += size;
7623 realtotalpages += real_size;
7624 }
7625
7626 pgdat->node_spanned_pages = totalpages;
c713216d 7627 pgdat->node_present_pages = realtotalpages;
9660ecaa 7628 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7629}
7630
835c134e
MG
7631#ifndef CONFIG_SPARSEMEM
7632/*
7633 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7634 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7635 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7636 * round what is now in bits to nearest long in bits, then return it in
7637 * bytes.
7638 */
7c45512d 7639static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7640{
7641 unsigned long usemapsize;
7642
7c45512d 7643 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7644 usemapsize = roundup(zonesize, pageblock_nr_pages);
7645 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7646 usemapsize *= NR_PAGEBLOCK_BITS;
7647 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7648
7649 return usemapsize / 8;
7650}
7651
7010a6ec 7652static void __ref setup_usemap(struct zone *zone)
835c134e 7653{
7010a6ec
BH
7654 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7655 zone->spanned_pages);
835c134e 7656 zone->pageblock_flags = NULL;
23a7052a 7657 if (usemapsize) {
6782832e 7658 zone->pageblock_flags =
26fb3dae 7659 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7660 zone_to_nid(zone));
23a7052a
MR
7661 if (!zone->pageblock_flags)
7662 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7663 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7664 }
835c134e
MG
7665}
7666#else
7010a6ec 7667static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7668#endif /* CONFIG_SPARSEMEM */
7669
d9c23400 7670#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7671
d9c23400 7672/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7673void __init set_pageblock_order(void)
d9c23400 7674{
b3d40a2b 7675 unsigned int order = MAX_ORDER - 1;
955c1cd7 7676
d9c23400
MG
7677 /* Check that pageblock_nr_pages has not already been setup */
7678 if (pageblock_order)
7679 return;
7680
b3d40a2b
DH
7681 /* Don't let pageblocks exceed the maximum allocation granularity. */
7682 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
955c1cd7 7683 order = HUGETLB_PAGE_ORDER;
955c1cd7 7684
d9c23400
MG
7685 /*
7686 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7687 * This value may be variable depending on boot parameters on IA64 and
7688 * powerpc.
d9c23400
MG
7689 */
7690 pageblock_order = order;
7691}
7692#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7693
ba72cb8c
MG
7694/*
7695 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7696 * is unused as pageblock_order is set at compile-time. See
7697 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7698 * the kernel config
ba72cb8c 7699 */
03e85f9d 7700void __init set_pageblock_order(void)
ba72cb8c 7701{
ba72cb8c 7702}
d9c23400
MG
7703
7704#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7705
03e85f9d 7706static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7707 unsigned long present_pages)
01cefaef
JL
7708{
7709 unsigned long pages = spanned_pages;
7710
7711 /*
7712 * Provide a more accurate estimation if there are holes within
7713 * the zone and SPARSEMEM is in use. If there are holes within the
7714 * zone, each populated memory region may cost us one or two extra
7715 * memmap pages due to alignment because memmap pages for each
89d790ab 7716 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7717 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7718 */
7719 if (spanned_pages > present_pages + (present_pages >> 4) &&
7720 IS_ENABLED(CONFIG_SPARSEMEM))
7721 pages = present_pages;
7722
7723 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7724}
7725
ace1db39
OS
7726#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7727static void pgdat_init_split_queue(struct pglist_data *pgdat)
7728{
364c1eeb
YS
7729 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7730
7731 spin_lock_init(&ds_queue->split_queue_lock);
7732 INIT_LIST_HEAD(&ds_queue->split_queue);
7733 ds_queue->split_queue_len = 0;
ace1db39
OS
7734}
7735#else
7736static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7737#endif
7738
7739#ifdef CONFIG_COMPACTION
7740static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7741{
7742 init_waitqueue_head(&pgdat->kcompactd_wait);
7743}
7744#else
7745static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7746#endif
7747
03e85f9d 7748static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7749{
8cd7c588
MG
7750 int i;
7751
208d54e5 7752 pgdat_resize_init(pgdat);
b4a0215e 7753 pgdat_kswapd_lock_init(pgdat);
ace1db39 7754
ace1db39
OS
7755 pgdat_init_split_queue(pgdat);
7756 pgdat_init_kcompactd(pgdat);
7757
1da177e4 7758 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7759 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7760
8cd7c588
MG
7761 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7762 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7763
eefa864b 7764 pgdat_page_ext_init(pgdat);
867e5e1d 7765 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7766}
7767
7768static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7769 unsigned long remaining_pages)
7770{
9705bea5 7771 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7772 zone_set_nid(zone, nid);
7773 zone->name = zone_names[idx];
7774 zone->zone_pgdat = NODE_DATA(nid);
7775 spin_lock_init(&zone->lock);
7776 zone_seqlock_init(zone);
7777 zone_pcp_init(zone);
7778}
7779
7780/*
7781 * Set up the zone data structures
7782 * - init pgdat internals
7783 * - init all zones belonging to this node
7784 *
7785 * NOTE: this function is only called during memory hotplug
7786 */
7787#ifdef CONFIG_MEMORY_HOTPLUG
70b5b46a 7788void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
03e85f9d 7789{
70b5b46a 7790 int nid = pgdat->node_id;
03e85f9d 7791 enum zone_type z;
70b5b46a 7792 int cpu;
03e85f9d
OS
7793
7794 pgdat_init_internals(pgdat);
70b5b46a
MH
7795
7796 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7797 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7798
7799 /*
7800 * Reset the nr_zones, order and highest_zoneidx before reuse.
7801 * Note that kswapd will init kswapd_highest_zoneidx properly
7802 * when it starts in the near future.
7803 */
7804 pgdat->nr_zones = 0;
7805 pgdat->kswapd_order = 0;
7806 pgdat->kswapd_highest_zoneidx = 0;
7807 pgdat->node_start_pfn = 0;
7808 for_each_online_cpu(cpu) {
7809 struct per_cpu_nodestat *p;
7810
7811 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7812 memset(p, 0, sizeof(*p));
7813 }
7814
03e85f9d
OS
7815 for (z = 0; z < MAX_NR_ZONES; z++)
7816 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7817}
7818#endif
7819
7820/*
7821 * Set up the zone data structures:
7822 * - mark all pages reserved
7823 * - mark all memory queues empty
7824 * - clear the memory bitmaps
7825 *
7826 * NOTE: pgdat should get zeroed by caller.
7827 * NOTE: this function is only called during early init.
7828 */
7829static void __init free_area_init_core(struct pglist_data *pgdat)
7830{
7831 enum zone_type j;
7832 int nid = pgdat->node_id;
5f63b720 7833
03e85f9d 7834 pgdat_init_internals(pgdat);
385386cf
JW
7835 pgdat->per_cpu_nodestats = &boot_nodestats;
7836
1da177e4
LT
7837 for (j = 0; j < MAX_NR_ZONES; j++) {
7838 struct zone *zone = pgdat->node_zones + j;
e6943859 7839 unsigned long size, freesize, memmap_pages;
1da177e4 7840
febd5949 7841 size = zone->spanned_pages;
e6943859 7842 freesize = zone->present_pages;
1da177e4 7843
0e0b864e 7844 /*
9feedc9d 7845 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7846 * is used by this zone for memmap. This affects the watermark
7847 * and per-cpu initialisations
7848 */
e6943859 7849 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7850 if (!is_highmem_idx(j)) {
7851 if (freesize >= memmap_pages) {
7852 freesize -= memmap_pages;
7853 if (memmap_pages)
9660ecaa
HK
7854 pr_debug(" %s zone: %lu pages used for memmap\n",
7855 zone_names[j], memmap_pages);
ba914f48 7856 } else
e47aa905 7857 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7858 zone_names[j], memmap_pages, freesize);
7859 }
0e0b864e 7860
6267276f 7861 /* Account for reserved pages */
9feedc9d
JL
7862 if (j == 0 && freesize > dma_reserve) {
7863 freesize -= dma_reserve;
9660ecaa 7864 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7865 }
7866
98d2b0eb 7867 if (!is_highmem_idx(j))
9feedc9d 7868 nr_kernel_pages += freesize;
01cefaef
JL
7869 /* Charge for highmem memmap if there are enough kernel pages */
7870 else if (nr_kernel_pages > memmap_pages * 2)
7871 nr_kernel_pages -= memmap_pages;
9feedc9d 7872 nr_all_pages += freesize;
1da177e4 7873
9feedc9d
JL
7874 /*
7875 * Set an approximate value for lowmem here, it will be adjusted
7876 * when the bootmem allocator frees pages into the buddy system.
7877 * And all highmem pages will be managed by the buddy system.
