]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/page_alloc.c
mm, page_alloc: check once if a zone has isolated pageblocks
[people/arne_f/kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
224abf92 787static inline int free_pages_check(struct page *page)
1da177e4 788{
d230dec1 789 const char *bad_reason = NULL;
f0b791a3
DH
790 unsigned long bad_flags = 0;
791
53f9263b 792 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
fe896d18 796 if (unlikely(page_ref_count(page) != 0))
0139aa7b 797 bad_reason = "nonzero _refcount";
f0b791a3
DH
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
9edad6ea
JW
802#ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805#endif
f0b791a3
DH
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
79f4b7bf 808 return 1;
8cc3b392 809 }
90572890 810 page_cpupid_reset_last(page);
79f4b7bf
HD
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
1da177e4
LT
814}
815
816/*
5f8dcc21 817 * Frees a number of pages from the PCP lists
1da177e4 818 * Assumes all pages on list are in same zone, and of same order.
207f36ee 819 * count is the number of pages to free.
1da177e4
LT
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
5f8dcc21
MG
827static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
1da177e4 829{
5f8dcc21 830 int migratetype = 0;
a6f9edd6 831 int batch_free = 0;
72853e29 832 int to_free = count;
0d5d823a 833 unsigned long nr_scanned;
3777999d 834 bool isolated_pageblocks;
5f8dcc21 835
c54ad30c 836 spin_lock(&zone->lock);
3777999d 837 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
838 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
839 if (nr_scanned)
840 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 841
72853e29 842 while (to_free) {
48db57f8 843 struct page *page;
5f8dcc21
MG
844 struct list_head *list;
845
846 /*
a6f9edd6
MG
847 * Remove pages from lists in a round-robin fashion. A
848 * batch_free count is maintained that is incremented when an
849 * empty list is encountered. This is so more pages are freed
850 * off fuller lists instead of spinning excessively around empty
851 * lists
5f8dcc21
MG
852 */
853 do {
a6f9edd6 854 batch_free++;
5f8dcc21
MG
855 if (++migratetype == MIGRATE_PCPTYPES)
856 migratetype = 0;
857 list = &pcp->lists[migratetype];
858 } while (list_empty(list));
48db57f8 859
1d16871d
NK
860 /* This is the only non-empty list. Free them all. */
861 if (batch_free == MIGRATE_PCPTYPES)
862 batch_free = to_free;
863
a6f9edd6 864 do {
770c8aaa
BZ
865 int mt; /* migratetype of the to-be-freed page */
866
a16601c5 867 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
868 /* must delete as __free_one_page list manipulates */
869 list_del(&page->lru);
aa016d14 870
bb14c2c7 871 mt = get_pcppage_migratetype(page);
aa016d14
VB
872 /* MIGRATE_ISOLATE page should not go to pcplists */
873 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
874 /* Pageblock could have been isolated meanwhile */
3777999d 875 if (unlikely(isolated_pageblocks))
51bb1a40 876 mt = get_pageblock_migratetype(page);
51bb1a40 877
dc4b0caf 878 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 879 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 880 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 881 }
c54ad30c 882 spin_unlock(&zone->lock);
1da177e4
LT
883}
884
dc4b0caf
MG
885static void free_one_page(struct zone *zone,
886 struct page *page, unsigned long pfn,
7aeb09f9 887 unsigned int order,
ed0ae21d 888 int migratetype)
1da177e4 889{
0d5d823a 890 unsigned long nr_scanned;
006d22d9 891 spin_lock(&zone->lock);
0d5d823a
MG
892 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
893 if (nr_scanned)
894 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 895
ad53f92e
JK
896 if (unlikely(has_isolate_pageblock(zone) ||
897 is_migrate_isolate(migratetype))) {
898 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 899 }
dc4b0caf 900 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 901 spin_unlock(&zone->lock);
48db57f8
NP
902}
903
81422f29
KS
904static int free_tail_pages_check(struct page *head_page, struct page *page)
905{
1d798ca3
KS
906 int ret = 1;
907
908 /*
909 * We rely page->lru.next never has bit 0 set, unless the page
910 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
911 */
912 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
913
914 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
915 ret = 0;
916 goto out;
917 }
9a982250
KS
918 switch (page - head_page) {
919 case 1:
920 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
921 if (unlikely(compound_mapcount(page))) {
922 bad_page(page, "nonzero compound_mapcount", 0);
923 goto out;
924 }
9a982250
KS
925 break;
926 case 2:
927 /*
928 * the second tail page: ->mapping is
929 * page_deferred_list().next -- ignore value.
930 */
931 break;
932 default:
933 if (page->mapping != TAIL_MAPPING) {
934 bad_page(page, "corrupted mapping in tail page", 0);
935 goto out;
936 }
937 break;
1c290f64 938 }
81422f29
KS
939 if (unlikely(!PageTail(page))) {
940 bad_page(page, "PageTail not set", 0);
1d798ca3 941 goto out;
81422f29 942 }
1d798ca3
KS
943 if (unlikely(compound_head(page) != head_page)) {
944 bad_page(page, "compound_head not consistent", 0);
945 goto out;
81422f29 946 }
1d798ca3
KS
947 ret = 0;
948out:
1c290f64 949 page->mapping = NULL;
1d798ca3
KS
950 clear_compound_head(page);
951 return ret;
81422f29
KS
952}
953
1e8ce83c
RH
954static void __meminit __init_single_page(struct page *page, unsigned long pfn,
955 unsigned long zone, int nid)
956{
1e8ce83c 957 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
958 init_page_count(page);
959 page_mapcount_reset(page);
960 page_cpupid_reset_last(page);
1e8ce83c 961
1e8ce83c
RH
962 INIT_LIST_HEAD(&page->lru);
963#ifdef WANT_PAGE_VIRTUAL
964 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
965 if (!is_highmem_idx(zone))
966 set_page_address(page, __va(pfn << PAGE_SHIFT));
967#endif
968}
969
970static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
971 int nid)
972{
973 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
974}
975
7e18adb4
MG
976#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
977static void init_reserved_page(unsigned long pfn)
978{
979 pg_data_t *pgdat;
980 int nid, zid;
981
982 if (!early_page_uninitialised(pfn))
983 return;
984
985 nid = early_pfn_to_nid(pfn);
986 pgdat = NODE_DATA(nid);
987
988 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
989 struct zone *zone = &pgdat->node_zones[zid];
990
991 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
992 break;
993 }
994 __init_single_pfn(pfn, zid, nid);
995}
996#else
997static inline void init_reserved_page(unsigned long pfn)
998{
999}
1000#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1001
92923ca3
NZ
1002/*
1003 * Initialised pages do not have PageReserved set. This function is
1004 * called for each range allocated by the bootmem allocator and
1005 * marks the pages PageReserved. The remaining valid pages are later
1006 * sent to the buddy page allocator.
1007 */
7e18adb4 1008void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1009{
1010 unsigned long start_pfn = PFN_DOWN(start);
1011 unsigned long end_pfn = PFN_UP(end);
1012
7e18adb4
MG
1013 for (; start_pfn < end_pfn; start_pfn++) {
1014 if (pfn_valid(start_pfn)) {
1015 struct page *page = pfn_to_page(start_pfn);
1016
1017 init_reserved_page(start_pfn);
1d798ca3
KS
1018
1019 /* Avoid false-positive PageTail() */
1020 INIT_LIST_HEAD(&page->lru);
1021
7e18adb4
MG
1022 SetPageReserved(page);
1023 }
1024 }
92923ca3
NZ
1025}
1026
ec95f53a 1027static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1028{
d61f8590 1029 int bad = 0;
1da177e4 1030
ab1f306f 1031 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1032
b413d48a 1033 trace_mm_page_free(page, order);
b1eeab67 1034 kmemcheck_free_shadow(page, order);
b8c73fc2 1035 kasan_free_pages(page, order);
b1eeab67 1036
d61f8590
MG
1037 /*
1038 * Check tail pages before head page information is cleared to
1039 * avoid checking PageCompound for order-0 pages.
1040 */
1041 if (unlikely(order)) {
1042 bool compound = PageCompound(page);
1043 int i;
1044
1045 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1046
1047 for (i = 1; i < (1 << order); i++) {
1048 if (compound)
1049 bad += free_tail_pages_check(page, page + i);
1050 bad += free_pages_check(page + i);
1051 }
1052 }
17514574 1053 if (PageAnonHead(page))
8dd60a3a 1054 page->mapping = NULL;
81422f29 1055 bad += free_pages_check(page);
8cc3b392 1056 if (bad)
ec95f53a 1057 return false;
689bcebf 1058
48c96a36
JK
1059 reset_page_owner(page, order);
1060
3ac7fe5a 1061 if (!PageHighMem(page)) {
b8af2941
PK
1062 debug_check_no_locks_freed(page_address(page),
1063 PAGE_SIZE << order);
3ac7fe5a
TG
1064 debug_check_no_obj_freed(page_address(page),
1065 PAGE_SIZE << order);
1066 }
dafb1367 1067 arch_free_page(page, order);
8823b1db 1068 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1069 kernel_map_pages(page, 1 << order, 0);
dafb1367 1070
ec95f53a
KM
1071 return true;
1072}
1073
1074static void __free_pages_ok(struct page *page, unsigned int order)
1075{
1076 unsigned long flags;
95e34412 1077 int migratetype;
dc4b0caf 1078 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1079
1080 if (!free_pages_prepare(page, order))
1081 return;
1082
cfc47a28 1083 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1084 local_irq_save(flags);
f8891e5e 1085 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1086 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1087 local_irq_restore(flags);
1da177e4
LT
1088}
1089
949698a3 1090static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1091{
c3993076 1092 unsigned int nr_pages = 1 << order;
e2d0bd2b 1093 struct page *p = page;
c3993076 1094 unsigned int loop;
a226f6c8 1095
e2d0bd2b
YL
1096 prefetchw(p);
1097 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1098 prefetchw(p + 1);
c3993076
JW
1099 __ClearPageReserved(p);
1100 set_page_count(p, 0);
a226f6c8 1101 }
e2d0bd2b
YL
1102 __ClearPageReserved(p);
1103 set_page_count(p, 0);
c3993076 1104
e2d0bd2b 1105 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1106 set_page_refcounted(page);
1107 __free_pages(page, order);
a226f6c8
DH
1108}
1109
75a592a4
MG
1110#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1111 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1112
75a592a4
MG
1113static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1114
1115int __meminit early_pfn_to_nid(unsigned long pfn)
1116{
7ace9917 1117 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1118 int nid;
1119
7ace9917 1120 spin_lock(&early_pfn_lock);
75a592a4 1121 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1122 if (nid < 0)
1123 nid = 0;
1124 spin_unlock(&early_pfn_lock);
1125
1126 return nid;
75a592a4
MG
1127}
1128#endif
1129
1130#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1131static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1132 struct mminit_pfnnid_cache *state)
1133{
1134 int nid;
1135
1136 nid = __early_pfn_to_nid(pfn, state);
1137 if (nid >= 0 && nid != node)
1138 return false;
1139 return true;
1140}
1141
1142/* Only safe to use early in boot when initialisation is single-threaded */
1143static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1144{
1145 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1146}
1147
1148#else
1149
1150static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1151{
1152 return true;
1153}
1154static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1155 struct mminit_pfnnid_cache *state)
1156{
1157 return true;
1158}
1159#endif
1160
1161
0e1cc95b 1162void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1163 unsigned int order)
1164{
1165 if (early_page_uninitialised(pfn))
1166 return;
949698a3 1167 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1168}
1169
7cf91a98
JK
1170/*
1171 * Check that the whole (or subset of) a pageblock given by the interval of
1172 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1173 * with the migration of free compaction scanner. The scanners then need to
1174 * use only pfn_valid_within() check for arches that allow holes within
1175 * pageblocks.
1176 *
1177 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1178 *
1179 * It's possible on some configurations to have a setup like node0 node1 node0
1180 * i.e. it's possible that all pages within a zones range of pages do not
1181 * belong to a single zone. We assume that a border between node0 and node1
1182 * can occur within a single pageblock, but not a node0 node1 node0
1183 * interleaving within a single pageblock. It is therefore sufficient to check
1184 * the first and last page of a pageblock and avoid checking each individual
1185 * page in a pageblock.
1186 */
1187struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1188 unsigned long end_pfn, struct zone *zone)
1189{
1190 struct page *start_page;
1191 struct page *end_page;
1192
1193 /* end_pfn is one past the range we are checking */
1194 end_pfn--;
1195
1196 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1197 return NULL;
1198
1199 start_page = pfn_to_page(start_pfn);
1200
1201 if (page_zone(start_page) != zone)
1202 return NULL;
1203
1204 end_page = pfn_to_page(end_pfn);
1205
1206 /* This gives a shorter code than deriving page_zone(end_page) */
1207 if (page_zone_id(start_page) != page_zone_id(end_page))
1208 return NULL;
1209
1210 return start_page;
1211}
1212
1213void set_zone_contiguous(struct zone *zone)
1214{
1215 unsigned long block_start_pfn = zone->zone_start_pfn;
1216 unsigned long block_end_pfn;
1217
1218 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1219 for (; block_start_pfn < zone_end_pfn(zone);
1220 block_start_pfn = block_end_pfn,
1221 block_end_pfn += pageblock_nr_pages) {
1222
1223 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1224
1225 if (!__pageblock_pfn_to_page(block_start_pfn,
1226 block_end_pfn, zone))
1227 return;
1228 }
1229
1230 /* We confirm that there is no hole */
1231 zone->contiguous = true;
1232}
1233
1234void clear_zone_contiguous(struct zone *zone)
1235{
1236 zone->contiguous = false;
1237}
1238
7e18adb4 1239#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1240static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1241 unsigned long pfn, int nr_pages)
1242{
1243 int i;
1244
1245 if (!page)
1246 return;
1247
1248 /* Free a large naturally-aligned chunk if possible */
1249 if (nr_pages == MAX_ORDER_NR_PAGES &&
1250 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1251 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1252 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1253 return;
1254 }
1255
949698a3
LZ
1256 for (i = 0; i < nr_pages; i++, page++)
1257 __free_pages_boot_core(page, 0);
a4de83dd
MG
1258}
1259
d3cd131d
NS
1260/* Completion tracking for deferred_init_memmap() threads */
1261static atomic_t pgdat_init_n_undone __initdata;
1262static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1263
1264static inline void __init pgdat_init_report_one_done(void)
1265{
1266 if (atomic_dec_and_test(&pgdat_init_n_undone))
1267 complete(&pgdat_init_all_done_comp);
1268}
0e1cc95b 1269
7e18adb4 1270/* Initialise remaining memory on a node */
0e1cc95b 1271static int __init deferred_init_memmap(void *data)
7e18adb4 1272{
0e1cc95b
MG
1273 pg_data_t *pgdat = data;
1274 int nid = pgdat->node_id;
7e18adb4
MG
1275 struct mminit_pfnnid_cache nid_init_state = { };
1276 unsigned long start = jiffies;
1277 unsigned long nr_pages = 0;
1278 unsigned long walk_start, walk_end;
1279 int i, zid;
1280 struct zone *zone;
7e18adb4 1281 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1282 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1283
0e1cc95b 1284 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1285 pgdat_init_report_one_done();
0e1cc95b
MG
1286 return 0;
1287 }
1288
1289 /* Bind memory initialisation thread to a local node if possible */
1290 if (!cpumask_empty(cpumask))
1291 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1292
1293 /* Sanity check boundaries */
1294 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1295 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1296 pgdat->first_deferred_pfn = ULONG_MAX;
1297
1298 /* Only the highest zone is deferred so find it */
1299 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1300 zone = pgdat->node_zones + zid;
1301 if (first_init_pfn < zone_end_pfn(zone))
1302 break;
1303 }
1304
1305 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1306 unsigned long pfn, end_pfn;
54608c3f 1307 struct page *page = NULL;
a4de83dd
MG
1308 struct page *free_base_page = NULL;
1309 unsigned long free_base_pfn = 0;
1310 int nr_to_free = 0;
7e18adb4
MG
1311
1312 end_pfn = min(walk_end, zone_end_pfn(zone));
1313 pfn = first_init_pfn;
1314 if (pfn < walk_start)
1315 pfn = walk_start;
1316 if (pfn < zone->zone_start_pfn)
1317 pfn = zone->zone_start_pfn;
1318
1319 for (; pfn < end_pfn; pfn++) {
54608c3f 1320 if (!pfn_valid_within(pfn))
a4de83dd 1321 goto free_range;
7e18adb4 1322
54608c3f
MG
1323 /*
1324 * Ensure pfn_valid is checked every
1325 * MAX_ORDER_NR_PAGES for memory holes
1326 */
1327 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1328 if (!pfn_valid(pfn)) {
1329 page = NULL;
a4de83dd 1330 goto free_range;
54608c3f
MG
1331 }
1332 }
1333
1334 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1335 page = NULL;
a4de83dd 1336 goto free_range;
54608c3f
MG
1337 }
1338
1339 /* Minimise pfn page lookups and scheduler checks */
1340 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1341 page++;
1342 } else {
a4de83dd
MG
1343 nr_pages += nr_to_free;
1344 deferred_free_range(free_base_page,
1345 free_base_pfn, nr_to_free);
1346 free_base_page = NULL;
1347 free_base_pfn = nr_to_free = 0;
1348
54608c3f
MG
1349 page = pfn_to_page(pfn);
1350 cond_resched();
1351 }
7e18adb4
MG
1352
1353 if (page->flags) {
1354 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1355 goto free_range;
7e18adb4
MG
1356 }
1357
1358 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1359 if (!free_base_page) {
1360 free_base_page = page;
1361 free_base_pfn = pfn;
1362 nr_to_free = 0;
1363 }
1364 nr_to_free++;
1365
1366 /* Where possible, batch up pages for a single free */
1367 continue;
1368free_range:
1369 /* Free the current block of pages to allocator */
1370 nr_pages += nr_to_free;
1371 deferred_free_range(free_base_page, free_base_pfn,
1372 nr_to_free);
1373 free_base_page = NULL;
1374 free_base_pfn = nr_to_free = 0;
7e18adb4 1375 }
a4de83dd 1376
7e18adb4
MG
1377 first_init_pfn = max(end_pfn, first_init_pfn);
1378 }
1379
1380 /* Sanity check that the next zone really is unpopulated */
1381 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1382
0e1cc95b 1383 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1384 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1385
1386 pgdat_init_report_one_done();
0e1cc95b
MG
1387 return 0;
1388}
7cf91a98 1389#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1390
1391void __init page_alloc_init_late(void)
1392{
7cf91a98
JK
1393 struct zone *zone;
1394
1395#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1396 int nid;
1397
d3cd131d
NS
1398 /* There will be num_node_state(N_MEMORY) threads */
1399 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1400 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1401 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1402 }
1403
1404 /* Block until all are initialised */
d3cd131d 1405 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1406
1407 /* Reinit limits that are based on free pages after the kernel is up */
1408 files_maxfiles_init();
7cf91a98
JK
1409#endif
1410
1411 for_each_populated_zone(zone)
1412 set_zone_contiguous(zone);
7e18adb4 1413}
7e18adb4 1414
47118af0 1415#ifdef CONFIG_CMA
9cf510a5 1416/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1417void __init init_cma_reserved_pageblock(struct page *page)
1418{
1419 unsigned i = pageblock_nr_pages;
1420 struct page *p = page;
1421
1422 do {
1423 __ClearPageReserved(p);
1424 set_page_count(p, 0);
1425 } while (++p, --i);
1426
47118af0 1427 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1428
1429 if (pageblock_order >= MAX_ORDER) {
1430 i = pageblock_nr_pages;
1431 p = page;
1432 do {
1433 set_page_refcounted(p);
1434 __free_pages(p, MAX_ORDER - 1);
1435 p += MAX_ORDER_NR_PAGES;
1436 } while (i -= MAX_ORDER_NR_PAGES);
1437 } else {
1438 set_page_refcounted(page);
1439 __free_pages(page, pageblock_order);
1440 }
1441
3dcc0571 1442 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1443}
1444#endif
1da177e4
LT
1445
1446/*
1447 * The order of subdivision here is critical for the IO subsystem.
1448 * Please do not alter this order without good reasons and regression
1449 * testing. Specifically, as large blocks of memory are subdivided,
1450 * the order in which smaller blocks are delivered depends on the order
1451 * they're subdivided in this function. This is the primary factor
1452 * influencing the order in which pages are delivered to the IO
1453 * subsystem according to empirical testing, and this is also justified
1454 * by considering the behavior of a buddy system containing a single
1455 * large block of memory acted on by a series of small allocations.
1456 * This behavior is a critical factor in sglist merging's success.
1457 *
6d49e352 1458 * -- nyc
1da177e4 1459 */
085cc7d5 1460static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1461 int low, int high, struct free_area *area,
1462 int migratetype)
1da177e4
LT
1463{
1464 unsigned long size = 1 << high;
1465
1466 while (high > low) {
1467 area--;
1468 high--;
1469 size >>= 1;
309381fe 1470 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1471
2847cf95 1472 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1473 debug_guardpage_enabled() &&
2847cf95 1474 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1475 /*
1476 * Mark as guard pages (or page), that will allow to
1477 * merge back to allocator when buddy will be freed.
1478 * Corresponding page table entries will not be touched,
1479 * pages will stay not present in virtual address space
1480 */
2847cf95 1481 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1482 continue;
1483 }
b2a0ac88 1484 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1485 area->nr_free++;
1486 set_page_order(&page[size], high);
1487 }
1da177e4
LT
1488}
1489
1da177e4
LT
1490/*
1491 * This page is about to be returned from the page allocator
1492 */
2a7684a2 1493static inline int check_new_page(struct page *page)
1da177e4 1494{
d230dec1 1495 const char *bad_reason = NULL;
f0b791a3
DH
1496 unsigned long bad_flags = 0;
1497
53f9263b 1498 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1499 bad_reason = "nonzero mapcount";
1500 if (unlikely(page->mapping != NULL))
1501 bad_reason = "non-NULL mapping";
fe896d18 1502 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1503 bad_reason = "nonzero _count";
f4c18e6f
NH
1504 if (unlikely(page->flags & __PG_HWPOISON)) {
1505 bad_reason = "HWPoisoned (hardware-corrupted)";
1506 bad_flags = __PG_HWPOISON;
1507 }
f0b791a3
DH
1508 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1509 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1510 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1511 }
9edad6ea
JW
1512#ifdef CONFIG_MEMCG
1513 if (unlikely(page->mem_cgroup))
1514 bad_reason = "page still charged to cgroup";
1515#endif
f0b791a3
DH
1516 if (unlikely(bad_reason)) {
1517 bad_page(page, bad_reason, bad_flags);
689bcebf 1518 return 1;
8cc3b392 1519 }
2a7684a2
WF
1520 return 0;
1521}
1522
1414c7f4
LA
1523static inline bool free_pages_prezeroed(bool poisoned)
1524{
1525 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1526 page_poisoning_enabled() && poisoned;
1527}
1528
75379191 1529static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1530 unsigned int alloc_flags)
2a7684a2
WF
1531{
1532 int i;
1414c7f4 1533 bool poisoned = true;
2a7684a2
WF
1534
1535 for (i = 0; i < (1 << order); i++) {
1536 struct page *p = page + i;
1537 if (unlikely(check_new_page(p)))
1538 return 1;
1414c7f4
LA
1539 if (poisoned)
1540 poisoned &= page_is_poisoned(p);
2a7684a2 1541 }
689bcebf 1542
4c21e2f2 1543 set_page_private(page, 0);
7835e98b 1544 set_page_refcounted(page);
cc102509
NP
1545
1546 arch_alloc_page(page, order);
1da177e4 1547 kernel_map_pages(page, 1 << order, 1);
8823b1db 1548 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1549 kasan_alloc_pages(page, order);
17cf4406 1550
1414c7f4 1551 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1552 for (i = 0; i < (1 << order); i++)
1553 clear_highpage(page + i);
17cf4406
NP
1554
1555 if (order && (gfp_flags & __GFP_COMP))
1556 prep_compound_page(page, order);
1557
48c96a36
JK
1558 set_page_owner(page, order, gfp_flags);
1559
75379191 1560 /*
2f064f34 1561 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1562 * allocate the page. The expectation is that the caller is taking
1563 * steps that will free more memory. The caller should avoid the page
1564 * being used for !PFMEMALLOC purposes.
1565 */
2f064f34
MH
1566 if (alloc_flags & ALLOC_NO_WATERMARKS)
1567 set_page_pfmemalloc(page);
1568 else
1569 clear_page_pfmemalloc(page);
75379191 1570
689bcebf 1571 return 0;
1da177e4
LT
1572}
1573
56fd56b8
MG
1574/*
1575 * Go through the free lists for the given migratetype and remove
1576 * the smallest available page from the freelists
1577 */
728ec980
MG
1578static inline
1579struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1580 int migratetype)
1581{
1582 unsigned int current_order;
b8af2941 1583 struct free_area *area;
56fd56b8
MG
1584 struct page *page;
1585
1586 /* Find a page of the appropriate size in the preferred list */
1587 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1588 area = &(zone->free_area[current_order]);
a16601c5 1589 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1590 struct page, lru);
a16601c5
GT
1591 if (!page)
1592 continue;
56fd56b8
MG
1593 list_del(&page->lru);
1594 rmv_page_order(page);
1595 area->nr_free--;
56fd56b8 1596 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1597 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1598 return page;
1599 }
1600
1601 return NULL;
1602}
1603
1604
b2a0ac88
MG
1605/*
1606 * This array describes the order lists are fallen back to when
1607 * the free lists for the desirable migrate type are depleted
1608 */
47118af0 1609static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1610 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1611 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1612 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1613#ifdef CONFIG_CMA
974a786e 1614 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1615#endif
194159fb 1616#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1617 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1618#endif
b2a0ac88
MG
1619};
1620
dc67647b
JK
1621#ifdef CONFIG_CMA
1622static struct page *__rmqueue_cma_fallback(struct zone *zone,
1623 unsigned int order)
1624{
1625 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1626}
1627#else
1628static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1629 unsigned int order) { return NULL; }
1630#endif
1631
c361be55
MG
1632/*
1633 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1634 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1635 * boundary. If alignment is required, use move_freepages_block()
1636 */
435b405c 1637int move_freepages(struct zone *zone,
b69a7288
AB
1638 struct page *start_page, struct page *end_page,
1639 int migratetype)
c361be55
MG
1640{
1641 struct page *page;
d00181b9 1642 unsigned int order;
d100313f 1643 int pages_moved = 0;
c361be55
MG
1644
1645#ifndef CONFIG_HOLES_IN_ZONE
1646 /*
1647 * page_zone is not safe to call in this context when
1648 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1649 * anyway as we check zone boundaries in move_freepages_block().
