]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
selftest: add a testcase of ksm zero pages
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/interrupt.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
b8c73fc2 25#include <linux/kasan.h>
b073d7f8 26#include <linux/kmsan.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
a238ab5b 29#include <linux/ratelimit.h>
5a3135c2 30#include <linux/oom.h>
1da177e4
LT
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4 36#include <linux/nodemask.h>
a6cccdc3 37#include <linux/vmstat.h>
933e312e 38#include <linux/fault-inject.h>
56de7263 39#include <linux/compaction.h>
0d3d062a 40#include <trace/events/kmem.h>
d379f01d 41#include <trace/events/oom.h>
268bb0ce 42#include <linux/prefetch.h>
6e543d57 43#include <linux/mm_inline.h>
f920e413 44#include <linux/mmu_notifier.h>
041d3a8c 45#include <linux/migrate.h>
5b3cc15a 46#include <linux/sched/mm.h>
48c96a36 47#include <linux/page_owner.h>
df4e817b 48#include <linux/page_table_check.h>
4949148a 49#include <linux/memcontrol.h>
42c269c8 50#include <linux/ftrace.h>
d92a8cfc 51#include <linux/lockdep.h>
eb414681 52#include <linux/psi.h>
4aab2be0 53#include <linux/khugepaged.h>
5bf18281 54#include <linux/delayacct.h>
ac924c60 55#include <asm/div64.h>
1da177e4 56#include "internal.h"
e900a918 57#include "shuffle.h"
36e66c55 58#include "page_reporting.h"
1da177e4 59
f04a5d5d
DH
60/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61typedef int __bitwise fpi_t;
62
63/* No special request */
64#define FPI_NONE ((__force fpi_t)0)
65
66/*
67 * Skip free page reporting notification for the (possibly merged) page.
68 * This does not hinder free page reporting from grabbing the page,
69 * reporting it and marking it "reported" - it only skips notifying
70 * the free page reporting infrastructure about a newly freed page. For
71 * example, used when temporarily pulling a page from a freelist and
72 * putting it back unmodified.
73 */
74#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
75
47b6a24a
DH
76/*
77 * Place the (possibly merged) page to the tail of the freelist. Will ignore
78 * page shuffling (relevant code - e.g., memory onlining - is expected to
79 * shuffle the whole zone).
80 *
81 * Note: No code should rely on this flag for correctness - it's purely
82 * to allow for optimizations when handing back either fresh pages
83 * (memory onlining) or untouched pages (page isolation, free page
84 * reporting).
85 */
86#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
87
c8e251fa
CS
88/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 90#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 91
4b23a68f
MG
92#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93/*
94 * On SMP, spin_trylock is sufficient protection.
95 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96 */
97#define pcp_trylock_prepare(flags) do { } while (0)
98#define pcp_trylock_finish(flag) do { } while (0)
99#else
100
101/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102#define pcp_trylock_prepare(flags) local_irq_save(flags)
103#define pcp_trylock_finish(flags) local_irq_restore(flags)
104#endif
105
01b44456
MG
106/*
107 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108 * a migration causing the wrong PCP to be locked and remote memory being
109 * potentially allocated, pin the task to the CPU for the lookup+lock.
110 * preempt_disable is used on !RT because it is faster than migrate_disable.
111 * migrate_disable is used on RT because otherwise RT spinlock usage is
112 * interfered with and a high priority task cannot preempt the allocator.
113 */
114#ifndef CONFIG_PREEMPT_RT
115#define pcpu_task_pin() preempt_disable()
116#define pcpu_task_unpin() preempt_enable()
117#else
118#define pcpu_task_pin() migrate_disable()
119#define pcpu_task_unpin() migrate_enable()
120#endif
c8e251fa 121
01b44456
MG
122/*
123 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124 * Return value should be used with equivalent unlock helper.
125 */
126#define pcpu_spin_lock(type, member, ptr) \
127({ \
128 type *_ret; \
129 pcpu_task_pin(); \
130 _ret = this_cpu_ptr(ptr); \
131 spin_lock(&_ret->member); \
132 _ret; \
133})
134
57490774 135#define pcpu_spin_trylock(type, member, ptr) \
01b44456
MG
136({ \
137 type *_ret; \
138 pcpu_task_pin(); \
139 _ret = this_cpu_ptr(ptr); \
57490774 140 if (!spin_trylock(&_ret->member)) { \
01b44456
MG
141 pcpu_task_unpin(); \
142 _ret = NULL; \
143 } \
144 _ret; \
145})
146
147#define pcpu_spin_unlock(member, ptr) \
148({ \
149 spin_unlock(&ptr->member); \
150 pcpu_task_unpin(); \
151})
152
01b44456
MG
153/* struct per_cpu_pages specific helpers. */
154#define pcp_spin_lock(ptr) \
155 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156
57490774
MG
157#define pcp_spin_trylock(ptr) \
158 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
01b44456
MG
159
160#define pcp_spin_unlock(ptr) \
161 pcpu_spin_unlock(lock, ptr)
162
72812019
LS
163#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164DEFINE_PER_CPU(int, numa_node);
165EXPORT_PER_CPU_SYMBOL(numa_node);
166#endif
167
4518085e
KW
168DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169
7aac7898
LS
170#ifdef CONFIG_HAVE_MEMORYLESS_NODES
171/*
172 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175 * defined in <linux/topology.h>.
176 */
177DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
178EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179#endif
180
8b885f53 181static DEFINE_MUTEX(pcpu_drain_mutex);
bd233f53 182
38addce8 183#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 184volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
185EXPORT_SYMBOL(latent_entropy);
186#endif
187
1da177e4 188/*
13808910 189 * Array of node states.
1da177e4 190 */
13808910
CL
191nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 [N_POSSIBLE] = NODE_MASK_ALL,
193 [N_ONLINE] = { { [0] = 1UL } },
194#ifndef CONFIG_NUMA
195 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
196#ifdef CONFIG_HIGHMEM
197 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 198#endif
20b2f52b 199 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
200 [N_CPU] = { { [0] = 1UL } },
201#endif /* NUMA */
202};
203EXPORT_SYMBOL(node_states);
204
dcce284a 205gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a 206
bb14c2c7
VB
207/*
208 * A cached value of the page's pageblock's migratetype, used when the page is
209 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211 * Also the migratetype set in the page does not necessarily match the pcplist
212 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213 * other index - this ensures that it will be put on the correct CMA freelist.
214 */
215static inline int get_pcppage_migratetype(struct page *page)
216{
217 return page->index;
218}
219
220static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221{
222 page->index = migratetype;
223}
224
d9c23400 225#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 226unsigned int pageblock_order __read_mostly;
d9c23400
MG
227#endif
228
7fef431b
DH
229static void __free_pages_ok(struct page *page, unsigned int order,
230 fpi_t fpi_flags);
a226f6c8 231
1da177e4
LT
232/*
233 * results with 256, 32 in the lowmem_reserve sysctl:
234 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235 * 1G machine -> (16M dma, 784M normal, 224M high)
236 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 238 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
239 *
240 * TBD: should special case ZONE_DMA32 machines here - in those we normally
241 * don't need any ZONE_NORMAL reservation
1da177e4 242 */
62069aac 243static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 244#ifdef CONFIG_ZONE_DMA
d3cda233 245 [ZONE_DMA] = 256,
4b51d669 246#endif
fb0e7942 247#ifdef CONFIG_ZONE_DMA32
d3cda233 248 [ZONE_DMA32] = 256,
fb0e7942 249#endif
d3cda233 250 [ZONE_NORMAL] = 32,
e53ef38d 251#ifdef CONFIG_HIGHMEM
d3cda233 252 [ZONE_HIGHMEM] = 0,
e53ef38d 253#endif
d3cda233 254 [ZONE_MOVABLE] = 0,
2f1b6248 255};
1da177e4 256
9420f89d 257char * const zone_names[MAX_NR_ZONES] = {
4b51d669 258#ifdef CONFIG_ZONE_DMA
2f1b6248 259 "DMA",
4b51d669 260#endif
fb0e7942 261#ifdef CONFIG_ZONE_DMA32
2f1b6248 262 "DMA32",
fb0e7942 263#endif
2f1b6248 264 "Normal",
e53ef38d 265#ifdef CONFIG_HIGHMEM
2a1e274a 266 "HighMem",
e53ef38d 267#endif
2a1e274a 268 "Movable",
033fbae9
DW
269#ifdef CONFIG_ZONE_DEVICE
270 "Device",
271#endif
2f1b6248
CL
272};
273
c999fbd3 274const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
275 "Unmovable",
276 "Movable",
277 "Reclaimable",
278 "HighAtomic",
279#ifdef CONFIG_CMA
280 "CMA",
281#endif
282#ifdef CONFIG_MEMORY_ISOLATION
283 "Isolate",
284#endif
285};
286
cf01724e 287static compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
ae70eddd
AK
288 [NULL_COMPOUND_DTOR] = NULL,
289 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 290#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 291 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 292#endif
9a982250 293#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 294 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 295#endif
f1e61557
KS
296};
297
1da177e4 298int min_free_kbytes = 1024;
42aa83cb 299int user_min_free_kbytes = -1;
e95d372c
KW
300static int watermark_boost_factor __read_mostly = 15000;
301static int watermark_scale_factor = 10;
0ee332c1
TH
302
303/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
304int movable_zone;
305EXPORT_SYMBOL(movable_zone);
c713216d 306
418508c1 307#if MAX_NUMNODES > 1
b9726c26 308unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 309unsigned int nr_online_nodes __read_mostly = 1;
418508c1 310EXPORT_SYMBOL(nr_node_ids);
62bc62a8 311EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
312#endif
313
dcdfdd40
KS
314static bool page_contains_unaccepted(struct page *page, unsigned int order);
315static void accept_page(struct page *page, unsigned int order);
316static bool try_to_accept_memory(struct zone *zone, unsigned int order);
317static inline bool has_unaccepted_memory(void);
318static bool __free_unaccepted(struct page *page);
319
9ef9acb0
MG
320int page_group_by_mobility_disabled __read_mostly;
321
3a80a7fa 322#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
323/*
324 * During boot we initialize deferred pages on-demand, as needed, but once
325 * page_alloc_init_late() has finished, the deferred pages are all initialized,
326 * and we can permanently disable that path.
327 */
9420f89d 328DEFINE_STATIC_KEY_TRUE(deferred_pages);
3c0c12cc 329
94ae8b83 330static inline bool deferred_pages_enabled(void)
3c0c12cc 331{
94ae8b83 332 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
333}
334
3a80a7fa 335/*
9420f89d
MRI
336 * deferred_grow_zone() is __init, but it is called from
337 * get_page_from_freelist() during early boot until deferred_pages permanently
338 * disables this call. This is why we have refdata wrapper to avoid warning,
339 * and to ensure that the function body gets unloaded.
3a80a7fa 340 */
9420f89d
MRI
341static bool __ref
342_deferred_grow_zone(struct zone *zone, unsigned int order)
3a80a7fa 343{
9420f89d 344 return deferred_grow_zone(zone, order);
3a80a7fa
MG
345}
346#else
94ae8b83 347static inline bool deferred_pages_enabled(void)
2c335680 348{
94ae8b83 349 return false;
2c335680 350}
9420f89d 351#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
3a80a7fa 352
0b423ca2 353/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 354static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
355 unsigned long pfn)
356{
357#ifdef CONFIG_SPARSEMEM
f1eca35a 358 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
359#else
360 return page_zone(page)->pageblock_flags;
361#endif /* CONFIG_SPARSEMEM */
362}
363
ca891f41 364static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
365{
366#ifdef CONFIG_SPARSEMEM
367 pfn &= (PAGES_PER_SECTION-1);
0b423ca2 368#else
4f9bc69a 369 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
0b423ca2 370#endif /* CONFIG_SPARSEMEM */
399b795b 371 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
372}
373
535b81e2 374static __always_inline
ca891f41 375unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 376 unsigned long pfn,
0b423ca2
MG
377 unsigned long mask)
378{
379 unsigned long *bitmap;
380 unsigned long bitidx, word_bitidx;
381 unsigned long word;
382
383 bitmap = get_pageblock_bitmap(page, pfn);
384 bitidx = pfn_to_bitidx(page, pfn);
385 word_bitidx = bitidx / BITS_PER_LONG;
386 bitidx &= (BITS_PER_LONG-1);
1c563432
MK
387 /*
388 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
389 * a consistent read of the memory array, so that results, even though
390 * racy, are not corrupted.
391 */
392 word = READ_ONCE(bitmap[word_bitidx]);
d93d5ab9 393 return (word >> bitidx) & mask;
0b423ca2
MG
394}
395
a00cda3f
MCC
396/**
397 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
398 * @page: The page within the block of interest
399 * @pfn: The target page frame number
400 * @mask: mask of bits that the caller is interested in
401 *
402 * Return: pageblock_bits flags
403 */
ca891f41
MWO
404unsigned long get_pfnblock_flags_mask(const struct page *page,
405 unsigned long pfn, unsigned long mask)
0b423ca2 406{
535b81e2 407 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
408}
409
ca891f41
MWO
410static __always_inline int get_pfnblock_migratetype(const struct page *page,
411 unsigned long pfn)
0b423ca2 412{
535b81e2 413 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
414}
415
416/**
417 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
418 * @page: The page within the block of interest
419 * @flags: The flags to set
420 * @pfn: The target page frame number
0b423ca2
MG
421 * @mask: mask of bits that the caller is interested in
422 */
423void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
424 unsigned long pfn,
0b423ca2
MG
425 unsigned long mask)
426{
427 unsigned long *bitmap;
428 unsigned long bitidx, word_bitidx;
04ec0061 429 unsigned long word;
0b423ca2
MG
430
431 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 432 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
433
434 bitmap = get_pageblock_bitmap(page, pfn);
435 bitidx = pfn_to_bitidx(page, pfn);
436 word_bitidx = bitidx / BITS_PER_LONG;
437 bitidx &= (BITS_PER_LONG-1);
438
439 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
440
d93d5ab9
WY
441 mask <<= bitidx;
442 flags <<= bitidx;
0b423ca2
MG
443
444 word = READ_ONCE(bitmap[word_bitidx]);
04ec0061
UB
445 do {
446 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
0b423ca2 447}
3a80a7fa 448
ee6f509c 449void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 450{
5d0f3f72
KM
451 if (unlikely(page_group_by_mobility_disabled &&
452 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
453 migratetype = MIGRATE_UNMOVABLE;
454
d93d5ab9 455 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 456 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
457}
458
13e7444b 459#ifdef CONFIG_DEBUG_VM
c6a57e19 460static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 461{
bdc8cb98
DH
462 int ret = 0;
463 unsigned seq;
464 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 465 unsigned long sp, start_pfn;
c6a57e19 466
bdc8cb98
DH
467 do {
468 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
469 start_pfn = zone->zone_start_pfn;
470 sp = zone->spanned_pages;
108bcc96 471 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
472 ret = 1;
473 } while (zone_span_seqretry(zone, seq));
474
b5e6a5a2 475 if (ret)
613813e8
DH
476 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
477 pfn, zone_to_nid(zone), zone->name,
478 start_pfn, start_pfn + sp);
b5e6a5a2 479
bdc8cb98 480 return ret;
c6a57e19
DH
481}
482
c6a57e19
DH
483/*
484 * Temporary debugging check for pages not lying within a given zone.