7878 */
03e85f9d 7879 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7880
d883c6cf 7881 if (!size)
1da177e4
LT
7882 continue;
7883
955c1cd7 7884 set_pageblock_order();
7010a6ec 7885 setup_usemap(zone);
9699ee7b 7886 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7887 }
7888}
7889
43b02ba9 7890#ifdef CONFIG_FLATMEM
3b446da6 7891static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7892{
b0aeba74 7893 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7894 unsigned long __maybe_unused offset = 0;
7895
1da177e4
LT
7896 /* Skip empty nodes */
7897 if (!pgdat->node_spanned_pages)
7898 return;
7899
b0aeba74
TL
7900 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7901 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7902 /* ia64 gets its own node_mem_map, before this, without bootmem */
7903 if (!pgdat->node_mem_map) {
b0aeba74 7904 unsigned long size, end;
d41dee36
AW
7905 struct page *map;
7906
e984bb43
BP
7907 /*
7908 * The zone's endpoints aren't required to be MAX_ORDER
7909 * aligned but the node_mem_map endpoints must be in order
7910 * for the buddy allocator to function correctly.
7911 */
108bcc96 7912 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7913 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7914 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7915 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7916 pgdat->node_id, false);
23a7052a
MR
7917 if (!map)
7918 panic("Failed to allocate %ld bytes for node %d memory map\n",
7919 size, pgdat->node_id);
a1c34a3b 7920 pgdat->node_mem_map = map + offset;
1da177e4 7921 }
0cd842f9
OS
7922 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7923 __func__, pgdat->node_id, (unsigned long)pgdat,
7924 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7925#ifndef CONFIG_NUMA
1da177e4
LT
7926 /*
7927 * With no DISCONTIG, the global mem_map is just set as node 0's
7928 */
c713216d 7929 if (pgdat == NODE_DATA(0)) {
1da177e4 7930 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7931 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7932 mem_map -= offset;
c713216d 7933 }
1da177e4
LT
7934#endif
7935}
0cd842f9 7936#else
3b446da6 7937static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7938#endif /* CONFIG_FLATMEM */
1da177e4 7939
0188dc98
OS
7940#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7941static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7942{
0188dc98
OS
7943 pgdat->first_deferred_pfn = ULONG_MAX;
7944}
7945#else
7946static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7947#endif
7948
854e8848 7949static void __init free_area_init_node(int nid)
1da177e4 7950{
9109fb7b 7951 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7952 unsigned long start_pfn = 0;
7953 unsigned long end_pfn = 0;
9109fb7b 7954
88fdf75d 7955 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7956 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7957
854e8848 7958 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7959
1da177e4 7960 pgdat->node_id = nid;
854e8848 7961 pgdat->node_start_pfn = start_pfn;
75ef7184 7962 pgdat->per_cpu_nodestats = NULL;
854e8848 7963
7c30daac
MH
7964 if (start_pfn != end_pfn) {
7965 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7966 (u64)start_pfn << PAGE_SHIFT,
7967 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7968 } else {
7969 pr_info("Initmem setup node %d as memoryless\n", nid);
7970 }
7971
854e8848 7972 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7973
7974 alloc_node_mem_map(pgdat);
0188dc98 7975 pgdat_set_deferred_range(pgdat);
1da177e4 7976
7f3eb55b 7977 free_area_init_core(pgdat);
e4dde56c 7978 lru_gen_init_pgdat(pgdat);
1da177e4
LT
7979}
7980
1ca75fa7 7981static void __init free_area_init_memoryless_node(int nid)
3f08a302 7982{
854e8848 7983 free_area_init_node(nid);
3f08a302
MR
7984}
7985
418508c1
MS
7986#if MAX_NUMNODES > 1
7987/*
7988 * Figure out the number of possible node ids.
7989 */
f9872caf 7990void __init setup_nr_node_ids(void)
418508c1 7991{
904a9553 7992 unsigned int highest;
418508c1 7993
904a9553 7994 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7995 nr_node_ids = highest + 1;
7996}
418508c1
MS
7997#endif
7998
1e01979c
TH
7999/**
8000 * node_map_pfn_alignment - determine the maximum internode alignment
8001 *
8002 * This function should be called after node map is populated and sorted.
8003 * It calculates the maximum power of two alignment which can distinguish
8004 * all the nodes.
8005 *
8006 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
8007 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
8008 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
8009 * shifted, 1GiB is enough and this function will indicate so.
8010 *
8011 * This is used to test whether pfn -> nid mapping of the chosen memory
8012 * model has fine enough granularity to avoid incorrect mapping for the
8013 * populated node map.
8014 *
a862f68a 8015 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
8016 * requirement (single node).
8017 */
8018unsigned long __init node_map_pfn_alignment(void)
8019{
8020 unsigned long accl_mask = 0, last_end = 0;
c13291a5 8021 unsigned long start, end, mask;
98fa15f3 8022 int last_nid = NUMA_NO_NODE;
c13291a5 8023 int i, nid;
1e01979c 8024
c13291a5 8025 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
8026 if (!start || last_nid < 0 || last_nid == nid) {
8027 last_nid = nid;
8028 last_end = end;
8029 continue;
8030 }
8031
8032 /*
8033 * Start with a mask granular enough to pin-point to the
8034 * start pfn and tick off bits one-by-one until it becomes
8035 * too coarse to separate the current node from the last.
8036 */
8037 mask = ~((1 << __ffs(start)) - 1);
8038 while (mask && last_end <= (start & (mask << 1)))
8039 mask <<= 1;
8040
8041 /* accumulate all internode masks */
8042 accl_mask |= mask;
8043 }
8044
8045 /* convert mask to number of pages */
8046 return ~accl_mask + 1;
8047}
8048
37b07e41
LS
8049/*
8050 * early_calculate_totalpages()
8051 * Sum pages in active regions for movable zone.
4b0ef1fe 8052 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 8053 */
484f51f8 8054static unsigned long __init early_calculate_totalpages(void)
7e63efef 8055{
7e63efef 8056 unsigned long totalpages = 0;
c13291a5
TH
8057 unsigned long start_pfn, end_pfn;
8058 int i, nid;
8059
8060 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8061 unsigned long pages = end_pfn - start_pfn;
7e63efef 8062
37b07e41
LS
8063 totalpages += pages;
8064 if (pages)
4b0ef1fe 8065 node_set_state(nid, N_MEMORY);
37b07e41 8066 }
b8af2941 8067 return totalpages;
7e63efef
MG
8068}
8069
2a1e274a
MG
8070/*
8071 * Find the PFN the Movable zone begins in each node. Kernel memory
8072 * is spread evenly between nodes as long as the nodes have enough
8073 * memory. When they don't, some nodes will have more kernelcore than
8074 * others
8075 */
b224ef85 8076static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
8077{
8078 int i, nid;
8079 unsigned long usable_startpfn;
8080 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 8081 /* save the state before borrow the nodemask */
4b0ef1fe 8082 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 8083 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 8084 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 8085 struct memblock_region *r;
b2f3eebe
TC
8086
8087 /* Need to find movable_zone earlier when movable_node is specified. */
8088 find_usable_zone_for_movable();
8089
8090 /*
8091 * If movable_node is specified, ignore kernelcore and movablecore
8092 * options.
8093 */
8094 if (movable_node_is_enabled()) {
cc6de168 8095 for_each_mem_region(r) {
136199f0 8096 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
8097 continue;
8098
d622abf7 8099 nid = memblock_get_region_node(r);
b2f3eebe 8100
136199f0 8101 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
8102 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8103 min(usable_startpfn, zone_movable_pfn[nid]) :
8104 usable_startpfn;
8105 }
8106
8107 goto out2;
8108 }
2a1e274a 8109
342332e6
TI
8110 /*
8111 * If kernelcore=mirror is specified, ignore movablecore option
8112 */
8113 if (mirrored_kernelcore) {
8114 bool mem_below_4gb_not_mirrored = false;
8115
cc6de168 8116 for_each_mem_region(r) {
342332e6
TI
8117 if (memblock_is_mirror(r))
8118 continue;
8119
d622abf7 8120 nid = memblock_get_region_node(r);
342332e6
TI
8121
8122 usable_startpfn = memblock_region_memory_base_pfn(r);
8123
aa282a15 8124 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
342332e6
TI
8125 mem_below_4gb_not_mirrored = true;
8126 continue;
8127 }
8128
8129 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8130 min(usable_startpfn, zone_movable_pfn[nid]) :
8131 usable_startpfn;
8132 }
8133
8134 if (mem_below_4gb_not_mirrored)
633bf2fe 8135 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
8136
8137 goto out2;
8138 }
8139
7e63efef 8140 /*
a5c6d650
DR
8141 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8142 * amount of necessary memory.
8143 */
8144 if (required_kernelcore_percent)
8145 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8146 10000UL;
8147 if (required_movablecore_percent)
8148 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8149 10000UL;
8150
8151 /*
8152 * If movablecore= was specified, calculate what size of
7e63efef
MG
8153 * kernelcore that corresponds so that memory usable for
8154 * any allocation type is evenly spread. If both kernelcore
8155 * and movablecore are specified, then the value of kernelcore
8156 * will be used for required_kernelcore if it's greater than
8157 * what movablecore would have allowed.