1650 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1651 * grouping pages by mobility
c361be55 1652 */
97ee4ba7 1653 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1654#endif
1655
1656 for (page = start_page; page <= end_page;) {
344c790e 1657 /* Make sure we are not inadvertently changing nodes */
309381fe 1658 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1659
c361be55
MG
1660 if (!pfn_valid_within(page_to_pfn(page))) {
1661 page++;
1662 continue;
1663 }
1664
1665 if (!PageBuddy(page)) {
1666 page++;
1667 continue;
1668 }
1669
1670 order = page_order(page);
84be48d8
KS
1671 list_move(&page->lru,
1672 &zone->free_area[order].free_list[migratetype]);
c361be55 1673 page += 1 << order;
d100313f 1674 pages_moved += 1 << order;
c361be55
MG
1675 }
1676
d100313f 1677 return pages_moved;
c361be55
MG
1678}
1679
ee6f509c 1680int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1681 int migratetype)
c361be55
MG
1682{
1683 unsigned long start_pfn, end_pfn;
1684 struct page *start_page, *end_page;
1685
1686 start_pfn = page_to_pfn(page);
d9c23400 1687 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1688 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1689 end_page = start_page + pageblock_nr_pages - 1;
1690 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1691
1692 /* Do not cross zone boundaries */
108bcc96 1693 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1694 start_page = page;
108bcc96 1695 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1696 return 0;
1697
1698 return move_freepages(zone, start_page, end_page, migratetype);
1699}
1700
2f66a68f
MG
1701static void change_pageblock_range(struct page *pageblock_page,
1702 int start_order, int migratetype)
1703{
1704 int nr_pageblocks = 1 << (start_order - pageblock_order);
1705
1706 while (nr_pageblocks--) {
1707 set_pageblock_migratetype(pageblock_page, migratetype);
1708 pageblock_page += pageblock_nr_pages;
1709 }
1710}
1711
fef903ef 1712/*
9c0415eb
VB
1713 * When we are falling back to another migratetype during allocation, try to
1714 * steal extra free pages from the same pageblocks to satisfy further
1715 * allocations, instead of polluting multiple pageblocks.
1716 *
1717 * If we are stealing a relatively large buddy page, it is likely there will
1718 * be more free pages in the pageblock, so try to steal them all. For
1719 * reclaimable and unmovable allocations, we steal regardless of page size,
1720 * as fragmentation caused by those allocations polluting movable pageblocks
1721 * is worse than movable allocations stealing from unmovable and reclaimable
1722 * pageblocks.
fef903ef 1723 */
4eb7dce6
JK
1724static bool can_steal_fallback(unsigned int order, int start_mt)
1725{
1726 /*
1727 * Leaving this order check is intended, although there is
1728 * relaxed order check in next check. The reason is that
1729 * we can actually steal whole pageblock if this condition met,
1730 * but, below check doesn't guarantee it and that is just heuristic
1731 * so could be changed anytime.
1732 */
1733 if (order >= pageblock_order)
1734 return true;
1735
1736 if (order >= pageblock_order / 2 ||
1737 start_mt == MIGRATE_RECLAIMABLE ||
1738 start_mt == MIGRATE_UNMOVABLE ||
1739 page_group_by_mobility_disabled)
1740 return true;
1741
1742 return false;
1743}
1744
1745/*
1746 * This function implements actual steal behaviour. If order is large enough,
1747 * we can steal whole pageblock. If not, we first move freepages in this
1748 * pageblock and check whether half of pages are moved or not. If half of
1749 * pages are moved, we can change migratetype of pageblock and permanently
1750 * use it's pages as requested migratetype in the future.
1751 */
1752static void steal_suitable_fallback(struct zone *zone, struct page *page,
1753 int start_type)
fef903ef 1754{
d00181b9 1755 unsigned int current_order = page_order(page);
4eb7dce6 1756 int pages;
fef903ef 1757
fef903ef
SB
1758 /* Take ownership for orders >= pageblock_order */
1759 if (current_order >= pageblock_order) {
1760 change_pageblock_range(page, current_order, start_type);
3a1086fb 1761 return;
fef903ef
SB
1762 }
1763
4eb7dce6 1764 pages = move_freepages_block(zone, page, start_type);
fef903ef 1765
4eb7dce6
JK
1766 /* Claim the whole block if over half of it is free */
1767 if (pages >= (1 << (pageblock_order-1)) ||
1768 page_group_by_mobility_disabled)
1769 set_pageblock_migratetype(page, start_type);
1770}
1771
2149cdae
JK
1772/*
1773 * Check whether there is a suitable fallback freepage with requested order.
1774 * If only_stealable is true, this function returns fallback_mt only if
1775 * we can steal other freepages all together. This would help to reduce
1776 * fragmentation due to mixed migratetype pages in one pageblock.
1777 */
1778int find_suitable_fallback(struct free_area *area, unsigned int order,
1779 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1780{
1781 int i;
1782 int fallback_mt;
1783
1784 if (area->nr_free == 0)
1785 return -1;
1786
1787 *can_steal = false;
1788 for (i = 0;; i++) {
1789 fallback_mt = fallbacks[migratetype][i];
974a786e 1790 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1791 break;
1792
1793 if (list_empty(&area->free_list[fallback_mt]))
1794 continue;
fef903ef 1795
4eb7dce6
JK
1796 if (can_steal_fallback(order, migratetype))
1797 *can_steal = true;
1798
2149cdae
JK
1799 if (!only_stealable)
1800 return fallback_mt;
1801
1802 if (*can_steal)
1803 return fallback_mt;
fef903ef 1804 }
4eb7dce6
JK
1805
1806 return -1;
fef903ef
SB
1807}
1808
0aaa29a5
MG
1809/*
1810 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1811 * there are no empty page blocks that contain a page with a suitable order
1812 */
1813static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1814 unsigned int alloc_order)
1815{
1816 int mt;
1817 unsigned long max_managed, flags;
1818
1819 /*
1820 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1821 * Check is race-prone but harmless.
1822 */
1823 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1824 if (zone->nr_reserved_highatomic >= max_managed)
1825 return;
1826
1827 spin_lock_irqsave(&zone->lock, flags);
1828
1829 /* Recheck the nr_reserved_highatomic limit under the lock */
1830 if (zone->nr_reserved_highatomic >= max_managed)
1831 goto out_unlock;
1832
1833 /* Yoink! */
1834 mt = get_pageblock_migratetype(page);
1835 if (mt != MIGRATE_HIGHATOMIC &&
1836 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1837 zone->nr_reserved_highatomic += pageblock_nr_pages;
1838 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1839 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1840 }
1841
1842out_unlock:
1843 spin_unlock_irqrestore(&zone->lock, flags);
1844}
1845
1846/*
1847 * Used when an allocation is about to fail under memory pressure. This
1848 * potentially hurts the reliability of high-order allocations when under
1849 * intense memory pressure but failed atomic allocations should be easier
1850 * to recover from than an OOM.
1851 */
1852static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1853{
1854 struct zonelist *zonelist = ac->zonelist;
1855 unsigned long flags;
1856 struct zoneref *z;
1857 struct zone *zone;
1858 struct page *page;
1859 int order;
1860
1861 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1862 ac->nodemask) {
1863 /* Preserve at least one pageblock */
1864 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1865 continue;
1866
1867 spin_lock_irqsave(&zone->lock, flags);
1868 for (order = 0; order < MAX_ORDER; order++) {
1869 struct free_area *area = &(zone->free_area[order]);
1870
a16601c5
GT
1871 page = list_first_entry_or_null(
1872 &area->free_list[MIGRATE_HIGHATOMIC],
1873 struct page, lru);
1874 if (!page)
0aaa29a5
MG
1875 continue;
1876
0aaa29a5
MG
1877 /*
1878 * It should never happen but changes to locking could
1879 * inadvertently allow a per-cpu drain to add pages
1880 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1881 * and watch for underflows.
1882 */
1883 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1884 zone->nr_reserved_highatomic);
1885
1886 /*
1887 * Convert to ac->migratetype and avoid the normal
1888 * pageblock stealing heuristics. Minimally, the caller
1889 * is doing the work and needs the pages. More
1890 * importantly, if the block was always converted to
1891 * MIGRATE_UNMOVABLE or another type then the number
1892 * of pageblocks that cannot be completely freed
1893 * may increase.
1894 */
1895 set_pageblock_migratetype(page, ac->migratetype);
1896 move_freepages_block(zone, page, ac->migratetype);
1897 spin_unlock_irqrestore(&zone->lock, flags);
1898 return;
1899 }
1900 spin_unlock_irqrestore(&zone->lock, flags);
1901 }
1902}
1903
b2a0ac88 1904/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1905static inline struct page *
7aeb09f9 1906__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1907{
b8af2941 1908 struct free_area *area;
7aeb09f9 1909 unsigned int current_order;
b2a0ac88 1910 struct page *page;
4eb7dce6
JK
1911 int fallback_mt;
1912 bool can_steal;
b2a0ac88
MG
1913
1914 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1915 for (current_order = MAX_ORDER-1;
1916 current_order >= order && current_order <= MAX_ORDER-1;
1917 --current_order) {
4eb7dce6
JK
1918 area = &(zone->free_area[current_order]);
1919 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1920 start_migratetype, false, &can_steal);
4eb7dce6
JK
1921 if (fallback_mt == -1)
1922 continue;
b2a0ac88 1923
a16601c5 1924 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1925 struct page, lru);
1926 if (can_steal)
1927 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1928
4eb7dce6
JK
1929 /* Remove the page from the freelists */
1930 area->nr_free--;
1931 list_del(&page->lru);
1932 rmv_page_order(page);
3a1086fb 1933
4eb7dce6
JK
1934 expand(zone, page, order, current_order, area,
1935 start_migratetype);
1936 /*
bb14c2c7 1937 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1938 * migratetype depending on the decisions in
bb14c2c7
VB
1939 * find_suitable_fallback(). This is OK as long as it does not
1940 * differ for MIGRATE_CMA pageblocks. Those can be used as
1941 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1942 */
bb14c2c7 1943 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1944
4eb7dce6
JK
1945 trace_mm_page_alloc_extfrag(page, order, current_order,
1946 start_migratetype, fallback_mt);
e0fff1bd 1947
4eb7dce6 1948 return page;
b2a0ac88
MG
1949 }
1950
728ec980 1951 return NULL;
b2a0ac88
MG
1952}
1953
56fd56b8 1954/*
1da177e4
LT
1955 * Do the hard work of removing an element from the buddy allocator.
1956 * Call me with the zone->lock already held.
1957 */
b2a0ac88 1958static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1959 int migratetype)
1da177e4 1960{
1da177e4
LT
1961 struct page *page;
1962
56fd56b8 1963 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1964 if (unlikely(!page)) {
dc67647b
JK
1965 if (migratetype == MIGRATE_MOVABLE)
1966 page = __rmqueue_cma_fallback(zone, order);
1967
1968 if (!page)
1969 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1970 }
1971
0d3d062a 1972 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1973 return page;
1da177e4
LT
1974}
1975
5f63b720 1976/*
1da177e4
LT
1977 * Obtain a specified number of elements from the buddy allocator, all under
1978 * a single hold of the lock, for efficiency. Add them to the supplied list.
1979 * Returns the number of new pages which were placed at *list.
1980 */
5f63b720 1981static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1982 unsigned long count, struct list_head *list,
b745bc85 1983 int migratetype, bool cold)
1da177e4 1984{
5bcc9f86 1985 int i;
5f63b720 1986
c54ad30c 1987 spin_lock(&zone->lock);
1da177e4 1988 for (i = 0; i < count; ++i) {
6ac0206b 1989 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1990 if (unlikely(page == NULL))
1da177e4 1991 break;
81eabcbe
MG
1992
1993 /*
1994 * Split buddy pages returned by expand() are received here
1995 * in physical page order. The page is added to the callers and
1996 * list and the list head then moves forward. From the callers
1997 * perspective, the linked list is ordered by page number in
1998 * some conditions. This is useful for IO devices that can
1999 * merge IO requests if the physical pages are ordered
2000 * properly.
2001 */
b745bc85 2002 if (likely(!cold))
e084b2d9
MG
2003 list_add(&page->lru, list);
2004 else
2005 list_add_tail(&page->lru, list);
81eabcbe 2006 list = &page->lru;
bb14c2c7 2007 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2008 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2009 -(1 << order));
1da177e4 2010 }
f2260e6b 2011 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2012 spin_unlock(&zone->lock);
085cc7d5 2013 return i;
1da177e4
LT
2014}
2015
4ae7c039 2016#ifdef CONFIG_NUMA
8fce4d8e 2017/*
4037d452
CL
2018 * Called from the vmstat counter updater to drain pagesets of this
2019 * currently executing processor on remote nodes after they have
2020 * expired.
2021 *
879336c3
CL
2022 * Note that this function must be called with the thread pinned to
2023 * a single processor.
8fce4d8e 2024 */
4037d452 2025void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2026{
4ae7c039 2027 unsigned long flags;
7be12fc9 2028 int to_drain, batch;
4ae7c039 2029
4037d452 2030 local_irq_save(flags);
4db0c3c2 2031 batch = READ_ONCE(pcp->batch);
7be12fc9 2032 to_drain = min(pcp->count, batch);
2a13515c
KM
2033 if (to_drain > 0) {
2034 free_pcppages_bulk(zone, to_drain, pcp);
2035 pcp->count -= to_drain;
2036 }
4037d452 2037 local_irq_restore(flags);
4ae7c039
CL
2038}
2039#endif
2040
9f8f2172 2041/*
93481ff0 2042 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2043 *
2044 * The processor must either be the current processor and the
2045 * thread pinned to the current processor or a processor that
2046 * is not online.
2047 */
93481ff0 2048static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2049{
c54ad30c 2050 unsigned long flags;
93481ff0
VB
2051 struct per_cpu_pageset *pset;
2052 struct per_cpu_pages *pcp;
1da177e4 2053
93481ff0
VB
2054 local_irq_save(flags);
2055 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2056
93481ff0
VB
2057 pcp = &pset->pcp;
2058 if (pcp->count) {
2059 free_pcppages_bulk(zone, pcp->count, pcp);
2060 pcp->count = 0;
2061 }
2062 local_irq_restore(flags);
2063}
3dfa5721 2064
93481ff0
VB
2065/*
2066 * Drain pcplists of all zones on the indicated processor.
2067 *
2068 * The processor must either be the current processor and the
2069 * thread pinned to the current processor or a processor that
2070 * is not online.
2071 */
2072static void drain_pages(unsigned int cpu)
2073{
2074 struct zone *zone;
2075
2076 for_each_populated_zone(zone) {
2077 drain_pages_zone(cpu, zone);
1da177e4
LT
2078 }
2079}
1da177e4 2080
9f8f2172
CL
2081/*
2082 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2083 *
2084 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2085 * the single zone's pages.
9f8f2172 2086 */
93481ff0 2087void drain_local_pages(struct zone *zone)
9f8f2172 2088{
93481ff0
VB
2089 int cpu = smp_processor_id();
2090
2091 if (zone)
2092 drain_pages_zone(cpu, zone);
2093 else
2094 drain_pages(cpu);
9f8f2172
CL
2095}
2096
2097/*
74046494
GBY
2098 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2099 *
93481ff0
VB
2100 * When zone parameter is non-NULL, spill just the single zone's pages.
2101 *
74046494
GBY
2102 * Note that this code is protected against sending an IPI to an offline
2103 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2104 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2105 * nothing keeps CPUs from showing up after we populated the cpumask and
2106 * before the call to on_each_cpu_mask().
9f8f2172 2107 */
93481ff0 2108void drain_all_pages(struct zone *zone)
9f8f2172 2109{
74046494 2110 int cpu;
74046494
GBY
2111
2112 /*
2113 * Allocate in the BSS so we wont require allocation in
2114 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2115 */
2116 static cpumask_t cpus_with_pcps;
2117
2118 /*
2119 * We don't care about racing with CPU hotplug event
2120 * as offline notification will cause the notified
2121 * cpu to drain that CPU pcps and on_each_cpu_mask
2122 * disables preemption as part of its processing
2123 */
2124 for_each_online_cpu(cpu) {
93481ff0
VB
2125 struct per_cpu_pageset *pcp;
2126 struct zone *z;
74046494 2127 bool has_pcps = false;
93481ff0
VB
2128
2129 if (zone) {
74046494 2130 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2131 if (pcp->pcp.count)
74046494 2132 has_pcps = true;
93481ff0
VB
2133 } else {
2134 for_each_populated_zone(z) {
2135 pcp = per_cpu_ptr(z->pageset, cpu);
2136 if (pcp->pcp.count) {
2137 has_pcps = true;
2138 break;
2139 }
74046494
GBY
2140 }
2141 }
93481ff0 2142
74046494
GBY
2143 if (has_pcps)
2144 cpumask_set_cpu(cpu, &cpus_with_pcps);
2145 else
2146 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2147 }
93481ff0
VB
2148 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2149 zone, 1);
9f8f2172
CL
2150}
2151
296699de 2152#ifdef CONFIG_HIBERNATION
1da177e4
LT
2153
2154void mark_free_pages(struct zone *zone)
2155{
f623f0db
RW
2156 unsigned long pfn, max_zone_pfn;
2157 unsigned long flags;
7aeb09f9 2158 unsigned int order, t;
86760a2c 2159 struct page *page;
1da177e4 2160
8080fc03 2161 if (zone_is_empty(zone))
1da177e4
LT
2162 return;
2163
2164 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2165
108bcc96 2166 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2167 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2168 if (pfn_valid(pfn)) {
86760a2c 2169 page = pfn_to_page(pfn);
ba6b0979
JK
2170
2171 if (page_zone(page) != zone)
2172 continue;
2173
7be98234
RW
2174 if (!swsusp_page_is_forbidden(page))
2175 swsusp_unset_page_free(page);
f623f0db 2176 }
1da177e4 2177
b2a0ac88 2178 for_each_migratetype_order(order, t) {
86760a2c
GT
2179 list_for_each_entry(page,
2180 &zone->free_area[order].free_list[t], lru) {
f623f0db 2181 unsigned long i;
1da177e4 2182
86760a2c 2183 pfn = page_to_pfn(page);
f623f0db 2184 for (i = 0; i < (1UL << order); i++)
7be98234 2185 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2186 }
b2a0ac88 2187 }
1da177e4
LT
2188 spin_unlock_irqrestore(&zone->lock, flags);
2189}
e2c55dc8 2190#endif /* CONFIG_PM */
1da177e4 2191
1da177e4
LT
2192/*
2193 * Free a 0-order page
b745bc85 2194 * cold == true ? free a cold page : free a hot page
1da177e4 2195 */
b745bc85 2196void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2197{
2198 struct zone *zone = page_zone(page);
2199 struct per_cpu_pages *pcp;
2200 unsigned long flags;
dc4b0caf 2201 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2202 int migratetype;
1da177e4 2203
ec95f53a 2204 if (!free_pages_prepare(page, 0))
689bcebf
HD
2205 return;
2206
dc4b0caf 2207 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2208 set_pcppage_migratetype(page, migratetype);
1da177e4 2209 local_irq_save(flags);
f8891e5e 2210 __count_vm_event(PGFREE);
da456f14 2211
5f8dcc21
MG
2212 /*
2213 * We only track unmovable, reclaimable and movable on pcp lists.
2214 * Free ISOLATE pages back to the allocator because they are being
2215 * offlined but treat RESERVE as movable pages so we can get those
2216 * areas back if necessary. Otherwise, we may have to free
2217 * excessively into the page allocator
2218 */
2219 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2220 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2221 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2222 goto out;
2223 }
2224 migratetype = MIGRATE_MOVABLE;
2225 }
2226
99dcc3e5 2227 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2228 if (!cold)
5f8dcc21 2229 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2230 else
2231 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2232 pcp->count++;
48db57f8 2233 if (pcp->count >= pcp->high) {
4db0c3c2 2234 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2235 free_pcppages_bulk(zone, batch, pcp);
2236 pcp->count -= batch;
48db57f8 2237 }
5f8dcc21
MG
2238
2239out:
1da177e4 2240 local_irq_restore(flags);
1da177e4
LT
2241}
2242
cc59850e
KK
2243/*
2244 * Free a list of 0-order pages
2245 */
b745bc85 2246void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2247{
2248 struct page *page, *next;
2249
2250 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2251 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2252 free_hot_cold_page(page, cold);
2253 }
2254}
2255
8dfcc9ba
NP
2256/*
2257 * split_page takes a non-compound higher-order page, and splits it into
2258 * n (1<<order) sub-pages: page[0..n]
2259 * Each sub-page must be freed individually.
2260 *
2261 * Note: this is probably too low level an operation for use in drivers.
2262 * Please consult with lkml before using this in your driver.
2263 */
2264void split_page(struct page *page, unsigned int order)
2265{
2266 int i;
e2cfc911 2267 gfp_t gfp_mask;
8dfcc9ba 2268
309381fe
SL
2269 VM_BUG_ON_PAGE(PageCompound(page), page);
2270 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2271
2272#ifdef CONFIG_KMEMCHECK
2273 /*
2274 * Split shadow pages too, because free(page[0]) would
2275 * otherwise free the whole shadow.
2276 */
2277 if (kmemcheck_page_is_tracked(page))
2278 split_page(virt_to_page(page[0].shadow), order);
2279#endif
2280
e2cfc911
JK
2281 gfp_mask = get_page_owner_gfp(page);
2282 set_page_owner(page, 0, gfp_mask);
48c96a36 2283 for (i = 1; i < (1 << order); i++) {
7835e98b 2284 set_page_refcounted(page + i);
e2cfc911 2285 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2286 }
8dfcc9ba 2287}
5853ff23 2288EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2289
3c605096 2290int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2291{
748446bb
MG
2292 unsigned long watermark;
2293 struct zone *zone;
2139cbe6 2294 int mt;
748446bb
MG
2295
2296 BUG_ON(!PageBuddy(page));
2297
2298 zone = page_zone(page);
2e30abd1 2299 mt = get_pageblock_migratetype(page);
748446bb 2300
194159fb 2301 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2302 /* Obey watermarks as if the page was being allocated */
2303 watermark = low_wmark_pages(zone) + (1 << order);
2304 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2305 return 0;
2306
8fb74b9f 2307 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2308 }
748446bb
MG
2309
2310 /* Remove page from free list */
2311 list_del(&page->lru);
2312 zone->free_area[order].nr_free--;
2313 rmv_page_order(page);
2139cbe6 2314
e2cfc911 2315 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2316
8fb74b9f 2317 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2318 if (order >= pageblock_order - 1) {
2319 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2320 for (; page < endpage; page += pageblock_nr_pages) {
2321 int mt = get_pageblock_migratetype(page);
194159fb 2322 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2323 set_pageblock_migratetype(page,
2324 MIGRATE_MOVABLE);
2325 }
748446bb
MG
2326 }
2327
f3a14ced 2328
8fb74b9f 2329 return 1UL << order;
1fb3f8ca
MG
2330}
2331
2332/*
2333 * Similar to split_page except the page is already free. As this is only
2334 * being used for migration, the migratetype of the block also changes.
2335 * As this is called with interrupts disabled, the caller is responsible
2336 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2337 * are enabled.
2338 *
2339 * Note: this is probably too low level an operation for use in drivers.
2340 * Please consult with lkml before using this in your driver.
2341 */
2342int split_free_page(struct page *page)
2343{
2344 unsigned int order;
2345 int nr_pages;
2346
1fb3f8ca
MG
2347 order = page_order(page);
2348
8fb74b9f 2349 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2350 if (!nr_pages)
2351 return 0;
2352
2353 /* Split into individual pages */
2354 set_page_refcounted(page);
2355 split_page(page, order);
2356 return nr_pages;
748446bb
MG
2357}
2358
060e7417
MG
2359/*
2360 * Update NUMA hit/miss statistics
2361 *
2362 * Must be called with interrupts disabled.
2363 *
2364 * When __GFP_OTHER_NODE is set assume the node of the preferred
2365 * zone is the local node. This is useful for daemons who allocate
2366 * memory on behalf of other processes.
2367 */
2368static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2369 gfp_t flags)
2370{
2371#ifdef CONFIG_NUMA
2372 int local_nid = numa_node_id();
2373 enum zone_stat_item local_stat = NUMA_LOCAL;
2374
2375 if (unlikely(flags & __GFP_OTHER_NODE)) {
2376 local_stat = NUMA_OTHER;
2377 local_nid = preferred_zone->node;
2378 }
2379
2380 if (z->node == local_nid) {
2381 __inc_zone_state(z, NUMA_HIT);
2382 __inc_zone_state(z, local_stat);
2383 } else {
2384 __inc_zone_state(z, NUMA_MISS);
2385 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2386 }
2387#endif
2388}
2389
1da177e4 2390/*
75379191 2391 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2392 */
0a15c3e9
MG
2393static inline
2394struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2395 struct zone *zone, unsigned int order,
c603844b
MG
2396 gfp_t gfp_flags, unsigned int alloc_flags,
2397 int migratetype)
1da177e4
LT
2398{
2399 unsigned long flags;
689bcebf 2400 struct page *page;
b745bc85 2401 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2402
48db57f8 2403 if (likely(order == 0)) {
1da177e4 2404 struct per_cpu_pages *pcp;
5f8dcc21 2405 struct list_head *list;
1da177e4 2406
1da177e4 2407 local_irq_save(flags);
99dcc3e5
CL
2408 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2409 list = &pcp->lists[migratetype];
5f8dcc21 2410 if (list_empty(list)) {
535131e6 2411 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2412 pcp->batch, list,
e084b2d9 2413 migratetype, cold);
5f8dcc21 2414 if (unlikely(list_empty(list)))
6fb332fa 2415 goto failed;
535131e6 2416 }
b92a6edd 2417
5f8dcc21 2418 if (cold)
a16601c5 2419 page = list_last_entry(list, struct page, lru);
5f8dcc21 2420 else
a16601c5 2421 page = list_first_entry(list, struct page, lru);
5f8dcc21 2422
754078eb 2423 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2424 list_del(&page->lru);
2425 pcp->count--;
7fb1d9fc 2426 } else {
0f352e53
MH
2427 /*
2428 * We most definitely don't want callers attempting to
2429 * allocate greater than order-1 page units with __GFP_NOFAIL.