485 */
d73d3c9f 486static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
487{
488 if (page_outside_zone_boundaries(zone, page))
1da177e4 489 return 1;
5b855aa3 490 if (zone != page_zone(page))
c6a57e19
DH
491 return 1;
492
1da177e4
LT
493 return 0;
494}
13e7444b 495#else
d73d3c9f 496static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
497{
498 return 0;
499}
500#endif
501
82a3241a 502static void bad_page(struct page *page, const char *reason)
1da177e4 503{
d936cf9b
HD
504 static unsigned long resume;
505 static unsigned long nr_shown;
506 static unsigned long nr_unshown;
507
508 /*
509 * Allow a burst of 60 reports, then keep quiet for that minute;
510 * or allow a steady drip of one report per second.
511 */
512 if (nr_shown == 60) {
513 if (time_before(jiffies, resume)) {
514 nr_unshown++;
515 goto out;
516 }
517 if (nr_unshown) {
ff8e8116 518 pr_alert(
1e9e6365 519 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
520 nr_unshown);
521 nr_unshown = 0;
522 }
523 nr_shown = 0;
524 }
525 if (nr_shown++ == 0)
526 resume = jiffies + 60 * HZ;
527
ff8e8116 528 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 529 current->comm, page_to_pfn(page));
d2f07ec0 530 dump_page(page, reason);
3dc14741 531
4f31888c 532 print_modules();
1da177e4 533 dump_stack();
d936cf9b 534out:
8cc3b392 535 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 536 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 537 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
538}
539
44042b44
MG
540static inline unsigned int order_to_pindex(int migratetype, int order)
541{
542 int base = order;
543
544#ifdef CONFIG_TRANSPARENT_HUGEPAGE
545 if (order > PAGE_ALLOC_COSTLY_ORDER) {
546 VM_BUG_ON(order != pageblock_order);
5d0a661d 547 return NR_LOWORDER_PCP_LISTS;
44042b44
MG
548 }
549#else
550 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
551#endif
552
553 return (MIGRATE_PCPTYPES * base) + migratetype;
554}
555
556static inline int pindex_to_order(unsigned int pindex)
557{
558 int order = pindex / MIGRATE_PCPTYPES;
559
560#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5d0a661d 561 if (pindex == NR_LOWORDER_PCP_LISTS)
44042b44 562 order = pageblock_order;
44042b44
MG
563#else
564 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
565#endif
566
567 return order;
568}
569
570static inline bool pcp_allowed_order(unsigned int order)
571{
572 if (order <= PAGE_ALLOC_COSTLY_ORDER)
573 return true;
574#ifdef CONFIG_TRANSPARENT_HUGEPAGE
575 if (order == pageblock_order)
576 return true;
577#endif
578 return false;
579}
580
21d02f8f
MG
581static inline void free_the_page(struct page *page, unsigned int order)
582{
44042b44
MG
583 if (pcp_allowed_order(order)) /* Via pcp? */
584 free_unref_page(page, order);
21d02f8f
MG
585 else
586 __free_pages_ok(page, order, FPI_NONE);
587}
588
1da177e4
LT
589/*
590 * Higher-order pages are called "compound pages". They are structured thusly:
591 *
1d798ca3 592 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 593 *
1d798ca3
KS
594 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
595 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 596 *
1d798ca3
KS
597 * The first tail page's ->compound_dtor holds the offset in array of compound
598 * page destructors. See compound_page_dtors.
1da177e4 599 *
1d798ca3 600 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 601 * This usage means that zero-order pages may not be compound.
1da177e4 602 */
d98c7a09 603
9a982250 604void free_compound_page(struct page *page)
d98c7a09 605{
bbc6b703 606 mem_cgroup_uncharge(page_folio(page));
44042b44 607 free_the_page(page, compound_order(page));
d98c7a09
HD
608}
609
d00181b9 610void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
611{
612 int i;
613 int nr_pages = 1 << order;
614
18229df5 615 __SetPageHead(page);
5b24eeef
JM
616 for (i = 1; i < nr_pages; i++)
617 prep_compound_tail(page, i);
1378a5ee 618
5b24eeef 619 prep_compound_head(page, order);
18229df5
AW
620}
621
5375336c
MWO
622void destroy_large_folio(struct folio *folio)
623{
a60d5942 624 enum compound_dtor_id dtor = folio->_folio_dtor;
5375336c
MWO
625
626 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
627 compound_page_dtors[dtor](&folio->page);
628}
629
ab130f91 630static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 631{
4c21e2f2 632 set_page_private(page, order);
676165a8 633 __SetPageBuddy(page);
1da177e4
LT
634}
635
5e1f0f09
MG
636#ifdef CONFIG_COMPACTION
637static inline struct capture_control *task_capc(struct zone *zone)
638{
639 struct capture_control *capc = current->capture_control;
640
deba0487 641 return unlikely(capc) &&
5e1f0f09
MG
642 !(current->flags & PF_KTHREAD) &&
643 !capc->page &&
deba0487 644 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
645}
646
647static inline bool
648compaction_capture(struct capture_control *capc, struct page *page,
649 int order, int migratetype)
650{
651 if (!capc || order != capc->cc->order)
652 return false;
653
654 /* Do not accidentally pollute CMA or isolated regions*/
655 if (is_migrate_cma(migratetype) ||
656 is_migrate_isolate(migratetype))
657 return false;
658
659 /*
f0953a1b 660 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
661 * This might let an unmovable request use a reclaimable pageblock
662 * and vice-versa but no more than normal fallback logic which can
663 * have trouble finding a high-order free page.
664 */
665 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
666 return false;
667
668 capc->page = page;
669 return true;
670}
671
672#else
673static inline struct capture_control *task_capc(struct zone *zone)
674{
675 return NULL;
676}
677
678static inline bool
679compaction_capture(struct capture_control *capc, struct page *page,
680 int order, int migratetype)
681{
682 return false;
683}
684#endif /* CONFIG_COMPACTION */
685
6ab01363
AD
686/* Used for pages not on another list */
687static inline void add_to_free_list(struct page *page, struct zone *zone,
688 unsigned int order, int migratetype)
689{
690 struct free_area *area = &zone->free_area[order];
691
bf75f200 692 list_add(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
693 area->nr_free++;
694}
695
696/* Used for pages not on another list */
697static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
698 unsigned int order, int migratetype)
699{
700 struct free_area *area = &zone->free_area[order];
701
bf75f200 702 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
703 area->nr_free++;
704}
705
293ffa5e
DH
706/*
707 * Used for pages which are on another list. Move the pages to the tail
708 * of the list - so the moved pages won't immediately be considered for
709 * allocation again (e.g., optimization for memory onlining).
710 */
6ab01363
AD
711static inline void move_to_free_list(struct page *page, struct zone *zone,
712 unsigned int order, int migratetype)
713{
714 struct free_area *area = &zone->free_area[order];
715
bf75f200 716 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
717}
718
719static inline void del_page_from_free_list(struct page *page, struct zone *zone,
720 unsigned int order)
721{
36e66c55
AD
722 /* clear reported state and update reported page count */
723 if (page_reported(page))
724 __ClearPageReported(page);
725
bf75f200 726 list_del(&page->buddy_list);
6ab01363
AD
727 __ClearPageBuddy(page);
728 set_page_private(page, 0);
729 zone->free_area[order].nr_free--;
730}
731
5d671eb4
MRI
732static inline struct page *get_page_from_free_area(struct free_area *area,
733 int migratetype)
734{
735 return list_first_entry_or_null(&area->free_list[migratetype],
1bf61092 736 struct page, buddy_list);
5d671eb4
MRI
737}
738
a2129f24
AD
739/*
740 * If this is not the largest possible page, check if the buddy
741 * of the next-highest order is free. If it is, it's possible
742 * that pages are being freed that will coalesce soon. In case,
743 * that is happening, add the free page to the tail of the list
744 * so it's less likely to be used soon and more likely to be merged
745 * as a higher order page
746 */
747static inline bool
748buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
749 struct page *page, unsigned int order)
750{
8170ac47
ZY
751 unsigned long higher_page_pfn;
752 struct page *higher_page;
a2129f24 753
23baf831 754 if (order >= MAX_ORDER - 1)
a2129f24
AD
755 return false;
756
8170ac47
ZY
757 higher_page_pfn = buddy_pfn & pfn;
758 higher_page = page + (higher_page_pfn - pfn);
a2129f24 759
8170ac47
ZY
760 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
761 NULL) != NULL;
a2129f24
AD
762}
763
1da177e4
LT
764/*
765 * Freeing function for a buddy system allocator.
766 *
767 * The concept of a buddy system is to maintain direct-mapped table
768 * (containing bit values) for memory blocks of various "orders".
769 * The bottom level table contains the map for the smallest allocatable
770 * units of memory (here, pages), and each level above it describes
771 * pairs of units from the levels below, hence, "buddies".
772 * At a high level, all that happens here is marking the table entry
773 * at the bottom level available, and propagating the changes upward
774 * as necessary, plus some accounting needed to play nicely with other
775 * parts of the VM system.
776 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
777 * free pages of length of (1 << order) and marked with PageBuddy.
778 * Page's order is recorded in page_private(page) field.
1da177e4 779 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
780 * other. That is, if we allocate a small block, and both were
781 * free, the remainder of the region must be split into blocks.
1da177e4 782 * If a block is freed, and its buddy is also free, then this
5f63b720 783 * triggers coalescing into a block of larger size.
1da177e4 784 *
6d49e352 785 * -- nyc
1da177e4
LT
786 */
787
48db57f8 788static inline void __free_one_page(struct page *page,
dc4b0caf 789 unsigned long pfn,
ed0ae21d 790 struct zone *zone, unsigned int order,
f04a5d5d 791 int migratetype, fpi_t fpi_flags)
1da177e4 792{
a2129f24 793 struct capture_control *capc = task_capc(zone);
dae37a5d 794 unsigned long buddy_pfn = 0;
a2129f24 795 unsigned long combined_pfn;
a2129f24
AD
796 struct page *buddy;
797 bool to_tail;
d9dddbf5 798
d29bb978 799 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 801
ed0ae21d 802 VM_BUG_ON(migratetype == -1);
d9dddbf5 803 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 805
76741e77 806 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 807 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 808
23baf831 809 while (order < MAX_ORDER) {
5e1f0f09
MG
810 if (compaction_capture(capc, page, order, migratetype)) {
811 __mod_zone_freepage_state(zone, -(1 << order),
812 migratetype);
813 return;
814 }
13ad59df 815
8170ac47
ZY
816 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
817 if (!buddy)
d9dddbf5 818 goto done_merging;
bb0e28eb
ZY
819
820 if (unlikely(order >= pageblock_order)) {
821 /*
822 * We want to prevent merge between freepages on pageblock
823 * without fallbacks and normal pageblock. Without this,
824 * pageblock isolation could cause incorrect freepage or CMA
825 * accounting or HIGHATOMIC accounting.
826 */
827 int buddy_mt = get_pageblock_migratetype(buddy);
828
829 if (migratetype != buddy_mt
830 && (!migratetype_is_mergeable(migratetype) ||
831 !migratetype_is_mergeable(buddy_mt)))
832 goto done_merging;
833 }
834
c0a32fc5
SG
835 /*
836 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
837 * merge with it and move up one order.
838 */
b03641af 839 if (page_is_guard(buddy))
2847cf95 840 clear_page_guard(zone, buddy, order, migratetype);
b03641af 841 else
6ab01363 842 del_page_from_free_list(buddy, zone, order);
76741e77
VB
843 combined_pfn = buddy_pfn & pfn;
844 page = page + (combined_pfn - pfn);
845 pfn = combined_pfn;
1da177e4
LT
846 order++;
847 }
d9dddbf5
VB
848
849done_merging:
ab130f91 850 set_buddy_order(page, order);
6dda9d55 851
47b6a24a
DH
852 if (fpi_flags & FPI_TO_TAIL)
853 to_tail = true;
854 else if (is_shuffle_order(order))
a2129f24 855 to_tail = shuffle_pick_tail();
97500a4a 856 else
a2129f24 857 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 858
a2129f24 859 if (to_tail)
6ab01363 860 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 861 else
6ab01363 862 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
863
864 /* Notify page reporting subsystem of freed page */
f04a5d5d 865 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 866 page_reporting_notify_free(order);
1da177e4
LT
867}
868
b2c9e2fb
ZY
869/**
870 * split_free_page() -- split a free page at split_pfn_offset
871 * @free_page: the original free page
872 * @order: the order of the page
873 * @split_pfn_offset: split offset within the page
874 *
86d28b07
ZY
875 * Return -ENOENT if the free page is changed, otherwise 0
876 *
b2c9e2fb
ZY
877 * It is used when the free page crosses two pageblocks with different migratetypes
878 * at split_pfn_offset within the page. The split free page will be put into
879 * separate migratetype lists afterwards. Otherwise, the function achieves
880 * nothing.
881 */
86d28b07
ZY
882int split_free_page(struct page *free_page,
883 unsigned int order, unsigned long split_pfn_offset)
b2c9e2fb
ZY
884{
885 struct zone *zone = page_zone(free_page);
886 unsigned long free_page_pfn = page_to_pfn(free_page);
887 unsigned long pfn;
888 unsigned long flags;
889 int free_page_order;
86d28b07
ZY
890 int mt;
891 int ret = 0;
b2c9e2fb 892
88ee1343 893 if (split_pfn_offset == 0)
86d28b07 894 return ret;
88ee1343 895
b2c9e2fb 896 spin_lock_irqsave(&zone->lock, flags);
86d28b07
ZY
897
898 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
899 ret = -ENOENT;
900 goto out;
901 }
902
903 mt = get_pageblock_migratetype(free_page);
904 if (likely(!is_migrate_isolate(mt)))
905 __mod_zone_freepage_state(zone, -(1UL << order), mt);
906
b2c9e2fb
ZY
907 del_page_from_free_list(free_page, zone, order);
908 for (pfn = free_page_pfn;
909 pfn < free_page_pfn + (1UL << order);) {
910 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
911
86d28b07 912 free_page_order = min_t(unsigned int,
88ee1343
ZY
913 pfn ? __ffs(pfn) : order,
914 __fls(split_pfn_offset));
b2c9e2fb
ZY
915 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
916 mt, FPI_NONE);
917 pfn += 1UL << free_page_order;
918 split_pfn_offset -= (1UL << free_page_order);
919 /* we have done the first part, now switch to second part */
920 if (split_pfn_offset == 0)
921 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
922 }
86d28b07 923out:
b2c9e2fb 924 spin_unlock_irqrestore(&zone->lock, flags);
86d28b07 925 return ret;
b2c9e2fb 926}
7bfec6f4
MG
927/*
928 * A bad page could be due to a number of fields. Instead of multiple branches,
929 * try and check multiple fields with one check. The caller must do a detailed
930 * check if necessary.