8158 */
8159 if (required_movablecore) {
7e63efef
MG
8160 unsigned long corepages;
8161
8162 /*
8163 * Round-up so that ZONE_MOVABLE is at least as large as what
8164 * was requested by the user
8165 */
8166 required_movablecore =
8167 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 8168 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
8169 corepages = totalpages - required_movablecore;
8170
8171 required_kernelcore = max(required_kernelcore, corepages);
8172 }
8173
bde304bd
XQ
8174 /*
8175 * If kernelcore was not specified or kernelcore size is larger
8176 * than totalpages, there is no ZONE_MOVABLE.
8177 */
8178 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 8179 goto out;
2a1e274a
MG
8180
8181 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
8182 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8183
8184restart:
8185 /* Spread kernelcore memory as evenly as possible throughout nodes */
8186 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 8187 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
8188 unsigned long start_pfn, end_pfn;
8189
2a1e274a
MG
8190 /*
8191 * Recalculate kernelcore_node if the division per node
8192 * now exceeds what is necessary to satisfy the requested
8193 * amount of memory for the kernel
8194 */
8195 if (required_kernelcore < kernelcore_node)
8196 kernelcore_node = required_kernelcore / usable_nodes;
8197
8198 /*
8199 * As the map is walked, we track how much memory is usable
8200 * by the kernel using kernelcore_remaining. When it is
8201 * 0, the rest of the node is usable by ZONE_MOVABLE
8202 */
8203 kernelcore_remaining = kernelcore_node;
8204
8205 /* Go through each range of PFNs within this node */
c13291a5 8206 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
8207 unsigned long size_pages;
8208
c13291a5 8209 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
8210 if (start_pfn >= end_pfn)
8211 continue;
8212
8213 /* Account for what is only usable for kernelcore */
8214 if (start_pfn < usable_startpfn) {
8215 unsigned long kernel_pages;
8216 kernel_pages = min(end_pfn, usable_startpfn)
8217 - start_pfn;
8218
8219 kernelcore_remaining -= min(kernel_pages,
8220 kernelcore_remaining);
8221 required_kernelcore -= min(kernel_pages,
8222 required_kernelcore);
8223
8224 /* Continue if range is now fully accounted */
8225 if (end_pfn <= usable_startpfn) {
8226
8227 /*
8228 * Push zone_movable_pfn to the end so
8229 * that if we have to rebalance
8230 * kernelcore across nodes, we will
8231 * not double account here
8232 */
8233 zone_movable_pfn[nid] = end_pfn;
8234 continue;
8235 }
8236 start_pfn = usable_startpfn;
8237 }
8238
8239 /*
8240 * The usable PFN range for ZONE_MOVABLE is from
8241 * start_pfn->end_pfn. Calculate size_pages as the
8242 * number of pages used as kernelcore
8243 */
8244 size_pages = end_pfn - start_pfn;
8245 if (size_pages > kernelcore_remaining)
8246 size_pages = kernelcore_remaining;
8247 zone_movable_pfn[nid] = start_pfn + size_pages;
8248
8249 /*
8250 * Some kernelcore has been met, update counts and
8251 * break if the kernelcore for this node has been
b8af2941 8252 * satisfied
2a1e274a
MG
8253 */
8254 required_kernelcore -= min(required_kernelcore,
8255 size_pages);
8256 kernelcore_remaining -= size_pages;
8257 if (!kernelcore_remaining)
8258 break;
8259 }
8260 }
8261
8262 /*
8263 * If there is still required_kernelcore, we do another pass with one
8264 * less node in the count. This will push zone_movable_pfn[nid] further
8265 * along on the nodes that still have memory until kernelcore is
b8af2941 8266 * satisfied
2a1e274a
MG
8267 */
8268 usable_nodes--;
8269 if (usable_nodes && required_kernelcore > usable_nodes)
8270 goto restart;
8271
b2f3eebe 8272out2:
2a1e274a 8273 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
ddbc84f3
AP
8274 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8275 unsigned long start_pfn, end_pfn;
8276
2a1e274a
MG
8277 zone_movable_pfn[nid] =
8278 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 8279
ddbc84f3
AP
8280 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8281 if (zone_movable_pfn[nid] >= end_pfn)
8282 zone_movable_pfn[nid] = 0;
8283 }
8284
20e6926d 8285out:
66918dcd 8286 /* restore the node_state */
4b0ef1fe 8287 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
8288}
8289
4b0ef1fe
LJ
8290/* Any regular or high memory on that node ? */
8291static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 8292{
37b07e41
LS
8293 enum zone_type zone_type;
8294
4b0ef1fe 8295 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 8296 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 8297 if (populated_zone(zone)) {
7b0e0c0e
OS
8298 if (IS_ENABLED(CONFIG_HIGHMEM))
8299 node_set_state(nid, N_HIGH_MEMORY);
8300 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 8301 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
8302 break;
8303 }
37b07e41 8304 }
37b07e41
LS
8305}
8306
51930df5 8307/*
f0953a1b 8308 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
8309 * such cases we allow max_zone_pfn sorted in the descending order
8310 */
8311bool __weak arch_has_descending_max_zone_pfns(void)
8312{
8313 return false;
8314}
8315
c713216d 8316/**
9691a071 8317 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 8318 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
8319 *
8320 * This will call free_area_init_node() for each active node in the system.
7d018176 8321 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
8322 * zone in each node and their holes is calculated. If the maximum PFN
8323 * between two adjacent zones match, it is assumed that the zone is empty.
8324 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8325 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8326 * starts where the previous one ended. For example, ZONE_DMA32 starts
8327 * at arch_max_dma_pfn.
8328 */
9691a071 8329void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 8330{
c13291a5 8331 unsigned long start_pfn, end_pfn;
51930df5
MR
8332 int i, nid, zone;
8333 bool descending;
a6af2bc3 8334
c713216d
MG
8335 /* Record where the zone boundaries are */
8336 memset(arch_zone_lowest_possible_pfn, 0,
8337 sizeof(arch_zone_lowest_possible_pfn));
8338 memset(arch_zone_highest_possible_pfn, 0,
8339 sizeof(arch_zone_highest_possible_pfn));
90cae1fe 8340
fb70c487 8341 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
51930df5 8342 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
8343
8344 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
8345 if (descending)
8346 zone = MAX_NR_ZONES - i - 1;
8347 else
8348 zone = i;
8349
8350 if (zone == ZONE_MOVABLE)
2a1e274a 8351 continue;
90cae1fe 8352
51930df5
MR
8353 end_pfn = max(max_zone_pfn[zone], start_pfn);
8354 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8355 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
8356
8357 start_pfn = end_pfn;
c713216d 8358 }
2a1e274a
MG
8359
8360 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8361 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 8362 find_zone_movable_pfns_for_nodes();
c713216d 8363
c713216d 8364 /* Print out the zone ranges */
f88dfff5 8365 pr_info("Zone ranges:\n");
2a1e274a
MG
8366 for (i = 0; i < MAX_NR_ZONES; i++) {
8367 if (i == ZONE_MOVABLE)
8368 continue;
f88dfff5 8369 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
8370 if (arch_zone_lowest_possible_pfn[i] ==
8371 arch_zone_highest_possible_pfn[i])
f88dfff5 8372 pr_cont("empty\n");
72f0ba02 8373 else
8d29e18a
JG
8374 pr_cont("[mem %#018Lx-%#018Lx]\n",
8375 (u64)arch_zone_lowest_possible_pfn[i]
8376 << PAGE_SHIFT,
8377 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 8378 << PAGE_SHIFT) - 1);
2a1e274a
MG
8379 }
8380
8381 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 8382 pr_info("Movable zone start for each node\n");
2a1e274a
MG
8383 for (i = 0; i < MAX_NUMNODES; i++) {
8384 if (zone_movable_pfn[i])
8d29e18a
JG
8385 pr_info(" Node %d: %#018Lx\n", i,
8386 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 8387 }
c713216d 8388
f46edbd1
DW
8389 /*
8390 * Print out the early node map, and initialize the
8391 * subsection-map relative to active online memory ranges to
8392 * enable future "sub-section" extensions of the memory map.
8393 */
f88dfff5 8394 pr_info("Early memory node ranges\n");
f46edbd1 8395 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8396 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8397 (u64)start_pfn << PAGE_SHIFT,
8398 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8399 subsection_map_init(start_pfn, end_pfn - start_pfn);
8400 }
c713216d
MG
8401
8402 /* Initialise every node */
708614e6 8403 mminit_verify_pageflags_layout();
8ef82866 8404 setup_nr_node_ids();
09f49dca
MH
8405 for_each_node(nid) {
8406 pg_data_t *pgdat;
8407
8408 if (!node_online(nid)) {
8409 pr_info("Initializing node %d as memoryless\n", nid);
8410
8411 /* Allocator not initialized yet */
8412 pgdat = arch_alloc_nodedata(nid);
8413 if (!pgdat) {
8414 pr_err("Cannot allocate %zuB for node %d.\n",
8415 sizeof(*pgdat), nid);
8416 continue;
8417 }
8418 arch_refresh_nodedata(nid, pgdat);
8419 free_area_init_memoryless_node(nid);
8420
8421 /*
8422 * We do not want to confuse userspace by sysfs
8423 * files/directories for node without any memory
8424 * attached to it, so this node is not marked as
8425 * N_MEMORY and not marked online so that no sysfs
8426 * hierarchy will be created via register_one_node for
8427 * it. The pgdat will get fully initialized by
8428 * hotadd_init_pgdat() when memory is hotplugged into
8429 * this node.