2430 */
2431 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2432 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2433
2434 page = NULL;
2435 if (alloc_flags & ALLOC_HARDER) {
2436 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2437 if (page)
2438 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2439 }
2440 if (!page)
6ac0206b 2441 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2442 spin_unlock(&zone->lock);
2443 if (!page)
2444 goto failed;
754078eb 2445 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2446 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2447 get_pcppage_migratetype(page));
1da177e4
LT
2448 }
2449
abe5f972 2450 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2451 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2452 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2453
f8891e5e 2454 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2455 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2456 local_irq_restore(flags);
1da177e4 2457
309381fe 2458 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2459 return page;
a74609fa
NP
2460
2461failed:
2462 local_irq_restore(flags);
a74609fa 2463 return NULL;
1da177e4
LT
2464}
2465
933e312e
AM
2466#ifdef CONFIG_FAIL_PAGE_ALLOC
2467
b2588c4b 2468static struct {
933e312e
AM
2469 struct fault_attr attr;
2470
621a5f7a 2471 bool ignore_gfp_highmem;
71baba4b 2472 bool ignore_gfp_reclaim;
54114994 2473 u32 min_order;
933e312e
AM
2474} fail_page_alloc = {
2475 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2476 .ignore_gfp_reclaim = true,
621a5f7a 2477 .ignore_gfp_highmem = true,
54114994 2478 .min_order = 1,
933e312e
AM
2479};
2480
2481static int __init setup_fail_page_alloc(char *str)
2482{
2483 return setup_fault_attr(&fail_page_alloc.attr, str);
2484}
2485__setup("fail_page_alloc=", setup_fail_page_alloc);
2486
deaf386e 2487static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2488{
54114994 2489 if (order < fail_page_alloc.min_order)
deaf386e 2490 return false;
933e312e 2491 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2492 return false;
933e312e 2493 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2494 return false;
71baba4b
MG
2495 if (fail_page_alloc.ignore_gfp_reclaim &&
2496 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2497 return false;
933e312e
AM
2498
2499 return should_fail(&fail_page_alloc.attr, 1 << order);
2500}
2501
2502#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2503
2504static int __init fail_page_alloc_debugfs(void)
2505{
f4ae40a6 2506 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2507 struct dentry *dir;
933e312e 2508
dd48c085
AM
2509 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2510 &fail_page_alloc.attr);
2511 if (IS_ERR(dir))
2512 return PTR_ERR(dir);
933e312e 2513
b2588c4b 2514 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2515 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2516 goto fail;
2517 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2518 &fail_page_alloc.ignore_gfp_highmem))
2519 goto fail;
2520 if (!debugfs_create_u32("min-order", mode, dir,
2521 &fail_page_alloc.min_order))
2522 goto fail;
2523
2524 return 0;
2525fail:
dd48c085 2526 debugfs_remove_recursive(dir);
933e312e 2527
b2588c4b 2528 return -ENOMEM;
933e312e
AM
2529}
2530
2531late_initcall(fail_page_alloc_debugfs);
2532
2533#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2534
2535#else /* CONFIG_FAIL_PAGE_ALLOC */
2536
deaf386e 2537static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2538{
deaf386e 2539 return false;
933e312e
AM
2540}
2541
2542#endif /* CONFIG_FAIL_PAGE_ALLOC */
2543
1da177e4 2544/*
97a16fc8
MG
2545 * Return true if free base pages are above 'mark'. For high-order checks it
2546 * will return true of the order-0 watermark is reached and there is at least
2547 * one free page of a suitable size. Checking now avoids taking the zone lock
2548 * to check in the allocation paths if no pages are free.
1da177e4 2549 */
7aeb09f9 2550static bool __zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
2551 unsigned long mark, int classzone_idx,
2552 unsigned int alloc_flags,
7aeb09f9 2553 long free_pages)
1da177e4 2554{
d23ad423 2555 long min = mark;
1da177e4 2556 int o;
c603844b 2557 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2558
0aaa29a5 2559 /* free_pages may go negative - that's OK */
df0a6daa 2560 free_pages -= (1 << order) - 1;
0aaa29a5 2561
7fb1d9fc 2562 if (alloc_flags & ALLOC_HIGH)
1da177e4 2563 min -= min / 2;
0aaa29a5
MG
2564
2565 /*
2566 * If the caller does not have rights to ALLOC_HARDER then subtract
2567 * the high-atomic reserves. This will over-estimate the size of the
2568 * atomic reserve but it avoids a search.
2569 */
97a16fc8 2570 if (likely(!alloc_harder))
0aaa29a5
MG
2571 free_pages -= z->nr_reserved_highatomic;
2572 else
1da177e4 2573 min -= min / 4;
e2b19197 2574
d95ea5d1
BZ
2575#ifdef CONFIG_CMA
2576 /* If allocation can't use CMA areas don't use free CMA pages */
2577 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2578 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2579#endif
026b0814 2580
97a16fc8
MG
2581 /*
2582 * Check watermarks for an order-0 allocation request. If these
2583 * are not met, then a high-order request also cannot go ahead
2584 * even if a suitable page happened to be free.
2585 */
2586 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2587 return false;
1da177e4 2588
97a16fc8
MG
2589 /* If this is an order-0 request then the watermark is fine */
2590 if (!order)
2591 return true;
2592
2593 /* For a high-order request, check at least one suitable page is free */
2594 for (o = order; o < MAX_ORDER; o++) {
2595 struct free_area *area = &z->free_area[o];
2596 int mt;
2597
2598 if (!area->nr_free)
2599 continue;
2600
2601 if (alloc_harder)
2602 return true;
1da177e4 2603
97a16fc8
MG
2604 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2605 if (!list_empty(&area->free_list[mt]))
2606 return true;
2607 }
2608
2609#ifdef CONFIG_CMA
2610 if ((alloc_flags & ALLOC_CMA) &&
2611 !list_empty(&area->free_list[MIGRATE_CMA])) {
2612 return true;
2613 }
2614#endif
1da177e4 2615 }
97a16fc8 2616 return false;
88f5acf8
MG
2617}
2618
7aeb09f9 2619bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2620 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2621{
2622 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2623 zone_page_state(z, NR_FREE_PAGES));
2624}
2625
7aeb09f9 2626bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2627 unsigned long mark, int classzone_idx)
88f5acf8
MG
2628{
2629 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2630
2631 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2632 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2633
e2b19197 2634 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2635 free_pages);
1da177e4
LT
2636}
2637
9276b1bc 2638#ifdef CONFIG_NUMA
81c0a2bb
JW
2639static bool zone_local(struct zone *local_zone, struct zone *zone)
2640{
fff4068c 2641 return local_zone->node == zone->node;
81c0a2bb
JW
2642}
2643
957f822a
DR
2644static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2645{
5f7a75ac
MG
2646 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2647 RECLAIM_DISTANCE;
957f822a 2648}
9276b1bc 2649#else /* CONFIG_NUMA */
81c0a2bb
JW
2650static bool zone_local(struct zone *local_zone, struct zone *zone)
2651{
2652 return true;
2653}
2654
957f822a
DR
2655static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2656{
2657 return true;
2658}
9276b1bc
PJ
2659#endif /* CONFIG_NUMA */
2660
4ffeaf35
MG
2661static void reset_alloc_batches(struct zone *preferred_zone)
2662{
2663 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2664
2665 do {
2666 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2667 high_wmark_pages(zone) - low_wmark_pages(zone) -
2668 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2669 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2670 } while (zone++ != preferred_zone);
2671}
2672
7fb1d9fc 2673/*
0798e519 2674 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2675 * a page.
2676 */
2677static struct page *
a9263751
VB
2678get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2679 const struct alloc_context *ac)
753ee728 2680{
dd1a239f 2681 struct zoneref *z;
5117f45d 2682 struct zone *zone;
fa379b95 2683 bool fair_skipped;
4ffeaf35 2684 bool zonelist_rescan;
54a6eb5c 2685
9276b1bc 2686zonelist_scan:
4ffeaf35
MG
2687 zonelist_rescan = false;
2688
7fb1d9fc 2689 /*
9276b1bc 2690 * Scan zonelist, looking for a zone with enough free.
344736f2 2691 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2692 */
4dfa6cd8 2693 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2694 ac->nodemask) {
be06af00 2695 struct page *page;
e085dbc5
JW
2696 unsigned long mark;
2697
664eedde
MG
2698 if (cpusets_enabled() &&
2699 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2700 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2701 continue;
81c0a2bb
JW
2702 /*
2703 * Distribute pages in proportion to the individual
2704 * zone size to ensure fair page aging. The zone a
2705 * page was allocated in should have no effect on the
2706 * time the page has in memory before being reclaimed.
81c0a2bb 2707 */
3a025760 2708 if (alloc_flags & ALLOC_FAIR) {
a9263751 2709 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2710 break;
57054651 2711 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2712 fair_skipped = true;
3a025760 2713 continue;
4ffeaf35 2714 }
81c0a2bb 2715 }
a756cf59
JW
2716 /*
2717 * When allocating a page cache page for writing, we
2718 * want to get it from a zone that is within its dirty
2719 * limit, such that no single zone holds more than its
2720 * proportional share of globally allowed dirty pages.
2721 * The dirty limits take into account the zone's
2722 * lowmem reserves and high watermark so that kswapd
2723 * should be able to balance it without having to
2724 * write pages from its LRU list.
2725 *
2726 * This may look like it could increase pressure on
2727 * lower zones by failing allocations in higher zones
2728 * before they are full. But the pages that do spill
2729 * over are limited as the lower zones are protected
2730 * by this very same mechanism. It should not become
2731 * a practical burden to them.
2732 *
2733 * XXX: For now, allow allocations to potentially
2734 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2735 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2736 * which is important when on a NUMA setup the allowed
2737 * zones are together not big enough to reach the
2738 * global limit. The proper fix for these situations
2739 * will require awareness of zones in the
2740 * dirty-throttling and the flusher threads.
2741 */
c9ab0c4f 2742 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2743 continue;
7fb1d9fc 2744
e085dbc5
JW
2745 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2746 if (!zone_watermark_ok(zone, order, mark,
a9263751 2747 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2748 int ret;
2749
5dab2911
MG
2750 /* Checked here to keep the fast path fast */
2751 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2752 if (alloc_flags & ALLOC_NO_WATERMARKS)
2753 goto try_this_zone;
2754
957f822a 2755 if (zone_reclaim_mode == 0 ||
a9263751 2756 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2757 continue;
2758
fa5e084e
MG
2759 ret = zone_reclaim(zone, gfp_mask, order);
2760 switch (ret) {
2761 case ZONE_RECLAIM_NOSCAN:
2762 /* did not scan */
cd38b115 2763 continue;
fa5e084e
MG
2764 case ZONE_RECLAIM_FULL:
2765 /* scanned but unreclaimable */
cd38b115 2766 continue;
fa5e084e
MG
2767 default:
2768 /* did we reclaim enough */
fed2719e 2769 if (zone_watermark_ok(zone, order, mark,
a9263751 2770 ac->classzone_idx, alloc_flags))
fed2719e
MG
2771 goto try_this_zone;
2772
fed2719e 2773 continue;
0798e519 2774 }
7fb1d9fc
RS
2775 }
2776
fa5e084e 2777try_this_zone:
a9263751 2778 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2779 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2780 if (page) {
2781 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2782 goto try_this_zone;
0aaa29a5
MG
2783
2784 /*
2785 * If this is a high-order atomic allocation then check
2786 * if the pageblock should be reserved for the future
2787 */
2788 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2789 reserve_highatomic_pageblock(page, zone, order);
2790
75379191
VB
2791 return page;
2792 }
54a6eb5c 2793 }
9276b1bc 2794
4ffeaf35
MG
2795 /*
2796 * The first pass makes sure allocations are spread fairly within the
2797 * local node. However, the local node might have free pages left
2798 * after the fairness batches are exhausted, and remote zones haven't
2799 * even been considered yet. Try once more without fairness, and
2800 * include remote zones now, before entering the slowpath and waking
2801 * kswapd: prefer spilling to a remote zone over swapping locally.
2802 */
2803 if (alloc_flags & ALLOC_FAIR) {
2804 alloc_flags &= ~ALLOC_FAIR;
fa379b95 2805 if (fair_skipped) {
4ffeaf35 2806 zonelist_rescan = true;
a9263751 2807 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2808 }
2809 if (nr_online_nodes > 1)
2810 zonelist_rescan = true;
2811 }
2812
4ffeaf35
MG
2813 if (zonelist_rescan)
2814 goto zonelist_scan;
2815
2816 return NULL;
753ee728
MH
2817}
2818
29423e77
DR
2819/*
2820 * Large machines with many possible nodes should not always dump per-node
2821 * meminfo in irq context.
2822 */
2823static inline bool should_suppress_show_mem(void)
2824{
2825 bool ret = false;
2826
2827#if NODES_SHIFT > 8
2828 ret = in_interrupt();
2829#endif
2830 return ret;
2831}
2832
a238ab5b
DH
2833static DEFINE_RATELIMIT_STATE(nopage_rs,
2834 DEFAULT_RATELIMIT_INTERVAL,
2835 DEFAULT_RATELIMIT_BURST);
2836
d00181b9 2837void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2838{
a238ab5b
DH
2839 unsigned int filter = SHOW_MEM_FILTER_NODES;
2840
c0a32fc5
SG
2841 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2842 debug_guardpage_minorder() > 0)
a238ab5b
DH
2843 return;
2844
2845 /*
2846 * This documents exceptions given to allocations in certain
2847 * contexts that are allowed to allocate outside current's set
2848 * of allowed nodes.
2849 */
2850 if (!(gfp_mask & __GFP_NOMEMALLOC))
2851 if (test_thread_flag(TIF_MEMDIE) ||
2852 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2853 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2854 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2855 filter &= ~SHOW_MEM_FILTER_NODES;
2856
2857 if (fmt) {
3ee9a4f0
JP
2858 struct va_format vaf;
2859 va_list args;
2860
a238ab5b 2861 va_start(args, fmt);
3ee9a4f0
JP
2862
2863 vaf.fmt = fmt;
2864 vaf.va = &args;
2865
2866 pr_warn("%pV", &vaf);
2867
a238ab5b
DH
2868 va_end(args);
2869 }
2870
c5c990e8
VB
2871 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2872 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2873 dump_stack();
2874 if (!should_suppress_show_mem())
2875 show_mem(filter);
2876}
2877
11e33f6a
MG
2878static inline struct page *
2879__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2880 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2881{
6e0fc46d
DR
2882 struct oom_control oc = {
2883 .zonelist = ac->zonelist,
2884 .nodemask = ac->nodemask,
2885 .gfp_mask = gfp_mask,
2886 .order = order,
6e0fc46d 2887 };
11e33f6a
MG
2888 struct page *page;
2889
9879de73
JW
2890 *did_some_progress = 0;
2891
9879de73 2892 /*
dc56401f
JW
2893 * Acquire the oom lock. If that fails, somebody else is
2894 * making progress for us.
9879de73 2895 */
dc56401f 2896 if (!mutex_trylock(&oom_lock)) {
9879de73 2897 *did_some_progress = 1;
11e33f6a 2898 schedule_timeout_uninterruptible(1);
1da177e4
LT
2899 return NULL;
2900 }
6b1de916 2901
11e33f6a
MG
2902 /*
2903 * Go through the zonelist yet one more time, keep very high watermark
2904 * here, this is only to catch a parallel oom killing, we must fail if
2905 * we're still under heavy pressure.
2906 */
a9263751
VB
2907 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2908 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2909 if (page)
11e33f6a
MG
2910 goto out;
2911
4365a567 2912 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2913 /* Coredumps can quickly deplete all memory reserves */
2914 if (current->flags & PF_DUMPCORE)
2915 goto out;
4365a567
KH
2916 /* The OOM killer will not help higher order allocs */
2917 if (order > PAGE_ALLOC_COSTLY_ORDER)
2918 goto out;
03668b3c 2919 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2920 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2921 goto out;
9083905a
JW
2922 if (pm_suspended_storage())
2923 goto out;
3da88fb3
MH
2924 /*
2925 * XXX: GFP_NOFS allocations should rather fail than rely on
2926 * other request to make a forward progress.
2927 * We are in an unfortunate situation where out_of_memory cannot
2928 * do much for this context but let's try it to at least get
2929 * access to memory reserved if the current task is killed (see
2930 * out_of_memory). Once filesystems are ready to handle allocation
2931 * failures more gracefully we should just bail out here.
2932 */
2933
4167e9b2 2934 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2935 if (gfp_mask & __GFP_THISNODE)
2936 goto out;
2937 }
11e33f6a 2938 /* Exhausted what can be done so it's blamo time */
5020e285 2939 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2940 *did_some_progress = 1;
5020e285
MH
2941
2942 if (gfp_mask & __GFP_NOFAIL) {
2943 page = get_page_from_freelist(gfp_mask, order,
2944 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2945 /*
2946 * fallback to ignore cpuset restriction if our nodes
2947 * are depleted
2948 */
2949 if (!page)
2950 page = get_page_from_freelist(gfp_mask, order,
2951 ALLOC_NO_WATERMARKS, ac);
2952 }
2953 }
11e33f6a 2954out:
dc56401f 2955 mutex_unlock(&oom_lock);
11e33f6a
MG
2956 return page;
2957}
2958
56de7263
MG
2959#ifdef CONFIG_COMPACTION
2960/* Try memory compaction for high-order allocations before reclaim */
2961static struct page *
2962__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 2963 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
2964 enum migrate_mode mode, int *contended_compaction,
2965 bool *deferred_compaction)
56de7263 2966{
53853e2d 2967 unsigned long compact_result;
98dd3b48 2968 struct page *page;
53853e2d
VB
2969
2970 if (!order)
66199712 2971 return NULL;
66199712 2972
c06b1fca 2973 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2974 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2975 mode, contended_compaction);
c06b1fca 2976 current->flags &= ~PF_MEMALLOC;
56de7263 2977
98dd3b48
VB
2978 switch (compact_result) {
2979 case COMPACT_DEFERRED:
53853e2d 2980 *deferred_compaction = true;
98dd3b48
VB
2981 /* fall-through */
2982 case COMPACT_SKIPPED:
2983 return NULL;
2984 default:
2985 break;
2986 }
53853e2d 2987
98dd3b48
VB
2988 /*
2989 * At least in one zone compaction wasn't deferred or skipped, so let's
2990 * count a compaction stall
2991 */
2992 count_vm_event(COMPACTSTALL);
8fb74b9f 2993
a9263751
VB
2994 page = get_page_from_freelist(gfp_mask, order,
2995 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2996
98dd3b48
VB
2997 if (page) {
2998 struct zone *zone = page_zone(page);
53853e2d 2999
98dd3b48
VB
3000 zone->compact_blockskip_flush = false;
3001 compaction_defer_reset(zone, order, true);
3002 count_vm_event(COMPACTSUCCESS);
3003 return page;
3004 }
56de7263 3005
98dd3b48
VB
3006 /*
3007 * It's bad if compaction run occurs and fails. The most likely reason
3008 * is that pages exist, but not enough to satisfy watermarks.
3009 */
3010 count_vm_event(COMPACTFAIL);
66199712 3011
98dd3b48 3012 cond_resched();
56de7263
MG
3013
3014 return NULL;
3015}
3016#else
3017static inline struct page *
3018__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3019 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3020 enum migrate_mode mode, int *contended_compaction,
3021 bool *deferred_compaction)
56de7263
MG
3022{
3023 return NULL;
3024}
3025#endif /* CONFIG_COMPACTION */
3026
bba90710
MS
3027/* Perform direct synchronous page reclaim */
3028static int
a9263751
VB
3029__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3030 const struct alloc_context *ac)
11e33f6a 3031{
11e33f6a 3032 struct reclaim_state reclaim_state;
bba90710 3033 int progress;
11e33f6a
MG
3034
3035 cond_resched();
3036
3037 /* We now go into synchronous reclaim */
3038 cpuset_memory_pressure_bump();
c06b1fca 3039 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3040 lockdep_set_current_reclaim_state(gfp_mask);
3041 reclaim_state.reclaimed_slab = 0;
c06b1fca 3042 current->reclaim_state = &reclaim_state;
11e33f6a 3043
a9263751
VB
3044 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3045 ac->nodemask);
11e33f6a 3046
c06b1fca 3047 current->reclaim_state = NULL;
11e33f6a 3048 lockdep_clear_current_reclaim_state();
c06b1fca 3049 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3050
3051 cond_resched();
3052
bba90710
MS
3053 return progress;
3054}
3055
3056/* The really slow allocator path where we enter direct reclaim */
3057static inline struct page *
3058__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3059 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3060 unsigned long *did_some_progress)
bba90710
MS
3061{
3062 struct page *page = NULL;
3063 bool drained = false;
3064
a9263751 3065 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3066 if (unlikely(!(*did_some_progress)))
3067 return NULL;
11e33f6a 3068
9ee493ce 3069retry:
a9263751
VB
3070 page = get_page_from_freelist(gfp_mask, order,
3071 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3072
3073 /*
3074 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3075 * pages are pinned on the per-cpu lists or in high alloc reserves.
3076 * Shrink them them and try again
9ee493ce
MG
3077 */
3078 if (!page && !drained) {
0aaa29a5 3079 unreserve_highatomic_pageblock(ac);
93481ff0 3080 drain_all_pages(NULL);
9ee493ce
MG
3081 drained = true;
3082 goto retry;
3083 }
3084
11e33f6a
MG
3085 return page;
3086}
3087
a9263751 3088static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3089{
3090 struct zoneref *z;
3091 struct zone *zone;
3092
a9263751
VB
3093 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3094 ac->high_zoneidx, ac->nodemask)
3095 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
3096}
3097
c603844b 3098static inline unsigned int
341ce06f
PZ
3099gfp_to_alloc_flags(gfp_t gfp_mask)
3100{
c603844b 3101 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3102
a56f57ff 3103 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3104 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3105
341ce06f
PZ
3106 /*
3107 * The caller may dip into page reserves a bit more if the caller
3108 * cannot run direct reclaim, or if the caller has realtime scheduling
3109 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3110 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3111 */
e6223a3b 3112 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3113
d0164adc 3114 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3115 /*
b104a35d
DR
3116 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3117 * if it can't schedule.
5c3240d9 3118 */
b104a35d 3119 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3120 alloc_flags |= ALLOC_HARDER;
523b9458 3121 /*
b104a35d 3122 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3123 * comment for __cpuset_node_allowed().
523b9458 3124 */
341ce06f 3125 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3126 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3127 alloc_flags |= ALLOC_HARDER;
3128
b37f1dd0
MG
3129 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3130 if (gfp_mask & __GFP_MEMALLOC)
3131 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3132 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3133 alloc_flags |= ALLOC_NO_WATERMARKS;
3134 else if (!in_interrupt() &&
3135 ((current->flags & PF_MEMALLOC) ||
3136 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3137 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3138 }
d95ea5d1 3139#ifdef CONFIG_CMA
43e7a34d 3140 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3141 alloc_flags |= ALLOC_CMA;
3142#endif
341ce06f
PZ
3143 return alloc_flags;
3144}
3145
072bb0aa
MG
3146bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3147{
b37f1dd0 3148 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3149}
3150
d0164adc
MG
3151static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3152{
3153 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3154}
3155
11e33f6a
MG
3156static inline struct page *
3157__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3158 struct alloc_context *ac)
11e33f6a 3159{
d0164adc 3160 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3161 struct page *page = NULL;
c603844b 3162 unsigned int alloc_flags;
11e33f6a
MG
3163 unsigned long pages_reclaimed = 0;
3164 unsigned long did_some_progress;
e0b9daeb 3165 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3166 bool deferred_compaction = false;
1f9efdef 3167 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3168
72807a74
MG
3169 /*
3170 * In the slowpath, we sanity check order to avoid ever trying to
3171 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3172 * be using allocators in order of preference for an area that is
3173 * too large.
3174 */
1fc28b70
MG
3175 if (order >= MAX_ORDER) {
3176 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3177 return NULL;
1fc28b70 3178 }
1da177e4 3179
d0164adc
MG
3180 /*
3181 * We also sanity check to catch abuse of atomic reserves being used by
3182 * callers that are not in atomic context.
3183 */
3184 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3185 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3186 gfp_mask &= ~__GFP_ATOMIC;
3187
9879de73 3188retry:
d0164adc 3189 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3190 wake_all_kswapds(order, ac);
1da177e4 3191
9bf2229f 3192 /*
7fb1d9fc
RS
3193 * OK, we're below the kswapd watermark and have kicked background
3194 * reclaim. Now things get more complex, so set up alloc_flags according
3195 * to how we want to proceed.
9bf2229f 3196 */
341ce06f 3197 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3198
341ce06f 3199 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3200 page = get_page_from_freelist(gfp_mask, order,
3201 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3202 if (page)
3203 goto got_pg;
1da177e4 3204
11e33f6a 3205 /* Allocate without watermarks if the context allows */
341ce06f 3206 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3207 /*
3208 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3209 * the allocation is high priority and these type of
3210 * allocations are system rather than user orientated
3211 */
a9263751 3212 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3213 page = get_page_from_freelist(gfp_mask, order,
3214 ALLOC_NO_WATERMARKS, ac);
3215 if (page)
3216 goto got_pg;
1da177e4
LT
3217 }
3218
d0164adc
MG
3219 /* Caller is not willing to reclaim, we can't balance anything */
3220 if (!can_direct_reclaim) {
aed0a0e3 3221 /*
33d53103
MH
3222 * All existing users of the __GFP_NOFAIL are blockable, so warn
3223 * of any new users that actually allow this type of allocation
3224 * to fail.
aed0a0e3
DR
3225 */
3226 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3227 goto nopage;
aed0a0e3 3228 }
1da177e4 3229
341ce06f 3230 /* Avoid recursion of direct reclaim */
33d53103
MH
3231 if (current->flags & PF_MEMALLOC) {
3232 /*
3233 * __GFP_NOFAIL request from this context is rather bizarre
3234 * because we cannot reclaim anything and only can loop waiting
3235 * for somebody to do a work for us.