931 */
932static inline bool page_expected_state(struct page *page,
933 unsigned long check_flags)
934{
935 if (unlikely(atomic_read(&page->_mapcount) != -1))
936 return false;
937
938 if (unlikely((unsigned long)page->mapping |
939 page_ref_count(page) |
940#ifdef CONFIG_MEMCG
48060834 941 page->memcg_data |
7bfec6f4
MG
942#endif
943 (page->flags & check_flags)))
944 return false;
945
946 return true;
947}
948
58b7f119 949static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 950{
82a3241a 951 const char *bad_reason = NULL;
f0b791a3 952
53f9263b 953 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
954 bad_reason = "nonzero mapcount";
955 if (unlikely(page->mapping != NULL))
956 bad_reason = "non-NULL mapping";
fe896d18 957 if (unlikely(page_ref_count(page) != 0))
0139aa7b 958 bad_reason = "nonzero _refcount";
58b7f119
WY
959 if (unlikely(page->flags & flags)) {
960 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
961 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
962 else
963 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 964 }
9edad6ea 965#ifdef CONFIG_MEMCG
48060834 966 if (unlikely(page->memcg_data))
9edad6ea
JW
967 bad_reason = "page still charged to cgroup";
968#endif
58b7f119
WY
969 return bad_reason;
970}
971
a8368cd8 972static void free_page_is_bad_report(struct page *page)
58b7f119
WY
973{
974 bad_page(page,
975 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
976}
977
a8368cd8 978static inline bool free_page_is_bad(struct page *page)
bb552ac6 979{
da838d4f 980 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
a8368cd8 981 return false;
bb552ac6
MG
982
983 /* Something has gone sideways, find it */
a8368cd8
AM
984 free_page_is_bad_report(page);
985 return true;
1da177e4
LT
986}
987
ecbb490d
KW
988static inline bool is_check_pages_enabled(void)
989{
990 return static_branch_unlikely(&check_pages_enabled);
991}
992
8666925c 993static int free_tail_page_prepare(struct page *head_page, struct page *page)
4db7548c 994{
94688e8e 995 struct folio *folio = (struct folio *)head_page;
4db7548c
MG
996 int ret = 1;
997
998 /*
999 * We rely page->lru.next never has bit 0 set, unless the page
1000 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1001 */
1002 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1003
ecbb490d 1004 if (!is_check_pages_enabled()) {
4db7548c
MG
1005 ret = 0;
1006 goto out;
1007 }
1008 switch (page - head_page) {
1009 case 1:
cb67f428 1010 /* the first tail page: these may be in place of ->mapping */
65a689f3
MWO
1011 if (unlikely(folio_entire_mapcount(folio))) {
1012 bad_page(page, "nonzero entire_mapcount");
4db7548c
MG
1013 goto out;
1014 }
65a689f3
MWO
1015 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1016 bad_page(page, "nonzero nr_pages_mapped");
cb67f428
HD
1017 goto out;
1018 }
94688e8e
MWO
1019 if (unlikely(atomic_read(&folio->_pincount))) {
1020 bad_page(page, "nonzero pincount");
cb67f428
HD
1021 goto out;
1022 }
4db7548c
MG
1023 break;
1024 case 2:
1025 /*
1026 * the second tail page: ->mapping is
fa3015b7 1027 * deferred_list.next -- ignore value.
4db7548c
MG
1028 */
1029 break;
1030 default:
1031 if (page->mapping != TAIL_MAPPING) {
82a3241a 1032 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1033 goto out;
1034 }
1035 break;
1036 }
1037 if (unlikely(!PageTail(page))) {
82a3241a 1038 bad_page(page, "PageTail not set");
4db7548c
MG
1039 goto out;
1040 }
1041 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1042 bad_page(page, "compound_head not consistent");
4db7548c
MG
1043 goto out;
1044 }
1045 ret = 0;
1046out:
1047 page->mapping = NULL;
1048 clear_compound_head(page);
1049 return ret;
1050}
1051
94ae8b83
AK
1052/*
1053 * Skip KASAN memory poisoning when either:
1054 *
0a54864f
PC
1055 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1056 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1057 * using page tags instead (see below).
1058 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1059 * that error detection is disabled for accesses via the page address.
1060 *
1061 * Pages will have match-all tags in the following circumstances:
1062 *
1063 * 1. Pages are being initialized for the first time, including during deferred
1064 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1065 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1066 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1067 * 3. The allocation was excluded from being checked due to sampling,
44383cef 1068 * see the call to kasan_unpoison_pages.
94ae8b83
AK
1069 *
1070 * Poisoning pages during deferred memory init will greatly lengthen the
1071 * process and cause problem in large memory systems as the deferred pages
1072 * initialization is done with interrupt disabled.
1073 *
1074 * Assuming that there will be no reference to those newly initialized
1075 * pages before they are ever allocated, this should have no effect on
1076 * KASAN memory tracking as the poison will be properly inserted at page
1077 * allocation time. The only corner case is when pages are allocated by
1078 * on-demand allocation and then freed again before the deferred pages
1079 * initialization is done, but this is not likely to happen.
1080 */
1081static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1082{
0a54864f
PC
1083 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1084 return deferred_pages_enabled();
1085
1086 return page_kasan_tag(page) == 0xff;
94ae8b83
AK
1087}
1088
aeaec8e2 1089static void kernel_init_pages(struct page *page, int numpages)
6471384a
AP
1090{
1091 int i;
1092
9e15afa5
QC
1093 /* s390's use of memset() could override KASAN redzones. */
1094 kasan_disable_current();
d9da8f6c
AK
1095 for (i = 0; i < numpages; i++)
1096 clear_highpage_kasan_tagged(page + i);
9e15afa5 1097 kasan_enable_current();
6471384a
AP
1098}
1099
e2769dbd 1100static __always_inline bool free_pages_prepare(struct page *page,
700d2e9a 1101 unsigned int order, fpi_t fpi_flags)
4db7548c 1102{
e2769dbd 1103 int bad = 0;
f446883d 1104 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
c3525330 1105 bool init = want_init_on_free();
4db7548c 1106
4db7548c
MG
1107 VM_BUG_ON_PAGE(PageTail(page), page);
1108
e2769dbd 1109 trace_mm_page_free(page, order);
b073d7f8 1110 kmsan_free_page(page, order);
e2769dbd 1111
79f5f8fa
OS
1112 if (unlikely(PageHWPoison(page)) && !order) {
1113 /*
1114 * Do not let hwpoison pages hit pcplists/buddy
1115 * Untie memcg state and reset page's owner
1116 */
f7a449f7 1117 if (memcg_kmem_online() && PageMemcgKmem(page))
79f5f8fa
OS
1118 __memcg_kmem_uncharge_page(page, order);
1119 reset_page_owner(page, order);
df4e817b 1120 page_table_check_free(page, order);
79f5f8fa
OS
1121 return false;
1122 }
1123
e2769dbd
MG
1124 /*
1125 * Check tail pages before head page information is cleared to
1126 * avoid checking PageCompound for order-0 pages.
1127 */
1128 if (unlikely(order)) {
1129 bool compound = PageCompound(page);
1130 int i;
1131
1132 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1133
cb67f428 1134 if (compound)
eac96c3e 1135 ClearPageHasHWPoisoned(page);
e2769dbd
MG
1136 for (i = 1; i < (1 << order); i++) {
1137 if (compound)
8666925c 1138 bad += free_tail_page_prepare(page, page + i);
fce0b421 1139 if (is_check_pages_enabled()) {
8666925c 1140 if (free_page_is_bad(page + i)) {
700d2e9a
VB
1141 bad++;
1142 continue;
1143 }
e2769dbd
MG
1144 }
1145 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1146 }
1147 }
bda807d4 1148 if (PageMappingFlags(page))
4db7548c 1149 page->mapping = NULL;
f7a449f7 1150 if (memcg_kmem_online() && PageMemcgKmem(page))
f4b00eab 1151 __memcg_kmem_uncharge_page(page, order);
fce0b421 1152 if (is_check_pages_enabled()) {
700d2e9a
VB
1153 if (free_page_is_bad(page))
1154 bad++;
1155 if (bad)
1156 return false;
1157 }
4db7548c 1158
e2769dbd
MG
1159 page_cpupid_reset_last(page);
1160 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1161 reset_page_owner(page, order);
df4e817b 1162 page_table_check_free(page, order);
4db7548c
MG
1163
1164 if (!PageHighMem(page)) {
1165 debug_check_no_locks_freed(page_address(page),
e2769dbd 1166 PAGE_SIZE << order);
4db7548c 1167 debug_check_no_obj_freed(page_address(page),
e2769dbd 1168 PAGE_SIZE << order);
4db7548c 1169 }
6471384a 1170
8db26a3d
VB
1171 kernel_poison_pages(page, 1 << order);
1172
f9d79e8d 1173 /*
1bb5eab3 1174 * As memory initialization might be integrated into KASAN,
7c13c163 1175 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1176 * kept together to avoid discrepancies in behavior.
1177 *
f9d79e8d
AK
1178 * With hardware tag-based KASAN, memory tags must be set before the
1179 * page becomes unavailable via debug_pagealloc or arch_free_page.
1180 */
f446883d 1181 if (!skip_kasan_poison) {
c3525330 1182 kasan_poison_pages(page, order, init);
f9d79e8d 1183
db8a0477
AK
1184 /* Memory is already initialized if KASAN did it internally. */
1185 if (kasan_has_integrated_init())
1186 init = false;
1187 }
1188 if (init)
aeaec8e2 1189 kernel_init_pages(page, 1 << order);
db8a0477 1190
234fdce8
QC
1191 /*
1192 * arch_free_page() can make the page's contents inaccessible. s390
1193 * does this. So nothing which can access the page's contents should
1194 * happen after this.
1195 */
1196 arch_free_page(page, order);
1197
77bc7fd6 1198 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1199
4db7548c
MG
1200 return true;
1201}
1202
1da177e4 1203/*
5f8dcc21 1204 * Frees a number of pages from the PCP lists
7cba630b 1205 * Assumes all pages on list are in same zone.
207f36ee 1206 * count is the number of pages to free.
1da177e4 1207 */
5f8dcc21 1208static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1209 struct per_cpu_pages *pcp,
1210 int pindex)
1da177e4 1211{
57490774 1212 unsigned long flags;
35b6d770
MG
1213 int min_pindex = 0;
1214 int max_pindex = NR_PCP_LISTS - 1;
44042b44 1215 unsigned int order;
3777999d 1216 bool isolated_pageblocks;
8b10b465 1217 struct page *page;
f2260e6b 1218
88e8ac11
CTR
1219 /*
1220 * Ensure proper count is passed which otherwise would stuck in the
1221 * below while (list_empty(list)) loop.
1222 */
1223 count = min(pcp->count, count);
d61372bc
MG
1224
1225 /* Ensure requested pindex is drained first. */
1226 pindex = pindex - 1;
1227
57490774 1228 spin_lock_irqsave(&zone->lock, flags);
8b10b465
MG
1229 isolated_pageblocks = has_isolate_pageblock(zone);
1230
44042b44 1231 while (count > 0) {
5f8dcc21 1232 struct list_head *list;
fd56eef2 1233 int nr_pages;
5f8dcc21 1234
fd56eef2 1235 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1236 do {
35b6d770
MG
1237 if (++pindex > max_pindex)
1238 pindex = min_pindex;
44042b44 1239 list = &pcp->lists[pindex];
35b6d770
MG
1240 if (!list_empty(list))
1241 break;
1242
1243 if (pindex == max_pindex)
1244 max_pindex--;
1245 if (pindex == min_pindex)
1246 min_pindex++;
1247 } while (1);
48db57f8 1248
44042b44 1249 order = pindex_to_order(pindex);
fd56eef2 1250 nr_pages = 1 << order;
a6f9edd6 1251 do {
8b10b465
MG
1252 int mt;
1253
bf75f200 1254 page = list_last_entry(list, struct page, pcp_list);
8b10b465
MG
1255 mt = get_pcppage_migratetype(page);
1256
0a5f4e5b 1257 /* must delete to avoid corrupting pcp list */
bf75f200 1258 list_del(&page->pcp_list);
fd56eef2
MG
1259 count -= nr_pages;
1260 pcp->count -= nr_pages;
aa016d14 1261
8b10b465
MG
1262 /* MIGRATE_ISOLATE page should not go to pcplists */
1263 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1264 /* Pageblock could have been isolated meanwhile */
1265 if (unlikely(isolated_pageblocks))
1266 mt = get_pageblock_migratetype(page);
0a5f4e5b 1267
8b10b465
MG
1268 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1269 trace_mm_page_pcpu_drain(page, order, mt);
1270 } while (count > 0 && !list_empty(list));
0a5f4e5b 1271 }
8b10b465 1272
57490774 1273 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4
LT
1274}
1275
dc4b0caf
MG
1276static void free_one_page(struct zone *zone,
1277 struct page *page, unsigned long pfn,
7aeb09f9 1278 unsigned int order,
7fef431b 1279 int migratetype, fpi_t fpi_flags)
1da177e4 1280{
df1acc85
MG
1281 unsigned long flags;
1282
1283 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1284 if (unlikely(has_isolate_pageblock(zone) ||
1285 is_migrate_isolate(migratetype))) {
1286 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1287 }
7fef431b 1288 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1289 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1290}
1291
7fef431b
DH
1292static void __free_pages_ok(struct page *page, unsigned int order,
1293 fpi_t fpi_flags)
ec95f53a 1294{
d34b0733 1295 unsigned long flags;
95e34412 1296 int migratetype;
dc4b0caf 1297 unsigned long pfn = page_to_pfn(page);
56f0e661 1298 struct zone *zone = page_zone(page);
ec95f53a 1299
700d2e9a 1300 if (!free_pages_prepare(page, order, fpi_flags))
ec95f53a
KM
1301 return;
1302
ac4b2901
DW
1303 /*
1304 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1305 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1306 * This will reduce the lock holding time.
1307 */
cfc47a28 1308 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1309
56f0e661 1310 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1311 if (unlikely(has_isolate_pageblock(zone) ||
1312 is_migrate_isolate(migratetype))) {
1313 migratetype = get_pfnblock_migratetype(page, pfn);
1314 }
1315 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1316 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1317
d34b0733 1318 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1319}
1320
a9cd410a 1321void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1322{
c3993076 1323 unsigned int nr_pages = 1 << order;
e2d0bd2b 1324 struct page *p = page;
c3993076 1325 unsigned int loop;
a226f6c8 1326
7fef431b
DH
1327 /*
1328 * When initializing the memmap, __init_single_page() sets the refcount
1329 * of all pages to 1 ("allocated"/"not free"). We have to set the
1330 * refcount of all involved pages to 0.