8430 */
8431 continue;
8432 }
8433
8434 pgdat = NODE_DATA(nid);
854e8848 8435 free_area_init_node(nid);
37b07e41
LS
8436
8437 /* Any memory on that node */
8438 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8439 node_set_state(nid, N_MEMORY);
8440 check_for_memory(pgdat, nid);
c713216d 8441 }
122e093c
MR
8442
8443 memmap_init();
c713216d 8444}
2a1e274a 8445
a5c6d650
DR
8446static int __init cmdline_parse_core(char *p, unsigned long *core,
8447 unsigned long *percent)
2a1e274a
MG
8448{
8449 unsigned long long coremem;
a5c6d650
DR
8450 char *endptr;
8451
2a1e274a
MG
8452 if (!p)
8453 return -EINVAL;
8454
a5c6d650
DR
8455 /* Value may be a percentage of total memory, otherwise bytes */
8456 coremem = simple_strtoull(p, &endptr, 0);
8457 if (*endptr == '%') {
8458 /* Paranoid check for percent values greater than 100 */
8459 WARN_ON(coremem > 100);
2a1e274a 8460
a5c6d650
DR
8461 *percent = coremem;
8462 } else {
8463 coremem = memparse(p, &p);
8464 /* Paranoid check that UL is enough for the coremem value */
8465 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8466
a5c6d650
DR
8467 *core = coremem >> PAGE_SHIFT;
8468 *percent = 0UL;
8469 }
2a1e274a
MG
8470 return 0;
8471}
ed7ed365 8472
7e63efef
MG
8473/*
8474 * kernelcore=size sets the amount of memory for use for allocations that
8475 * cannot be reclaimed or migrated.
8476 */
8477static int __init cmdline_parse_kernelcore(char *p)
8478{
342332e6
TI
8479 /* parse kernelcore=mirror */
8480 if (parse_option_str(p, "mirror")) {
8481 mirrored_kernelcore = true;
8482 return 0;
8483 }
8484
a5c6d650
DR
8485 return cmdline_parse_core(p, &required_kernelcore,
8486 &required_kernelcore_percent);
7e63efef
MG
8487}
8488
8489/*
8490 * movablecore=size sets the amount of memory for use for allocations that
8491 * can be reclaimed or migrated.
8492 */
8493static int __init cmdline_parse_movablecore(char *p)
8494{
a5c6d650
DR
8495 return cmdline_parse_core(p, &required_movablecore,
8496 &required_movablecore_percent);
7e63efef
MG
8497}
8498
ed7ed365 8499early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8500early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8501
c3d5f5f0
JL
8502void adjust_managed_page_count(struct page *page, long count)
8503{
9705bea5 8504 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8505 totalram_pages_add(count);
3dcc0571
JL
8506#ifdef CONFIG_HIGHMEM
8507 if (PageHighMem(page))
ca79b0c2 8508 totalhigh_pages_add(count);
3dcc0571 8509#endif
c3d5f5f0 8510}
3dcc0571 8511EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8512
e5cb113f 8513unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8514{
11199692
JL
8515 void *pos;
8516 unsigned long pages = 0;
69afade7 8517
11199692
JL
8518 start = (void *)PAGE_ALIGN((unsigned long)start);
8519 end = (void *)((unsigned long)end & PAGE_MASK);
8520 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8521 struct page *page = virt_to_page(pos);
8522 void *direct_map_addr;
8523
8524 /*
8525 * 'direct_map_addr' might be different from 'pos'
8526 * because some architectures' virt_to_page()
8527 * work with aliases. Getting the direct map
8528 * address ensures that we get a _writeable_
8529 * alias for the memset().
8530 */
8531 direct_map_addr = page_address(page);
c746170d
VF
8532 /*
8533 * Perform a kasan-unchecked memset() since this memory
8534 * has not been initialized.
8535 */
8536 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8537 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8538 memset(direct_map_addr, poison, PAGE_SIZE);
8539
8540 free_reserved_page(page);
69afade7
JL
8541 }
8542
8543 if (pages && s)
ff7ed9e4 8544 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
8545
8546 return pages;
8547}
8548
1f9d03c5 8549void __init mem_init_print_info(void)
7ee3d4e8
JL
8550{
8551 unsigned long physpages, codesize, datasize, rosize, bss_size;
8552 unsigned long init_code_size, init_data_size;
8553
8554 physpages = get_num_physpages();
8555 codesize = _etext - _stext;
8556 datasize = _edata - _sdata;
8557 rosize = __end_rodata - __start_rodata;
8558 bss_size = __bss_stop - __bss_start;
8559 init_data_size = __init_end - __init_begin;
8560 init_code_size = _einittext - _sinittext;
8561
8562 /*
8563 * Detect special cases and adjust section sizes accordingly:
8564 * 1) .init.* may be embedded into .data sections
8565 * 2) .init.text.* may be out of [__init_begin, __init_end],
8566 * please refer to arch/tile/kernel/vmlinux.lds.S.
8567 * 3) .rodata.* may be embedded into .text or .data sections.
8568 */
8569#define adj_init_size(start, end, size, pos, adj) \
b8af2941 8570 do { \
ca831f29 8571 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
b8af2941
PK
8572 size -= adj; \
8573 } while (0)
7ee3d4e8
JL
8574
8575 adj_init_size(__init_begin, __init_end, init_data_size,
8576 _sinittext, init_code_size);
8577 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8578 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8579 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8580 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8581
8582#undef adj_init_size
8583
756a025f 8584 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8585#ifdef CONFIG_HIGHMEM
756a025f 8586 ", %luK highmem"
7ee3d4e8 8587#endif
1f9d03c5 8588 ")\n",
ff7ed9e4 8589 K(nr_free_pages()), K(physpages),
c940e020
ML
8590 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8591 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
ff7ed9e4
ML
8592 K(physpages - totalram_pages() - totalcma_pages),
8593 K(totalcma_pages)
7ee3d4e8 8594#ifdef CONFIG_HIGHMEM
ff7ed9e4 8595 , K(totalhigh_pages())
7ee3d4e8 8596#endif
1f9d03c5 8597 );
7ee3d4e8
JL
8598}
8599
0e0b864e 8600/**
88ca3b94
RD
8601 * set_dma_reserve - set the specified number of pages reserved in the first zone
8602 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8603 *
013110a7 8604 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8605 * In the DMA zone, a significant percentage may be consumed by kernel image
8606 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8607 * function may optionally be used to account for unfreeable pages in the
8608 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8609 * smaller per-cpu batchsize.
0e0b864e
MG
8610 */
8611void __init set_dma_reserve(unsigned long new_dma_reserve)
8612{
8613 dma_reserve = new_dma_reserve;
8614}
8615
005fd4bb 8616static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8617{
04f8cfea 8618 struct zone *zone;
1da177e4 8619
005fd4bb 8620 lru_add_drain_cpu(cpu);
96f97c43 8621 mlock_drain_remote(cpu);
005fd4bb 8622 drain_pages(cpu);
9f8f2172 8623
005fd4bb
SAS
8624 /*
8625 * Spill the event counters of the dead processor
8626 * into the current processors event counters.
8627 * This artificially elevates the count of the current
8628 * processor.
8629 */
8630 vm_events_fold_cpu(cpu);
9f8f2172 8631
005fd4bb
SAS
8632 /*
8633 * Zero the differential counters of the dead processor
8634 * so that the vm statistics are consistent.
8635 *
8636 * This is only okay since the processor is dead and cannot
8637 * race with what we are doing.
8638 */
8639 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8640
8641 for_each_populated_zone(zone)
8642 zone_pcp_update(zone, 0);
8643
8644 return 0;
8645}
8646
8647static int page_alloc_cpu_online(unsigned int cpu)
8648{
8649 struct zone *zone;
8650
8651 for_each_populated_zone(zone)
8652 zone_pcp_update(zone, 1);
005fd4bb 8653 return 0;
1da177e4 8654}
1da177e4 8655
e03a5125
NP
8656#ifdef CONFIG_NUMA
8657int hashdist = HASHDIST_DEFAULT;
8658
8659static int __init set_hashdist(char *str)
8660{
8661 if (!str)
8662 return 0;
8663 hashdist = simple_strtoul(str, &str, 0);
8664 return 1;
8665}
8666__setup("hashdist=", set_hashdist);
8667#endif
8668
1da177e4
LT
8669void __init page_alloc_init(void)
8670{
005fd4bb
SAS
8671 int ret;
8672
e03a5125
NP
8673#ifdef CONFIG_NUMA
8674 if (num_node_state(N_MEMORY) == 1)
8675 hashdist = 0;
8676#endif
8677
04f8cfea
MG
8678 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8679 "mm/page_alloc:pcp",
8680 page_alloc_cpu_online,
005fd4bb
SAS
8681 page_alloc_cpu_dead);
8682 WARN_ON(ret < 0);
1da177e4
LT
8683}
8684
cb45b0e9 8685/*
34b10060 8686 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8687 * or min_free_kbytes changes.