3236 */
3237 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3238 cond_resched();
3239 goto retry;
3240 }
341ce06f 3241 goto nopage;
33d53103 3242 }
341ce06f 3243
6583bb64
DR
3244 /* Avoid allocations with no watermarks from looping endlessly */
3245 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3246 goto nopage;
3247
77f1fe6b
MG
3248 /*
3249 * Try direct compaction. The first pass is asynchronous. Subsequent
3250 * attempts after direct reclaim are synchronous
3251 */
a9263751
VB
3252 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3253 migration_mode,
3254 &contended_compaction,
53853e2d 3255 &deferred_compaction);
56de7263
MG
3256 if (page)
3257 goto got_pg;
75f30861 3258
1f9efdef 3259 /* Checks for THP-specific high-order allocations */
d0164adc 3260 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3261 /*
3262 * If compaction is deferred for high-order allocations, it is
3263 * because sync compaction recently failed. If this is the case
3264 * and the caller requested a THP allocation, we do not want
3265 * to heavily disrupt the system, so we fail the allocation
3266 * instead of entering direct reclaim.
3267 */
3268 if (deferred_compaction)
3269 goto nopage;
3270
3271 /*
3272 * In all zones where compaction was attempted (and not
3273 * deferred or skipped), lock contention has been detected.
3274 * For THP allocation we do not want to disrupt the others
3275 * so we fallback to base pages instead.
3276 */
3277 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3278 goto nopage;
3279
3280 /*
3281 * If compaction was aborted due to need_resched(), we do not
3282 * want to further increase allocation latency, unless it is
3283 * khugepaged trying to collapse.
3284 */
3285 if (contended_compaction == COMPACT_CONTENDED_SCHED
3286 && !(current->flags & PF_KTHREAD))
3287 goto nopage;
3288 }
66199712 3289
8fe78048
DR
3290 /*
3291 * It can become very expensive to allocate transparent hugepages at
3292 * fault, so use asynchronous memory compaction for THP unless it is
3293 * khugepaged trying to collapse.
3294 */
d0164adc 3295 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3296 migration_mode = MIGRATE_SYNC_LIGHT;
3297
11e33f6a 3298 /* Try direct reclaim and then allocating */
a9263751
VB
3299 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3300 &did_some_progress);
11e33f6a
MG
3301 if (page)
3302 goto got_pg;
1da177e4 3303
9083905a
JW
3304 /* Do not loop if specifically requested */
3305 if (gfp_mask & __GFP_NORETRY)
3306 goto noretry;
3307
3308 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3309 pages_reclaimed += did_some_progress;
9083905a
JW
3310 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3311 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3312 /* Wait for some write requests to complete then retry */
a9263751 3313 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3314 goto retry;
1da177e4
LT
3315 }
3316
9083905a
JW
3317 /* Reclaim has failed us, start killing things */
3318 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3319 if (page)
3320 goto got_pg;
3321
3322 /* Retry as long as the OOM killer is making progress */
3323 if (did_some_progress)
3324 goto retry;
3325
3326noretry:
3327 /*
3328 * High-order allocations do not necessarily loop after
3329 * direct reclaim and reclaim/compaction depends on compaction
3330 * being called after reclaim so call directly if necessary
3331 */
3332 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3333 ac, migration_mode,
3334 &contended_compaction,
3335 &deferred_compaction);
3336 if (page)
3337 goto got_pg;
1da177e4 3338nopage:
a238ab5b 3339 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3340got_pg:
072bb0aa 3341 return page;
1da177e4 3342}
11e33f6a
MG
3343
3344/*
3345 * This is the 'heart' of the zoned buddy allocator.
3346 */
3347struct page *
3348__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3349 struct zonelist *zonelist, nodemask_t *nodemask)
3350{
d8846374 3351 struct zoneref *preferred_zoneref;
5bb1b169 3352 struct page *page;
cc9a6c87 3353 unsigned int cpuset_mems_cookie;
c603844b 3354 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3355 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3356 struct alloc_context ac = {
3357 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3358 .zonelist = zonelist,
a9263751
VB
3359 .nodemask = nodemask,
3360 .migratetype = gfpflags_to_migratetype(gfp_mask),
3361 };
11e33f6a 3362
682a3385 3363 if (cpusets_enabled()) {
83d4ca81 3364 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3365 alloc_flags |= ALLOC_CPUSET;
3366 if (!ac.nodemask)
3367 ac.nodemask = &cpuset_current_mems_allowed;
3368 }
3369
dcce284a
BH
3370 gfp_mask &= gfp_allowed_mask;
3371
11e33f6a
MG
3372 lockdep_trace_alloc(gfp_mask);
3373
d0164adc 3374 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3375
3376 if (should_fail_alloc_page(gfp_mask, order))
3377 return NULL;
3378
3379 /*
3380 * Check the zones suitable for the gfp_mask contain at least one
3381 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3382 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3383 */
3384 if (unlikely(!zonelist->_zonerefs->zone))
3385 return NULL;
3386
a9263751 3387 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3388 alloc_flags |= ALLOC_CMA;
3389
cc9a6c87 3390retry_cpuset:
d26914d1 3391 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3392
c9ab0c4f
MG
3393 /* Dirty zone balancing only done in the fast path */
3394 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3395
5117f45d 3396 /* The preferred zone is used for statistics later */
a9263751 3397 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
682a3385 3398 ac.nodemask, &ac.preferred_zone);
5bb1b169
MG
3399 if (!ac.preferred_zone) {
3400 page = NULL;
cc9a6c87 3401 goto out;
5bb1b169
MG
3402 }
3403
a9263751 3404 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3405
3406 /* First allocation attempt */
a9263751 3407 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3408 if (unlikely(!page)) {
3409 /*
3410 * Runtime PM, block IO and its error handling path
3411 * can deadlock because I/O on the device might not
3412 * complete.
3413 */
91fbdc0f 3414 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3415 ac.spread_dirty_pages = false;
91fbdc0f 3416
a9263751 3417 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3418 }
11e33f6a 3419
23f086f9
XQ
3420 if (kmemcheck_enabled && page)
3421 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3422
a9263751 3423 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3424
3425out:
3426 /*
3427 * When updating a task's mems_allowed, it is possible to race with
3428 * parallel threads in such a way that an allocation can fail while
3429 * the mask is being updated. If a page allocation is about to fail,
3430 * check if the cpuset changed during allocation and if so, retry.
3431 */
83d4ca81
MG
3432 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3433 alloc_mask = gfp_mask;
cc9a6c87 3434 goto retry_cpuset;
83d4ca81 3435 }
cc9a6c87 3436
11e33f6a 3437 return page;
1da177e4 3438}
d239171e 3439EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3440
3441/*
3442 * Common helper functions.
3443 */
920c7a5d 3444unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3445{
945a1113
AM
3446 struct page *page;
3447
3448 /*
3449 * __get_free_pages() returns a 32-bit address, which cannot represent
3450 * a highmem page
3451 */
3452 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3453
1da177e4
LT
3454 page = alloc_pages(gfp_mask, order);
3455 if (!page)
3456 return 0;
3457 return (unsigned long) page_address(page);
3458}
1da177e4
LT
3459EXPORT_SYMBOL(__get_free_pages);
3460
920c7a5d 3461unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3462{
945a1113 3463 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3464}
1da177e4
LT
3465EXPORT_SYMBOL(get_zeroed_page);
3466
920c7a5d 3467void __free_pages(struct page *page, unsigned int order)
1da177e4 3468{
b5810039 3469 if (put_page_testzero(page)) {
1da177e4 3470 if (order == 0)
b745bc85 3471 free_hot_cold_page(page, false);
1da177e4
LT
3472 else
3473 __free_pages_ok(page, order);
3474 }
3475}
3476
3477EXPORT_SYMBOL(__free_pages);
3478
920c7a5d 3479void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3480{
3481 if (addr != 0) {
725d704e 3482 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3483 __free_pages(virt_to_page((void *)addr), order);
3484 }
3485}
3486
3487EXPORT_SYMBOL(free_pages);
3488
b63ae8ca
AD
3489/*
3490 * Page Fragment:
3491 * An arbitrary-length arbitrary-offset area of memory which resides
3492 * within a 0 or higher order page. Multiple fragments within that page
3493 * are individually refcounted, in the page's reference counter.
3494 *
3495 * The page_frag functions below provide a simple allocation framework for
3496 * page fragments. This is used by the network stack and network device
3497 * drivers to provide a backing region of memory for use as either an
3498 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3499 */
3500static struct page *__page_frag_refill(struct page_frag_cache *nc,
3501 gfp_t gfp_mask)
3502{
3503 struct page *page = NULL;
3504 gfp_t gfp = gfp_mask;
3505
3506#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3507 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3508 __GFP_NOMEMALLOC;
3509 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3510 PAGE_FRAG_CACHE_MAX_ORDER);
3511 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3512#endif
3513 if (unlikely(!page))
3514 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3515
3516 nc->va = page ? page_address(page) : NULL;
3517
3518 return page;
3519}
3520
3521void *__alloc_page_frag(struct page_frag_cache *nc,
3522 unsigned int fragsz, gfp_t gfp_mask)
3523{
3524 unsigned int size = PAGE_SIZE;
3525 struct page *page;
3526 int offset;
3527
3528 if (unlikely(!nc->va)) {
3529refill:
3530 page = __page_frag_refill(nc, gfp_mask);
3531 if (!page)
3532 return NULL;
3533
3534#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3535 /* if size can vary use size else just use PAGE_SIZE */
3536 size = nc->size;
3537#endif
3538 /* Even if we own the page, we do not use atomic_set().
3539 * This would break get_page_unless_zero() users.
3540 */
fe896d18 3541 page_ref_add(page, size - 1);
b63ae8ca
AD
3542
3543 /* reset page count bias and offset to start of new frag */
2f064f34 3544 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3545 nc->pagecnt_bias = size;
3546 nc->offset = size;
3547 }
3548
3549 offset = nc->offset - fragsz;
3550 if (unlikely(offset < 0)) {
3551 page = virt_to_page(nc->va);
3552
fe896d18 3553 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3554 goto refill;
3555
3556#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3557 /* if size can vary use size else just use PAGE_SIZE */
3558 size = nc->size;
3559#endif
3560 /* OK, page count is 0, we can safely set it */
fe896d18 3561 set_page_count(page, size);
b63ae8ca
AD
3562
3563 /* reset page count bias and offset to start of new frag */
3564 nc->pagecnt_bias = size;
3565 offset = size - fragsz;
3566 }
3567
3568 nc->pagecnt_bias--;
3569 nc->offset = offset;
3570
3571 return nc->va + offset;
3572}
3573EXPORT_SYMBOL(__alloc_page_frag);
3574
3575/*
3576 * Frees a page fragment allocated out of either a compound or order 0 page.
3577 */
3578void __free_page_frag(void *addr)
3579{
3580 struct page *page = virt_to_head_page(addr);
3581
3582 if (unlikely(put_page_testzero(page)))
3583 __free_pages_ok(page, compound_order(page));
3584}
3585EXPORT_SYMBOL(__free_page_frag);
3586
6a1a0d3b 3587/*
52383431 3588 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3589 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3590 * equivalent to alloc_pages.
6a1a0d3b 3591 *
52383431
VD
3592 * It should be used when the caller would like to use kmalloc, but since the
3593 * allocation is large, it has to fall back to the page allocator.
3594 */
3595struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3596{
3597 struct page *page;
52383431 3598
52383431 3599 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3600 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3601 __free_pages(page, order);
3602 page = NULL;
3603 }
52383431
VD
3604 return page;
3605}
3606
3607struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3608{
3609 struct page *page;
52383431 3610
52383431 3611 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3612 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3613 __free_pages(page, order);
3614 page = NULL;
3615 }
52383431
VD
3616 return page;
3617}
3618
3619/*
3620 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3621 * alloc_kmem_pages.
6a1a0d3b 3622 */
52383431 3623void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3624{
d05e83a6 3625 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3626 __free_pages(page, order);
3627}
3628
52383431 3629void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3630{
3631 if (addr != 0) {
3632 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3633 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3634 }
3635}
3636
d00181b9
KS
3637static void *make_alloc_exact(unsigned long addr, unsigned int order,
3638 size_t size)
ee85c2e1
AK
3639{
3640 if (addr) {
3641 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3642 unsigned long used = addr + PAGE_ALIGN(size);
3643
3644 split_page(virt_to_page((void *)addr), order);
3645 while (used < alloc_end) {
3646 free_page(used);
3647 used += PAGE_SIZE;
3648 }
3649 }
3650 return (void *)addr;
3651}
3652
2be0ffe2
TT
3653/**
3654 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3655 * @size: the number of bytes to allocate
3656 * @gfp_mask: GFP flags for the allocation
3657 *
3658 * This function is similar to alloc_pages(), except that it allocates the
3659 * minimum number of pages to satisfy the request. alloc_pages() can only
3660 * allocate memory in power-of-two pages.
3661 *
3662 * This function is also limited by MAX_ORDER.
3663 *
3664 * Memory allocated by this function must be released by free_pages_exact().
3665 */
3666void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3667{
3668 unsigned int order = get_order(size);
3669 unsigned long addr;
3670
3671 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3672 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3673}
3674EXPORT_SYMBOL(alloc_pages_exact);
3675
ee85c2e1
AK
3676/**
3677 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3678 * pages on a node.
b5e6ab58 3679 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3680 * @size: the number of bytes to allocate
3681 * @gfp_mask: GFP flags for the allocation
3682 *
3683 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3684 * back.
ee85c2e1 3685 */
e1931811 3686void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3687{
d00181b9 3688 unsigned int order = get_order(size);
ee85c2e1
AK
3689 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3690 if (!p)
3691 return NULL;
3692 return make_alloc_exact((unsigned long)page_address(p), order, size);
3693}
ee85c2e1 3694
2be0ffe2
TT
3695/**
3696 * free_pages_exact - release memory allocated via alloc_pages_exact()
3697 * @virt: the value returned by alloc_pages_exact.
3698 * @size: size of allocation, same value as passed to alloc_pages_exact().
3699 *
3700 * Release the memory allocated by a previous call to alloc_pages_exact.
3701 */
3702void free_pages_exact(void *virt, size_t size)
3703{
3704 unsigned long addr = (unsigned long)virt;
3705 unsigned long end = addr + PAGE_ALIGN(size);
3706
3707 while (addr < end) {
3708 free_page(addr);
3709 addr += PAGE_SIZE;
3710 }
3711}
3712EXPORT_SYMBOL(free_pages_exact);
3713
e0fb5815
ZY
3714/**
3715 * nr_free_zone_pages - count number of pages beyond high watermark
3716 * @offset: The zone index of the highest zone
3717 *
3718 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3719 * high watermark within all zones at or below a given zone index. For each
3720 * zone, the number of pages is calculated as:
834405c3 3721 * managed_pages - high_pages
e0fb5815 3722 */
ebec3862 3723static unsigned long nr_free_zone_pages(int offset)
1da177e4 3724{
dd1a239f 3725 struct zoneref *z;
54a6eb5c
MG
3726 struct zone *zone;
3727
e310fd43 3728 /* Just pick one node, since fallback list is circular */
ebec3862 3729 unsigned long sum = 0;
1da177e4 3730
0e88460d 3731 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3732
54a6eb5c 3733 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3734 unsigned long size = zone->managed_pages;
41858966 3735 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3736 if (size > high)
3737 sum += size - high;
1da177e4
LT
3738 }
3739
3740 return sum;
3741}
3742
e0fb5815
ZY
3743/**
3744 * nr_free_buffer_pages - count number of pages beyond high watermark
3745 *
3746 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3747 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3748 */
ebec3862 3749unsigned long nr_free_buffer_pages(void)
1da177e4 3750{
af4ca457 3751 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3752}
c2f1a551 3753EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3754
e0fb5815
ZY
3755/**
3756 * nr_free_pagecache_pages - count number of pages beyond high watermark
3757 *
3758 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3759 * high watermark within all zones.
1da177e4 3760 */
ebec3862 3761unsigned long nr_free_pagecache_pages(void)
1da177e4 3762{
2a1e274a 3763 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3764}
08e0f6a9
CL
3765
3766static inline void show_node(struct zone *zone)
1da177e4 3767{
e5adfffc 3768 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3769 printk("Node %d ", zone_to_nid(zone));
1da177e4 3770}
1da177e4 3771
d02bd27b
IR
3772long si_mem_available(void)
3773{
3774 long available;
3775 unsigned long pagecache;
3776 unsigned long wmark_low = 0;
3777 unsigned long pages[NR_LRU_LISTS];
3778 struct zone *zone;
3779 int lru;
3780
3781 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3782 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3783
3784 for_each_zone(zone)
3785 wmark_low += zone->watermark[WMARK_LOW];
3786
3787 /*
3788 * Estimate the amount of memory available for userspace allocations,
3789 * without causing swapping.
3790 */
3791 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3792
3793 /*
3794 * Not all the page cache can be freed, otherwise the system will
3795 * start swapping. Assume at least half of the page cache, or the
3796 * low watermark worth of cache, needs to stay.
3797 */
3798 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3799 pagecache -= min(pagecache / 2, wmark_low);
3800 available += pagecache;
3801
3802 /*
3803 * Part of the reclaimable slab consists of items that are in use,
3804 * and cannot be freed. Cap this estimate at the low watermark.
3805 */
3806 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3807 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3808
3809 if (available < 0)
3810 available = 0;
3811 return available;
3812}
3813EXPORT_SYMBOL_GPL(si_mem_available);
3814
1da177e4
LT
3815void si_meminfo(struct sysinfo *val)
3816{
3817 val->totalram = totalram_pages;
cc7452b6 3818 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3819 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3820 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3821 val->totalhigh = totalhigh_pages;
3822 val->freehigh = nr_free_highpages();
1da177e4
LT
3823 val->mem_unit = PAGE_SIZE;
3824}
3825
3826EXPORT_SYMBOL(si_meminfo);
3827
3828#ifdef CONFIG_NUMA
3829void si_meminfo_node(struct sysinfo *val, int nid)
3830{
cdd91a77
JL
3831 int zone_type; /* needs to be signed */
3832 unsigned long managed_pages = 0;
fc2bd799
JK
3833 unsigned long managed_highpages = 0;
3834 unsigned long free_highpages = 0;
1da177e4
LT
3835 pg_data_t *pgdat = NODE_DATA(nid);
3836
cdd91a77
JL
3837 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3838 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3839 val->totalram = managed_pages;
cc7452b6 3840 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3841 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3842#ifdef CONFIG_HIGHMEM
fc2bd799
JK
3843 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3844 struct zone *zone = &pgdat->node_zones[zone_type];
3845
3846 if (is_highmem(zone)) {
3847 managed_highpages += zone->managed_pages;
3848 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3849 }
3850 }
3851 val->totalhigh = managed_highpages;
3852 val->freehigh = free_highpages;
98d2b0eb 3853#else
fc2bd799
JK
3854 val->totalhigh = managed_highpages;
3855 val->freehigh = free_highpages;
98d2b0eb 3856#endif
1da177e4
LT
3857 val->mem_unit = PAGE_SIZE;
3858}
3859#endif
3860
ddd588b5 3861/*
7bf02ea2
DR
3862 * Determine whether the node should be displayed or not, depending on whether
3863 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3864 */
7bf02ea2 3865bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3866{
3867 bool ret = false;
cc9a6c87 3868 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3869
3870 if (!(flags & SHOW_MEM_FILTER_NODES))
3871 goto out;
3872
cc9a6c87 3873 do {
d26914d1 3874 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3875 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3876 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3877out:
3878 return ret;
3879}
3880
1da177e4
LT
3881#define K(x) ((x) << (PAGE_SHIFT-10))
3882
377e4f16
RV
3883static void show_migration_types(unsigned char type)
3884{
3885 static const char types[MIGRATE_TYPES] = {
3886 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3887 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3888 [MIGRATE_RECLAIMABLE] = 'E',
3889 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3890#ifdef CONFIG_CMA
3891 [MIGRATE_CMA] = 'C',
3892#endif
194159fb 3893#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3894 [MIGRATE_ISOLATE] = 'I',
194159fb 3895#endif
377e4f16
RV
3896 };
3897 char tmp[MIGRATE_TYPES + 1];
3898 char *p = tmp;
3899 int i;
3900
3901 for (i = 0; i < MIGRATE_TYPES; i++) {
3902 if (type & (1 << i))
3903 *p++ = types[i];
3904 }
3905
3906 *p = '\0';
3907 printk("(%s) ", tmp);
3908}
3909
1da177e4
LT
3910/*
3911 * Show free area list (used inside shift_scroll-lock stuff)
3912 * We also calculate the percentage fragmentation. We do this by counting the
3913 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3914 *
3915 * Bits in @filter:
3916 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3917 * cpuset.
1da177e4 3918 */
7bf02ea2 3919void show_free_areas(unsigned int filter)
1da177e4 3920{
d1bfcdb8 3921 unsigned long free_pcp = 0;
c7241913 3922 int cpu;
1da177e4
LT
3923 struct zone *zone;
3924
ee99c71c 3925 for_each_populated_zone(zone) {
7bf02ea2 3926 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3927 continue;
d1bfcdb8 3928
761b0677
KK
3929 for_each_online_cpu(cpu)
3930 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3931 }
3932
a731286d
KM
3933 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3934 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3935 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3936 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3937 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3938 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3939 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3940 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3941 global_page_state(NR_ISOLATED_ANON),
3942 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3943 global_page_state(NR_INACTIVE_FILE),
a731286d 3944 global_page_state(NR_ISOLATED_FILE),
7b854121 3945 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3946 global_page_state(NR_FILE_DIRTY),
ce866b34 3947 global_page_state(NR_WRITEBACK),
fd39fc85 3948 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3949 global_page_state(NR_SLAB_RECLAIMABLE),
3950 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3951 global_page_state(NR_FILE_MAPPED),
4b02108a 3952 global_page_state(NR_SHMEM),
a25700a5 3953 global_page_state(NR_PAGETABLE),
d1ce749a 3954 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3955 global_page_state(NR_FREE_PAGES),
3956 free_pcp,
d1ce749a 3957 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3958
ee99c71c 3959 for_each_populated_zone(zone) {
1da177e4
LT
3960 int i;
3961
7bf02ea2 3962 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3963 continue;
d1bfcdb8
KK
3964
3965 free_pcp = 0;
3966 for_each_online_cpu(cpu)
3967 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3968
1da177e4
LT
3969 show_node(zone);
3970 printk("%s"
3971 " free:%lukB"
3972 " min:%lukB"
3973 " low:%lukB"
3974 " high:%lukB"
4f98a2fe
RR
3975 " active_anon:%lukB"
3976 " inactive_anon:%lukB"
3977 " active_file:%lukB"
3978 " inactive_file:%lukB"
7b854121 3979 " unevictable:%lukB"
a731286d
KM
3980 " isolated(anon):%lukB"
3981 " isolated(file):%lukB"
1da177e4 3982 " present:%lukB"
9feedc9d 3983 " managed:%lukB"
4a0aa73f
KM
3984 " mlocked:%lukB"
3985 " dirty:%lukB"
3986 " writeback:%lukB"
3987 " mapped:%lukB"
4b02108a 3988 " shmem:%lukB"
4a0aa73f
KM
3989 " slab_reclaimable:%lukB"
3990 " slab_unreclaimable:%lukB"
c6a7f572 3991 " kernel_stack:%lukB"
4a0aa73f
KM
3992 " pagetables:%lukB"
3993 " unstable:%lukB"
3994 " bounce:%lukB"
d1bfcdb8
KK
3995 " free_pcp:%lukB"
3996 " local_pcp:%ukB"
d1ce749a 3997 " free_cma:%lukB"
4a0aa73f 3998 " writeback_tmp:%lukB"
1da177e4
LT
3999 " pages_scanned:%lu"
4000 " all_unreclaimable? %s"
4001 "\n",
4002 zone->name,
88f5acf8 4003 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4004 K(min_wmark_pages(zone)),
4005 K(low_wmark_pages(zone)),
4006 K(high_wmark_pages(zone)),
4f98a2fe
RR
4007 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4008 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4009 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4010 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4011 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4012 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4013 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4014 K(zone->present_pages),
9feedc9d 4015 K(zone->managed_pages),
4a0aa73f
KM
4016 K(zone_page_state(zone, NR_MLOCK)),
4017 K(zone_page_state(zone, NR_FILE_DIRTY)),
4018 K(zone_page_state(zone, NR_WRITEBACK)),
4019 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4020 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4021 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4022 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4023 zone_page_state(zone, NR_KERNEL_STACK) *
4024 THREAD_SIZE / 1024,
4a0aa73f
KM
4025 K(zone_page_state(zone, NR_PAGETABLE)),
4026 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4027 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4028 K(free_pcp),
4029 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4030 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4031 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4032 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4033 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4034 );
4035 printk("lowmem_reserve[]:");
4036 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4037 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4038 printk("\n");
4039 }
4040
ee99c71c 4041 for_each_populated_zone(zone) {
d00181b9
KS
4042 unsigned int order;
4043 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4044 unsigned char types[MAX_ORDER];
1da177e4 4045
7bf02ea2 4046 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4047 continue;
1da177e4
LT
4048 show_node(zone);
4049 printk("%s: ", zone->name);
1da177e4
LT
4050
4051 spin_lock_irqsave(&zone->lock, flags);
4052 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4053 struct free_area *area = &zone->free_area[order];
4054 int type;
4055
4056 nr[order] = area->nr_free;
8f9de51a 4057 total += nr[order] << order;
377e4f16
RV
4058
4059 types[order] = 0;
4060 for (type = 0; type < MIGRATE_TYPES; type++) {
4061 if (!list_empty(&area->free_list[type]))
4062 types[order] |= 1 << type;
4063 }
1da177e4
LT
4064 }
4065 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4066 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4067 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4068 if (nr[order])
4069 show_migration_types(types[order]);
4070 }
1da177e4
LT
4071 printk("= %lukB\n", K(total));
4072 }
4073
949f7ec5
DR
4074 hugetlb_show_meminfo();
4075
e6f3602d
LW
4076 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4077
1da177e4
LT
4078 show_swap_cache_info();
4079}
4080
19770b32
MG
4081static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4082{
4083 zoneref->zone = zone;
4084 zoneref->zone_idx = zone_idx(zone);
4085}
4086
1da177e4
LT
4087/*
4088 * Builds allocation fallback zone lists.