1331 */
e2d0bd2b
YL
1332 prefetchw(p);
1333 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1334 prefetchw(p + 1);
c3993076
JW
1335 __ClearPageReserved(p);
1336 set_page_count(p, 0);
a226f6c8 1337 }
e2d0bd2b
YL
1338 __ClearPageReserved(p);
1339 set_page_count(p, 0);
c3993076 1340
9705bea5 1341 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b 1342
dcdfdd40
KS
1343 if (page_contains_unaccepted(page, order)) {
1344 if (order == MAX_ORDER && __free_unaccepted(page))
1345 return;
1346
1347 accept_page(page, order);
1348 }
1349
7fef431b
DH
1350 /*
1351 * Bypass PCP and place fresh pages right to the tail, primarily
1352 * relevant for memory onlining.
1353 */
0a54864f 1354 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1355}
1356
7cf91a98
JK
1357/*
1358 * Check that the whole (or subset of) a pageblock given by the interval of
1359 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1360 * with the migration of free compaction scanner.
7cf91a98
JK
1361 *
1362 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1363 *
1364 * It's possible on some configurations to have a setup like node0 node1 node0
1365 * i.e. it's possible that all pages within a zones range of pages do not
1366 * belong to a single zone. We assume that a border between node0 and node1
1367 * can occur within a single pageblock, but not a node0 node1 node0
1368 * interleaving within a single pageblock. It is therefore sufficient to check
1369 * the first and last page of a pageblock and avoid checking each individual
1370 * page in a pageblock.
65f67a3e
BW
1371 *
1372 * Note: the function may return non-NULL struct page even for a page block
1373 * which contains a memory hole (i.e. there is no physical memory for a subset
1374 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1375 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1376 * even though the start pfn is online and valid. This should be safe most of
1377 * the time because struct pages are still initialized via init_unavailable_range()
1378 * and pfn walkers shouldn't touch any physical memory range for which they do
1379 * not recognize any specific metadata in struct pages.
7cf91a98
JK
1380 */
1381struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1382 unsigned long end_pfn, struct zone *zone)
1383{
1384 struct page *start_page;
1385 struct page *end_page;
1386
1387 /* end_pfn is one past the range we are checking */
1388 end_pfn--;
1389
3c4322c9 1390 if (!pfn_valid(end_pfn))
7cf91a98
JK
1391 return NULL;
1392
2d070eab
MH
1393 start_page = pfn_to_online_page(start_pfn);
1394 if (!start_page)
1395 return NULL;
7cf91a98
JK
1396
1397 if (page_zone(start_page) != zone)
1398 return NULL;
1399
1400 end_page = pfn_to_page(end_pfn);
1401
1402 /* This gives a shorter code than deriving page_zone(end_page) */
1403 if (page_zone_id(start_page) != page_zone_id(end_page))
1404 return NULL;
1405
1406 return start_page;
1407}
1408
2f47a91f 1409/*
9420f89d
MRI
1410 * The order of subdivision here is critical for the IO subsystem.
1411 * Please do not alter this order without good reasons and regression
1412 * testing. Specifically, as large blocks of memory are subdivided,
1413 * the order in which smaller blocks are delivered depends on the order
1414 * they're subdivided in this function. This is the primary factor
1415 * influencing the order in which pages are delivered to the IO
1416 * subsystem according to empirical testing, and this is also justified
1417 * by considering the behavior of a buddy system containing a single
1418 * large block of memory acted on by a series of small allocations.
1419 * This behavior is a critical factor in sglist merging's success.
80b1f41c 1420 *
9420f89d 1421 * -- nyc
2f47a91f 1422 */
9420f89d
MRI
1423static inline void expand(struct zone *zone, struct page *page,
1424 int low, int high, int migratetype)
2f47a91f 1425{
9420f89d 1426 unsigned long size = 1 << high;
2f47a91f 1427
9420f89d
MRI
1428 while (high > low) {
1429 high--;
1430 size >>= 1;
1431 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2f47a91f 1432
9420f89d
MRI
1433 /*
1434 * Mark as guard pages (or page), that will allow to
1435 * merge back to allocator when buddy will be freed.
1436 * Corresponding page table entries will not be touched,
1437 * pages will stay not present in virtual address space
1438 */
1439 if (set_page_guard(zone, &page[size], high, migratetype))
2f47a91f 1440 continue;
9420f89d
MRI
1441
1442 add_to_free_list(&page[size], zone, high, migratetype);
1443 set_buddy_order(&page[size], high);
2f47a91f 1444 }
2f47a91f
PT
1445}
1446
9420f89d 1447static void check_new_page_bad(struct page *page)
0e56acae 1448{
9420f89d
MRI
1449 if (unlikely(page->flags & __PG_HWPOISON)) {
1450 /* Don't complain about hwpoisoned pages */
1451 page_mapcount_reset(page); /* remove PageBuddy */
1452 return;
0e56acae
AD
1453 }
1454
9420f89d
MRI
1455 bad_page(page,
1456 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
0e56acae
AD
1457}
1458
1459/*
9420f89d 1460 * This page is about to be returned from the page allocator
0e56acae 1461 */
9420f89d 1462static int check_new_page(struct page *page)
0e56acae 1463{
9420f89d
MRI
1464 if (likely(page_expected_state(page,
1465 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1466 return 0;
0e56acae 1467
9420f89d
MRI
1468 check_new_page_bad(page);
1469 return 1;
1470}
0e56acae 1471
9420f89d
MRI
1472static inline bool check_new_pages(struct page *page, unsigned int order)
1473{
1474 if (is_check_pages_enabled()) {
1475 for (int i = 0; i < (1 << order); i++) {
1476 struct page *p = page + i;
0e56acae 1477
8666925c 1478 if (check_new_page(p))
9420f89d 1479 return true;
0e56acae
AD
1480 }
1481 }
1482
9420f89d 1483 return false;
0e56acae
AD
1484}
1485
9420f89d 1486static inline bool should_skip_kasan_unpoison(gfp_t flags)
e4443149 1487{
9420f89d
MRI
1488 /* Don't skip if a software KASAN mode is enabled. */
1489 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1490 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1491 return false;
e4443149 1492
9420f89d
MRI
1493 /* Skip, if hardware tag-based KASAN is not enabled. */
1494 if (!kasan_hw_tags_enabled())
1495 return true;
e4443149
DJ
1496
1497 /*
9420f89d
MRI
1498 * With hardware tag-based KASAN enabled, skip if this has been
1499 * requested via __GFP_SKIP_KASAN.
e4443149 1500 */
9420f89d 1501 return flags & __GFP_SKIP_KASAN;
e4443149
DJ
1502}
1503
9420f89d 1504static inline bool should_skip_init(gfp_t flags)
ecd09650 1505{
9420f89d
MRI
1506 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1507 if (!kasan_hw_tags_enabled())
1508 return false;
1509
1510 /* For hardware tag-based KASAN, skip if requested. */
1511 return (flags & __GFP_SKIP_ZERO);
ecd09650
DJ
1512}
1513
9420f89d
MRI
1514inline void post_alloc_hook(struct page *page, unsigned int order,
1515 gfp_t gfp_flags)
7e18adb4 1516{
9420f89d
MRI
1517 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1518 !should_skip_init(gfp_flags);
1519 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1520 int i;
1521
1522 set_page_private(page, 0);
1523 set_page_refcounted(page);
0e1cc95b 1524
9420f89d
MRI
1525 arch_alloc_page(page, order);
1526 debug_pagealloc_map_pages(page, 1 << order);
7e18adb4 1527
3d060856 1528 /*
9420f89d
MRI
1529 * Page unpoisoning must happen before memory initialization.
1530 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1531 * allocations and the page unpoisoning code will complain.
3d060856 1532 */
9420f89d 1533 kernel_unpoison_pages(page, 1 << order);
862b6dee 1534
1bb5eab3
AK
1535 /*
1536 * As memory initialization might be integrated into KASAN,
b42090ae 1537 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
1538 * kept together to avoid discrepancies in behavior.
1539 */
9294b128
AK
1540
1541 /*
44383cef
AK
1542 * If memory tags should be zeroed
1543 * (which happens only when memory should be initialized as well).
9294b128 1544 */
44383cef 1545 if (zero_tags) {
420ef683 1546 /* Initialize both memory and memory tags. */
9294b128
AK
1547 for (i = 0; i != 1 << order; ++i)
1548 tag_clear_highpage(page + i);
1549
44383cef 1550 /* Take note that memory was initialized by the loop above. */
9294b128
AK
1551 init = false;
1552 }
0a54864f
PC
1553 if (!should_skip_kasan_unpoison(gfp_flags) &&
1554 kasan_unpoison_pages(page, order, init)) {
1555 /* Take note that memory was initialized by KASAN. */
1556 if (kasan_has_integrated_init())
1557 init = false;
1558 } else {
1559 /*
1560 * If memory tags have not been set by KASAN, reset the page
1561 * tags to ensure page_address() dereferencing does not fault.
1562 */
70c248ac
CM
1563 for (i = 0; i != 1 << order; ++i)
1564 page_kasan_tag_reset(page + i);
7a3b8353 1565 }
44383cef 1566 /* If memory is still not initialized, initialize it now. */
7e3cbba6 1567 if (init)
aeaec8e2 1568 kernel_init_pages(page, 1 << order);
1bb5eab3
AK
1569
1570 set_page_owner(page, order, gfp_flags);
df4e817b 1571 page_table_check_alloc(page, order);
46f24fd8
JK
1572}
1573
479f854a 1574static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1575 unsigned int alloc_flags)
2a7684a2 1576{
46f24fd8 1577 post_alloc_hook(page, order, gfp_flags);
17cf4406 1578
17cf4406
NP
1579 if (order && (gfp_flags & __GFP_COMP))
1580 prep_compound_page(page, order);
1581
75379191 1582 /*
2f064f34 1583 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1584 * allocate the page. The expectation is that the caller is taking
1585 * steps that will free more memory. The caller should avoid the page
1586 * being used for !PFMEMALLOC purposes.
1587 */
2f064f34
MH
1588 if (alloc_flags & ALLOC_NO_WATERMARKS)
1589 set_page_pfmemalloc(page);
1590 else
1591 clear_page_pfmemalloc(page);
1da177e4
LT
1592}
1593
56fd56b8
MG
1594/*
1595 * Go through the free lists for the given migratetype and remove
1596 * the smallest available page from the freelists
1597 */
85ccc8fa 1598static __always_inline
728ec980 1599struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1600 int migratetype)
1601{
1602 unsigned int current_order;
b8af2941 1603 struct free_area *area;
56fd56b8
MG
1604 struct page *page;
1605
1606 /* Find a page of the appropriate size in the preferred list */
23baf831 1607 for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
56fd56b8 1608 area = &(zone->free_area[current_order]);
b03641af 1609 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
1610 if (!page)
1611 continue;
6ab01363
AD
1612 del_page_from_free_list(page, zone, current_order);
1613 expand(zone, page, order, current_order, migratetype);
bb14c2c7 1614 set_pcppage_migratetype(page, migratetype);
10e0f753
WY
1615 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1616 pcp_allowed_order(order) &&
1617 migratetype < MIGRATE_PCPTYPES);
56fd56b8
MG
1618 return page;
1619 }
1620
1621 return NULL;
1622}
1623
1624
b2a0ac88
MG
1625/*
1626 * This array describes the order lists are fallen back to when
1627 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
1628 *
1629 * The other migratetypes do not have fallbacks.
b2a0ac88 1630 */
aa02d3c1
YD
1631static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1632 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1633 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1634 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
b2a0ac88
MG
1635};
1636
dc67647b 1637#ifdef CONFIG_CMA
85ccc8fa 1638static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1639 unsigned int order)
1640{
1641 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1642}
1643#else
1644static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1645 unsigned int order) { return NULL; }
1646#endif
1647
c361be55 1648/*
293ffa5e 1649 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 1650 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1651 * boundary. If alignment is required, use move_freepages_block()
1652 */
02aa0cdd 1653static int move_freepages(struct zone *zone,
39ddb991 1654 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 1655 int migratetype, int *num_movable)
c361be55
MG
1656{
1657 struct page *page;
39ddb991 1658 unsigned long pfn;
d00181b9 1659 unsigned int order;
d100313f 1660 int pages_moved = 0;
c361be55 1661
39ddb991 1662 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 1663 page = pfn_to_page(pfn);
c361be55 1664 if (!PageBuddy(page)) {
02aa0cdd
VB
1665 /*
1666 * We assume that pages that could be isolated for
1667 * migration are movable. But we don't actually try
1668 * isolating, as that would be expensive.
1669 */
1670 if (num_movable &&
1671 (PageLRU(page) || __PageMovable(page)))
1672 (*num_movable)++;
39ddb991 1673 pfn++;
c361be55
MG
1674 continue;
1675 }
1676
cd961038
DR
1677 /* Make sure we are not inadvertently changing nodes */
1678 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1679 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1680
ab130f91 1681 order = buddy_order(page);
6ab01363 1682 move_to_free_list(page, zone, order, migratetype);
39ddb991 1683 pfn += 1 << order;
d100313f 1684 pages_moved += 1 << order;
c361be55
MG
1685 }
1686
d100313f 1687 return pages_moved;
c361be55
MG
1688}
1689
ee6f509c 1690int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1691 int migratetype, int *num_movable)
c361be55 1692{
39ddb991 1693 unsigned long start_pfn, end_pfn, pfn;
c361be55 1694
4a222127
DR
1695 if (num_movable)
1696 *num_movable = 0;
1697
39ddb991 1698 pfn = page_to_pfn(page);
4f9bc69a
KW
1699 start_pfn = pageblock_start_pfn(pfn);
1700 end_pfn = pageblock_end_pfn(pfn) - 1;
c361be55
MG
1701
1702 /* Do not cross zone boundaries */
108bcc96 1703 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 1704 start_pfn = pfn;
108bcc96 1705 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1706 return 0;
1707
39ddb991 1708 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 1709 num_movable);
c361be55
MG
1710}
1711
2f66a68f
MG
1712static void change_pageblock_range(struct page *pageblock_page,
1713 int start_order, int migratetype)
1714{
1715 int nr_pageblocks = 1 << (start_order - pageblock_order);
1716
1717 while (nr_pageblocks--) {
1718 set_pageblock_migratetype(pageblock_page, migratetype);
1719 pageblock_page += pageblock_nr_pages;
1720 }
1721}
1722
fef903ef 1723/*
9c0415eb
VB
1724 * When we are falling back to another migratetype during allocation, try to
1725 * steal extra free pages from the same pageblocks to satisfy further
1726 * allocations, instead of polluting multiple pageblocks.
1727 *
1728 * If we are stealing a relatively large buddy page, it is likely there will
1729 * be more free pages in the pageblock, so try to steal them all. For
1730 * reclaimable and unmovable allocations, we steal regardless of page size,
1731 * as fragmentation caused by those allocations polluting movable pageblocks
1732 * is worse than movable allocations stealing from unmovable and reclaimable
1733 * pageblocks.
fef903ef 1734 */
4eb7dce6
JK
1735static bool can_steal_fallback(unsigned int order, int start_mt)
1736{
1737 /*
1738 * Leaving this order check is intended, although there is
1739 * relaxed order check in next check. The reason is that
1740 * we can actually steal whole pageblock if this condition met,
1741 * but, below check doesn't guarantee it and that is just heuristic
1742 * so could be changed anytime.