8688 */
8689static void calculate_totalreserve_pages(void)
8690{
8691 struct pglist_data *pgdat;
8692 unsigned long reserve_pages = 0;
2f6726e5 8693 enum zone_type i, j;
cb45b0e9
HA
8694
8695 for_each_online_pgdat(pgdat) {
281e3726
MG
8696
8697 pgdat->totalreserve_pages = 0;
8698
cb45b0e9
HA
8699 for (i = 0; i < MAX_NR_ZONES; i++) {
8700 struct zone *zone = pgdat->node_zones + i;
3484b2de 8701 long max = 0;
9705bea5 8702 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8703
8704 /* Find valid and maximum lowmem_reserve in the zone */
8705 for (j = i; j < MAX_NR_ZONES; j++) {
8706 if (zone->lowmem_reserve[j] > max)
8707 max = zone->lowmem_reserve[j];
8708 }
8709
41858966
MG
8710 /* we treat the high watermark as reserved pages. */
8711 max += high_wmark_pages(zone);
cb45b0e9 8712
3d6357de
AK
8713 if (max > managed_pages)
8714 max = managed_pages;
a8d01437 8715
281e3726 8716 pgdat->totalreserve_pages += max;
a8d01437 8717
cb45b0e9
HA
8718 reserve_pages += max;
8719 }
8720 }
8721 totalreserve_pages = reserve_pages;
8722}
8723
1da177e4
LT
8724/*
8725 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8726 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8727 * has a correct pages reserved value, so an adequate number of
8728 * pages are left in the zone after a successful __alloc_pages().
8729 */
8730static void setup_per_zone_lowmem_reserve(void)
8731{
8732 struct pglist_data *pgdat;
470c61d7 8733 enum zone_type i, j;
1da177e4 8734
ec936fc5 8735 for_each_online_pgdat(pgdat) {
470c61d7
LS
8736 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8737 struct zone *zone = &pgdat->node_zones[i];
8738 int ratio = sysctl_lowmem_reserve_ratio[i];
8739 bool clear = !ratio || !zone_managed_pages(zone);
8740 unsigned long managed_pages = 0;
8741
8742 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8743 struct zone *upper_zone = &pgdat->node_zones[j];
8744
8745 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8746
f7ec1044
LS
8747 if (clear)
8748 zone->lowmem_reserve[j] = 0;
8749 else
470c61d7 8750 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8751 }
8752 }
8753 }
cb45b0e9
HA
8754
8755 /* update totalreserve_pages */
8756 calculate_totalreserve_pages();
1da177e4
LT
8757}
8758
cfd3da1e 8759static void __setup_per_zone_wmarks(void)
1da177e4
LT
8760{
8761 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8762 unsigned long lowmem_pages = 0;
8763 struct zone *zone;
8764 unsigned long flags;
8765
8766 /* Calculate total number of !ZONE_HIGHMEM pages */
8767 for_each_zone(zone) {
8768 if (!is_highmem(zone))
9705bea5 8769 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8770 }
8771
8772 for_each_zone(zone) {
ac924c60
AM
8773 u64 tmp;
8774
1125b4e3 8775 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8776 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8777 do_div(tmp, lowmem_pages);
1da177e4
LT
8778 if (is_highmem(zone)) {
8779 /*
669ed175
NP
8780 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8781 * need highmem pages, so cap pages_min to a small
8782 * value here.
8783 *
41858966 8784 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8785 * deltas control async page reclaim, and so should
669ed175 8786 * not be capped for highmem.
1da177e4 8787 */
90ae8d67 8788 unsigned long min_pages;
1da177e4 8789
9705bea5 8790 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8791 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8792 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8793 } else {
669ed175
NP
8794 /*
8795 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8796 * proportionate to the zone's size.
8797 */
a9214443 8798 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8799 }
8800
795ae7a0
JW
8801 /*
8802 * Set the kswapd watermarks distance according to the
8803 * scale factor in proportion to available memory, but
8804 * ensure a minimum size on small systems.
8805 */
8806 tmp = max_t(u64, tmp >> 2,
9705bea5 8807 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8808 watermark_scale_factor, 10000));
8809
aa092591 8810 zone->watermark_boost = 0;
a9214443 8811 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
HY
8812 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8813 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 8814
1125b4e3 8815 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8816 }
cb45b0e9
HA
8817
8818 /* update totalreserve_pages */
8819 calculate_totalreserve_pages();
1da177e4
LT
8820}
8821
cfd3da1e
MG
8822/**
8823 * setup_per_zone_wmarks - called when min_free_kbytes changes
8824 * or when memory is hot-{added|removed}
8825 *
8826 * Ensures that the watermark[min,low,high] values for each zone are set
8827 * correctly with respect to min_free_kbytes.
8828 */
8829void setup_per_zone_wmarks(void)
8830{
b92ca18e 8831 struct zone *zone;
b93e0f32
MH
8832 static DEFINE_SPINLOCK(lock);
8833
8834 spin_lock(&lock);
cfd3da1e 8835 __setup_per_zone_wmarks();
b93e0f32 8836 spin_unlock(&lock);
b92ca18e
MG
8837
8838 /*
8839 * The watermark size have changed so update the pcpu batch
8840 * and high limits or the limits may be inappropriate.
8841 */
8842 for_each_zone(zone)
04f8cfea 8843 zone_pcp_update(zone, 0);
cfd3da1e
MG
8844}
8845
1da177e4
LT
8846/*
8847 * Initialise min_free_kbytes.
8848 *
8849 * For small machines we want it small (128k min). For large machines
8beeae86 8850 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8851 * bandwidth does not increase linearly with machine size. We use
8852 *
b8af2941 8853 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8854 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8855 *
8856 * which yields
8857 *
8858 * 16MB: 512k
8859 * 32MB: 724k
8860 * 64MB: 1024k
8861 * 128MB: 1448k
8862 * 256MB: 2048k
8863 * 512MB: 2896k
8864 * 1024MB: 4096k
8865 * 2048MB: 5792k
8866 * 4096MB: 8192k
8867 * 8192MB: 11584k
8868 * 16384MB: 16384k
8869 */
bd3400ea 8870void calculate_min_free_kbytes(void)
1da177e4
LT
8871{
8872 unsigned long lowmem_kbytes;
5f12733e 8873 int new_min_free_kbytes;
1da177e4
LT
8874
8875 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8876 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8877
59d336bd
WS
8878 if (new_min_free_kbytes > user_min_free_kbytes)
8879 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8880 else
5f12733e
MH
8881 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8882 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 8883
bd3400ea
LF
8884}
8885
8886int __meminit init_per_zone_wmark_min(void)
8887{
8888 calculate_min_free_kbytes();
bc75d33f 8889 setup_per_zone_wmarks();
a6cccdc3 8890 refresh_zone_stat_thresholds();
1da177e4 8891 setup_per_zone_lowmem_reserve();
6423aa81
JK
8892
8893#ifdef CONFIG_NUMA
8894 setup_min_unmapped_ratio();
8895 setup_min_slab_ratio();
8896#endif
8897
4aab2be0
VB
8898 khugepaged_min_free_kbytes_update();
8899
1da177e4
LT
8900 return 0;
8901}
e08d3fdf 8902postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8903
8904/*
b8af2941 8905 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8906 * that we can call two helper functions whenever min_free_kbytes
8907 * changes.
8908 */
cccad5b9 8909int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8910 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8911{
da8c757b
HP
8912 int rc;
8913
8914 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8915 if (rc)
8916 return rc;
8917
5f12733e
MH
8918 if (write) {
8919 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8920 setup_per_zone_wmarks();
5f12733e 8921 }
1da177e4
LT
8922 return 0;
8923}
8924
795ae7a0 8925int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8926 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8927{
8928 int rc;
8929
8930 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8931 if (rc)
8932 return rc;
8933
8934 if (write)
8935 setup_per_zone_wmarks();
8936
8937 return 0;
8938}
8939
9614634f 8940#ifdef CONFIG_NUMA
6423aa81 8941static void setup_min_unmapped_ratio(void)
9614634f 8942{
6423aa81 8943 pg_data_t *pgdat;
9614634f 8944 struct zone *zone;
9614634f 8945
a5f5f91d 8946 for_each_online_pgdat(pgdat)
81cbcbc2 8947 pgdat->min_unmapped_pages = 0;
a5f5f91d 8948
9614634f 8949 for_each_zone(zone)
9705bea5
AK
8950 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8951 sysctl_min_unmapped_ratio) / 100;
9614634f 8952}
0ff38490 8953
6423aa81
JK
8954
8955int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8956 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8957{
0ff38490
CL
8958 int rc;
8959
8d65af78 8960 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8961 if (rc)
8962 return rc;
8963
6423aa81
JK
8964 setup_min_unmapped_ratio();
8965
8966 return 0;
8967}
8968
8969static void setup_min_slab_ratio(void)
8970{
8971 pg_data_t *pgdat;
8972 struct zone *zone;
8973
a5f5f91d
MG
8974 for_each_online_pgdat(pgdat)
8975 pgdat->min_slab_pages = 0;
8976
0ff38490 8977 for_each_zone(zone)
9705bea5
AK
8978 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8979 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8980}
8981
8982int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8983 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8984{
8985 int rc;
8986
8987 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8988 if (rc)
8989 return rc;
8990
8991 setup_min_slab_ratio();
8992
0ff38490
CL
8993 return 0;
8994}
9614634f
CL
8995#endif
8996
1da177e4
LT
8997/*
8998 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8999 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
9000 * whenever sysctl_lowmem_reserve_ratio changes.