1a93205b
CL
4089 *
4090 * Add all populated zones of a node to the zonelist.
1da177e4 4091 */
f0c0b2b8 4092static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4093 int nr_zones)
1da177e4 4094{
1a93205b 4095 struct zone *zone;
bc732f1d 4096 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4097
4098 do {
2f6726e5 4099 zone_type--;
070f8032 4100 zone = pgdat->node_zones + zone_type;
1a93205b 4101 if (populated_zone(zone)) {
dd1a239f
MG
4102 zoneref_set_zone(zone,
4103 &zonelist->_zonerefs[nr_zones++]);
070f8032 4104 check_highest_zone(zone_type);
1da177e4 4105 }
2f6726e5 4106 } while (zone_type);
bc732f1d 4107
070f8032 4108 return nr_zones;
1da177e4
LT
4109}
4110
f0c0b2b8
KH
4111
4112/*
4113 * zonelist_order:
4114 * 0 = automatic detection of better ordering.
4115 * 1 = order by ([node] distance, -zonetype)
4116 * 2 = order by (-zonetype, [node] distance)
4117 *
4118 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4119 * the same zonelist. So only NUMA can configure this param.
4120 */
4121#define ZONELIST_ORDER_DEFAULT 0
4122#define ZONELIST_ORDER_NODE 1
4123#define ZONELIST_ORDER_ZONE 2
4124
4125/* zonelist order in the kernel.
4126 * set_zonelist_order() will set this to NODE or ZONE.
4127 */
4128static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4129static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4130
4131
1da177e4 4132#ifdef CONFIG_NUMA
f0c0b2b8
KH
4133/* The value user specified ....changed by config */
4134static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4135/* string for sysctl */
4136#define NUMA_ZONELIST_ORDER_LEN 16
4137char numa_zonelist_order[16] = "default";
4138
4139/*
4140 * interface for configure zonelist ordering.
4141 * command line option "numa_zonelist_order"
4142 * = "[dD]efault - default, automatic configuration.
4143 * = "[nN]ode - order by node locality, then by zone within node
4144 * = "[zZ]one - order by zone, then by locality within zone
4145 */
4146
4147static int __parse_numa_zonelist_order(char *s)
4148{
4149 if (*s == 'd' || *s == 'D') {
4150 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4151 } else if (*s == 'n' || *s == 'N') {
4152 user_zonelist_order = ZONELIST_ORDER_NODE;
4153 } else if (*s == 'z' || *s == 'Z') {
4154 user_zonelist_order = ZONELIST_ORDER_ZONE;
4155 } else {
1170532b 4156 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4157 return -EINVAL;
4158 }
4159 return 0;
4160}
4161
4162static __init int setup_numa_zonelist_order(char *s)
4163{
ecb256f8
VL
4164 int ret;
4165
4166 if (!s)
4167 return 0;
4168
4169 ret = __parse_numa_zonelist_order(s);
4170 if (ret == 0)
4171 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4172
4173 return ret;
f0c0b2b8
KH
4174}
4175early_param("numa_zonelist_order", setup_numa_zonelist_order);
4176
4177/*
4178 * sysctl handler for numa_zonelist_order
4179 */
cccad5b9 4180int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4181 void __user *buffer, size_t *length,
f0c0b2b8
KH
4182 loff_t *ppos)
4183{
4184 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4185 int ret;
443c6f14 4186 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4187
443c6f14 4188 mutex_lock(&zl_order_mutex);
dacbde09
CG
4189 if (write) {
4190 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4191 ret = -EINVAL;
4192 goto out;
4193 }
4194 strcpy(saved_string, (char *)table->data);
4195 }
8d65af78 4196 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4197 if (ret)
443c6f14 4198 goto out;
f0c0b2b8
KH
4199 if (write) {
4200 int oldval = user_zonelist_order;
dacbde09
CG
4201
4202 ret = __parse_numa_zonelist_order((char *)table->data);
4203 if (ret) {
f0c0b2b8
KH
4204 /*
4205 * bogus value. restore saved string
4206 */
dacbde09 4207 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4208 NUMA_ZONELIST_ORDER_LEN);
4209 user_zonelist_order = oldval;
4eaf3f64
HL
4210 } else if (oldval != user_zonelist_order) {
4211 mutex_lock(&zonelists_mutex);
9adb62a5 4212 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4213 mutex_unlock(&zonelists_mutex);
4214 }
f0c0b2b8 4215 }
443c6f14
AK
4216out:
4217 mutex_unlock(&zl_order_mutex);
4218 return ret;
f0c0b2b8
KH
4219}
4220
4221
62bc62a8 4222#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4223static int node_load[MAX_NUMNODES];
4224
1da177e4 4225/**
4dc3b16b 4226 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4227 * @node: node whose fallback list we're appending
4228 * @used_node_mask: nodemask_t of already used nodes
4229 *
4230 * We use a number of factors to determine which is the next node that should
4231 * appear on a given node's fallback list. The node should not have appeared
4232 * already in @node's fallback list, and it should be the next closest node
4233 * according to the distance array (which contains arbitrary distance values
4234 * from each node to each node in the system), and should also prefer nodes
4235 * with no CPUs, since presumably they'll have very little allocation pressure
4236 * on them otherwise.
4237 * It returns -1 if no node is found.
4238 */
f0c0b2b8 4239static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4240{
4cf808eb 4241 int n, val;
1da177e4 4242 int min_val = INT_MAX;
00ef2d2f 4243 int best_node = NUMA_NO_NODE;
a70f7302 4244 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4245
4cf808eb
LT
4246 /* Use the local node if we haven't already */
4247 if (!node_isset(node, *used_node_mask)) {
4248 node_set(node, *used_node_mask);
4249 return node;
4250 }
1da177e4 4251
4b0ef1fe 4252 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4253
4254 /* Don't want a node to appear more than once */
4255 if (node_isset(n, *used_node_mask))
4256 continue;
4257
1da177e4
LT
4258 /* Use the distance array to find the distance */
4259 val = node_distance(node, n);
4260
4cf808eb
LT
4261 /* Penalize nodes under us ("prefer the next node") */
4262 val += (n < node);
4263
1da177e4 4264 /* Give preference to headless and unused nodes */
a70f7302
RR
4265 tmp = cpumask_of_node(n);
4266 if (!cpumask_empty(tmp))
1da177e4
LT
4267 val += PENALTY_FOR_NODE_WITH_CPUS;
4268
4269 /* Slight preference for less loaded node */
4270 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4271 val += node_load[n];
4272
4273 if (val < min_val) {
4274 min_val = val;
4275 best_node = n;
4276 }
4277 }
4278
4279 if (best_node >= 0)
4280 node_set(best_node, *used_node_mask);
4281
4282 return best_node;
4283}
4284
f0c0b2b8
KH
4285
4286/*
4287 * Build zonelists ordered by node and zones within node.
4288 * This results in maximum locality--normal zone overflows into local
4289 * DMA zone, if any--but risks exhausting DMA zone.
4290 */
4291static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4292{
f0c0b2b8 4293 int j;
1da177e4 4294 struct zonelist *zonelist;
f0c0b2b8 4295
54a6eb5c 4296 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4297 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4298 ;
bc732f1d 4299 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4300 zonelist->_zonerefs[j].zone = NULL;
4301 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4302}
4303
523b9458
CL
4304/*
4305 * Build gfp_thisnode zonelists
4306 */
4307static void build_thisnode_zonelists(pg_data_t *pgdat)
4308{
523b9458
CL
4309 int j;
4310 struct zonelist *zonelist;
4311
54a6eb5c 4312 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4313 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4314 zonelist->_zonerefs[j].zone = NULL;
4315 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4316}
4317
f0c0b2b8
KH
4318/*
4319 * Build zonelists ordered by zone and nodes within zones.
4320 * This results in conserving DMA zone[s] until all Normal memory is
4321 * exhausted, but results in overflowing to remote node while memory
4322 * may still exist in local DMA zone.
4323 */
4324static int node_order[MAX_NUMNODES];
4325
4326static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4327{
f0c0b2b8
KH
4328 int pos, j, node;
4329 int zone_type; /* needs to be signed */
4330 struct zone *z;
4331 struct zonelist *zonelist;
4332
54a6eb5c
MG
4333 zonelist = &pgdat->node_zonelists[0];
4334 pos = 0;
4335 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4336 for (j = 0; j < nr_nodes; j++) {
4337 node = node_order[j];
4338 z = &NODE_DATA(node)->node_zones[zone_type];
4339 if (populated_zone(z)) {
dd1a239f
MG
4340 zoneref_set_zone(z,
4341 &zonelist->_zonerefs[pos++]);
54a6eb5c 4342 check_highest_zone(zone_type);
f0c0b2b8
KH
4343 }
4344 }
f0c0b2b8 4345 }
dd1a239f
MG
4346 zonelist->_zonerefs[pos].zone = NULL;
4347 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4348}
4349
3193913c
MG
4350#if defined(CONFIG_64BIT)
4351/*
4352 * Devices that require DMA32/DMA are relatively rare and do not justify a
4353 * penalty to every machine in case the specialised case applies. Default
4354 * to Node-ordering on 64-bit NUMA machines
4355 */
4356static int default_zonelist_order(void)
4357{
4358 return ZONELIST_ORDER_NODE;
4359}
4360#else
4361/*
4362 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4363 * by the kernel. If processes running on node 0 deplete the low memory zone
4364 * then reclaim will occur more frequency increasing stalls and potentially
4365 * be easier to OOM if a large percentage of the zone is under writeback or
4366 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4367 * Hence, default to zone ordering on 32-bit.
4368 */
f0c0b2b8
KH
4369static int default_zonelist_order(void)
4370{
f0c0b2b8
KH
4371 return ZONELIST_ORDER_ZONE;
4372}
3193913c 4373#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4374
4375static void set_zonelist_order(void)
4376{
4377 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4378 current_zonelist_order = default_zonelist_order();
4379 else
4380 current_zonelist_order = user_zonelist_order;
4381}
4382
4383static void build_zonelists(pg_data_t *pgdat)
4384{
c00eb15a 4385 int i, node, load;
1da177e4 4386 nodemask_t used_mask;
f0c0b2b8
KH
4387 int local_node, prev_node;
4388 struct zonelist *zonelist;
d00181b9 4389 unsigned int order = current_zonelist_order;
1da177e4
LT
4390
4391 /* initialize zonelists */
523b9458 4392 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4393 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4394 zonelist->_zonerefs[0].zone = NULL;
4395 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4396 }
4397
4398 /* NUMA-aware ordering of nodes */
4399 local_node = pgdat->node_id;
62bc62a8 4400 load = nr_online_nodes;
1da177e4
LT
4401 prev_node = local_node;
4402 nodes_clear(used_mask);
f0c0b2b8 4403
f0c0b2b8 4404 memset(node_order, 0, sizeof(node_order));
c00eb15a 4405 i = 0;
f0c0b2b8 4406
1da177e4
LT
4407 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4408 /*
4409 * We don't want to pressure a particular node.
4410 * So adding penalty to the first node in same
4411 * distance group to make it round-robin.
4412 */
957f822a
DR
4413 if (node_distance(local_node, node) !=
4414 node_distance(local_node, prev_node))
f0c0b2b8
KH
4415 node_load[node] = load;
4416
1da177e4
LT
4417 prev_node = node;
4418 load--;
f0c0b2b8
KH
4419 if (order == ZONELIST_ORDER_NODE)
4420 build_zonelists_in_node_order(pgdat, node);
4421 else
c00eb15a 4422 node_order[i++] = node; /* remember order */
f0c0b2b8 4423 }
1da177e4 4424
f0c0b2b8
KH
4425 if (order == ZONELIST_ORDER_ZONE) {
4426 /* calculate node order -- i.e., DMA last! */
c00eb15a 4427 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4428 }
523b9458
CL
4429
4430 build_thisnode_zonelists(pgdat);
1da177e4
LT
4431}
4432
7aac7898
LS
4433#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4434/*
4435 * Return node id of node used for "local" allocations.
4436 * I.e., first node id of first zone in arg node's generic zonelist.
4437 * Used for initializing percpu 'numa_mem', which is used primarily
4438 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4439 */
4440int local_memory_node(int node)
4441{
4442 struct zone *zone;
4443
4444 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4445 gfp_zone(GFP_KERNEL),
4446 NULL,
4447 &zone);
4448 return zone->node;
4449}
4450#endif
f0c0b2b8 4451
1da177e4
LT
4452#else /* CONFIG_NUMA */
4453
f0c0b2b8
KH
4454static void set_zonelist_order(void)
4455{
4456 current_zonelist_order = ZONELIST_ORDER_ZONE;
4457}
4458
4459static void build_zonelists(pg_data_t *pgdat)
1da177e4 4460{
19655d34 4461 int node, local_node;
54a6eb5c
MG
4462 enum zone_type j;
4463 struct zonelist *zonelist;
1da177e4
LT
4464
4465 local_node = pgdat->node_id;
1da177e4 4466
54a6eb5c 4467 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4468 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4469
54a6eb5c
MG
4470 /*
4471 * Now we build the zonelist so that it contains the zones
4472 * of all the other nodes.
4473 * We don't want to pressure a particular node, so when
4474 * building the zones for node N, we make sure that the
4475 * zones coming right after the local ones are those from
4476 * node N+1 (modulo N)
4477 */
4478 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4479 if (!node_online(node))
4480 continue;
bc732f1d 4481 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4482 }
54a6eb5c
MG
4483 for (node = 0; node < local_node; node++) {
4484 if (!node_online(node))
4485 continue;
bc732f1d 4486 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4487 }
4488
dd1a239f
MG
4489 zonelist->_zonerefs[j].zone = NULL;
4490 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4491}
4492
4493#endif /* CONFIG_NUMA */
4494
99dcc3e5
CL
4495/*
4496 * Boot pageset table. One per cpu which is going to be used for all
4497 * zones and all nodes. The parameters will be set in such a way
4498 * that an item put on a list will immediately be handed over to
4499 * the buddy list. This is safe since pageset manipulation is done
4500 * with interrupts disabled.
4501 *
4502 * The boot_pagesets must be kept even after bootup is complete for
4503 * unused processors and/or zones. They do play a role for bootstrapping
4504 * hotplugged processors.
4505 *
4506 * zoneinfo_show() and maybe other functions do
4507 * not check if the processor is online before following the pageset pointer.
4508 * Other parts of the kernel may not check if the zone is available.
4509 */
4510static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4511static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4512static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4513
4eaf3f64
HL
4514/*
4515 * Global mutex to protect against size modification of zonelists
4516 * as well as to serialize pageset setup for the new populated zone.
4517 */
4518DEFINE_MUTEX(zonelists_mutex);
4519
9b1a4d38 4520/* return values int ....just for stop_machine() */
4ed7e022 4521static int __build_all_zonelists(void *data)
1da177e4 4522{
6811378e 4523 int nid;
99dcc3e5 4524 int cpu;
9adb62a5 4525 pg_data_t *self = data;
9276b1bc 4526
7f9cfb31
BL
4527#ifdef CONFIG_NUMA
4528 memset(node_load, 0, sizeof(node_load));
4529#endif
9adb62a5
JL
4530
4531 if (self && !node_online(self->node_id)) {
4532 build_zonelists(self);
9adb62a5
JL
4533 }
4534
9276b1bc 4535 for_each_online_node(nid) {
7ea1530a
CL
4536 pg_data_t *pgdat = NODE_DATA(nid);
4537
4538 build_zonelists(pgdat);
9276b1bc 4539 }
99dcc3e5
CL
4540
4541 /*
4542 * Initialize the boot_pagesets that are going to be used
4543 * for bootstrapping processors. The real pagesets for
4544 * each zone will be allocated later when the per cpu
4545 * allocator is available.
4546 *
4547 * boot_pagesets are used also for bootstrapping offline
4548 * cpus if the system is already booted because the pagesets
4549 * are needed to initialize allocators on a specific cpu too.
4550 * F.e. the percpu allocator needs the page allocator which
4551 * needs the percpu allocator in order to allocate its pagesets
4552 * (a chicken-egg dilemma).
4553 */
7aac7898 4554 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4555 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4556
7aac7898
LS
4557#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4558 /*
4559 * We now know the "local memory node" for each node--
4560 * i.e., the node of the first zone in the generic zonelist.
4561 * Set up numa_mem percpu variable for on-line cpus. During
4562 * boot, only the boot cpu should be on-line; we'll init the
4563 * secondary cpus' numa_mem as they come on-line. During
4564 * node/memory hotplug, we'll fixup all on-line cpus.
4565 */
4566 if (cpu_online(cpu))
4567 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4568#endif
4569 }
4570
6811378e
YG
4571 return 0;
4572}
4573
061f67bc
RV
4574static noinline void __init
4575build_all_zonelists_init(void)
4576{
4577 __build_all_zonelists(NULL);
4578 mminit_verify_zonelist();
4579 cpuset_init_current_mems_allowed();
4580}
4581
4eaf3f64
HL
4582/*
4583 * Called with zonelists_mutex held always
4584 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4585 *
4586 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4587 * [we're only called with non-NULL zone through __meminit paths] and
4588 * (2) call of __init annotated helper build_all_zonelists_init
4589 * [protected by SYSTEM_BOOTING].
4eaf3f64 4590 */
9adb62a5 4591void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4592{
f0c0b2b8
KH
4593 set_zonelist_order();
4594
6811378e 4595 if (system_state == SYSTEM_BOOTING) {
061f67bc 4596 build_all_zonelists_init();
6811378e 4597 } else {
e9959f0f 4598#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4599 if (zone)
4600 setup_zone_pageset(zone);
e9959f0f 4601#endif
dd1895e2
CS
4602 /* we have to stop all cpus to guarantee there is no user
4603 of zonelist */
9adb62a5 4604 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4605 /* cpuset refresh routine should be here */
4606 }
bd1e22b8 4607 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4608 /*
4609 * Disable grouping by mobility if the number of pages in the
4610 * system is too low to allow the mechanism to work. It would be
4611 * more accurate, but expensive to check per-zone. This check is
4612 * made on memory-hotadd so a system can start with mobility
4613 * disabled and enable it later
4614 */
d9c23400 4615 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4616 page_group_by_mobility_disabled = 1;
4617 else
4618 page_group_by_mobility_disabled = 0;
4619
756a025f
JP
4620 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4621 nr_online_nodes,
4622 zonelist_order_name[current_zonelist_order],
4623 page_group_by_mobility_disabled ? "off" : "on",
4624 vm_total_pages);
f0c0b2b8 4625#ifdef CONFIG_NUMA
f88dfff5 4626 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4627#endif
1da177e4
LT
4628}
4629
4630/*
4631 * Helper functions to size the waitqueue hash table.
4632 * Essentially these want to choose hash table sizes sufficiently
4633 * large so that collisions trying to wait on pages are rare.
4634 * But in fact, the number of active page waitqueues on typical
4635 * systems is ridiculously low, less than 200. So this is even
4636 * conservative, even though it seems large.
4637 *
4638 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4639 * waitqueues, i.e. the size of the waitq table given the number of pages.
4640 */
4641#define PAGES_PER_WAITQUEUE 256
4642
cca448fe 4643#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4644static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4645{
4646 unsigned long size = 1;
4647
4648 pages /= PAGES_PER_WAITQUEUE;
4649
4650 while (size < pages)
4651 size <<= 1;
4652
4653 /*
4654 * Once we have dozens or even hundreds of threads sleeping
4655 * on IO we've got bigger problems than wait queue collision.
4656 * Limit the size of the wait table to a reasonable size.
4657 */
4658 size = min(size, 4096UL);
4659
4660 return max(size, 4UL);
4661}
cca448fe
YG
4662#else
4663/*
4664 * A zone's size might be changed by hot-add, so it is not possible to determine
4665 * a suitable size for its wait_table. So we use the maximum size now.
4666 *
4667 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4668 *
4669 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4670 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4671 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4672 *
4673 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4674 * or more by the traditional way. (See above). It equals:
4675 *
4676 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4677 * ia64(16K page size) : = ( 8G + 4M)byte.
4678 * powerpc (64K page size) : = (32G +16M)byte.
4679 */
4680static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4681{
4682 return 4096UL;
4683}
4684#endif
1da177e4
LT
4685
4686/*
4687 * This is an integer logarithm so that shifts can be used later
4688 * to extract the more random high bits from the multiplicative
4689 * hash function before the remainder is taken.
4690 */
4691static inline unsigned long wait_table_bits(unsigned long size)
4692{
4693 return ffz(~size);
4694}
4695
1da177e4
LT
4696/*
4697 * Initially all pages are reserved - free ones are freed
4698 * up by free_all_bootmem() once the early boot process is
4699 * done. Non-atomic initialization, single-pass.
4700 */
c09b4240 4701void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4702 unsigned long start_pfn, enum memmap_context context)
1da177e4 4703{
4b94ffdc 4704 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4705 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4706 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4707 unsigned long pfn;
3a80a7fa 4708 unsigned long nr_initialised = 0;
342332e6
TI
4709#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4710 struct memblock_region *r = NULL, *tmp;
4711#endif
1da177e4 4712
22b31eec
HD
4713 if (highest_memmap_pfn < end_pfn - 1)
4714 highest_memmap_pfn = end_pfn - 1;
4715
4b94ffdc
DW
4716 /*
4717 * Honor reservation requested by the driver for this ZONE_DEVICE
4718 * memory
4719 */
4720 if (altmap && start_pfn == altmap->base_pfn)
4721 start_pfn += altmap->reserve;
4722
cbe8dd4a 4723 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4724 /*
b72d0ffb
AM
4725 * There can be holes in boot-time mem_map[]s handed to this
4726 * function. They do not exist on hotplugged memory.
a2f3aa02 4727 */
b72d0ffb
AM
4728 if (context != MEMMAP_EARLY)
4729 goto not_early;
4730
4731 if (!early_pfn_valid(pfn))
4732 continue;
4733 if (!early_pfn_in_nid(pfn, nid))
4734 continue;
4735 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4736 break;
342332e6
TI
4737
4738#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4739 /*
4740 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4741 * from zone_movable_pfn[nid] to end of each node should be
4742 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4743 */
4744 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4745 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4746 continue;
342332e6 4747
b72d0ffb
AM
4748 /*
4749 * Check given memblock attribute by firmware which can affect
4750 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4751 * mirrored, it's an overlapped memmap init. skip it.
4752 */
4753 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4754 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4755 for_each_memblock(memory, tmp)
4756 if (pfn < memblock_region_memory_end_pfn(tmp))
4757 break;
4758 r = tmp;
4759 }
4760 if (pfn >= memblock_region_memory_base_pfn(r) &&
4761 memblock_is_mirror(r)) {
4762 /* already initialized as NORMAL */
4763 pfn = memblock_region_memory_end_pfn(r);
4764 continue;
342332e6 4765 }
a2f3aa02 4766 }
b72d0ffb 4767#endif
ac5d2539 4768
b72d0ffb 4769not_early:
ac5d2539
MG
4770 /*
4771 * Mark the block movable so that blocks are reserved for
4772 * movable at startup. This will force kernel allocations
4773 * to reserve their blocks rather than leaking throughout
4774 * the address space during boot when many long-lived
974a786e 4775 * kernel allocations are made.
ac5d2539
MG
4776 *
4777 * bitmap is created for zone's valid pfn range. but memmap
4778 * can be created for invalid pages (for alignment)
4779 * check here not to call set_pageblock_migratetype() against
4780 * pfn out of zone.
4781 */
4782 if (!(pfn & (pageblock_nr_pages - 1))) {
4783 struct page *page = pfn_to_page(pfn);
4784
4785 __init_single_page(page, pfn, zone, nid);
4786 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4787 } else {
4788 __init_single_pfn(pfn, zone, nid);
4789 }
1da177e4
LT
4790 }
4791}
4792
1e548deb 4793static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4794{
7aeb09f9 4795 unsigned int order, t;
b2a0ac88
MG
4796 for_each_migratetype_order(order, t) {
4797 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4798 zone->free_area[order].nr_free = 0;
4799 }
4800}
4801
4802#ifndef __HAVE_ARCH_MEMMAP_INIT
4803#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4804 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4805#endif
4806
7cd2b0a3 4807static int zone_batchsize(struct zone *zone)
e7c8d5c9 4808{
3a6be87f 4809#ifdef CONFIG_MMU
e7c8d5c9
CL
4810 int batch;
4811
4812 /*
4813 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4814 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4815 *
4816 * OK, so we don't know how big the cache is. So guess.
4817 */
b40da049 4818 batch = zone->managed_pages / 1024;
ba56e91c
SR
4819 if (batch * PAGE_SIZE > 512 * 1024)
4820 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4821 batch /= 4; /* We effectively *= 4 below */
4822 if (batch < 1)
4823 batch = 1;
4824
4825 /*
0ceaacc9
NP
4826 * Clamp the batch to a 2^n - 1 value. Having a power
4827 * of 2 value was found to be more likely to have
4828 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4829 *
0ceaacc9
NP
4830 * For example if 2 tasks are alternately allocating
4831 * batches of pages, one task can end up with a lot
4832 * of pages of one half of the possible page colors
4833 * and the other with pages of the other colors.
e7c8d5c9 4834 */
9155203a 4835 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4836
e7c8d5c9 4837 return batch;
3a6be87f
DH
4838
4839#else
4840 /* The deferral and batching of frees should be suppressed under NOMMU
4841 * conditions.
4842 *
4843 * The problem is that NOMMU needs to be able to allocate large chunks
4844 * of contiguous memory as there's no hardware page translation to
4845 * assemble apparent contiguous memory from discontiguous pages.
