]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
mm, kfence: support kmem_dump_obj() for KFENCE objects
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/swap.h>
bf181c58 22#include <linux/swapops.h>
1da177e4
LT
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
10ed273f 25#include <linux/jiffies.h>
edbe7d23 26#include <linux/memblock.h>
1da177e4 27#include <linux/compiler.h>
9f158333 28#include <linux/kernel.h>
b8c73fc2 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/suspend.h>
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/slab.h>
a238ab5b 35#include <linux/ratelimit.h>
5a3135c2 36#include <linux/oom.h>
1da177e4
LT
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
97500a4a 48#include <linux/random.h>
c713216d
MG
49#include <linux/sort.h>
50#include <linux/pfn.h>
3fcfab16 51#include <linux/backing-dev.h>
933e312e 52#include <linux/fault-inject.h>
a5d76b54 53#include <linux/page-isolation.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
f920e413 61#include <linux/mmu_notifier.h>
041d3a8c 62#include <linux/migrate.h>
949f7ec5 63#include <linux/hugetlb.h>
8bd75c77 64#include <linux/sched/rt.h>
5b3cc15a 65#include <linux/sched/mm.h>
48c96a36 66#include <linux/page_owner.h>
df4e817b 67#include <linux/page_table_check.h>
0e1cc95b 68#include <linux/kthread.h>
4949148a 69#include <linux/memcontrol.h>
42c269c8 70#include <linux/ftrace.h>
d92a8cfc 71#include <linux/lockdep.h>
556b969a 72#include <linux/nmi.h>
eb414681 73#include <linux/psi.h>
e4443149 74#include <linux/padata.h>
4aab2be0 75#include <linux/khugepaged.h>
ba8f3587 76#include <linux/buffer_head.h>
5bf18281 77#include <linux/delayacct.h>
7ee3d4e8 78#include <asm/sections.h>
1da177e4 79#include <asm/tlbflush.h>
ac924c60 80#include <asm/div64.h>
1da177e4 81#include "internal.h"
e900a918 82#include "shuffle.h"
36e66c55 83#include "page_reporting.h"
1da177e4 84
f04a5d5d
DH
85/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86typedef int __bitwise fpi_t;
87
88/* No special request */
89#define FPI_NONE ((__force fpi_t)0)
90
91/*
92 * Skip free page reporting notification for the (possibly merged) page.
93 * This does not hinder free page reporting from grabbing the page,
94 * reporting it and marking it "reported" - it only skips notifying
95 * the free page reporting infrastructure about a newly freed page. For
96 * example, used when temporarily pulling a page from a freelist and
97 * putting it back unmodified.
98 */
99#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
100
47b6a24a
DH
101/*
102 * Place the (possibly merged) page to the tail of the freelist. Will ignore
103 * page shuffling (relevant code - e.g., memory onlining - is expected to
104 * shuffle the whole zone).
105 *
106 * Note: No code should rely on this flag for correctness - it's purely
107 * to allow for optimizations when handing back either fresh pages
108 * (memory onlining) or untouched pages (page isolation, free page
109 * reporting).
110 */
111#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
112
2c335680
AK
113/*
114 * Don't poison memory with KASAN (only for the tag-based modes).
115 * During boot, all non-reserved memblock memory is exposed to page_alloc.
116 * Poisoning all that memory lengthens boot time, especially on systems with
117 * large amount of RAM. This flag is used to skip that poisoning.
118 * This is only done for the tag-based KASAN modes, as those are able to
119 * detect memory corruptions with the memory tags assigned by default.
120 * All memory allocated normally after boot gets poisoned as usual.
121 */
122#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
123
c8e251fa
CS
124/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
125static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 126#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 127
dbbee9d5
MG
128struct pagesets {
129 local_lock_t lock;
dbbee9d5 130};
273ba85b 131static DEFINE_PER_CPU(struct pagesets, pagesets) = {
dbbee9d5
MG
132 .lock = INIT_LOCAL_LOCK(lock),
133};
c8e251fa 134
72812019
LS
135#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
136DEFINE_PER_CPU(int, numa_node);
137EXPORT_PER_CPU_SYMBOL(numa_node);
138#endif
139
4518085e
KW
140DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
141
7aac7898
LS
142#ifdef CONFIG_HAVE_MEMORYLESS_NODES
143/*
144 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
145 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
146 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
147 * defined in <linux/topology.h>.
148 */
149DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
150EXPORT_PER_CPU_SYMBOL(_numa_mem_);
151#endif
152
bd233f53 153/* work_structs for global per-cpu drains */
d9367bd0
WY
154struct pcpu_drain {
155 struct zone *zone;
156 struct work_struct work;
157};
8b885f53
JY
158static DEFINE_MUTEX(pcpu_drain_mutex);
159static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 160
38addce8 161#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 162volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
163EXPORT_SYMBOL(latent_entropy);
164#endif
165
1da177e4 166/*
13808910 167 * Array of node states.
1da177e4 168 */
13808910
CL
169nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
170 [N_POSSIBLE] = NODE_MASK_ALL,
171 [N_ONLINE] = { { [0] = 1UL } },
172#ifndef CONFIG_NUMA
173 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
174#ifdef CONFIG_HIGHMEM
175 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 176#endif
20b2f52b 177 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
178 [N_CPU] = { { [0] = 1UL } },
179#endif /* NUMA */
180};
181EXPORT_SYMBOL(node_states);
182
ca79b0c2
AK
183atomic_long_t _totalram_pages __read_mostly;
184EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 185unsigned long totalreserve_pages __read_mostly;
e48322ab 186unsigned long totalcma_pages __read_mostly;
ab8fabd4 187
74f44822 188int percpu_pagelist_high_fraction;
dcce284a 189gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
191EXPORT_SYMBOL(init_on_alloc);
192
51cba1eb 193DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
194EXPORT_SYMBOL(init_on_free);
195
04013513
VB
196static bool _init_on_alloc_enabled_early __read_mostly
197 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
198static int __init early_init_on_alloc(char *buf)
199{
6471384a 200
04013513 201 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
202}
203early_param("init_on_alloc", early_init_on_alloc);
204
04013513
VB
205static bool _init_on_free_enabled_early __read_mostly
206 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
207static int __init early_init_on_free(char *buf)
208{
04013513 209 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
210}
211early_param("init_on_free", early_init_on_free);
1da177e4 212
bb14c2c7
VB
213/*
214 * A cached value of the page's pageblock's migratetype, used when the page is
215 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
216 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
217 * Also the migratetype set in the page does not necessarily match the pcplist
218 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
219 * other index - this ensures that it will be put on the correct CMA freelist.
220 */
221static inline int get_pcppage_migratetype(struct page *page)
222{
223 return page->index;
224}
225
226static inline void set_pcppage_migratetype(struct page *page, int migratetype)
227{
228 page->index = migratetype;
229}
230
452aa699
RW
231#ifdef CONFIG_PM_SLEEP
232/*
233 * The following functions are used by the suspend/hibernate code to temporarily
234 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
235 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
236 * they should always be called with system_transition_mutex held
237 * (gfp_allowed_mask also should only be modified with system_transition_mutex
238 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
239 * with that modification).
452aa699 240 */
c9e664f1
RW
241
242static gfp_t saved_gfp_mask;
243
244void pm_restore_gfp_mask(void)
452aa699 245{
55f2503c 246 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
247 if (saved_gfp_mask) {
248 gfp_allowed_mask = saved_gfp_mask;
249 saved_gfp_mask = 0;
250 }
452aa699
RW
251}
252
c9e664f1 253void pm_restrict_gfp_mask(void)
452aa699 254{
55f2503c 255 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
256 WARN_ON(saved_gfp_mask);
257 saved_gfp_mask = gfp_allowed_mask;
d0164adc 258 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 259}
f90ac398
MG
260
261bool pm_suspended_storage(void)
262{
d0164adc 263 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
264 return false;
265 return true;
266}
452aa699
RW
267#endif /* CONFIG_PM_SLEEP */
268
d9c23400 269#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 270unsigned int pageblock_order __read_mostly;
d9c23400
MG
271#endif
272
7fef431b
DH
273static void __free_pages_ok(struct page *page, unsigned int order,
274 fpi_t fpi_flags);
a226f6c8 275
1da177e4
LT
276/*
277 * results with 256, 32 in the lowmem_reserve sysctl:
278 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
279 * 1G machine -> (16M dma, 784M normal, 224M high)
280 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
281 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 282 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
283 *
284 * TBD: should special case ZONE_DMA32 machines here - in those we normally
285 * don't need any ZONE_NORMAL reservation
1da177e4 286 */
d3cda233 287int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 288#ifdef CONFIG_ZONE_DMA
d3cda233 289 [ZONE_DMA] = 256,
4b51d669 290#endif
fb0e7942 291#ifdef CONFIG_ZONE_DMA32
d3cda233 292 [ZONE_DMA32] = 256,
fb0e7942 293#endif
d3cda233 294 [ZONE_NORMAL] = 32,
e53ef38d 295#ifdef CONFIG_HIGHMEM
d3cda233 296 [ZONE_HIGHMEM] = 0,
e53ef38d 297#endif
d3cda233 298 [ZONE_MOVABLE] = 0,
2f1b6248 299};
1da177e4 300
15ad7cdc 301static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 302#ifdef CONFIG_ZONE_DMA
2f1b6248 303 "DMA",
4b51d669 304#endif
fb0e7942 305#ifdef CONFIG_ZONE_DMA32
2f1b6248 306 "DMA32",
fb0e7942 307#endif
2f1b6248 308 "Normal",
e53ef38d 309#ifdef CONFIG_HIGHMEM
2a1e274a 310 "HighMem",
e53ef38d 311#endif
2a1e274a 312 "Movable",
033fbae9
DW
313#ifdef CONFIG_ZONE_DEVICE
314 "Device",
315#endif
2f1b6248
CL
316};
317
c999fbd3 318const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
319 "Unmovable",
320 "Movable",
321 "Reclaimable",
322 "HighAtomic",
323#ifdef CONFIG_CMA
324 "CMA",
325#endif
326#ifdef CONFIG_MEMORY_ISOLATION
327 "Isolate",
328#endif
329};
330
ae70eddd
AK
331compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
332 [NULL_COMPOUND_DTOR] = NULL,
333 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 334#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 335 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 336#endif
9a982250 337#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 338 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 339#endif
f1e61557
KS
340};
341
1da177e4 342int min_free_kbytes = 1024;
42aa83cb 343int user_min_free_kbytes = -1;
1c30844d 344int watermark_boost_factor __read_mostly = 15000;
795ae7a0 345int watermark_scale_factor = 10;
1da177e4 346
bbe5d993
OS
347static unsigned long nr_kernel_pages __initdata;
348static unsigned long nr_all_pages __initdata;
349static unsigned long dma_reserve __initdata;
1da177e4 350
bbe5d993
OS
351static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
352static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 353static unsigned long required_kernelcore __initdata;
a5c6d650 354static unsigned long required_kernelcore_percent __initdata;
7f16f91f 355static unsigned long required_movablecore __initdata;
a5c6d650 356static unsigned long required_movablecore_percent __initdata;
bbe5d993 357static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 358static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
359
360/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
361int movable_zone;
362EXPORT_SYMBOL(movable_zone);
c713216d 363
418508c1 364#if MAX_NUMNODES > 1
b9726c26 365unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 366unsigned int nr_online_nodes __read_mostly = 1;
418508c1 367EXPORT_SYMBOL(nr_node_ids);
62bc62a8 368EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
369#endif
370
9ef9acb0
MG
371int page_group_by_mobility_disabled __read_mostly;
372
3a80a7fa 373#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
374/*
375 * During boot we initialize deferred pages on-demand, as needed, but once
376 * page_alloc_init_late() has finished, the deferred pages are all initialized,
377 * and we can permanently disable that path.
378 */
379static DEFINE_STATIC_KEY_TRUE(deferred_pages);
380
94ae8b83 381static inline bool deferred_pages_enabled(void)
3c0c12cc 382{
94ae8b83 383 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
384}
385
3a80a7fa 386/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 387static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 388{
ef70b6f4
MG
389 int nid = early_pfn_to_nid(pfn);
390
391 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
392 return true;
393
394 return false;
395}
396
397/*
d3035be4 398 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
399 * later in the boot cycle when it can be parallelised.
400 */
d3035be4
PT
401static bool __meminit
402defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 403{
d3035be4
PT
404 static unsigned long prev_end_pfn, nr_initialised;
405
406 /*
407 * prev_end_pfn static that contains the end of previous zone
408 * No need to protect because called very early in boot before smp_init.
409 */
410 if (prev_end_pfn != end_pfn) {
411 prev_end_pfn = end_pfn;
412 nr_initialised = 0;
413 }
414
3c2c6488 415 /* Always populate low zones for address-constrained allocations */
d3035be4 416 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 417 return false;
23b68cfa 418
dc2da7b4
BH
419 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
420 return true;
23b68cfa
WY
421 /*
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
424 */
d3035be4 425 nr_initialised++;
23b68cfa 426 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
427 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 NODE_DATA(nid)->first_deferred_pfn = pfn;
429 return true;
3a80a7fa 430 }
d3035be4 431 return false;
3a80a7fa
MG
432}
433#else
94ae8b83 434static inline bool deferred_pages_enabled(void)
2c335680 435{
94ae8b83 436 return false;
2c335680 437}
3c0c12cc 438
3a80a7fa
MG
439static inline bool early_page_uninitialised(unsigned long pfn)
440{
441 return false;
442}
443
d3035be4 444static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 445{
d3035be4 446 return false;
3a80a7fa
MG
447}
448#endif
449
0b423ca2 450/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 451static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
452 unsigned long pfn)
453{
454#ifdef CONFIG_SPARSEMEM
f1eca35a 455 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
456#else
457 return page_zone(page)->pageblock_flags;
458#endif /* CONFIG_SPARSEMEM */
459}
460
ca891f41 461static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
462{
463#ifdef CONFIG_SPARSEMEM
464 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
465#else
466 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 467#endif /* CONFIG_SPARSEMEM */
399b795b 468 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
469}
470
535b81e2 471static __always_inline
ca891f41 472unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 473 unsigned long pfn,
0b423ca2
MG
474 unsigned long mask)
475{
476 unsigned long *bitmap;
477 unsigned long bitidx, word_bitidx;
478 unsigned long word;
479
480 bitmap = get_pageblock_bitmap(page, pfn);
481 bitidx = pfn_to_bitidx(page, pfn);
482 word_bitidx = bitidx / BITS_PER_LONG;
483 bitidx &= (BITS_PER_LONG-1);
484
485 word = bitmap[word_bitidx];
d93d5ab9 486 return (word >> bitidx) & mask;
0b423ca2
MG
487}
488
a00cda3f
MCC
489/**
490 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
491 * @page: The page within the block of interest
492 * @pfn: The target page frame number
493 * @mask: mask of bits that the caller is interested in
494 *
495 * Return: pageblock_bits flags
496 */
ca891f41
MWO
497unsigned long get_pfnblock_flags_mask(const struct page *page,
498 unsigned long pfn, unsigned long mask)
0b423ca2 499{
535b81e2 500 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
501}
502
ca891f41
MWO
503static __always_inline int get_pfnblock_migratetype(const struct page *page,
504 unsigned long pfn)
0b423ca2 505{
535b81e2 506 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
507}
508
509/**
510 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
511 * @page: The page within the block of interest
512 * @flags: The flags to set
513 * @pfn: The target page frame number
0b423ca2
MG
514 * @mask: mask of bits that the caller is interested in
515 */
516void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
517 unsigned long pfn,
0b423ca2
MG
518 unsigned long mask)
519{
520 unsigned long *bitmap;
521 unsigned long bitidx, word_bitidx;
522 unsigned long old_word, word;
523
524 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 525 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
526
527 bitmap = get_pageblock_bitmap(page, pfn);
528 bitidx = pfn_to_bitidx(page, pfn);
529 word_bitidx = bitidx / BITS_PER_LONG;
530 bitidx &= (BITS_PER_LONG-1);
531
532 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
533
d93d5ab9
WY
534 mask <<= bitidx;
535 flags <<= bitidx;
0b423ca2
MG
536
537 word = READ_ONCE(bitmap[word_bitidx]);
538 for (;;) {
539 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
540 if (word == old_word)
541 break;
542 word = old_word;
543 }
544}
3a80a7fa 545
ee6f509c 546void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 547{
5d0f3f72
KM
548 if (unlikely(page_group_by_mobility_disabled &&
549 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
550 migratetype = MIGRATE_UNMOVABLE;
551
d93d5ab9 552 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 553 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
554}
555
13e7444b 556#ifdef CONFIG_DEBUG_VM
c6a57e19 557static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 558{
bdc8cb98
DH
559 int ret = 0;
560 unsigned seq;
561 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 562 unsigned long sp, start_pfn;
c6a57e19 563
bdc8cb98
DH
564 do {
565 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
566 start_pfn = zone->zone_start_pfn;
567 sp = zone->spanned_pages;
108bcc96 568 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
569 ret = 1;
570 } while (zone_span_seqretry(zone, seq));
571
b5e6a5a2 572 if (ret)
613813e8
DH
573 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
574 pfn, zone_to_nid(zone), zone->name,
575 start_pfn, start_pfn + sp);
b5e6a5a2 576
bdc8cb98 577 return ret;
c6a57e19
DH
578}
579
580static int page_is_consistent(struct zone *zone, struct page *page)
581{
1da177e4 582 if (zone != page_zone(page))
c6a57e19
DH
583 return 0;
584
585 return 1;
586}
587/*
588 * Temporary debugging check for pages not lying within a given zone.
589 */
d73d3c9f 590static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
591{
592 if (page_outside_zone_boundaries(zone, page))
1da177e4 593 return 1;
c6a57e19
DH
594 if (!page_is_consistent(zone, page))
595 return 1;
596
1da177e4
LT
597 return 0;
598}
13e7444b 599#else
d73d3c9f 600static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
601{
602 return 0;
603}
604#endif
605
82a3241a 606static void bad_page(struct page *page, const char *reason)
1da177e4 607{
d936cf9b
HD
608 static unsigned long resume;
609 static unsigned long nr_shown;
610 static unsigned long nr_unshown;
611
612 /*
613 * Allow a burst of 60 reports, then keep quiet for that minute;
614 * or allow a steady drip of one report per second.
615 */
616 if (nr_shown == 60) {
617 if (time_before(jiffies, resume)) {
618 nr_unshown++;
619 goto out;
620 }
621 if (nr_unshown) {
ff8e8116 622 pr_alert(
1e9e6365 623 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
624 nr_unshown);
625 nr_unshown = 0;
626 }
627 nr_shown = 0;
628 }
629 if (nr_shown++ == 0)
630 resume = jiffies + 60 * HZ;
631
ff8e8116 632 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 633 current->comm, page_to_pfn(page));
d2f07ec0 634 dump_page(page, reason);
3dc14741 635
4f31888c 636 print_modules();
1da177e4 637 dump_stack();
d936cf9b 638out:
8cc3b392 639 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 640 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 641 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
642}
643
44042b44
MG
644static inline unsigned int order_to_pindex(int migratetype, int order)
645{
646 int base = order;
647
648#ifdef CONFIG_TRANSPARENT_HUGEPAGE
649 if (order > PAGE_ALLOC_COSTLY_ORDER) {
650 VM_BUG_ON(order != pageblock_order);
651 base = PAGE_ALLOC_COSTLY_ORDER + 1;
652 }
653#else
654 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
655#endif
656
657 return (MIGRATE_PCPTYPES * base) + migratetype;
658}
659
660static inline int pindex_to_order(unsigned int pindex)
661{
662 int order = pindex / MIGRATE_PCPTYPES;
663
664#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ea808b4e 665 if (order > PAGE_ALLOC_COSTLY_ORDER)
44042b44 666 order = pageblock_order;
44042b44
MG
667#else
668 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
669#endif
670
671 return order;
672}
673
674static inline bool pcp_allowed_order(unsigned int order)
675{
676 if (order <= PAGE_ALLOC_COSTLY_ORDER)
677 return true;
678#ifdef CONFIG_TRANSPARENT_HUGEPAGE
679 if (order == pageblock_order)
680 return true;
681#endif
682 return false;
683}
684
21d02f8f
MG
685static inline void free_the_page(struct page *page, unsigned int order)
686{
44042b44
MG
687 if (pcp_allowed_order(order)) /* Via pcp? */
688 free_unref_page(page, order);
21d02f8f
MG
689 else
690 __free_pages_ok(page, order, FPI_NONE);
691}
692
1da177e4
LT
693/*
694 * Higher-order pages are called "compound pages". They are structured thusly:
695 *
1d798ca3 696 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 697 *
1d798ca3
KS
698 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
699 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 700 *
1d798ca3
KS
701 * The first tail page's ->compound_dtor holds the offset in array of compound
702 * page destructors. See compound_page_dtors.
1da177e4 703 *
1d798ca3 704 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 705 * This usage means that zero-order pages may not be compound.
1da177e4 706 */
d98c7a09 707
9a982250 708void free_compound_page(struct page *page)
d98c7a09 709{
bbc6b703 710 mem_cgroup_uncharge(page_folio(page));
44042b44 711 free_the_page(page, compound_order(page));
d98c7a09
HD
712}
713
5b24eeef
JM
714static void prep_compound_head(struct page *page, unsigned int order)
715{
716 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
717 set_compound_order(page, order);
718 atomic_set(compound_mapcount_ptr(page), -1);
5232c63f 719 atomic_set(compound_pincount_ptr(page), 0);
5b24eeef
JM
720}
721
722static void prep_compound_tail(struct page *head, int tail_idx)
723{
724 struct page *p = head + tail_idx;
725
726 p->mapping = TAIL_MAPPING;
727 set_compound_head(p, head);
728}
729
d00181b9 730void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
731{
732 int i;
733 int nr_pages = 1 << order;
734
18229df5 735 __SetPageHead(page);
5b24eeef
JM
736 for (i = 1; i < nr_pages; i++)
737 prep_compound_tail(page, i);
1378a5ee 738
5b24eeef 739 prep_compound_head(page, order);
18229df5
AW
740}
741
c0a32fc5
SG
742#ifdef CONFIG_DEBUG_PAGEALLOC
743unsigned int _debug_guardpage_minorder;
96a2b03f 744
8e57f8ac
VB
745bool _debug_pagealloc_enabled_early __read_mostly
746 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
747EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 748DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 749EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
750
751DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 752
031bc574
JK
753static int __init early_debug_pagealloc(char *buf)
754{
8e57f8ac 755 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
756}
757early_param("debug_pagealloc", early_debug_pagealloc);
758
c0a32fc5
SG
759static int __init debug_guardpage_minorder_setup(char *buf)
760{
761 unsigned long res;
762
763 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 764 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
765 return 0;
766 }
767 _debug_guardpage_minorder = res;
1170532b 768 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
769 return 0;
770}
f1c1e9f7 771early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 772
acbc15a4 773static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 774 unsigned int order, int migratetype)
c0a32fc5 775{
e30825f1 776 if (!debug_guardpage_enabled())
acbc15a4
JK
777 return false;
778
779 if (order >= debug_guardpage_minorder())
780 return false;
e30825f1 781
3972f6bb 782 __SetPageGuard(page);
2847cf95
JK
783 INIT_LIST_HEAD(&page->lru);
784 set_page_private(page, order);
785 /* Guard pages are not available for any usage */
786 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
787
788 return true;
c0a32fc5
SG
789}
790
2847cf95
JK
791static inline void clear_page_guard(struct zone *zone, struct page *page,
792 unsigned int order, int migratetype)
c0a32fc5 793{
e30825f1
JK
794 if (!debug_guardpage_enabled())
795 return;
796
3972f6bb 797 __ClearPageGuard(page);
e30825f1 798
2847cf95
JK
799 set_page_private(page, 0);
800 if (!is_migrate_isolate(migratetype))
801 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
802}
803#else
acbc15a4
JK
804static inline bool set_page_guard(struct zone *zone, struct page *page,
805 unsigned int order, int migratetype) { return false; }
2847cf95
JK
806static inline void clear_page_guard(struct zone *zone, struct page *page,
807 unsigned int order, int migratetype) {}
c0a32fc5
SG
808#endif
809
04013513
VB
810/*
811 * Enable static keys related to various memory debugging and hardening options.
812 * Some override others, and depend on early params that are evaluated in the
813 * order of appearance. So we need to first gather the full picture of what was
814 * enabled, and then make decisions.
815 */
816void init_mem_debugging_and_hardening(void)
817{
9df65f52
ST
818 bool page_poisoning_requested = false;
819
820#ifdef CONFIG_PAGE_POISONING
821 /*
822 * Page poisoning is debug page alloc for some arches. If
823 * either of those options are enabled, enable poisoning.
824 */
825 if (page_poisoning_enabled() ||
826 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
827 debug_pagealloc_enabled())) {
828 static_branch_enable(&_page_poisoning_enabled);
829 page_poisoning_requested = true;
830 }
831#endif
832
69e5d322
ST
833 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
834 page_poisoning_requested) {
835 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
836 "will take precedence over init_on_alloc and init_on_free\n");
837 _init_on_alloc_enabled_early = false;
838 _init_on_free_enabled_early = false;
04013513
VB
839 }
840
69e5d322
ST
841 if (_init_on_alloc_enabled_early)
842 static_branch_enable(&init_on_alloc);
843 else
844 static_branch_disable(&init_on_alloc);
845
846 if (_init_on_free_enabled_early)
847 static_branch_enable(&init_on_free);
848 else
849 static_branch_disable(&init_on_free);
850
04013513
VB
851#ifdef CONFIG_DEBUG_PAGEALLOC
852 if (!debug_pagealloc_enabled())
853 return;
854
855 static_branch_enable(&_debug_pagealloc_enabled);
856
857 if (!debug_guardpage_minorder())
858 return;
859
860 static_branch_enable(&_debug_guardpage_enabled);
861#endif
862}
863
ab130f91 864static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 865{
4c21e2f2 866 set_page_private(page, order);
676165a8 867 __SetPageBuddy(page);
1da177e4
LT
868}
869
1da177e4
LT
870/*
871 * This function checks whether a page is free && is the buddy
6e292b9b 872 * we can coalesce a page and its buddy if
13ad59df 873 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 874 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
875 * (c) a page and its buddy have the same order &&
876 * (d) a page and its buddy are in the same zone.
676165a8 877 *
6e292b9b
MW
878 * For recording whether a page is in the buddy system, we set PageBuddy.
879 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 880 *
676165a8 881 * For recording page's order, we use page_private(page).
1da177e4 882 */
fe925c0c 883static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 884 unsigned int order)
1da177e4 885{
fe925c0c 886 if (!page_is_guard(buddy) && !PageBuddy(buddy))
887 return false;
4c5018ce 888
ab130f91 889 if (buddy_order(buddy) != order)
fe925c0c 890 return false;
c0a32fc5 891
fe925c0c 892 /*
893 * zone check is done late to avoid uselessly calculating
894 * zone/node ids for pages that could never merge.
895 */
896 if (page_zone_id(page) != page_zone_id(buddy))
897 return false;
d34c5fa0 898
fe925c0c 899 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 900
fe925c0c 901 return true;
1da177e4
LT
902}
903
5e1f0f09
MG
904#ifdef CONFIG_COMPACTION
905static inline struct capture_control *task_capc(struct zone *zone)
906{
907 struct capture_control *capc = current->capture_control;
908
deba0487 909 return unlikely(capc) &&
5e1f0f09
MG
910 !(current->flags & PF_KTHREAD) &&
911 !capc->page &&
deba0487 912 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
913}
914
915static inline bool
916compaction_capture(struct capture_control *capc, struct page *page,
917 int order, int migratetype)
918{
919 if (!capc || order != capc->cc->order)
920 return false;
921
922 /* Do not accidentally pollute CMA or isolated regions*/
923 if (is_migrate_cma(migratetype) ||
924 is_migrate_isolate(migratetype))
925 return false;
926
927 /*
f0953a1b 928 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
929 * This might let an unmovable request use a reclaimable pageblock
930 * and vice-versa but no more than normal fallback logic which can
931 * have trouble finding a high-order free page.
932 */
933 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
934 return false;
935
936 capc->page = page;
937 return true;
938}
939
940#else
941static inline struct capture_control *task_capc(struct zone *zone)
942{
943 return NULL;
944}
945
946static inline bool
947compaction_capture(struct capture_control *capc, struct page *page,
948 int order, int migratetype)
949{
950 return false;
951}
952#endif /* CONFIG_COMPACTION */
953
6ab01363
AD
954/* Used for pages not on another list */
955static inline void add_to_free_list(struct page *page, struct zone *zone,
956 unsigned int order, int migratetype)
957{
958 struct free_area *area = &zone->free_area[order];
959
960 list_add(&page->lru, &area->free_list[migratetype]);
961 area->nr_free++;
962}
963
964/* Used for pages not on another list */
965static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
966 unsigned int order, int migratetype)
967{
968 struct free_area *area = &zone->free_area[order];
969
970 list_add_tail(&page->lru, &area->free_list[migratetype]);
971 area->nr_free++;
972}
973
293ffa5e
DH
974/*
975 * Used for pages which are on another list. Move the pages to the tail
976 * of the list - so the moved pages won't immediately be considered for
977 * allocation again (e.g., optimization for memory onlining).
978 */
6ab01363
AD
979static inline void move_to_free_list(struct page *page, struct zone *zone,
980 unsigned int order, int migratetype)
981{
982 struct free_area *area = &zone->free_area[order];
983
293ffa5e 984 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
985}
986
987static inline void del_page_from_free_list(struct page *page, struct zone *zone,
988 unsigned int order)
989{
36e66c55
AD
990 /* clear reported state and update reported page count */
991 if (page_reported(page))
992 __ClearPageReported(page);
993
6ab01363
AD
994 list_del(&page->lru);
995 __ClearPageBuddy(page);
996 set_page_private(page, 0);
997 zone->free_area[order].nr_free--;
998}
999
a2129f24
AD
1000/*
1001 * If this is not the largest possible page, check if the buddy
1002 * of the next-highest order is free. If it is, it's possible
1003 * that pages are being freed that will coalesce soon. In case,
1004 * that is happening, add the free page to the tail of the list
1005 * so it's less likely to be used soon and more likely to be merged
1006 * as a higher order page
1007 */
1008static inline bool
1009buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1010 struct page *page, unsigned int order)
1011{
1012 struct page *higher_page, *higher_buddy;
1013 unsigned long combined_pfn;
1014
1015 if (order >= MAX_ORDER - 2)
1016 return false;
1017
a2129f24
AD
1018 combined_pfn = buddy_pfn & pfn;
1019 higher_page = page + (combined_pfn - pfn);
1020 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1021 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1022
859a85dd 1023 return page_is_buddy(higher_page, higher_buddy, order + 1);
a2129f24
AD
1024}
1025
1da177e4
LT
1026/*
1027 * Freeing function for a buddy system allocator.
1028 *
1029 * The concept of a buddy system is to maintain direct-mapped table
1030 * (containing bit values) for memory blocks of various "orders".
1031 * The bottom level table contains the map for the smallest allocatable
1032 * units of memory (here, pages), and each level above it describes
1033 * pairs of units from the levels below, hence, "buddies".
1034 * At a high level, all that happens here is marking the table entry
1035 * at the bottom level available, and propagating the changes upward
1036 * as necessary, plus some accounting needed to play nicely with other
1037 * parts of the VM system.
1038 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1039 * free pages of length of (1 << order) and marked with PageBuddy.
1040 * Page's order is recorded in page_private(page) field.
1da177e4 1041 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1042 * other. That is, if we allocate a small block, and both were
1043 * free, the remainder of the region must be split into blocks.
1da177e4 1044 * If a block is freed, and its buddy is also free, then this
5f63b720 1045 * triggers coalescing into a block of larger size.
1da177e4 1046 *
6d49e352 1047 * -- nyc
1da177e4
LT
1048 */
1049
48db57f8 1050static inline void __free_one_page(struct page *page,
dc4b0caf 1051 unsigned long pfn,
ed0ae21d 1052 struct zone *zone, unsigned int order,
f04a5d5d 1053 int migratetype, fpi_t fpi_flags)
1da177e4 1054{
a2129f24 1055 struct capture_control *capc = task_capc(zone);
b3d40a2b 1056 unsigned int max_order = pageblock_order;
3f649ab7 1057 unsigned long buddy_pfn;
a2129f24 1058 unsigned long combined_pfn;
a2129f24
AD
1059 struct page *buddy;
1060 bool to_tail;
d9dddbf5 1061
d29bb978 1062 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1063 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1064
ed0ae21d 1065 VM_BUG_ON(migratetype == -1);
d9dddbf5 1066 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1067 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1068
76741e77 1069 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1070 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1071
d9dddbf5 1072continue_merging:
7ad69832 1073 while (order < max_order) {
5e1f0f09
MG
1074 if (compaction_capture(capc, page, order, migratetype)) {
1075 __mod_zone_freepage_state(zone, -(1 << order),
1076 migratetype);
1077 return;
1078 }
76741e77
VB
1079 buddy_pfn = __find_buddy_pfn(pfn, order);
1080 buddy = page + (buddy_pfn - pfn);
13ad59df 1081
cb2b95e1 1082 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1083 goto done_merging;
c0a32fc5
SG
1084 /*
1085 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1086 * merge with it and move up one order.
1087 */
b03641af 1088 if (page_is_guard(buddy))
2847cf95 1089 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1090 else
6ab01363 1091 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1092 combined_pfn = buddy_pfn & pfn;
1093 page = page + (combined_pfn - pfn);
1094 pfn = combined_pfn;
1da177e4
LT
1095 order++;
1096 }
7ad69832 1097 if (order < MAX_ORDER - 1) {
d9dddbf5 1098 /* If we are here, it means order is >= pageblock_order.
1dd214b8
ZY
1099 * We want to prevent merge between freepages on pageblock
1100 * without fallbacks and normal pageblock. Without this,
1101 * pageblock isolation could cause incorrect freepage or CMA
1102 * accounting or HIGHATOMIC accounting.
d9dddbf5
VB
1103 *
1104 * We don't want to hit this code for the more frequent
1105 * low-order merging.
1106 */
1dd214b8 1107 int buddy_mt;
d9dddbf5 1108
1dd214b8
ZY
1109 buddy_pfn = __find_buddy_pfn(pfn, order);
1110 buddy = page + (buddy_pfn - pfn);
787af64d
ZY
1111
1112 if (!page_is_buddy(page, buddy, order))
1113 goto done_merging;
1dd214b8 1114 buddy_mt = get_pageblock_migratetype(buddy);
d9dddbf5 1115
1dd214b8
ZY
1116 if (migratetype != buddy_mt
1117 && (!migratetype_is_mergeable(migratetype) ||
1118 !migratetype_is_mergeable(buddy_mt)))
1119 goto done_merging;
7ad69832 1120 max_order = order + 1;
d9dddbf5
VB
1121 goto continue_merging;
1122 }
1123
1124done_merging:
ab130f91 1125 set_buddy_order(page, order);
6dda9d55 1126
47b6a24a
DH
1127 if (fpi_flags & FPI_TO_TAIL)
1128 to_tail = true;
1129 else if (is_shuffle_order(order))
a2129f24 1130 to_tail = shuffle_pick_tail();
97500a4a 1131 else
a2129f24 1132 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1133
a2129f24 1134 if (to_tail)
6ab01363 1135 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1136 else
6ab01363 1137 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1138
1139 /* Notify page reporting subsystem of freed page */
f04a5d5d 1140 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1141 page_reporting_notify_free(order);
1da177e4
LT
1142}
1143
7bfec6f4
MG
1144/*
1145 * A bad page could be due to a number of fields. Instead of multiple branches,
1146 * try and check multiple fields with one check. The caller must do a detailed
1147 * check if necessary.
1148 */
1149static inline bool page_expected_state(struct page *page,
1150 unsigned long check_flags)
1151{
1152 if (unlikely(atomic_read(&page->_mapcount) != -1))
1153 return false;
1154
1155 if (unlikely((unsigned long)page->mapping |
1156 page_ref_count(page) |
1157#ifdef CONFIG_MEMCG
48060834 1158 page->memcg_data |
7bfec6f4
MG
1159#endif
1160 (page->flags & check_flags)))
1161 return false;
1162
1163 return true;
1164}
1165
58b7f119 1166static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1167{
82a3241a 1168 const char *bad_reason = NULL;
f0b791a3 1169
53f9263b 1170 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1171 bad_reason = "nonzero mapcount";
1172 if (unlikely(page->mapping != NULL))
1173 bad_reason = "non-NULL mapping";
fe896d18 1174 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1175 bad_reason = "nonzero _refcount";
58b7f119
WY
1176 if (unlikely(page->flags & flags)) {
1177 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1178 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1179 else
1180 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1181 }
9edad6ea 1182#ifdef CONFIG_MEMCG
48060834 1183 if (unlikely(page->memcg_data))
9edad6ea
JW
1184 bad_reason = "page still charged to cgroup";
1185#endif
58b7f119
WY
1186 return bad_reason;
1187}
1188
1189static void check_free_page_bad(struct page *page)
1190{
1191 bad_page(page,
1192 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1193}
1194
534fe5e3 1195static inline int check_free_page(struct page *page)
bb552ac6 1196{
da838d4f 1197 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1198 return 0;
bb552ac6
MG
1199
1200 /* Something has gone sideways, find it */
0d0c48a2 1201 check_free_page_bad(page);
7bfec6f4 1202 return 1;
1da177e4
LT
1203}
1204
4db7548c
MG
1205static int free_tail_pages_check(struct page *head_page, struct page *page)
1206{
1207 int ret = 1;
1208
1209 /*
1210 * We rely page->lru.next never has bit 0 set, unless the page
1211 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1212 */
1213 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1214
1215 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1216 ret = 0;
1217 goto out;
1218 }
1219 switch (page - head_page) {
1220 case 1:
4da1984e 1221 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1222 if (unlikely(compound_mapcount(page))) {
82a3241a 1223 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1224 goto out;
1225 }
1226 break;
1227 case 2:
1228 /*
1229 * the second tail page: ->mapping is
fa3015b7 1230 * deferred_list.next -- ignore value.
4db7548c
MG
1231 */
1232 break;
1233 default:
1234 if (page->mapping != TAIL_MAPPING) {
82a3241a 1235 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1236 goto out;
1237 }
1238 break;
1239 }
1240 if (unlikely(!PageTail(page))) {
82a3241a 1241 bad_page(page, "PageTail not set");
4db7548c
MG
1242 goto out;
1243 }
1244 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1245 bad_page(page, "compound_head not consistent");
4db7548c
MG
1246 goto out;
1247 }
1248 ret = 0;
1249out:
1250 page->mapping = NULL;
1251 clear_compound_head(page);
1252 return ret;
1253}
1254
94ae8b83
AK
1255/*
1256 * Skip KASAN memory poisoning when either:
1257 *
1258 * 1. Deferred memory initialization has not yet completed,
1259 * see the explanation below.
1260 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1261 * see the comment next to it.
1262 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1263 * see the comment next to it.