9001 *
9002 * The reserve ratio obviously has absolutely no relation with the
41858966 9003 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
9004 * if in function of the boot time zone sizes.
9005 */
cccad5b9 9006int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 9007 void *buffer, size_t *length, loff_t *ppos)
1da177e4 9008{
86aaf255
BH
9009 int i;
9010
8d65af78 9011 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
9012
9013 for (i = 0; i < MAX_NR_ZONES; i++) {
9014 if (sysctl_lowmem_reserve_ratio[i] < 1)
9015 sysctl_lowmem_reserve_ratio[i] = 0;
9016 }
9017
1da177e4
LT
9018 setup_per_zone_lowmem_reserve();
9019 return 0;
9020}
9021
8ad4b1fb 9022/*
74f44822
MG
9023 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
9024 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 9025 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 9026 */
74f44822
MG
9027int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
9028 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
9029{
9030 struct zone *zone;
74f44822 9031 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
9032 int ret;
9033
7cd2b0a3 9034 mutex_lock(&pcp_batch_high_lock);
74f44822 9035 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 9036
8d65af78 9037 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
9038 if (!write || ret < 0)
9039 goto out;
9040
9041 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
9042 if (percpu_pagelist_high_fraction &&
9043 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9044 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
9045 ret = -EINVAL;
9046 goto out;
9047 }
9048
9049 /* No change? */
74f44822 9050 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 9051 goto out;
c8e251fa 9052
cb1ef534 9053 for_each_populated_zone(zone)
74f44822 9054 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 9055out:
c8e251fa 9056 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 9057 return ret;
8ad4b1fb
RS
9058}
9059
f6f34b43
SD
9060#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9061/*
9062 * Returns the number of pages that arch has reserved but
9063 * is not known to alloc_large_system_hash().
9064 */
9065static unsigned long __init arch_reserved_kernel_pages(void)
9066{
9067 return 0;
9068}
9069#endif
9070
9017217b
PT
9071/*
9072 * Adaptive scale is meant to reduce sizes of hash tables on large memory
9073 * machines. As memory size is increased the scale is also increased but at
9074 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
9075 * quadruples the scale is increased by one, which means the size of hash table
9076 * only doubles, instead of quadrupling as well.
9077 * Because 32-bit systems cannot have large physical memory, where this scaling
9078 * makes sense, it is disabled on such platforms.
9079 */
9080#if __BITS_PER_LONG > 32
9081#define ADAPT_SCALE_BASE (64ul << 30)
9082#define ADAPT_SCALE_SHIFT 2
9083#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9084#endif
9085
1da177e4
LT
9086/*
9087 * allocate a large system hash table from bootmem
9088 * - it is assumed that the hash table must contain an exact power-of-2
9089 * quantity of entries
9090 * - limit is the number of hash buckets, not the total allocation size
9091 */
9092void *__init alloc_large_system_hash(const char *tablename,
9093 unsigned long bucketsize,
9094 unsigned long numentries,
9095 int scale,
9096 int flags,
9097 unsigned int *_hash_shift,
9098 unsigned int *_hash_mask,
31fe62b9
TB
9099 unsigned long low_limit,
9100 unsigned long high_limit)
1da177e4 9101{
31fe62b9 9102 unsigned long long max = high_limit;
1da177e4 9103 unsigned long log2qty, size;
97bab178 9104 void *table;
3749a8f0 9105 gfp_t gfp_flags;
ec11408a 9106 bool virt;
121e6f32 9107 bool huge;
1da177e4
LT
9108
9109 /* allow the kernel cmdline to have a say */
9110 if (!numentries) {
9111 /* round applicable memory size up to nearest megabyte */
04903664 9112 numentries = nr_kernel_pages;
f6f34b43 9113 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
9114
9115 /* It isn't necessary when PAGE_SIZE >= 1MB */
c940e020
ML
9116 if (PAGE_SIZE < SZ_1M)
9117 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
1da177e4 9118
9017217b
PT
9119#if __BITS_PER_LONG > 32
9120 if (!high_limit) {
9121 unsigned long adapt;
9122
9123 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9124 adapt <<= ADAPT_SCALE_SHIFT)
9125 scale++;
9126 }
9127#endif
9128
1da177e4
LT
9129 /* limit to 1 bucket per 2^scale bytes of low memory */
9130 if (scale > PAGE_SHIFT)
9131 numentries >>= (scale - PAGE_SHIFT);
9132 else
9133 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
9134
9135 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
9136 if (unlikely(flags & HASH_SMALL)) {
9137 /* Makes no sense without HASH_EARLY */
9138 WARN_ON(!(flags & HASH_EARLY));
9139 if (!(numentries >> *_hash_shift)) {
9140 numentries = 1UL << *_hash_shift;
9141 BUG_ON(!numentries);
9142 }
9143 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 9144 numentries = PAGE_SIZE / bucketsize;
1da177e4 9145 }
6e692ed3 9146 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
9147
9148 /* limit allocation size to 1/16 total memory by default */
9149 if (max == 0) {
9150 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9151 do_div(max, bucketsize);
9152 }
074b8517 9153 max = min(max, 0x80000000ULL);
1da177e4 9154
31fe62b9
TB
9155 if (numentries < low_limit)
9156 numentries = low_limit;
1da177e4
LT
9157 if (numentries > max)
9158 numentries = max;
9159
f0d1b0b3 9160 log2qty = ilog2(numentries);
1da177e4 9161
3749a8f0 9162 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 9163 do {
ec11408a 9164 virt = false;
1da177e4 9165 size = bucketsize << log2qty;
ea1f5f37
PT
9166 if (flags & HASH_EARLY) {
9167 if (flags & HASH_ZERO)
26fb3dae 9168 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 9169 else
7e1c4e27
MR
9170 table = memblock_alloc_raw(size,
9171 SMP_CACHE_BYTES);
ec11408a 9172 } else if (get_order(size) >= MAX_ORDER || hashdist) {
f2edd118 9173 table = vmalloc_huge(size, gfp_flags);
ec11408a 9174 virt = true;
084f7e23
ED
9175 if (table)
9176 huge = is_vm_area_hugepages(table);
ea1f5f37 9177 } else {
1037b83b
ED
9178 /*
9179 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
9180 * some pages at the end of hash table which
9181 * alloc_pages_exact() automatically does
1037b83b 9182 */
ec11408a
NP
9183 table = alloc_pages_exact(size, gfp_flags);
9184 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
9185 }
9186 } while (!table && size > PAGE_SIZE && --log2qty);
9187
9188 if (!table)
9189 panic("Failed to allocate %s hash table\n", tablename);
9190
ec11408a
NP
9191 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9192 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 9193 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
9194
9195 if (_hash_shift)
9196 *_hash_shift = log2qty;
9197 if (_hash_mask)
9198 *_hash_mask = (1 << log2qty) - 1;
9199
9200 return table;
9201}
a117e66e 9202
8df995f6 9203#ifdef CONFIG_CONTIG_ALLOC
a1394bdd
MK
9204#if defined(CONFIG_DYNAMIC_DEBUG) || \
9205 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9206/* Usage: See admin-guide/dynamic-debug-howto.rst */
9207static void alloc_contig_dump_pages(struct list_head *page_list)
9208{
9209 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9210
9211 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9212 struct page *page;
9213
9214 dump_stack();
9215 list_for_each_entry(page, page_list, lru)
9216 dump_page(page, "migration failure");
9217 }
9218}
9219#else
9220static inline void alloc_contig_dump_pages(struct list_head *page_list)
9221{
9222}
9223#endif
9224
041d3a8c 9225/* [start, end) must belong to a single zone. */
b2c9e2fb 9226int __alloc_contig_migrate_range(struct compact_control *cc,
bb13ffeb 9227 unsigned long start, unsigned long end)
041d3a8c
MN
9228{
9229 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 9230 unsigned int nr_reclaimed;
041d3a8c
MN
9231 unsigned long pfn = start;
9232 unsigned int tries = 0;
9233 int ret = 0;
8b94e0b8
JK
9234 struct migration_target_control mtc = {
9235 .nid = zone_to_nid(cc->zone),
9236 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9237 };
041d3a8c 9238
361a2a22 9239 lru_cache_disable();
041d3a8c 9240
bb13ffeb 9241 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
9242 if (fatal_signal_pending(current)) {
9243 ret = -EINTR;
9244 break;
9245 }
9246
bb13ffeb
MG
9247 if (list_empty(&cc->migratepages)) {
9248 cc->nr_migratepages = 0;
c2ad7a1f
OS
9249 ret = isolate_migratepages_range(cc, pfn, end);
9250 if (ret && ret != -EAGAIN)
041d3a8c 9251 break;
c2ad7a1f 9252 pfn = cc->migrate_pfn;
041d3a8c
MN
9253 tries = 0;
9254 } else if (++tries == 5) {
c8e28b47 9255 ret = -EBUSY;
041d3a8c
MN
9256 break;
9257 }
9258
beb51eaa
MK
9259 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9260 &cc->migratepages);
9261 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 9262
8b94e0b8 9263 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 9264 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
9265
9266 /*
9267 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9268 * to retry again over this error, so do the same here.