1743 */
1744 if (order >= pageblock_order)
1745 return true;
1746
1747 if (order >= pageblock_order / 2 ||
1748 start_mt == MIGRATE_RECLAIMABLE ||
1749 start_mt == MIGRATE_UNMOVABLE ||
1750 page_group_by_mobility_disabled)
1751 return true;
1752
1753 return false;
1754}
1755
597c8920 1756static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
1757{
1758 unsigned long max_boost;
1759
1760 if (!watermark_boost_factor)
597c8920 1761 return false;
14f69140
HW
1762 /*
1763 * Don't bother in zones that are unlikely to produce results.
1764 * On small machines, including kdump capture kernels running
1765 * in a small area, boosting the watermark can cause an out of
1766 * memory situation immediately.
1767 */
1768 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 1769 return false;
1c30844d
MG
1770
1771 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1772 watermark_boost_factor, 10000);
94b3334c
MG
1773
1774 /*
1775 * high watermark may be uninitialised if fragmentation occurs
1776 * very early in boot so do not boost. We do not fall
1777 * through and boost by pageblock_nr_pages as failing
1778 * allocations that early means that reclaim is not going
1779 * to help and it may even be impossible to reclaim the
1780 * boosted watermark resulting in a hang.
1781 */
1782 if (!max_boost)
597c8920 1783 return false;
94b3334c 1784
1c30844d
MG
1785 max_boost = max(pageblock_nr_pages, max_boost);
1786
1787 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1788 max_boost);
597c8920
JW
1789
1790 return true;
1c30844d
MG
1791}
1792
4eb7dce6
JK
1793/*
1794 * This function implements actual steal behaviour. If order is large enough,
1795 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1796 * pageblock to our migratetype and determine how many already-allocated pages
1797 * are there in the pageblock with a compatible migratetype. If at least half
1798 * of pages are free or compatible, we can change migratetype of the pageblock
1799 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
1800 */
1801static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 1802 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 1803{
ab130f91 1804 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
1805 int free_pages, movable_pages, alike_pages;
1806 int old_block_type;
1807
1808 old_block_type = get_pageblock_migratetype(page);
fef903ef 1809
3bc48f96
VB
1810 /*
1811 * This can happen due to races and we want to prevent broken
1812 * highatomic accounting.
1813 */
02aa0cdd 1814 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
1815 goto single_page;
1816
fef903ef
SB
1817 /* Take ownership for orders >= pageblock_order */
1818 if (current_order >= pageblock_order) {
1819 change_pageblock_range(page, current_order, start_type);
3bc48f96 1820 goto single_page;
fef903ef
SB
1821 }
1822
1c30844d
MG
1823 /*
1824 * Boost watermarks to increase reclaim pressure to reduce the
1825 * likelihood of future fallbacks. Wake kswapd now as the node
1826 * may be balanced overall and kswapd will not wake naturally.
1827 */
597c8920 1828 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 1829 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 1830
3bc48f96
VB
1831 /* We are not allowed to try stealing from the whole block */
1832 if (!whole_block)
1833 goto single_page;
1834
02aa0cdd
VB
1835 free_pages = move_freepages_block(zone, page, start_type,
1836 &movable_pages);
1837 /*
1838 * Determine how many pages are compatible with our allocation.
1839 * For movable allocation, it's the number of movable pages which
1840 * we just obtained. For other types it's a bit more tricky.
1841 */
1842 if (start_type == MIGRATE_MOVABLE) {
1843 alike_pages = movable_pages;
1844 } else {
1845 /*
1846 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1847 * to MOVABLE pageblock, consider all non-movable pages as
1848 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1849 * vice versa, be conservative since we can't distinguish the
1850 * exact migratetype of non-movable pages.
1851 */
1852 if (old_block_type == MIGRATE_MOVABLE)
1853 alike_pages = pageblock_nr_pages
1854 - (free_pages + movable_pages);
1855 else
1856 alike_pages = 0;
1857 }
1858
3bc48f96 1859 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 1860 if (!free_pages)
3bc48f96 1861 goto single_page;
fef903ef 1862
02aa0cdd
VB
1863 /*
1864 * If a sufficient number of pages in the block are either free or of
1865 * comparable migratability as our allocation, claim the whole block.
1866 */
1867 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
1868 page_group_by_mobility_disabled)
1869 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
1870
1871 return;
1872
1873single_page:
6ab01363 1874 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
1875}
1876
2149cdae
JK
1877/*
1878 * Check whether there is a suitable fallback freepage with requested order.
1879 * If only_stealable is true, this function returns fallback_mt only if
1880 * we can steal other freepages all together. This would help to reduce
1881 * fragmentation due to mixed migratetype pages in one pageblock.
1882 */
1883int find_suitable_fallback(struct free_area *area, unsigned int order,
1884 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1885{
1886 int i;
1887 int fallback_mt;
1888
1889 if (area->nr_free == 0)
1890 return -1;
1891
1892 *can_steal = false;
aa02d3c1 1893 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
4eb7dce6 1894 fallback_mt = fallbacks[migratetype][i];
b03641af 1895 if (free_area_empty(area, fallback_mt))
4eb7dce6 1896 continue;
fef903ef 1897
4eb7dce6
JK
1898 if (can_steal_fallback(order, migratetype))
1899 *can_steal = true;
1900
2149cdae
JK
1901 if (!only_stealable)
1902 return fallback_mt;
1903
1904 if (*can_steal)
1905 return fallback_mt;
fef903ef 1906 }
4eb7dce6
JK
1907
1908 return -1;
fef903ef
SB
1909}
1910
0aaa29a5
MG
1911/*
1912 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1913 * there are no empty page blocks that contain a page with a suitable order
1914 */
1915static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1916 unsigned int alloc_order)
1917{
1918 int mt;
1919 unsigned long max_managed, flags;
1920
1921 /*
1922 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1923 * Check is race-prone but harmless.
1924 */
9705bea5 1925 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
1926 if (zone->nr_reserved_highatomic >= max_managed)
1927 return;
1928
1929 spin_lock_irqsave(&zone->lock, flags);
1930
1931 /* Recheck the nr_reserved_highatomic limit under the lock */
1932 if (zone->nr_reserved_highatomic >= max_managed)
1933 goto out_unlock;
1934
1935 /* Yoink! */
1936 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
1937 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1938 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
1939 zone->nr_reserved_highatomic += pageblock_nr_pages;
1940 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 1941 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
1942 }
1943
1944out_unlock:
1945 spin_unlock_irqrestore(&zone->lock, flags);
1946}
1947
1948/*
1949 * Used when an allocation is about to fail under memory pressure. This
1950 * potentially hurts the reliability of high-order allocations when under
1951 * intense memory pressure but failed atomic allocations should be easier
1952 * to recover from than an OOM.
29fac03b
MK
1953 *
1954 * If @force is true, try to unreserve a pageblock even though highatomic
1955 * pageblock is exhausted.
0aaa29a5 1956 */
29fac03b
MK
1957static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1958 bool force)
0aaa29a5
MG
1959{
1960 struct zonelist *zonelist = ac->zonelist;
1961 unsigned long flags;
1962 struct zoneref *z;
1963 struct zone *zone;
1964 struct page *page;
1965 int order;
04c8716f 1966 bool ret;
0aaa29a5 1967
97a225e6 1968 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 1969 ac->nodemask) {
29fac03b
MK
1970 /*
1971 * Preserve at least one pageblock unless memory pressure
1972 * is really high.
1973 */
1974 if (!force && zone->nr_reserved_highatomic <=
1975 pageblock_nr_pages)
0aaa29a5
MG
1976 continue;
1977
1978 spin_lock_irqsave(&zone->lock, flags);
23baf831 1979 for (order = 0; order <= MAX_ORDER; order++) {
0aaa29a5
MG
1980 struct free_area *area = &(zone->free_area[order]);
1981
b03641af 1982 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 1983 if (!page)
0aaa29a5
MG
1984 continue;
1985
0aaa29a5 1986 /*
4855e4a7
MK
1987 * In page freeing path, migratetype change is racy so
1988 * we can counter several free pages in a pageblock
f0953a1b 1989 * in this loop although we changed the pageblock type
4855e4a7
MK
1990 * from highatomic to ac->migratetype. So we should
1991 * adjust the count once.
0aaa29a5 1992 */
a6ffdc07 1993 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
1994 /*
1995 * It should never happen but changes to
1996 * locking could inadvertently allow a per-cpu
1997 * drain to add pages to MIGRATE_HIGHATOMIC
1998 * while unreserving so be safe and watch for
1999 * underflows.
2000 */
2001 zone->nr_reserved_highatomic -= min(
2002 pageblock_nr_pages,
2003 zone->nr_reserved_highatomic);
2004 }
0aaa29a5
MG
2005
2006 /*
2007 * Convert to ac->migratetype and avoid the normal
2008 * pageblock stealing heuristics. Minimally, the caller
2009 * is doing the work and needs the pages. More
2010 * importantly, if the block was always converted to
2011 * MIGRATE_UNMOVABLE or another type then the number
2012 * of pageblocks that cannot be completely freed
2013 * may increase.
2014 */
2015 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2016 ret = move_freepages_block(zone, page, ac->migratetype,
2017 NULL);
29fac03b
MK
2018 if (ret) {
2019 spin_unlock_irqrestore(&zone->lock, flags);
2020 return ret;
2021 }
0aaa29a5
MG
2022 }
2023 spin_unlock_irqrestore(&zone->lock, flags);
2024 }
04c8716f
MK
2025
2026 return false;
0aaa29a5
MG
2027}
2028
3bc48f96
VB
2029/*
2030 * Try finding a free buddy page on the fallback list and put it on the free
2031 * list of requested migratetype, possibly along with other pages from the same
2032 * block, depending on fragmentation avoidance heuristics. Returns true if
2033 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2034 *
2035 * The use of signed ints for order and current_order is a deliberate
2036 * deviation from the rest of this file, to make the for loop
2037 * condition simpler.
3bc48f96 2038 */
85ccc8fa 2039static __always_inline bool
6bb15450
MG
2040__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2041 unsigned int alloc_flags)
b2a0ac88 2042{
b8af2941 2043 struct free_area *area;
b002529d 2044 int current_order;
6bb15450 2045 int min_order = order;
b2a0ac88 2046 struct page *page;
4eb7dce6
JK
2047 int fallback_mt;
2048 bool can_steal;
b2a0ac88 2049
6bb15450
MG
2050 /*
2051 * Do not steal pages from freelists belonging to other pageblocks
2052 * i.e. orders < pageblock_order. If there are no local zones free,
2053 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2054 */
e933dc4a 2055 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
6bb15450
MG
2056 min_order = pageblock_order;
2057
7a8f58f3
VB
2058 /*
2059 * Find the largest available free page in the other list. This roughly
2060 * approximates finding the pageblock with the most free pages, which
2061 * would be too costly to do exactly.
2062 */
23baf831 2063 for (current_order = MAX_ORDER; current_order >= min_order;
7aeb09f9 2064 --current_order) {
4eb7dce6
JK
2065 area = &(zone->free_area[current_order]);
2066 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2067 start_migratetype, false, &can_steal);
4eb7dce6
JK
2068 if (fallback_mt == -1)
2069 continue;
b2a0ac88 2070
7a8f58f3
VB
2071 /*
2072 * We cannot steal all free pages from the pageblock and the
2073 * requested migratetype is movable. In that case it's better to
2074 * steal and split the smallest available page instead of the
2075 * largest available page, because even if the next movable
2076 * allocation falls back into a different pageblock than this
2077 * one, it won't cause permanent fragmentation.
2078 */
2079 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2080 && current_order > order)
2081 goto find_smallest;
b2a0ac88 2082
7a8f58f3
VB
2083 goto do_steal;
2084 }
e0fff1bd 2085
7a8f58f3 2086 return false;
e0fff1bd 2087
7a8f58f3 2088find_smallest:
23baf831 2089 for (current_order = order; current_order <= MAX_ORDER;
7a8f58f3
VB
2090 current_order++) {
2091 area = &(zone->free_area[current_order]);
2092 fallback_mt = find_suitable_fallback(area, current_order,
2093 start_migratetype, false, &can_steal);
2094 if (fallback_mt != -1)
2095 break;
b2a0ac88
MG
2096 }
2097
7a8f58f3
VB
2098 /*
2099 * This should not happen - we already found a suitable fallback
2100 * when looking for the largest page.
2101 */
23baf831 2102 VM_BUG_ON(current_order > MAX_ORDER);
7a8f58f3
VB
2103
2104do_steal:
b03641af 2105 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2106
1c30844d
MG
2107 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2108 can_steal);
7a8f58f3
VB
2109
2110 trace_mm_page_alloc_extfrag(page, order, current_order,
2111 start_migratetype, fallback_mt);
2112
2113 return true;
2114
b2a0ac88
MG
2115}
2116
56fd56b8 2117/*
1da177e4
LT
2118 * Do the hard work of removing an element from the buddy allocator.
2119 * Call me with the zone->lock already held.
2120 */
85ccc8fa 2121static __always_inline struct page *
6bb15450
MG
2122__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2123 unsigned int alloc_flags)
1da177e4 2124{
1da177e4
LT
2125 struct page *page;
2126
ce8f86ee
H
2127 if (IS_ENABLED(CONFIG_CMA)) {
2128 /*
2129 * Balance movable allocations between regular and CMA areas by
2130 * allocating from CMA when over half of the zone's free memory
2131 * is in the CMA area.
2132 */
2133 if (alloc_flags & ALLOC_CMA &&
2134 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2135 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2136 page = __rmqueue_cma_fallback(zone, order);
2137 if (page)
10e0f753 2138 return page;
ce8f86ee 2139 }
16867664 2140 }
3bc48f96 2141retry:
56fd56b8 2142 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2143 if (unlikely(!page)) {
8510e69c 2144 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2145 page = __rmqueue_cma_fallback(zone, order);
2146
6bb15450
MG
2147 if (!page && __rmqueue_fallback(zone, order, migratetype,
2148 alloc_flags))
3bc48f96 2149 goto retry;
728ec980 2150 }
b2a0ac88 2151 return page;
1da177e4
LT
2152}
2153
5f63b720 2154/*
1da177e4
LT
2155 * Obtain a specified number of elements from the buddy allocator, all under
2156 * a single hold of the lock, for efficiency. Add them to the supplied list.
2157 * Returns the number of new pages which were placed at *list.
2158 */
5f63b720 2159static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2160 unsigned long count, struct list_head *list,
6bb15450 2161 int migratetype, unsigned int alloc_flags)
1da177e4 2162{
57490774 2163 unsigned long flags;
700d2e9a 2164 int i;
5f63b720 2165
57490774 2166 spin_lock_irqsave(&zone->lock, flags);
1da177e4 2167 for (i = 0; i < count; ++i) {
6bb15450
MG
2168 struct page *page = __rmqueue(zone, order, migratetype,
2169 alloc_flags);
085cc7d5 2170 if (unlikely(page == NULL))
1da177e4 2171 break;
81eabcbe
MG
2172
2173 /*
0fac3ba5
VB
2174 * Split buddy pages returned by expand() are received here in
2175 * physical page order. The page is added to the tail of
2176 * caller's list. From the callers perspective, the linked list
2177 * is ordered by page number under some conditions. This is
2178 * useful for IO devices that can forward direction from the
2179 * head, thus also in the physical page order. This is useful
2180 * for IO devices that can merge IO requests if the physical
2181 * pages are ordered properly.