1264 *
1265 * Poisoning pages during deferred memory init will greatly lengthen the
1266 * process and cause problem in large memory systems as the deferred pages
1267 * initialization is done with interrupt disabled.
1268 *
1269 * Assuming that there will be no reference to those newly initialized
1270 * pages before they are ever allocated, this should have no effect on
1271 * KASAN memory tracking as the poison will be properly inserted at page
1272 * allocation time. The only corner case is when pages are allocated by
1273 * on-demand allocation and then freed again before the deferred pages
1274 * initialization is done, but this is not likely to happen.
1275 */
1276static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1277{
1278 return deferred_pages_enabled() ||
1279 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1280 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1281 PageSkipKASanPoison(page);
1282}
1283
5b2c0713 1284static void kernel_init_free_pages(struct page *page, int numpages)
6471384a
AP
1285{
1286 int i;
1287
9e15afa5
QC
1288 /* s390's use of memset() could override KASAN redzones. */
1289 kasan_disable_current();
aa1ef4d7 1290 for (i = 0; i < numpages; i++) {
acb35b17 1291 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1292 page_kasan_tag_reset(page + i);
6471384a 1293 clear_highpage(page + i);
acb35b17 1294 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1295 }
9e15afa5 1296 kasan_enable_current();
6471384a
AP
1297}
1298
e2769dbd 1299static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1300 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1301{
e2769dbd 1302 int bad = 0;
c3525330 1303 bool init = want_init_on_free();
4db7548c 1304
4db7548c
MG
1305 VM_BUG_ON_PAGE(PageTail(page), page);
1306
e2769dbd 1307 trace_mm_page_free(page, order);
e2769dbd 1308
79f5f8fa
OS
1309 if (unlikely(PageHWPoison(page)) && !order) {
1310 /*
1311 * Do not let hwpoison pages hit pcplists/buddy
1312 * Untie memcg state and reset page's owner
1313 */
18b2db3b 1314 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1315 __memcg_kmem_uncharge_page(page, order);
1316 reset_page_owner(page, order);
df4e817b 1317 page_table_check_free(page, order);
79f5f8fa
OS
1318 return false;
1319 }
1320
e2769dbd
MG
1321 /*
1322 * Check tail pages before head page information is cleared to
1323 * avoid checking PageCompound for order-0 pages.
1324 */
1325 if (unlikely(order)) {
1326 bool compound = PageCompound(page);
1327 int i;
1328
1329 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1330
eac96c3e 1331 if (compound) {
9a73f61b 1332 ClearPageDoubleMap(page);
eac96c3e
YS
1333 ClearPageHasHWPoisoned(page);
1334 }
e2769dbd
MG
1335 for (i = 1; i < (1 << order); i++) {
1336 if (compound)
1337 bad += free_tail_pages_check(page, page + i);
534fe5e3 1338 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1339 bad++;
1340 continue;
1341 }
1342 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1343 }
1344 }
bda807d4 1345 if (PageMappingFlags(page))
4db7548c 1346 page->mapping = NULL;
18b2db3b 1347 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1348 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1349 if (check_free)
534fe5e3 1350 bad += check_free_page(page);
e2769dbd
MG
1351 if (bad)
1352 return false;
4db7548c 1353
e2769dbd
MG
1354 page_cpupid_reset_last(page);
1355 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1356 reset_page_owner(page, order);
df4e817b 1357 page_table_check_free(page, order);
4db7548c
MG
1358
1359 if (!PageHighMem(page)) {
1360 debug_check_no_locks_freed(page_address(page),
e2769dbd 1361 PAGE_SIZE << order);
4db7548c 1362 debug_check_no_obj_freed(page_address(page),
e2769dbd 1363 PAGE_SIZE << order);
4db7548c 1364 }
6471384a 1365
8db26a3d
VB
1366 kernel_poison_pages(page, 1 << order);
1367
f9d79e8d 1368 /*
1bb5eab3 1369 * As memory initialization might be integrated into KASAN,
7c13c163 1370 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1371 * kept together to avoid discrepancies in behavior.
1372 *
f9d79e8d
AK
1373 * With hardware tag-based KASAN, memory tags must be set before the
1374 * page becomes unavailable via debug_pagealloc or arch_free_page.
1375 */
487a32ec 1376 if (!should_skip_kasan_poison(page, fpi_flags)) {
c3525330 1377 kasan_poison_pages(page, order, init);
f9d79e8d 1378
db8a0477
AK
1379 /* Memory is already initialized if KASAN did it internally. */
1380 if (kasan_has_integrated_init())
1381 init = false;
1382 }
1383 if (init)
1384 kernel_init_free_pages(page, 1 << order);
1385
234fdce8
QC
1386 /*
1387 * arch_free_page() can make the page's contents inaccessible. s390
1388 * does this. So nothing which can access the page's contents should
1389 * happen after this.
1390 */
1391 arch_free_page(page, order);
1392
77bc7fd6 1393 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1394
4db7548c
MG
1395 return true;
1396}
1397
e2769dbd 1398#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1399/*
1400 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1401 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1402 * moved from pcp lists to free lists.
1403 */
44042b44 1404static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1405{
44042b44 1406 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1407}
1408
4462b32c 1409static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1410{
8e57f8ac 1411 if (debug_pagealloc_enabled_static())
534fe5e3 1412 return check_free_page(page);
4462b32c
VB
1413 else
1414 return false;
e2769dbd
MG
1415}
1416#else
4462b32c
VB
1417/*
1418 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1419 * moving from pcp lists to free list in order to reduce overhead. With
1420 * debug_pagealloc enabled, they are checked also immediately when being freed
1421 * to the pcp lists.
1422 */
44042b44 1423static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1424{
8e57f8ac 1425 if (debug_pagealloc_enabled_static())
44042b44 1426 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1427 else
44042b44 1428 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1429}
1430
4db7548c
MG
1431static bool bulkfree_pcp_prepare(struct page *page)
1432{
534fe5e3 1433 return check_free_page(page);
4db7548c
MG
1434}
1435#endif /* CONFIG_DEBUG_VM */
1436
1da177e4 1437/*
5f8dcc21 1438 * Frees a number of pages from the PCP lists
7cba630b 1439 * Assumes all pages on list are in same zone.
207f36ee 1440 * count is the number of pages to free.
1da177e4 1441 */
5f8dcc21 1442static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1443 struct per_cpu_pages *pcp,
1444 int pindex)
1da177e4 1445{
35b6d770
MG
1446 int min_pindex = 0;
1447 int max_pindex = NR_PCP_LISTS - 1;
44042b44 1448 unsigned int order;
3777999d 1449 bool isolated_pageblocks;
8b10b465 1450 struct page *page;
f2260e6b 1451
88e8ac11
CTR
1452 /*
1453 * Ensure proper count is passed which otherwise would stuck in the
1454 * below while (list_empty(list)) loop.
1455 */
1456 count = min(pcp->count, count);
d61372bc
MG
1457
1458 /* Ensure requested pindex is drained first. */
1459 pindex = pindex - 1;
1460
8b10b465
MG
1461 /*
1462 * local_lock_irq held so equivalent to spin_lock_irqsave for
1463 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1464 */
1465 spin_lock(&zone->lock);
1466 isolated_pageblocks = has_isolate_pageblock(zone);
1467
44042b44 1468 while (count > 0) {
5f8dcc21 1469 struct list_head *list;
fd56eef2 1470 int nr_pages;
5f8dcc21 1471
fd56eef2 1472 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1473 do {
35b6d770
MG
1474 if (++pindex > max_pindex)
1475 pindex = min_pindex;
44042b44 1476 list = &pcp->lists[pindex];
35b6d770
MG
1477 if (!list_empty(list))
1478 break;
1479
1480 if (pindex == max_pindex)
1481 max_pindex--;
1482 if (pindex == min_pindex)
1483 min_pindex++;
1484 } while (1);
48db57f8 1485
44042b44 1486 order = pindex_to_order(pindex);
fd56eef2 1487 nr_pages = 1 << order;
44042b44 1488 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
a6f9edd6 1489 do {
8b10b465
MG
1490 int mt;
1491
a16601c5 1492 page = list_last_entry(list, struct page, lru);
8b10b465
MG
1493 mt = get_pcppage_migratetype(page);
1494
0a5f4e5b 1495 /* must delete to avoid corrupting pcp list */
a6f9edd6 1496 list_del(&page->lru);
fd56eef2
MG
1497 count -= nr_pages;
1498 pcp->count -= nr_pages;
aa016d14 1499
4db7548c
MG
1500 if (bulkfree_pcp_prepare(page))
1501 continue;
1502
8b10b465
MG
1503 /* MIGRATE_ISOLATE page should not go to pcplists */
1504 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1505 /* Pageblock could have been isolated meanwhile */
1506 if (unlikely(isolated_pageblocks))
1507 mt = get_pageblock_migratetype(page);
0a5f4e5b 1508
8b10b465
MG
1509 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1510 trace_mm_page_pcpu_drain(page, order, mt);
1511 } while (count > 0 && !list_empty(list));
0a5f4e5b 1512 }
8b10b465 1513
d34b0733 1514 spin_unlock(&zone->lock);
1da177e4
LT
1515}
1516
dc4b0caf
MG
1517static void free_one_page(struct zone *zone,
1518 struct page *page, unsigned long pfn,
7aeb09f9 1519 unsigned int order,
7fef431b 1520 int migratetype, fpi_t fpi_flags)
1da177e4 1521{
df1acc85
MG
1522 unsigned long flags;
1523
1524 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1525 if (unlikely(has_isolate_pageblock(zone) ||
1526 is_migrate_isolate(migratetype))) {
1527 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1528 }
7fef431b 1529 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1530 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1531}
1532
1e8ce83c 1533static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1534 unsigned long zone, int nid)
1e8ce83c 1535{
d0dc12e8 1536 mm_zero_struct_page(page);
1e8ce83c 1537 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1538 init_page_count(page);
1539 page_mapcount_reset(page);
1540 page_cpupid_reset_last(page);
2813b9c0 1541 page_kasan_tag_reset(page);
1e8ce83c 1542
1e8ce83c
RH
1543 INIT_LIST_HEAD(&page->lru);
1544#ifdef WANT_PAGE_VIRTUAL
1545 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1546 if (!is_highmem_idx(zone))
1547 set_page_address(page, __va(pfn << PAGE_SHIFT));
1548#endif
1549}
1550
7e18adb4 1551#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1552static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1553{
1554 pg_data_t *pgdat;
1555 int nid, zid;
1556
1557 if (!early_page_uninitialised(pfn))
1558 return;
1559
1560 nid = early_pfn_to_nid(pfn);
1561 pgdat = NODE_DATA(nid);
1562
1563 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1564 struct zone *zone = &pgdat->node_zones[zid];
1565
86fb05b9 1566 if (zone_spans_pfn(zone, pfn))
7e18adb4
MG
1567 break;
1568 }
d0dc12e8 1569 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1570}
1571#else
1572static inline void init_reserved_page(unsigned long pfn)
1573{
1574}
1575#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1576
92923ca3
NZ
1577/*
1578 * Initialised pages do not have PageReserved set. This function is
1579 * called for each range allocated by the bootmem allocator and
1580 * marks the pages PageReserved. The remaining valid pages are later
1581 * sent to the buddy page allocator.
1582 */
4b50bcc7 1583void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1584{
1585 unsigned long start_pfn = PFN_DOWN(start);
1586 unsigned long end_pfn = PFN_UP(end);
1587
7e18adb4
MG
1588 for (; start_pfn < end_pfn; start_pfn++) {
1589 if (pfn_valid(start_pfn)) {
1590 struct page *page = pfn_to_page(start_pfn);
1591
1592 init_reserved_page(start_pfn);
1d798ca3
KS
1593
1594 /* Avoid false-positive PageTail() */
1595 INIT_LIST_HEAD(&page->lru);
1596
d483da5b
AD
1597 /*
1598 * no need for atomic set_bit because the struct
1599 * page is not visible yet so nobody should
1600 * access it yet.
1601 */
1602 __SetPageReserved(page);
7e18adb4
MG
1603 }
1604 }
92923ca3
NZ
1605}
1606
7fef431b
DH
1607static void __free_pages_ok(struct page *page, unsigned int order,
1608 fpi_t fpi_flags)
ec95f53a 1609{
d34b0733 1610 unsigned long flags;
95e34412 1611 int migratetype;
dc4b0caf 1612 unsigned long pfn = page_to_pfn(page);
56f0e661 1613 struct zone *zone = page_zone(page);
ec95f53a 1614
2c335680 1615 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1616 return;
1617
cfc47a28 1618 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1619
56f0e661 1620 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1621 if (unlikely(has_isolate_pageblock(zone) ||
1622 is_migrate_isolate(migratetype))) {
1623 migratetype = get_pfnblock_migratetype(page, pfn);
1624 }
1625 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1626 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1627
d34b0733 1628 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1629}
1630
a9cd410a 1631void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1632{
c3993076 1633 unsigned int nr_pages = 1 << order;
e2d0bd2b 1634 struct page *p = page;
c3993076 1635 unsigned int loop;
a226f6c8 1636
7fef431b
DH
1637 /*
1638 * When initializing the memmap, __init_single_page() sets the refcount
1639 * of all pages to 1 ("allocated"/"not free"). We have to set the
1640 * refcount of all involved pages to 0.
1641 */
e2d0bd2b
YL
1642 prefetchw(p);
1643 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1644 prefetchw(p + 1);
c3993076
JW
1645 __ClearPageReserved(p);
1646 set_page_count(p, 0);
a226f6c8 1647 }
e2d0bd2b
YL
1648 __ClearPageReserved(p);
1649 set_page_count(p, 0);
c3993076 1650
9705bea5 1651 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1652
1653 /*
1654 * Bypass PCP and place fresh pages right to the tail, primarily
1655 * relevant for memory onlining.
1656 */
2c335680 1657 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1658}
1659
a9ee6cf5 1660#ifdef CONFIG_NUMA
7ace9917 1661
03e92a5e
MR
1662/*
1663 * During memory init memblocks map pfns to nids. The search is expensive and
1664 * this caches recent lookups. The implementation of __early_pfn_to_nid
1665 * treats start/end as pfns.
1666 */
1667struct mminit_pfnnid_cache {
1668 unsigned long last_start;
1669 unsigned long last_end;
1670 int last_nid;
1671};
75a592a4 1672
03e92a5e 1673static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1674
1675/*
1676 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1677 */
03e92a5e 1678static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1679 struct mminit_pfnnid_cache *state)
75a592a4 1680{
6f24fbd3 1681 unsigned long start_pfn, end_pfn;
75a592a4
MG
1682 int nid;
1683
6f24fbd3
MR
1684 if (state->last_start <= pfn && pfn < state->last_end)
1685 return state->last_nid;
1686
1687 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1688 if (nid != NUMA_NO_NODE) {
1689 state->last_start = start_pfn;
1690 state->last_end = end_pfn;
1691 state->last_nid = nid;
1692 }
7ace9917
MG
1693
1694 return nid;
75a592a4 1695}
75a592a4 1696
75a592a4 1697int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1698{
7ace9917 1699 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1700 int nid;
1701
7ace9917 1702 spin_lock(&early_pfn_lock);
56ec43d8 1703 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1704 if (nid < 0)
e4568d38 1705 nid = first_online_node;
7ace9917 1706 spin_unlock(&early_pfn_lock);
75a592a4 1707
7ace9917 1708 return nid;
75a592a4 1709}
a9ee6cf5 1710#endif /* CONFIG_NUMA */
75a592a4 1711
7c2ee349 1712void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1713 unsigned int order)
1714{
1715 if (early_page_uninitialised(pfn))
1716 return;
a9cd410a 1717 __free_pages_core(page, order);
3a80a7fa
MG
1718}
1719
7cf91a98
JK
1720/*
1721 * Check that the whole (or subset of) a pageblock given by the interval of
1722 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1723 * with the migration of free compaction scanner.
7cf91a98
JK
1724 *
1725 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1726 *
1727 * It's possible on some configurations to have a setup like node0 node1 node0
1728 * i.e. it's possible that all pages within a zones range of pages do not
1729 * belong to a single zone. We assume that a border between node0 and node1
1730 * can occur within a single pageblock, but not a node0 node1 node0
1731 * interleaving within a single pageblock. It is therefore sufficient to check
1732 * the first and last page of a pageblock and avoid checking each individual
1733 * page in a pageblock.
1734 */
1735struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1736 unsigned long end_pfn, struct zone *zone)
1737{
1738 struct page *start_page;
1739 struct page *end_page;
1740
1741 /* end_pfn is one past the range we are checking */
1742 end_pfn--;
1743
1744 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1745 return NULL;
1746
2d070eab
MH
1747 start_page = pfn_to_online_page(start_pfn);
1748 if (!start_page)
1749 return NULL;
7cf91a98
JK
1750
1751 if (page_zone(start_page) != zone)
1752 return NULL;
1753
1754 end_page = pfn_to_page(end_pfn);
1755
1756 /* This gives a shorter code than deriving page_zone(end_page) */
1757 if (page_zone_id(start_page) != page_zone_id(end_page))
1758 return NULL;
1759
1760 return start_page;
1761}
1762
1763void set_zone_contiguous(struct zone *zone)
1764{
1765 unsigned long block_start_pfn = zone->zone_start_pfn;
1766 unsigned long block_end_pfn;
1767
1768 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1769 for (; block_start_pfn < zone_end_pfn(zone);
1770 block_start_pfn = block_end_pfn,
1771 block_end_pfn += pageblock_nr_pages) {
1772
1773 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1774
1775 if (!__pageblock_pfn_to_page(block_start_pfn,
1776 block_end_pfn, zone))
1777 return;
e84fe99b 1778 cond_resched();
7cf91a98
JK
1779 }
1780
1781 /* We confirm that there is no hole */
1782 zone->contiguous = true;
1783}
1784
1785void clear_zone_contiguous(struct zone *zone)
1786{
1787 zone->contiguous = false;
1788}
1789
7e18adb4 1790#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1791static void __init deferred_free_range(unsigned long pfn,
1792 unsigned long nr_pages)
a4de83dd 1793{
2f47a91f
PT
1794 struct page *page;
1795 unsigned long i;
a4de83dd 1796
2f47a91f 1797 if (!nr_pages)
a4de83dd
MG
1798 return;
1799
2f47a91f
PT
1800 page = pfn_to_page(pfn);
1801
a4de83dd 1802 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1803 if (nr_pages == pageblock_nr_pages &&
1804 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1805 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1806 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1807 return;
1808 }
1809
e780149b
XQ
1810 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1811 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1812 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1813 __free_pages_core(page, 0);
e780149b 1814 }
a4de83dd
MG
1815}
1816
d3cd131d
NS
1817/* Completion tracking for deferred_init_memmap() threads */
1818static atomic_t pgdat_init_n_undone __initdata;
1819static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1820
1821static inline void __init pgdat_init_report_one_done(void)
1822{
1823 if (atomic_dec_and_test(&pgdat_init_n_undone))
1824 complete(&pgdat_init_all_done_comp);
1825}
0e1cc95b 1826
2f47a91f 1827/*
80b1f41c
PT
1828 * Returns true if page needs to be initialized or freed to buddy allocator.
1829 *
1830 * First we check if pfn is valid on architectures where it is possible to have
1831 * holes within pageblock_nr_pages. On systems where it is not possible, this
1832 * function is optimized out.
1833 *
1834 * Then, we check if a current large page is valid by only checking the validity
1835 * of the head pfn.
2f47a91f 1836 */
56ec43d8 1837static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1838{
80b1f41c
PT
1839 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1840 return false;
80b1f41c
PT
1841 return true;
1842}
2f47a91f 1843
80b1f41c
PT
1844/*
1845 * Free pages to buddy allocator. Try to free aligned pages in
1846 * pageblock_nr_pages sizes.
1847 */
56ec43d8 1848static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1849 unsigned long end_pfn)
1850{
80b1f41c
PT
1851 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1852 unsigned long nr_free = 0;
2f47a91f 1853
80b1f41c 1854 for (; pfn < end_pfn; pfn++) {
56ec43d8 1855 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1856 deferred_free_range(pfn - nr_free, nr_free);
1857 nr_free = 0;
1858 } else if (!(pfn & nr_pgmask)) {
1859 deferred_free_range(pfn - nr_free, nr_free);
1860 nr_free = 1;
80b1f41c
PT
1861 } else {
1862 nr_free++;
1863 }
1864 }
1865 /* Free the last block of pages to allocator */
1866 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1867}
1868
80b1f41c
PT
1869/*
1870 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1871 * by performing it only once every pageblock_nr_pages.
1872 * Return number of pages initialized.
1873 */
56ec43d8 1874static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1875 unsigned long pfn,
1876 unsigned long end_pfn)
2f47a91f 1877{
2f47a91f 1878 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1879 int nid = zone_to_nid(zone);
2f47a91f 1880 unsigned long nr_pages = 0;
56ec43d8 1881 int zid = zone_idx(zone);
2f47a91f 1882 struct page *page = NULL;
2f47a91f 1883
80b1f41c 1884 for (; pfn < end_pfn; pfn++) {
56ec43d8 1885 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1886 page = NULL;
2f47a91f 1887 continue;
80b1f41c 1888 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1889 page = pfn_to_page(pfn);
80b1f41c
PT
1890 } else {
1891 page++;
2f47a91f 1892 }
d0dc12e8 1893 __init_single_page(page, pfn, zid, nid);
80b1f41c 1894 nr_pages++;
2f47a91f 1895 }
80b1f41c 1896 return (nr_pages);
2f47a91f
PT
1897}
1898
0e56acae
AD
1899/*
1900 * This function is meant to pre-load the iterator for the zone init.
1901 * Specifically it walks through the ranges until we are caught up to the
1902 * first_init_pfn value and exits there. If we never encounter the value we
1903 * return false indicating there are no valid ranges left.
1904 */
1905static bool __init
1906deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1907 unsigned long *spfn, unsigned long *epfn,
1908 unsigned long first_init_pfn)
1909{
1910 u64 j;
1911
1912 /*
1913 * Start out by walking through the ranges in this zone that have
1914 * already been initialized. We don't need to do anything with them
1915 * so we just need to flush them out of the system.
1916 */
1917 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1918 if (*epfn <= first_init_pfn)
1919 continue;
1920 if (*spfn < first_init_pfn)
1921 *spfn = first_init_pfn;
1922 *i = j;
1923 return true;
1924 }
1925
1926 return false;
1927}
1928
1929/*
1930 * Initialize and free pages. We do it in two loops: first we initialize
1931 * struct page, then free to buddy allocator, because while we are
1932 * freeing pages we can access pages that are ahead (computing buddy
1933 * page in __free_one_page()).
1934 *
1935 * In order to try and keep some memory in the cache we have the loop
1936 * broken along max page order boundaries. This way we will not cause
1937 * any issues with the buddy page computation.
1938 */
1939static unsigned long __init
1940deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1941 unsigned long *end_pfn)
1942{
1943 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1944 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1945 unsigned long nr_pages = 0;
1946 u64 j = *i;
1947
1948 /* First we loop through and initialize the page values */
1949 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1950 unsigned long t;
1951
1952 if (mo_pfn <= *start_pfn)
1953 break;
1954
1955 t = min(mo_pfn, *end_pfn);
1956 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1957
1958 if (mo_pfn < *end_pfn) {
1959 *start_pfn = mo_pfn;
1960 break;
1961 }
1962 }
1963
1964 /* Reset values and now loop through freeing pages as needed */
1965 swap(j, *i);
1966
1967 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1968 unsigned long t;
1969
1970 if (mo_pfn <= spfn)
1971 break;
1972
1973 t = min(mo_pfn, epfn);
1974 deferred_free_pages(spfn, t);
1975
1976 if (mo_pfn <= epfn)
1977 break;
1978 }
1979
1980 return nr_pages;
1981}
1982
e4443149
DJ
1983static void __init
1984deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1985 void *arg)
1986{
1987 unsigned long spfn, epfn;
1988 struct zone *zone = arg;
1989 u64 i;
1990
1991 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1992
1993 /*
1994 * Initialize and free pages in MAX_ORDER sized increments so that we
1995 * can avoid introducing any issues with the buddy allocator.
1996 */
1997 while (spfn < end_pfn) {
1998 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1999 cond_resched();
2000 }
2001}
2002
ecd09650
DJ
2003/* An arch may override for more concurrency. */
2004__weak int __init
2005deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2006{
2007 return 1;
2008}
2009
7e18adb4 2010/* Initialise remaining memory on a node */
0e1cc95b 2011static int __init deferred_init_memmap(void *data)
7e18adb4 2012{
0e1cc95b 2013 pg_data_t *pgdat = data;
0e56acae 2014 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 2015 unsigned long spfn = 0, epfn = 0;
0e56acae 2016 unsigned long first_init_pfn, flags;
7e18adb4 2017 unsigned long start = jiffies;
7e18adb4 2018 struct zone *zone;
e4443149 2019 int zid, max_threads;
2f47a91f 2020 u64 i;
7e18adb4 2021
3a2d7fa8
PT
2022 /* Bind memory initialisation thread to a local node if possible */
2023 if (!cpumask_empty(cpumask))
2024 set_cpus_allowed_ptr(current, cpumask);
2025
2026 pgdat_resize_lock(pgdat, &flags);
2027 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2028 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2029 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2030 pgdat_init_report_one_done();
0e1cc95b
MG
2031 return 0;
2032 }
2033
7e18adb4
MG
2034 /* Sanity check boundaries */
2035 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2036 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2037 pgdat->first_deferred_pfn = ULONG_MAX;
2038
3d060856
PT
2039 /*
2040 * Once we unlock here, the zone cannot be grown anymore, thus if an
2041 * interrupt thread must allocate this early in boot, zone must be
2042 * pre-grown prior to start of deferred page initialization.
2043 */
2044 pgdat_resize_unlock(pgdat, &flags);
2045
7e18adb4
MG
2046 /* Only the highest zone is deferred so find it */
2047 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2048 zone = pgdat->node_zones + zid;
2049 if (first_init_pfn < zone_end_pfn(zone))
2050 break;
2051 }
0e56acae
AD
2052
2053 /* If the zone is empty somebody else may have cleared out the zone */
2054 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2055 first_init_pfn))
2056 goto zone_empty;
7e18adb4 2057
ecd09650 2058 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2059
117003c3 2060 while (spfn < epfn) {
e4443149
DJ
2061 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2062 struct padata_mt_job job = {
2063 .thread_fn = deferred_init_memmap_chunk,
2064 .fn_arg = zone,
2065 .start = spfn,
2066 .size = epfn_align - spfn,
2067 .align = PAGES_PER_SECTION,
2068 .min_chunk = PAGES_PER_SECTION,
2069 .max_threads = max_threads,
2070 };
2071
2072 padata_do_multithreaded(&job);
2073 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2074 epfn_align);
117003c3 2075 }
0e56acae 2076zone_empty:
7e18adb4
MG
2077 /* Sanity check that the next zone really is unpopulated */
2078 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2079
89c7c402
DJ
2080 pr_info("node %d deferred pages initialised in %ums\n",
2081 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2082
2083 pgdat_init_report_one_done();
0e1cc95b
MG
2084 return 0;
2085}
c9e97a19 2086
c9e97a19
PT
2087/*
2088 * If this zone has deferred pages, try to grow it by initializing enough
2089 * deferred pages to satisfy the allocation specified by order, rounded up to
2090 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2091 * of SECTION_SIZE bytes by initializing struct pages in increments of
2092 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2093 *
2094 * Return true when zone was grown, otherwise return false. We return true even
2095 * when we grow less than requested, to let the caller decide if there are
2096 * enough pages to satisfy the allocation.
2097 *
2098 * Note: We use noinline because this function is needed only during boot, and
2099 * it is called from a __ref function _deferred_grow_zone. This way we are
2100 * making sure that it is not inlined into permanent text section.
2101 */
2102static noinline bool __init
2103deferred_grow_zone(struct zone *zone, unsigned int order)
2104{
c9e97a19 2105 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2106 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2107 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2108 unsigned long spfn, epfn, flags;
2109 unsigned long nr_pages = 0;
c9e97a19
PT
2110 u64 i;
2111
2112 /* Only the last zone may have deferred pages */
2113 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2114 return false;
2115
2116 pgdat_resize_lock(pgdat, &flags);
2117
c9e97a19
PT
2118 /*
2119 * If someone grew this zone while we were waiting for spinlock, return
2120 * true, as there might be enough pages already.
2121 */
2122 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2123 pgdat_resize_unlock(pgdat, &flags);
2124 return true;
2125 }
2126
0e56acae
AD
2127 /* If the zone is empty somebody else may have cleared out the zone */
2128 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2129 first_deferred_pfn)) {
2130 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2131 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2132 /* Retry only once. */
2133 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2134 }
2135
0e56acae
AD
2136 /*
2137 * Initialize and free pages in MAX_ORDER sized increments so
2138 * that we can avoid introducing any issues with the buddy
2139 * allocator.
2140 */
2141 while (spfn < epfn) {
2142 /* update our first deferred PFN for this section */
2143 first_deferred_pfn = spfn;
2144
2145 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2146 touch_nmi_watchdog();
c9e97a19 2147
0e56acae
AD
2148 /* We should only stop along section boundaries */
2149 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2150 continue;
c9e97a19 2151
0e56acae 2152 /* If our quota has been met we can stop here */
c9e97a19
PT
2153 if (nr_pages >= nr_pages_needed)
2154 break;
2155 }
2156
0e56acae 2157 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2158 pgdat_resize_unlock(pgdat, &flags);
2159
2160 return nr_pages > 0;
2161}
2162
2163/*
2164 * deferred_grow_zone() is __init, but it is called from
2165 * get_page_from_freelist() during early boot until deferred_pages permanently
2166 * disables this call. This is why we have refdata wrapper to avoid warning,
2167 * and to ensure that the function body gets unloaded.
2168 */
2169static bool __ref
2170_deferred_grow_zone(struct zone *zone, unsigned int order)
2171{
2172 return deferred_grow_zone(zone, order);
2173}
2174
7cf91a98 2175#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2176
2177void __init page_alloc_init_late(void)
2178{
7cf91a98 2179 struct zone *zone;
e900a918 2180 int nid;
7cf91a98
JK
2181
2182#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2183
d3cd131d
NS
2184 /* There will be num_node_state(N_MEMORY) threads */
2185 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2186 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2187 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2188 }
2189
2190 /* Block until all are initialised */
d3cd131d 2191 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2192
c9e97a19
PT
2193 /*
2194 * We initialized the rest of the deferred pages. Permanently disable
2195 * on-demand struct page initialization.
2196 */
2197 static_branch_disable(&deferred_pages);
2198
4248b0da
MG
2199 /* Reinit limits that are based on free pages after the kernel is up */
2200 files_maxfiles_init();
7cf91a98 2201#endif
350e88ba 2202
ba8f3587
LF
2203 buffer_init();
2204
3010f876
PT
2205 /* Discard memblock private memory */
2206 memblock_discard();
7cf91a98 2207
e900a918
DW
2208 for_each_node_state(nid, N_MEMORY)
2209 shuffle_free_memory(NODE_DATA(nid));
2210
7cf91a98
JK
2211 for_each_populated_zone(zone)
2212 set_zone_contiguous(zone);
7e18adb4 2213}
7e18adb4 2214
47118af0 2215#ifdef CONFIG_CMA
9cf510a5 2216/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2217void __init init_cma_reserved_pageblock(struct page *page)
2218{
2219 unsigned i = pageblock_nr_pages;
2220 struct page *p = page;
2221
2222 do {
2223 __ClearPageReserved(p);
2224 set_page_count(p, 0);
d883c6cf 2225 } while (++p, --i);
47118af0 2226
47118af0 2227 set_pageblock_migratetype(page, MIGRATE_CMA);
b3d40a2b
DH
2228 set_page_refcounted(page);
2229 __free_pages(page, pageblock_order);
dc78327c 2230
3dcc0571 2231 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2232 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2233}
2234#endif
1da177e4
LT
2235
2236/*
2237 * The order of subdivision here is critical for the IO subsystem.
2238 * Please do not alter this order without good reasons and regression
2239 * testing. Specifically, as large blocks of memory are subdivided,
2240 * the order in which smaller blocks are delivered depends on the order
2241 * they're subdivided in this function. This is the primary factor
2242 * influencing the order in which pages are delivered to the IO
2243 * subsystem according to empirical testing, and this is also justified
2244 * by considering the behavior of a buddy system containing a single
2245 * large block of memory acted on by a series of small allocations.
2246 * This behavior is a critical factor in sglist merging's success.
2247 *
6d49e352 2248 * -- nyc
1da177e4 2249 */
085cc7d5 2250static inline void expand(struct zone *zone, struct page *page,
6ab01363 2251 int low, int high, int migratetype)
1da177e4
LT
2252{
2253 unsigned long size = 1 << high;
2254
2255 while (high > low) {
1da177e4
LT
2256 high--;
2257 size >>= 1;
309381fe 2258 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2259
acbc15a4
JK
2260 /*
2261 * Mark as guard pages (or page), that will allow to
2262 * merge back to allocator when buddy will be freed.
2263 * Corresponding page table entries will not be touched,
2264 * pages will stay not present in virtual address space
2265 */
2266 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2267 continue;
acbc15a4 2268
6ab01363 2269 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2270 set_buddy_order(&page[size], high);
1da177e4 2271 }
1da177e4
LT
2272}
2273
4e611801 2274static void check_new_page_bad(struct page *page)
1da177e4 2275{
f4c18e6f 2276 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2277 /* Don't complain about hwpoisoned pages */
2278 page_mapcount_reset(page); /* remove PageBuddy */
2279 return;
f4c18e6f 2280 }
58b7f119
WY
2281
2282 bad_page(page,
2283 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2284}
2285
2286/*
2287 * This page is about to be returned from the page allocator
2288 */
2289static inline int check_new_page(struct page *page)
2290{
2291 if (likely(page_expected_state(page,
2292 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2293 return 0;
2294
2295 check_new_page_bad(page);
2296 return 1;
2a7684a2
WF
2297}
2298
77fe7f13
MG
2299static bool check_new_pages(struct page *page, unsigned int order)
2300{
2301 int i;
2302 for (i = 0; i < (1 << order); i++) {
2303 struct page *p = page + i;
2304
2305 if (unlikely(check_new_page(p)))
2306 return true;
2307 }
2308
2309 return false;
2310}
2311
479f854a 2312#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2313/*
2314 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2315 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2316 * also checked when pcp lists are refilled from the free lists.
2317 */
77fe7f13 2318static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2319{
8e57f8ac 2320 if (debug_pagealloc_enabled_static())
77fe7f13 2321 return check_new_pages(page, order);
4462b32c
VB
2322 else
2323 return false;
479f854a
MG
2324}
2325
77fe7f13 2326static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2327{
77fe7f13 2328 return check_new_pages(page, order);
479f854a
MG
2329}
2330#else
4462b32c
VB
2331/*
2332 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2333 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2334 * enabled, they are also checked when being allocated from the pcp lists.
2335 */
77fe7f13 2336static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2337{
77fe7f13 2338 return check_new_pages(page, order);
479f854a 2339}
77fe7f13 2340static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2341{
8e57f8ac 2342 if (debug_pagealloc_enabled_static())
77fe7f13 2343 return check_new_pages(page, order);
4462b32c
VB
2344 else
2345 return false;
479f854a
MG
2346}
2347#endif /* CONFIG_DEBUG_VM */
2348
53ae233c
AK
2349static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2350{
2351 /* Don't skip if a software KASAN mode is enabled. */
2352 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2353 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2354 return false;
2355
2356 /* Skip, if hardware tag-based KASAN is not enabled. */
2357 if (!kasan_hw_tags_enabled())
2358 return true;
2359
2360 /*
2361 * With hardware tag-based KASAN enabled, skip if either:
2362 *
2363 * 1. Memory tags have already been cleared via tag_clear_highpage().
2364 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2365 */
2366 return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2367}
2368
9353ffa6
AK
2369static inline bool should_skip_init(gfp_t flags)
2370{
2371 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2372 if (!kasan_hw_tags_enabled())
2373 return false;
2374
2375 /* For hardware tag-based KASAN, skip if requested. */
2376 return (flags & __GFP_SKIP_ZERO);
2377}
2378
46f24fd8
JK
2379inline void post_alloc_hook(struct page *page, unsigned int order,
2380 gfp_t gfp_flags)
2381{
9353ffa6
AK
2382 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2383 !should_skip_init(gfp_flags);
b42090ae
AK
2384 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2385
46f24fd8
JK
2386 set_page_private(page, 0);
2387 set_page_refcounted(page);
2388
2389 arch_alloc_page(page, order);
77bc7fd6 2390 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2391
2392 /*
2393 * Page unpoisoning must happen before memory initialization.
2394 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2395 * allocations and the page unpoisoning code will complain.
2396 */
8db26a3d 2397 kernel_unpoison_pages(page, 1 << order);
862b6dee 2398
1bb5eab3
AK
2399 /*
2400 * As memory initialization might be integrated into KASAN,
b42090ae 2401 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
2402 * kept together to avoid discrepancies in behavior.
2403 */
9294b128
AK
2404
2405 /*
2406 * If memory tags should be zeroed (which happens only when memory
2407 * should be initialized as well).
2408 */
2409 if (init_tags) {
2410 int i;
2411
2412 /* Initialize both memory and tags. */
2413 for (i = 0; i != 1 << order; ++i)
2414 tag_clear_highpage(page + i);
2415
2416 /* Note that memory is already initialized by the loop above. */
2417 init = false;
2418 }
53ae233c
AK
2419 if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2420 /* Unpoison shadow memory or set memory tags. */
e9d0ca92 2421 kasan_unpoison_pages(page, order, init);
7e3cbba6 2422
e9d0ca92
AK
2423 /* Note that memory is already initialized by KASAN. */
2424 if (kasan_has_integrated_init())
7e3cbba6 2425 init = false;
7a3b8353 2426 }
7e3cbba6
AK
2427 /* If memory is still not initialized, do it now. */
2428 if (init)
2429 kernel_init_free_pages(page, 1 << order);
89b27116
AK
2430 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2431 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2432 SetPageSkipKASanPoison(page);
1bb5eab3
AK
2433
2434 set_page_owner(page, order, gfp_flags);
df4e817b 2435 page_table_check_alloc(page, order);
46f24fd8
JK
2436}
2437
479f854a 2438static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2439 unsigned int alloc_flags)
2a7684a2 2440{
46f24fd8 2441 post_alloc_hook(page, order, gfp_flags);
17cf4406 2442
17cf4406
NP
2443 if (order && (gfp_flags & __GFP_COMP))
2444 prep_compound_page(page, order);
2445
75379191 2446 /*
2f064f34 2447 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2448 * allocate the page. The expectation is that the caller is taking
2449 * steps that will free more memory. The caller should avoid the page
2450 * being used for !PFMEMALLOC purposes.