4846 *
4847 * Queueing large contiguous runs of pages for batching, however,
4848 * causes the pages to actually be freed in smaller chunks. As there
4849 * can be a significant delay between the individual batches being
4850 * recycled, this leads to the once large chunks of space being
4851 * fragmented and becoming unavailable for high-order allocations.
4852 */
4853 return 0;
4854#endif
e7c8d5c9
CL
4855}
4856
8d7a8fa9
CS
4857/*
4858 * pcp->high and pcp->batch values are related and dependent on one another:
4859 * ->batch must never be higher then ->high.
4860 * The following function updates them in a safe manner without read side
4861 * locking.
4862 *
4863 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4864 * those fields changing asynchronously (acording the the above rule).
4865 *
4866 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4867 * outside of boot time (or some other assurance that no concurrent updaters
4868 * exist).
4869 */
4870static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4871 unsigned long batch)
4872{
4873 /* start with a fail safe value for batch */
4874 pcp->batch = 1;
4875 smp_wmb();
4876
4877 /* Update high, then batch, in order */
4878 pcp->high = high;
4879 smp_wmb();
4880
4881 pcp->batch = batch;
4882}
4883
3664033c 4884/* a companion to pageset_set_high() */
4008bab7
CS
4885static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4886{
8d7a8fa9 4887 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4888}
4889
88c90dbc 4890static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4891{
4892 struct per_cpu_pages *pcp;
5f8dcc21 4893 int migratetype;
2caaad41 4894
1c6fe946
MD
4895 memset(p, 0, sizeof(*p));
4896
3dfa5721 4897 pcp = &p->pcp;
2caaad41 4898 pcp->count = 0;
5f8dcc21
MG
4899 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4900 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4901}
4902
88c90dbc
CS
4903static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4904{
4905 pageset_init(p);
4906 pageset_set_batch(p, batch);
4907}
4908
8ad4b1fb 4909/*
3664033c 4910 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4911 * to the value high for the pageset p.
4912 */
3664033c 4913static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4914 unsigned long high)
4915{
8d7a8fa9
CS
4916 unsigned long batch = max(1UL, high / 4);
4917 if ((high / 4) > (PAGE_SHIFT * 8))
4918 batch = PAGE_SHIFT * 8;
8ad4b1fb 4919
8d7a8fa9 4920 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4921}
4922
7cd2b0a3
DR
4923static void pageset_set_high_and_batch(struct zone *zone,
4924 struct per_cpu_pageset *pcp)
56cef2b8 4925{
56cef2b8 4926 if (percpu_pagelist_fraction)
3664033c 4927 pageset_set_high(pcp,
56cef2b8
CS
4928 (zone->managed_pages /
4929 percpu_pagelist_fraction));
4930 else
4931 pageset_set_batch(pcp, zone_batchsize(zone));
4932}
4933
169f6c19
CS
4934static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4935{
4936 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4937
4938 pageset_init(pcp);
4939 pageset_set_high_and_batch(zone, pcp);
4940}
4941
4ed7e022 4942static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4943{
4944 int cpu;
319774e2 4945 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4946 for_each_possible_cpu(cpu)
4947 zone_pageset_init(zone, cpu);
319774e2
WF
4948}
4949
2caaad41 4950/*
99dcc3e5
CL
4951 * Allocate per cpu pagesets and initialize them.
4952 * Before this call only boot pagesets were available.
e7c8d5c9 4953 */
99dcc3e5 4954void __init setup_per_cpu_pageset(void)
e7c8d5c9 4955{
99dcc3e5 4956 struct zone *zone;
e7c8d5c9 4957
319774e2
WF
4958 for_each_populated_zone(zone)
4959 setup_zone_pageset(zone);
e7c8d5c9
CL
4960}
4961
577a32f6 4962static noinline __init_refok
cca448fe 4963int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4964{
4965 int i;
cca448fe 4966 size_t alloc_size;
ed8ece2e
DH
4967
4968 /*
4969 * The per-page waitqueue mechanism uses hashed waitqueues
4970 * per zone.
4971 */
02b694de
YG
4972 zone->wait_table_hash_nr_entries =
4973 wait_table_hash_nr_entries(zone_size_pages);
4974 zone->wait_table_bits =
4975 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4976 alloc_size = zone->wait_table_hash_nr_entries
4977 * sizeof(wait_queue_head_t);
4978
cd94b9db 4979 if (!slab_is_available()) {
cca448fe 4980 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4981 memblock_virt_alloc_node_nopanic(
4982 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4983 } else {
4984 /*
4985 * This case means that a zone whose size was 0 gets new memory
4986 * via memory hot-add.
4987 * But it may be the case that a new node was hot-added. In
4988 * this case vmalloc() will not be able to use this new node's
4989 * memory - this wait_table must be initialized to use this new
4990 * node itself as well.
4991 * To use this new node's memory, further consideration will be
4992 * necessary.
4993 */
8691f3a7 4994 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4995 }
4996 if (!zone->wait_table)
4997 return -ENOMEM;
ed8ece2e 4998
b8af2941 4999 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5000 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5001
5002 return 0;
ed8ece2e
DH
5003}
5004
c09b4240 5005static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5006{
99dcc3e5
CL
5007 /*
5008 * per cpu subsystem is not up at this point. The following code
5009 * relies on the ability of the linker to provide the
5010 * offset of a (static) per cpu variable into the per cpu area.
5011 */
5012 zone->pageset = &boot_pageset;
ed8ece2e 5013
b38a8725 5014 if (populated_zone(zone))
99dcc3e5
CL
5015 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5016 zone->name, zone->present_pages,
5017 zone_batchsize(zone));
ed8ece2e
DH
5018}
5019
4ed7e022 5020int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5021 unsigned long zone_start_pfn,
b171e409 5022 unsigned long size)
ed8ece2e
DH
5023{
5024 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5025 int ret;
5026 ret = zone_wait_table_init(zone, size);
5027 if (ret)
5028 return ret;
ed8ece2e
DH
5029 pgdat->nr_zones = zone_idx(zone) + 1;
5030
ed8ece2e
DH
5031 zone->zone_start_pfn = zone_start_pfn;
5032
708614e6
MG
5033 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5034 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5035 pgdat->node_id,
5036 (unsigned long)zone_idx(zone),
5037 zone_start_pfn, (zone_start_pfn + size));
5038
1e548deb 5039 zone_init_free_lists(zone);
718127cc
YG
5040
5041 return 0;
ed8ece2e
DH
5042}
5043
0ee332c1 5044#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5045#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5046
c713216d
MG
5047/*
5048 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5049 */
8a942fde
MG
5050int __meminit __early_pfn_to_nid(unsigned long pfn,
5051 struct mminit_pfnnid_cache *state)
c713216d 5052{
c13291a5 5053 unsigned long start_pfn, end_pfn;
e76b63f8 5054 int nid;
7c243c71 5055
8a942fde
MG
5056 if (state->last_start <= pfn && pfn < state->last_end)
5057 return state->last_nid;
c713216d 5058
e76b63f8
YL
5059 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5060 if (nid != -1) {
8a942fde
MG
5061 state->last_start = start_pfn;
5062 state->last_end = end_pfn;
5063 state->last_nid = nid;
e76b63f8
YL
5064 }
5065
5066 return nid;
c713216d
MG
5067}
5068#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5069
c713216d 5070/**
6782832e 5071 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5072 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5073 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5074 *
7d018176
ZZ
5075 * If an architecture guarantees that all ranges registered contain no holes
5076 * and may be freed, this this function may be used instead of calling
5077 * memblock_free_early_nid() manually.
c713216d 5078 */
c13291a5 5079void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5080{
c13291a5
TH
5081 unsigned long start_pfn, end_pfn;
5082 int i, this_nid;
edbe7d23 5083
c13291a5
TH
5084 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5085 start_pfn = min(start_pfn, max_low_pfn);
5086 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5087
c13291a5 5088 if (start_pfn < end_pfn)
6782832e
SS
5089 memblock_free_early_nid(PFN_PHYS(start_pfn),
5090 (end_pfn - start_pfn) << PAGE_SHIFT,
5091 this_nid);
edbe7d23 5092 }
edbe7d23 5093}
edbe7d23 5094
c713216d
MG
5095/**
5096 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5097 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5098 *
7d018176
ZZ
5099 * If an architecture guarantees that all ranges registered contain no holes and may
5100 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5101 */
5102void __init sparse_memory_present_with_active_regions(int nid)
5103{
c13291a5
TH
5104 unsigned long start_pfn, end_pfn;
5105 int i, this_nid;
c713216d 5106
c13291a5
TH
5107 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5108 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5109}
5110
5111/**
5112 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5113 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5114 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5115 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5116 *
5117 * It returns the start and end page frame of a node based on information
7d018176 5118 * provided by memblock_set_node(). If called for a node
c713216d 5119 * with no available memory, a warning is printed and the start and end
88ca3b94 5120 * PFNs will be 0.
c713216d 5121 */
a3142c8e 5122void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5123 unsigned long *start_pfn, unsigned long *end_pfn)
5124{
c13291a5 5125 unsigned long this_start_pfn, this_end_pfn;
c713216d 5126 int i;
c13291a5 5127
c713216d
MG
5128 *start_pfn = -1UL;
5129 *end_pfn = 0;
5130
c13291a5
TH
5131 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5132 *start_pfn = min(*start_pfn, this_start_pfn);
5133 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5134 }
5135
633c0666 5136 if (*start_pfn == -1UL)
c713216d 5137 *start_pfn = 0;
c713216d
MG
5138}
5139
2a1e274a
MG
5140/*
5141 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5142 * assumption is made that zones within a node are ordered in monotonic
5143 * increasing memory addresses so that the "highest" populated zone is used
5144 */
b69a7288 5145static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5146{
5147 int zone_index;
5148 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5149 if (zone_index == ZONE_MOVABLE)
5150 continue;
5151
5152 if (arch_zone_highest_possible_pfn[zone_index] >
5153 arch_zone_lowest_possible_pfn[zone_index])
5154 break;
5155 }
5156
5157 VM_BUG_ON(zone_index == -1);
5158 movable_zone = zone_index;
5159}
5160
5161/*
5162 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5163 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5164 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5165 * in each node depending on the size of each node and how evenly kernelcore
5166 * is distributed. This helper function adjusts the zone ranges
5167 * provided by the architecture for a given node by using the end of the
5168 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5169 * zones within a node are in order of monotonic increases memory addresses
5170 */
b69a7288 5171static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5172 unsigned long zone_type,
5173 unsigned long node_start_pfn,
5174 unsigned long node_end_pfn,
5175 unsigned long *zone_start_pfn,
5176 unsigned long *zone_end_pfn)
5177{
5178 /* Only adjust if ZONE_MOVABLE is on this node */
5179 if (zone_movable_pfn[nid]) {
5180 /* Size ZONE_MOVABLE */
5181 if (zone_type == ZONE_MOVABLE) {
5182 *zone_start_pfn = zone_movable_pfn[nid];
5183 *zone_end_pfn = min(node_end_pfn,
5184 arch_zone_highest_possible_pfn[movable_zone]);
5185
2a1e274a
MG
5186 /* Check if this whole range is within ZONE_MOVABLE */
5187 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5188 *zone_start_pfn = *zone_end_pfn;
5189 }
5190}
5191
c713216d
MG
5192/*
5193 * Return the number of pages a zone spans in a node, including holes
5194 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5195 */
6ea6e688 5196static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5197 unsigned long zone_type,
7960aedd
ZY
5198 unsigned long node_start_pfn,
5199 unsigned long node_end_pfn,
d91749c1
TI
5200 unsigned long *zone_start_pfn,
5201 unsigned long *zone_end_pfn,
c713216d
MG
5202 unsigned long *ignored)
5203{
b5685e92 5204 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5205 if (!node_start_pfn && !node_end_pfn)
5206 return 0;
5207
7960aedd 5208 /* Get the start and end of the zone */
d91749c1
TI
5209 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5210 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5211 adjust_zone_range_for_zone_movable(nid, zone_type,
5212 node_start_pfn, node_end_pfn,
d91749c1 5213 zone_start_pfn, zone_end_pfn);
c713216d
MG
5214
5215 /* Check that this node has pages within the zone's required range */
d91749c1 5216 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5217 return 0;
5218
5219 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5220 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5221 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5222
5223 /* Return the spanned pages */
d91749c1 5224 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5225}
5226
5227/*
5228 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5229 * then all holes in the requested range will be accounted for.
c713216d 5230 */
32996250 5231unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5232 unsigned long range_start_pfn,
5233 unsigned long range_end_pfn)
5234{
96e907d1
TH
5235 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5236 unsigned long start_pfn, end_pfn;
5237 int i;
c713216d 5238
96e907d1
TH
5239 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5240 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5241 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5242 nr_absent -= end_pfn - start_pfn;
c713216d 5243 }
96e907d1 5244 return nr_absent;
c713216d
MG
5245}
5246
5247/**
5248 * absent_pages_in_range - Return number of page frames in holes within a range
5249 * @start_pfn: The start PFN to start searching for holes
5250 * @end_pfn: The end PFN to stop searching for holes
5251 *
88ca3b94 5252 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5253 */
5254unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5255 unsigned long end_pfn)
5256{
5257 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5258}
5259
5260/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5261static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5262 unsigned long zone_type,
7960aedd
ZY
5263 unsigned long node_start_pfn,
5264 unsigned long node_end_pfn,
c713216d
MG
5265 unsigned long *ignored)
5266{
96e907d1
TH
5267 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5268 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5269 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5270 unsigned long nr_absent;
9c7cd687 5271
b5685e92 5272 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5273 if (!node_start_pfn && !node_end_pfn)
5274 return 0;
5275
96e907d1
TH
5276 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5277 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5278
2a1e274a
MG
5279 adjust_zone_range_for_zone_movable(nid, zone_type,
5280 node_start_pfn, node_end_pfn,
5281 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5282 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5283
5284 /*
5285 * ZONE_MOVABLE handling.
5286 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5287 * and vice versa.
5288 */
5289 if (zone_movable_pfn[nid]) {
5290 if (mirrored_kernelcore) {
5291 unsigned long start_pfn, end_pfn;
5292 struct memblock_region *r;
5293
5294 for_each_memblock(memory, r) {
5295 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5296 zone_start_pfn, zone_end_pfn);
5297 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5298 zone_start_pfn, zone_end_pfn);
5299
5300 if (zone_type == ZONE_MOVABLE &&
5301 memblock_is_mirror(r))
5302 nr_absent += end_pfn - start_pfn;
5303
5304 if (zone_type == ZONE_NORMAL &&
5305 !memblock_is_mirror(r))
5306 nr_absent += end_pfn - start_pfn;
5307 }
5308 } else {
5309 if (zone_type == ZONE_NORMAL)
5310 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5311 }
5312 }
5313
5314 return nr_absent;
c713216d 5315}
0e0b864e 5316
0ee332c1 5317#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5318static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5319 unsigned long zone_type,
7960aedd
ZY
5320 unsigned long node_start_pfn,
5321 unsigned long node_end_pfn,
d91749c1
TI
5322 unsigned long *zone_start_pfn,
5323 unsigned long *zone_end_pfn,
c713216d
MG
5324 unsigned long *zones_size)
5325{
d91749c1
TI
5326 unsigned int zone;
5327
5328 *zone_start_pfn = node_start_pfn;
5329 for (zone = 0; zone < zone_type; zone++)
5330 *zone_start_pfn += zones_size[zone];
5331
5332 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5333
c713216d
MG
5334 return zones_size[zone_type];
5335}
5336
6ea6e688 5337static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5338 unsigned long zone_type,
7960aedd
ZY
5339 unsigned long node_start_pfn,
5340 unsigned long node_end_pfn,
c713216d
MG
5341 unsigned long *zholes_size)
5342{
5343 if (!zholes_size)
5344 return 0;
5345
5346 return zholes_size[zone_type];
5347}
20e6926d 5348
0ee332c1 5349#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5350
a3142c8e 5351static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5352 unsigned long node_start_pfn,
5353 unsigned long node_end_pfn,
5354 unsigned long *zones_size,
5355 unsigned long *zholes_size)
c713216d 5356{
febd5949 5357 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5358 enum zone_type i;
5359
febd5949
GZ
5360 for (i = 0; i < MAX_NR_ZONES; i++) {
5361 struct zone *zone = pgdat->node_zones + i;
d91749c1 5362 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5363 unsigned long size, real_size;
c713216d 5364
febd5949
GZ
5365 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5366 node_start_pfn,
5367 node_end_pfn,
d91749c1
TI
5368 &zone_start_pfn,
5369 &zone_end_pfn,
febd5949
GZ
5370 zones_size);
5371 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5372 node_start_pfn, node_end_pfn,
5373 zholes_size);
d91749c1
TI
5374 if (size)
5375 zone->zone_start_pfn = zone_start_pfn;
5376 else
5377 zone->zone_start_pfn = 0;
febd5949
GZ
5378 zone->spanned_pages = size;
5379 zone->present_pages = real_size;
5380
5381 totalpages += size;
5382 realtotalpages += real_size;
5383 }
5384
5385 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5386 pgdat->node_present_pages = realtotalpages;
5387 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5388 realtotalpages);
5389}
5390
835c134e
MG
5391#ifndef CONFIG_SPARSEMEM
5392/*
5393 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5394 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5395 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5396 * round what is now in bits to nearest long in bits, then return it in
5397 * bytes.
5398 */
7c45512d 5399static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5400{
5401 unsigned long usemapsize;
5402
7c45512d 5403 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5404 usemapsize = roundup(zonesize, pageblock_nr_pages);
5405 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5406 usemapsize *= NR_PAGEBLOCK_BITS;
5407 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5408
5409 return usemapsize / 8;
5410}
5411
5412static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5413 struct zone *zone,
5414 unsigned long zone_start_pfn,
5415 unsigned long zonesize)
835c134e 5416{
7c45512d 5417 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5418 zone->pageblock_flags = NULL;
58a01a45 5419 if (usemapsize)
6782832e
SS
5420 zone->pageblock_flags =
5421 memblock_virt_alloc_node_nopanic(usemapsize,
5422 pgdat->node_id);
835c134e
MG
5423}
5424#else
7c45512d
LT
5425static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5426 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5427#endif /* CONFIG_SPARSEMEM */
5428
d9c23400 5429#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5430
d9c23400 5431/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5432void __paginginit set_pageblock_order(void)
d9c23400 5433{
955c1cd7
AM
5434 unsigned int order;
5435
d9c23400
MG
5436 /* Check that pageblock_nr_pages has not already been setup */
5437 if (pageblock_order)
5438 return;
5439
955c1cd7
AM
5440 if (HPAGE_SHIFT > PAGE_SHIFT)
5441 order = HUGETLB_PAGE_ORDER;
5442 else
5443 order = MAX_ORDER - 1;
5444
d9c23400
MG
5445 /*
5446 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5447 * This value may be variable depending on boot parameters on IA64 and
5448 * powerpc.
d9c23400
MG
5449 */
5450 pageblock_order = order;
5451}
5452#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5453
ba72cb8c
MG
5454/*
5455 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5456 * is unused as pageblock_order is set at compile-time. See
5457 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5458 * the kernel config
ba72cb8c 5459 */
15ca220e 5460void __paginginit set_pageblock_order(void)
ba72cb8c 5461{
ba72cb8c 5462}
d9c23400
MG
5463
5464#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5465
01cefaef
JL
5466static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5467 unsigned long present_pages)
5468{
5469 unsigned long pages = spanned_pages;
5470
5471 /*
5472 * Provide a more accurate estimation if there are holes within
5473 * the zone and SPARSEMEM is in use. If there are holes within the
5474 * zone, each populated memory region may cost us one or two extra
5475 * memmap pages due to alignment because memmap pages for each
5476 * populated regions may not naturally algined on page boundary.
5477 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5478 */
5479 if (spanned_pages > present_pages + (present_pages >> 4) &&
5480 IS_ENABLED(CONFIG_SPARSEMEM))
5481 pages = present_pages;
5482
5483 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5484}
5485
1da177e4
LT
5486/*
5487 * Set up the zone data structures:
5488 * - mark all pages reserved
5489 * - mark all memory queues empty
5490 * - clear the memory bitmaps
6527af5d
MK
5491 *
5492 * NOTE: pgdat should get zeroed by caller.
1da177e4 5493 */
7f3eb55b 5494static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5495{
2f1b6248 5496 enum zone_type j;
ed8ece2e 5497 int nid = pgdat->node_id;
718127cc 5498 int ret;
1da177e4 5499
208d54e5 5500 pgdat_resize_init(pgdat);
8177a420
AA
5501#ifdef CONFIG_NUMA_BALANCING
5502 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5503 pgdat->numabalancing_migrate_nr_pages = 0;
5504 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5505#endif
5506#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5507 spin_lock_init(&pgdat->split_queue_lock);
5508 INIT_LIST_HEAD(&pgdat->split_queue);
5509 pgdat->split_queue_len = 0;
8177a420 5510#endif
1da177e4 5511 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5512 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5513#ifdef CONFIG_COMPACTION
5514 init_waitqueue_head(&pgdat->kcompactd_wait);
5515#endif
eefa864b 5516 pgdat_page_ext_init(pgdat);
5f63b720 5517
1da177e4
LT
5518 for (j = 0; j < MAX_NR_ZONES; j++) {
5519 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5520 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5521 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5522
febd5949
GZ
5523 size = zone->spanned_pages;
5524 realsize = freesize = zone->present_pages;
1da177e4 5525
0e0b864e 5526 /*
9feedc9d 5527 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5528 * is used by this zone for memmap. This affects the watermark
5529 * and per-cpu initialisations
5530 */
01cefaef 5531 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5532 if (!is_highmem_idx(j)) {
5533 if (freesize >= memmap_pages) {
5534 freesize -= memmap_pages;
5535 if (memmap_pages)
5536 printk(KERN_DEBUG
5537 " %s zone: %lu pages used for memmap\n",
5538 zone_names[j], memmap_pages);
5539 } else
1170532b 5540 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5541 zone_names[j], memmap_pages, freesize);
5542 }
0e0b864e 5543
6267276f 5544 /* Account for reserved pages */
9feedc9d
JL
5545 if (j == 0 && freesize > dma_reserve) {
5546 freesize -= dma_reserve;
d903ef9f 5547 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5548 zone_names[0], dma_reserve);
0e0b864e
MG
5549 }
5550
98d2b0eb 5551 if (!is_highmem_idx(j))
9feedc9d 5552 nr_kernel_pages += freesize;
01cefaef
JL
5553 /* Charge for highmem memmap if there are enough kernel pages */
5554 else if (nr_kernel_pages > memmap_pages * 2)
5555 nr_kernel_pages -= memmap_pages;
9feedc9d 5556 nr_all_pages += freesize;
1da177e4 5557
9feedc9d
JL
5558 /*
5559 * Set an approximate value for lowmem here, it will be adjusted
5560 * when the bootmem allocator frees pages into the buddy system.
5561 * And all highmem pages will be managed by the buddy system.
5562 */
5563 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5564#ifdef CONFIG_NUMA
d5f541ed 5565 zone->node = nid;
9feedc9d 5566 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5567 / 100;
9feedc9d 5568 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5569#endif
1da177e4
LT
5570 zone->name = zone_names[j];
5571 spin_lock_init(&zone->lock);
5572 spin_lock_init(&zone->lru_lock);
bdc8cb98 5573 zone_seqlock_init(zone);
1da177e4 5574 zone->zone_pgdat = pgdat;
ed8ece2e 5575 zone_pcp_init(zone);
81c0a2bb
JW
5576
5577 /* For bootup, initialized properly in watermark setup */
5578 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5579
bea8c150 5580 lruvec_init(&zone->lruvec);
1da177e4
LT
5581 if (!size)
5582 continue;
5583
955c1cd7 5584 set_pageblock_order();
7c45512d 5585 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5586 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5587 BUG_ON(ret);
76cdd58e 5588 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5589 }
5590}
5591
577a32f6 5592static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5593{
b0aeba74 5594 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5595 unsigned long __maybe_unused offset = 0;
5596
1da177e4
LT
5597 /* Skip empty nodes */
5598 if (!pgdat->node_spanned_pages)
5599 return;
5600
d41dee36 5601#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5602 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5603 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5604 /* ia64 gets its own node_mem_map, before this, without bootmem */
5605 if (!pgdat->node_mem_map) {
b0aeba74 5606 unsigned long size, end;
d41dee36
AW
5607 struct page *map;
5608
e984bb43
BP
5609 /*
5610 * The zone's endpoints aren't required to be MAX_ORDER
5611 * aligned but the node_mem_map endpoints must be in order
5612 * for the buddy allocator to function correctly.
5613 */
108bcc96 5614 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5615 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5616 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5617 map = alloc_remap(pgdat->node_id, size);
5618 if (!map)
6782832e
SS
5619 map = memblock_virt_alloc_node_nopanic(size,
5620 pgdat->node_id);
a1c34a3b 5621 pgdat->node_mem_map = map + offset;
1da177e4 5622 }
12d810c1 5623#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5624 /*
5625 * With no DISCONTIG, the global mem_map is just set as node 0's
5626 */
c713216d 5627 if (pgdat == NODE_DATA(0)) {
1da177e4 5628 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5629#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5630 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5631 mem_map -= offset;
0ee332c1 5632#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5633 }
1da177e4 5634#endif
d41dee36 5635#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5636}
5637
9109fb7b
JW
5638void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5639 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5640{
9109fb7b 5641 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5642 unsigned long start_pfn = 0;
5643 unsigned long end_pfn = 0;
9109fb7b 5644
88fdf75d 5645 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5646 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5647
3a80a7fa 5648 reset_deferred_meminit(pgdat);
1da177e4
LT
5649 pgdat->node_id = nid;
5650 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5651#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5652 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5653 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5654 (u64)start_pfn << PAGE_SHIFT,
5655 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5656#else
5657 start_pfn = node_start_pfn;
7960aedd
ZY
5658#endif
5659 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5660 zones_size, zholes_size);
1da177e4
LT
5661
5662 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5663#ifdef CONFIG_FLAT_NODE_MEM_MAP
5664 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5665 nid, (unsigned long)pgdat,
5666 (unsigned long)pgdat->node_mem_map);
5667#endif
1da177e4 5668
7f3eb55b 5669 free_area_init_core(pgdat);
1da177e4
LT
5670}
5671
0ee332c1 5672#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5673
5674#if MAX_NUMNODES > 1
5675/*
5676 * Figure out the number of possible node ids.