81eabcbe 2182 */
bf75f200 2183 list_add_tail(&page->pcp_list, list);
bb14c2c7 2184 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2185 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2186 -(1 << order));
1da177e4 2187 }
a6de734b 2188
f2260e6b 2189 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
57490774 2190 spin_unlock_irqrestore(&zone->lock, flags);
2ede3c13 2191
700d2e9a 2192 return i;
1da177e4
LT
2193}
2194
4ae7c039 2195#ifdef CONFIG_NUMA
8fce4d8e 2196/*
4037d452
CL
2197 * Called from the vmstat counter updater to drain pagesets of this
2198 * currently executing processor on remote nodes after they have
2199 * expired.
8fce4d8e 2200 */
4037d452 2201void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2202{
7be12fc9 2203 int to_drain, batch;
4ae7c039 2204
4db0c3c2 2205 batch = READ_ONCE(pcp->batch);
7be12fc9 2206 to_drain = min(pcp->count, batch);
4b23a68f 2207 if (to_drain > 0) {
57490774 2208 spin_lock(&pcp->lock);
fd56eef2 2209 free_pcppages_bulk(zone, to_drain, pcp, 0);
57490774 2210 spin_unlock(&pcp->lock);
4b23a68f 2211 }
4ae7c039
CL
2212}
2213#endif
2214
9f8f2172 2215/*
93481ff0 2216 * Drain pcplists of the indicated processor and zone.
9f8f2172 2217 */
93481ff0 2218static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2219{
93481ff0 2220 struct per_cpu_pages *pcp;
1da177e4 2221
28f836b6 2222 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
4b23a68f 2223 if (pcp->count) {
57490774 2224 spin_lock(&pcp->lock);
4b23a68f 2225 free_pcppages_bulk(zone, pcp->count, pcp, 0);
57490774 2226 spin_unlock(&pcp->lock);
4b23a68f 2227 }
93481ff0 2228}
3dfa5721 2229
93481ff0
VB
2230/*
2231 * Drain pcplists of all zones on the indicated processor.
93481ff0
VB
2232 */
2233static void drain_pages(unsigned int cpu)
2234{
2235 struct zone *zone;
2236
2237 for_each_populated_zone(zone) {
2238 drain_pages_zone(cpu, zone);
1da177e4
LT
2239 }
2240}
1da177e4 2241
9f8f2172
CL
2242/*
2243 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2244 */
93481ff0 2245void drain_local_pages(struct zone *zone)
9f8f2172 2246{
93481ff0
VB
2247 int cpu = smp_processor_id();
2248
2249 if (zone)
2250 drain_pages_zone(cpu, zone);
2251 else
2252 drain_pages(cpu);
9f8f2172
CL
2253}
2254
2255/*
ec6e8c7e
VB
2256 * The implementation of drain_all_pages(), exposing an extra parameter to
2257 * drain on all cpus.
93481ff0 2258 *
ec6e8c7e
VB
2259 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2260 * not empty. The check for non-emptiness can however race with a free to
2261 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2262 * that need the guarantee that every CPU has drained can disable the
2263 * optimizing racy check.
9f8f2172 2264 */
3b1f3658 2265static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 2266{
74046494 2267 int cpu;
74046494
GBY
2268
2269 /*
041711ce 2270 * Allocate in the BSS so we won't require allocation in
74046494
GBY
2271 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2272 */
2273 static cpumask_t cpus_with_pcps;
2274
bd233f53
MG
2275 /*
2276 * Do not drain if one is already in progress unless it's specific to
2277 * a zone. Such callers are primarily CMA and memory hotplug and need
2278 * the drain to be complete when the call returns.
2279 */
2280 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2281 if (!zone)
2282 return;
2283 mutex_lock(&pcpu_drain_mutex);
2284 }
0ccce3b9 2285
74046494
GBY
2286 /*
2287 * We don't care about racing with CPU hotplug event
2288 * as offline notification will cause the notified
2289 * cpu to drain that CPU pcps and on_each_cpu_mask
2290 * disables preemption as part of its processing
2291 */
2292 for_each_online_cpu(cpu) {
28f836b6 2293 struct per_cpu_pages *pcp;
93481ff0 2294 struct zone *z;
74046494 2295 bool has_pcps = false;
93481ff0 2296
ec6e8c7e
VB
2297 if (force_all_cpus) {
2298 /*
2299 * The pcp.count check is racy, some callers need a
2300 * guarantee that no cpu is missed.
2301 */
2302 has_pcps = true;
2303 } else if (zone) {
28f836b6
MG
2304 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2305 if (pcp->count)
74046494 2306 has_pcps = true;
93481ff0
VB
2307 } else {
2308 for_each_populated_zone(z) {
28f836b6
MG
2309 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2310 if (pcp->count) {
93481ff0
VB
2311 has_pcps = true;
2312 break;
2313 }
74046494
GBY
2314 }
2315 }
93481ff0 2316
74046494
GBY
2317 if (has_pcps)
2318 cpumask_set_cpu(cpu, &cpus_with_pcps);
2319 else
2320 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2321 }
0ccce3b9 2322
bd233f53 2323 for_each_cpu(cpu, &cpus_with_pcps) {
443c2acc
NSJ
2324 if (zone)
2325 drain_pages_zone(cpu, zone);
2326 else
2327 drain_pages(cpu);
0ccce3b9 2328 }
bd233f53
MG
2329
2330 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2331}
2332
ec6e8c7e
VB
2333/*
2334 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2335 *
2336 * When zone parameter is non-NULL, spill just the single zone's pages.
ec6e8c7e
VB
2337 */
2338void drain_all_pages(struct zone *zone)
2339{
2340 __drain_all_pages(zone, false);
2341}
2342
44042b44
MG
2343static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2344 unsigned int order)
1da177e4 2345{
5f8dcc21 2346 int migratetype;
1da177e4 2347
700d2e9a 2348 if (!free_pages_prepare(page, order, FPI_NONE))
9cca35d4 2349 return false;
689bcebf 2350
dc4b0caf 2351 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2352 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2353 return true;
2354}
2355
f26b3fa0
MG
2356static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
2357 bool free_high)
3b12e7e9
MG
2358{
2359 int min_nr_free, max_nr_free;
2360
f26b3fa0
MG
2361 /* Free everything if batch freeing high-order pages. */
2362 if (unlikely(free_high))
2363 return pcp->count;
2364
3b12e7e9
MG
2365 /* Check for PCP disabled or boot pageset */
2366 if (unlikely(high < batch))
2367 return 1;
2368
2369 /* Leave at least pcp->batch pages on the list */
2370 min_nr_free = batch;
2371 max_nr_free = high - batch;
2372
2373 /*
2374 * Double the number of pages freed each time there is subsequent
2375 * freeing of pages without any allocation.
2376 */
2377 batch <<= pcp->free_factor;
2378 if (batch < max_nr_free)
2379 pcp->free_factor++;
2380 batch = clamp(batch, min_nr_free, max_nr_free);
2381
2382 return batch;
2383}
2384
f26b3fa0
MG
2385static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2386 bool free_high)
c49c2c47
MG
2387{
2388 int high = READ_ONCE(pcp->high);
2389
f26b3fa0 2390 if (unlikely(!high || free_high))
c49c2c47
MG
2391 return 0;
2392
2393 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2394 return high;
2395
2396 /*
2397 * If reclaim is active, limit the number of pages that can be
2398 * stored on pcp lists
2399 */
2400 return min(READ_ONCE(pcp->batch) << 2, high);
2401}
2402
4b23a68f
MG
2403static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2404 struct page *page, int migratetype,
56651377 2405 unsigned int order)
9cca35d4 2406{
3b12e7e9 2407 int high;
44042b44 2408 int pindex;
f26b3fa0 2409 bool free_high;
9cca35d4 2410
15cd9004 2411 __count_vm_events(PGFREE, 1 << order);
44042b44 2412 pindex = order_to_pindex(migratetype, order);
bf75f200 2413 list_add(&page->pcp_list, &pcp->lists[pindex]);
44042b44 2414 pcp->count += 1 << order;
f26b3fa0
MG
2415
2416 /*
2417 * As high-order pages other than THP's stored on PCP can contribute
2418 * to fragmentation, limit the number stored when PCP is heavily
2419 * freeing without allocation. The remainder after bulk freeing
2420 * stops will be drained from vmstat refresh context.
2421 */
2422 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2423
2424 high = nr_pcp_high(pcp, zone, free_high);
3b12e7e9
MG
2425 if (pcp->count >= high) {
2426 int batch = READ_ONCE(pcp->batch);
2427
f26b3fa0 2428 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3b12e7e9 2429 }
9cca35d4 2430}
5f8dcc21 2431
9cca35d4 2432/*
44042b44 2433 * Free a pcp page
9cca35d4 2434 */
44042b44 2435void free_unref_page(struct page *page, unsigned int order)
9cca35d4 2436{
4b23a68f
MG
2437 unsigned long __maybe_unused UP_flags;
2438 struct per_cpu_pages *pcp;
2439 struct zone *zone;
9cca35d4 2440 unsigned long pfn = page_to_pfn(page);
df1acc85 2441 int migratetype;
9cca35d4 2442
44042b44 2443 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 2444 return;
da456f14 2445
5f8dcc21
MG
2446 /*
2447 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 2448 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 2449 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2450 * areas back if necessary. Otherwise, we may have to free
2451 * excessively into the page allocator
2452 */
df1acc85
MG
2453 migratetype = get_pcppage_migratetype(page);
2454 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 2455 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 2456 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 2457 return;
5f8dcc21
MG
2458 }
2459 migratetype = MIGRATE_MOVABLE;
2460 }
2461
4b23a68f
MG
2462 zone = page_zone(page);
2463 pcp_trylock_prepare(UP_flags);
57490774 2464 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 2465 if (pcp) {
4b23a68f 2466 free_unref_page_commit(zone, pcp, page, migratetype, order);
57490774 2467 pcp_spin_unlock(pcp);
4b23a68f
MG
2468 } else {
2469 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2470 }
2471 pcp_trylock_finish(UP_flags);
1da177e4
LT
2472}
2473
cc59850e
KK
2474/*
2475 * Free a list of 0-order pages
2476 */
2d4894b5 2477void free_unref_page_list(struct list_head *list)
cc59850e 2478{
57490774 2479 unsigned long __maybe_unused UP_flags;
cc59850e 2480 struct page *page, *next;
4b23a68f
MG
2481 struct per_cpu_pages *pcp = NULL;
2482 struct zone *locked_zone = NULL;
c24ad77d 2483 int batch_count = 0;
df1acc85 2484 int migratetype;
9cca35d4
MG
2485
2486 /* Prepare pages for freeing */
2487 list_for_each_entry_safe(page, next, list, lru) {
56651377 2488 unsigned long pfn = page_to_pfn(page);
053cfda1 2489 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 2490 list_del(&page->lru);
053cfda1
ML
2491 continue;
2492 }
df1acc85
MG
2493
2494 /*
2495 * Free isolated pages directly to the allocator, see
2496 * comment in free_unref_page.
2497 */
2498 migratetype = get_pcppage_migratetype(page);
47aef601
DB
2499 if (unlikely(is_migrate_isolate(migratetype))) {
2500 list_del(&page->lru);
2501 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2502 continue;
df1acc85 2503 }
9cca35d4 2504 }
cc59850e
KK
2505
2506 list_for_each_entry_safe(page, next, list, lru) {
4b23a68f
MG
2507 struct zone *zone = page_zone(page);
2508
c3e58a70 2509 list_del(&page->lru);
57490774 2510 migratetype = get_pcppage_migratetype(page);
c3e58a70 2511
a4bafffb
MG
2512 /*
2513 * Either different zone requiring a different pcp lock or
2514 * excessive lock hold times when freeing a large list of
2515 * pages.
2516 */
2517 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
57490774
MG
2518 if (pcp) {
2519 pcp_spin_unlock(pcp);
2520 pcp_trylock_finish(UP_flags);
2521 }
01b44456 2522
a4bafffb
MG
2523 batch_count = 0;
2524
57490774
MG
2525 /*
2526 * trylock is necessary as pages may be getting freed
2527 * from IRQ or SoftIRQ context after an IO completion.
2528 */
2529 pcp_trylock_prepare(UP_flags);
2530 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2531 if (unlikely(!pcp)) {
2532 pcp_trylock_finish(UP_flags);
2533 free_one_page(zone, page, page_to_pfn(page),
2534 0, migratetype, FPI_NONE);
2535 locked_zone = NULL;
2536 continue;
2537 }
4b23a68f 2538 locked_zone = zone;
4b23a68f
MG
2539 }
2540
47aef601
DB
2541 /*
2542 * Non-isolated types over MIGRATE_PCPTYPES get added
2543 * to the MIGRATE_MOVABLE pcp list.
2544 */
47aef601
DB
2545 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2546 migratetype = MIGRATE_MOVABLE;
2547
2d4894b5 2548 trace_mm_page_free_batched(page);
4b23a68f 2549 free_unref_page_commit(zone, pcp, page, migratetype, 0);
a4bafffb 2550 batch_count++;
cc59850e 2551 }
4b23a68f 2552
57490774
MG
2553 if (pcp) {
2554 pcp_spin_unlock(pcp);
2555 pcp_trylock_finish(UP_flags);
2556 }
cc59850e
KK
2557}
2558
8dfcc9ba
NP
2559/*
2560 * split_page takes a non-compound higher-order page, and splits it into
2561 * n (1<<order) sub-pages: page[0..n]
2562 * Each sub-page must be freed individually.
2563 *
2564 * Note: this is probably too low level an operation for use in drivers.
2565 * Please consult with lkml before using this in your driver.
2566 */
2567void split_page(struct page *page, unsigned int order)
2568{
2569 int i;
2570
309381fe
SL
2571 VM_BUG_ON_PAGE(PageCompound(page), page);
2572 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2573
a9627bc5 2574 for (i = 1; i < (1 << order); i++)
7835e98b 2575 set_page_refcounted(page + i);
8fb156c9 2576 split_page_owner(page, 1 << order);
e1baddf8 2577 split_page_memcg(page, 1 << order);
8dfcc9ba 2578}
5853ff23 2579EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2580
3c605096 2581int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2582{
9a157dd8
KW
2583 struct zone *zone = page_zone(page);
2584 int mt = get_pageblock_migratetype(page);
748446bb 2585
194159fb 2586 if (!is_migrate_isolate(mt)) {
9a157dd8 2587 unsigned long watermark;
8348faf9
VB
2588 /*
2589 * Obey watermarks as if the page was being allocated. We can
2590 * emulate a high-order watermark check with a raised order-0
2591 * watermark, because we already know our high-order page
2592 * exists.