2451 */
2f064f34
MH
2452 if (alloc_flags & ALLOC_NO_WATERMARKS)
2453 set_page_pfmemalloc(page);
2454 else
2455 clear_page_pfmemalloc(page);
1da177e4
LT
2456}
2457
56fd56b8
MG
2458/*
2459 * Go through the free lists for the given migratetype and remove
2460 * the smallest available page from the freelists
2461 */
85ccc8fa 2462static __always_inline
728ec980 2463struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2464 int migratetype)
2465{
2466 unsigned int current_order;
b8af2941 2467 struct free_area *area;
56fd56b8
MG
2468 struct page *page;
2469
2470 /* Find a page of the appropriate size in the preferred list */
2471 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2472 area = &(zone->free_area[current_order]);
b03641af 2473 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2474 if (!page)
2475 continue;
6ab01363
AD
2476 del_page_from_free_list(page, zone, current_order);
2477 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2478 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2479 return page;
2480 }
2481
2482 return NULL;
2483}
2484
2485
b2a0ac88
MG
2486/*
2487 * This array describes the order lists are fallen back to when
2488 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
2489 *
2490 * The other migratetypes do not have fallbacks.
b2a0ac88 2491 */
da415663 2492static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2493 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2494 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2495 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
b2a0ac88
MG
2496};
2497
dc67647b 2498#ifdef CONFIG_CMA
85ccc8fa 2499static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2500 unsigned int order)
2501{
2502 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2503}
2504#else
2505static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2506 unsigned int order) { return NULL; }
2507#endif
2508
c361be55 2509/*
293ffa5e 2510 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2511 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2512 * boundary. If alignment is required, use move_freepages_block()
2513 */
02aa0cdd 2514static int move_freepages(struct zone *zone,
39ddb991 2515 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2516 int migratetype, int *num_movable)
c361be55
MG
2517{
2518 struct page *page;
39ddb991 2519 unsigned long pfn;
d00181b9 2520 unsigned int order;
d100313f 2521 int pages_moved = 0;
c361be55 2522
39ddb991 2523 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2524 page = pfn_to_page(pfn);
c361be55 2525 if (!PageBuddy(page)) {
02aa0cdd
VB
2526 /*
2527 * We assume that pages that could be isolated for
2528 * migration are movable. But we don't actually try
2529 * isolating, as that would be expensive.
2530 */
2531 if (num_movable &&
2532 (PageLRU(page) || __PageMovable(page)))
2533 (*num_movable)++;
39ddb991 2534 pfn++;
c361be55
MG
2535 continue;
2536 }
2537
cd961038
DR
2538 /* Make sure we are not inadvertently changing nodes */
2539 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2540 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2541
ab130f91 2542 order = buddy_order(page);
6ab01363 2543 move_to_free_list(page, zone, order, migratetype);
39ddb991 2544 pfn += 1 << order;
d100313f 2545 pages_moved += 1 << order;
c361be55
MG
2546 }
2547
d100313f 2548 return pages_moved;
c361be55
MG
2549}
2550
ee6f509c 2551int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2552 int migratetype, int *num_movable)
c361be55 2553{
39ddb991 2554 unsigned long start_pfn, end_pfn, pfn;
c361be55 2555
4a222127
DR
2556 if (num_movable)
2557 *num_movable = 0;
2558
39ddb991
KW
2559 pfn = page_to_pfn(page);
2560 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2561 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2562
2563 /* Do not cross zone boundaries */
108bcc96 2564 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2565 start_pfn = pfn;
108bcc96 2566 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2567 return 0;
2568
39ddb991 2569 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2570 num_movable);
c361be55
MG
2571}
2572
2f66a68f
MG
2573static void change_pageblock_range(struct page *pageblock_page,
2574 int start_order, int migratetype)
2575{
2576 int nr_pageblocks = 1 << (start_order - pageblock_order);
2577
2578 while (nr_pageblocks--) {
2579 set_pageblock_migratetype(pageblock_page, migratetype);
2580 pageblock_page += pageblock_nr_pages;
2581 }
2582}
2583
fef903ef 2584/*
9c0415eb
VB
2585 * When we are falling back to another migratetype during allocation, try to
2586 * steal extra free pages from the same pageblocks to satisfy further
2587 * allocations, instead of polluting multiple pageblocks.
2588 *
2589 * If we are stealing a relatively large buddy page, it is likely there will
2590 * be more free pages in the pageblock, so try to steal them all. For
2591 * reclaimable and unmovable allocations, we steal regardless of page size,
2592 * as fragmentation caused by those allocations polluting movable pageblocks
2593 * is worse than movable allocations stealing from unmovable and reclaimable
2594 * pageblocks.
fef903ef 2595 */
4eb7dce6
JK
2596static bool can_steal_fallback(unsigned int order, int start_mt)
2597{
2598 /*
2599 * Leaving this order check is intended, although there is
2600 * relaxed order check in next check. The reason is that
2601 * we can actually steal whole pageblock if this condition met,
2602 * but, below check doesn't guarantee it and that is just heuristic
2603 * so could be changed anytime.
2604 */
2605 if (order >= pageblock_order)
2606 return true;
2607
2608 if (order >= pageblock_order / 2 ||
2609 start_mt == MIGRATE_RECLAIMABLE ||
2610 start_mt == MIGRATE_UNMOVABLE ||
2611 page_group_by_mobility_disabled)
2612 return true;
2613
2614 return false;
2615}
2616
597c8920 2617static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2618{
2619 unsigned long max_boost;
2620
2621 if (!watermark_boost_factor)
597c8920 2622 return false;
14f69140
HW
2623 /*
2624 * Don't bother in zones that are unlikely to produce results.
2625 * On small machines, including kdump capture kernels running
2626 * in a small area, boosting the watermark can cause an out of
2627 * memory situation immediately.
2628 */
2629 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2630 return false;
1c30844d
MG
2631
2632 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2633 watermark_boost_factor, 10000);
94b3334c
MG
2634
2635 /*
2636 * high watermark may be uninitialised if fragmentation occurs
2637 * very early in boot so do not boost. We do not fall
2638 * through and boost by pageblock_nr_pages as failing
2639 * allocations that early means that reclaim is not going
2640 * to help and it may even be impossible to reclaim the
2641 * boosted watermark resulting in a hang.
2642 */
2643 if (!max_boost)
597c8920 2644 return false;
94b3334c 2645
1c30844d
MG
2646 max_boost = max(pageblock_nr_pages, max_boost);
2647
2648 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2649 max_boost);
597c8920
JW
2650
2651 return true;
1c30844d
MG
2652}
2653
4eb7dce6
JK
2654/*
2655 * This function implements actual steal behaviour. If order is large enough,
2656 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2657 * pageblock to our migratetype and determine how many already-allocated pages
2658 * are there in the pageblock with a compatible migratetype. If at least half
2659 * of pages are free or compatible, we can change migratetype of the pageblock
2660 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2661 */
2662static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2663 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2664{
ab130f91 2665 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2666 int free_pages, movable_pages, alike_pages;
2667 int old_block_type;
2668
2669 old_block_type = get_pageblock_migratetype(page);
fef903ef 2670
3bc48f96
VB
2671 /*
2672 * This can happen due to races and we want to prevent broken
2673 * highatomic accounting.
2674 */
02aa0cdd 2675 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2676 goto single_page;
2677
fef903ef
SB
2678 /* Take ownership for orders >= pageblock_order */
2679 if (current_order >= pageblock_order) {
2680 change_pageblock_range(page, current_order, start_type);
3bc48f96 2681 goto single_page;
fef903ef
SB
2682 }
2683
1c30844d
MG
2684 /*
2685 * Boost watermarks to increase reclaim pressure to reduce the
2686 * likelihood of future fallbacks. Wake kswapd now as the node
2687 * may be balanced overall and kswapd will not wake naturally.
2688 */
597c8920 2689 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2690 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2691
3bc48f96
VB
2692 /* We are not allowed to try stealing from the whole block */
2693 if (!whole_block)
2694 goto single_page;
2695
02aa0cdd
VB
2696 free_pages = move_freepages_block(zone, page, start_type,
2697 &movable_pages);
2698 /*
2699 * Determine how many pages are compatible with our allocation.
2700 * For movable allocation, it's the number of movable pages which
2701 * we just obtained. For other types it's a bit more tricky.
2702 */
2703 if (start_type == MIGRATE_MOVABLE) {
2704 alike_pages = movable_pages;
2705 } else {
2706 /*
2707 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2708 * to MOVABLE pageblock, consider all non-movable pages as
2709 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2710 * vice versa, be conservative since we can't distinguish the
2711 * exact migratetype of non-movable pages.
2712 */
2713 if (old_block_type == MIGRATE_MOVABLE)
2714 alike_pages = pageblock_nr_pages
2715 - (free_pages + movable_pages);
2716 else
2717 alike_pages = 0;
2718 }
2719
3bc48f96 2720 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2721 if (!free_pages)
3bc48f96 2722 goto single_page;
fef903ef 2723
02aa0cdd
VB
2724 /*
2725 * If a sufficient number of pages in the block are either free or of
2726 * comparable migratability as our allocation, claim the whole block.
2727 */
2728 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2729 page_group_by_mobility_disabled)
2730 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2731
2732 return;
2733
2734single_page:
6ab01363 2735 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2736}
2737
2149cdae
JK
2738/*
2739 * Check whether there is a suitable fallback freepage with requested order.
2740 * If only_stealable is true, this function returns fallback_mt only if
2741 * we can steal other freepages all together. This would help to reduce
2742 * fragmentation due to mixed migratetype pages in one pageblock.
2743 */
2744int find_suitable_fallback(struct free_area *area, unsigned int order,
2745 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2746{
2747 int i;
2748 int fallback_mt;
2749
2750 if (area->nr_free == 0)
2751 return -1;
2752
2753 *can_steal = false;
2754 for (i = 0;; i++) {
2755 fallback_mt = fallbacks[migratetype][i];
974a786e 2756 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2757 break;
2758
b03641af 2759 if (free_area_empty(area, fallback_mt))
4eb7dce6 2760 continue;
fef903ef 2761
4eb7dce6
JK
2762 if (can_steal_fallback(order, migratetype))
2763 *can_steal = true;
2764
2149cdae
JK
2765 if (!only_stealable)
2766 return fallback_mt;
2767
2768 if (*can_steal)
2769 return fallback_mt;
fef903ef 2770 }
4eb7dce6
JK
2771
2772 return -1;
fef903ef
SB
2773}
2774
0aaa29a5
MG
2775/*
2776 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2777 * there are no empty page blocks that contain a page with a suitable order
2778 */
2779static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2780 unsigned int alloc_order)
2781{
2782 int mt;
2783 unsigned long max_managed, flags;
2784
2785 /*
2786 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2787 * Check is race-prone but harmless.
2788 */
9705bea5 2789 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2790 if (zone->nr_reserved_highatomic >= max_managed)
2791 return;
2792
2793 spin_lock_irqsave(&zone->lock, flags);
2794
2795 /* Recheck the nr_reserved_highatomic limit under the lock */
2796 if (zone->nr_reserved_highatomic >= max_managed)
2797 goto out_unlock;
2798
2799 /* Yoink! */
2800 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2801 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2802 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
2803 zone->nr_reserved_highatomic += pageblock_nr_pages;
2804 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2805 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2806 }
2807
2808out_unlock:
2809 spin_unlock_irqrestore(&zone->lock, flags);
2810}
2811
2812/*
2813 * Used when an allocation is about to fail under memory pressure. This
2814 * potentially hurts the reliability of high-order allocations when under
2815 * intense memory pressure but failed atomic allocations should be easier
2816 * to recover from than an OOM.
29fac03b
MK
2817 *
2818 * If @force is true, try to unreserve a pageblock even though highatomic
2819 * pageblock is exhausted.
0aaa29a5 2820 */
29fac03b
MK
2821static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2822 bool force)
0aaa29a5
MG
2823{
2824 struct zonelist *zonelist = ac->zonelist;
2825 unsigned long flags;
2826 struct zoneref *z;
2827 struct zone *zone;
2828 struct page *page;
2829 int order;
04c8716f 2830 bool ret;
0aaa29a5 2831
97a225e6 2832 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2833 ac->nodemask) {
29fac03b
MK
2834 /*
2835 * Preserve at least one pageblock unless memory pressure
2836 * is really high.
2837 */
2838 if (!force && zone->nr_reserved_highatomic <=
2839 pageblock_nr_pages)
0aaa29a5
MG
2840 continue;
2841
2842 spin_lock_irqsave(&zone->lock, flags);
2843 for (order = 0; order < MAX_ORDER; order++) {
2844 struct free_area *area = &(zone->free_area[order]);
2845
b03641af 2846 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2847 if (!page)
0aaa29a5
MG
2848 continue;
2849
0aaa29a5 2850 /*
4855e4a7
MK
2851 * In page freeing path, migratetype change is racy so
2852 * we can counter several free pages in a pageblock
f0953a1b 2853 * in this loop although we changed the pageblock type
4855e4a7
MK
2854 * from highatomic to ac->migratetype. So we should
2855 * adjust the count once.
0aaa29a5 2856 */
a6ffdc07 2857 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2858 /*
2859 * It should never happen but changes to
2860 * locking could inadvertently allow a per-cpu
2861 * drain to add pages to MIGRATE_HIGHATOMIC
2862 * while unreserving so be safe and watch for
2863 * underflows.
2864 */
2865 zone->nr_reserved_highatomic -= min(
2866 pageblock_nr_pages,
2867 zone->nr_reserved_highatomic);
2868 }
0aaa29a5
MG
2869
2870 /*
2871 * Convert to ac->migratetype and avoid the normal
2872 * pageblock stealing heuristics. Minimally, the caller
2873 * is doing the work and needs the pages. More
2874 * importantly, if the block was always converted to
2875 * MIGRATE_UNMOVABLE or another type then the number
2876 * of pageblocks that cannot be completely freed
2877 * may increase.
2878 */
2879 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2880 ret = move_freepages_block(zone, page, ac->migratetype,
2881 NULL);
29fac03b
MK
2882 if (ret) {
2883 spin_unlock_irqrestore(&zone->lock, flags);
2884 return ret;
2885 }
0aaa29a5
MG
2886 }
2887 spin_unlock_irqrestore(&zone->lock, flags);
2888 }
04c8716f
MK
2889
2890 return false;
0aaa29a5
MG
2891}
2892
3bc48f96
VB
2893/*
2894 * Try finding a free buddy page on the fallback list and put it on the free
2895 * list of requested migratetype, possibly along with other pages from the same
2896 * block, depending on fragmentation avoidance heuristics. Returns true if
2897 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2898 *
2899 * The use of signed ints for order and current_order is a deliberate
2900 * deviation from the rest of this file, to make the for loop
2901 * condition simpler.
3bc48f96 2902 */
85ccc8fa 2903static __always_inline bool
6bb15450
MG
2904__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2905 unsigned int alloc_flags)
b2a0ac88 2906{
b8af2941 2907 struct free_area *area;
b002529d 2908 int current_order;
6bb15450 2909 int min_order = order;
b2a0ac88 2910 struct page *page;
4eb7dce6
JK
2911 int fallback_mt;
2912 bool can_steal;
b2a0ac88 2913
6bb15450
MG
2914 /*
2915 * Do not steal pages from freelists belonging to other pageblocks
2916 * i.e. orders < pageblock_order. If there are no local zones free,
2917 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2918 */
2919 if (alloc_flags & ALLOC_NOFRAGMENT)
2920 min_order = pageblock_order;
2921
7a8f58f3
VB
2922 /*
2923 * Find the largest available free page in the other list. This roughly
2924 * approximates finding the pageblock with the most free pages, which
2925 * would be too costly to do exactly.
2926 */
6bb15450 2927 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2928 --current_order) {
4eb7dce6
JK
2929 area = &(zone->free_area[current_order]);
2930 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2931 start_migratetype, false, &can_steal);
4eb7dce6
JK
2932 if (fallback_mt == -1)
2933 continue;
b2a0ac88 2934
7a8f58f3
VB
2935 /*
2936 * We cannot steal all free pages from the pageblock and the
2937 * requested migratetype is movable. In that case it's better to
2938 * steal and split the smallest available page instead of the
2939 * largest available page, because even if the next movable
2940 * allocation falls back into a different pageblock than this
2941 * one, it won't cause permanent fragmentation.
2942 */
2943 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2944 && current_order > order)
2945 goto find_smallest;
b2a0ac88 2946
7a8f58f3
VB
2947 goto do_steal;
2948 }
e0fff1bd 2949
7a8f58f3 2950 return false;
e0fff1bd 2951
7a8f58f3
VB
2952find_smallest:
2953 for (current_order = order; current_order < MAX_ORDER;
2954 current_order++) {
2955 area = &(zone->free_area[current_order]);
2956 fallback_mt = find_suitable_fallback(area, current_order,
2957 start_migratetype, false, &can_steal);
2958 if (fallback_mt != -1)
2959 break;
b2a0ac88
MG
2960 }
2961
7a8f58f3
VB
2962 /*
2963 * This should not happen - we already found a suitable fallback
2964 * when looking for the largest page.
2965 */
2966 VM_BUG_ON(current_order == MAX_ORDER);
2967
2968do_steal:
b03641af 2969 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2970
1c30844d
MG
2971 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2972 can_steal);
7a8f58f3
VB
2973
2974 trace_mm_page_alloc_extfrag(page, order, current_order,
2975 start_migratetype, fallback_mt);
2976
2977 return true;
2978
b2a0ac88
MG
2979}
2980
56fd56b8 2981/*
1da177e4
LT
2982 * Do the hard work of removing an element from the buddy allocator.
2983 * Call me with the zone->lock already held.
2984 */
85ccc8fa 2985static __always_inline struct page *
6bb15450
MG
2986__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2987 unsigned int alloc_flags)
1da177e4 2988{
1da177e4
LT
2989 struct page *page;
2990
ce8f86ee
H
2991 if (IS_ENABLED(CONFIG_CMA)) {
2992 /*
2993 * Balance movable allocations between regular and CMA areas by
2994 * allocating from CMA when over half of the zone's free memory
2995 * is in the CMA area.
2996 */
2997 if (alloc_flags & ALLOC_CMA &&
2998 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2999 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3000 page = __rmqueue_cma_fallback(zone, order);
3001 if (page)
3002 goto out;
3003 }
16867664 3004 }
3bc48f96 3005retry:
56fd56b8 3006 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 3007 if (unlikely(!page)) {
8510e69c 3008 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
3009 page = __rmqueue_cma_fallback(zone, order);
3010
6bb15450
MG
3011 if (!page && __rmqueue_fallback(zone, order, migratetype,
3012 alloc_flags))
3bc48f96 3013 goto retry;
728ec980 3014 }
ce8f86ee
H
3015out:
3016 if (page)
3017 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 3018 return page;
1da177e4
LT
3019}
3020
5f63b720 3021/*
1da177e4
LT
3022 * Obtain a specified number of elements from the buddy allocator, all under
3023 * a single hold of the lock, for efficiency. Add them to the supplied list.
3024 * Returns the number of new pages which were placed at *list.
3025 */
5f63b720 3026static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 3027 unsigned long count, struct list_head *list,
6bb15450 3028 int migratetype, unsigned int alloc_flags)
1da177e4 3029{
cb66bede 3030 int i, allocated = 0;
5f63b720 3031
dbbee9d5
MG
3032 /*
3033 * local_lock_irq held so equivalent to spin_lock_irqsave for
3034 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3035 */
d34b0733 3036 spin_lock(&zone->lock);
1da177e4 3037 for (i = 0; i < count; ++i) {
6bb15450
MG
3038 struct page *page = __rmqueue(zone, order, migratetype,
3039 alloc_flags);
085cc7d5 3040 if (unlikely(page == NULL))
1da177e4 3041 break;
81eabcbe 3042
77fe7f13 3043 if (unlikely(check_pcp_refill(page, order)))
479f854a
MG
3044 continue;
3045
81eabcbe 3046 /*
0fac3ba5
VB
3047 * Split buddy pages returned by expand() are received here in
3048 * physical page order. The page is added to the tail of
3049 * caller's list. From the callers perspective, the linked list
3050 * is ordered by page number under some conditions. This is
3051 * useful for IO devices that can forward direction from the
3052 * head, thus also in the physical page order. This is useful
3053 * for IO devices that can merge IO requests if the physical
3054 * pages are ordered properly.
81eabcbe 3055 */
0fac3ba5 3056 list_add_tail(&page->lru, list);
cb66bede 3057 allocated++;
bb14c2c7 3058 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3059 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3060 -(1 << order));
1da177e4 3061 }
a6de734b
MG
3062
3063 /*
3064 * i pages were removed from the buddy list even if some leak due
3065 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3066 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3067 * pages added to the pcp list.
3068 */
f2260e6b 3069 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 3070 spin_unlock(&zone->lock);
cb66bede 3071 return allocated;
1da177e4
LT
3072}
3073
4ae7c039 3074#ifdef CONFIG_NUMA
8fce4d8e 3075/*
4037d452
CL
3076 * Called from the vmstat counter updater to drain pagesets of this
3077 * currently executing processor on remote nodes after they have
3078 * expired.
3079 *
879336c3
CL
3080 * Note that this function must be called with the thread pinned to
3081 * a single processor.
8fce4d8e 3082 */
4037d452 3083void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3084{
4ae7c039 3085 unsigned long flags;
7be12fc9 3086 int to_drain, batch;
4ae7c039 3087
dbbee9d5 3088 local_lock_irqsave(&pagesets.lock, flags);
4db0c3c2 3089 batch = READ_ONCE(pcp->batch);
7be12fc9 3090 to_drain = min(pcp->count, batch);
77ba9062 3091 if (to_drain > 0)
fd56eef2 3092 free_pcppages_bulk(zone, to_drain, pcp, 0);
dbbee9d5 3093 local_unlock_irqrestore(&pagesets.lock, flags);
4ae7c039
CL
3094}
3095#endif
3096
9f8f2172 3097/*
93481ff0 3098 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3099 *
3100 * The processor must either be the current processor and the
3101 * thread pinned to the current processor or a processor that
3102 * is not online.
3103 */
93481ff0 3104static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3105{
c54ad30c 3106 unsigned long flags;
93481ff0 3107 struct per_cpu_pages *pcp;
1da177e4 3108
dbbee9d5 3109 local_lock_irqsave(&pagesets.lock, flags);
1da177e4 3110
28f836b6 3111 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
77ba9062 3112 if (pcp->count)
fd56eef2 3113 free_pcppages_bulk(zone, pcp->count, pcp, 0);
28f836b6 3114
dbbee9d5 3115 local_unlock_irqrestore(&pagesets.lock, flags);
93481ff0 3116}
3dfa5721 3117
93481ff0
VB
3118/*
3119 * Drain pcplists of all zones on the indicated processor.
3120 *
3121 * The processor must either be the current processor and the
3122 * thread pinned to the current processor or a processor that
3123 * is not online.
3124 */
3125static void drain_pages(unsigned int cpu)
3126{
3127 struct zone *zone;
3128
3129 for_each_populated_zone(zone) {
3130 drain_pages_zone(cpu, zone);
1da177e4
LT
3131 }
3132}
1da177e4 3133
9f8f2172
CL
3134/*
3135 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3136 *
3137 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3138 * the single zone's pages.
9f8f2172 3139 */
93481ff0 3140void drain_local_pages(struct zone *zone)
9f8f2172 3141{
93481ff0
VB
3142 int cpu = smp_processor_id();
3143
3144 if (zone)
3145 drain_pages_zone(cpu, zone);
3146 else
3147 drain_pages(cpu);
9f8f2172
CL
3148}
3149
0ccce3b9
MG
3150static void drain_local_pages_wq(struct work_struct *work)
3151{
d9367bd0
WY
3152 struct pcpu_drain *drain;
3153
3154 drain = container_of(work, struct pcpu_drain, work);
3155
a459eeb7
MH
3156 /*
3157 * drain_all_pages doesn't use proper cpu hotplug protection so
3158 * we can race with cpu offline when the WQ can move this from
3159 * a cpu pinned worker to an unbound one. We can operate on a different
f0953a1b 3160 * cpu which is alright but we also have to make sure to not move to
a459eeb7
MH
3161 * a different one.
3162 */
9c25cbfc 3163 migrate_disable();
d9367bd0 3164 drain_local_pages(drain->zone);
9c25cbfc 3165 migrate_enable();
0ccce3b9
MG
3166}
3167
9f8f2172 3168/*
ec6e8c7e
VB
3169 * The implementation of drain_all_pages(), exposing an extra parameter to
3170 * drain on all cpus.
93481ff0 3171 *
ec6e8c7e
VB
3172 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3173 * not empty. The check for non-emptiness can however race with a free to
3174 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3175 * that need the guarantee that every CPU has drained can disable the
3176 * optimizing racy check.
9f8f2172 3177 */
3b1f3658 3178static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3179{
74046494 3180 int cpu;
74046494
GBY
3181
3182 /*
041711ce 3183 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3184 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3185 */
3186 static cpumask_t cpus_with_pcps;
3187
ce612879
MH
3188 /*
3189 * Make sure nobody triggers this path before mm_percpu_wq is fully
3190 * initialized.
3191 */
3192 if (WARN_ON_ONCE(!mm_percpu_wq))
3193 return;
3194
bd233f53
MG
3195 /*
3196 * Do not drain if one is already in progress unless it's specific to
3197 * a zone. Such callers are primarily CMA and memory hotplug and need
3198 * the drain to be complete when the call returns.
3199 */
3200 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3201 if (!zone)
3202 return;
3203 mutex_lock(&pcpu_drain_mutex);
3204 }
0ccce3b9 3205
74046494
GBY
3206 /*
3207 * We don't care about racing with CPU hotplug event
3208 * as offline notification will cause the notified
3209 * cpu to drain that CPU pcps and on_each_cpu_mask
3210 * disables preemption as part of its processing
3211 */
3212 for_each_online_cpu(cpu) {
28f836b6 3213 struct per_cpu_pages *pcp;
93481ff0 3214 struct zone *z;
74046494 3215 bool has_pcps = false;
93481ff0 3216
ec6e8c7e
VB
3217 if (force_all_cpus) {
3218 /*
3219 * The pcp.count check is racy, some callers need a
3220 * guarantee that no cpu is missed.
3221 */
3222 has_pcps = true;
3223 } else if (zone) {
28f836b6
MG
3224 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3225 if (pcp->count)
74046494 3226 has_pcps = true;
93481ff0
VB
3227 } else {
3228 for_each_populated_zone(z) {
28f836b6
MG
3229 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3230 if (pcp->count) {
93481ff0
VB
3231 has_pcps = true;
3232 break;
3233 }
74046494
GBY
3234 }
3235 }
93481ff0 3236
74046494
GBY
3237 if (has_pcps)
3238 cpumask_set_cpu(cpu, &cpus_with_pcps);
3239 else
3240 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3241 }
0ccce3b9 3242
bd233f53 3243 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3244 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3245
3246 drain->zone = zone;
3247 INIT_WORK(&drain->work, drain_local_pages_wq);
3248 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3249 }
bd233f53 3250 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3251 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3252
3253 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3254}
3255
ec6e8c7e
VB
3256/*
3257 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3258 *
3259 * When zone parameter is non-NULL, spill just the single zone's pages.
3260 *
3261 * Note that this can be extremely slow as the draining happens in a workqueue.
3262 */
3263void drain_all_pages(struct zone *zone)
3264{
3265 __drain_all_pages(zone, false);
3266}
3267
296699de 3268#ifdef CONFIG_HIBERNATION
1da177e4 3269
556b969a
CY
3270/*
3271 * Touch the watchdog for every WD_PAGE_COUNT pages.
3272 */
3273#define WD_PAGE_COUNT (128*1024)
3274
1da177e4
LT
3275void mark_free_pages(struct zone *zone)
3276{
556b969a 3277 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3278 unsigned long flags;
7aeb09f9 3279 unsigned int order, t;
86760a2c 3280 struct page *page;
1da177e4 3281
8080fc03 3282 if (zone_is_empty(zone))
1da177e4
LT
3283 return;
3284
3285 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3286
108bcc96 3287 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3288 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3289 if (pfn_valid(pfn)) {
86760a2c 3290 page = pfn_to_page(pfn);
ba6b0979 3291
556b969a
CY
3292 if (!--page_count) {
3293 touch_nmi_watchdog();
3294 page_count = WD_PAGE_COUNT;
3295 }
3296
ba6b0979
JK
3297 if (page_zone(page) != zone)
3298 continue;
3299
7be98234
RW
3300 if (!swsusp_page_is_forbidden(page))
3301 swsusp_unset_page_free(page);
f623f0db 3302 }
1da177e4 3303
b2a0ac88 3304 for_each_migratetype_order(order, t) {
86760a2c
GT
3305 list_for_each_entry(page,
3306 &zone->free_area[order].free_list[t], lru) {
f623f0db 3307 unsigned long i;
1da177e4 3308
86760a2c 3309 pfn = page_to_pfn(page);
556b969a
CY
3310 for (i = 0; i < (1UL << order); i++) {
3311 if (!--page_count) {
3312 touch_nmi_watchdog();
3313 page_count = WD_PAGE_COUNT;
3314 }
7be98234 3315 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3316 }
f623f0db 3317 }
b2a0ac88 3318 }
1da177e4
LT
3319 spin_unlock_irqrestore(&zone->lock, flags);
3320}
e2c55dc8 3321#endif /* CONFIG_PM */
1da177e4 3322
44042b44
MG
3323static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3324 unsigned int order)
1da177e4 3325{
5f8dcc21 3326 int migratetype;
1da177e4 3327
44042b44 3328 if (!free_pcp_prepare(page, order))
9cca35d4 3329 return false;
689bcebf 3330
dc4b0caf 3331 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3332 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3333 return true;
3334}
3335
f26b3fa0
MG
3336static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3337 bool free_high)
3b12e7e9
MG
3338{
3339 int min_nr_free, max_nr_free;
3340
f26b3fa0
MG
3341 /* Free everything if batch freeing high-order pages. */
3342 if (unlikely(free_high))
3343 return pcp->count;
3344
3b12e7e9
MG
3345 /* Check for PCP disabled or boot pageset */
3346 if (unlikely(high < batch))
3347 return 1;
3348
3349 /* Leave at least pcp->batch pages on the list */
3350 min_nr_free = batch;
3351 max_nr_free = high - batch;
3352
3353 /*
3354 * Double the number of pages freed each time there is subsequent
3355 * freeing of pages without any allocation.
3356 */
3357 batch <<= pcp->free_factor;
3358 if (batch < max_nr_free)
3359 pcp->free_factor++;
3360 batch = clamp(batch, min_nr_free, max_nr_free);
3361
3362 return batch;
3363}
3364
f26b3fa0
MG
3365static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3366 bool free_high)
c49c2c47
MG
3367{
3368 int high = READ_ONCE(pcp->high);
3369
f26b3fa0 3370 if (unlikely(!high || free_high))
c49c2c47
MG
3371 return 0;
3372
3373 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3374 return high;
3375
3376 /*
3377 * If reclaim is active, limit the number of pages that can be
3378 * stored on pcp lists
3379 */
3380 return min(READ_ONCE(pcp->batch) << 2, high);
3381}
3382
56651377
NSJ
3383static void free_unref_page_commit(struct page *page, int migratetype,
3384 unsigned int order)
9cca35d4
MG
3385{
3386 struct zone *zone = page_zone(page);
3387 struct per_cpu_pages *pcp;
3b12e7e9 3388 int high;
44042b44 3389 int pindex;
f26b3fa0 3390 bool free_high;
9cca35d4 3391
d34b0733 3392 __count_vm_event(PGFREE);
28f836b6 3393 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44
MG
3394 pindex = order_to_pindex(migratetype, order);
3395 list_add(&page->lru, &pcp->lists[pindex]);
3396 pcp->count += 1 << order;
f26b3fa0
MG
3397
3398 /*
3399 * As high-order pages other than THP's stored on PCP can contribute
3400 * to fragmentation, limit the number stored when PCP is heavily
3401 * freeing without allocation. The remainder after bulk freeing
3402 * stops will be drained from vmstat refresh context.
3403 */
3404 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3405
3406 high = nr_pcp_high(pcp, zone, free_high);
3b12e7e9
MG
3407 if (pcp->count >= high) {
3408 int batch = READ_ONCE(pcp->batch);
3409
f26b3fa0 3410 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3b12e7e9 3411 }
9cca35d4 3412}
5f8dcc21 3413
9cca35d4 3414/*
44042b44 3415 * Free a pcp page
9cca35d4 3416 */
44042b44 3417void free_unref_page(struct page *page, unsigned int order)
9cca35d4
MG
3418{
3419 unsigned long flags;
3420 unsigned long pfn = page_to_pfn(page);
df1acc85 3421 int migratetype;
9cca35d4 3422
44042b44 3423 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3424 return;
da456f14 3425
5f8dcc21
MG
3426 /*
3427 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3428 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3429 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3430 * areas back if necessary. Otherwise, we may have to free
3431 * excessively into the page allocator
3432 */
df1acc85
MG
3433 migratetype = get_pcppage_migratetype(page);
3434 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3435 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3436 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3437 return;
5f8dcc21
MG
3438 }
3439 migratetype = MIGRATE_MOVABLE;
3440 }
3441
dbbee9d5 3442 local_lock_irqsave(&pagesets.lock, flags);
56651377 3443 free_unref_page_commit(page, migratetype, order);
dbbee9d5 3444 local_unlock_irqrestore(&pagesets.lock, flags);
1da177e4
LT
3445}
3446
cc59850e
KK
3447/*
3448 * Free a list of 0-order pages
3449 */
2d4894b5 3450void free_unref_page_list(struct list_head *list)
cc59850e
KK
3451{
3452 struct page *page, *next;
56651377 3453 unsigned long flags;
c24ad77d 3454 int batch_count = 0;
df1acc85 3455 int migratetype;
9cca35d4
MG
3456
3457 /* Prepare pages for freeing */
3458 list_for_each_entry_safe(page, next, list, lru) {
56651377 3459 unsigned long pfn = page_to_pfn(page);
053cfda1 3460 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 3461 list_del(&page->lru);
053cfda1
ML
3462 continue;
3463 }
df1acc85
MG
3464
3465 /*
3466 * Free isolated pages directly to the allocator, see
3467 * comment in free_unref_page.
3468 */
3469 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3470 if (unlikely(is_migrate_isolate(migratetype))) {
3471 list_del(&page->lru);
3472 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3473 continue;
df1acc85 3474 }
9cca35d4 3475 }
cc59850e 3476
dbbee9d5 3477 local_lock_irqsave(&pagesets.lock, flags);
cc59850e 3478 list_for_each_entry_safe(page, next, list, lru) {
47aef601
DB
3479 /*
3480 * Non-isolated types over MIGRATE_PCPTYPES get added
3481 * to the MIGRATE_MOVABLE pcp list.
3482 */
df1acc85 3483 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3484 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3485 migratetype = MIGRATE_MOVABLE;
3486
2d4894b5 3487 trace_mm_page_free_batched(page);
56651377 3488 free_unref_page_commit(page, migratetype, 0);
c24ad77d
LS
3489
3490 /*
3491 * Guard against excessive IRQ disabled times when we get
3492 * a large list of pages to free.
3493 */
3494 if (++batch_count == SWAP_CLUSTER_MAX) {
dbbee9d5 3495 local_unlock_irqrestore(&pagesets.lock, flags);
c24ad77d 3496 batch_count = 0;
dbbee9d5 3497 local_lock_irqsave(&pagesets.lock, flags);
c24ad77d 3498 }
cc59850e 3499 }
dbbee9d5 3500 local_unlock_irqrestore(&pagesets.lock, flags);
cc59850e
KK
3501}
3502
8dfcc9ba
NP
3503/*
3504 * split_page takes a non-compound higher-order page, and splits it into
3505 * n (1<<order) sub-pages: page[0..n]
3506 * Each sub-page must be freed individually.
3507 *
3508 * Note: this is probably too low level an operation for use in drivers.
3509 * Please consult with lkml before using this in your driver.
3510 */
3511void split_page(struct page *page, unsigned int order)
3512{
3513 int i;
3514
309381fe
SL
3515 VM_BUG_ON_PAGE(PageCompound(page), page);
3516 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3517
a9627bc5 3518 for (i = 1; i < (1 << order); i++)
7835e98b 3519 set_page_refcounted(page + i);
8fb156c9 3520 split_page_owner(page, 1 << order);
e1baddf8 3521 split_page_memcg(page, 1 << order);
8dfcc9ba 3522}
5853ff23 3523EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3524
3c605096 3525int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3526{
748446bb
MG
3527 unsigned long watermark;
3528 struct zone *zone;
2139cbe6 3529 int mt;
748446bb
MG
3530
3531 BUG_ON(!PageBuddy(page));
3532
3533 zone = page_zone(page);
2e30abd1 3534 mt = get_pageblock_migratetype(page);
748446bb 3535
194159fb 3536 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3537 /*
3538 * Obey watermarks as if the page was being allocated. We can
3539 * emulate a high-order watermark check with a raised order-0
3540 * watermark, because we already know our high-order page
3541 * exists.
3542 */
fd1444b2 3543 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3544 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3545 return 0;
3546
8fb74b9f 3547 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3548 }
748446bb
MG
3549
3550 /* Remove page from free list */
b03641af 3551
6ab01363 3552 del_page_from_free_list(page, zone, order);
2139cbe6 3553
400bc7fd 3554 /*
3555 * Set the pageblock if the isolated page is at least half of a
3556 * pageblock
3557 */
748446bb
MG
3558 if (order >= pageblock_order - 1) {
3559 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3560 for (; page < endpage; page += pageblock_nr_pages) {
3561 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
3562 /*
3563 * Only change normal pageblocks (i.e., they can merge
3564 * with others)
3565 */
3566 if (migratetype_is_mergeable(mt))
47118af0
MN
3567 set_pageblock_migratetype(page,
3568 MIGRATE_MOVABLE);
3569 }
748446bb
MG
3570 }
3571
f3a14ced 3572
8fb74b9f 3573 return 1UL << order;
1fb3f8ca
MG
3574}
3575
624f58d8
AD
3576/**
3577 * __putback_isolated_page - Return a now-isolated page back where we got it
3578 * @page: Page that was isolated
3579 * @order: Order of the isolated page
e6a0a7ad 3580 * @mt: The page's pageblock's migratetype
624f58d8
AD
3581 *
3582 * This function is meant to return a page pulled from the free lists via
3583 * __isolate_free_page back to the free lists they were pulled from.
3584 */
3585void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3586{
3587 struct zone *zone = page_zone(page);
3588
3589 /* zone lock should be held when this function is called */
3590 lockdep_assert_held(&zone->lock);
3591
3592 /* Return isolated page to tail of freelist. */
f04a5d5d 3593 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3594 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3595}
3596
060e7417
MG
3597/*
3598 * Update NUMA hit/miss statistics
3599 *
3600 * Must be called with interrupts disabled.