5677 */
f9872caf 5678void __init setup_nr_node_ids(void)
418508c1 5679{
904a9553 5680 unsigned int highest;
418508c1 5681
904a9553 5682 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5683 nr_node_ids = highest + 1;
5684}
418508c1
MS
5685#endif
5686
1e01979c
TH
5687/**
5688 * node_map_pfn_alignment - determine the maximum internode alignment
5689 *
5690 * This function should be called after node map is populated and sorted.
5691 * It calculates the maximum power of two alignment which can distinguish
5692 * all the nodes.
5693 *
5694 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5695 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5696 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5697 * shifted, 1GiB is enough and this function will indicate so.
5698 *
5699 * This is used to test whether pfn -> nid mapping of the chosen memory
5700 * model has fine enough granularity to avoid incorrect mapping for the
5701 * populated node map.
5702 *
5703 * Returns the determined alignment in pfn's. 0 if there is no alignment
5704 * requirement (single node).
5705 */
5706unsigned long __init node_map_pfn_alignment(void)
5707{
5708 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5709 unsigned long start, end, mask;
1e01979c 5710 int last_nid = -1;
c13291a5 5711 int i, nid;
1e01979c 5712
c13291a5 5713 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5714 if (!start || last_nid < 0 || last_nid == nid) {
5715 last_nid = nid;
5716 last_end = end;
5717 continue;
5718 }
5719
5720 /*
5721 * Start with a mask granular enough to pin-point to the
5722 * start pfn and tick off bits one-by-one until it becomes
5723 * too coarse to separate the current node from the last.
5724 */
5725 mask = ~((1 << __ffs(start)) - 1);
5726 while (mask && last_end <= (start & (mask << 1)))
5727 mask <<= 1;
5728
5729 /* accumulate all internode masks */
5730 accl_mask |= mask;
5731 }
5732
5733 /* convert mask to number of pages */
5734 return ~accl_mask + 1;
5735}
5736
a6af2bc3 5737/* Find the lowest pfn for a node */
b69a7288 5738static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5739{
a6af2bc3 5740 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5741 unsigned long start_pfn;
5742 int i;
1abbfb41 5743
c13291a5
TH
5744 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5745 min_pfn = min(min_pfn, start_pfn);
c713216d 5746
a6af2bc3 5747 if (min_pfn == ULONG_MAX) {
1170532b 5748 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5749 return 0;
5750 }
5751
5752 return min_pfn;
c713216d
MG
5753}
5754
5755/**
5756 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5757 *
5758 * It returns the minimum PFN based on information provided via
7d018176 5759 * memblock_set_node().
c713216d
MG
5760 */
5761unsigned long __init find_min_pfn_with_active_regions(void)
5762{
5763 return find_min_pfn_for_node(MAX_NUMNODES);
5764}
5765
37b07e41
LS
5766/*
5767 * early_calculate_totalpages()
5768 * Sum pages in active regions for movable zone.
4b0ef1fe 5769 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5770 */
484f51f8 5771static unsigned long __init early_calculate_totalpages(void)
7e63efef 5772{
7e63efef 5773 unsigned long totalpages = 0;
c13291a5
TH
5774 unsigned long start_pfn, end_pfn;
5775 int i, nid;
5776
5777 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5778 unsigned long pages = end_pfn - start_pfn;
7e63efef 5779
37b07e41
LS
5780 totalpages += pages;
5781 if (pages)
4b0ef1fe 5782 node_set_state(nid, N_MEMORY);
37b07e41 5783 }
b8af2941 5784 return totalpages;
7e63efef
MG
5785}
5786
2a1e274a
MG
5787/*
5788 * Find the PFN the Movable zone begins in each node. Kernel memory
5789 * is spread evenly between nodes as long as the nodes have enough
5790 * memory. When they don't, some nodes will have more kernelcore than
5791 * others
5792 */
b224ef85 5793static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5794{
5795 int i, nid;
5796 unsigned long usable_startpfn;
5797 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5798 /* save the state before borrow the nodemask */
4b0ef1fe 5799 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5800 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5801 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5802 struct memblock_region *r;
b2f3eebe
TC
5803
5804 /* Need to find movable_zone earlier when movable_node is specified. */
5805 find_usable_zone_for_movable();
5806
5807 /*
5808 * If movable_node is specified, ignore kernelcore and movablecore
5809 * options.
5810 */
5811 if (movable_node_is_enabled()) {
136199f0
EM
5812 for_each_memblock(memory, r) {
5813 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5814 continue;
5815
136199f0 5816 nid = r->nid;
b2f3eebe 5817
136199f0 5818 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5819 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5820 min(usable_startpfn, zone_movable_pfn[nid]) :
5821 usable_startpfn;
5822 }
5823
5824 goto out2;
5825 }
2a1e274a 5826
342332e6
TI
5827 /*
5828 * If kernelcore=mirror is specified, ignore movablecore option
5829 */
5830 if (mirrored_kernelcore) {
5831 bool mem_below_4gb_not_mirrored = false;
5832
5833 for_each_memblock(memory, r) {
5834 if (memblock_is_mirror(r))
5835 continue;
5836
5837 nid = r->nid;
5838
5839 usable_startpfn = memblock_region_memory_base_pfn(r);
5840
5841 if (usable_startpfn < 0x100000) {
5842 mem_below_4gb_not_mirrored = true;
5843 continue;
5844 }
5845
5846 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5847 min(usable_startpfn, zone_movable_pfn[nid]) :
5848 usable_startpfn;
5849 }
5850
5851 if (mem_below_4gb_not_mirrored)
5852 pr_warn("This configuration results in unmirrored kernel memory.");
5853
5854 goto out2;
5855 }
5856
7e63efef 5857 /*
b2f3eebe 5858 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5859 * kernelcore that corresponds so that memory usable for
5860 * any allocation type is evenly spread. If both kernelcore
5861 * and movablecore are specified, then the value of kernelcore
5862 * will be used for required_kernelcore if it's greater than
5863 * what movablecore would have allowed.
5864 */
5865 if (required_movablecore) {
7e63efef
MG
5866 unsigned long corepages;
5867
5868 /*
5869 * Round-up so that ZONE_MOVABLE is at least as large as what
5870 * was requested by the user
5871 */
5872 required_movablecore =
5873 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5874 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5875 corepages = totalpages - required_movablecore;
5876
5877 required_kernelcore = max(required_kernelcore, corepages);
5878 }
5879
bde304bd
XQ
5880 /*
5881 * If kernelcore was not specified or kernelcore size is larger
5882 * than totalpages, there is no ZONE_MOVABLE.
5883 */
5884 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5885 goto out;
2a1e274a
MG
5886
5887 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5888 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5889
5890restart:
5891 /* Spread kernelcore memory as evenly as possible throughout nodes */
5892 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5893 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5894 unsigned long start_pfn, end_pfn;
5895
2a1e274a
MG
5896 /*
5897 * Recalculate kernelcore_node if the division per node
5898 * now exceeds what is necessary to satisfy the requested
5899 * amount of memory for the kernel
5900 */
5901 if (required_kernelcore < kernelcore_node)
5902 kernelcore_node = required_kernelcore / usable_nodes;
5903
5904 /*
5905 * As the map is walked, we track how much memory is usable
5906 * by the kernel using kernelcore_remaining. When it is
5907 * 0, the rest of the node is usable by ZONE_MOVABLE
5908 */
5909 kernelcore_remaining = kernelcore_node;
5910
5911 /* Go through each range of PFNs within this node */
c13291a5 5912 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5913 unsigned long size_pages;
5914
c13291a5 5915 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5916 if (start_pfn >= end_pfn)
5917 continue;
5918
5919 /* Account for what is only usable for kernelcore */
5920 if (start_pfn < usable_startpfn) {
5921 unsigned long kernel_pages;
5922 kernel_pages = min(end_pfn, usable_startpfn)
5923 - start_pfn;
5924
5925 kernelcore_remaining -= min(kernel_pages,
5926 kernelcore_remaining);
5927 required_kernelcore -= min(kernel_pages,
5928 required_kernelcore);
5929
5930 /* Continue if range is now fully accounted */
5931 if (end_pfn <= usable_startpfn) {
5932
5933 /*
5934 * Push zone_movable_pfn to the end so
5935 * that if we have to rebalance
5936 * kernelcore across nodes, we will
5937 * not double account here
5938 */
5939 zone_movable_pfn[nid] = end_pfn;
5940 continue;
5941 }
5942 start_pfn = usable_startpfn;
5943 }
5944
5945 /*
5946 * The usable PFN range for ZONE_MOVABLE is from
5947 * start_pfn->end_pfn. Calculate size_pages as the
5948 * number of pages used as kernelcore
5949 */
5950 size_pages = end_pfn - start_pfn;
5951 if (size_pages > kernelcore_remaining)
5952 size_pages = kernelcore_remaining;
5953 zone_movable_pfn[nid] = start_pfn + size_pages;
5954
5955 /*
5956 * Some kernelcore has been met, update counts and
5957 * break if the kernelcore for this node has been
b8af2941 5958 * satisfied
2a1e274a
MG
5959 */
5960 required_kernelcore -= min(required_kernelcore,
5961 size_pages);
5962 kernelcore_remaining -= size_pages;
5963 if (!kernelcore_remaining)
5964 break;
5965 }
5966 }
5967
5968 /*
5969 * If there is still required_kernelcore, we do another pass with one
5970 * less node in the count. This will push zone_movable_pfn[nid] further
5971 * along on the nodes that still have memory until kernelcore is
b8af2941 5972 * satisfied
2a1e274a
MG
5973 */
5974 usable_nodes--;
5975 if (usable_nodes && required_kernelcore > usable_nodes)
5976 goto restart;
5977
b2f3eebe 5978out2:
2a1e274a
MG
5979 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5980 for (nid = 0; nid < MAX_NUMNODES; nid++)
5981 zone_movable_pfn[nid] =
5982 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5983
20e6926d 5984out:
66918dcd 5985 /* restore the node_state */
4b0ef1fe 5986 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5987}
5988
4b0ef1fe
LJ
5989/* Any regular or high memory on that node ? */
5990static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5991{
37b07e41
LS
5992 enum zone_type zone_type;
5993
4b0ef1fe
LJ
5994 if (N_MEMORY == N_NORMAL_MEMORY)
5995 return;
5996
5997 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5998 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5999 if (populated_zone(zone)) {
4b0ef1fe
LJ
6000 node_set_state(nid, N_HIGH_MEMORY);
6001 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6002 zone_type <= ZONE_NORMAL)
6003 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6004 break;
6005 }
37b07e41 6006 }
37b07e41
LS
6007}
6008
c713216d
MG
6009/**
6010 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6011 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6012 *
6013 * This will call free_area_init_node() for each active node in the system.
7d018176 6014 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6015 * zone in each node and their holes is calculated. If the maximum PFN
6016 * between two adjacent zones match, it is assumed that the zone is empty.
6017 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6018 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6019 * starts where the previous one ended. For example, ZONE_DMA32 starts
6020 * at arch_max_dma_pfn.
6021 */
6022void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6023{
c13291a5
TH
6024 unsigned long start_pfn, end_pfn;
6025 int i, nid;
a6af2bc3 6026
c713216d
MG
6027 /* Record where the zone boundaries are */
6028 memset(arch_zone_lowest_possible_pfn, 0,
6029 sizeof(arch_zone_lowest_possible_pfn));
6030 memset(arch_zone_highest_possible_pfn, 0,
6031 sizeof(arch_zone_highest_possible_pfn));
6032 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6033 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6034 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6035 if (i == ZONE_MOVABLE)
6036 continue;
c713216d
MG
6037 arch_zone_lowest_possible_pfn[i] =
6038 arch_zone_highest_possible_pfn[i-1];
6039 arch_zone_highest_possible_pfn[i] =
6040 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6041 }
2a1e274a
MG
6042 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6043 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6044
6045 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6046 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6047 find_zone_movable_pfns_for_nodes();
c713216d 6048
c713216d 6049 /* Print out the zone ranges */
f88dfff5 6050 pr_info("Zone ranges:\n");
2a1e274a
MG
6051 for (i = 0; i < MAX_NR_ZONES; i++) {
6052 if (i == ZONE_MOVABLE)
6053 continue;
f88dfff5 6054 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6055 if (arch_zone_lowest_possible_pfn[i] ==
6056 arch_zone_highest_possible_pfn[i])
f88dfff5 6057 pr_cont("empty\n");
72f0ba02 6058 else
8d29e18a
JG
6059 pr_cont("[mem %#018Lx-%#018Lx]\n",
6060 (u64)arch_zone_lowest_possible_pfn[i]
6061 << PAGE_SHIFT,
6062 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6063 << PAGE_SHIFT) - 1);
2a1e274a
MG
6064 }
6065
6066 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6067 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6068 for (i = 0; i < MAX_NUMNODES; i++) {
6069 if (zone_movable_pfn[i])
8d29e18a
JG
6070 pr_info(" Node %d: %#018Lx\n", i,
6071 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6072 }
c713216d 6073
f2d52fe5 6074 /* Print out the early node map */
f88dfff5 6075 pr_info("Early memory node ranges\n");
c13291a5 6076 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6077 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6078 (u64)start_pfn << PAGE_SHIFT,
6079 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6080
6081 /* Initialise every node */
708614e6 6082 mminit_verify_pageflags_layout();
8ef82866 6083 setup_nr_node_ids();
c713216d
MG
6084 for_each_online_node(nid) {
6085 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6086 free_area_init_node(nid, NULL,
c713216d 6087 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6088
6089 /* Any memory on that node */
6090 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6091 node_set_state(nid, N_MEMORY);
6092 check_for_memory(pgdat, nid);
c713216d
MG
6093 }
6094}
2a1e274a 6095
7e63efef 6096static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6097{
6098 unsigned long long coremem;
6099 if (!p)
6100 return -EINVAL;
6101
6102 coremem = memparse(p, &p);
7e63efef 6103 *core = coremem >> PAGE_SHIFT;
2a1e274a 6104
7e63efef 6105 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6106 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6107
6108 return 0;
6109}
ed7ed365 6110
7e63efef
MG
6111/*
6112 * kernelcore=size sets the amount of memory for use for allocations that
6113 * cannot be reclaimed or migrated.
6114 */
6115static int __init cmdline_parse_kernelcore(char *p)
6116{
342332e6
TI
6117 /* parse kernelcore=mirror */
6118 if (parse_option_str(p, "mirror")) {
6119 mirrored_kernelcore = true;
6120 return 0;
6121 }
6122
7e63efef
MG
6123 return cmdline_parse_core(p, &required_kernelcore);
6124}
6125
6126/*
6127 * movablecore=size sets the amount of memory for use for allocations that
6128 * can be reclaimed or migrated.
6129 */
6130static int __init cmdline_parse_movablecore(char *p)
6131{
6132 return cmdline_parse_core(p, &required_movablecore);
6133}
6134
ed7ed365 6135early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6136early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6137
0ee332c1 6138#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6139
c3d5f5f0
JL
6140void adjust_managed_page_count(struct page *page, long count)
6141{
6142 spin_lock(&managed_page_count_lock);
6143 page_zone(page)->managed_pages += count;
6144 totalram_pages += count;
3dcc0571
JL
6145#ifdef CONFIG_HIGHMEM
6146 if (PageHighMem(page))
6147 totalhigh_pages += count;
6148#endif
c3d5f5f0
JL
6149 spin_unlock(&managed_page_count_lock);
6150}
3dcc0571 6151EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6152
11199692 6153unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6154{
11199692
JL
6155 void *pos;
6156 unsigned long pages = 0;
69afade7 6157
11199692
JL
6158 start = (void *)PAGE_ALIGN((unsigned long)start);
6159 end = (void *)((unsigned long)end & PAGE_MASK);
6160 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6161 if ((unsigned int)poison <= 0xFF)
11199692
JL
6162 memset(pos, poison, PAGE_SIZE);
6163 free_reserved_page(virt_to_page(pos));
69afade7
JL
6164 }
6165
6166 if (pages && s)
11199692 6167 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6168 s, pages << (PAGE_SHIFT - 10), start, end);
6169
6170 return pages;
6171}
11199692 6172EXPORT_SYMBOL(free_reserved_area);
69afade7 6173
cfa11e08
JL
6174#ifdef CONFIG_HIGHMEM
6175void free_highmem_page(struct page *page)
6176{
6177 __free_reserved_page(page);
6178 totalram_pages++;
7b4b2a0d 6179 page_zone(page)->managed_pages++;
cfa11e08
JL
6180 totalhigh_pages++;
6181}
6182#endif
6183
7ee3d4e8
JL
6184
6185void __init mem_init_print_info(const char *str)
6186{
6187 unsigned long physpages, codesize, datasize, rosize, bss_size;
6188 unsigned long init_code_size, init_data_size;
6189
6190 physpages = get_num_physpages();
6191 codesize = _etext - _stext;
6192 datasize = _edata - _sdata;
6193 rosize = __end_rodata - __start_rodata;
6194 bss_size = __bss_stop - __bss_start;
6195 init_data_size = __init_end - __init_begin;
6196 init_code_size = _einittext - _sinittext;
6197
6198 /*
6199 * Detect special cases and adjust section sizes accordingly:
6200 * 1) .init.* may be embedded into .data sections
6201 * 2) .init.text.* may be out of [__init_begin, __init_end],
6202 * please refer to arch/tile/kernel/vmlinux.lds.S.
6203 * 3) .rodata.* may be embedded into .text or .data sections.
6204 */
6205#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6206 do { \
6207 if (start <= pos && pos < end && size > adj) \
6208 size -= adj; \
6209 } while (0)
7ee3d4e8
JL
6210
6211 adj_init_size(__init_begin, __init_end, init_data_size,
6212 _sinittext, init_code_size);
6213 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6214 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6215 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6216 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6217
6218#undef adj_init_size
6219
756a025f 6220 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6221#ifdef CONFIG_HIGHMEM
756a025f 6222 ", %luK highmem"
7ee3d4e8 6223#endif
756a025f
JP
6224 "%s%s)\n",
6225 nr_free_pages() << (PAGE_SHIFT - 10),
6226 physpages << (PAGE_SHIFT - 10),
6227 codesize >> 10, datasize >> 10, rosize >> 10,
6228 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6229 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6230 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6231#ifdef CONFIG_HIGHMEM
756a025f 6232 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6233#endif
756a025f 6234 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6235}
6236
0e0b864e 6237/**
88ca3b94
RD
6238 * set_dma_reserve - set the specified number of pages reserved in the first zone
6239 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6240 *
013110a7 6241 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6242 * In the DMA zone, a significant percentage may be consumed by kernel image
6243 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6244 * function may optionally be used to account for unfreeable pages in the
6245 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6246 * smaller per-cpu batchsize.
0e0b864e
MG
6247 */
6248void __init set_dma_reserve(unsigned long new_dma_reserve)
6249{
6250 dma_reserve = new_dma_reserve;
6251}
6252
1da177e4
LT
6253void __init free_area_init(unsigned long *zones_size)
6254{
9109fb7b 6255 free_area_init_node(0, zones_size,
1da177e4
LT
6256 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6257}
1da177e4 6258
1da177e4
LT
6259static int page_alloc_cpu_notify(struct notifier_block *self,
6260 unsigned long action, void *hcpu)
6261{
6262 int cpu = (unsigned long)hcpu;
1da177e4 6263
8bb78442 6264 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6265 lru_add_drain_cpu(cpu);
9f8f2172
CL
6266 drain_pages(cpu);
6267
6268 /*
6269 * Spill the event counters of the dead processor
6270 * into the current processors event counters.
6271 * This artificially elevates the count of the current
6272 * processor.
6273 */
f8891e5e 6274 vm_events_fold_cpu(cpu);
9f8f2172
CL
6275
6276 /*
6277 * Zero the differential counters of the dead processor
6278 * so that the vm statistics are consistent.
6279 *
6280 * This is only okay since the processor is dead and cannot
6281 * race with what we are doing.
6282 */
2bb921e5 6283 cpu_vm_stats_fold(cpu);
1da177e4
LT
6284 }
6285 return NOTIFY_OK;
6286}
1da177e4
LT
6287
6288void __init page_alloc_init(void)
6289{
6290 hotcpu_notifier(page_alloc_cpu_notify, 0);
6291}
6292
cb45b0e9 6293/*
34b10060 6294 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6295 * or min_free_kbytes changes.
6296 */
6297static void calculate_totalreserve_pages(void)
6298{
6299 struct pglist_data *pgdat;
6300 unsigned long reserve_pages = 0;
2f6726e5 6301 enum zone_type i, j;
cb45b0e9
HA
6302
6303 for_each_online_pgdat(pgdat) {
6304 for (i = 0; i < MAX_NR_ZONES; i++) {
6305 struct zone *zone = pgdat->node_zones + i;
3484b2de 6306 long max = 0;
cb45b0e9
HA
6307
6308 /* Find valid and maximum lowmem_reserve in the zone */
6309 for (j = i; j < MAX_NR_ZONES; j++) {
6310 if (zone->lowmem_reserve[j] > max)
6311 max = zone->lowmem_reserve[j];
6312 }
6313
41858966
MG
6314 /* we treat the high watermark as reserved pages. */
6315 max += high_wmark_pages(zone);
cb45b0e9 6316
b40da049
JL
6317 if (max > zone->managed_pages)
6318 max = zone->managed_pages;
a8d01437
JW
6319
6320 zone->totalreserve_pages = max;
6321
cb45b0e9
HA
6322 reserve_pages += max;
6323 }
6324 }
6325 totalreserve_pages = reserve_pages;
6326}
6327
1da177e4
LT
6328/*
6329 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6330 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6331 * has a correct pages reserved value, so an adequate number of
6332 * pages are left in the zone after a successful __alloc_pages().
6333 */
6334static void setup_per_zone_lowmem_reserve(void)
6335{
6336 struct pglist_data *pgdat;
2f6726e5 6337 enum zone_type j, idx;
1da177e4 6338
ec936fc5 6339 for_each_online_pgdat(pgdat) {
1da177e4
LT
6340 for (j = 0; j < MAX_NR_ZONES; j++) {
6341 struct zone *zone = pgdat->node_zones + j;
b40da049 6342 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6343
6344 zone->lowmem_reserve[j] = 0;
6345
2f6726e5
CL
6346 idx = j;
6347 while (idx) {
1da177e4
LT
6348 struct zone *lower_zone;
6349
2f6726e5
CL
6350 idx--;
6351
1da177e4
LT
6352 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6353 sysctl_lowmem_reserve_ratio[idx] = 1;
6354
6355 lower_zone = pgdat->node_zones + idx;
b40da049 6356 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6357 sysctl_lowmem_reserve_ratio[idx];
b40da049 6358 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6359 }
6360 }
6361 }
cb45b0e9
HA
6362
6363 /* update totalreserve_pages */
6364 calculate_totalreserve_pages();
1da177e4
LT
6365}
6366
cfd3da1e 6367static void __setup_per_zone_wmarks(void)
1da177e4
LT
6368{
6369 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6370 unsigned long lowmem_pages = 0;
6371 struct zone *zone;
6372 unsigned long flags;
6373
6374 /* Calculate total number of !ZONE_HIGHMEM pages */
6375 for_each_zone(zone) {
6376 if (!is_highmem(zone))
b40da049 6377 lowmem_pages += zone->managed_pages;
1da177e4
LT
6378 }
6379
6380 for_each_zone(zone) {
ac924c60
AM
6381 u64 tmp;
6382
1125b4e3 6383 spin_lock_irqsave(&zone->lock, flags);
b40da049 6384 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6385 do_div(tmp, lowmem_pages);
1da177e4
LT
6386 if (is_highmem(zone)) {
6387 /*
669ed175
NP
6388 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6389 * need highmem pages, so cap pages_min to a small
6390 * value here.
6391 *
41858966 6392 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6393 * deltas control asynch page reclaim, and so should
669ed175 6394 * not be capped for highmem.
1da177e4 6395 */
90ae8d67 6396 unsigned long min_pages;
1da177e4 6397
b40da049 6398 min_pages = zone->managed_pages / 1024;
90ae8d67 6399 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6400 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6401 } else {
669ed175
NP
6402 /*
6403 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6404 * proportionate to the zone's size.
6405 */
41858966 6406 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6407 }
6408
795ae7a0
JW
6409 /*
6410 * Set the kswapd watermarks distance according to the
6411 * scale factor in proportion to available memory, but
6412 * ensure a minimum size on small systems.
6413 */
6414 tmp = max_t(u64, tmp >> 2,
6415 mult_frac(zone->managed_pages,
6416 watermark_scale_factor, 10000));
6417
6418 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6419 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6420
81c0a2bb 6421 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6422 high_wmark_pages(zone) - low_wmark_pages(zone) -
6423 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6424
1125b4e3 6425 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6426 }
cb45b0e9
HA
6427
6428 /* update totalreserve_pages */
6429 calculate_totalreserve_pages();
1da177e4
LT
6430}
6431
cfd3da1e
MG
6432/**
6433 * setup_per_zone_wmarks - called when min_free_kbytes changes
6434 * or when memory is hot-{added|removed}
6435 *
6436 * Ensures that the watermark[min,low,high] values for each zone are set
6437 * correctly with respect to min_free_kbytes.
6438 */
6439void setup_per_zone_wmarks(void)
6440{
6441 mutex_lock(&zonelists_mutex);
6442 __setup_per_zone_wmarks();
6443 mutex_unlock(&zonelists_mutex);
6444}
6445
55a4462a 6446/*
556adecb
RR
6447 * The inactive anon list should be small enough that the VM never has to
6448 * do too much work, but large enough that each inactive page has a chance
6449 * to be referenced again before it is swapped out.
6450 *
6451 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6452 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6453 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6454 * the anonymous pages are kept on the inactive list.