9269 */
9270 if (ret == -ENOMEM)
9271 break;
041d3a8c 9272 }
d479960e 9273
361a2a22 9274 lru_cache_enable();
2a6f5124 9275 if (ret < 0) {
3f913fc5 9276 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
151e084a 9277 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
9278 putback_movable_pages(&cc->migratepages);
9279 return ret;
9280 }
9281 return 0;
041d3a8c
MN
9282}
9283
9284/**
9285 * alloc_contig_range() -- tries to allocate given range of pages
9286 * @start: start PFN to allocate
9287 * @end: one-past-the-last PFN to allocate
f0953a1b 9288 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9289 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9290 * in range must have the same migratetype and it must
9291 * be either of the two.
ca96b625 9292 * @gfp_mask: GFP mask to use during compaction
041d3a8c 9293 *
11ac3e87
ZY
9294 * The PFN range does not have to be pageblock aligned. The PFN range must
9295 * belong to a single zone.
041d3a8c 9296 *
2c7452a0
MK
9297 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9298 * pageblocks in the range. Once isolated, the pageblocks should not
9299 * be modified by others.
041d3a8c 9300 *
a862f68a 9301 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9302 * pages which PFN is in [start, end) are allocated for the caller and
9303 * need to be freed with free_contig_range().
9304 */
0815f3d8 9305int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9306 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9307{
041d3a8c 9308 unsigned long outer_start, outer_end;
b2c9e2fb 9309 int order;
d00181b9 9310 int ret = 0;
041d3a8c 9311
bb13ffeb
MG
9312 struct compact_control cc = {
9313 .nr_migratepages = 0,
9314 .order = -1,
9315 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9316 .mode = MIGRATE_SYNC,
bb13ffeb 9317 .ignore_skip_hint = true,
2583d671 9318 .no_set_skip_hint = true,
7dea19f9 9319 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9320 .alloc_contig = true,
bb13ffeb
MG
9321 };
9322 INIT_LIST_HEAD(&cc.migratepages);
9323
041d3a8c
MN
9324 /*
9325 * What we do here is we mark all pageblocks in range as
9326 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9327 * have different sizes, and due to the way page allocator
b2c9e2fb 9328 * work, start_isolate_page_range() has special handlings for this.
041d3a8c
MN
9329 *
9330 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9331 * migrate the pages from an unaligned range (ie. pages that
b2c9e2fb 9332 * we are interested in). This will put all the pages in
041d3a8c
MN
9333 * range back to page allocator as MIGRATE_ISOLATE.
9334 *
9335 * When this is done, we take the pages in range from page
9336 * allocator removing them from the buddy system. This way
9337 * page allocator will never consider using them.
9338 *
9339 * This lets us mark the pageblocks back as
9340 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9341 * aligned range but not in the unaligned, original range are
9342 * put back to page allocator so that buddy can use them.
9343 */
9344
6e263fff 9345 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
3fa0c7c7 9346 if (ret)
b2c9e2fb 9347 goto done;
041d3a8c 9348
7612921f
VB
9349 drain_all_pages(cc.zone);
9350
8ef5849f
JK
9351 /*
9352 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9353 * So, just fall through. test_pages_isolated() has a tracepoint
9354 * which will report the busy page.
9355 *
9356 * It is possible that busy pages could become available before
9357 * the call to test_pages_isolated, and the range will actually be
9358 * allocated. So, if we fall through be sure to clear ret so that
9359 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9360 */
bb13ffeb 9361 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9362 if (ret && ret != -EBUSY)
041d3a8c 9363 goto done;
68d68ff6 9364 ret = 0;
041d3a8c
MN
9365
9366 /*
b2c9e2fb 9367 * Pages from [start, end) are within a pageblock_nr_pages
041d3a8c
MN
9368 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9369 * more, all pages in [start, end) are free in page allocator.
9370 * What we are going to do is to allocate all pages from
9371 * [start, end) (that is remove them from page allocator).
9372 *
9373 * The only problem is that pages at the beginning and at the
9374 * end of interesting range may be not aligned with pages that
9375 * page allocator holds, ie. they can be part of higher order
9376 * pages. Because of this, we reserve the bigger range and
9377 * once this is done free the pages we are not interested in.
9378 *
9379 * We don't have to hold zone->lock here because the pages are
9380 * isolated thus they won't get removed from buddy.
9381 */
9382
041d3a8c
MN
9383 order = 0;
9384 outer_start = start;
9385 while (!PageBuddy(pfn_to_page(outer_start))) {
9386 if (++order >= MAX_ORDER) {
8ef5849f
JK
9387 outer_start = start;
9388 break;
041d3a8c
MN
9389 }
9390 outer_start &= ~0UL << order;
9391 }
9392
8ef5849f 9393 if (outer_start != start) {
ab130f91 9394 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9395
9396 /*
9397 * outer_start page could be small order buddy page and
9398 * it doesn't include start page. Adjust outer_start
9399 * in this case to report failed page properly
9400 * on tracepoint in test_pages_isolated()
9401 */
9402 if (outer_start + (1UL << order) <= start)
9403 outer_start = start;
9404 }
9405
041d3a8c 9406 /* Make sure the range is really isolated. */
756d25be 9407 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9408 ret = -EBUSY;
9409 goto done;
9410 }
9411
49f223a9 9412 /* Grab isolated pages from freelists. */
bb13ffeb 9413 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9414 if (!outer_end) {
9415 ret = -EBUSY;
9416 goto done;
9417 }
9418
9419 /* Free head and tail (if any) */
9420 if (start != outer_start)
9421 free_contig_range(outer_start, start - outer_start);
9422 if (end != outer_end)
9423 free_contig_range(end, outer_end - end);
9424
9425done:
6e263fff 9426 undo_isolate_page_range(start, end, migratetype);
041d3a8c
MN
9427 return ret;
9428}
255f5985 9429EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9430
9431static int __alloc_contig_pages(unsigned long start_pfn,
9432 unsigned long nr_pages, gfp_t gfp_mask)
9433{
9434 unsigned long end_pfn = start_pfn + nr_pages;
9435
9436 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9437 gfp_mask);
9438}
9439
9440static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9441 unsigned long nr_pages)
9442{
9443 unsigned long i, end_pfn = start_pfn + nr_pages;
9444 struct page *page;
9445
9446 for (i = start_pfn; i < end_pfn; i++) {
9447 page = pfn_to_online_page(i);
9448 if (!page)
9449 return false;
9450
9451 if (page_zone(page) != z)
9452 return false;
9453
9454 if (PageReserved(page))
9455 return false;
5e27a2df
AK
9456 }
9457 return true;
9458}
9459
9460static bool zone_spans_last_pfn(const struct zone *zone,
9461 unsigned long start_pfn, unsigned long nr_pages)
9462{
9463 unsigned long last_pfn = start_pfn + nr_pages - 1;
9464
9465 return zone_spans_pfn(zone, last_pfn);
9466}
9467
9468/**
9469 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9470 * @nr_pages: Number of contiguous pages to allocate
9471 * @gfp_mask: GFP mask to limit search and used during compaction
9472 * @nid: Target node
9473 * @nodemask: Mask for other possible nodes
9474 *
9475 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9476 * on an applicable zonelist to find a contiguous pfn range which can then be
9477 * tried for allocation with alloc_contig_range(). This routine is intended
9478 * for allocation requests which can not be fulfilled with the buddy allocator.
9479 *
9480 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
9481 * power of two, then allocated range is also guaranteed to be aligned to same
9482 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
9483 *
9484 * Allocated pages can be freed with free_contig_range() or by manually calling
9485 * __free_page() on each allocated page.
9486 *
9487 * Return: pointer to contiguous pages on success, or NULL if not successful.