060e7417 3601 */
3e23060b
MG
3602static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3603 long nr_account)
060e7417
MG
3604{
3605#ifdef CONFIG_NUMA
3a321d2a 3606 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3607
4518085e
KW
3608 /* skip numa counters update if numa stats is disabled */
3609 if (!static_branch_likely(&vm_numa_stat_key))
3610 return;
3611
c1093b74 3612 if (zone_to_nid(z) != numa_node_id())
060e7417 3613 local_stat = NUMA_OTHER;
060e7417 3614
c1093b74 3615 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3616 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3617 else {
3e23060b
MG
3618 __count_numa_events(z, NUMA_MISS, nr_account);
3619 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3620 }
3e23060b 3621 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3622#endif
3623}
3624
066b2393 3625/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3626static inline
44042b44
MG
3627struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3628 int migratetype,
6bb15450 3629 unsigned int alloc_flags,
453f85d4 3630 struct per_cpu_pages *pcp,
066b2393
MG
3631 struct list_head *list)
3632{
3633 struct page *page;
3634
3635 do {
3636 if (list_empty(list)) {
44042b44
MG
3637 int batch = READ_ONCE(pcp->batch);
3638 int alloced;
3639
3640 /*
3641 * Scale batch relative to order if batch implies
3642 * free pages can be stored on the PCP. Batch can
3643 * be 1 for small zones or for boot pagesets which
3644 * should never store free pages as the pages may
3645 * belong to arbitrary zones.
3646 */
3647 if (batch > 1)
3648 batch = max(batch >> order, 2);
3649 alloced = rmqueue_bulk(zone, order,
3650 batch, list,
6bb15450 3651 migratetype, alloc_flags);
44042b44
MG
3652
3653 pcp->count += alloced << order;
066b2393
MG
3654 if (unlikely(list_empty(list)))
3655 return NULL;
3656 }
3657
453f85d4 3658 page = list_first_entry(list, struct page, lru);
066b2393 3659 list_del(&page->lru);
44042b44 3660 pcp->count -= 1 << order;
77fe7f13 3661 } while (check_new_pcp(page, order));
066b2393
MG
3662
3663 return page;
3664}
3665
3666/* Lock and remove page from the per-cpu list */
3667static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44
MG
3668 struct zone *zone, unsigned int order,
3669 gfp_t gfp_flags, int migratetype,
3670 unsigned int alloc_flags)
066b2393
MG
3671{
3672 struct per_cpu_pages *pcp;
3673 struct list_head *list;
066b2393 3674 struct page *page;
d34b0733 3675 unsigned long flags;
066b2393 3676
dbbee9d5 3677 local_lock_irqsave(&pagesets.lock, flags);
3b12e7e9
MG
3678
3679 /*
3680 * On allocation, reduce the number of pages that are batch freed.
3681 * See nr_pcp_free() where free_factor is increased for subsequent
3682 * frees.
3683 */
28f836b6 3684 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3b12e7e9 3685 pcp->free_factor >>= 1;
44042b44
MG
3686 list = &pcp->lists[order_to_pindex(migratetype, order)];
3687 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
43c95bcc 3688 local_unlock_irqrestore(&pagesets.lock, flags);
066b2393 3689 if (page) {
1c52e6d0 3690 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3e23060b 3691 zone_statistics(preferred_zone, zone, 1);
066b2393 3692 }
066b2393
MG
3693 return page;
3694}
3695
1da177e4 3696/*
75379191 3697 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3698 */
0a15c3e9 3699static inline
066b2393 3700struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3701 struct zone *zone, unsigned int order,
c603844b
MG
3702 gfp_t gfp_flags, unsigned int alloc_flags,
3703 int migratetype)
1da177e4
LT
3704{
3705 unsigned long flags;
689bcebf 3706 struct page *page;
1da177e4 3707
44042b44 3708 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3709 /*
3710 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3711 * we need to skip it when CMA area isn't allowed.
3712 */
3713 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3714 migratetype != MIGRATE_MOVABLE) {
44042b44
MG
3715 page = rmqueue_pcplist(preferred_zone, zone, order,
3716 gfp_flags, migratetype, alloc_flags);
1d91df85
JK
3717 goto out;
3718 }
066b2393 3719 }
83b9355b 3720
066b2393
MG
3721 /*
3722 * We most definitely don't want callers attempting to
3723 * allocate greater than order-1 page units with __GFP_NOFAIL.
3724 */
3725 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
0aaa29a5 3726
066b2393
MG
3727 do {
3728 page = NULL;
3313204c 3729 spin_lock_irqsave(&zone->lock, flags);
1d91df85
JK
3730 /*
3731 * order-0 request can reach here when the pcplist is skipped
3732 * due to non-CMA allocation context. HIGHATOMIC area is
3733 * reserved for high-order atomic allocation, so order-0
3734 * request should skip it.
3735 */
3736 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3737 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3738 if (page)
3739 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3740 }
3313204c 3741 if (!page) {
6bb15450 3742 page = __rmqueue(zone, order, migratetype, alloc_flags);
3313204c
ED
3743 if (!page)
3744 goto failed;
3745 }
3746 __mod_zone_freepage_state(zone, -(1 << order),
3747 get_pcppage_migratetype(page));
3748 spin_unlock_irqrestore(&zone->lock, flags);
3749 } while (check_new_pages(page, order));
1da177e4 3750
16709d1d 3751 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3752 zone_statistics(preferred_zone, zone, 1);
1da177e4 3753
066b2393 3754out:
73444bc4
MG
3755 /* Separate test+clear to avoid unnecessary atomics */
3756 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3757 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3758 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3759 }
3760
066b2393 3761 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3762 return page;
a74609fa
NP
3763
3764failed:
43c95bcc 3765 spin_unlock_irqrestore(&zone->lock, flags);
a74609fa 3766 return NULL;
1da177e4
LT
3767}
3768
933e312e
AM
3769#ifdef CONFIG_FAIL_PAGE_ALLOC
3770
b2588c4b 3771static struct {
933e312e
AM
3772 struct fault_attr attr;
3773
621a5f7a 3774 bool ignore_gfp_highmem;
71baba4b 3775 bool ignore_gfp_reclaim;
54114994 3776 u32 min_order;
933e312e
AM
3777} fail_page_alloc = {
3778 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3779 .ignore_gfp_reclaim = true,
621a5f7a 3780 .ignore_gfp_highmem = true,
54114994 3781 .min_order = 1,
933e312e
AM
3782};
3783
3784static int __init setup_fail_page_alloc(char *str)
3785{
3786 return setup_fault_attr(&fail_page_alloc.attr, str);
3787}
3788__setup("fail_page_alloc=", setup_fail_page_alloc);
3789
af3b8544 3790static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3791{
54114994 3792 if (order < fail_page_alloc.min_order)
deaf386e 3793 return false;
933e312e 3794 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3795 return false;
933e312e 3796 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3797 return false;
71baba4b
MG
3798 if (fail_page_alloc.ignore_gfp_reclaim &&
3799 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3800 return false;
933e312e
AM
3801
3802 return should_fail(&fail_page_alloc.attr, 1 << order);
3803}
3804
3805#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3806
3807static int __init fail_page_alloc_debugfs(void)
3808{
0825a6f9 3809 umode_t mode = S_IFREG | 0600;
933e312e 3810 struct dentry *dir;
933e312e 3811
dd48c085
AM
3812 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3813 &fail_page_alloc.attr);
b2588c4b 3814
d9f7979c
GKH
3815 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3816 &fail_page_alloc.ignore_gfp_reclaim);
3817 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3818 &fail_page_alloc.ignore_gfp_highmem);
3819 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3820
d9f7979c 3821 return 0;
933e312e
AM
3822}
3823
3824late_initcall(fail_page_alloc_debugfs);
3825
3826#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3827
3828#else /* CONFIG_FAIL_PAGE_ALLOC */
3829
af3b8544 3830static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3831{
deaf386e 3832 return false;
933e312e
AM
3833}
3834
3835#endif /* CONFIG_FAIL_PAGE_ALLOC */
3836
54aa3866 3837noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3838{
3839 return __should_fail_alloc_page(gfp_mask, order);
3840}
3841ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3842
f27ce0e1
JK
3843static inline long __zone_watermark_unusable_free(struct zone *z,
3844 unsigned int order, unsigned int alloc_flags)
3845{
3846 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3847 long unusable_free = (1 << order) - 1;
3848
3849 /*
3850 * If the caller does not have rights to ALLOC_HARDER then subtract
3851 * the high-atomic reserves. This will over-estimate the size of the
3852 * atomic reserve but it avoids a search.
3853 */
3854 if (likely(!alloc_harder))
3855 unusable_free += z->nr_reserved_highatomic;
3856
3857#ifdef CONFIG_CMA
3858 /* If allocation can't use CMA areas don't use free CMA pages */
3859 if (!(alloc_flags & ALLOC_CMA))
3860 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3861#endif
3862
3863 return unusable_free;
3864}
3865
1da177e4 3866/*
97a16fc8
MG
3867 * Return true if free base pages are above 'mark'. For high-order checks it
3868 * will return true of the order-0 watermark is reached and there is at least
3869 * one free page of a suitable size. Checking now avoids taking the zone lock
3870 * to check in the allocation paths if no pages are free.
1da177e4 3871 */
86a294a8 3872bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3873 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3874 long free_pages)
1da177e4 3875{
d23ad423 3876 long min = mark;
1da177e4 3877 int o;
cd04ae1e 3878 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3879
0aaa29a5 3880 /* free_pages may go negative - that's OK */
f27ce0e1 3881 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3882
7fb1d9fc 3883 if (alloc_flags & ALLOC_HIGH)
1da177e4 3884 min -= min / 2;
0aaa29a5 3885
f27ce0e1 3886 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3887 /*
3888 * OOM victims can try even harder than normal ALLOC_HARDER
3889 * users on the grounds that it's definitely going to be in
3890 * the exit path shortly and free memory. Any allocation it
3891 * makes during the free path will be small and short-lived.
3892 */
3893 if (alloc_flags & ALLOC_OOM)
3894 min -= min / 2;
3895 else
3896 min -= min / 4;
3897 }
3898
97a16fc8
MG
3899 /*
3900 * Check watermarks for an order-0 allocation request. If these
3901 * are not met, then a high-order request also cannot go ahead
3902 * even if a suitable page happened to be free.
3903 */
97a225e6 3904 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3905 return false;
1da177e4 3906
97a16fc8
MG
3907 /* If this is an order-0 request then the watermark is fine */
3908 if (!order)
3909 return true;
3910
3911 /* For a high-order request, check at least one suitable page is free */
3912 for (o = order; o < MAX_ORDER; o++) {
3913 struct free_area *area = &z->free_area[o];
3914 int mt;
3915
3916 if (!area->nr_free)
3917 continue;
3918
97a16fc8 3919 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3920 if (!free_area_empty(area, mt))
97a16fc8
MG
3921 return true;
3922 }
3923
3924#ifdef CONFIG_CMA
d883c6cf 3925 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3926 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3927 return true;
d883c6cf 3928 }
97a16fc8 3929#endif
76089d00 3930 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3931 return true;
1da177e4 3932 }
97a16fc8 3933 return false;
88f5acf8
MG
3934}
3935
7aeb09f9 3936bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3937 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3938{
97a225e6 3939 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3940 zone_page_state(z, NR_FREE_PAGES));
3941}
3942
48ee5f36 3943static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3944 unsigned long mark, int highest_zoneidx,
f80b08fc 3945 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3946{
f27ce0e1 3947 long free_pages;
d883c6cf 3948
f27ce0e1 3949 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3950
3951 /*
3952 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3953 * need to be calculated.
48ee5f36 3954 */
f27ce0e1
JK
3955 if (!order) {
3956 long fast_free;
3957
3958 fast_free = free_pages;
3959 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3960 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3961 return true;
3962 }
48ee5f36 3963
f80b08fc
CTR
3964 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3965 free_pages))
3966 return true;
3967 /*
3968 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3969 * when checking the min watermark. The min watermark is the
3970 * point where boosting is ignored so that kswapd is woken up
3971 * when below the low watermark.
3972 */
3973 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3974 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3975 mark = z->_watermark[WMARK_MIN];
3976 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3977 alloc_flags, free_pages);
3978 }
3979
3980 return false;
48ee5f36
MG
3981}
3982
7aeb09f9 3983bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3984 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3985{
3986 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3987
3988 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3989 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3990
97a225e6 3991 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3992 free_pages);
1da177e4
LT
3993}
3994
9276b1bc 3995#ifdef CONFIG_NUMA
61bb6cd2
GU
3996int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3997
957f822a
DR
3998static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3999{
e02dc017 4000 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 4001 node_reclaim_distance;
957f822a 4002}
9276b1bc 4003#else /* CONFIG_NUMA */
957f822a
DR
4004static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4005{
4006 return true;
4007}
9276b1bc
PJ
4008#endif /* CONFIG_NUMA */
4009
6bb15450
MG
4010/*
4011 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4012 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4013 * premature use of a lower zone may cause lowmem pressure problems that
4014 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4015 * probably too small. It only makes sense to spread allocations to avoid
4016 * fragmentation between the Normal and DMA32 zones.
4017 */
4018static inline unsigned int
0a79cdad 4019alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 4020{
736838e9 4021 unsigned int alloc_flags;
0a79cdad 4022
736838e9
MN
4023 /*
4024 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4025 * to save a branch.
4026 */
4027 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
4028
4029#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
4030 if (!zone)
4031 return alloc_flags;
4032
6bb15450 4033 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 4034 return alloc_flags;
6bb15450
MG
4035
4036 /*
4037 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4038 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4039 * on UMA that if Normal is populated then so is DMA32.
4040 */
4041 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4042 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 4043 return alloc_flags;
6bb15450 4044
8118b82e 4045 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
4046#endif /* CONFIG_ZONE_DMA32 */
4047 return alloc_flags;
6bb15450 4048}
6bb15450 4049
8e3560d9
PT
4050/* Must be called after current_gfp_context() which can change gfp_mask */
4051static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4052 unsigned int alloc_flags)
8510e69c
JK
4053{
4054#ifdef CONFIG_CMA
8e3560d9 4055 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 4056 alloc_flags |= ALLOC_CMA;
8510e69c
JK
4057#endif
4058 return alloc_flags;
4059}
4060
7fb1d9fc 4061/*
0798e519 4062 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4063 * a page.
4064 */
4065static struct page *
a9263751
VB
4066get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4067 const struct alloc_context *ac)
753ee728 4068{
6bb15450 4069 struct zoneref *z;
5117f45d 4070 struct zone *zone;
3b8c0be4 4071 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 4072 bool no_fallback;
3b8c0be4 4073
6bb15450 4074retry:
7fb1d9fc 4075 /*
9276b1bc 4076 * Scan zonelist, looking for a zone with enough free.
344736f2 4077 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 4078 */
6bb15450
MG
4079 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4080 z = ac->preferred_zoneref;
30d8ec73
MN
4081 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4082 ac->nodemask) {
be06af00 4083 struct page *page;
e085dbc5
JW
4084 unsigned long mark;
4085
664eedde
MG
4086 if (cpusets_enabled() &&
4087 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4088 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4089 continue;
a756cf59
JW
4090 /*
4091 * When allocating a page cache page for writing, we
281e3726
MG
4092 * want to get it from a node that is within its dirty
4093 * limit, such that no single node holds more than its
a756cf59 4094 * proportional share of globally allowed dirty pages.
281e3726 4095 * The dirty limits take into account the node's
a756cf59
JW
4096 * lowmem reserves and high watermark so that kswapd
4097 * should be able to balance it without having to
4098 * write pages from its LRU list.
4099 *
a756cf59 4100 * XXX: For now, allow allocations to potentially
281e3726 4101 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4102 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4103 * which is important when on a NUMA setup the allowed
281e3726 4104 * nodes are together not big enough to reach the
a756cf59 4105 * global limit. The proper fix for these situations
281e3726 4106 * will require awareness of nodes in the
a756cf59
JW
4107 * dirty-throttling and the flusher threads.
4108 */
3b8c0be4
MG
4109 if (ac->spread_dirty_pages) {
4110 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4111 continue;
4112
4113 if (!node_dirty_ok(zone->zone_pgdat)) {
4114 last_pgdat_dirty_limit = zone->zone_pgdat;
4115 continue;
4116 }
4117 }
7fb1d9fc 4118
6bb15450
MG
4119 if (no_fallback && nr_online_nodes > 1 &&
4120 zone != ac->preferred_zoneref->zone) {
4121 int local_nid;
4122
4123 /*
4124 * If moving to a remote node, retry but allow
4125 * fragmenting fallbacks. Locality is more important
4126 * than fragmentation avoidance.
4127 */
4128 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4129 if (zone_to_nid(zone) != local_nid) {
4130 alloc_flags &= ~ALLOC_NOFRAGMENT;
4131 goto retry;
4132 }
4133 }
4134
a9214443 4135 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4136 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4137 ac->highest_zoneidx, alloc_flags,
4138 gfp_mask)) {
fa5e084e
MG
4139 int ret;
4140
c9e97a19
PT
4141#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4142 /*
4143 * Watermark failed for this zone, but see if we can
4144 * grow this zone if it contains deferred pages.
4145 */
4146 if (static_branch_unlikely(&deferred_pages)) {
4147 if (_deferred_grow_zone(zone, order))
4148 goto try_this_zone;
4149 }
4150#endif
5dab2911
MG
4151 /* Checked here to keep the fast path fast */
4152 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4153 if (alloc_flags & ALLOC_NO_WATERMARKS)
4154 goto try_this_zone;
4155
202e35db 4156 if (!node_reclaim_enabled() ||
c33d6c06 4157 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4158 continue;
4159
a5f5f91d 4160 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4161 switch (ret) {
a5f5f91d 4162 case NODE_RECLAIM_NOSCAN:
fa5e084e 4163 /* did not scan */
cd38b115 4164 continue;
a5f5f91d 4165 case NODE_RECLAIM_FULL:
fa5e084e 4166 /* scanned but unreclaimable */
cd38b115 4167 continue;
fa5e084e
MG
4168 default:
4169 /* did we reclaim enough */
fed2719e 4170 if (zone_watermark_ok(zone, order, mark,
97a225e6 4171 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4172 goto try_this_zone;
4173
fed2719e 4174 continue;
0798e519 4175 }
7fb1d9fc
RS
4176 }
4177
fa5e084e 4178try_this_zone:
066b2393 4179 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4180 gfp_mask, alloc_flags, ac->migratetype);
75379191 4181 if (page) {
479f854a 4182 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4183
4184 /*
4185 * If this is a high-order atomic allocation then check
4186 * if the pageblock should be reserved for the future
4187 */
4188 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4189 reserve_highatomic_pageblock(page, zone, order);
4190
75379191 4191 return page;
c9e97a19
PT
4192 } else {
4193#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4194 /* Try again if zone has deferred pages */
4195 if (static_branch_unlikely(&deferred_pages)) {
4196 if (_deferred_grow_zone(zone, order))
4197 goto try_this_zone;
4198 }
4199#endif
75379191 4200 }
54a6eb5c 4201 }
9276b1bc 4202
6bb15450
MG
4203 /*
4204 * It's possible on a UMA machine to get through all zones that are
4205 * fragmented. If avoiding fragmentation, reset and try again.
4206 */
4207 if (no_fallback) {
4208 alloc_flags &= ~ALLOC_NOFRAGMENT;
4209 goto retry;
4210 }
4211
4ffeaf35 4212 return NULL;
753ee728
MH
4213}
4214
9af744d7 4215static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4216{
a238ab5b 4217 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4218
4219 /*
4220 * This documents exceptions given to allocations in certain
4221 * contexts that are allowed to allocate outside current's set
4222 * of allowed nodes.
4223 */
4224 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4225 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4226 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4227 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4228 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4229 filter &= ~SHOW_MEM_FILTER_NODES;
4230
9af744d7 4231 show_mem(filter, nodemask);
aa187507
MH
4232}
4233
a8e99259 4234void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4235{
4236 struct va_format vaf;
4237 va_list args;
1be334e5 4238 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4239
c4dc63f0
BH
4240 if ((gfp_mask & __GFP_NOWARN) ||
4241 !__ratelimit(&nopage_rs) ||
4242 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
4243 return;
4244
7877cdcc
MH
4245 va_start(args, fmt);
4246 vaf.fmt = fmt;
4247 vaf.va = &args;
ef8444ea 4248 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4249 current->comm, &vaf, gfp_mask, &gfp_mask,
4250 nodemask_pr_args(nodemask));
7877cdcc 4251 va_end(args);
3ee9a4f0 4252
a8e99259 4253 cpuset_print_current_mems_allowed();
ef8444ea 4254 pr_cont("\n");
a238ab5b 4255 dump_stack();
685dbf6f 4256 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4257}
4258
6c18ba7a
MH
4259static inline struct page *
4260__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4261 unsigned int alloc_flags,
4262 const struct alloc_context *ac)
4263{
4264 struct page *page;
4265
4266 page = get_page_from_freelist(gfp_mask, order,
4267 alloc_flags|ALLOC_CPUSET, ac);
4268 /*
4269 * fallback to ignore cpuset restriction if our nodes
4270 * are depleted
4271 */
4272 if (!page)
4273 page = get_page_from_freelist(gfp_mask, order,
4274 alloc_flags, ac);
4275
4276 return page;
4277}
4278
11e33f6a
MG
4279static inline struct page *
4280__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4281 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4282{
6e0fc46d
DR
4283 struct oom_control oc = {
4284 .zonelist = ac->zonelist,
4285 .nodemask = ac->nodemask,
2a966b77 4286 .memcg = NULL,
6e0fc46d
DR
4287 .gfp_mask = gfp_mask,
4288 .order = order,
6e0fc46d 4289 };
11e33f6a
MG
4290 struct page *page;
4291
9879de73
JW
4292 *did_some_progress = 0;
4293
9879de73 4294 /*
dc56401f
JW
4295 * Acquire the oom lock. If that fails, somebody else is
4296 * making progress for us.
9879de73 4297 */
dc56401f 4298 if (!mutex_trylock(&oom_lock)) {
9879de73 4299 *did_some_progress = 1;
11e33f6a 4300 schedule_timeout_uninterruptible(1);
1da177e4
LT
4301 return NULL;
4302 }
6b1de916 4303
11e33f6a
MG
4304 /*
4305 * Go through the zonelist yet one more time, keep very high watermark
4306 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4307 * we're still under heavy pressure. But make sure that this reclaim
4308 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4309 * allocation which will never fail due to oom_lock already held.
11e33f6a 4310 */
e746bf73
TH
4311 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4312 ~__GFP_DIRECT_RECLAIM, order,
4313 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4314 if (page)
11e33f6a
MG
4315 goto out;
4316
06ad276a
MH
4317 /* Coredumps can quickly deplete all memory reserves */
4318 if (current->flags & PF_DUMPCORE)
4319 goto out;
4320 /* The OOM killer will not help higher order allocs */
4321 if (order > PAGE_ALLOC_COSTLY_ORDER)
4322 goto out;
dcda9b04
MH
4323 /*
4324 * We have already exhausted all our reclaim opportunities without any
4325 * success so it is time to admit defeat. We will skip the OOM killer
4326 * because it is very likely that the caller has a more reasonable
4327 * fallback than shooting a random task.
cfb4a541
MN
4328 *
4329 * The OOM killer may not free memory on a specific node.
dcda9b04 4330 */
cfb4a541 4331 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4332 goto out;
06ad276a 4333 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4334 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4335 goto out;
4336 if (pm_suspended_storage())
4337 goto out;
4338 /*
4339 * XXX: GFP_NOFS allocations should rather fail than rely on
4340 * other request to make a forward progress.
4341 * We are in an unfortunate situation where out_of_memory cannot
4342 * do much for this context but let's try it to at least get
4343 * access to memory reserved if the current task is killed (see
4344 * out_of_memory). Once filesystems are ready to handle allocation
4345 * failures more gracefully we should just bail out here.
4346 */
4347
3c2c6488 4348 /* Exhausted what can be done so it's blame time */
5020e285 4349 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4350 *did_some_progress = 1;
5020e285 4351
6c18ba7a
MH
4352 /*
4353 * Help non-failing allocations by giving them access to memory
4354 * reserves
4355 */
4356 if (gfp_mask & __GFP_NOFAIL)
4357 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4358 ALLOC_NO_WATERMARKS, ac);
5020e285 4359 }
11e33f6a 4360out:
dc56401f 4361 mutex_unlock(&oom_lock);
11e33f6a
MG
4362 return page;
4363}
4364
33c2d214 4365/*
baf2f90b 4366 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4367 * killer is consider as the only way to move forward.
4368 */
4369#define MAX_COMPACT_RETRIES 16
4370
56de7263
MG
4371#ifdef CONFIG_COMPACTION
4372/* Try memory compaction for high-order allocations before reclaim */
4373static struct page *
4374__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4375 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4376 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4377{
5e1f0f09 4378 struct page *page = NULL;
eb414681 4379 unsigned long pflags;
499118e9 4380 unsigned int noreclaim_flag;
53853e2d
VB
4381
4382 if (!order)
66199712 4383 return NULL;
66199712 4384
eb414681 4385 psi_memstall_enter(&pflags);
5bf18281 4386 delayacct_compact_start();
499118e9 4387 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4388
c5d01d0d 4389 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4390 prio, &page);
eb414681 4391
499118e9 4392 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4393 psi_memstall_leave(&pflags);
5bf18281 4394 delayacct_compact_end();
56de7263 4395
06dac2f4
CTR
4396 if (*compact_result == COMPACT_SKIPPED)
4397 return NULL;
98dd3b48
VB
4398 /*
4399 * At least in one zone compaction wasn't deferred or skipped, so let's
4400 * count a compaction stall
4401 */
4402 count_vm_event(COMPACTSTALL);
8fb74b9f 4403
5e1f0f09
MG
4404 /* Prep a captured page if available */
4405 if (page)
4406 prep_new_page(page, order, gfp_mask, alloc_flags);
4407
4408 /* Try get a page from the freelist if available */
4409 if (!page)
4410 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4411
98dd3b48
VB
4412 if (page) {
4413 struct zone *zone = page_zone(page);
53853e2d 4414
98dd3b48
VB
4415 zone->compact_blockskip_flush = false;
4416 compaction_defer_reset(zone, order, true);
4417 count_vm_event(COMPACTSUCCESS);
4418 return page;
4419 }
56de7263 4420
98dd3b48
VB
4421 /*
4422 * It's bad if compaction run occurs and fails. The most likely reason
4423 * is that pages exist, but not enough to satisfy watermarks.
4424 */
4425 count_vm_event(COMPACTFAIL);
66199712 4426
98dd3b48 4427 cond_resched();
56de7263
MG
4428
4429 return NULL;
4430}
33c2d214 4431
3250845d
VB
4432static inline bool
4433should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4434 enum compact_result compact_result,
4435 enum compact_priority *compact_priority,
d9436498 4436 int *compaction_retries)
3250845d
VB
4437{
4438 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4439 int min_priority;
65190cff
MH
4440 bool ret = false;
4441 int retries = *compaction_retries;
4442 enum compact_priority priority = *compact_priority;
3250845d
VB
4443
4444 if (!order)
4445 return false;
4446
691d9497
AT
4447 if (fatal_signal_pending(current))
4448 return false;
4449
d9436498
VB
4450 if (compaction_made_progress(compact_result))
4451 (*compaction_retries)++;
4452
3250845d
VB
4453 /*
4454 * compaction considers all the zone as desperately out of memory
4455 * so it doesn't really make much sense to retry except when the
4456 * failure could be caused by insufficient priority
4457 */
d9436498
VB
4458 if (compaction_failed(compact_result))
4459 goto check_priority;
3250845d 4460
49433085
VB
4461 /*
4462 * compaction was skipped because there are not enough order-0 pages
4463 * to work with, so we retry only if it looks like reclaim can help.
4464 */
4465 if (compaction_needs_reclaim(compact_result)) {
4466 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4467 goto out;
4468 }
4469
3250845d
VB
4470 /*
4471 * make sure the compaction wasn't deferred or didn't bail out early
4472 * due to locks contention before we declare that we should give up.
49433085
VB
4473 * But the next retry should use a higher priority if allowed, so
4474 * we don't just keep bailing out endlessly.
3250845d 4475 */
65190cff 4476 if (compaction_withdrawn(compact_result)) {
49433085 4477 goto check_priority;
65190cff 4478 }
3250845d
VB
4479
4480 /*
dcda9b04 4481 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4482 * costly ones because they are de facto nofail and invoke OOM
4483 * killer to move on while costly can fail and users are ready
4484 * to cope with that. 1/4 retries is rather arbitrary but we
4485 * would need much more detailed feedback from compaction to
4486 * make a better decision.
4487 */
4488 if (order > PAGE_ALLOC_COSTLY_ORDER)
4489 max_retries /= 4;
65190cff
MH
4490 if (*compaction_retries <= max_retries) {
4491 ret = true;
4492 goto out;
4493 }
3250845d 4494
d9436498
VB
4495 /*
4496 * Make sure there are attempts at the highest priority if we exhausted
4497 * all retries or failed at the lower priorities.
4498 */
4499check_priority:
c2033b00
VB
4500 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4501 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4502
c2033b00 4503 if (*compact_priority > min_priority) {
d9436498
VB
4504 (*compact_priority)--;
4505 *compaction_retries = 0;
65190cff 4506 ret = true;
d9436498 4507 }
65190cff
MH
4508out:
4509 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4510 return ret;
3250845d 4511}
56de7263
MG
4512#else
4513static inline struct page *
4514__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4515 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4516 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4517{
33c2d214 4518 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4519 return NULL;
4520}
33c2d214
MH
4521
4522static inline bool
86a294a8
MH
4523should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4524 enum compact_result compact_result,
a5508cd8 4525 enum compact_priority *compact_priority,
d9436498 4526 int *compaction_retries)
33c2d214 4527{
31e49bfd
MH
4528 struct zone *zone;
4529 struct zoneref *z;
4530
4531 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4532 return false;
4533
4534 /*
4535 * There are setups with compaction disabled which would prefer to loop
4536 * inside the allocator rather than hit the oom killer prematurely.
4537 * Let's give them a good hope and keep retrying while the order-0
4538 * watermarks are OK.
4539 */
97a225e6
JK
4540 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4541 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4542 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4543 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4544 return true;
4545 }
33c2d214
MH
4546 return false;
4547}
3250845d 4548#endif /* CONFIG_COMPACTION */
56de7263 4549
d92a8cfc 4550#ifdef CONFIG_LOCKDEP
93781325 4551static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4552 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4553
f920e413 4554static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4555{
d92a8cfc
PZ
4556 /* no reclaim without waiting on it */
4557 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4558 return false;
4559
4560 /* this guy won't enter reclaim */
2e517d68 4561 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4562 return false;
4563
d92a8cfc
PZ
4564 if (gfp_mask & __GFP_NOLOCKDEP)
4565 return false;
4566
4567 return true;
4568}
4569
4f3eaf45 4570void __fs_reclaim_acquire(unsigned long ip)
93781325 4571{
4f3eaf45 4572 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4573}
4574
4f3eaf45 4575void __fs_reclaim_release(unsigned long ip)
93781325 4576{
4f3eaf45 4577 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4578}
4579
d92a8cfc
PZ
4580void fs_reclaim_acquire(gfp_t gfp_mask)
4581{
f920e413
SV
4582 gfp_mask = current_gfp_context(gfp_mask);
4583
4584 if (__need_reclaim(gfp_mask)) {
4585 if (gfp_mask & __GFP_FS)
4f3eaf45 4586 __fs_reclaim_acquire(_RET_IP_);
f920e413
SV
4587
4588#ifdef CONFIG_MMU_NOTIFIER
4589 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4590 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4591#endif
4592
4593 }
d92a8cfc
PZ
4594}
4595EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4596
4597void fs_reclaim_release(gfp_t gfp_mask)
4598{
f920e413
SV
4599 gfp_mask = current_gfp_context(gfp_mask);
4600
4601 if (__need_reclaim(gfp_mask)) {
4602 if (gfp_mask & __GFP_FS)
4f3eaf45 4603 __fs_reclaim_release(_RET_IP_);
f920e413 4604 }
d92a8cfc
PZ
4605}
4606EXPORT_SYMBOL_GPL(fs_reclaim_release);
4607#endif
4608
bba90710 4609/* Perform direct synchronous page reclaim */
2187e17b 4610static unsigned long
a9263751
VB
4611__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4612 const struct alloc_context *ac)
11e33f6a 4613{
499118e9 4614 unsigned int noreclaim_flag;
fa7fc75f 4615 unsigned long progress;
11e33f6a
MG
4616
4617 cond_resched();
4618
4619 /* We now go into synchronous reclaim */
4620 cpuset_memory_pressure_bump();
d92a8cfc 4621 fs_reclaim_acquire(gfp_mask);
93781325 4622 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4623
a9263751
VB
4624 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4625 ac->nodemask);
11e33f6a 4626
499118e9 4627 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4628 fs_reclaim_release(gfp_mask);
11e33f6a
MG
4629
4630 cond_resched();
4631
bba90710
MS
4632 return progress;
4633}
4634
4635/* The really slow allocator path where we enter direct reclaim */
4636static inline struct page *
4637__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4638 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4639 unsigned long *did_some_progress)
bba90710
MS
4640{
4641 struct page *page = NULL;
fa7fc75f 4642 unsigned long pflags;
bba90710
MS
4643 bool drained = false;
4644
fa7fc75f 4645 psi_memstall_enter(&pflags);
a9263751 4646 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 4647 if (unlikely(!(*did_some_progress)))
fa7fc75f 4648 goto out;
11e33f6a 4649
9ee493ce 4650retry:
31a6c190 4651 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4652
4653 /*
4654 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4655 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4656 * Shrink them and try again
9ee493ce
MG
4657 */
4658 if (!page && !drained) {
29fac03b 4659 unreserve_highatomic_pageblock(ac, false);
93481ff0 4660 drain_all_pages(NULL);
9ee493ce
MG
4661 drained = true;
4662 goto retry;
4663 }
fa7fc75f
SB
4664out:
4665 psi_memstall_leave(&pflags);
9ee493ce 4666
11e33f6a
MG
4667 return page;
4668}
4669
5ecd9d40
DR
4670static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4671 const struct alloc_context *ac)
3a025760
JW
4672{
4673 struct zoneref *z;
4674 struct zone *zone;
e1a55637 4675 pg_data_t *last_pgdat = NULL;
97a225e6 4676 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4677
97a225e6 4678 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4679 ac->nodemask) {
e1a55637 4680 if (last_pgdat != zone->zone_pgdat)
97a225e6 4681 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4682 last_pgdat = zone->zone_pgdat;
4683 }
3a025760
JW
4684}
4685
c603844b 4686static inline unsigned int
341ce06f
PZ
4687gfp_to_alloc_flags(gfp_t gfp_mask)
4688{
c603844b 4689 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4690
736838e9
MN
4691 /*
4692 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4693 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4694 * to save two branches.
4695 */
e6223a3b 4696 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4697 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4698
341ce06f
PZ
4699 /*
4700 * The caller may dip into page reserves a bit more if the caller
4701 * cannot run direct reclaim, or if the caller has realtime scheduling
4702 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4703 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4704 */
736838e9
MN
4705 alloc_flags |= (__force int)
4706 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4707
d0164adc 4708 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4709 /*
b104a35d
DR
4710 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4711 * if it can't schedule.
5c3240d9 4712 */
b104a35d 4713 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4714 alloc_flags |= ALLOC_HARDER;
523b9458 4715 /*
b104a35d 4716 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4717 * comment for __cpuset_node_allowed().
523b9458 4718 */
341ce06f 4719 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4720 } else if (unlikely(rt_task(current)) && in_task())
341ce06f
PZ
4721 alloc_flags |= ALLOC_HARDER;
4722
8e3560d9 4723 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4724
341ce06f
PZ
4725 return alloc_flags;
4726}
4727
cd04ae1e 4728static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4729{
cd04ae1e
MH
4730 if (!tsk_is_oom_victim(tsk))
4731 return false;
4732
4733 /*
4734 * !MMU doesn't have oom reaper so give access to memory reserves
4735 * only to the thread with TIF_MEMDIE set
4736 */
4737 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4738 return false;
4739
cd04ae1e
MH
4740 return true;
4741}
4742
4743/*
4744 * Distinguish requests which really need access to full memory
4745 * reserves from oom victims which can live with a portion of it
4746 */
4747static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4748{
4749 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4750 return 0;
31a6c190 4751 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4752 return ALLOC_NO_WATERMARKS;
31a6c190 4753 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4754 return ALLOC_NO_WATERMARKS;
4755 if (!in_interrupt()) {
4756 if (current->flags & PF_MEMALLOC)
4757 return ALLOC_NO_WATERMARKS;
4758 else if (oom_reserves_allowed(current))
4759 return ALLOC_OOM;
4760 }
31a6c190 4761
cd04ae1e
MH
4762 return 0;
4763}
4764
4765bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4766{
4767 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4768}
4769
0a0337e0
MH
4770/*
4771 * Checks whether it makes sense to retry the reclaim to make a forward progress
4772 * for the given allocation request.
491d79ae
JW
4773 *
4774 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4775 * without success, or when we couldn't even meet the watermark if we
4776 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4777 *
4778 * Returns true if a retry is viable or false to enter the oom path.
4779 */
4780static inline bool
4781should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4782 struct alloc_context *ac, int alloc_flags,
423b452e 4783 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4784{
4785 struct zone *zone;
4786 struct zoneref *z;
15f570bf 4787 bool ret = false;
0a0337e0 4788
423b452e
VB
4789 /*
4790 * Costly allocations might have made a progress but this doesn't mean
4791 * their order will become available due to high fragmentation so
4792 * always increment the no progress counter for them
4793 */
4794 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4795 *no_progress_loops = 0;
4796 else
4797 (*no_progress_loops)++;
4798
0a0337e0
MH
4799 /*
4800 * Make sure we converge to OOM if we cannot make any progress
4801 * several times in the row.
4802 */
04c8716f
MK
4803 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4804 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4805 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4806 }
0a0337e0 4807
bca67592
MG
4808 /*
4809 * Keep reclaiming pages while there is a chance this will lead
4810 * somewhere. If none of the target zones can satisfy our allocation
4811 * request even if all reclaimable pages are considered then we are
4812 * screwed and have to go OOM.
0a0337e0 4813 */
97a225e6
JK
4814 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4815 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4816 unsigned long available;
ede37713 4817 unsigned long reclaimable;
d379f01d
MH
4818 unsigned long min_wmark = min_wmark_pages(zone);
4819 bool wmark;
0a0337e0 4820
5a1c84b4 4821 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4822 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4823
4824 /*
491d79ae
JW
4825 * Would the allocation succeed if we reclaimed all
4826 * reclaimable pages?
0a0337e0 4827 */
d379f01d 4828 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4829 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4830 trace_reclaim_retry_zone(z, order, reclaimable,
4831 available, min_wmark, *no_progress_loops, wmark);
4832 if (wmark) {
15f570bf 4833 ret = true;
132b0d21 4834 break;
0a0337e0
MH
4835 }
4836 }
4837
15f570bf
MH
4838 /*
4839 * Memory allocation/reclaim might be called from a WQ context and the
4840 * current implementation of the WQ concurrency control doesn't
4841 * recognize that a particular WQ is congested if the worker thread is
4842 * looping without ever sleeping. Therefore we have to do a short sleep
4843 * here rather than calling cond_resched().