6455 *
6456 * total target max
6457 * memory ratio inactive anon
6458 * -------------------------------------
6459 * 10MB 1 5MB
6460 * 100MB 1 50MB
6461 * 1GB 3 250MB
6462 * 10GB 10 0.9GB
6463 * 100GB 31 3GB
6464 * 1TB 101 10GB
6465 * 10TB 320 32GB
6466 */
1b79acc9 6467static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6468{
96cb4df5 6469 unsigned int gb, ratio;
556adecb 6470
96cb4df5 6471 /* Zone size in gigabytes */
b40da049 6472 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6473 if (gb)
556adecb 6474 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6475 else
6476 ratio = 1;
556adecb 6477
96cb4df5
MK
6478 zone->inactive_ratio = ratio;
6479}
556adecb 6480
839a4fcc 6481static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6482{
6483 struct zone *zone;
6484
6485 for_each_zone(zone)
6486 calculate_zone_inactive_ratio(zone);
556adecb
RR
6487}
6488
1da177e4
LT
6489/*
6490 * Initialise min_free_kbytes.
6491 *
6492 * For small machines we want it small (128k min). For large machines
6493 * we want it large (64MB max). But it is not linear, because network
6494 * bandwidth does not increase linearly with machine size. We use
6495 *
b8af2941 6496 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6497 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6498 *
6499 * which yields
6500 *
6501 * 16MB: 512k
6502 * 32MB: 724k
6503 * 64MB: 1024k
6504 * 128MB: 1448k
6505 * 256MB: 2048k
6506 * 512MB: 2896k
6507 * 1024MB: 4096k
6508 * 2048MB: 5792k
6509 * 4096MB: 8192k
6510 * 8192MB: 11584k
6511 * 16384MB: 16384k
6512 */
1b79acc9 6513int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6514{
6515 unsigned long lowmem_kbytes;
5f12733e 6516 int new_min_free_kbytes;
1da177e4
LT
6517
6518 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6519 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6520
6521 if (new_min_free_kbytes > user_min_free_kbytes) {
6522 min_free_kbytes = new_min_free_kbytes;
6523 if (min_free_kbytes < 128)
6524 min_free_kbytes = 128;
6525 if (min_free_kbytes > 65536)
6526 min_free_kbytes = 65536;
6527 } else {
6528 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6529 new_min_free_kbytes, user_min_free_kbytes);
6530 }
bc75d33f 6531 setup_per_zone_wmarks();
a6cccdc3 6532 refresh_zone_stat_thresholds();
1da177e4 6533 setup_per_zone_lowmem_reserve();
556adecb 6534 setup_per_zone_inactive_ratio();
1da177e4
LT
6535 return 0;
6536}
bc22af74 6537core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6538
6539/*
b8af2941 6540 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6541 * that we can call two helper functions whenever min_free_kbytes
6542 * changes.
6543 */
cccad5b9 6544int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6545 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6546{
da8c757b
HP
6547 int rc;
6548
6549 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6550 if (rc)
6551 return rc;
6552
5f12733e
MH
6553 if (write) {
6554 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6555 setup_per_zone_wmarks();
5f12733e 6556 }
1da177e4
LT
6557 return 0;
6558}
6559
795ae7a0
JW
6560int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6561 void __user *buffer, size_t *length, loff_t *ppos)
6562{
6563 int rc;
6564
6565 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6566 if (rc)
6567 return rc;
6568
6569 if (write)
6570 setup_per_zone_wmarks();
6571
6572 return 0;
6573}
6574
9614634f 6575#ifdef CONFIG_NUMA
cccad5b9 6576int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6577 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6578{
6579 struct zone *zone;
6580 int rc;
6581
8d65af78 6582 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6583 if (rc)
6584 return rc;
6585
6586 for_each_zone(zone)
b40da049 6587 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6588 sysctl_min_unmapped_ratio) / 100;
6589 return 0;
6590}
0ff38490 6591
cccad5b9 6592int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6593 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6594{
6595 struct zone *zone;
6596 int rc;
6597
8d65af78 6598 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6599 if (rc)
6600 return rc;
6601
6602 for_each_zone(zone)
b40da049 6603 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6604 sysctl_min_slab_ratio) / 100;
6605 return 0;
6606}
9614634f
CL
6607#endif
6608
1da177e4
LT
6609/*
6610 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6611 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6612 * whenever sysctl_lowmem_reserve_ratio changes.
6613 *
6614 * The reserve ratio obviously has absolutely no relation with the
41858966 6615 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6616 * if in function of the boot time zone sizes.
6617 */
cccad5b9 6618int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6619 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6620{
8d65af78 6621 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6622 setup_per_zone_lowmem_reserve();
6623 return 0;
6624}
6625
8ad4b1fb
RS
6626/*
6627 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6628 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6629 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6630 */
cccad5b9 6631int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6632 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6633{
6634 struct zone *zone;
7cd2b0a3 6635 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6636 int ret;
6637
7cd2b0a3
DR
6638 mutex_lock(&pcp_batch_high_lock);
6639 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6640
8d65af78 6641 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6642 if (!write || ret < 0)
6643 goto out;
6644
6645 /* Sanity checking to avoid pcp imbalance */
6646 if (percpu_pagelist_fraction &&
6647 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6648 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6649 ret = -EINVAL;
6650 goto out;
6651 }
6652
6653 /* No change? */
6654 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6655 goto out;
c8e251fa 6656
364df0eb 6657 for_each_populated_zone(zone) {
7cd2b0a3
DR
6658 unsigned int cpu;
6659
22a7f12b 6660 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6661 pageset_set_high_and_batch(zone,
6662 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6663 }
7cd2b0a3 6664out:
c8e251fa 6665 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6666 return ret;
8ad4b1fb
RS
6667}
6668
a9919c79 6669#ifdef CONFIG_NUMA
f034b5d4 6670int hashdist = HASHDIST_DEFAULT;
1da177e4 6671
1da177e4
LT
6672static int __init set_hashdist(char *str)
6673{
6674 if (!str)
6675 return 0;
6676 hashdist = simple_strtoul(str, &str, 0);
6677 return 1;
6678}
6679__setup("hashdist=", set_hashdist);
6680#endif
6681
6682/*
6683 * allocate a large system hash table from bootmem
6684 * - it is assumed that the hash table must contain an exact power-of-2
6685 * quantity of entries
6686 * - limit is the number of hash buckets, not the total allocation size
6687 */
6688void *__init alloc_large_system_hash(const char *tablename,
6689 unsigned long bucketsize,
6690 unsigned long numentries,
6691 int scale,
6692 int flags,
6693 unsigned int *_hash_shift,
6694 unsigned int *_hash_mask,
31fe62b9
TB
6695 unsigned long low_limit,
6696 unsigned long high_limit)
1da177e4 6697{
31fe62b9 6698 unsigned long long max = high_limit;
1da177e4
LT
6699 unsigned long log2qty, size;
6700 void *table = NULL;
6701
6702 /* allow the kernel cmdline to have a say */
6703 if (!numentries) {
6704 /* round applicable memory size up to nearest megabyte */
04903664 6705 numentries = nr_kernel_pages;
a7e83318
JZ
6706
6707 /* It isn't necessary when PAGE_SIZE >= 1MB */
6708 if (PAGE_SHIFT < 20)
6709 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6710
6711 /* limit to 1 bucket per 2^scale bytes of low memory */
6712 if (scale > PAGE_SHIFT)
6713 numentries >>= (scale - PAGE_SHIFT);
6714 else
6715 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6716
6717 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6718 if (unlikely(flags & HASH_SMALL)) {
6719 /* Makes no sense without HASH_EARLY */
6720 WARN_ON(!(flags & HASH_EARLY));
6721 if (!(numentries >> *_hash_shift)) {
6722 numentries = 1UL << *_hash_shift;
6723 BUG_ON(!numentries);
6724 }
6725 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6726 numentries = PAGE_SIZE / bucketsize;
1da177e4 6727 }
6e692ed3 6728 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6729
6730 /* limit allocation size to 1/16 total memory by default */
6731 if (max == 0) {
6732 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6733 do_div(max, bucketsize);
6734 }
074b8517 6735 max = min(max, 0x80000000ULL);
1da177e4 6736
31fe62b9
TB
6737 if (numentries < low_limit)
6738 numentries = low_limit;
1da177e4
LT
6739 if (numentries > max)
6740 numentries = max;
6741
f0d1b0b3 6742 log2qty = ilog2(numentries);
1da177e4
LT
6743
6744 do {
6745 size = bucketsize << log2qty;
6746 if (flags & HASH_EARLY)
6782832e 6747 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6748 else if (hashdist)
6749 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6750 else {
1037b83b
ED
6751 /*
6752 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6753 * some pages at the end of hash table which
6754 * alloc_pages_exact() automatically does
1037b83b 6755 */
264ef8a9 6756 if (get_order(size) < MAX_ORDER) {
a1dd268c 6757 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6758 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6759 }
1da177e4
LT
6760 }
6761 } while (!table && size > PAGE_SIZE && --log2qty);
6762
6763 if (!table)
6764 panic("Failed to allocate %s hash table\n", tablename);
6765
1170532b
JP
6766 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6767 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6768
6769 if (_hash_shift)
6770 *_hash_shift = log2qty;
6771 if (_hash_mask)
6772 *_hash_mask = (1 << log2qty) - 1;
6773
6774 return table;
6775}
a117e66e 6776
835c134e 6777/* Return a pointer to the bitmap storing bits affecting a block of pages */
f75fb889 6778static inline unsigned long *get_pageblock_bitmap(struct page *page,
835c134e
MG
6779 unsigned long pfn)
6780{
6781#ifdef CONFIG_SPARSEMEM
6782 return __pfn_to_section(pfn)->pageblock_flags;
6783#else
f75fb889 6784 return page_zone(page)->pageblock_flags;
835c134e
MG
6785#endif /* CONFIG_SPARSEMEM */
6786}
6787
f75fb889 6788static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
835c134e
MG
6789{
6790#ifdef CONFIG_SPARSEMEM
6791 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6792 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6793#else
f75fb889 6794 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
d9c23400 6795 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6796#endif /* CONFIG_SPARSEMEM */
6797}
6798
6799/**
1aab4d77 6800 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6801 * @page: The page within the block of interest
1aab4d77
RD
6802 * @pfn: The target page frame number
6803 * @end_bitidx: The last bit of interest to retrieve
6804 * @mask: mask of bits that the caller is interested in
6805 *
6806 * Return: pageblock_bits flags
835c134e 6807 */
dc4b0caf 6808unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6809 unsigned long end_bitidx,
6810 unsigned long mask)
835c134e 6811{
835c134e 6812 unsigned long *bitmap;
dc4b0caf 6813 unsigned long bitidx, word_bitidx;
e58469ba 6814 unsigned long word;
835c134e 6815
f75fb889
MG
6816 bitmap = get_pageblock_bitmap(page, pfn);
6817 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6818 word_bitidx = bitidx / BITS_PER_LONG;
6819 bitidx &= (BITS_PER_LONG-1);
835c134e 6820
e58469ba
MG
6821 word = bitmap[word_bitidx];
6822 bitidx += end_bitidx;
6823 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6824}
6825
6826/**
dc4b0caf 6827 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6828 * @page: The page within the block of interest
835c134e 6829 * @flags: The flags to set
1aab4d77
RD
6830 * @pfn: The target page frame number
6831 * @end_bitidx: The last bit of interest
6832 * @mask: mask of bits that the caller is interested in
835c134e 6833 */
dc4b0caf
MG
6834void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6835 unsigned long pfn,
e58469ba
MG
6836 unsigned long end_bitidx,
6837 unsigned long mask)
835c134e 6838{
835c134e 6839 unsigned long *bitmap;
dc4b0caf 6840 unsigned long bitidx, word_bitidx;
e58469ba
MG
6841 unsigned long old_word, word;
6842
6843 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e 6844
f75fb889
MG
6845 bitmap = get_pageblock_bitmap(page, pfn);
6846 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6847 word_bitidx = bitidx / BITS_PER_LONG;
6848 bitidx &= (BITS_PER_LONG-1);
6849
f75fb889 6850 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
835c134e 6851
e58469ba
MG
6852 bitidx += end_bitidx;
6853 mask <<= (BITS_PER_LONG - bitidx - 1);
6854 flags <<= (BITS_PER_LONG - bitidx - 1);
6855
4db0c3c2 6856 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6857 for (;;) {
6858 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6859 if (word == old_word)
6860 break;
6861 word = old_word;
6862 }
835c134e 6863}
a5d76b54
KH
6864
6865/*
80934513
MK
6866 * This function checks whether pageblock includes unmovable pages or not.
6867 * If @count is not zero, it is okay to include less @count unmovable pages
6868 *
b8af2941 6869 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6870 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6871 * expect this function should be exact.
a5d76b54 6872 */
b023f468
WC
6873bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6874 bool skip_hwpoisoned_pages)
49ac8255
KH
6875{
6876 unsigned long pfn, iter, found;
47118af0
MN
6877 int mt;
6878
49ac8255
KH
6879 /*
6880 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6881 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6882 */
6883 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6884 return false;
47118af0
MN
6885 mt = get_pageblock_migratetype(page);
6886 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6887 return false;
49ac8255
KH
6888
6889 pfn = page_to_pfn(page);
6890 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6891 unsigned long check = pfn + iter;
6892
29723fcc 6893 if (!pfn_valid_within(check))
49ac8255 6894 continue;
29723fcc 6895
49ac8255 6896 page = pfn_to_page(check);
c8721bbb
NH
6897
6898 /*
6899 * Hugepages are not in LRU lists, but they're movable.
6900 * We need not scan over tail pages bacause we don't
6901 * handle each tail page individually in migration.
6902 */
6903 if (PageHuge(page)) {
6904 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6905 continue;
6906 }
6907
97d255c8
MK
6908 /*
6909 * We can't use page_count without pin a page
6910 * because another CPU can free compound page.
6911 * This check already skips compound tails of THP
0139aa7b 6912 * because their page->_refcount is zero at all time.
97d255c8 6913 */
fe896d18 6914 if (!page_ref_count(page)) {
49ac8255
KH
6915 if (PageBuddy(page))
6916 iter += (1 << page_order(page)) - 1;
6917 continue;
6918 }
97d255c8 6919
b023f468
WC
6920 /*
6921 * The HWPoisoned page may be not in buddy system, and
6922 * page_count() is not 0.
6923 */
6924 if (skip_hwpoisoned_pages && PageHWPoison(page))
6925 continue;
6926
49ac8255
KH
6927 if (!PageLRU(page))
6928 found++;
6929 /*
6b4f7799
JW
6930 * If there are RECLAIMABLE pages, we need to check
6931 * it. But now, memory offline itself doesn't call
6932 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6933 */
6934 /*
6935 * If the page is not RAM, page_count()should be 0.
6936 * we don't need more check. This is an _used_ not-movable page.
6937 *
6938 * The problematic thing here is PG_reserved pages. PG_reserved
6939 * is set to both of a memory hole page and a _used_ kernel
6940 * page at boot.
6941 */
6942 if (found > count)
80934513 6943 return true;
49ac8255 6944 }
80934513 6945 return false;
49ac8255
KH
6946}
6947
6948bool is_pageblock_removable_nolock(struct page *page)
6949{
656a0706
MH
6950 struct zone *zone;
6951 unsigned long pfn;
687875fb
MH
6952
6953 /*
6954 * We have to be careful here because we are iterating over memory
6955 * sections which are not zone aware so we might end up outside of
6956 * the zone but still within the section.
656a0706
MH
6957 * We have to take care about the node as well. If the node is offline
6958 * its NODE_DATA will be NULL - see page_zone.
687875fb 6959 */
656a0706
MH
6960 if (!node_online(page_to_nid(page)))
6961 return false;
6962
6963 zone = page_zone(page);
6964 pfn = page_to_pfn(page);
108bcc96 6965 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6966 return false;
6967
b023f468 6968 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6969}
0c0e6195 6970
080fe206 6971#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6972
6973static unsigned long pfn_max_align_down(unsigned long pfn)
6974{
6975 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6976 pageblock_nr_pages) - 1);
6977}
6978
6979static unsigned long pfn_max_align_up(unsigned long pfn)
6980{
6981 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6982 pageblock_nr_pages));
6983}
6984
041d3a8c 6985/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6986static int __alloc_contig_migrate_range(struct compact_control *cc,
6987 unsigned long start, unsigned long end)
041d3a8c
MN
6988{
6989 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6990 unsigned long nr_reclaimed;
041d3a8c
MN
6991 unsigned long pfn = start;
6992 unsigned int tries = 0;
6993 int ret = 0;
6994
be49a6e1 6995 migrate_prep();
041d3a8c 6996
bb13ffeb 6997 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6998 if (fatal_signal_pending(current)) {
6999 ret = -EINTR;
7000 break;
7001 }
7002
bb13ffeb
MG
7003 if (list_empty(&cc->migratepages)) {
7004 cc->nr_migratepages = 0;
edc2ca61 7005 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7006 if (!pfn) {
7007 ret = -EINTR;
7008 break;
7009 }
7010 tries = 0;
7011 } else if (++tries == 5) {
7012 ret = ret < 0 ? ret : -EBUSY;
7013 break;
7014 }
7015
beb51eaa
MK
7016 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7017 &cc->migratepages);
7018 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7019
9c620e2b 7020 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7021 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7022 }
2a6f5124
SP
7023 if (ret < 0) {
7024 putback_movable_pages(&cc->migratepages);
7025 return ret;
7026 }
7027 return 0;
041d3a8c
MN
7028}
7029
7030/**
7031 * alloc_contig_range() -- tries to allocate given range of pages
7032 * @start: start PFN to allocate
7033 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7034 * @migratetype: migratetype of the underlaying pageblocks (either
7035 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7036 * in range must have the same migratetype and it must
7037 * be either of the two.
041d3a8c
MN
7038 *
7039 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7040 * aligned, however it's the caller's responsibility to guarantee that
7041 * we are the only thread that changes migrate type of pageblocks the
7042 * pages fall in.
7043 *
7044 * The PFN range must belong to a single zone.
7045 *
7046 * Returns zero on success or negative error code. On success all
7047 * pages which PFN is in [start, end) are allocated for the caller and
7048 * need to be freed with free_contig_range().
7049 */
0815f3d8
MN
7050int alloc_contig_range(unsigned long start, unsigned long end,
7051 unsigned migratetype)
041d3a8c 7052{
041d3a8c 7053 unsigned long outer_start, outer_end;
d00181b9
KS
7054 unsigned int order;
7055 int ret = 0;
041d3a8c 7056
bb13ffeb
MG
7057 struct compact_control cc = {
7058 .nr_migratepages = 0,
7059 .order = -1,
7060 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7061 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7062 .ignore_skip_hint = true,
7063 };
7064 INIT_LIST_HEAD(&cc.migratepages);
7065
041d3a8c
MN
7066 /*
7067 * What we do here is we mark all pageblocks in range as
7068 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7069 * have different sizes, and due to the way page allocator
7070 * work, we align the range to biggest of the two pages so
7071 * that page allocator won't try to merge buddies from
7072 * different pageblocks and change MIGRATE_ISOLATE to some
7073 * other migration type.
7074 *
7075 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7076 * migrate the pages from an unaligned range (ie. pages that
7077 * we are interested in). This will put all the pages in
7078 * range back to page allocator as MIGRATE_ISOLATE.
7079 *
7080 * When this is done, we take the pages in range from page
7081 * allocator removing them from the buddy system. This way
7082 * page allocator will never consider using them.
7083 *
7084 * This lets us mark the pageblocks back as
7085 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7086 * aligned range but not in the unaligned, original range are
7087 * put back to page allocator so that buddy can use them.
7088 */
7089
7090 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7091 pfn_max_align_up(end), migratetype,
7092 false);
041d3a8c 7093 if (ret)
86a595f9 7094 return ret;
041d3a8c 7095
8ef5849f
JK
7096 /*
7097 * In case of -EBUSY, we'd like to know which page causes problem.
7098 * So, just fall through. We will check it in test_pages_isolated().
7099 */
bb13ffeb 7100 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7101 if (ret && ret != -EBUSY)
041d3a8c
MN
7102 goto done;
7103
7104 /*
7105 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7106 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7107 * more, all pages in [start, end) are free in page allocator.
7108 * What we are going to do is to allocate all pages from
7109 * [start, end) (that is remove them from page allocator).
7110 *
7111 * The only problem is that pages at the beginning and at the
7112 * end of interesting range may be not aligned with pages that
7113 * page allocator holds, ie. they can be part of higher order
7114 * pages. Because of this, we reserve the bigger range and
7115 * once this is done free the pages we are not interested in.
7116 *
7117 * We don't have to hold zone->lock here because the pages are
7118 * isolated thus they won't get removed from buddy.
7119 */
7120
7121 lru_add_drain_all();
510f5507 7122 drain_all_pages(cc.zone);
041d3a8c
MN
7123
7124 order = 0;
7125 outer_start = start;
7126 while (!PageBuddy(pfn_to_page(outer_start))) {
7127 if (++order >= MAX_ORDER) {
8ef5849f
JK
7128 outer_start = start;
7129 break;
041d3a8c
MN
7130 }
7131 outer_start &= ~0UL << order;
7132 }
7133
8ef5849f
JK
7134 if (outer_start != start) {
7135 order = page_order(pfn_to_page(outer_start));
7136
7137 /*
7138 * outer_start page could be small order buddy page and
7139 * it doesn't include start page. Adjust outer_start
7140 * in this case to report failed page properly
7141 * on tracepoint in test_pages_isolated()
7142 */
7143 if (outer_start + (1UL << order) <= start)
7144 outer_start = start;
7145 }
7146
041d3a8c 7147 /* Make sure the range is really isolated. */
b023f468 7148 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7149 pr_info("%s: [%lx, %lx) PFNs busy\n",
7150 __func__, outer_start, end);
041d3a8c
MN
7151 ret = -EBUSY;
7152 goto done;
7153 }
7154
49f223a9 7155 /* Grab isolated pages from freelists. */
bb13ffeb 7156 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7157 if (!outer_end) {
7158 ret = -EBUSY;
7159 goto done;
7160 }
7161
7162 /* Free head and tail (if any) */
7163 if (start != outer_start)
7164 free_contig_range(outer_start, start - outer_start);
7165 if (end != outer_end)
7166 free_contig_range(end, outer_end - end);
7167
7168done:
7169 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7170 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7171 return ret;
7172}
7173
7174void free_contig_range(unsigned long pfn, unsigned nr_pages)
7175{
bcc2b02f
MS
7176 unsigned int count = 0;
7177
7178 for (; nr_pages--; pfn++) {
7179 struct page *page = pfn_to_page(pfn);
7180
7181 count += page_count(page) != 1;
7182 __free_page(page);
7183 }
7184 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7185}
7186#endif
7187
4ed7e022 7188#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7189/*
7190 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7191 * page high values need to be recalulated.
7192 */
4ed7e022
JL
7193void __meminit zone_pcp_update(struct zone *zone)
7194{
0a647f38 7195 unsigned cpu;
c8e251fa 7196 mutex_lock(&pcp_batch_high_lock);
0a647f38 7197 for_each_possible_cpu(cpu)
169f6c19
CS
7198 pageset_set_high_and_batch(zone,
7199 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7200 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7201}
7202#endif
7203
340175b7
JL
7204void zone_pcp_reset(struct zone *zone)
7205{
7206 unsigned long flags;
5a883813
MK
7207 int cpu;
7208 struct per_cpu_pageset *pset;
340175b7
JL
7209
7210 /* avoid races with drain_pages() */
7211 local_irq_save(flags);
7212 if (zone->pageset != &boot_pageset) {
5a883813
MK
7213 for_each_online_cpu(cpu) {
7214 pset = per_cpu_ptr(zone->pageset, cpu);
7215 drain_zonestat(zone, pset);
7216 }
340175b7
JL
7217 free_percpu(zone->pageset);
7218 zone->pageset = &boot_pageset;
7219 }
7220 local_irq_restore(flags);
7221}
7222
6dcd73d7 7223#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7224/*
b9eb6319
JK
7225 * All pages in the range must be in a single zone and isolated
7226 * before calling this.
0c0e6195
KH
7227 */
7228void
7229__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7230{
7231 struct page *page;
7232 struct zone *zone;
7aeb09f9 7233 unsigned int order, i;
0c0e6195
KH
7234 unsigned long pfn;
7235 unsigned long flags;
7236 /* find the first valid pfn */
7237 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7238 if (pfn_valid(pfn))
7239 break;
7240 if (pfn == end_pfn)
7241 return;
7242 zone = page_zone(pfn_to_page(pfn));
7243 spin_lock_irqsave(&zone->lock, flags);
7244 pfn = start_pfn;
7245 while (pfn < end_pfn) {
7246 if (!pfn_valid(pfn)) {
7247 pfn++;
7248 continue;
7249 }
7250 page = pfn_to_page(pfn);
b023f468
WC
7251 /*
7252 * The HWPoisoned page may be not in buddy system, and
7253 * page_count() is not 0.
7254 */
7255 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7256 pfn++;
7257 SetPageReserved(page);
7258 continue;
7259 }
7260
0c0e6195
KH
7261 BUG_ON(page_count(page));
7262 BUG_ON(!PageBuddy(page));
7263 order = page_order(page);
7264#ifdef CONFIG_DEBUG_VM
1170532b
JP
7265 pr_info("remove from free list %lx %d %lx\n",
7266 pfn, 1 << order, end_pfn);
0c0e6195
KH
7267#endif
7268 list_del(&page->lru);
7269 rmv_page_order(page);
7270 zone->free_area[order].nr_free--;
0c0e6195
KH
7271 for (i = 0; i < (1 << order); i++)
7272 SetPageReserved((page+i));
7273 pfn += (1 << order);
7274 }
7275 spin_unlock_irqrestore(&zone->lock, flags);
7276}
7277#endif
8d22ba1b 7278
8d22ba1b
WF
7279bool is_free_buddy_page(struct page *page)
7280{
7281 struct zone *zone = page_zone(page);
7282 unsigned long pfn = page_to_pfn(page);
7283 unsigned long flags;
7aeb09f9 7284 unsigned int order;
8d22ba1b
WF
7285
7286 spin_lock_irqsave(&zone->lock, flags);
7287 for (order = 0; order < MAX_ORDER; order++) {
7288 struct page *page_head = page - (pfn & ((1 << order) - 1));
7289
7290 if (PageBuddy(page_head) && page_order(page_head) >= order)
7291 break;
7292 }
7293 spin_unlock_irqrestore(&zone->lock, flags);
7294
7295 return order < MAX_ORDER;
7296}