2593 */
fd1444b2 2594 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 2595 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2596 return 0;
2597
8fb74b9f 2598 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2599 }
748446bb 2600
6ab01363 2601 del_page_from_free_list(page, zone, order);
2139cbe6 2602
400bc7fd 2603 /*
2604 * Set the pageblock if the isolated page is at least half of a
2605 * pageblock
2606 */
748446bb
MG
2607 if (order >= pageblock_order - 1) {
2608 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2609 for (; page < endpage; page += pageblock_nr_pages) {
2610 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2611 /*
2612 * Only change normal pageblocks (i.e., they can merge
2613 * with others)
2614 */
2615 if (migratetype_is_mergeable(mt))
47118af0
MN
2616 set_pageblock_migratetype(page,
2617 MIGRATE_MOVABLE);
2618 }
748446bb
MG
2619 }
2620
8fb74b9f 2621 return 1UL << order;
1fb3f8ca
MG
2622}
2623
624f58d8
AD
2624/**
2625 * __putback_isolated_page - Return a now-isolated page back where we got it
2626 * @page: Page that was isolated
2627 * @order: Order of the isolated page
e6a0a7ad 2628 * @mt: The page's pageblock's migratetype
624f58d8
AD
2629 *
2630 * This function is meant to return a page pulled from the free lists via
2631 * __isolate_free_page back to the free lists they were pulled from.
2632 */
2633void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2634{
2635 struct zone *zone = page_zone(page);
2636
2637 /* zone lock should be held when this function is called */
2638 lockdep_assert_held(&zone->lock);
2639
2640 /* Return isolated page to tail of freelist. */
f04a5d5d 2641 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 2642 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
2643}
2644
060e7417
MG
2645/*
2646 * Update NUMA hit/miss statistics
060e7417 2647 */
3e23060b
MG
2648static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2649 long nr_account)
060e7417
MG
2650{
2651#ifdef CONFIG_NUMA
3a321d2a 2652 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2653
4518085e
KW
2654 /* skip numa counters update if numa stats is disabled */
2655 if (!static_branch_likely(&vm_numa_stat_key))
2656 return;
2657
c1093b74 2658 if (zone_to_nid(z) != numa_node_id())
060e7417 2659 local_stat = NUMA_OTHER;
060e7417 2660
c1093b74 2661 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 2662 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 2663 else {
3e23060b
MG
2664 __count_numa_events(z, NUMA_MISS, nr_account);
2665 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 2666 }
3e23060b 2667 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
2668#endif
2669}
2670
589d9973
MG
2671static __always_inline
2672struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2673 unsigned int order, unsigned int alloc_flags,
2674 int migratetype)
2675{
2676 struct page *page;
2677 unsigned long flags;
2678
2679 do {
2680 page = NULL;
2681 spin_lock_irqsave(&zone->lock, flags);
2682 /*
2683 * order-0 request can reach here when the pcplist is skipped
2684 * due to non-CMA allocation context. HIGHATOMIC area is
2685 * reserved for high-order atomic allocation, so order-0
2686 * request should skip it.
2687 */
eb2e2b42 2688 if (alloc_flags & ALLOC_HIGHATOMIC)
589d9973
MG
2689 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2690 if (!page) {
2691 page = __rmqueue(zone, order, migratetype, alloc_flags);
eb2e2b42
MG
2692
2693 /*
2694 * If the allocation fails, allow OOM handling access
2695 * to HIGHATOMIC reserves as failing now is worse than
2696 * failing a high-order atomic allocation in the
2697 * future.
2698 */
2699 if (!page && (alloc_flags & ALLOC_OOM))
2700 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2701
589d9973
MG
2702 if (!page) {
2703 spin_unlock_irqrestore(&zone->lock, flags);
2704 return NULL;
2705 }
2706 }
2707 __mod_zone_freepage_state(zone, -(1 << order),
2708 get_pcppage_migratetype(page));
2709 spin_unlock_irqrestore(&zone->lock, flags);
2710 } while (check_new_pages(page, order));
2711
2712 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2713 zone_statistics(preferred_zone, zone, 1);
2714
2715 return page;
2716}
2717
066b2393 2718/* Remove page from the per-cpu list, caller must protect the list */
3b822017 2719static inline
44042b44
MG
2720struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2721 int migratetype,
6bb15450 2722 unsigned int alloc_flags,
453f85d4 2723 struct per_cpu_pages *pcp,
066b2393
MG
2724 struct list_head *list)
2725{
2726 struct page *page;
2727
2728 do {
2729 if (list_empty(list)) {
44042b44
MG
2730 int batch = READ_ONCE(pcp->batch);
2731 int alloced;
2732
2733 /*
2734 * Scale batch relative to order if batch implies
2735 * free pages can be stored on the PCP. Batch can
2736 * be 1 for small zones or for boot pagesets which
2737 * should never store free pages as the pages may
2738 * belong to arbitrary zones.
2739 */
2740 if (batch > 1)
2741 batch = max(batch >> order, 2);
2742 alloced = rmqueue_bulk(zone, order,
2743 batch, list,
6bb15450 2744 migratetype, alloc_flags);
44042b44
MG
2745
2746 pcp->count += alloced << order;
066b2393
MG
2747 if (unlikely(list_empty(list)))
2748 return NULL;
2749 }
2750
bf75f200
MG
2751 page = list_first_entry(list, struct page, pcp_list);
2752 list_del(&page->pcp_list);
44042b44 2753 pcp->count -= 1 << order;
700d2e9a 2754 } while (check_new_pages(page, order));
066b2393
MG
2755
2756 return page;
2757}
2758
2759/* Lock and remove page from the per-cpu list */
2760static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44 2761 struct zone *zone, unsigned int order,
663d0cfd 2762 int migratetype, unsigned int alloc_flags)
066b2393
MG
2763{
2764 struct per_cpu_pages *pcp;
2765 struct list_head *list;
066b2393 2766 struct page *page;
4b23a68f 2767 unsigned long __maybe_unused UP_flags;
066b2393 2768
57490774 2769 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 2770 pcp_trylock_prepare(UP_flags);
57490774 2771 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 2772 if (!pcp) {
4b23a68f 2773 pcp_trylock_finish(UP_flags);
4b23a68f
MG
2774 return NULL;
2775 }
3b12e7e9
MG
2776
2777 /*
2778 * On allocation, reduce the number of pages that are batch freed.
2779 * See nr_pcp_free() where free_factor is increased for subsequent
2780 * frees.
2781 */
3b12e7e9 2782 pcp->free_factor >>= 1;
44042b44
MG
2783 list = &pcp->lists[order_to_pindex(migratetype, order)];
2784 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
57490774 2785 pcp_spin_unlock(pcp);
4b23a68f 2786 pcp_trylock_finish(UP_flags);
066b2393 2787 if (page) {
15cd9004 2788 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 2789 zone_statistics(preferred_zone, zone, 1);
066b2393 2790 }
066b2393
MG
2791 return page;
2792}
2793
1da177e4 2794/*
a57ae9ef
RX
2795 * Allocate a page from the given zone.
2796 * Use pcplists for THP or "cheap" high-order allocations.
1da177e4 2797 */
b073d7f8
AP
2798
2799/*
2800 * Do not instrument rmqueue() with KMSAN. This function may call
2801 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2802 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2803 * may call rmqueue() again, which will result in a deadlock.
1da177e4 2804 */
b073d7f8 2805__no_sanitize_memory
0a15c3e9 2806static inline
066b2393 2807struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2808 struct zone *zone, unsigned int order,
c603844b
MG
2809 gfp_t gfp_flags, unsigned int alloc_flags,
2810 int migratetype)
1da177e4 2811{
689bcebf 2812 struct page *page;
1da177e4 2813
589d9973
MG
2814 /*
2815 * We most definitely don't want callers attempting to
2816 * allocate greater than order-1 page units with __GFP_NOFAIL.
2817 */
2818 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2819
44042b44 2820 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
2821 /*
2822 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
2823 * we need to skip it when CMA area isn't allowed.
2824 */
2825 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
2826 migratetype != MIGRATE_MOVABLE) {
44042b44 2827 page = rmqueue_pcplist(preferred_zone, zone, order,
663d0cfd 2828 migratetype, alloc_flags);
4b23a68f
MG
2829 if (likely(page))
2830 goto out;
1d91df85 2831 }
066b2393 2832 }
83b9355b 2833
589d9973
MG
2834 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2835 migratetype);
1da177e4 2836
066b2393 2837out:
73444bc4 2838 /* Separate test+clear to avoid unnecessary atomics */
3b11edf1
TH
2839 if ((alloc_flags & ALLOC_KSWAPD) &&
2840 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
73444bc4
MG
2841 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2842 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2843 }
2844
066b2393 2845 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4
LT
2846 return page;
2847}
2848
54aa3866 2849noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
2850{
2851 return __should_fail_alloc_page(gfp_mask, order);
2852}
2853ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2854
f27ce0e1
JK
2855static inline long __zone_watermark_unusable_free(struct zone *z,
2856 unsigned int order, unsigned int alloc_flags)
2857{
f27ce0e1
JK
2858 long unusable_free = (1 << order) - 1;
2859
2860 /*
ab350885
MG
2861 * If the caller does not have rights to reserves below the min
2862 * watermark then subtract the high-atomic reserves. This will
2863 * over-estimate the size of the atomic reserve but it avoids a search.
f27ce0e1 2864 */
ab350885 2865 if (likely(!(alloc_flags & ALLOC_RESERVES)))
f27ce0e1
JK
2866 unusable_free += z->nr_reserved_highatomic;
2867
2868#ifdef CONFIG_CMA
2869 /* If allocation can't use CMA areas don't use free CMA pages */
2870 if (!(alloc_flags & ALLOC_CMA))
2871 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2872#endif
dcdfdd40
KS
2873#ifdef CONFIG_UNACCEPTED_MEMORY
2874 unusable_free += zone_page_state(z, NR_UNACCEPTED);
2875#endif
f27ce0e1
JK
2876
2877 return unusable_free;
2878}
2879
1da177e4 2880/*
97a16fc8
MG
2881 * Return true if free base pages are above 'mark'. For high-order checks it
2882 * will return true of the order-0 watermark is reached and there is at least
2883 * one free page of a suitable size. Checking now avoids taking the zone lock
2884 * to check in the allocation paths if no pages are free.
1da177e4 2885 */
86a294a8 2886bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 2887 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 2888 long free_pages)
1da177e4 2889{
d23ad423 2890 long min = mark;
1da177e4
LT
2891 int o;
2892
0aaa29a5 2893 /* free_pages may go negative - that's OK */
f27ce0e1 2894 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 2895
ab350885
MG
2896 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2897 /*
2898 * __GFP_HIGH allows access to 50% of the min reserve as well
2899 * as OOM.
2900 */
1ebbb218 2901 if (alloc_flags & ALLOC_MIN_RESERVE) {
ab350885 2902 min -= min / 2;
0aaa29a5 2903
1ebbb218
MG
2904 /*
2905 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2906 * access more reserves than just __GFP_HIGH. Other
2907 * non-blocking allocations requests such as GFP_NOWAIT
2908 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2909 * access to the min reserve.
2910 */
2911 if (alloc_flags & ALLOC_NON_BLOCK)
2912 min -= min / 4;
2913 }
0aaa29a5 2914
cd04ae1e 2915 /*
ab350885 2916 * OOM victims can try even harder than the normal reserve
cd04ae1e
MH
2917 * users on the grounds that it's definitely going to be in
2918 * the exit path shortly and free memory. Any allocation it
2919 * makes during the free path will be small and short-lived.
2920 */
2921 if (alloc_flags & ALLOC_OOM)
2922 min -= min / 2;
cd04ae1e
MH
2923 }
2924
97a16fc8
MG
2925 /*
2926 * Check watermarks for an order-0 allocation request. If these
2927 * are not met, then a high-order request also cannot go ahead
2928 * even if a suitable page happened to be free.
2929 */
97a225e6 2930 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 2931 return false;
1da177e4 2932
97a16fc8
MG
2933 /* If this is an order-0 request then the watermark is fine */
2934 if (!order)
2935 return true;
2936
2937 /* For a high-order request, check at least one suitable page is free */
23baf831 2938 for (o = order; o <= MAX_ORDER; o++) {
97a16fc8
MG
2939 struct free_area *area = &z->free_area[o];
2940 int mt;
2941
2942 if (!area->nr_free)
2943 continue;
2944
97a16fc8 2945 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 2946 if (!free_area_empty(area, mt))
97a16fc8
MG
2947 return true;
2948 }
2949
2950#ifdef CONFIG_CMA
d883c6cf 2951 if ((alloc_flags & ALLOC_CMA) &&
b03641af 2952 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 2953 return true;
d883c6cf 2954 }
97a16fc8 2955#endif
eb2e2b42
MG
2956 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2957 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
b050e376 2958 return true;
eb2e2b42 2959 }
1da177e4 2960 }
97a16fc8 2961 return false;
88f5acf8
MG
2962}
2963
7aeb09f9 2964bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 2965 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 2966{
97a225e6 2967 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
2968 zone_page_state(z, NR_FREE_PAGES));
2969}
2970
48ee5f36 2971static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 2972 unsigned long mark, int highest_zoneidx,
f80b08fc 2973 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 2974{
f27ce0e1 2975 long free_pages;
d883c6cf 2976
f27ce0e1 2977 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
2978
2979 /*
2980 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 2981 * need to be calculated.
48ee5f36 2982 */
f27ce0e1 2983 if (!order) {
9282012f
JK
2984 long usable_free;
2985 long reserved;
f27ce0e1 2986
9282012f
JK
2987 usable_free = free_pages;
2988 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2989
2990 /* reserved may over estimate high-atomic reserves. */
2991 usable_free -= min(usable_free, reserved);
2992 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
f27ce0e1
JK
2993 return true;
2994 }
48ee5f36 2995
f80b08fc
CTR
2996 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2997 free_pages))
2998 return true;
2973d822 2999
f80b08fc 3000 /*
2973d822 3001 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
f80b08fc
CTR
3002 * when checking the min watermark. The min watermark is the
3003 * point where boosting is ignored so that kswapd is woken up
3004 * when below the low watermark.
3005 */
2973d822 3006 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
f80b08fc
CTR
3007 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3008 mark = z->_watermark[WMARK_MIN];
3009 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3010 alloc_flags, free_pages);
3011 }
3012
3013 return false;
48ee5f36
MG
3014}
3015
7aeb09f9 3016bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3017 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3018{
3019 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3020
3021 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3022 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3023
97a225e6 3024 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3025 free_pages);
1da177e4
LT
3026}
3027
9276b1bc 3028#ifdef CONFIG_NUMA
61bb6cd2
GU
3029int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3030
957f822a
DR
3031static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3032{
e02dc017 3033 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3034 node_reclaim_distance;
957f822a 3035}
9276b1bc 3036#else /* CONFIG_NUMA */
957f822a
DR
3037static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3038{
3039 return true;
3040}
9276b1bc
PJ
3041#endif /* CONFIG_NUMA */
3042
6bb15450
MG
3043/*
3044 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3045 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3046 * premature use of a lower zone may cause lowmem pressure problems that
3047 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3048 * probably too small. It only makes sense to spread allocations to avoid
3049 * fragmentation between the Normal and DMA32 zones.