4844 */
4845 if (current->flags & PF_WQ_WORKER)
4846 schedule_timeout_uninterruptible(1);
4847 else
4848 cond_resched();
4849 return ret;
0a0337e0
MH
4850}
4851
902b6281
VB
4852static inline bool
4853check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4854{
4855 /*
4856 * It's possible that cpuset's mems_allowed and the nodemask from
4857 * mempolicy don't intersect. This should be normally dealt with by
4858 * policy_nodemask(), but it's possible to race with cpuset update in
4859 * such a way the check therein was true, and then it became false
4860 * before we got our cpuset_mems_cookie here.
4861 * This assumes that for all allocations, ac->nodemask can come only
4862 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4863 * when it does not intersect with the cpuset restrictions) or the
4864 * caller can deal with a violated nodemask.
4865 */
4866 if (cpusets_enabled() && ac->nodemask &&
4867 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4868 ac->nodemask = NULL;
4869 return true;
4870 }
4871
4872 /*
4873 * When updating a task's mems_allowed or mempolicy nodemask, it is
4874 * possible to race with parallel threads in such a way that our
4875 * allocation can fail while the mask is being updated. If we are about
4876 * to fail, check if the cpuset changed during allocation and if so,
4877 * retry.
4878 */
4879 if (read_mems_allowed_retry(cpuset_mems_cookie))
4880 return true;
4881
4882 return false;
4883}
4884
11e33f6a
MG
4885static inline struct page *
4886__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4887 struct alloc_context *ac)
11e33f6a 4888{
d0164adc 4889 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4890 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4891 struct page *page = NULL;
c603844b 4892 unsigned int alloc_flags;
11e33f6a 4893 unsigned long did_some_progress;
5ce9bfef 4894 enum compact_priority compact_priority;
c5d01d0d 4895 enum compact_result compact_result;
5ce9bfef
VB
4896 int compaction_retries;
4897 int no_progress_loops;
5ce9bfef 4898 unsigned int cpuset_mems_cookie;
cd04ae1e 4899 int reserve_flags;
1da177e4 4900
d0164adc
MG
4901 /*
4902 * We also sanity check to catch abuse of atomic reserves being used by
4903 * callers that are not in atomic context.
4904 */
4905 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4906 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4907 gfp_mask &= ~__GFP_ATOMIC;
4908
5ce9bfef
VB
4909retry_cpuset:
4910 compaction_retries = 0;
4911 no_progress_loops = 0;
4912 compact_priority = DEF_COMPACT_PRIORITY;
4913 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4914
4915 /*
4916 * The fast path uses conservative alloc_flags to succeed only until
4917 * kswapd needs to be woken up, and to avoid the cost of setting up
4918 * alloc_flags precisely. So we do that now.
4919 */
4920 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4921
e47483bc
VB
4922 /*
4923 * We need to recalculate the starting point for the zonelist iterator
4924 * because we might have used different nodemask in the fast path, or
4925 * there was a cpuset modification and we are retrying - otherwise we
4926 * could end up iterating over non-eligible zones endlessly.
4927 */
4928 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4929 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4930 if (!ac->preferred_zoneref->zone)
4931 goto nopage;
4932
8ca1b5a4
FT
4933 /*
4934 * Check for insane configurations where the cpuset doesn't contain
4935 * any suitable zone to satisfy the request - e.g. non-movable
4936 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4937 */
4938 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4939 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4940 ac->highest_zoneidx,
4941 &cpuset_current_mems_allowed);
4942 if (!z->zone)
4943 goto nopage;
4944 }
4945
0a79cdad 4946 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4947 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4948
4949 /*
4950 * The adjusted alloc_flags might result in immediate success, so try
4951 * that first
4952 */
4953 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4954 if (page)
4955 goto got_pg;
4956
a8161d1e
VB
4957 /*
4958 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4959 * that we have enough base pages and don't need to reclaim. For non-
4960 * movable high-order allocations, do that as well, as compaction will
4961 * try prevent permanent fragmentation by migrating from blocks of the
4962 * same migratetype.
4963 * Don't try this for allocations that are allowed to ignore
4964 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4965 */
282722b0
VB
4966 if (can_direct_reclaim &&
4967 (costly_order ||
4968 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4969 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4970 page = __alloc_pages_direct_compact(gfp_mask, order,
4971 alloc_flags, ac,
a5508cd8 4972 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4973 &compact_result);
4974 if (page)
4975 goto got_pg;
4976
cc638f32
VB
4977 /*
4978 * Checks for costly allocations with __GFP_NORETRY, which
4979 * includes some THP page fault allocations
4980 */
4981 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4982 /*
4983 * If allocating entire pageblock(s) and compaction
4984 * failed because all zones are below low watermarks
4985 * or is prohibited because it recently failed at this
3f36d866
DR
4986 * order, fail immediately unless the allocator has
4987 * requested compaction and reclaim retry.
b39d0ee2
DR
4988 *
4989 * Reclaim is
4990 * - potentially very expensive because zones are far
4991 * below their low watermarks or this is part of very
4992 * bursty high order allocations,
4993 * - not guaranteed to help because isolate_freepages()
4994 * may not iterate over freed pages as part of its
4995 * linear scan, and
4996 * - unlikely to make entire pageblocks free on its
4997 * own.
4998 */
4999 if (compact_result == COMPACT_SKIPPED ||
5000 compact_result == COMPACT_DEFERRED)
5001 goto nopage;
a8161d1e 5002
a8161d1e 5003 /*
3eb2771b
VB
5004 * Looks like reclaim/compaction is worth trying, but
5005 * sync compaction could be very expensive, so keep
25160354 5006 * using async compaction.
a8161d1e 5007 */
a5508cd8 5008 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
5009 }
5010 }
23771235 5011
31a6c190 5012retry:
23771235 5013 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 5014 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 5015 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 5016
cd04ae1e
MH
5017 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5018 if (reserve_flags)
8e3560d9 5019 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
23771235 5020
e46e7b77 5021 /*
d6a24df0
VB
5022 * Reset the nodemask and zonelist iterators if memory policies can be
5023 * ignored. These allocations are high priority and system rather than
5024 * user oriented.
e46e7b77 5025 */
cd04ae1e 5026 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 5027 ac->nodemask = NULL;
e46e7b77 5028 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5029 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
5030 }
5031
23771235 5032 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 5033 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
5034 if (page)
5035 goto got_pg;
1da177e4 5036
d0164adc 5037 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 5038 if (!can_direct_reclaim)
1da177e4
LT
5039 goto nopage;
5040
9a67f648
MH
5041 /* Avoid recursion of direct reclaim */
5042 if (current->flags & PF_MEMALLOC)
6583bb64
DR
5043 goto nopage;
5044
a8161d1e
VB
5045 /* Try direct reclaim and then allocating */
5046 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5047 &did_some_progress);
5048 if (page)
5049 goto got_pg;
5050
5051 /* Try direct compaction and then allocating */
a9263751 5052 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 5053 compact_priority, &compact_result);
56de7263
MG
5054 if (page)
5055 goto got_pg;
75f30861 5056
9083905a
JW
5057 /* Do not loop if specifically requested */
5058 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5059 goto nopage;
9083905a 5060
0a0337e0
MH
5061 /*
5062 * Do not retry costly high order allocations unless they are
dcda9b04 5063 * __GFP_RETRY_MAYFAIL
0a0337e0 5064 */
dcda9b04 5065 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5066 goto nopage;
0a0337e0 5067
0a0337e0 5068 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5069 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5070 goto retry;
5071
33c2d214
MH
5072 /*
5073 * It doesn't make any sense to retry for the compaction if the order-0
5074 * reclaim is not able to make any progress because the current
5075 * implementation of the compaction depends on the sufficient amount
5076 * of free memory (see __compaction_suitable)
5077 */
5078 if (did_some_progress > 0 &&
86a294a8 5079 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5080 compact_result, &compact_priority,
d9436498 5081 &compaction_retries))
33c2d214
MH
5082 goto retry;
5083
902b6281
VB
5084
5085 /* Deal with possible cpuset update races before we start OOM killing */
5086 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
5087 goto retry_cpuset;
5088
9083905a
JW
5089 /* Reclaim has failed us, start killing things */
5090 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5091 if (page)
5092 goto got_pg;
5093
9a67f648 5094 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5095 if (tsk_is_oom_victim(current) &&
8510e69c 5096 (alloc_flags & ALLOC_OOM ||
c288983d 5097 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5098 goto nopage;
5099
9083905a 5100 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5101 if (did_some_progress) {
5102 no_progress_loops = 0;
9083905a 5103 goto retry;
0a0337e0 5104 }
9083905a 5105
1da177e4 5106nopage:
902b6281
VB
5107 /* Deal with possible cpuset update races before we fail */
5108 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
5109 goto retry_cpuset;
5110
9a67f648
MH
5111 /*
5112 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5113 * we always retry
5114 */
5115 if (gfp_mask & __GFP_NOFAIL) {
5116 /*
5117 * All existing users of the __GFP_NOFAIL are blockable, so warn
5118 * of any new users that actually require GFP_NOWAIT
5119 */
5120 if (WARN_ON_ONCE(!can_direct_reclaim))
5121 goto fail;
5122
5123 /*
5124 * PF_MEMALLOC request from this context is rather bizarre
5125 * because we cannot reclaim anything and only can loop waiting
5126 * for somebody to do a work for us
5127 */
5128 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5129
5130 /*
5131 * non failing costly orders are a hard requirement which we
5132 * are not prepared for much so let's warn about these users
5133 * so that we can identify them and convert them to something
5134 * else.
5135 */
5136 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5137
6c18ba7a
MH
5138 /*
5139 * Help non-failing allocations by giving them access to memory
5140 * reserves but do not use ALLOC_NO_WATERMARKS because this
5141 * could deplete whole memory reserves which would just make
5142 * the situation worse
5143 */
5144 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5145 if (page)
5146 goto got_pg;
5147
9a67f648
MH
5148 cond_resched();
5149 goto retry;
5150 }
5151fail:
a8e99259 5152 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5153 "page allocation failure: order:%u", order);
1da177e4 5154got_pg:
072bb0aa 5155 return page;
1da177e4 5156}
11e33f6a 5157
9cd75558 5158static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5159 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5160 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5161 unsigned int *alloc_flags)
11e33f6a 5162{
97a225e6 5163 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5164 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5165 ac->nodemask = nodemask;
01c0bfe0 5166 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5167
682a3385 5168 if (cpusets_enabled()) {
8e6a930b 5169 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5170 /*
5171 * When we are in the interrupt context, it is irrelevant
5172 * to the current task context. It means that any node ok.
5173 */
88dc6f20 5174 if (in_task() && !ac->nodemask)
9cd75558 5175 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5176 else
5177 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5178 }
5179
d92a8cfc
PZ
5180 fs_reclaim_acquire(gfp_mask);
5181 fs_reclaim_release(gfp_mask);
11e33f6a 5182
d0164adc 5183 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
5184
5185 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5186 return false;
11e33f6a 5187
8e3560d9 5188 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5189
c9ab0c4f 5190 /* Dirty zone balancing only done in the fast path */
9cd75558 5191 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5192
e46e7b77
MG
5193 /*
5194 * The preferred zone is used for statistics but crucially it is
5195 * also used as the starting point for the zonelist iterator. It
5196 * may get reset for allocations that ignore memory policies.
5197 */
9cd75558 5198 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5199 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5200
5201 return true;
9cd75558
MG
5202}
5203
387ba26f 5204/*
0f87d9d3 5205 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5206 * @gfp: GFP flags for the allocation
5207 * @preferred_nid: The preferred NUMA node ID to allocate from
5208 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5209 * @nr_pages: The number of pages desired on the list or array
5210 * @page_list: Optional list to store the allocated pages
5211 * @page_array: Optional array to store the pages
387ba26f
MG
5212 *
5213 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5214 * allocate nr_pages quickly. Pages are added to page_list if page_list
5215 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5216 *
0f87d9d3
MG
5217 * For lists, nr_pages is the number of pages that should be allocated.
5218 *
5219 * For arrays, only NULL elements are populated with pages and nr_pages
5220 * is the maximum number of pages that will be stored in the array.
5221 *
5222 * Returns the number of pages on the list or array.
387ba26f
MG
5223 */
5224unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5225 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5226 struct list_head *page_list,
5227 struct page **page_array)
387ba26f
MG
5228{
5229 struct page *page;
5230 unsigned long flags;
5231 struct zone *zone;
5232 struct zoneref *z;
5233 struct per_cpu_pages *pcp;
5234 struct list_head *pcp_list;
5235 struct alloc_context ac;
5236 gfp_t alloc_gfp;
5237 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5238 int nr_populated = 0, nr_account = 0;
387ba26f 5239
0f87d9d3
MG
5240 /*
5241 * Skip populated array elements to determine if any pages need
5242 * to be allocated before disabling IRQs.
5243 */
b08e50dd 5244 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5245 nr_populated++;
5246
06147843
CL
5247 /* No pages requested? */
5248 if (unlikely(nr_pages <= 0))
5249 goto out;
5250
b3b64ebd
MG
5251 /* Already populated array? */
5252 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5253 goto out;
b3b64ebd 5254
8dcb3060
SB
5255 /* Bulk allocator does not support memcg accounting. */
5256 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5257 goto failed;
5258
387ba26f 5259 /* Use the single page allocator for one page. */
0f87d9d3 5260 if (nr_pages - nr_populated == 1)
387ba26f
MG
5261 goto failed;
5262
187ad460
MG
5263#ifdef CONFIG_PAGE_OWNER
5264 /*
5265 * PAGE_OWNER may recurse into the allocator to allocate space to
5266 * save the stack with pagesets.lock held. Releasing/reacquiring
5267 * removes much of the performance benefit of bulk allocation so
5268 * force the caller to allocate one page at a time as it'll have
5269 * similar performance to added complexity to the bulk allocator.
5270 */
5271 if (static_branch_unlikely(&page_owner_inited))
5272 goto failed;
5273#endif
5274
387ba26f
MG
5275 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5276 gfp &= gfp_allowed_mask;
5277 alloc_gfp = gfp;
5278 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5279 goto out;
387ba26f
MG
5280 gfp = alloc_gfp;
5281
5282 /* Find an allowed local zone that meets the low watermark. */
5283 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5284 unsigned long mark;
5285
5286 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5287 !__cpuset_zone_allowed(zone, gfp)) {
5288 continue;
5289 }
5290
5291 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5292 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5293 goto failed;
5294 }
5295
5296 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5297 if (zone_watermark_fast(zone, 0, mark,
5298 zonelist_zone_idx(ac.preferred_zoneref),
5299 alloc_flags, gfp)) {
5300 break;
5301 }
5302 }
5303
5304 /*
5305 * If there are no allowed local zones that meets the watermarks then
5306 * try to allocate a single page and reclaim if necessary.
5307 */
ce76f9a1 5308 if (unlikely(!zone))
387ba26f
MG
5309 goto failed;
5310
5311 /* Attempt the batch allocation */
dbbee9d5 5312 local_lock_irqsave(&pagesets.lock, flags);
28f836b6 5313 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44 5314 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
387ba26f 5315
0f87d9d3
MG
5316 while (nr_populated < nr_pages) {
5317
5318 /* Skip existing pages */
5319 if (page_array && page_array[nr_populated]) {
5320 nr_populated++;
5321 continue;
5322 }
5323
44042b44 5324 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5325 pcp, pcp_list);
ce76f9a1 5326 if (unlikely(!page)) {
387ba26f 5327 /* Try and get at least one page */
0f87d9d3 5328 if (!nr_populated)
387ba26f
MG
5329 goto failed_irq;
5330 break;
5331 }
3e23060b 5332 nr_account++;
387ba26f
MG
5333
5334 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5335 if (page_list)
5336 list_add(&page->lru, page_list);
5337 else
5338 page_array[nr_populated] = page;
5339 nr_populated++;
387ba26f
MG
5340 }
5341
43c95bcc
MG
5342 local_unlock_irqrestore(&pagesets.lock, flags);
5343
3e23060b
MG
5344 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5345 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5346
06147843 5347out:
0f87d9d3 5348 return nr_populated;
387ba26f
MG
5349
5350failed_irq:
dbbee9d5 5351 local_unlock_irqrestore(&pagesets.lock, flags);
387ba26f
MG
5352
5353failed:
5354 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5355 if (page) {
0f87d9d3
MG
5356 if (page_list)
5357 list_add(&page->lru, page_list);
5358 else
5359 page_array[nr_populated] = page;
5360 nr_populated++;
387ba26f
MG
5361 }
5362
06147843 5363 goto out;
387ba26f
MG
5364}
5365EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5366
9cd75558
MG
5367/*
5368 * This is the 'heart' of the zoned buddy allocator.
5369 */
84172f4b 5370struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5371 nodemask_t *nodemask)
9cd75558
MG
5372{
5373 struct page *page;
5374 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5375 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5376 struct alloc_context ac = { };
5377
c63ae43b
MH
5378 /*
5379 * There are several places where we assume that the order value is sane
5380 * so bail out early if the request is out of bound.
5381 */
5382 if (unlikely(order >= MAX_ORDER)) {
6e5e0f28 5383 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
c63ae43b
MH
5384 return NULL;
5385 }
5386
6e5e0f28 5387 gfp &= gfp_allowed_mask;
da6df1b0
PT
5388 /*
5389 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5390 * resp. GFP_NOIO which has to be inherited for all allocation requests
5391 * from a particular context which has been marked by
8e3560d9
PT
5392 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5393 * movable zones are not used during allocation.
da6df1b0
PT
5394 */
5395 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5396 alloc_gfp = gfp;
5397 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5398 &alloc_gfp, &alloc_flags))
9cd75558
MG
5399 return NULL;
5400
6bb15450
MG
5401 /*
5402 * Forbid the first pass from falling back to types that fragment
5403 * memory until all local zones are considered.
5404 */
6e5e0f28 5405 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5406
5117f45d 5407 /* First allocation attempt */
8e6a930b 5408 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5409 if (likely(page))
5410 goto out;
11e33f6a 5411
da6df1b0 5412 alloc_gfp = gfp;
4fcb0971 5413 ac.spread_dirty_pages = false;
23f086f9 5414
4741526b
MG
5415 /*
5416 * Restore the original nodemask if it was potentially replaced with
5417 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5418 */
97ce86f9 5419 ac.nodemask = nodemask;
16096c25 5420
8e6a930b 5421 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5422
4fcb0971 5423out:
6e5e0f28
MWO
5424 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5425 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5426 __free_pages(page, order);
5427 page = NULL;
4949148a
VD
5428 }
5429
8e6a930b 5430 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5431
11e33f6a 5432 return page;
1da177e4 5433}
84172f4b 5434EXPORT_SYMBOL(__alloc_pages);
1da177e4 5435
cc09cb13
MWO
5436struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5437 nodemask_t *nodemask)
5438{
5439 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5440 preferred_nid, nodemask);
5441
5442 if (page && order > 1)
5443 prep_transhuge_page(page);
5444 return (struct folio *)page;
5445}
5446EXPORT_SYMBOL(__folio_alloc);
5447
1da177e4 5448/*
9ea9a680
MH
5449 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5450 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5451 * you need to access high mem.
1da177e4 5452 */
920c7a5d 5453unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5454{
945a1113
AM
5455 struct page *page;
5456
9ea9a680 5457 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5458 if (!page)
5459 return 0;
5460 return (unsigned long) page_address(page);
5461}
1da177e4
LT
5462EXPORT_SYMBOL(__get_free_pages);
5463
920c7a5d 5464unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5465{
945a1113 5466 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5467}
1da177e4
LT
5468EXPORT_SYMBOL(get_zeroed_page);
5469
7f194fbb
MWO
5470/**
5471 * __free_pages - Free pages allocated with alloc_pages().
5472 * @page: The page pointer returned from alloc_pages().
5473 * @order: The order of the allocation.
5474 *
5475 * This function can free multi-page allocations that are not compound
5476 * pages. It does not check that the @order passed in matches that of
5477 * the allocation, so it is easy to leak memory. Freeing more memory
5478 * than was allocated will probably emit a warning.
5479 *
5480 * If the last reference to this page is speculative, it will be released
5481 * by put_page() which only frees the first page of a non-compound
5482 * allocation. To prevent the remaining pages from being leaked, we free
5483 * the subsequent pages here. If you want to use the page's reference
5484 * count to decide when to free the allocation, you should allocate a
5485 * compound page, and use put_page() instead of __free_pages().
5486 *
5487 * Context: May be called in interrupt context or while holding a normal
5488 * spinlock, but not in NMI context or while holding a raw spinlock.
5489 */
742aa7fb
AL
5490void __free_pages(struct page *page, unsigned int order)
5491{
5492 if (put_page_testzero(page))
5493 free_the_page(page, order);
e320d301
MWO
5494 else if (!PageHead(page))
5495 while (order-- > 0)
5496 free_the_page(page + (1 << order), order);
742aa7fb 5497}
1da177e4
LT
5498EXPORT_SYMBOL(__free_pages);
5499
920c7a5d 5500void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5501{
5502 if (addr != 0) {
725d704e 5503 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5504 __free_pages(virt_to_page((void *)addr), order);
5505 }
5506}
5507
5508EXPORT_SYMBOL(free_pages);
5509
b63ae8ca
AD
5510/*
5511 * Page Fragment:
5512 * An arbitrary-length arbitrary-offset area of memory which resides
5513 * within a 0 or higher order page. Multiple fragments within that page
5514 * are individually refcounted, in the page's reference counter.
5515 *
5516 * The page_frag functions below provide a simple allocation framework for
5517 * page fragments. This is used by the network stack and network device
5518 * drivers to provide a backing region of memory for use as either an
5519 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5520 */
2976db80
AD
5521static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5522 gfp_t gfp_mask)
b63ae8ca
AD
5523{
5524 struct page *page = NULL;
5525 gfp_t gfp = gfp_mask;
5526
5527#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5528 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5529 __GFP_NOMEMALLOC;
5530 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5531 PAGE_FRAG_CACHE_MAX_ORDER);
5532 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5533#endif
5534 if (unlikely(!page))
5535 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5536
5537 nc->va = page ? page_address(page) : NULL;
5538
5539 return page;
5540}
5541
2976db80 5542void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5543{
5544 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5545
742aa7fb
AL
5546 if (page_ref_sub_and_test(page, count))
5547 free_the_page(page, compound_order(page));
44fdffd7 5548}
2976db80 5549EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5550
b358e212
KH
5551void *page_frag_alloc_align(struct page_frag_cache *nc,
5552 unsigned int fragsz, gfp_t gfp_mask,
5553 unsigned int align_mask)
b63ae8ca
AD
5554{
5555 unsigned int size = PAGE_SIZE;
5556 struct page *page;
5557 int offset;
5558
5559 if (unlikely(!nc->va)) {
5560refill:
2976db80 5561 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5562 if (!page)
5563 return NULL;
5564
5565#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5566 /* if size can vary use size else just use PAGE_SIZE */
5567 size = nc->size;
5568#endif
5569 /* Even if we own the page, we do not use atomic_set().
5570 * This would break get_page_unless_zero() users.
5571 */
86447726 5572 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5573
5574 /* reset page count bias and offset to start of new frag */
2f064f34 5575 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5576 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5577 nc->offset = size;
5578 }
5579
5580 offset = nc->offset - fragsz;
5581 if (unlikely(offset < 0)) {
5582 page = virt_to_page(nc->va);
5583
fe896d18 5584 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5585 goto refill;
5586
d8c19014
DZ
5587 if (unlikely(nc->pfmemalloc)) {
5588 free_the_page(page, compound_order(page));
5589 goto refill;
5590 }
5591
b63ae8ca
AD
5592#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5593 /* if size can vary use size else just use PAGE_SIZE */
5594 size = nc->size;
5595#endif
5596 /* OK, page count is 0, we can safely set it */
86447726 5597 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5598
5599 /* reset page count bias and offset to start of new frag */
86447726 5600 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5601 offset = size - fragsz;
5602 }
5603
5604 nc->pagecnt_bias--;
b358e212 5605 offset &= align_mask;
b63ae8ca
AD
5606 nc->offset = offset;
5607
5608 return nc->va + offset;
5609}
b358e212 5610EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5611
5612/*
5613 * Frees a page fragment allocated out of either a compound or order 0 page.
5614 */
8c2dd3e4 5615void page_frag_free(void *addr)
b63ae8ca
AD
5616{
5617 struct page *page = virt_to_head_page(addr);
5618
742aa7fb
AL
5619 if (unlikely(put_page_testzero(page)))
5620 free_the_page(page, compound_order(page));
b63ae8ca 5621}
8c2dd3e4 5622EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5623
d00181b9
KS
5624static void *make_alloc_exact(unsigned long addr, unsigned int order,
5625 size_t size)
ee85c2e1
AK
5626{
5627 if (addr) {
5628 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5629 unsigned long used = addr + PAGE_ALIGN(size);
5630
5631 split_page(virt_to_page((void *)addr), order);
5632 while (used < alloc_end) {
5633 free_page(used);
5634 used += PAGE_SIZE;
5635 }
5636 }
5637 return (void *)addr;
5638}
5639
2be0ffe2
TT
5640/**
5641 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5642 * @size: the number of bytes to allocate
63931eb9 5643 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5644 *
5645 * This function is similar to alloc_pages(), except that it allocates the
5646 * minimum number of pages to satisfy the request. alloc_pages() can only
5647 * allocate memory in power-of-two pages.
5648 *
5649 * This function is also limited by MAX_ORDER.
5650 *
5651 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5652 *
5653 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5654 */
5655void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5656{
5657 unsigned int order = get_order(size);
5658 unsigned long addr;
5659
ba7f1b9e
ML
5660 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5661 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 5662
2be0ffe2 5663 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5664 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5665}
5666EXPORT_SYMBOL(alloc_pages_exact);
5667
ee85c2e1
AK
5668/**
5669 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5670 * pages on a node.
b5e6ab58 5671 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5672 * @size: the number of bytes to allocate
63931eb9 5673 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5674 *
5675 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5676 * back.
a862f68a
MR
5677 *
5678 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5679 */
e1931811 5680void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5681{
d00181b9 5682 unsigned int order = get_order(size);
63931eb9
VB
5683 struct page *p;
5684
ba7f1b9e
ML
5685 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5686 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
5687
5688 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5689 if (!p)
5690 return NULL;
5691 return make_alloc_exact((unsigned long)page_address(p), order, size);
5692}
ee85c2e1 5693
2be0ffe2
TT
5694/**
5695 * free_pages_exact - release memory allocated via alloc_pages_exact()
5696 * @virt: the value returned by alloc_pages_exact.
5697 * @size: size of allocation, same value as passed to alloc_pages_exact().
5698 *
5699 * Release the memory allocated by a previous call to alloc_pages_exact.
5700 */
5701void free_pages_exact(void *virt, size_t size)
5702{
5703 unsigned long addr = (unsigned long)virt;
5704 unsigned long end = addr + PAGE_ALIGN(size);
5705
5706 while (addr < end) {
5707 free_page(addr);
5708 addr += PAGE_SIZE;
5709 }
5710}
5711EXPORT_SYMBOL(free_pages_exact);
5712
e0fb5815
ZY
5713/**
5714 * nr_free_zone_pages - count number of pages beyond high watermark
5715 * @offset: The zone index of the highest zone
5716 *
a862f68a 5717 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5718 * high watermark within all zones at or below a given zone index. For each
5719 * zone, the number of pages is calculated as:
0e056eb5
MCC
5720 *
5721 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5722 *
5723 * Return: number of pages beyond high watermark.
e0fb5815 5724 */
ebec3862 5725static unsigned long nr_free_zone_pages(int offset)
1da177e4 5726{
dd1a239f 5727 struct zoneref *z;
54a6eb5c
MG
5728 struct zone *zone;
5729
e310fd43 5730 /* Just pick one node, since fallback list is circular */
ebec3862 5731 unsigned long sum = 0;
1da177e4 5732
0e88460d 5733 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5734
54a6eb5c 5735 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5736 unsigned long size = zone_managed_pages(zone);
41858966 5737 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5738 if (size > high)
5739 sum += size - high;
1da177e4
LT
5740 }
5741
5742 return sum;
5743}
5744
e0fb5815
ZY
5745/**
5746 * nr_free_buffer_pages - count number of pages beyond high watermark
5747 *
5748 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5749 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5750 *
5751 * Return: number of pages beyond high watermark within ZONE_DMA and
5752 * ZONE_NORMAL.
1da177e4 5753 */
ebec3862 5754unsigned long nr_free_buffer_pages(void)
1da177e4 5755{
af4ca457 5756 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5757}
c2f1a551 5758EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5759
08e0f6a9 5760static inline void show_node(struct zone *zone)
1da177e4 5761{
e5adfffc 5762 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5763 printk("Node %d ", zone_to_nid(zone));
1da177e4 5764}
1da177e4 5765
d02bd27b
IR
5766long si_mem_available(void)
5767{
5768 long available;
5769 unsigned long pagecache;
5770 unsigned long wmark_low = 0;
5771 unsigned long pages[NR_LRU_LISTS];
b29940c1 5772 unsigned long reclaimable;
d02bd27b
IR
5773 struct zone *zone;
5774 int lru;
5775
5776 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5777 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5778
5779 for_each_zone(zone)
a9214443 5780 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5781
5782 /*
5783 * Estimate the amount of memory available for userspace allocations,
5784 * without causing swapping.
5785 */
c41f012a 5786 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5787
5788 /*
5789 * Not all the page cache can be freed, otherwise the system will
5790 * start swapping. Assume at least half of the page cache, or the
5791 * low watermark worth of cache, needs to stay.
5792 */
5793 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5794 pagecache -= min(pagecache / 2, wmark_low);
5795 available += pagecache;
5796
5797 /*
b29940c1
VB
5798 * Part of the reclaimable slab and other kernel memory consists of
5799 * items that are in use, and cannot be freed. Cap this estimate at the
5800 * low watermark.
d02bd27b 5801 */
d42f3245
RG
5802 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5803 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5804 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5805
d02bd27b
IR
5806 if (available < 0)
5807 available = 0;
5808 return available;
5809}
5810EXPORT_SYMBOL_GPL(si_mem_available);
5811
1da177e4
LT
5812void si_meminfo(struct sysinfo *val)
5813{
ca79b0c2 5814 val->totalram = totalram_pages();
11fb9989 5815 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5816 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5817 val->bufferram = nr_blockdev_pages();
ca79b0c2 5818 val->totalhigh = totalhigh_pages();
1da177e4 5819 val->freehigh = nr_free_highpages();
1da177e4
LT
5820 val->mem_unit = PAGE_SIZE;
5821}
5822
5823EXPORT_SYMBOL(si_meminfo);
5824
5825#ifdef CONFIG_NUMA
5826void si_meminfo_node(struct sysinfo *val, int nid)
5827{
cdd91a77
JL
5828 int zone_type; /* needs to be signed */
5829 unsigned long managed_pages = 0;
fc2bd799
JK
5830 unsigned long managed_highpages = 0;
5831 unsigned long free_highpages = 0;
1da177e4
LT
5832 pg_data_t *pgdat = NODE_DATA(nid);
5833
cdd91a77 5834 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5835 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5836 val->totalram = managed_pages;
11fb9989 5837 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5838 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5839#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5840 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5841 struct zone *zone = &pgdat->node_zones[zone_type];
5842
5843 if (is_highmem(zone)) {
9705bea5 5844 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5845 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5846 }
5847 }
5848 val->totalhigh = managed_highpages;
5849 val->freehigh = free_highpages;
98d2b0eb 5850#else
fc2bd799
JK
5851 val->totalhigh = managed_highpages;
5852 val->freehigh = free_highpages;
98d2b0eb 5853#endif
1da177e4
LT
5854 val->mem_unit = PAGE_SIZE;
5855}
5856#endif
5857
ddd588b5 5858/*
7bf02ea2
DR
5859 * Determine whether the node should be displayed or not, depending on whether
5860 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5861 */
9af744d7 5862static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5863{
ddd588b5 5864 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5865 return false;
ddd588b5 5866
9af744d7
MH
5867 /*
5868 * no node mask - aka implicit memory numa policy. Do not bother with
5869 * the synchronization - read_mems_allowed_begin - because we do not
5870 * have to be precise here.
5871 */
5872 if (!nodemask)
5873 nodemask = &cpuset_current_mems_allowed;
5874
5875 return !node_isset(nid, *nodemask);
ddd588b5
DR
5876}
5877
1da177e4
LT
5878#define K(x) ((x) << (PAGE_SHIFT-10))
5879
377e4f16
RV
5880static void show_migration_types(unsigned char type)
5881{
5882 static const char types[MIGRATE_TYPES] = {
5883 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5884 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5885 [MIGRATE_RECLAIMABLE] = 'E',
5886 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5887#ifdef CONFIG_CMA
5888 [MIGRATE_CMA] = 'C',
5889#endif
194159fb 5890#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5891 [MIGRATE_ISOLATE] = 'I',
194159fb 5892#endif
377e4f16
RV
5893 };
5894 char tmp[MIGRATE_TYPES + 1];
5895 char *p = tmp;
5896 int i;
5897
5898 for (i = 0; i < MIGRATE_TYPES; i++) {
5899 if (type & (1 << i))
5900 *p++ = types[i];
5901 }
5902
5903 *p = '\0';
1f84a18f 5904 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5905}
5906
1da177e4
LT
5907/*
5908 * Show free area list (used inside shift_scroll-lock stuff)
5909 * We also calculate the percentage fragmentation. We do this by counting the
5910 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5911 *
5912 * Bits in @filter:
5913 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5914 * cpuset.
1da177e4 5915 */
9af744d7 5916void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5917{
d1bfcdb8 5918 unsigned long free_pcp = 0;
c7241913 5919 int cpu;
1da177e4 5920 struct zone *zone;
599d0c95 5921 pg_data_t *pgdat;
1da177e4 5922
ee99c71c 5923 for_each_populated_zone(zone) {
9af744d7 5924 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5925 continue;
d1bfcdb8 5926
761b0677 5927 for_each_online_cpu(cpu)
28f836b6 5928 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
5929 }
5930
a731286d
KM
5931 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5932 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5933 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5934 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5935 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
eb2169ce 5936 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 5937 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5938 global_node_page_state(NR_ACTIVE_ANON),
5939 global_node_page_state(NR_INACTIVE_ANON),
5940 global_node_page_state(NR_ISOLATED_ANON),
5941 global_node_page_state(NR_ACTIVE_FILE),
5942 global_node_page_state(NR_INACTIVE_FILE),
5943 global_node_page_state(NR_ISOLATED_FILE),
5944 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5945 global_node_page_state(NR_FILE_DIRTY),
5946 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5947 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5948 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5949 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5950 global_node_page_state(NR_SHMEM),
f0c0c115 5951 global_node_page_state(NR_PAGETABLE),
c41f012a 5952 global_zone_page_state(NR_BOUNCE),
eb2169ce 5953 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 5954 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5955 free_pcp,
c41f012a 5956 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5957
599d0c95 5958 for_each_online_pgdat(pgdat) {
9af744d7 5959 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5960 continue;
5961
599d0c95
MG
5962 printk("Node %d"
5963 " active_anon:%lukB"
5964 " inactive_anon:%lukB"
5965 " active_file:%lukB"
5966 " inactive_file:%lukB"
5967 " unevictable:%lukB"
5968 " isolated(anon):%lukB"
5969 " isolated(file):%lukB"
50658e2e 5970 " mapped:%lukB"
11fb9989
MG
5971 " dirty:%lukB"
5972 " writeback:%lukB"
5973 " shmem:%lukB"
5974#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5975 " shmem_thp: %lukB"
5976 " shmem_pmdmapped: %lukB"
5977 " anon_thp: %lukB"
5978#endif
5979 " writeback_tmp:%lukB"
991e7673
SB
5980 " kernel_stack:%lukB"
5981#ifdef CONFIG_SHADOW_CALL_STACK
5982 " shadow_call_stack:%lukB"
5983#endif
f0c0c115 5984 " pagetables:%lukB"
599d0c95
MG
5985 " all_unreclaimable? %s"
5986 "\n",
5987 pgdat->node_id,
5988 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5989 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5990 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5991 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5992 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5993 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5994 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5995 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5996 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5997 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5998 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5999#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 6000 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 6001 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 6002 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 6003#endif
11fb9989 6004 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
6005 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6006#ifdef CONFIG_SHADOW_CALL_STACK
6007 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6008#endif
f0c0c115 6009 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
6010 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6011 "yes" : "no");
599d0c95
MG
6012 }
6013
ee99c71c 6014 for_each_populated_zone(zone) {
1da177e4
LT
6015 int i;
6016
9af744d7 6017 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6018 continue;
d1bfcdb8
KK
6019
6020 free_pcp = 0;
6021 for_each_online_cpu(cpu)
28f836b6 6022 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 6023
1da177e4 6024 show_node(zone);
1f84a18f
JP
6025 printk(KERN_CONT
6026 "%s"
1da177e4 6027 " free:%lukB"
a6ea8b5b 6028 " boost:%lukB"
1da177e4
LT
6029 " min:%lukB"
6030 " low:%lukB"
6031 " high:%lukB"
e47b346a 6032 " reserved_highatomic:%luKB"
71c799f4
MK
6033 " active_anon:%lukB"
6034 " inactive_anon:%lukB"
6035 " active_file:%lukB"
6036 " inactive_file:%lukB"
6037 " unevictable:%lukB"
5a1c84b4 6038 " writepending:%lukB"
1da177e4 6039 " present:%lukB"
9feedc9d 6040 " managed:%lukB"
4a0aa73f 6041 " mlocked:%lukB"
4a0aa73f 6042 " bounce:%lukB"
d1bfcdb8
KK
6043 " free_pcp:%lukB"
6044 " local_pcp:%ukB"
d1ce749a 6045 " free_cma:%lukB"
1da177e4
LT
6046 "\n",
6047 zone->name,
88f5acf8 6048 K(zone_page_state(zone, NR_FREE_PAGES)),
a6ea8b5b 6049 K(zone->watermark_boost),
41858966
MG
6050 K(min_wmark_pages(zone)),
6051 K(low_wmark_pages(zone)),
6052 K(high_wmark_pages(zone)),
e47b346a 6053 K(zone->nr_reserved_highatomic),
71c799f4
MK
6054 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6055 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6056 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6057 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6058 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6059 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6060 K(zone->present_pages),
9705bea5 6061 K(zone_managed_pages(zone)),
4a0aa73f 6062 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6063 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6064 K(free_pcp),
28f836b6 6065 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6066 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6067 printk("lowmem_reserve[]:");
6068 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6069 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6070 printk(KERN_CONT "\n");
1da177e4
LT
6071 }
6072
ee99c71c 6073 for_each_populated_zone(zone) {
d00181b9
KS
6074 unsigned int order;
6075 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6076 unsigned char types[MAX_ORDER];
1da177e4 6077
9af744d7 6078 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6079 continue;
1da177e4 6080 show_node(zone);
1f84a18f 6081 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6082
6083 spin_lock_irqsave(&zone->lock, flags);
6084 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6085 struct free_area *area = &zone->free_area[order];
6086 int type;
6087
6088 nr[order] = area->nr_free;
8f9de51a 6089 total += nr[order] << order;
377e4f16
RV
6090
6091 types[order] = 0;
6092 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6093 if (!free_area_empty(area, type))
377e4f16
RV
6094 types[order] |= 1 << type;
6095 }
1da177e4
LT
6096 }
6097 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6098 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6099 printk(KERN_CONT "%lu*%lukB ",
6100 nr[order], K(1UL) << order);
377e4f16
RV
6101 if (nr[order])
6102 show_migration_types(types[order]);
6103 }
1f84a18f 6104 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6105 }
6106
949f7ec5
DR
6107 hugetlb_show_meminfo();
6108
11fb9989 6109 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6110
1da177e4
LT
6111 show_swap_cache_info();
6112}
6113
19770b32
MG
6114static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6115{
6116 zoneref->zone = zone;
6117 zoneref->zone_idx = zone_idx(zone);
6118}
6119
1da177e4
LT
6120/*
6121 * Builds allocation fallback zone lists.