9488 */
9489struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9490 int nid, nodemask_t *nodemask)
9491{
9492 unsigned long ret, pfn, flags;
9493 struct zonelist *zonelist;
9494 struct zone *zone;
9495 struct zoneref *z;
9496
9497 zonelist = node_zonelist(nid, gfp_mask);
9498 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9499 gfp_zone(gfp_mask), nodemask) {
9500 spin_lock_irqsave(&zone->lock, flags);
9501
9502 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9503 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9504 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9505 /*
9506 * We release the zone lock here because
9507 * alloc_contig_range() will also lock the zone
9508 * at some point. If there's an allocation
9509 * spinning on this lock, it may win the race
9510 * and cause alloc_contig_range() to fail...
9511 */
9512 spin_unlock_irqrestore(&zone->lock, flags);
9513 ret = __alloc_contig_pages(pfn, nr_pages,
9514 gfp_mask);
9515 if (!ret)
9516 return pfn_to_page(pfn);
9517 spin_lock_irqsave(&zone->lock, flags);
9518 }
9519 pfn += nr_pages;
9520 }
9521 spin_unlock_irqrestore(&zone->lock, flags);
9522 }
9523 return NULL;
9524}
4eb0716e 9525#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9526
78fa5150 9527void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9528{
78fa5150 9529 unsigned long count = 0;
bcc2b02f
MS
9530
9531 for (; nr_pages--; pfn++) {
9532 struct page *page = pfn_to_page(pfn);
9533
9534 count += page_count(page) != 1;
9535 __free_page(page);
9536 }
78fa5150 9537 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9538}
255f5985 9539EXPORT_SYMBOL(free_contig_range);
041d3a8c 9540
ec6e8c7e
VB
9541/*
9542 * Effectively disable pcplists for the zone by setting the high limit to 0
9543 * and draining all cpus. A concurrent page freeing on another CPU that's about
9544 * to put the page on pcplist will either finish before the drain and the page
9545 * will be drained, or observe the new high limit and skip the pcplist.
9546 *
9547 * Must be paired with a call to zone_pcp_enable().
9548 */
9549void zone_pcp_disable(struct zone *zone)
9550{
9551 mutex_lock(&pcp_batch_high_lock);
9552 __zone_set_pageset_high_and_batch(zone, 0, 1);
9553 __drain_all_pages(zone, true);
9554}
9555
9556void zone_pcp_enable(struct zone *zone)
9557{
9558 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9559 mutex_unlock(&pcp_batch_high_lock);
9560}
9561
340175b7
JL
9562void zone_pcp_reset(struct zone *zone)
9563{
5a883813 9564 int cpu;
28f836b6 9565 struct per_cpu_zonestat *pzstats;
340175b7 9566
28f836b6 9567 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9568 for_each_online_cpu(cpu) {
28f836b6
MG
9569 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9570 drain_zonestat(zone, pzstats);
5a883813 9571 }
28f836b6 9572 free_percpu(zone->per_cpu_pageset);
28f836b6 9573 zone->per_cpu_pageset = &boot_pageset;
022e7fa0
ML
9574 if (zone->per_cpu_zonestats != &boot_zonestats) {
9575 free_percpu(zone->per_cpu_zonestats);
9576 zone->per_cpu_zonestats = &boot_zonestats;
9577 }
340175b7 9578 }
340175b7
JL
9579}
9580
6dcd73d7 9581#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9582/*
257bea71
DH
9583 * All pages in the range must be in a single zone, must not contain holes,
9584 * must span full sections, and must be isolated before calling this function.
0c0e6195 9585 */
257bea71 9586void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9587{
257bea71 9588 unsigned long pfn = start_pfn;
0c0e6195
KH
9589 struct page *page;
9590 struct zone *zone;
0ee5f4f3 9591 unsigned int order;
0c0e6195 9592 unsigned long flags;
5557c766 9593
2d070eab 9594 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9595 zone = page_zone(pfn_to_page(pfn));
9596 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9597 while (pfn < end_pfn) {
0c0e6195 9598 page = pfn_to_page(pfn);
b023f468
WC
9599 /*
9600 * The HWPoisoned page may be not in buddy system, and
9601 * page_count() is not 0.
9602 */
9603 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9604 pfn++;
b023f468
WC
9605 continue;
9606 }
aa218795
DH
9607 /*
9608 * At this point all remaining PageOffline() pages have a
9609 * reference count of 0 and can simply be skipped.
9610 */
9611 if (PageOffline(page)) {
9612 BUG_ON(page_count(page));
9613 BUG_ON(PageBuddy(page));
9614 pfn++;
aa218795
DH
9615 continue;
9616 }
b023f468 9617
0c0e6195
KH
9618 BUG_ON(page_count(page));
9619 BUG_ON(!PageBuddy(page));
ab130f91 9620 order = buddy_order(page);
6ab01363 9621 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9622 pfn += (1 << order);
9623 }
9624 spin_unlock_irqrestore(&zone->lock, flags);
9625}
9626#endif
8d22ba1b 9627
8446b59b
ED
9628/*
9629 * This function returns a stable result only if called under zone lock.
9630 */
8d22ba1b
WF
9631bool is_free_buddy_page(struct page *page)
9632{
8d22ba1b 9633 unsigned long pfn = page_to_pfn(page);
7aeb09f9 9634 unsigned int order;
8d22ba1b 9635
8d22ba1b
WF
9636 for (order = 0; order < MAX_ORDER; order++) {
9637 struct page *page_head = page - (pfn & ((1 << order) - 1));
9638
8446b59b
ED
9639 if (PageBuddy(page_head) &&
9640 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
9641 break;
9642 }
8d22ba1b
WF
9643
9644 return order < MAX_ORDER;
9645}
a581865e 9646EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
9647
9648#ifdef CONFIG_MEMORY_FAILURE
9649/*
06be6ff3
OS
9650 * Break down a higher-order page in sub-pages, and keep our target out of
9651 * buddy allocator.
d4ae9916 9652 */
06be6ff3
OS
9653static void break_down_buddy_pages(struct zone *zone, struct page *page,
9654 struct page *target, int low, int high,
9655 int migratetype)
9656{
9657 unsigned long size = 1 << high;
9658 struct page *current_buddy, *next_page;
9659
9660 while (high > low) {
9661 high--;
9662 size >>= 1;
9663
9664 if (target >= &page[size]) {
9665 next_page = page + size;
9666 current_buddy = page;
9667 } else {
9668 next_page = page;
9669 current_buddy = page + size;
9670 }
9671
9672 if (set_page_guard(zone, current_buddy, high, migratetype))
9673 continue;
9674
9675 if (current_buddy != target) {
9676 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9677 set_buddy_order(current_buddy, high);
06be6ff3
OS
9678 page = next_page;
9679 }
9680 }
9681}
9682
9683/*
9684 * Take a page that will be marked as poisoned off the buddy allocator.
9685 */
9686bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9687{
9688 struct zone *zone = page_zone(page);
9689 unsigned long pfn = page_to_pfn(page);
9690 unsigned long flags;
9691 unsigned int order;
06be6ff3 9692 bool ret = false;
d4ae9916
NH
9693
9694 spin_lock_irqsave(&zone->lock, flags);
9695 for (order = 0; order < MAX_ORDER; order++) {
9696 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9697 int page_order = buddy_order(page_head);
d4ae9916 9698
ab130f91 9699 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9700 unsigned long pfn_head = page_to_pfn(page_head);
9701 int migratetype = get_pfnblock_migratetype(page_head,
9702 pfn_head);
9703
ab130f91 9704 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9705 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9706 page_order, migratetype);
bf181c58 9707 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
9708 if (!is_migrate_isolate(migratetype))
9709 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9710 ret = true;
d4ae9916
NH
9711 break;
9712 }
06be6ff3
OS
9713 if (page_count(page_head) > 0)
9714 break;
d4ae9916
NH
9715 }
9716 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9717 return ret;
d4ae9916 9718}
bf181c58
NH
9719
9720/*
9721 * Cancel takeoff done by take_page_off_buddy().
9722 */
9723bool put_page_back_buddy(struct page *page)
9724{
9725 struct zone *zone = page_zone(page);
9726 unsigned long pfn = page_to_pfn(page);
9727 unsigned long flags;
9728 int migratetype = get_pfnblock_migratetype(page, pfn);
9729 bool ret = false;
9730
9731 spin_lock_irqsave(&zone->lock, flags);
9732 if (put_page_testzero(page)) {
9733 ClearPageHWPoisonTakenOff(page);
9734 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9735 if (TestClearPageHWPoison(page)) {
bf181c58
NH
9736 ret = true;
9737 }
9738 }
9739 spin_unlock_irqrestore(&zone->lock, flags);
9740
9741 return ret;
9742}
d4ae9916 9743#endif
62b31070
BH
9744
9745#ifdef CONFIG_ZONE_DMA
9746bool has_managed_dma(void)
9747{
9748 struct pglist_data *pgdat;
9749
9750 for_each_online_pgdat(pgdat) {
9751 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9752
9753 if (managed_zone(zone))
9754 return true;
9755 }
9756 return false;
9757}
9758#endif /* CONFIG_ZONE_DMA */