1a93205b
CL
6122 *
6123 * Add all populated zones of a node to the zonelist.
1da177e4 6124 */
9d3be21b 6125static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6126{
1a93205b 6127 struct zone *zone;
bc732f1d 6128 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6129 int nr_zones = 0;
02a68a5e
CL
6130
6131 do {
2f6726e5 6132 zone_type--;
070f8032 6133 zone = pgdat->node_zones + zone_type;
6aa303de 6134 if (managed_zone(zone)) {
9d3be21b 6135 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6136 check_highest_zone(zone_type);
1da177e4 6137 }
2f6726e5 6138 } while (zone_type);
bc732f1d 6139
070f8032 6140 return nr_zones;
1da177e4
LT
6141}
6142
6143#ifdef CONFIG_NUMA
f0c0b2b8
KH
6144
6145static int __parse_numa_zonelist_order(char *s)
6146{
c9bff3ee 6147 /*
f0953a1b 6148 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6149 * out to be just not useful. Let's keep the warning in place
6150 * if somebody still use the cmd line parameter so that we do
6151 * not fail it silently
6152 */
6153 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6154 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6155 return -EINVAL;
6156 }
6157 return 0;
6158}
6159
c9bff3ee
MH
6160char numa_zonelist_order[] = "Node";
6161
f0c0b2b8
KH
6162/*
6163 * sysctl handler for numa_zonelist_order
6164 */
cccad5b9 6165int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6166 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6167{
32927393
CH
6168 if (write)
6169 return __parse_numa_zonelist_order(buffer);
6170 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6171}
6172
6173
62bc62a8 6174#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
6175static int node_load[MAX_NUMNODES];
6176
1da177e4 6177/**
4dc3b16b 6178 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6179 * @node: node whose fallback list we're appending
6180 * @used_node_mask: nodemask_t of already used nodes
6181 *
6182 * We use a number of factors to determine which is the next node that should
6183 * appear on a given node's fallback list. The node should not have appeared
6184 * already in @node's fallback list, and it should be the next closest node
6185 * according to the distance array (which contains arbitrary distance values
6186 * from each node to each node in the system), and should also prefer nodes
6187 * with no CPUs, since presumably they'll have very little allocation pressure
6188 * on them otherwise.
a862f68a
MR
6189 *
6190 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6191 */
79c28a41 6192int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6193{
4cf808eb 6194 int n, val;
1da177e4 6195 int min_val = INT_MAX;
00ef2d2f 6196 int best_node = NUMA_NO_NODE;
1da177e4 6197
4cf808eb
LT
6198 /* Use the local node if we haven't already */
6199 if (!node_isset(node, *used_node_mask)) {
6200 node_set(node, *used_node_mask);
6201 return node;
6202 }
1da177e4 6203
4b0ef1fe 6204 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6205
6206 /* Don't want a node to appear more than once */
6207 if (node_isset(n, *used_node_mask))
6208 continue;
6209
1da177e4
LT
6210 /* Use the distance array to find the distance */
6211 val = node_distance(node, n);
6212
4cf808eb
LT
6213 /* Penalize nodes under us ("prefer the next node") */
6214 val += (n < node);
6215
1da177e4 6216 /* Give preference to headless and unused nodes */
b630749f 6217 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6218 val += PENALTY_FOR_NODE_WITH_CPUS;
6219
6220 /* Slight preference for less loaded node */
6221 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6222 val += node_load[n];
6223
6224 if (val < min_val) {
6225 min_val = val;
6226 best_node = n;
6227 }
6228 }
6229
6230 if (best_node >= 0)
6231 node_set(best_node, *used_node_mask);
6232
6233 return best_node;
6234}
6235
f0c0b2b8
KH
6236
6237/*
6238 * Build zonelists ordered by node and zones within node.
6239 * This results in maximum locality--normal zone overflows into local
6240 * DMA zone, if any--but risks exhausting DMA zone.
6241 */
9d3be21b
MH
6242static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6243 unsigned nr_nodes)
1da177e4 6244{
9d3be21b
MH
6245 struct zoneref *zonerefs;
6246 int i;
6247
6248 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6249
6250 for (i = 0; i < nr_nodes; i++) {
6251 int nr_zones;
6252
6253 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6254
9d3be21b
MH
6255 nr_zones = build_zonerefs_node(node, zonerefs);
6256 zonerefs += nr_zones;
6257 }
6258 zonerefs->zone = NULL;
6259 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6260}
6261
523b9458
CL
6262/*
6263 * Build gfp_thisnode zonelists
6264 */
6265static void build_thisnode_zonelists(pg_data_t *pgdat)
6266{
9d3be21b
MH
6267 struct zoneref *zonerefs;
6268 int nr_zones;
523b9458 6269
9d3be21b
MH
6270 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6271 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6272 zonerefs += nr_zones;
6273 zonerefs->zone = NULL;
6274 zonerefs->zone_idx = 0;
523b9458
CL
6275}
6276
f0c0b2b8
KH
6277/*
6278 * Build zonelists ordered by zone and nodes within zones.
6279 * This results in conserving DMA zone[s] until all Normal memory is
6280 * exhausted, but results in overflowing to remote node while memory
6281 * may still exist in local DMA zone.
6282 */
f0c0b2b8 6283
f0c0b2b8
KH
6284static void build_zonelists(pg_data_t *pgdat)
6285{
9d3be21b
MH
6286 static int node_order[MAX_NUMNODES];
6287 int node, load, nr_nodes = 0;
d0ddf49b 6288 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6289 int local_node, prev_node;
1da177e4
LT
6290
6291 /* NUMA-aware ordering of nodes */
6292 local_node = pgdat->node_id;
62bc62a8 6293 load = nr_online_nodes;
1da177e4 6294 prev_node = local_node;
f0c0b2b8 6295
f0c0b2b8 6296 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6297 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6298 /*
6299 * We don't want to pressure a particular node.
6300 * So adding penalty to the first node in same
6301 * distance group to make it round-robin.
6302 */
957f822a
DR
6303 if (node_distance(local_node, node) !=
6304 node_distance(local_node, prev_node))
54d032ce 6305 node_load[node] += load;
f0c0b2b8 6306
9d3be21b 6307 node_order[nr_nodes++] = node;
1da177e4
LT
6308 prev_node = node;
6309 load--;
1da177e4 6310 }
523b9458 6311
9d3be21b 6312 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6313 build_thisnode_zonelists(pgdat);
6cf25392
BR
6314 pr_info("Fallback order for Node %d: ", local_node);
6315 for (node = 0; node < nr_nodes; node++)
6316 pr_cont("%d ", node_order[node]);
6317 pr_cont("\n");
1da177e4
LT
6318}
6319
7aac7898
LS
6320#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6321/*
6322 * Return node id of node used for "local" allocations.
6323 * I.e., first node id of first zone in arg node's generic zonelist.
6324 * Used for initializing percpu 'numa_mem', which is used primarily
6325 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6326 */
6327int local_memory_node(int node)
6328{
c33d6c06 6329 struct zoneref *z;
7aac7898 6330
c33d6c06 6331 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6332 gfp_zone(GFP_KERNEL),
c33d6c06 6333 NULL);
c1093b74 6334 return zone_to_nid(z->zone);
7aac7898
LS
6335}
6336#endif
f0c0b2b8 6337
6423aa81
JK
6338static void setup_min_unmapped_ratio(void);
6339static void setup_min_slab_ratio(void);
1da177e4
LT
6340#else /* CONFIG_NUMA */
6341
f0c0b2b8 6342static void build_zonelists(pg_data_t *pgdat)
1da177e4 6343{
19655d34 6344 int node, local_node;
9d3be21b
MH
6345 struct zoneref *zonerefs;
6346 int nr_zones;
1da177e4
LT
6347
6348 local_node = pgdat->node_id;
1da177e4 6349
9d3be21b
MH
6350 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6351 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6352 zonerefs += nr_zones;
1da177e4 6353
54a6eb5c
MG
6354 /*
6355 * Now we build the zonelist so that it contains the zones
6356 * of all the other nodes.
6357 * We don't want to pressure a particular node, so when
6358 * building the zones for node N, we make sure that the
6359 * zones coming right after the local ones are those from
6360 * node N+1 (modulo N)
6361 */
6362 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6363 if (!node_online(node))
6364 continue;
9d3be21b
MH
6365 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6366 zonerefs += nr_zones;
1da177e4 6367 }
54a6eb5c
MG
6368 for (node = 0; node < local_node; node++) {
6369 if (!node_online(node))
6370 continue;
9d3be21b
MH
6371 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6372 zonerefs += nr_zones;
54a6eb5c
MG
6373 }
6374
9d3be21b
MH
6375 zonerefs->zone = NULL;
6376 zonerefs->zone_idx = 0;
1da177e4
LT
6377}
6378
6379#endif /* CONFIG_NUMA */
6380
99dcc3e5
CL
6381/*
6382 * Boot pageset table. One per cpu which is going to be used for all
6383 * zones and all nodes. The parameters will be set in such a way
6384 * that an item put on a list will immediately be handed over to
6385 * the buddy list. This is safe since pageset manipulation is done
6386 * with interrupts disabled.
6387 *
6388 * The boot_pagesets must be kept even after bootup is complete for
6389 * unused processors and/or zones. They do play a role for bootstrapping
6390 * hotplugged processors.
6391 *
6392 * zoneinfo_show() and maybe other functions do
6393 * not check if the processor is online before following the pageset pointer.
6394 * Other parts of the kernel may not check if the zone is available.
6395 */
28f836b6 6396static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6397/* These effectively disable the pcplists in the boot pageset completely */
6398#define BOOT_PAGESET_HIGH 0
6399#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6400static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6401static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
09f49dca 6402DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6403
11cd8638 6404static void __build_all_zonelists(void *data)
1da177e4 6405{
6811378e 6406 int nid;
afb6ebb3 6407 int __maybe_unused cpu;
9adb62a5 6408 pg_data_t *self = data;
b93e0f32
MH
6409 static DEFINE_SPINLOCK(lock);
6410
6411 spin_lock(&lock);
9276b1bc 6412
7f9cfb31
BL
6413#ifdef CONFIG_NUMA
6414 memset(node_load, 0, sizeof(node_load));
6415#endif
9adb62a5 6416
c1152583
WY
6417 /*
6418 * This node is hotadded and no memory is yet present. So just
6419 * building zonelists is fine - no need to touch other nodes.
6420 */
9adb62a5
JL
6421 if (self && !node_online(self->node_id)) {
6422 build_zonelists(self);
c1152583 6423 } else {
09f49dca
MH
6424 /*
6425 * All possible nodes have pgdat preallocated
6426 * in free_area_init
6427 */
6428 for_each_node(nid) {
c1152583 6429 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6430
c1152583
WY
6431 build_zonelists(pgdat);
6432 }
99dcc3e5 6433
7aac7898
LS
6434#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6435 /*
6436 * We now know the "local memory node" for each node--
6437 * i.e., the node of the first zone in the generic zonelist.
6438 * Set up numa_mem percpu variable for on-line cpus. During
6439 * boot, only the boot cpu should be on-line; we'll init the
6440 * secondary cpus' numa_mem as they come on-line. During
6441 * node/memory hotplug, we'll fixup all on-line cpus.
6442 */
d9c9a0b9 6443 for_each_online_cpu(cpu)
7aac7898 6444 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6445#endif
d9c9a0b9 6446 }
b93e0f32
MH
6447
6448 spin_unlock(&lock);
6811378e
YG
6449}
6450
061f67bc
RV
6451static noinline void __init
6452build_all_zonelists_init(void)
6453{
afb6ebb3
MH
6454 int cpu;
6455
061f67bc 6456 __build_all_zonelists(NULL);
afb6ebb3
MH
6457
6458 /*
6459 * Initialize the boot_pagesets that are going to be used
6460 * for bootstrapping processors. The real pagesets for
6461 * each zone will be allocated later when the per cpu
6462 * allocator is available.
6463 *
6464 * boot_pagesets are used also for bootstrapping offline
6465 * cpus if the system is already booted because the pagesets
6466 * are needed to initialize allocators on a specific cpu too.
6467 * F.e. the percpu allocator needs the page allocator which
6468 * needs the percpu allocator in order to allocate its pagesets
6469 * (a chicken-egg dilemma).
6470 */
6471 for_each_possible_cpu(cpu)
28f836b6 6472 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6473
061f67bc
RV
6474 mminit_verify_zonelist();
6475 cpuset_init_current_mems_allowed();
6476}
6477
4eaf3f64 6478/*
4eaf3f64 6479 * unless system_state == SYSTEM_BOOTING.
061f67bc 6480 *
72675e13 6481 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6482 * [protected by SYSTEM_BOOTING].
4eaf3f64 6483 */
72675e13 6484void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6485{
0a18e607
DH
6486 unsigned long vm_total_pages;
6487
6811378e 6488 if (system_state == SYSTEM_BOOTING) {
061f67bc 6489 build_all_zonelists_init();
6811378e 6490 } else {
11cd8638 6491 __build_all_zonelists(pgdat);
6811378e
YG
6492 /* cpuset refresh routine should be here */
6493 }
56b9413b
DH
6494 /* Get the number of free pages beyond high watermark in all zones. */
6495 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6496 /*
6497 * Disable grouping by mobility if the number of pages in the
6498 * system is too low to allow the mechanism to work. It would be
6499 * more accurate, but expensive to check per-zone. This check is
6500 * made on memory-hotadd so a system can start with mobility
6501 * disabled and enable it later
6502 */
d9c23400 6503 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6504 page_group_by_mobility_disabled = 1;
6505 else
6506 page_group_by_mobility_disabled = 0;
6507
ce0725f7 6508 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6509 nr_online_nodes,
756a025f
JP
6510 page_group_by_mobility_disabled ? "off" : "on",
6511 vm_total_pages);
f0c0b2b8 6512#ifdef CONFIG_NUMA
f88dfff5 6513 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6514#endif
1da177e4
LT
6515}
6516
a9a9e77f
PT
6517/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6518static bool __meminit
6519overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6520{
a9a9e77f
PT
6521 static struct memblock_region *r;
6522
6523 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6524 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6525 for_each_mem_region(r) {
a9a9e77f
PT
6526 if (*pfn < memblock_region_memory_end_pfn(r))
6527 break;
6528 }
6529 }
6530 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6531 memblock_is_mirror(r)) {
6532 *pfn = memblock_region_memory_end_pfn(r);
6533 return true;
6534 }
6535 }
a9a9e77f
PT
6536 return false;
6537}
6538
1da177e4
LT
6539/*
6540 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6541 * up by memblock_free_all() once the early boot process is
1da177e4 6542 * done. Non-atomic initialization, single-pass.
d882c006
DH
6543 *
6544 * All aligned pageblocks are initialized to the specified migratetype
6545 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6546 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6547 */
ab28cb6e 6548void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6549 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6550 enum meminit_context context,
6551 struct vmem_altmap *altmap, int migratetype)
1da177e4 6552{
a9a9e77f 6553 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6554 struct page *page;
1da177e4 6555
22b31eec
HD
6556 if (highest_memmap_pfn < end_pfn - 1)
6557 highest_memmap_pfn = end_pfn - 1;
6558
966cf44f 6559#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6560 /*
6561 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6562 * memory. We limit the total number of pages to initialize to just
6563 * those that might contain the memory mapping. We will defer the
6564 * ZONE_DEVICE page initialization until after we have released
6565 * the hotplug lock.
4b94ffdc 6566 */
966cf44f
AD
6567 if (zone == ZONE_DEVICE) {
6568 if (!altmap)
6569 return;
6570
6571 if (start_pfn == altmap->base_pfn)
6572 start_pfn += altmap->reserve;
6573 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6574 }
6575#endif
4b94ffdc 6576
948c436e 6577 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6578 /*
b72d0ffb
AM
6579 * There can be holes in boot-time mem_map[]s handed to this
6580 * function. They do not exist on hotplugged memory.
a2f3aa02 6581 */
c1d0da83 6582 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6583 if (overlap_memmap_init(zone, &pfn))
6584 continue;
dc2da7b4 6585 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6586 break;
a2f3aa02 6587 }
ac5d2539 6588
d0dc12e8
PT
6589 page = pfn_to_page(pfn);
6590 __init_single_page(page, pfn, zone, nid);
c1d0da83 6591 if (context == MEMINIT_HOTPLUG)
d483da5b 6592 __SetPageReserved(page);
d0dc12e8 6593
ac5d2539 6594 /*
d882c006
DH
6595 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6596 * such that unmovable allocations won't be scattered all
6597 * over the place during system boot.
ac5d2539 6598 */
4eb29bd9 6599 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6600 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6601 cond_resched();
ac5d2539 6602 }
948c436e 6603 pfn++;
1da177e4
LT
6604 }
6605}
6606
966cf44f 6607#ifdef CONFIG_ZONE_DEVICE
46487e00
JM
6608static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6609 unsigned long zone_idx, int nid,
6610 struct dev_pagemap *pgmap)
6611{
6612
6613 __init_single_page(page, pfn, zone_idx, nid);
6614
6615 /*
6616 * Mark page reserved as it will need to wait for onlining
6617 * phase for it to be fully associated with a zone.
6618 *
6619 * We can use the non-atomic __set_bit operation for setting
6620 * the flag as we are still initializing the pages.
6621 */
6622 __SetPageReserved(page);
6623
6624 /*
6625 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6626 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6627 * ever freed or placed on a driver-private list.
6628 */
6629 page->pgmap = pgmap;
6630 page->zone_device_data = NULL;
6631
6632 /*
6633 * Mark the block movable so that blocks are reserved for
6634 * movable at startup. This will force kernel allocations
6635 * to reserve their blocks rather than leaking throughout
6636 * the address space during boot when many long-lived
6637 * kernel allocations are made.
6638 *
6639 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6640 * because this is done early in section_activate()
6641 */
6642 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6643 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6644 cond_resched();
6645 }
6646}
6647
c4386bd8
JM
6648static void __ref memmap_init_compound(struct page *head,
6649 unsigned long head_pfn,
6650 unsigned long zone_idx, int nid,
6651 struct dev_pagemap *pgmap,
6652 unsigned long nr_pages)
6653{
6654 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6655 unsigned int order = pgmap->vmemmap_shift;
6656
6657 __SetPageHead(head);
6658 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6659 struct page *page = pfn_to_page(pfn);
6660
6661 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6662 prep_compound_tail(head, pfn - head_pfn);
6663 set_page_count(page, 0);
6664
6665 /*
6666 * The first tail page stores compound_mapcount_ptr() and
6667 * compound_order() and the second tail page stores
6668 * compound_pincount_ptr(). Call prep_compound_head() after
6669 * the first and second tail pages have been initialized to
6670 * not have the data overwritten.
6671 */
6672 if (pfn == head_pfn + 2)
6673 prep_compound_head(head, order);
6674 }
6675}
6676
966cf44f
AD
6677void __ref memmap_init_zone_device(struct zone *zone,
6678 unsigned long start_pfn,
1f8d75c1 6679 unsigned long nr_pages,
966cf44f
AD
6680 struct dev_pagemap *pgmap)
6681{
1f8d75c1 6682 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6683 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6684 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
c4386bd8 6685 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
966cf44f
AD
6686 unsigned long zone_idx = zone_idx(zone);
6687 unsigned long start = jiffies;
6688 int nid = pgdat->node_id;
6689
46d945ae 6690 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6691 return;
6692
6693 /*
122e093c 6694 * The call to memmap_init should have already taken care
966cf44f
AD
6695 * of the pages reserved for the memmap, so we can just jump to
6696 * the end of that region and start processing the device pages.
6697 */
514caf23 6698 if (altmap) {
966cf44f 6699 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6700 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6701 }
6702
c4386bd8 6703 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
966cf44f
AD
6704 struct page *page = pfn_to_page(pfn);
6705
46487e00 6706 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
c4386bd8
JM
6707
6708 if (pfns_per_compound == 1)
6709 continue;
6710
6711 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6712 pfns_per_compound);
966cf44f
AD
6713 }
6714
fdc029b1 6715 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6716 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6717}
6718
6719#endif
1e548deb 6720static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6721{
7aeb09f9 6722 unsigned int order, t;
b2a0ac88
MG
6723 for_each_migratetype_order(order, t) {
6724 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6725 zone->free_area[order].nr_free = 0;
6726 }
6727}
6728
0740a50b
MR
6729/*
6730 * Only struct pages that correspond to ranges defined by memblock.memory
6731 * are zeroed and initialized by going through __init_single_page() during
122e093c 6732 * memmap_init_zone_range().
0740a50b
MR
6733 *
6734 * But, there could be struct pages that correspond to holes in
6735 * memblock.memory. This can happen because of the following reasons:
6736 * - physical memory bank size is not necessarily the exact multiple of the
6737 * arbitrary section size
6738 * - early reserved memory may not be listed in memblock.memory
6739 * - memory layouts defined with memmap= kernel parameter may not align
6740 * nicely with memmap sections
6741 *
6742 * Explicitly initialize those struct pages so that:
6743 * - PG_Reserved is set
6744 * - zone and node links point to zone and node that span the page if the
6745 * hole is in the middle of a zone
6746 * - zone and node links point to adjacent zone/node if the hole falls on
6747 * the zone boundary; the pages in such holes will be prepended to the
6748 * zone/node above the hole except for the trailing pages in the last
6749 * section that will be appended to the zone/node below.
6750 */
122e093c
MR
6751static void __init init_unavailable_range(unsigned long spfn,
6752 unsigned long epfn,
6753 int zone, int node)
0740a50b
MR
6754{
6755 unsigned long pfn;
6756 u64 pgcnt = 0;
6757
6758 for (pfn = spfn; pfn < epfn; pfn++) {
6759 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6760 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6761 + pageblock_nr_pages - 1;
6762 continue;
6763 }
6764 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6765 __SetPageReserved(pfn_to_page(pfn));
6766 pgcnt++;
6767 }
6768
122e093c
MR
6769 if (pgcnt)
6770 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6771 node, zone_names[zone], pgcnt);
0740a50b 6772}
0740a50b 6773
122e093c
MR
6774static void __init memmap_init_zone_range(struct zone *zone,
6775 unsigned long start_pfn,
6776 unsigned long end_pfn,
6777 unsigned long *hole_pfn)
dfb3ccd0 6778{
3256ff83
BH
6779 unsigned long zone_start_pfn = zone->zone_start_pfn;
6780 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
6781 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6782
6783 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6784 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6785
6786 if (start_pfn >= end_pfn)
6787 return;
6788
6789 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6790 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6791
6792 if (*hole_pfn < start_pfn)
6793 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6794
6795 *hole_pfn = end_pfn;
6796}
6797
6798static void __init memmap_init(void)
6799{
73a6e474 6800 unsigned long start_pfn, end_pfn;
122e093c 6801 unsigned long hole_pfn = 0;
b346075f 6802 int i, j, zone_id = 0, nid;
73a6e474 6803
122e093c
MR
6804 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6805 struct pglist_data *node = NODE_DATA(nid);
73a6e474 6806
122e093c
MR
6807 for (j = 0; j < MAX_NR_ZONES; j++) {
6808 struct zone *zone = node->node_zones + j;
0740a50b 6809
122e093c
MR
6810 if (!populated_zone(zone))
6811 continue;
0740a50b 6812
122e093c
MR
6813 memmap_init_zone_range(zone, start_pfn, end_pfn,
6814 &hole_pfn);
6815 zone_id = j;
6816 }
73a6e474 6817 }
0740a50b
MR
6818
6819#ifdef CONFIG_SPARSEMEM
6820 /*
122e093c
MR
6821 * Initialize the memory map for hole in the range [memory_end,
6822 * section_end].
6823 * Append the pages in this hole to the highest zone in the last
6824 * node.
6825 * The call to init_unavailable_range() is outside the ifdef to
6826 * silence the compiler warining about zone_id set but not used;
6827 * for FLATMEM it is a nop anyway
0740a50b 6828 */
122e093c 6829 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 6830 if (hole_pfn < end_pfn)
0740a50b 6831#endif
122e093c 6832 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 6833}
1da177e4 6834
c803b3c8
MR
6835void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6836 phys_addr_t min_addr, int nid, bool exact_nid)
6837{
6838 void *ptr;
6839
6840 if (exact_nid)
6841 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6842 MEMBLOCK_ALLOC_ACCESSIBLE,
6843 nid);
6844 else
6845 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6846 MEMBLOCK_ALLOC_ACCESSIBLE,
6847 nid);
6848
6849 if (ptr && size > 0)
6850 page_init_poison(ptr, size);
6851
6852 return ptr;
6853}
6854
7cd2b0a3 6855static int zone_batchsize(struct zone *zone)
e7c8d5c9 6856{
3a6be87f 6857#ifdef CONFIG_MMU
e7c8d5c9
CL
6858 int batch;
6859
6860 /*
b92ca18e
MG
6861 * The number of pages to batch allocate is either ~0.1%
6862 * of the zone or 1MB, whichever is smaller. The batch
6863 * size is striking a balance between allocation latency
6864 * and zone lock contention.
e7c8d5c9 6865 */
b92ca18e 6866 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
e7c8d5c9
CL
6867 batch /= 4; /* We effectively *= 4 below */
6868 if (batch < 1)
6869 batch = 1;
6870
6871 /*
0ceaacc9
NP
6872 * Clamp the batch to a 2^n - 1 value. Having a power
6873 * of 2 value was found to be more likely to have
6874 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6875 *
0ceaacc9
NP
6876 * For example if 2 tasks are alternately allocating
6877 * batches of pages, one task can end up with a lot
6878 * of pages of one half of the possible page colors
6879 * and the other with pages of the other colors.
e7c8d5c9 6880 */
9155203a 6881 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6882
e7c8d5c9 6883 return batch;
3a6be87f
DH
6884
6885#else
6886 /* The deferral and batching of frees should be suppressed under NOMMU
6887 * conditions.
6888 *
6889 * The problem is that NOMMU needs to be able to allocate large chunks
6890 * of contiguous memory as there's no hardware page translation to
6891 * assemble apparent contiguous memory from discontiguous pages.
6892 *
6893 * Queueing large contiguous runs of pages for batching, however,
6894 * causes the pages to actually be freed in smaller chunks. As there
6895 * can be a significant delay between the individual batches being
6896 * recycled, this leads to the once large chunks of space being
6897 * fragmented and becoming unavailable for high-order allocations.
6898 */
6899 return 0;
6900#endif
e7c8d5c9
CL
6901}
6902
04f8cfea 6903static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
6904{
6905#ifdef CONFIG_MMU
6906 int high;
203c06ee 6907 int nr_split_cpus;
74f44822
MG
6908 unsigned long total_pages;
6909
6910 if (!percpu_pagelist_high_fraction) {
6911 /*
6912 * By default, the high value of the pcp is based on the zone
6913 * low watermark so that if they are full then background
6914 * reclaim will not be started prematurely.
6915 */
6916 total_pages = low_wmark_pages(zone);
6917 } else {
6918 /*
6919 * If percpu_pagelist_high_fraction is configured, the high
6920 * value is based on a fraction of the managed pages in the
6921 * zone.
6922 */
6923 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6924 }
b92ca18e
MG
6925
6926 /*
74f44822
MG
6927 * Split the high value across all online CPUs local to the zone. Note
6928 * that early in boot that CPUs may not be online yet and that during
6929 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
6930 * onlined. For memory nodes that have no CPUs, split pcp->high across
6931 * all online CPUs to mitigate the risk that reclaim is triggered
6932 * prematurely due to pages stored on pcp lists.
b92ca18e 6933 */
203c06ee
MG
6934 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6935 if (!nr_split_cpus)
6936 nr_split_cpus = num_online_cpus();
6937 high = total_pages / nr_split_cpus;
b92ca18e
MG
6938
6939 /*
6940 * Ensure high is at least batch*4. The multiple is based on the
6941 * historical relationship between high and batch.
6942 */
6943 high = max(high, batch << 2);
6944
6945 return high;
6946#else
6947 return 0;
6948#endif
6949}
6950
8d7a8fa9 6951/*
5c3ad2eb
VB
6952 * pcp->high and pcp->batch values are related and generally batch is lower
6953 * than high. They are also related to pcp->count such that count is lower
6954 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6955 *
5c3ad2eb
VB
6956 * However, guaranteeing these relations at all times would require e.g. write
6957 * barriers here but also careful usage of read barriers at the read side, and
6958 * thus be prone to error and bad for performance. Thus the update only prevents
6959 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6960 * can cope with those fields changing asynchronously, and fully trust only the
6961 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6962 *
6963 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6964 * outside of boot time (or some other assurance that no concurrent updaters
6965 * exist).
6966 */
6967static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6968 unsigned long batch)
6969{
5c3ad2eb
VB
6970 WRITE_ONCE(pcp->batch, batch);
6971 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6972}
6973
28f836b6 6974static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 6975{
44042b44 6976 int pindex;
2caaad41 6977
28f836b6
MG
6978 memset(pcp, 0, sizeof(*pcp));
6979 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 6980
44042b44
MG
6981 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6982 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 6983
69a8396a
VB
6984 /*
6985 * Set batch and high values safe for a boot pageset. A true percpu
6986 * pageset's initialization will update them subsequently. Here we don't
6987 * need to be as careful as pageset_update() as nobody can access the
6988 * pageset yet.
6989 */
952eaf81
VB
6990 pcp->high = BOOT_PAGESET_HIGH;
6991 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 6992 pcp->free_factor = 0;
88c90dbc
CS
6993}
6994
3b1f3658 6995static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6996 unsigned long batch)
6997{
28f836b6 6998 struct per_cpu_pages *pcp;
ec6e8c7e
VB
6999 int cpu;
7000
7001 for_each_possible_cpu(cpu) {
28f836b6
MG
7002 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7003 pageset_update(pcp, high, batch);
ec6e8c7e
VB
7004 }
7005}
7006
8ad4b1fb 7007/*
0a8b4f1d 7008 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 7009 * zone based on the zone's size.
8ad4b1fb 7010 */
04f8cfea 7011static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 7012{
b92ca18e 7013 int new_high, new_batch;
7115ac6e 7014
b92ca18e 7015 new_batch = max(1, zone_batchsize(zone));
04f8cfea 7016 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 7017
952eaf81
VB
7018 if (zone->pageset_high == new_high &&
7019 zone->pageset_batch == new_batch)
7020 return;
7021
7022 zone->pageset_high = new_high;
7023 zone->pageset_batch = new_batch;
7024
ec6e8c7e 7025 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
7026}
7027
72675e13 7028void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
7029{
7030 int cpu;
0a8b4f1d 7031
28f836b6
MG
7032 /* Size may be 0 on !SMP && !NUMA */
7033 if (sizeof(struct per_cpu_zonestat) > 0)
7034 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7035
7036 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 7037 for_each_possible_cpu(cpu) {
28f836b6
MG
7038 struct per_cpu_pages *pcp;
7039 struct per_cpu_zonestat *pzstats;
7040
7041 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7042 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7043 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
7044 }
7045
04f8cfea 7046 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
7047}
7048
2caaad41 7049/*
99dcc3e5
CL
7050 * Allocate per cpu pagesets and initialize them.
7051 * Before this call only boot pagesets were available.
e7c8d5c9 7052 */
99dcc3e5 7053void __init setup_per_cpu_pageset(void)
e7c8d5c9 7054{
b4911ea2 7055 struct pglist_data *pgdat;
99dcc3e5 7056 struct zone *zone;
b418a0f9 7057 int __maybe_unused cpu;
e7c8d5c9 7058
319774e2
WF
7059 for_each_populated_zone(zone)
7060 setup_zone_pageset(zone);
b4911ea2 7061
b418a0f9
SD
7062#ifdef CONFIG_NUMA
7063 /*
7064 * Unpopulated zones continue using the boot pagesets.
7065 * The numa stats for these pagesets need to be reset.
7066 * Otherwise, they will end up skewing the stats of
7067 * the nodes these zones are associated with.
7068 */
7069 for_each_possible_cpu(cpu) {
28f836b6 7070 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
7071 memset(pzstats->vm_numa_event, 0,
7072 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
7073 }
7074#endif
7075
b4911ea2
MG
7076 for_each_online_pgdat(pgdat)
7077 pgdat->per_cpu_nodestats =
7078 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
7079}
7080
c09b4240 7081static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 7082{
99dcc3e5
CL
7083 /*
7084 * per cpu subsystem is not up at this point. The following code
7085 * relies on the ability of the linker to provide the
7086 * offset of a (static) per cpu variable into the per cpu area.
7087 */
28f836b6
MG
7088 zone->per_cpu_pageset = &boot_pageset;
7089 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
7090 zone->pageset_high = BOOT_PAGESET_HIGH;
7091 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 7092
b38a8725 7093 if (populated_zone(zone))
9660ecaa
HK
7094 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7095 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
7096}
7097
dc0bbf3b 7098void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 7099 unsigned long zone_start_pfn,
b171e409 7100 unsigned long size)
ed8ece2e
DH
7101{
7102 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7103 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7104
8f416836
WY
7105 if (zone_idx > pgdat->nr_zones)
7106 pgdat->nr_zones = zone_idx;
ed8ece2e 7107
ed8ece2e
DH
7108 zone->zone_start_pfn = zone_start_pfn;
7109
708614e6
MG
7110 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7111 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7112 pgdat->node_id,
7113 (unsigned long)zone_idx(zone),
7114 zone_start_pfn, (zone_start_pfn + size));
7115
1e548deb 7116 zone_init_free_lists(zone);
9dcb8b68 7117 zone->initialized = 1;
ed8ece2e
DH
7118}
7119
c713216d
MG
7120/**
7121 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7122 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7123 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7124 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7125 *
7126 * It returns the start and end page frame of a node based on information
7d018176 7127 * provided by memblock_set_node(). If called for a node
c713216d 7128 * with no available memory, a warning is printed and the start and end
88ca3b94 7129 * PFNs will be 0.
c713216d 7130 */
bbe5d993 7131void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7132 unsigned long *start_pfn, unsigned long *end_pfn)
7133{
c13291a5 7134 unsigned long this_start_pfn, this_end_pfn;
c713216d 7135 int i;
c13291a5 7136
c713216d
MG
7137 *start_pfn = -1UL;
7138 *end_pfn = 0;
7139
c13291a5
TH
7140 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7141 *start_pfn = min(*start_pfn, this_start_pfn);
7142 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7143 }
7144
633c0666 7145 if (*start_pfn == -1UL)
c713216d 7146 *start_pfn = 0;
c713216d
MG
7147}
7148
2a1e274a
MG
7149/*
7150 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7151 * assumption is made that zones within a node are ordered in monotonic
7152 * increasing memory addresses so that the "highest" populated zone is used
7153 */
b69a7288 7154static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7155{
7156 int zone_index;
7157 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7158 if (zone_index == ZONE_MOVABLE)
7159 continue;
7160
7161 if (arch_zone_highest_possible_pfn[zone_index] >
7162 arch_zone_lowest_possible_pfn[zone_index])
7163 break;
7164 }
7165
7166 VM_BUG_ON(zone_index == -1);
7167 movable_zone = zone_index;
7168}
7169
7170/*
7171 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7172 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7173 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7174 * in each node depending on the size of each node and how evenly kernelcore
7175 * is distributed. This helper function adjusts the zone ranges
7176 * provided by the architecture for a given node by using the end of the
7177 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7178 * zones within a node are in order of monotonic increases memory addresses
7179 */
bbe5d993 7180static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7181 unsigned long zone_type,
7182 unsigned long node_start_pfn,
7183 unsigned long node_end_pfn,
7184 unsigned long *zone_start_pfn,
7185 unsigned long *zone_end_pfn)
7186{
7187 /* Only adjust if ZONE_MOVABLE is on this node */
7188 if (zone_movable_pfn[nid]) {
7189 /* Size ZONE_MOVABLE */
7190 if (zone_type == ZONE_MOVABLE) {
7191 *zone_start_pfn = zone_movable_pfn[nid];
7192 *zone_end_pfn = min(node_end_pfn,
7193 arch_zone_highest_possible_pfn[movable_zone]);
7194
e506b996
XQ
7195 /* Adjust for ZONE_MOVABLE starting within this range */
7196 } else if (!mirrored_kernelcore &&
7197 *zone_start_pfn < zone_movable_pfn[nid] &&
7198 *zone_end_pfn > zone_movable_pfn[nid]) {
7199 *zone_end_pfn = zone_movable_pfn[nid];
7200
2a1e274a
MG
7201 /* Check if this whole range is within ZONE_MOVABLE */
7202 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7203 *zone_start_pfn = *zone_end_pfn;
7204 }
7205}
7206
c713216d
MG
7207/*
7208 * Return the number of pages a zone spans in a node, including holes
7209 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7210 */
bbe5d993 7211static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7212 unsigned long zone_type,
7960aedd
ZY
7213 unsigned long node_start_pfn,
7214 unsigned long node_end_pfn,
d91749c1 7215 unsigned long *zone_start_pfn,
854e8848 7216 unsigned long *zone_end_pfn)
c713216d 7217{
299c83dc
LF
7218 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7219 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7220 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7221 if (!node_start_pfn && !node_end_pfn)
7222 return 0;
7223
7960aedd 7224 /* Get the start and end of the zone */
299c83dc
LF
7225 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7226 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7227 adjust_zone_range_for_zone_movable(nid, zone_type,
7228 node_start_pfn, node_end_pfn,
d91749c1 7229 zone_start_pfn, zone_end_pfn);
c713216d
MG
7230
7231 /* Check that this node has pages within the zone's required range */
d91749c1 7232 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7233 return 0;
7234
7235 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7236 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7237 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7238
7239 /* Return the spanned pages */
d91749c1 7240 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7241}
7242
7243/*
7244 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7245 * then all holes in the requested range will be accounted for.
c713216d 7246 */
bbe5d993 7247unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7248 unsigned long range_start_pfn,
7249 unsigned long range_end_pfn)
7250{
96e907d1
TH
7251 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7252 unsigned long start_pfn, end_pfn;
7253 int i;
c713216d 7254
96e907d1
TH
7255 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7256 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7257 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7258 nr_absent -= end_pfn - start_pfn;
c713216d 7259 }
96e907d1 7260 return nr_absent;
c713216d
MG
7261}
7262
7263/**
7264 * absent_pages_in_range - Return number of page frames in holes within a range
7265 * @start_pfn: The start PFN to start searching for holes
7266 * @end_pfn: The end PFN to stop searching for holes
7267 *
a862f68a 7268 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7269 */
7270unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7271 unsigned long end_pfn)
7272{
7273 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7274}
7275
7276/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7277static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7278 unsigned long zone_type,
7960aedd 7279 unsigned long node_start_pfn,
854e8848 7280 unsigned long node_end_pfn)
c713216d 7281{
96e907d1
TH
7282 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7283 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7284 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7285 unsigned long nr_absent;
9c7cd687 7286
b5685e92 7287 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7288 if (!node_start_pfn && !node_end_pfn)
7289 return 0;
7290
96e907d1
TH
7291 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7292 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7293
2a1e274a
MG
7294 adjust_zone_range_for_zone_movable(nid, zone_type,
7295 node_start_pfn, node_end_pfn,
7296 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7297 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7298
7299 /*
7300 * ZONE_MOVABLE handling.
7301 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7302 * and vice versa.
7303 */
e506b996
XQ
7304 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7305 unsigned long start_pfn, end_pfn;
7306 struct memblock_region *r;
7307
cc6de168 7308 for_each_mem_region(r) {
e506b996
XQ
7309 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7310 zone_start_pfn, zone_end_pfn);
7311 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7312 zone_start_pfn, zone_end_pfn);
7313
7314 if (zone_type == ZONE_MOVABLE &&
7315 memblock_is_mirror(r))
7316 nr_absent += end_pfn - start_pfn;
7317
7318 if (zone_type == ZONE_NORMAL &&
7319 !memblock_is_mirror(r))
7320 nr_absent += end_pfn - start_pfn;
342332e6
TI
7321 }
7322 }
7323
7324 return nr_absent;
c713216d 7325}
0e0b864e 7326
bbe5d993 7327static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7328 unsigned long node_start_pfn,
854e8848 7329 unsigned long node_end_pfn)
c713216d 7330{
febd5949 7331 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7332 enum zone_type i;
7333
febd5949
GZ
7334 for (i = 0; i < MAX_NR_ZONES; i++) {
7335 struct zone *zone = pgdat->node_zones + i;
d91749c1 7336 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7337 unsigned long spanned, absent;
febd5949 7338 unsigned long size, real_size;
c713216d 7339
854e8848
MR
7340 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7341 node_start_pfn,
7342 node_end_pfn,
7343 &zone_start_pfn,
7344 &zone_end_pfn);
7345 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7346 node_start_pfn,
7347 node_end_pfn);
3f08a302
MR
7348
7349 size = spanned;
7350 real_size = size - absent;
7351
d91749c1
TI
7352 if (size)
7353 zone->zone_start_pfn = zone_start_pfn;
7354 else
7355 zone->zone_start_pfn = 0;
febd5949
GZ
7356 zone->spanned_pages = size;
7357 zone->present_pages = real_size;
4b097002
DH
7358#if defined(CONFIG_MEMORY_HOTPLUG)
7359 zone->present_early_pages = real_size;
7360#endif
febd5949
GZ
7361
7362 totalpages += size;
7363 realtotalpages += real_size;
7364 }
7365
7366 pgdat->node_spanned_pages = totalpages;
c713216d 7367 pgdat->node_present_pages = realtotalpages;
9660ecaa 7368 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7369}
7370
835c134e
MG
7371#ifndef CONFIG_SPARSEMEM
7372/*
7373 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7374 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7375 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7376 * round what is now in bits to nearest long in bits, then return it in
7377 * bytes.
7378 */
7c45512d 7379static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7380{
7381 unsigned long usemapsize;
7382
7c45512d 7383 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7384 usemapsize = roundup(zonesize, pageblock_nr_pages);
7385 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7386 usemapsize *= NR_PAGEBLOCK_BITS;
7387 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7388
7389 return usemapsize / 8;
7390}
7391
7010a6ec 7392static void __ref setup_usemap(struct zone *zone)
835c134e 7393{
7010a6ec
BH
7394 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7395 zone->spanned_pages);
835c134e 7396 zone->pageblock_flags = NULL;
23a7052a 7397 if (usemapsize) {
6782832e 7398 zone->pageblock_flags =
26fb3dae 7399 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7400 zone_to_nid(zone));
23a7052a
MR
7401 if (!zone->pageblock_flags)
7402 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7403 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7404 }
835c134e
MG
7405}
7406#else
7010a6ec 7407static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7408#endif /* CONFIG_SPARSEMEM */
7409
d9c23400 7410#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7411
d9c23400 7412/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7413void __init set_pageblock_order(void)
d9c23400 7414{
b3d40a2b 7415 unsigned int order = MAX_ORDER - 1;
955c1cd7 7416
d9c23400
MG
7417 /* Check that pageblock_nr_pages has not already been setup */
7418 if (pageblock_order)
7419 return;
7420
b3d40a2b
DH
7421 /* Don't let pageblocks exceed the maximum allocation granularity. */
7422 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
955c1cd7 7423 order = HUGETLB_PAGE_ORDER;
955c1cd7 7424
d9c23400
MG
7425 /*
7426 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7427 * This value may be variable depending on boot parameters on IA64 and
7428 * powerpc.
d9c23400
MG
7429 */
7430 pageblock_order = order;
7431}
7432#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7433
ba72cb8c
MG
7434/*
7435 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7436 * is unused as pageblock_order is set at compile-time. See
7437 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7438 * the kernel config
ba72cb8c 7439 */
03e85f9d 7440void __init set_pageblock_order(void)
ba72cb8c 7441{
ba72cb8c 7442}
d9c23400
MG
7443
7444#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7445
03e85f9d 7446static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7447 unsigned long present_pages)
01cefaef
JL
7448{
7449 unsigned long pages = spanned_pages;
7450
7451 /*
7452 * Provide a more accurate estimation if there are holes within
7453 * the zone and SPARSEMEM is in use. If there are holes within the
7454 * zone, each populated memory region may cost us one or two extra
7455 * memmap pages due to alignment because memmap pages for each
89d790ab 7456 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7457 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7458 */
7459 if (spanned_pages > present_pages + (present_pages >> 4) &&
7460 IS_ENABLED(CONFIG_SPARSEMEM))
7461 pages = present_pages;
7462
7463 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7464}
7465
ace1db39
OS
7466#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7467static void pgdat_init_split_queue(struct pglist_data *pgdat)
7468{
364c1eeb
YS
7469 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7470
7471 spin_lock_init(&ds_queue->split_queue_lock);
7472 INIT_LIST_HEAD(&ds_queue->split_queue);
7473 ds_queue->split_queue_len = 0;
ace1db39
OS
7474}
7475#else
7476static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7477#endif
7478
7479#ifdef CONFIG_COMPACTION
7480static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7481{
7482 init_waitqueue_head(&pgdat->kcompactd_wait);
7483}
7484#else
7485static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7486#endif
7487
03e85f9d 7488static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7489{
8cd7c588
MG
7490 int i;
7491
208d54e5 7492 pgdat_resize_init(pgdat);
ace1db39 7493
ace1db39
OS
7494 pgdat_init_split_queue(pgdat);
7495 pgdat_init_kcompactd(pgdat);
7496
1da177e4 7497 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7498 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7499
8cd7c588
MG
7500 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7501 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7502
eefa864b 7503 pgdat_page_ext_init(pgdat);
867e5e1d 7504 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7505}
7506
7507static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7508 unsigned long remaining_pages)
7509{
9705bea5 7510 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7511 zone_set_nid(zone, nid);
7512 zone->name = zone_names[idx];
7513 zone->zone_pgdat = NODE_DATA(nid);
7514 spin_lock_init(&zone->lock);
7515 zone_seqlock_init(zone);
7516 zone_pcp_init(zone);
7517}
7518
7519/*
7520 * Set up the zone data structures
7521 * - init pgdat internals
7522 * - init all zones belonging to this node
7523 *
7524 * NOTE: this function is only called during memory hotplug
7525 */
7526#ifdef CONFIG_MEMORY_HOTPLUG
70b5b46a 7527void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
03e85f9d 7528{
70b5b46a 7529 int nid = pgdat->node_id;
03e85f9d 7530 enum zone_type z;
70b5b46a 7531 int cpu;
03e85f9d
OS
7532
7533 pgdat_init_internals(pgdat);
70b5b46a
MH
7534
7535 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7536 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7537
7538 /*
7539 * Reset the nr_zones, order and highest_zoneidx before reuse.
7540 * Note that kswapd will init kswapd_highest_zoneidx properly
7541 * when it starts in the near future.
7542 */
7543 pgdat->nr_zones = 0;
7544 pgdat->kswapd_order = 0;
7545 pgdat->kswapd_highest_zoneidx = 0;
7546 pgdat->node_start_pfn = 0;
7547 for_each_online_cpu(cpu) {
7548 struct per_cpu_nodestat *p;
7549
7550 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7551 memset(p, 0, sizeof(*p));
7552 }
7553
03e85f9d
OS
7554 for (z = 0; z < MAX_NR_ZONES; z++)
7555 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7556}
7557#endif
7558
7559/*
7560 * Set up the zone data structures:
7561 * - mark all pages reserved
7562 * - mark all memory queues empty
7563 * - clear the memory bitmaps
7564 *
7565 * NOTE: pgdat should get zeroed by caller.
7566 * NOTE: this function is only called during early init.
7567 */
7568static void __init free_area_init_core(struct pglist_data *pgdat)
7569{
7570 enum zone_type j;
7571 int nid = pgdat->node_id;
5f63b720 7572
03e85f9d 7573 pgdat_init_internals(pgdat);
385386cf
JW
7574 pgdat->per_cpu_nodestats = &boot_nodestats;
7575
1da177e4
LT
7576 for (j = 0; j < MAX_NR_ZONES; j++) {
7577 struct zone *zone = pgdat->node_zones + j;
e6943859 7578 unsigned long size, freesize, memmap_pages;
1da177e4 7579
febd5949 7580 size = zone->spanned_pages;
e6943859 7581 freesize = zone->present_pages;
1da177e4 7582
0e0b864e 7583 /*
9feedc9d 7584 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7585 * is used by this zone for memmap. This affects the watermark
7586 * and per-cpu initialisations
7587 */
e6943859 7588 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7589 if (!is_highmem_idx(j)) {
7590 if (freesize >= memmap_pages) {
7591 freesize -= memmap_pages;
7592 if (memmap_pages)
9660ecaa
HK
7593 pr_debug(" %s zone: %lu pages used for memmap\n",
7594 zone_names[j], memmap_pages);
ba914f48 7595 } else
e47aa905 7596 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7597 zone_names[j], memmap_pages, freesize);
7598 }
0e0b864e 7599
6267276f 7600 /* Account for reserved pages */
9feedc9d
JL
7601 if (j == 0 && freesize > dma_reserve) {
7602 freesize -= dma_reserve;
9660ecaa 7603 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7604 }
7605
98d2b0eb 7606 if (!is_highmem_idx(j))
9feedc9d 7607 nr_kernel_pages += freesize;
01cefaef
JL
7608 /* Charge for highmem memmap if there are enough kernel pages */
7609 else if (nr_kernel_pages > memmap_pages * 2)
7610 nr_kernel_pages -= memmap_pages;
9feedc9d 7611 nr_all_pages += freesize;
1da177e4 7612
9feedc9d
JL
7613 /*
7614 * Set an approximate value for lowmem here, it will be adjusted
7615 * when the bootmem allocator frees pages into the buddy system.
7616 * And all highmem pages will be managed by the buddy system.
7617 */
03e85f9d 7618 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7619
d883c6cf 7620 if (!size)
1da177e4
LT
7621 continue;
7622
955c1cd7 7623 set_pageblock_order();
7010a6ec 7624 setup_usemap(zone);
9699ee7b 7625 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7626 }
7627}
7628
43b02ba9 7629#ifdef CONFIG_FLATMEM
3b446da6 7630static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7631{
b0aeba74 7632 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7633 unsigned long __maybe_unused offset = 0;
7634
1da177e4
LT
7635 /* Skip empty nodes */
7636 if (!pgdat->node_spanned_pages)
7637 return;
7638
b0aeba74
TL
7639 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7640 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7641 /* ia64 gets its own node_mem_map, before this, without bootmem */
7642 if (!pgdat->node_mem_map) {
b0aeba74 7643 unsigned long size, end;
d41dee36
AW
7644 struct page *map;
7645
e984bb43
BP
7646 /*
7647 * The zone's endpoints aren't required to be MAX_ORDER
7648 * aligned but the node_mem_map endpoints must be in order
7649 * for the buddy allocator to function correctly.
7650 */
108bcc96 7651 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7652 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7653 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7654 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7655 pgdat->node_id, false);
23a7052a
MR
7656 if (!map)
7657 panic("Failed to allocate %ld bytes for node %d memory map\n",
7658 size, pgdat->node_id);
a1c34a3b 7659 pgdat->node_mem_map = map + offset;
1da177e4 7660 }
0cd842f9
OS
7661 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7662 __func__, pgdat->node_id, (unsigned long)pgdat,
7663 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7664#ifndef CONFIG_NUMA
1da177e4
LT
7665 /*
7666 * With no DISCONTIG, the global mem_map is just set as node 0's
7667 */
c713216d 7668 if (pgdat == NODE_DATA(0)) {
1da177e4 7669 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7670 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7671 mem_map -= offset;
c713216d 7672 }
1da177e4
LT
7673#endif
7674}
0cd842f9 7675#else
3b446da6 7676static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7677#endif /* CONFIG_FLATMEM */
1da177e4 7678
0188dc98
OS
7679#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7680static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7681{
0188dc98
OS
7682 pgdat->first_deferred_pfn = ULONG_MAX;
7683}
7684#else
7685static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7686#endif
7687
854e8848 7688static void __init free_area_init_node(int nid)
1da177e4 7689{
9109fb7b 7690 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7691 unsigned long start_pfn = 0;
7692 unsigned long end_pfn = 0;
9109fb7b 7693
88fdf75d 7694 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7695 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7696
854e8848 7697 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7698
1da177e4 7699 pgdat->node_id = nid;
854e8848 7700 pgdat->node_start_pfn = start_pfn;
75ef7184 7701 pgdat->per_cpu_nodestats = NULL;
854e8848 7702
7c30daac
MH
7703 if (start_pfn != end_pfn) {
7704 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7705 (u64)start_pfn << PAGE_SHIFT,
7706 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7707 } else {
7708 pr_info("Initmem setup node %d as memoryless\n", nid);
7709 }
7710
854e8848 7711 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7712
7713 alloc_node_mem_map(pgdat);
0188dc98 7714 pgdat_set_deferred_range(pgdat);
1da177e4 7715
7f3eb55b 7716 free_area_init_core(pgdat);
1da177e4
LT
7717}
7718
1ca75fa7 7719static void __init free_area_init_memoryless_node(int nid)
3f08a302 7720{
854e8848 7721 free_area_init_node(nid);
3f08a302
MR
7722}
7723
418508c1
MS
7724#if MAX_NUMNODES > 1
7725/*
7726 * Figure out the number of possible node ids.
7727 */
f9872caf 7728void __init setup_nr_node_ids(void)
418508c1 7729{
904a9553 7730 unsigned int highest;
418508c1 7731
904a9553 7732 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7733 nr_node_ids = highest + 1;
7734}
418508c1
MS
7735#endif
7736
1e01979c
TH
7737/**
7738 * node_map_pfn_alignment - determine the maximum internode alignment
7739 *
7740 * This function should be called after node map is populated and sorted.
7741 * It calculates the maximum power of two alignment which can distinguish
7742 * all the nodes.
7743 *
7744 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7745 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7746 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7747 * shifted, 1GiB is enough and this function will indicate so.
7748 *
7749 * This is used to test whether pfn -> nid mapping of the chosen memory
7750 * model has fine enough granularity to avoid incorrect mapping for the
7751 * populated node map.
7752 *
a862f68a 7753 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7754 * requirement (single node).
7755 */
7756unsigned long __init node_map_pfn_alignment(void)
7757{
7758 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7759 unsigned long start, end, mask;
98fa15f3 7760 int last_nid = NUMA_NO_NODE;
c13291a5 7761 int i, nid;
1e01979c 7762
c13291a5 7763 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7764 if (!start || last_nid < 0 || last_nid == nid) {
7765 last_nid = nid;
7766 last_end = end;
7767 continue;
7768 }
7769
7770 /*
7771 * Start with a mask granular enough to pin-point to the
7772 * start pfn and tick off bits one-by-one until it becomes
7773 * too coarse to separate the current node from the last.
7774 */
7775 mask = ~((1 << __ffs(start)) - 1);
7776 while (mask && last_end <= (start & (mask << 1)))
7777 mask <<= 1;
7778
7779 /* accumulate all internode masks */
7780 accl_mask |= mask;
7781 }
7782
7783 /* convert mask to number of pages */
7784 return ~accl_mask + 1;
7785}
7786
c713216d
MG
7787/**
7788 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7789 *
a862f68a 7790 * Return: the minimum PFN based on information provided via
7d018176 7791 * memblock_set_node().
c713216d
MG
7792 */
7793unsigned long __init find_min_pfn_with_active_regions(void)
7794{
8a1b25fe 7795 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7796}
7797
37b07e41
LS
7798/*
7799 * early_calculate_totalpages()
7800 * Sum pages in active regions for movable zone.
4b0ef1fe 7801 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7802 */
484f51f8 7803static unsigned long __init early_calculate_totalpages(void)
7e63efef 7804{
7e63efef 7805 unsigned long totalpages = 0;
c13291a5
TH
7806 unsigned long start_pfn, end_pfn;
7807 int i, nid;
7808
7809 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7810 unsigned long pages = end_pfn - start_pfn;
7e63efef 7811
37b07e41
LS
7812 totalpages += pages;
7813 if (pages)
4b0ef1fe 7814 node_set_state(nid, N_MEMORY);
37b07e41 7815 }
b8af2941 7816 return totalpages;
7e63efef
MG
7817}
7818
2a1e274a
MG
7819/*
7820 * Find the PFN the Movable zone begins in each node. Kernel memory
7821 * is spread evenly between nodes as long as the nodes have enough
7822 * memory. When they don't, some nodes will have more kernelcore than
7823 * others
7824 */
b224ef85 7825static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7826{
7827 int i, nid;
7828 unsigned long usable_startpfn;
7829 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7830 /* save the state before borrow the nodemask */
4b0ef1fe 7831 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7832 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7833 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7834 struct memblock_region *r;
b2f3eebe
TC
7835
7836 /* Need to find movable_zone earlier when movable_node is specified. */
7837 find_usable_zone_for_movable();
7838
7839 /*
7840 * If movable_node is specified, ignore kernelcore and movablecore
7841 * options.
7842 */
7843 if (movable_node_is_enabled()) {
cc6de168 7844 for_each_mem_region(r) {
136199f0 7845 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7846 continue;
7847
d622abf7 7848 nid = memblock_get_region_node(r);
b2f3eebe 7849
136199f0 7850 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7851 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7852 min(usable_startpfn, zone_movable_pfn[nid]) :
7853 usable_startpfn;
7854 }
7855
7856 goto out2;
7857 }
2a1e274a 7858
342332e6
TI
7859 /*
7860 * If kernelcore=mirror is specified, ignore movablecore option
7861 */
7862 if (mirrored_kernelcore) {
7863 bool mem_below_4gb_not_mirrored = false;
7864
cc6de168 7865 for_each_mem_region(r) {
342332e6
TI
7866 if (memblock_is_mirror(r))
7867 continue;
7868
d622abf7 7869 nid = memblock_get_region_node(r);
342332e6
TI
7870
7871 usable_startpfn = memblock_region_memory_base_pfn(r);
7872
7873 if (usable_startpfn < 0x100000) {
7874 mem_below_4gb_not_mirrored = true;
7875 continue;
7876 }
7877
7878 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7879 min(usable_startpfn, zone_movable_pfn[nid]) :
7880 usable_startpfn;
7881 }
7882
7883 if (mem_below_4gb_not_mirrored)
633bf2fe 7884 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7885
7886 goto out2;
7887 }
7888
7e63efef 7889 /*
a5c6d650
DR
7890 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7891 * amount of necessary memory.
7892 */
7893 if (required_kernelcore_percent)
7894 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7895 10000UL;
7896 if (required_movablecore_percent)
7897 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7898 10000UL;
7899
7900 /*
7901 * If movablecore= was specified, calculate what size of
7e63efef
MG
7902 * kernelcore that corresponds so that memory usable for
7903 * any allocation type is evenly spread. If both kernelcore
7904 * and movablecore are specified, then the value of kernelcore
7905 * will be used for required_kernelcore if it's greater than
7906 * what movablecore would have allowed.
7907 */
7908 if (required_movablecore) {
7e63efef
MG
7909 unsigned long corepages;
7910
7911 /*
7912 * Round-up so that ZONE_MOVABLE is at least as large as what
7913 * was requested by the user
7914 */
7915 required_movablecore =
7916 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7917 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7918 corepages = totalpages - required_movablecore;
7919
7920 required_kernelcore = max(required_kernelcore, corepages);
7921 }
7922
bde304bd
XQ
7923 /*
7924 * If kernelcore was not specified or kernelcore size is larger
7925 * than totalpages, there is no ZONE_MOVABLE.
7926 */
7927 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7928 goto out;
2a1e274a
MG
7929
7930 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7931 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7932
7933restart:
7934 /* Spread kernelcore memory as evenly as possible throughout nodes */
7935 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7936 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7937 unsigned long start_pfn, end_pfn;
7938
2a1e274a
MG
7939 /*
7940 * Recalculate kernelcore_node if the division per node
7941 * now exceeds what is necessary to satisfy the requested
7942 * amount of memory for the kernel
7943 */
7944 if (required_kernelcore < kernelcore_node)
7945 kernelcore_node = required_kernelcore / usable_nodes;
7946
7947 /*
7948 * As the map is walked, we track how much memory is usable
7949 * by the kernel using kernelcore_remaining. When it is
7950 * 0, the rest of the node is usable by ZONE_MOVABLE
7951 */
7952 kernelcore_remaining = kernelcore_node;
7953
7954 /* Go through each range of PFNs within this node */
c13291a5 7955 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7956 unsigned long size_pages;
7957
c13291a5 7958 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7959 if (start_pfn >= end_pfn)
7960 continue;
7961
7962 /* Account for what is only usable for kernelcore */
7963 if (start_pfn < usable_startpfn) {
7964 unsigned long kernel_pages;
7965 kernel_pages = min(end_pfn, usable_startpfn)
7966 - start_pfn;
7967
7968 kernelcore_remaining -= min(kernel_pages,
7969 kernelcore_remaining);
7970 required_kernelcore -= min(kernel_pages,
7971 required_kernelcore);
7972
7973 /* Continue if range is now fully accounted */
7974 if (end_pfn <= usable_startpfn) {
7975
7976 /*
7977 * Push zone_movable_pfn to the end so
7978 * that if we have to rebalance
7979 * kernelcore across nodes, we will
7980 * not double account here
7981 */
7982 zone_movable_pfn[nid] = end_pfn;
7983 continue;
7984 }
7985 start_pfn = usable_startpfn;
7986 }
7987
7988 /*
7989 * The usable PFN range for ZONE_MOVABLE is from
7990 * start_pfn->end_pfn. Calculate size_pages as the
7991 * number of pages used as kernelcore
7992 */
7993 size_pages = end_pfn - start_pfn;
7994 if (size_pages > kernelcore_remaining)
7995 size_pages = kernelcore_remaining;
7996 zone_movable_pfn[nid] = start_pfn + size_pages;
7997
7998 /*
7999 * Some kernelcore has been met, update counts and
8000 * break if the kernelcore for this node has been
b8af2941 8001 * satisfied
2a1e274a
MG
8002 */
8003 required_kernelcore -= min(required_kernelcore,
8004 size_pages);
8005 kernelcore_remaining -= size_pages;
8006 if (!kernelcore_remaining)
8007 break;
8008 }
8009 }
8010
8011 /*
8012 * If there is still required_kernelcore, we do another pass with one
8013 * less node in the count. This will push zone_movable_pfn[nid] further
8014 * along on the nodes that still have memory until kernelcore is
b8af2941 8015 * satisfied
2a1e274a
MG
8016 */
8017 usable_nodes--;
8018 if (usable_nodes && required_kernelcore > usable_nodes)
8019 goto restart;
8020
b2f3eebe 8021out2:
2a1e274a 8022 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
ddbc84f3
AP
8023 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8024 unsigned long start_pfn, end_pfn;
8025
2a1e274a
MG
8026 zone_movable_pfn[nid] =
8027 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 8028
ddbc84f3
AP
8029 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8030 if (zone_movable_pfn[nid] >= end_pfn)
8031 zone_movable_pfn[nid] = 0;
8032 }
8033
20e6926d 8034out:
66918dcd 8035 /* restore the node_state */
4b0ef1fe 8036 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
8037}
8038
4b0ef1fe
LJ
8039/* Any regular or high memory on that node ? */
8040static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 8041{
37b07e41
LS
8042 enum zone_type zone_type;
8043
4b0ef1fe 8044 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 8045 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 8046 if (populated_zone(zone)) {
7b0e0c0e
OS
8047 if (IS_ENABLED(CONFIG_HIGHMEM))
8048 node_set_state(nid, N_HIGH_MEMORY);
8049 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 8050 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
8051 break;
8052 }
37b07e41 8053 }
37b07e41
LS
8054}
8055
51930df5 8056/*
f0953a1b 8057 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
8058 * such cases we allow max_zone_pfn sorted in the descending order
8059 */
8060bool __weak arch_has_descending_max_zone_pfns(void)
8061{
8062 return false;
8063}
8064
c713216d 8065/**
9691a071 8066 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 8067 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
8068 *
8069 * This will call free_area_init_node() for each active node in the system.
7d018176 8070 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
8071 * zone in each node and their holes is calculated. If the maximum PFN
8072 * between two adjacent zones match, it is assumed that the zone is empty.
8073 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8074 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8075 * starts where the previous one ended. For example, ZONE_DMA32 starts
8076 * at arch_max_dma_pfn.
8077 */
9691a071 8078void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 8079{
c13291a5 8080 unsigned long start_pfn, end_pfn;
51930df5
MR
8081 int i, nid, zone;
8082 bool descending;
a6af2bc3 8083
c713216d
MG
8084 /* Record where the zone boundaries are */
8085 memset(arch_zone_lowest_possible_pfn, 0,
8086 sizeof(arch_zone_lowest_possible_pfn));
8087 memset(arch_zone_highest_possible_pfn, 0,
8088 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
8089
8090 start_pfn = find_min_pfn_with_active_regions();
51930df5 8091 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
8092
8093 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
8094 if (descending)
8095 zone = MAX_NR_ZONES - i - 1;
8096 else
8097 zone = i;
8098
8099 if (zone == ZONE_MOVABLE)
2a1e274a 8100 continue;
90cae1fe 8101
51930df5
MR
8102 end_pfn = max(max_zone_pfn[zone], start_pfn);
8103 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8104 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
8105
8106 start_pfn = end_pfn;
c713216d 8107 }
2a1e274a
MG
8108
8109 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8110 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 8111 find_zone_movable_pfns_for_nodes();
c713216d 8112
c713216d 8113 /* Print out the zone ranges */
f88dfff5 8114 pr_info("Zone ranges:\n");
2a1e274a
MG
8115 for (i = 0; i < MAX_NR_ZONES; i++) {
8116 if (i == ZONE_MOVABLE)
8117 continue;
f88dfff5 8118 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
8119 if (arch_zone_lowest_possible_pfn[i] ==
8120 arch_zone_highest_possible_pfn[i])
f88dfff5 8121 pr_cont("empty\n");
72f0ba02 8122 else
8d29e18a
JG
8123 pr_cont("[mem %#018Lx-%#018Lx]\n",
8124 (u64)arch_zone_lowest_possible_pfn[i]
8125 << PAGE_SHIFT,
8126 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 8127 << PAGE_SHIFT) - 1);
2a1e274a
MG
8128 }
8129
8130 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 8131 pr_info("Movable zone start for each node\n");
2a1e274a
MG
8132 for (i = 0; i < MAX_NUMNODES; i++) {
8133 if (zone_movable_pfn[i])
8d29e18a
JG
8134 pr_info(" Node %d: %#018Lx\n", i,
8135 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 8136 }
c713216d 8137
f46edbd1
DW
8138 /*
8139 * Print out the early node map, and initialize the
8140 * subsection-map relative to active online memory ranges to
8141 * enable future "sub-section" extensions of the memory map.
8142 */
f88dfff5 8143 pr_info("Early memory node ranges\n");
f46edbd1 8144 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8145 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8146 (u64)start_pfn << PAGE_SHIFT,
8147 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8148 subsection_map_init(start_pfn, end_pfn - start_pfn);
8149 }
c713216d
MG
8150
8151 /* Initialise every node */
708614e6 8152 mminit_verify_pageflags_layout();
8ef82866 8153 setup_nr_node_ids();
09f49dca
MH
8154 for_each_node(nid) {
8155 pg_data_t *pgdat;
8156
8157 if (!node_online(nid)) {
8158 pr_info("Initializing node %d as memoryless\n", nid);
8159
8160 /* Allocator not initialized yet */
8161 pgdat = arch_alloc_nodedata(nid);
8162 if (!pgdat) {
8163 pr_err("Cannot allocate %zuB for node %d.\n",
8164 sizeof(*pgdat), nid);
8165 continue;
8166 }
8167 arch_refresh_nodedata(nid, pgdat);
8168 free_area_init_memoryless_node(nid);
8169
8170 /*
8171 * We do not want to confuse userspace by sysfs
8172 * files/directories for node without any memory
8173 * attached to it, so this node is not marked as
8174 * N_MEMORY and not marked online so that no sysfs
8175 * hierarchy will be created via register_one_node for
8176 * it. The pgdat will get fully initialized by
8177 * hotadd_init_pgdat() when memory is hotplugged into
8178 * this node.
8179 */
8180 continue;
8181 }
8182
8183 pgdat = NODE_DATA(nid);
854e8848 8184 free_area_init_node(nid);
37b07e41
LS
8185
8186 /* Any memory on that node */
8187 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8188 node_set_state(nid, N_MEMORY);
8189 check_for_memory(pgdat, nid);
c713216d 8190 }
122e093c
MR
8191
8192 memmap_init();
c713216d 8193}
2a1e274a 8194
a5c6d650
DR
8195static int __init cmdline_parse_core(char *p, unsigned long *core,
8196 unsigned long *percent)
2a1e274a
MG
8197{
8198 unsigned long long coremem;
a5c6d650
DR
8199 char *endptr;
8200
2a1e274a
MG
8201 if (!p)
8202 return -EINVAL;
8203
a5c6d650
DR
8204 /* Value may be a percentage of total memory, otherwise bytes */
8205 coremem = simple_strtoull(p, &endptr, 0);
8206 if (*endptr == '%') {
8207 /* Paranoid check for percent values greater than 100 */
8208 WARN_ON(coremem > 100);
2a1e274a 8209
a5c6d650
DR
8210 *percent = coremem;
8211 } else {
8212 coremem = memparse(p, &p);
8213 /* Paranoid check that UL is enough for the coremem value */
8214 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8215
a5c6d650
DR
8216 *core = coremem >> PAGE_SHIFT;
8217 *percent = 0UL;
8218 }
2a1e274a
MG
8219 return 0;
8220}
ed7ed365 8221
7e63efef
MG
8222/*
8223 * kernelcore=size sets the amount of memory for use for allocations that
8224 * cannot be reclaimed or migrated.
8225 */
8226static int __init cmdline_parse_kernelcore(char *p)
8227{
342332e6
TI
8228 /* parse kernelcore=mirror */
8229 if (parse_option_str(p, "mirror")) {
8230 mirrored_kernelcore = true;
8231 return 0;
8232 }
8233
a5c6d650
DR
8234 return cmdline_parse_core(p, &required_kernelcore,
8235 &required_kernelcore_percent);
7e63efef
MG
8236}
8237
8238/*
8239 * movablecore=size sets the amount of memory for use for allocations that
8240 * can be reclaimed or migrated.
8241 */
8242static int __init cmdline_parse_movablecore(char *p)
8243{
a5c6d650
DR
8244 return cmdline_parse_core(p, &required_movablecore,
8245 &required_movablecore_percent);
7e63efef
MG
8246}
8247
ed7ed365 8248early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8249early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8250
c3d5f5f0
JL
8251void adjust_managed_page_count(struct page *page, long count)
8252{
9705bea5 8253 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8254 totalram_pages_add(count);
3dcc0571
JL
8255#ifdef CONFIG_HIGHMEM
8256 if (PageHighMem(page))
ca79b0c2 8257 totalhigh_pages_add(count);
3dcc0571 8258#endif
c3d5f5f0 8259}
3dcc0571 8260EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8261
e5cb113f 8262unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8263{
11199692
JL
8264 void *pos;
8265 unsigned long pages = 0;
69afade7 8266
11199692
JL
8267 start = (void *)PAGE_ALIGN((unsigned long)start);
8268 end = (void *)((unsigned long)end & PAGE_MASK);
8269 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8270 struct page *page = virt_to_page(pos);
8271 void *direct_map_addr;
8272
8273 /*
8274 * 'direct_map_addr' might be different from 'pos'
8275 * because some architectures' virt_to_page()
8276 * work with aliases. Getting the direct map
8277 * address ensures that we get a _writeable_
8278 * alias for the memset().
8279 */
8280 direct_map_addr = page_address(page);
c746170d
VF
8281 /*
8282 * Perform a kasan-unchecked memset() since this memory
8283 * has not been initialized.
8284 */
8285 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8286 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8287 memset(direct_map_addr, poison, PAGE_SIZE);
8288
8289 free_reserved_page(page);
69afade7
JL
8290 }
8291
8292 if (pages && s)
ff7ed9e4 8293 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
8294
8295 return pages;
8296}
8297
1f9d03c5 8298void __init mem_init_print_info(void)
7ee3d4e8
JL
8299{
8300 unsigned long physpages, codesize, datasize, rosize, bss_size;
8301 unsigned long init_code_size, init_data_size;
8302
8303 physpages = get_num_physpages();
8304 codesize = _etext - _stext;
8305 datasize = _edata - _sdata;
8306 rosize = __end_rodata - __start_rodata;
8307 bss_size = __bss_stop - __bss_start;
8308 init_data_size = __init_end - __init_begin;
8309 init_code_size = _einittext - _sinittext;
8310
8311 /*
8312 * Detect special cases and adjust section sizes accordingly:
8313 * 1) .init.* may be embedded into .data sections
8314 * 2) .init.text.* may be out of [__init_begin, __init_end],
8315 * please refer to arch/tile/kernel/vmlinux.lds.S.
8316 * 3) .rodata.* may be embedded into .text or .data sections.
8317 */
8318#define adj_init_size(start, end, size, pos, adj) \
b8af2941 8319 do { \
ca831f29 8320 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
b8af2941
PK
8321 size -= adj; \
8322 } while (0)
7ee3d4e8
JL
8323
8324 adj_init_size(__init_begin, __init_end, init_data_size,
8325 _sinittext, init_code_size);
8326 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8327 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8328 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8329 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8330
8331#undef adj_init_size
8332
756a025f 8333 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8334#ifdef CONFIG_HIGHMEM
756a025f 8335 ", %luK highmem"
7ee3d4e8 8336#endif
1f9d03c5 8337 ")\n",
ff7ed9e4 8338 K(nr_free_pages()), K(physpages),
756a025f
JP
8339 codesize >> 10, datasize >> 10, rosize >> 10,
8340 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ff7ed9e4
ML
8341 K(physpages - totalram_pages() - totalcma_pages),
8342 K(totalcma_pages)
7ee3d4e8 8343#ifdef CONFIG_HIGHMEM
ff7ed9e4 8344 , K(totalhigh_pages())
7ee3d4e8 8345#endif
1f9d03c5 8346 );
7ee3d4e8
JL
8347}
8348
0e0b864e 8349/**
88ca3b94
RD
8350 * set_dma_reserve - set the specified number of pages reserved in the first zone
8351 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8352 *
013110a7 8353 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8354 * In the DMA zone, a significant percentage may be consumed by kernel image
8355 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8356 * function may optionally be used to account for unfreeable pages in the
8357 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8358 * smaller per-cpu batchsize.
0e0b864e
MG
8359 */
8360void __init set_dma_reserve(unsigned long new_dma_reserve)
8361{
8362 dma_reserve = new_dma_reserve;
8363}
8364
005fd4bb 8365static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8366{
04f8cfea 8367 struct zone *zone;
1da177e4 8368
005fd4bb 8369 lru_add_drain_cpu(cpu);
adb11e78 8370 mlock_page_drain_remote(cpu);
005fd4bb 8371 drain_pages(cpu);
9f8f2172 8372
005fd4bb
SAS
8373 /*
8374 * Spill the event counters of the dead processor
8375 * into the current processors event counters.
8376 * This artificially elevates the count of the current
8377 * processor.
8378 */
8379 vm_events_fold_cpu(cpu);
9f8f2172 8380
005fd4bb
SAS
8381 /*
8382 * Zero the differential counters of the dead processor
8383 * so that the vm statistics are consistent.
8384 *
8385 * This is only okay since the processor is dead and cannot
8386 * race with what we are doing.
8387 */
8388 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8389
8390 for_each_populated_zone(zone)
8391 zone_pcp_update(zone, 0);
8392
8393 return 0;
8394}
8395
8396static int page_alloc_cpu_online(unsigned int cpu)
8397{
8398 struct zone *zone;
8399
8400 for_each_populated_zone(zone)
8401 zone_pcp_update(zone, 1);
005fd4bb 8402 return 0;
1da177e4 8403}
1da177e4 8404
e03a5125
NP
8405#ifdef CONFIG_NUMA
8406int hashdist = HASHDIST_DEFAULT;
8407
8408static int __init set_hashdist(char *str)
8409{
8410 if (!str)
8411 return 0;
8412 hashdist = simple_strtoul(str, &str, 0);
8413 return 1;
8414}
8415__setup("hashdist=", set_hashdist);
8416#endif
8417
1da177e4
LT
8418void __init page_alloc_init(void)
8419{
005fd4bb
SAS
8420 int ret;
8421
e03a5125
NP
8422#ifdef CONFIG_NUMA
8423 if (num_node_state(N_MEMORY) == 1)
8424 hashdist = 0;
8425#endif
8426
04f8cfea
MG
8427 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8428 "mm/page_alloc:pcp",
8429 page_alloc_cpu_online,
005fd4bb
SAS
8430 page_alloc_cpu_dead);
8431 WARN_ON(ret < 0);
1da177e4
LT
8432}
8433
cb45b0e9 8434/*
34b10060 8435 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8436 * or min_free_kbytes changes.
8437 */
8438static void calculate_totalreserve_pages(void)
8439{
8440 struct pglist_data *pgdat;
8441 unsigned long reserve_pages = 0;
2f6726e5 8442 enum zone_type i, j;
cb45b0e9
HA
8443
8444 for_each_online_pgdat(pgdat) {
281e3726
MG
8445
8446 pgdat->totalreserve_pages = 0;
8447
cb45b0e9
HA
8448 for (i = 0; i < MAX_NR_ZONES; i++) {
8449 struct zone *zone = pgdat->node_zones + i;
3484b2de 8450 long max = 0;
9705bea5 8451 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8452
8453 /* Find valid and maximum lowmem_reserve in the zone */
8454 for (j = i; j < MAX_NR_ZONES; j++) {
8455 if (zone->lowmem_reserve[j] > max)
8456 max = zone->lowmem_reserve[j];
8457 }
8458
41858966
MG
8459 /* we treat the high watermark as reserved pages. */
8460 max += high_wmark_pages(zone);
cb45b0e9 8461
3d6357de
AK
8462 if (max > managed_pages)
8463 max = managed_pages;
a8d01437 8464
281e3726 8465 pgdat->totalreserve_pages += max;
a8d01437 8466
cb45b0e9
HA
8467 reserve_pages += max;
8468 }
8469 }
8470 totalreserve_pages = reserve_pages;
8471}
8472
1da177e4
LT
8473/*
8474 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8475 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8476 * has a correct pages reserved value, so an adequate number of
8477 * pages are left in the zone after a successful __alloc_pages().
8478 */
8479static void setup_per_zone_lowmem_reserve(void)
8480{
8481 struct pglist_data *pgdat;
470c61d7 8482 enum zone_type i, j;
1da177e4 8483
ec936fc5 8484 for_each_online_pgdat(pgdat) {
470c61d7
LS
8485 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8486 struct zone *zone = &pgdat->node_zones[i];
8487 int ratio = sysctl_lowmem_reserve_ratio[i];
8488 bool clear = !ratio || !zone_managed_pages(zone);
8489 unsigned long managed_pages = 0;
8490
8491 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8492 struct zone *upper_zone = &pgdat->node_zones[j];
8493
8494 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8495
f7ec1044
LS
8496 if (clear)
8497 zone->lowmem_reserve[j] = 0;
8498 else
470c61d7 8499 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8500 }
8501 }
8502 }
cb45b0e9
HA
8503
8504 /* update totalreserve_pages */
8505 calculate_totalreserve_pages();
1da177e4
LT
8506}
8507
cfd3da1e 8508static void __setup_per_zone_wmarks(void)
1da177e4
LT
8509{
8510 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8511 unsigned long lowmem_pages = 0;
8512 struct zone *zone;
8513 unsigned long flags;
8514
8515 /* Calculate total number of !ZONE_HIGHMEM pages */
8516 for_each_zone(zone) {
8517 if (!is_highmem(zone))
9705bea5 8518 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8519 }
8520
8521 for_each_zone(zone) {
ac924c60
AM
8522 u64 tmp;
8523
1125b4e3 8524 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8525 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8526 do_div(tmp, lowmem_pages);
1da177e4
LT
8527 if (is_highmem(zone)) {
8528 /*
669ed175
NP
8529 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8530 * need highmem pages, so cap pages_min to a small
8531 * value here.
8532 *
41858966 8533 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8534 * deltas control async page reclaim, and so should
669ed175 8535 * not be capped for highmem.
1da177e4 8536 */
90ae8d67 8537 unsigned long min_pages;
1da177e4 8538
9705bea5 8539 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8540 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8541 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8542 } else {
669ed175
NP
8543 /*
8544 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8545 * proportionate to the zone's size.
8546 */
a9214443 8547 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8548 }
8549
795ae7a0
JW
8550 /*
8551 * Set the kswapd watermarks distance according to the
8552 * scale factor in proportion to available memory, but
8553 * ensure a minimum size on small systems.
8554 */
8555 tmp = max_t(u64, tmp >> 2,
9705bea5 8556 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8557 watermark_scale_factor, 10000));
8558
aa092591 8559 zone->watermark_boost = 0;
a9214443 8560 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
HY
8561 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8562 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 8563
1125b4e3 8564 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8565 }
cb45b0e9
HA
8566
8567 /* update totalreserve_pages */
8568 calculate_totalreserve_pages();
1da177e4
LT
8569}
8570
cfd3da1e
MG
8571/**
8572 * setup_per_zone_wmarks - called when min_free_kbytes changes
8573 * or when memory is hot-{added|removed}
8574 *
8575 * Ensures that the watermark[min,low,high] values for each zone are set
8576 * correctly with respect to min_free_kbytes.
8577 */
8578void setup_per_zone_wmarks(void)
8579{
b92ca18e 8580 struct zone *zone;
b93e0f32
MH
8581 static DEFINE_SPINLOCK(lock);
8582
8583 spin_lock(&lock);
cfd3da1e 8584 __setup_per_zone_wmarks();
b93e0f32 8585 spin_unlock(&lock);
b92ca18e
MG
8586
8587 /*
8588 * The watermark size have changed so update the pcpu batch
8589 * and high limits or the limits may be inappropriate.
8590 */
8591 for_each_zone(zone)
04f8cfea 8592 zone_pcp_update(zone, 0);
cfd3da1e
MG
8593}
8594
1da177e4
LT
8595/*
8596 * Initialise min_free_kbytes.
8597 *
8598 * For small machines we want it small (128k min). For large machines
8beeae86 8599 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8600 * bandwidth does not increase linearly with machine size. We use
8601 *
b8af2941 8602 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8603 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8604 *
8605 * which yields
8606 *
8607 * 16MB: 512k
8608 * 32MB: 724k
8609 * 64MB: 1024k
8610 * 128MB: 1448k
8611 * 256MB: 2048k
8612 * 512MB: 2896k
8613 * 1024MB: 4096k
8614 * 2048MB: 5792k
8615 * 4096MB: 8192k
8616 * 8192MB: 11584k
8617 * 16384MB: 16384k
8618 */
bd3400ea 8619void calculate_min_free_kbytes(void)
1da177e4
LT
8620{
8621 unsigned long lowmem_kbytes;
5f12733e 8622 int new_min_free_kbytes;
1da177e4
LT
8623
8624 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8625 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8626
59d336bd
WS
8627 if (new_min_free_kbytes > user_min_free_kbytes)
8628 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8629 else
5f12733e
MH
8630 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8631 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 8632
bd3400ea
LF
8633}
8634
8635int __meminit init_per_zone_wmark_min(void)
8636{
8637 calculate_min_free_kbytes();
bc75d33f 8638 setup_per_zone_wmarks();
a6cccdc3 8639 refresh_zone_stat_thresholds();
1da177e4 8640 setup_per_zone_lowmem_reserve();
6423aa81
JK
8641
8642#ifdef CONFIG_NUMA
8643 setup_min_unmapped_ratio();
8644 setup_min_slab_ratio();
8645#endif
8646
4aab2be0
VB
8647 khugepaged_min_free_kbytes_update();
8648
1da177e4
LT
8649 return 0;
8650}
e08d3fdf 8651postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8652
8653/*
b8af2941 8654 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8655 * that we can call two helper functions whenever min_free_kbytes
8656 * changes.
8657 */
cccad5b9 8658int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8659 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8660{
da8c757b
HP
8661 int rc;
8662
8663 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8664 if (rc)
8665 return rc;
8666
5f12733e
MH
8667 if (write) {
8668 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8669 setup_per_zone_wmarks();
5f12733e 8670 }
1da177e4
LT
8671 return 0;
8672}
8673
795ae7a0 8674int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8675 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8676{
8677 int rc;
8678
8679 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8680 if (rc)
8681 return rc;
8682
8683 if (write)
8684 setup_per_zone_wmarks();
8685
8686 return 0;
8687}
8688
9614634f 8689#ifdef CONFIG_NUMA
6423aa81 8690static void setup_min_unmapped_ratio(void)
9614634f 8691{
6423aa81 8692 pg_data_t *pgdat;
9614634f 8693 struct zone *zone;
9614634f 8694
a5f5f91d 8695 for_each_online_pgdat(pgdat)
81cbcbc2 8696 pgdat->min_unmapped_pages = 0;
a5f5f91d 8697
9614634f 8698 for_each_zone(zone)
9705bea5
AK
8699 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8700 sysctl_min_unmapped_ratio) / 100;
9614634f 8701}
0ff38490 8702
6423aa81
JK
8703
8704int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8705 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8706{
0ff38490
CL
8707 int rc;
8708
8d65af78 8709 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8710 if (rc)
8711 return rc;
8712
6423aa81
JK
8713 setup_min_unmapped_ratio();
8714
8715 return 0;
8716}
8717
8718static void setup_min_slab_ratio(void)
8719{
8720 pg_data_t *pgdat;
8721 struct zone *zone;
8722
a5f5f91d
MG
8723 for_each_online_pgdat(pgdat)
8724 pgdat->min_slab_pages = 0;
8725
0ff38490 8726 for_each_zone(zone)
9705bea5
AK
8727 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8728 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8729}
8730
8731int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8732 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8733{
8734 int rc;
8735
8736 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8737 if (rc)
8738 return rc;
8739
8740 setup_min_slab_ratio();
8741
0ff38490
CL
8742 return 0;
8743}
9614634f
CL
8744#endif
8745
1da177e4
LT
8746/*
8747 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8748 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8749 * whenever sysctl_lowmem_reserve_ratio changes.
8750 *
8751 * The reserve ratio obviously has absolutely no relation with the
41858966 8752 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8753 * if in function of the boot time zone sizes.
8754 */
cccad5b9 8755int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8756 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8757{
86aaf255
BH
8758 int i;
8759
8d65af78 8760 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8761
8762 for (i = 0; i < MAX_NR_ZONES; i++) {
8763 if (sysctl_lowmem_reserve_ratio[i] < 1)
8764 sysctl_lowmem_reserve_ratio[i] = 0;
8765 }
8766
1da177e4
LT
8767 setup_per_zone_lowmem_reserve();
8768 return 0;
8769}
8770
8ad4b1fb 8771/*
74f44822
MG
8772 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8773 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 8774 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8775 */
74f44822
MG
8776int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8777 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8778{
8779 struct zone *zone;
74f44822 8780 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
8781 int ret;
8782
7cd2b0a3 8783 mutex_lock(&pcp_batch_high_lock);
74f44822 8784 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 8785
8d65af78 8786 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8787 if (!write || ret < 0)
8788 goto out;
8789
8790 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
8791 if (percpu_pagelist_high_fraction &&
8792 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8793 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
8794 ret = -EINVAL;
8795 goto out;
8796 }
8797
8798 /* No change? */
74f44822 8799 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 8800 goto out;
c8e251fa 8801
cb1ef534 8802 for_each_populated_zone(zone)
74f44822 8803 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 8804out:
c8e251fa 8805 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8806 return ret;
8ad4b1fb
RS
8807}
8808
f6f34b43
SD
8809#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8810/*
8811 * Returns the number of pages that arch has reserved but
8812 * is not known to alloc_large_system_hash().
8813 */
8814static unsigned long __init arch_reserved_kernel_pages(void)
8815{
8816 return 0;
8817}
8818#endif
8819
9017217b
PT
8820/*
8821 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8822 * machines. As memory size is increased the scale is also increased but at
8823 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8824 * quadruples the scale is increased by one, which means the size of hash table
8825 * only doubles, instead of quadrupling as well.
8826 * Because 32-bit systems cannot have large physical memory, where this scaling
8827 * makes sense, it is disabled on such platforms.
8828 */
8829#if __BITS_PER_LONG > 32
8830#define ADAPT_SCALE_BASE (64ul << 30)
8831#define ADAPT_SCALE_SHIFT 2
8832#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8833#endif
8834
1da177e4
LT
8835/*
8836 * allocate a large system hash table from bootmem
8837 * - it is assumed that the hash table must contain an exact power-of-2
8838 * quantity of entries
8839 * - limit is the number of hash buckets, not the total allocation size
8840 */
8841void *__init alloc_large_system_hash(const char *tablename,
8842 unsigned long bucketsize,
8843 unsigned long numentries,
8844 int scale,
8845 int flags,
8846 unsigned int *_hash_shift,
8847 unsigned int *_hash_mask,
31fe62b9
TB
8848 unsigned long low_limit,
8849 unsigned long high_limit)
1da177e4 8850{
31fe62b9 8851 unsigned long long max = high_limit;
1da177e4
LT
8852 unsigned long log2qty, size;
8853 void *table = NULL;
3749a8f0 8854 gfp_t gfp_flags;
ec11408a 8855 bool virt;
121e6f32 8856 bool huge;
1da177e4
LT
8857
8858 /* allow the kernel cmdline to have a say */
8859 if (!numentries) {
8860 /* round applicable memory size up to nearest megabyte */
04903664 8861 numentries = nr_kernel_pages;
f6f34b43 8862 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8863
8864 /* It isn't necessary when PAGE_SIZE >= 1MB */
8865 if (PAGE_SHIFT < 20)
8866 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8867
9017217b
PT
8868#if __BITS_PER_LONG > 32
8869 if (!high_limit) {
8870 unsigned long adapt;
8871
8872 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8873 adapt <<= ADAPT_SCALE_SHIFT)
8874 scale++;
8875 }
8876#endif
8877
1da177e4
LT
8878 /* limit to 1 bucket per 2^scale bytes of low memory */
8879 if (scale > PAGE_SHIFT)
8880 numentries >>= (scale - PAGE_SHIFT);
8881 else
8882 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8883
8884 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8885 if (unlikely(flags & HASH_SMALL)) {
8886 /* Makes no sense without HASH_EARLY */
8887 WARN_ON(!(flags & HASH_EARLY));
8888 if (!(numentries >> *_hash_shift)) {
8889 numentries = 1UL << *_hash_shift;
8890 BUG_ON(!numentries);
8891 }
8892 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8893 numentries = PAGE_SIZE / bucketsize;
1da177e4 8894 }
6e692ed3 8895 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8896
8897 /* limit allocation size to 1/16 total memory by default */
8898 if (max == 0) {
8899 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8900 do_div(max, bucketsize);
8901 }
074b8517 8902 max = min(max, 0x80000000ULL);
1da177e4 8903
31fe62b9
TB
8904 if (numentries < low_limit)
8905 numentries = low_limit;
1da177e4
LT
8906 if (numentries > max)
8907 numentries = max;
8908
f0d1b0b3 8909 log2qty = ilog2(numentries);
1da177e4 8910
3749a8f0 8911 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8912 do {
ec11408a 8913 virt = false;
1da177e4 8914 size = bucketsize << log2qty;
ea1f5f37
PT
8915 if (flags & HASH_EARLY) {
8916 if (flags & HASH_ZERO)
26fb3dae 8917 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8918 else
7e1c4e27
MR
8919 table = memblock_alloc_raw(size,
8920 SMP_CACHE_BYTES);
ec11408a 8921 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8922 table = __vmalloc(size, gfp_flags);
ec11408a 8923 virt = true;
084f7e23
ED
8924 if (table)
8925 huge = is_vm_area_hugepages(table);
ea1f5f37 8926 } else {
1037b83b
ED
8927 /*
8928 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8929 * some pages at the end of hash table which
8930 * alloc_pages_exact() automatically does
1037b83b 8931 */
ec11408a
NP
8932 table = alloc_pages_exact(size, gfp_flags);
8933 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8934 }
8935 } while (!table && size > PAGE_SIZE && --log2qty);
8936
8937 if (!table)
8938 panic("Failed to allocate %s hash table\n", tablename);
8939
ec11408a
NP
8940 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8941 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8942 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8943
8944 if (_hash_shift)
8945 *_hash_shift = log2qty;
8946 if (_hash_mask)
8947 *_hash_mask = (1 << log2qty) - 1;
8948
8949 return table;
8950}
a117e66e 8951
a5d76b54 8952/*
80934513 8953 * This function checks whether pageblock includes unmovable pages or not.
80934513 8954 *
b8af2941 8955 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8956 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8957 * check without lock_page also may miss some movable non-lru pages at
8958 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8959 *
8960 * Returns a page without holding a reference. If the caller wants to
047b9967 8961 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8962 * cannot get removed (e.g., via memory unplug) concurrently.
8963 *
a5d76b54 8964 */
4a55c047
QC
8965struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8966 int migratetype, int flags)
49ac8255 8967{
1a9f2191
QC
8968 unsigned long iter = 0;
8969 unsigned long pfn = page_to_pfn(page);
6a654e36 8970 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8971
1a9f2191
QC
8972 if (is_migrate_cma_page(page)) {
8973 /*
8974 * CMA allocations (alloc_contig_range) really need to mark
8975 * isolate CMA pageblocks even when they are not movable in fact
8976 * so consider them movable here.
8977 */
8978 if (is_migrate_cma(migratetype))
4a55c047 8979 return NULL;
1a9f2191 8980
3d680bdf 8981 return page;
1a9f2191 8982 }
4da2ce25 8983
6a654e36 8984 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8985 page = pfn_to_page(pfn + iter);
c8721bbb 8986
c9c510dc
DH
8987 /*
8988 * Both, bootmem allocations and memory holes are marked
8989 * PG_reserved and are unmovable. We can even have unmovable
8990 * allocations inside ZONE_MOVABLE, for example when
8991 * specifying "movablecore".
8992 */
d7ab3672 8993 if (PageReserved(page))
3d680bdf 8994 return page;
d7ab3672 8995
9d789999
MH
8996 /*
8997 * If the zone is movable and we have ruled out all reserved
8998 * pages then it should be reasonably safe to assume the rest
8999 * is movable.
9000 */
9001 if (zone_idx(zone) == ZONE_MOVABLE)
9002 continue;
9003
c8721bbb
NH
9004 /*
9005 * Hugepages are not in LRU lists, but they're movable.
1da2f328 9006 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 9007 * We need not scan over tail pages because we don't
c8721bbb
NH
9008 * handle each tail page individually in migration.
9009 */
1da2f328 9010 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
9011 struct page *head = compound_head(page);
9012 unsigned int skip_pages;
464c7ffb 9013
1da2f328
RR
9014 if (PageHuge(page)) {
9015 if (!hugepage_migration_supported(page_hstate(head)))
9016 return page;
9017 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 9018 return page;
1da2f328 9019 }
464c7ffb 9020
d8c6546b 9021 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 9022 iter += skip_pages - 1;
c8721bbb
NH
9023 continue;
9024 }
9025
97d255c8
MK
9026 /*
9027 * We can't use page_count without pin a page
9028 * because another CPU can free compound page.
9029 * This check already skips compound tails of THP
0139aa7b 9030 * because their page->_refcount is zero at all time.
97d255c8 9031 */
fe896d18 9032 if (!page_ref_count(page)) {
49ac8255 9033 if (PageBuddy(page))
ab130f91 9034 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
9035 continue;
9036 }
97d255c8 9037
b023f468
WC
9038 /*
9039 * The HWPoisoned page may be not in buddy system, and
9040 * page_count() is not 0.
9041 */
756d25be 9042 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
9043 continue;
9044
aa218795
DH
9045 /*
9046 * We treat all PageOffline() pages as movable when offlining
9047 * to give drivers a chance to decrement their reference count
9048 * in MEM_GOING_OFFLINE in order to indicate that these pages
9049 * can be offlined as there are no direct references anymore.
9050 * For actually unmovable PageOffline() where the driver does
9051 * not support this, we will fail later when trying to actually
9052 * move these pages that still have a reference count > 0.
9053 * (false negatives in this function only)
9054 */
9055 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
9056 continue;
9057
fe4c86c9 9058 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
9059 continue;
9060
49ac8255 9061 /*
6b4f7799
JW
9062 * If there are RECLAIMABLE pages, we need to check
9063 * it. But now, memory offline itself doesn't call
9064 * shrink_node_slabs() and it still to be fixed.
49ac8255 9065 */
3d680bdf 9066 return page;
49ac8255 9067 }
4a55c047 9068 return NULL;
49ac8255
KH
9069}
9070
8df995f6 9071#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
9072static unsigned long pfn_max_align_down(unsigned long pfn)
9073{
b3d40a2b 9074 return ALIGN_DOWN(pfn, MAX_ORDER_NR_PAGES);
041d3a8c
MN
9075}
9076
9077static unsigned long pfn_max_align_up(unsigned long pfn)
9078{
b3d40a2b 9079 return ALIGN(pfn, MAX_ORDER_NR_PAGES);
041d3a8c
MN
9080}
9081
a1394bdd
MK
9082#if defined(CONFIG_DYNAMIC_DEBUG) || \
9083 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9084/* Usage: See admin-guide/dynamic-debug-howto.rst */
9085static void alloc_contig_dump_pages(struct list_head *page_list)
9086{
9087 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9088
9089 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9090 struct page *page;
9091
9092 dump_stack();
9093 list_for_each_entry(page, page_list, lru)
9094 dump_page(page, "migration failure");
9095 }
9096}
9097#else
9098static inline void alloc_contig_dump_pages(struct list_head *page_list)
9099{
9100}
9101#endif
9102
041d3a8c 9103/* [start, end) must belong to a single zone. */
bb13ffeb
MG
9104static int __alloc_contig_migrate_range(struct compact_control *cc,
9105 unsigned long start, unsigned long end)
041d3a8c
MN
9106{
9107 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 9108 unsigned int nr_reclaimed;
041d3a8c
MN
9109 unsigned long pfn = start;
9110 unsigned int tries = 0;
9111 int ret = 0;
8b94e0b8
JK
9112 struct migration_target_control mtc = {
9113 .nid = zone_to_nid(cc->zone),
9114 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9115 };
041d3a8c 9116
361a2a22 9117 lru_cache_disable();
041d3a8c 9118
bb13ffeb 9119 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
9120 if (fatal_signal_pending(current)) {
9121 ret = -EINTR;
9122 break;
9123 }
9124
bb13ffeb
MG
9125 if (list_empty(&cc->migratepages)) {
9126 cc->nr_migratepages = 0;
c2ad7a1f
OS
9127 ret = isolate_migratepages_range(cc, pfn, end);
9128 if (ret && ret != -EAGAIN)
041d3a8c 9129 break;
c2ad7a1f 9130 pfn = cc->migrate_pfn;
041d3a8c
MN
9131 tries = 0;
9132 } else if (++tries == 5) {
c8e28b47 9133 ret = -EBUSY;
041d3a8c
MN
9134 break;
9135 }
9136
beb51eaa
MK
9137 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9138 &cc->migratepages);
9139 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 9140
8b94e0b8 9141 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 9142 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
9143
9144 /*
9145 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9146 * to retry again over this error, so do the same here.
9147 */
9148 if (ret == -ENOMEM)
9149 break;
041d3a8c 9150 }
d479960e 9151
361a2a22 9152 lru_cache_enable();
2a6f5124 9153 if (ret < 0) {
151e084a
MK
9154 if (ret == -EBUSY)
9155 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
9156 putback_movable_pages(&cc->migratepages);
9157 return ret;
9158 }
9159 return 0;
041d3a8c
MN
9160}
9161
9162/**
9163 * alloc_contig_range() -- tries to allocate given range of pages
9164 * @start: start PFN to allocate
9165 * @end: one-past-the-last PFN to allocate
f0953a1b 9166 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9167 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9168 * in range must have the same migratetype and it must
9169 * be either of the two.
ca96b625 9170 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
9171 *
9172 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 9173 * aligned. The PFN range must belong to a single zone.
041d3a8c 9174 *
2c7452a0
MK
9175 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9176 * pageblocks in the range. Once isolated, the pageblocks should not
9177 * be modified by others.
041d3a8c 9178 *
a862f68a 9179 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9180 * pages which PFN is in [start, end) are allocated for the caller and
9181 * need to be freed with free_contig_range().
9182 */
0815f3d8 9183int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9184 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9185{
041d3a8c 9186 unsigned long outer_start, outer_end;
d00181b9
KS
9187 unsigned int order;
9188 int ret = 0;
041d3a8c 9189
bb13ffeb
MG
9190 struct compact_control cc = {
9191 .nr_migratepages = 0,
9192 .order = -1,
9193 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9194 .mode = MIGRATE_SYNC,
bb13ffeb 9195 .ignore_skip_hint = true,
2583d671 9196 .no_set_skip_hint = true,
7dea19f9 9197 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9198 .alloc_contig = true,
bb13ffeb
MG
9199 };
9200 INIT_LIST_HEAD(&cc.migratepages);
9201
041d3a8c
MN
9202 /*
9203 * What we do here is we mark all pageblocks in range as
9204 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9205 * have different sizes, and due to the way page allocator
9206 * work, we align the range to biggest of the two pages so
9207 * that page allocator won't try to merge buddies from
9208 * different pageblocks and change MIGRATE_ISOLATE to some
9209 * other migration type.
9210 *
9211 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9212 * migrate the pages from an unaligned range (ie. pages that
9213 * we are interested in). This will put all the pages in
9214 * range back to page allocator as MIGRATE_ISOLATE.
9215 *
9216 * When this is done, we take the pages in range from page
9217 * allocator removing them from the buddy system. This way
9218 * page allocator will never consider using them.
9219 *
9220 * This lets us mark the pageblocks back as
9221 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9222 * aligned range but not in the unaligned, original range are
9223 * put back to page allocator so that buddy can use them.
9224 */
9225
9226 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 9227 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 9228 if (ret)
86a595f9 9229 return ret;
041d3a8c 9230
7612921f
VB
9231 drain_all_pages(cc.zone);
9232
8ef5849f
JK
9233 /*
9234 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9235 * So, just fall through. test_pages_isolated() has a tracepoint
9236 * which will report the busy page.
9237 *
9238 * It is possible that busy pages could become available before
9239 * the call to test_pages_isolated, and the range will actually be
9240 * allocated. So, if we fall through be sure to clear ret so that
9241 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9242 */
bb13ffeb 9243 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9244 if (ret && ret != -EBUSY)
041d3a8c 9245 goto done;
68d68ff6 9246 ret = 0;
041d3a8c
MN
9247
9248 /*
9249 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9250 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9251 * more, all pages in [start, end) are free in page allocator.
9252 * What we are going to do is to allocate all pages from
9253 * [start, end) (that is remove them from page allocator).
9254 *
9255 * The only problem is that pages at the beginning and at the
9256 * end of interesting range may be not aligned with pages that
9257 * page allocator holds, ie. they can be part of higher order
9258 * pages. Because of this, we reserve the bigger range and
9259 * once this is done free the pages we are not interested in.
9260 *
9261 * We don't have to hold zone->lock here because the pages are
9262 * isolated thus they won't get removed from buddy.
9263 */
9264
041d3a8c
MN
9265 order = 0;
9266 outer_start = start;
9267 while (!PageBuddy(pfn_to_page(outer_start))) {
9268 if (++order >= MAX_ORDER) {
8ef5849f
JK
9269 outer_start = start;
9270 break;
041d3a8c
MN
9271 }
9272 outer_start &= ~0UL << order;
9273 }
9274
8ef5849f 9275 if (outer_start != start) {
ab130f91 9276 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9277
9278 /*
9279 * outer_start page could be small order buddy page and
9280 * it doesn't include start page. Adjust outer_start
9281 * in this case to report failed page properly
9282 * on tracepoint in test_pages_isolated()
9283 */
9284 if (outer_start + (1UL << order) <= start)
9285 outer_start = start;
9286 }
9287
041d3a8c 9288 /* Make sure the range is really isolated. */
756d25be 9289 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9290 ret = -EBUSY;
9291 goto done;
9292 }
9293
49f223a9 9294 /* Grab isolated pages from freelists. */
bb13ffeb 9295 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9296 if (!outer_end) {
9297 ret = -EBUSY;
9298 goto done;
9299 }
9300
9301 /* Free head and tail (if any) */
9302 if (start != outer_start)
9303 free_contig_range(outer_start, start - outer_start);
9304 if (end != outer_end)
9305 free_contig_range(end, outer_end - end);
9306
9307done:
9308 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 9309 pfn_max_align_up(end), migratetype);
041d3a8c
MN
9310 return ret;
9311}
255f5985 9312EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9313
9314static int __alloc_contig_pages(unsigned long start_pfn,
9315 unsigned long nr_pages, gfp_t gfp_mask)
9316{
9317 unsigned long end_pfn = start_pfn + nr_pages;
9318
9319 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9320 gfp_mask);
9321}
9322
9323static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9324 unsigned long nr_pages)
9325{
9326 unsigned long i, end_pfn = start_pfn + nr_pages;
9327 struct page *page;
9328
9329 for (i = start_pfn; i < end_pfn; i++) {
9330 page = pfn_to_online_page(i);
9331 if (!page)
9332 return false;
9333
9334 if (page_zone(page) != z)
9335 return false;
9336
9337 if (PageReserved(page))
9338 return false;
5e27a2df
AK
9339 }
9340 return true;
9341}
9342
9343static bool zone_spans_last_pfn(const struct zone *zone,
9344 unsigned long start_pfn, unsigned long nr_pages)
9345{
9346 unsigned long last_pfn = start_pfn + nr_pages - 1;
9347
9348 return zone_spans_pfn(zone, last_pfn);
9349}
9350
9351/**
9352 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9353 * @nr_pages: Number of contiguous pages to allocate
9354 * @gfp_mask: GFP mask to limit search and used during compaction
9355 * @nid: Target node
9356 * @nodemask: Mask for other possible nodes
9357 *
9358 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9359 * on an applicable zonelist to find a contiguous pfn range which can then be
9360 * tried for allocation with alloc_contig_range(). This routine is intended
9361 * for allocation requests which can not be fulfilled with the buddy allocator.
9362 *
9363 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
9364 * power of two, then allocated range is also guaranteed to be aligned to same
9365 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
9366 *
9367 * Allocated pages can be freed with free_contig_range() or by manually calling
9368 * __free_page() on each allocated page.
9369 *
9370 * Return: pointer to contiguous pages on success, or NULL if not successful.
9371 */
9372struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9373 int nid, nodemask_t *nodemask)
9374{
9375 unsigned long ret, pfn, flags;
9376 struct zonelist *zonelist;
9377 struct zone *zone;
9378 struct zoneref *z;
9379
9380 zonelist = node_zonelist(nid, gfp_mask);
9381 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9382 gfp_zone(gfp_mask), nodemask) {
9383 spin_lock_irqsave(&zone->lock, flags);
9384
9385 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9386 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9387 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9388 /*
9389 * We release the zone lock here because
9390 * alloc_contig_range() will also lock the zone
9391 * at some point. If there's an allocation
9392 * spinning on this lock, it may win the race
9393 * and cause alloc_contig_range() to fail...
9394 */
9395 spin_unlock_irqrestore(&zone->lock, flags);
9396 ret = __alloc_contig_pages(pfn, nr_pages,
9397 gfp_mask);
9398 if (!ret)
9399 return pfn_to_page(pfn);
9400 spin_lock_irqsave(&zone->lock, flags);
9401 }
9402 pfn += nr_pages;
9403 }
9404 spin_unlock_irqrestore(&zone->lock, flags);
9405 }
9406 return NULL;
9407}
4eb0716e 9408#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9409
78fa5150 9410void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9411{
78fa5150 9412 unsigned long count = 0;
bcc2b02f
MS
9413
9414 for (; nr_pages--; pfn++) {
9415 struct page *page = pfn_to_page(pfn);
9416
9417 count += page_count(page) != 1;
9418 __free_page(page);
9419 }
78fa5150 9420 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9421}
255f5985 9422EXPORT_SYMBOL(free_contig_range);
041d3a8c 9423
0a647f38
CS
9424/*
9425 * The zone indicated has a new number of managed_pages; batch sizes and percpu
f0953a1b 9426 * page high values need to be recalculated.
0a647f38 9427 */
04f8cfea 9428void zone_pcp_update(struct zone *zone, int cpu_online)
4ed7e022 9429{
c8e251fa 9430 mutex_lock(&pcp_batch_high_lock);
04f8cfea 9431 zone_set_pageset_high_and_batch(zone, cpu_online);
c8e251fa 9432 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 9433}
4ed7e022 9434
ec6e8c7e
VB
9435/*
9436 * Effectively disable pcplists for the zone by setting the high limit to 0
9437 * and draining all cpus. A concurrent page freeing on another CPU that's about
9438 * to put the page on pcplist will either finish before the drain and the page
9439 * will be drained, or observe the new high limit and skip the pcplist.
9440 *
9441 * Must be paired with a call to zone_pcp_enable().
9442 */
9443void zone_pcp_disable(struct zone *zone)
9444{
9445 mutex_lock(&pcp_batch_high_lock);
9446 __zone_set_pageset_high_and_batch(zone, 0, 1);
9447 __drain_all_pages(zone, true);
9448}
9449
9450void zone_pcp_enable(struct zone *zone)
9451{
9452 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9453 mutex_unlock(&pcp_batch_high_lock);
9454}
9455
340175b7
JL
9456void zone_pcp_reset(struct zone *zone)
9457{
5a883813 9458 int cpu;
28f836b6 9459 struct per_cpu_zonestat *pzstats;
340175b7 9460
28f836b6 9461 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9462 for_each_online_cpu(cpu) {
28f836b6
MG
9463 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9464 drain_zonestat(zone, pzstats);
5a883813 9465 }
28f836b6
MG
9466 free_percpu(zone->per_cpu_pageset);
9467 free_percpu(zone->per_cpu_zonestats);
9468 zone->per_cpu_pageset = &boot_pageset;
9469 zone->per_cpu_zonestats = &boot_zonestats;
340175b7 9470 }
340175b7
JL
9471}
9472
6dcd73d7 9473#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9474/*
257bea71
DH
9475 * All pages in the range must be in a single zone, must not contain holes,
9476 * must span full sections, and must be isolated before calling this function.
0c0e6195 9477 */
257bea71 9478void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9479{
257bea71 9480 unsigned long pfn = start_pfn;
0c0e6195
KH
9481 struct page *page;
9482 struct zone *zone;
0ee5f4f3 9483 unsigned int order;
0c0e6195 9484 unsigned long flags;
5557c766 9485
2d070eab 9486 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9487 zone = page_zone(pfn_to_page(pfn));
9488 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9489 while (pfn < end_pfn) {
0c0e6195 9490 page = pfn_to_page(pfn);
b023f468
WC
9491 /*
9492 * The HWPoisoned page may be not in buddy system, and
9493 * page_count() is not 0.
9494 */
9495 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9496 pfn++;
b023f468
WC
9497 continue;
9498 }
aa218795
DH
9499 /*
9500 * At this point all remaining PageOffline() pages have a
9501 * reference count of 0 and can simply be skipped.
9502 */
9503 if (PageOffline(page)) {
9504 BUG_ON(page_count(page));
9505 BUG_ON(PageBuddy(page));
9506 pfn++;
aa218795
DH
9507 continue;
9508 }
b023f468 9509
0c0e6195
KH
9510 BUG_ON(page_count(page));
9511 BUG_ON(!PageBuddy(page));
ab130f91 9512 order = buddy_order(page);
6ab01363 9513 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9514 pfn += (1 << order);
9515 }
9516 spin_unlock_irqrestore(&zone->lock, flags);
9517}
9518#endif
8d22ba1b 9519
8446b59b
ED
9520/*
9521 * This function returns a stable result only if called under zone lock.
9522 */
8d22ba1b
WF
9523bool is_free_buddy_page(struct page *page)
9524{
8d22ba1b 9525 unsigned long pfn = page_to_pfn(page);
7aeb09f9 9526 unsigned int order;
8d22ba1b 9527
8d22ba1b
WF
9528 for (order = 0; order < MAX_ORDER; order++) {
9529 struct page *page_head = page - (pfn & ((1 << order) - 1));
9530
8446b59b
ED
9531 if (PageBuddy(page_head) &&
9532 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
9533 break;
9534 }
8d22ba1b
WF
9535
9536 return order < MAX_ORDER;
9537}
a581865e 9538EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
9539
9540#ifdef CONFIG_MEMORY_FAILURE
9541/*
06be6ff3
OS
9542 * Break down a higher-order page in sub-pages, and keep our target out of
9543 * buddy allocator.
d4ae9916 9544 */
06be6ff3
OS
9545static void break_down_buddy_pages(struct zone *zone, struct page *page,
9546 struct page *target, int low, int high,
9547 int migratetype)
9548{
9549 unsigned long size = 1 << high;
9550 struct page *current_buddy, *next_page;
9551
9552 while (high > low) {
9553 high--;
9554 size >>= 1;
9555
9556 if (target >= &page[size]) {
9557 next_page = page + size;
9558 current_buddy = page;
9559 } else {
9560 next_page = page;
9561 current_buddy = page + size;
9562 }
9563
9564 if (set_page_guard(zone, current_buddy, high, migratetype))
9565 continue;
9566
9567 if (current_buddy != target) {
9568 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9569 set_buddy_order(current_buddy, high);
06be6ff3
OS
9570 page = next_page;
9571 }
9572 }
9573}
9574
9575/*
9576 * Take a page that will be marked as poisoned off the buddy allocator.
9577 */
9578bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9579{
9580 struct zone *zone = page_zone(page);
9581 unsigned long pfn = page_to_pfn(page);
9582 unsigned long flags;
9583 unsigned int order;
06be6ff3 9584 bool ret = false;
d4ae9916
NH
9585
9586 spin_lock_irqsave(&zone->lock, flags);
9587 for (order = 0; order < MAX_ORDER; order++) {
9588 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9589 int page_order = buddy_order(page_head);
d4ae9916 9590
ab130f91 9591 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9592 unsigned long pfn_head = page_to_pfn(page_head);
9593 int migratetype = get_pfnblock_migratetype(page_head,
9594 pfn_head);
9595
ab130f91 9596 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9597 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9598 page_order, migratetype);
bf181c58 9599 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
9600 if (!is_migrate_isolate(migratetype))
9601 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9602 ret = true;
d4ae9916
NH
9603 break;
9604 }
06be6ff3
OS
9605 if (page_count(page_head) > 0)
9606 break;
d4ae9916
NH
9607 }
9608 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9609 return ret;
d4ae9916 9610}
bf181c58
NH
9611
9612/*
9613 * Cancel takeoff done by take_page_off_buddy().
9614 */
9615bool put_page_back_buddy(struct page *page)
9616{
9617 struct zone *zone = page_zone(page);
9618 unsigned long pfn = page_to_pfn(page);
9619 unsigned long flags;
9620 int migratetype = get_pfnblock_migratetype(page, pfn);
9621 bool ret = false;
9622
9623 spin_lock_irqsave(&zone->lock, flags);
9624 if (put_page_testzero(page)) {
9625 ClearPageHWPoisonTakenOff(page);
9626 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9627 if (TestClearPageHWPoison(page)) {
9628 num_poisoned_pages_dec();
9629 ret = true;
9630 }
9631 }
9632 spin_unlock_irqrestore(&zone->lock, flags);
9633
9634 return ret;
9635}
d4ae9916 9636#endif
62b31070
BH
9637
9638#ifdef CONFIG_ZONE_DMA
9639bool has_managed_dma(void)
9640{
9641 struct pglist_data *pgdat;
9642
9643 for_each_online_pgdat(pgdat) {
9644 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9645
9646 if (managed_zone(zone))
9647 return true;
9648 }
9649 return false;
9650}
9651#endif /* CONFIG_ZONE_DMA */