3050 */
3051static inline unsigned int
0a79cdad 3052alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3053{
736838e9 3054 unsigned int alloc_flags;
0a79cdad 3055
736838e9
MN
3056 /*
3057 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3058 * to save a branch.
3059 */
3060 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3061
3062#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3063 if (!zone)
3064 return alloc_flags;
3065
6bb15450 3066 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3067 return alloc_flags;
6bb15450
MG
3068
3069 /*
3070 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3071 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3072 * on UMA that if Normal is populated then so is DMA32.
3073 */
3074 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3075 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3076 return alloc_flags;
6bb15450 3077
8118b82e 3078 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3079#endif /* CONFIG_ZONE_DMA32 */
3080 return alloc_flags;
6bb15450 3081}
6bb15450 3082
8e3560d9
PT
3083/* Must be called after current_gfp_context() which can change gfp_mask */
3084static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3085 unsigned int alloc_flags)
8510e69c
JK
3086{
3087#ifdef CONFIG_CMA
8e3560d9 3088 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 3089 alloc_flags |= ALLOC_CMA;
8510e69c
JK
3090#endif
3091 return alloc_flags;
3092}
3093
7fb1d9fc 3094/*
0798e519 3095 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3096 * a page.
3097 */
3098static struct page *
a9263751
VB
3099get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3100 const struct alloc_context *ac)
753ee728 3101{
6bb15450 3102 struct zoneref *z;
5117f45d 3103 struct zone *zone;
8a87d695
WY
3104 struct pglist_data *last_pgdat = NULL;
3105 bool last_pgdat_dirty_ok = false;
6bb15450 3106 bool no_fallback;
3b8c0be4 3107
6bb15450 3108retry:
7fb1d9fc 3109 /*
9276b1bc 3110 * Scan zonelist, looking for a zone with enough free.
8e464522 3111 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
7fb1d9fc 3112 */
6bb15450
MG
3113 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3114 z = ac->preferred_zoneref;
30d8ec73
MN
3115 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3116 ac->nodemask) {
be06af00 3117 struct page *page;
e085dbc5
JW
3118 unsigned long mark;
3119
664eedde
MG
3120 if (cpusets_enabled() &&
3121 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3122 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3123 continue;
a756cf59
JW
3124 /*
3125 * When allocating a page cache page for writing, we
281e3726
MG
3126 * want to get it from a node that is within its dirty
3127 * limit, such that no single node holds more than its
a756cf59 3128 * proportional share of globally allowed dirty pages.
281e3726 3129 * The dirty limits take into account the node's
a756cf59
JW
3130 * lowmem reserves and high watermark so that kswapd
3131 * should be able to balance it without having to
3132 * write pages from its LRU list.
3133 *
a756cf59 3134 * XXX: For now, allow allocations to potentially
281e3726 3135 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3136 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3137 * which is important when on a NUMA setup the allowed
281e3726 3138 * nodes are together not big enough to reach the
a756cf59 3139 * global limit. The proper fix for these situations
281e3726 3140 * will require awareness of nodes in the
a756cf59
JW
3141 * dirty-throttling and the flusher threads.
3142 */
3b8c0be4 3143 if (ac->spread_dirty_pages) {
8a87d695
WY
3144 if (last_pgdat != zone->zone_pgdat) {
3145 last_pgdat = zone->zone_pgdat;
3146 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3147 }
3b8c0be4 3148
8a87d695 3149 if (!last_pgdat_dirty_ok)
3b8c0be4 3150 continue;
3b8c0be4 3151 }
7fb1d9fc 3152
6bb15450
MG
3153 if (no_fallback && nr_online_nodes > 1 &&
3154 zone != ac->preferred_zoneref->zone) {
3155 int local_nid;
3156
3157 /*
3158 * If moving to a remote node, retry but allow
3159 * fragmenting fallbacks. Locality is more important
3160 * than fragmentation avoidance.
3161 */
3162 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3163 if (zone_to_nid(zone) != local_nid) {
3164 alloc_flags &= ~ALLOC_NOFRAGMENT;
3165 goto retry;
3166 }
3167 }
3168
a9214443 3169 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3170 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3171 ac->highest_zoneidx, alloc_flags,
3172 gfp_mask)) {
fa5e084e
MG
3173 int ret;
3174
dcdfdd40
KS
3175 if (has_unaccepted_memory()) {
3176 if (try_to_accept_memory(zone, order))
3177 goto try_this_zone;
3178 }
3179
c9e97a19
PT
3180#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3181 /*
3182 * Watermark failed for this zone, but see if we can
3183 * grow this zone if it contains deferred pages.
3184 */
076cf7ea 3185 if (deferred_pages_enabled()) {
c9e97a19
PT
3186 if (_deferred_grow_zone(zone, order))
3187 goto try_this_zone;
3188 }
3189#endif
5dab2911
MG
3190 /* Checked here to keep the fast path fast */
3191 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3192 if (alloc_flags & ALLOC_NO_WATERMARKS)
3193 goto try_this_zone;
3194
202e35db 3195 if (!node_reclaim_enabled() ||
c33d6c06 3196 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3197 continue;
3198
a5f5f91d 3199 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3200 switch (ret) {
a5f5f91d 3201 case NODE_RECLAIM_NOSCAN:
fa5e084e 3202 /* did not scan */
cd38b115 3203 continue;
a5f5f91d 3204 case NODE_RECLAIM_FULL:
fa5e084e 3205 /* scanned but unreclaimable */
cd38b115 3206 continue;
fa5e084e
MG
3207 default:
3208 /* did we reclaim enough */
fed2719e 3209 if (zone_watermark_ok(zone, order, mark,
97a225e6 3210 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3211 goto try_this_zone;
3212
fed2719e 3213 continue;
0798e519 3214 }
7fb1d9fc
RS
3215 }
3216
fa5e084e 3217try_this_zone:
066b2393 3218 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3219 gfp_mask, alloc_flags, ac->migratetype);
75379191 3220 if (page) {
479f854a 3221 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3222
3223 /*
3224 * If this is a high-order atomic allocation then check
3225 * if the pageblock should be reserved for the future
3226 */
eb2e2b42 3227 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
0aaa29a5
MG
3228 reserve_highatomic_pageblock(page, zone, order);
3229
75379191 3230 return page;
c9e97a19 3231 } else {
dcdfdd40
KS
3232 if (has_unaccepted_memory()) {
3233 if (try_to_accept_memory(zone, order))
3234 goto try_this_zone;
3235 }
3236
c9e97a19
PT
3237#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3238 /* Try again if zone has deferred pages */
076cf7ea 3239 if (deferred_pages_enabled()) {
c9e97a19
PT
3240 if (_deferred_grow_zone(zone, order))
3241 goto try_this_zone;
3242 }
3243#endif
75379191 3244 }
54a6eb5c 3245 }
9276b1bc 3246
6bb15450
MG
3247 /*
3248 * It's possible on a UMA machine to get through all zones that are
3249 * fragmented. If avoiding fragmentation, reset and try again.
3250 */
3251 if (no_fallback) {
3252 alloc_flags &= ~ALLOC_NOFRAGMENT;
3253 goto retry;
3254 }
3255
4ffeaf35 3256 return NULL;
753ee728
MH
3257}
3258
9af744d7 3259static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3260{
a238ab5b 3261 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3262
3263 /*
3264 * This documents exceptions given to allocations in certain
3265 * contexts that are allowed to allocate outside current's set
3266 * of allowed nodes.
3267 */
3268 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3269 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3270 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3271 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 3272 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3273 filter &= ~SHOW_MEM_FILTER_NODES;
3274
974f4367 3275 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
aa187507
MH
3276}
3277
a8e99259 3278void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3279{
3280 struct va_format vaf;
3281 va_list args;
1be334e5 3282 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3283
c4dc63f0
BH
3284 if ((gfp_mask & __GFP_NOWARN) ||
3285 !__ratelimit(&nopage_rs) ||
3286 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
3287 return;
3288
7877cdcc
MH
3289 va_start(args, fmt);
3290 vaf.fmt = fmt;
3291 vaf.va = &args;
ef8444ea 3292 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3293 current->comm, &vaf, gfp_mask, &gfp_mask,
3294 nodemask_pr_args(nodemask));
7877cdcc 3295 va_end(args);
3ee9a4f0 3296
a8e99259 3297 cpuset_print_current_mems_allowed();
ef8444ea 3298 pr_cont("\n");
a238ab5b 3299 dump_stack();
685dbf6f 3300 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3301}
3302
6c18ba7a
MH
3303static inline struct page *
3304__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3305 unsigned int alloc_flags,
3306 const struct alloc_context *ac)
3307{
3308 struct page *page;
3309
3310 page = get_page_from_freelist(gfp_mask, order,
3311 alloc_flags|ALLOC_CPUSET, ac);
3312 /*
3313 * fallback to ignore cpuset restriction if our nodes
3314 * are depleted
3315 */
3316 if (!page)
3317 page = get_page_from_freelist(gfp_mask, order,
3318 alloc_flags, ac);
3319
3320 return page;
3321}
3322
11e33f6a
MG
3323static inline struct page *
3324__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3325 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3326{
6e0fc46d
DR
3327 struct oom_control oc = {
3328 .zonelist = ac->zonelist,
3329 .nodemask = ac->nodemask,
2a966b77 3330 .memcg = NULL,
6e0fc46d
DR
3331 .gfp_mask = gfp_mask,
3332 .order = order,
6e0fc46d 3333 };
11e33f6a
MG
3334 struct page *page;
3335
9879de73
JW
3336 *did_some_progress = 0;
3337
9879de73 3338 /*
dc56401f
JW
3339 * Acquire the oom lock. If that fails, somebody else is
3340 * making progress for us.
9879de73 3341 */
dc56401f 3342 if (!mutex_trylock(&oom_lock)) {
9879de73 3343 *did_some_progress = 1;
11e33f6a 3344 schedule_timeout_uninterruptible(1);
1da177e4
LT
3345 return NULL;
3346 }
6b1de916 3347
11e33f6a
MG
3348 /*
3349 * Go through the zonelist yet one more time, keep very high watermark
3350 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3351 * we're still under heavy pressure. But make sure that this reclaim
3352 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3353 * allocation which will never fail due to oom_lock already held.
11e33f6a 3354 */
e746bf73
TH
3355 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3356 ~__GFP_DIRECT_RECLAIM, order,
3357 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3358 if (page)
11e33f6a
MG
3359 goto out;
3360
06ad276a
MH
3361 /* Coredumps can quickly deplete all memory reserves */
3362 if (current->flags & PF_DUMPCORE)
3363 goto out;
3364 /* The OOM killer will not help higher order allocs */
3365 if (order > PAGE_ALLOC_COSTLY_ORDER)
3366 goto out;
dcda9b04
MH
3367 /*
3368 * We have already exhausted all our reclaim opportunities without any
3369 * success so it is time to admit defeat. We will skip the OOM killer
3370 * because it is very likely that the caller has a more reasonable
3371 * fallback than shooting a random task.
cfb4a541
MN
3372 *
3373 * The OOM killer may not free memory on a specific node.
dcda9b04 3374 */
cfb4a541 3375 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 3376 goto out;
06ad276a 3377 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 3378 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
3379 goto out;
3380 if (pm_suspended_storage())
3381 goto out;
3382 /*
3383 * XXX: GFP_NOFS allocations should rather fail than rely on
3384 * other request to make a forward progress.
3385 * We are in an unfortunate situation where out_of_memory cannot
3386 * do much for this context but let's try it to at least get
3387 * access to memory reserved if the current task is killed (see
3388 * out_of_memory). Once filesystems are ready to handle allocation
3389 * failures more gracefully we should just bail out here.
3390 */
3391
3c2c6488 3392 /* Exhausted what can be done so it's blame time */
3f913fc5
QZ
3393 if (out_of_memory(&oc) ||
3394 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
c32b3cbe 3395 *did_some_progress = 1;
5020e285 3396
6c18ba7a
MH
3397 /*
3398 * Help non-failing allocations by giving them access to memory
3399 * reserves
3400 */
3401 if (gfp_mask & __GFP_NOFAIL)
3402 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3403 ALLOC_NO_WATERMARKS, ac);
5020e285 3404 }
11e33f6a 3405out:
dc56401f 3406 mutex_unlock(&oom_lock);
11e33f6a
MG
3407 return page;
3408}
3409
33c2d214 3410/*
baf2f90b 3411 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
3412 * killer is consider as the only way to move forward.
3413 */
3414#define MAX_COMPACT_RETRIES 16
3415
56de7263
MG
3416#ifdef CONFIG_COMPACTION
3417/* Try memory compaction for high-order allocations before reclaim */
3418static struct page *
3419__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3420 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3421 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3422{
5e1f0f09 3423 struct page *page = NULL;
eb414681 3424 unsigned long pflags;
499118e9 3425 unsigned int noreclaim_flag;
53853e2d
VB
3426
3427 if (!order)
66199712 3428 return NULL;
66199712 3429
eb414681 3430 psi_memstall_enter(&pflags);
5bf18281 3431 delayacct_compact_start();
499118e9 3432 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3433
c5d01d0d 3434 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3435 prio, &page);
eb414681 3436
499118e9 3437 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3438 psi_memstall_leave(&pflags);
5bf18281 3439 delayacct_compact_end();
56de7263 3440
06dac2f4
CTR
3441 if (*compact_result == COMPACT_SKIPPED)
3442 return NULL;
98dd3b48
VB
3443 /*
3444 * At least in one zone compaction wasn't deferred or skipped, so let's
3445 * count a compaction stall
3446 */
3447 count_vm_event(COMPACTSTALL);
8fb74b9f 3448
5e1f0f09
MG
3449 /* Prep a captured page if available */
3450 if (page)
3451 prep_new_page(page, order, gfp_mask, alloc_flags);
3452
3453 /* Try get a page from the freelist if available */
3454 if (!page)
3455 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3456
98dd3b48
VB
3457 if (page) {
3458 struct zone *zone = page_zone(page);
53853e2d 3459
98dd3b48
VB
3460 zone->compact_blockskip_flush = false;
3461 compaction_defer_reset(zone, order, true);
3462 count_vm_event(COMPACTSUCCESS);
3463 return page;
3464 }
56de7263 3465
98dd3b48
VB
3466 /*
3467 * It's bad if compaction run occurs and fails. The most likely reason
3468 * is that pages exist, but not enough to satisfy watermarks.
3469 */
3470 count_vm_event(COMPACTFAIL);
66199712 3471
98dd3b48 3472 cond_resched();
56de7263
MG
3473
3474 return NULL;
3475}
33c2d214 3476
3250845d
VB
3477static inline bool
3478should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3479 enum compact_result compact_result,
3480 enum compact_priority *compact_priority,
d9436498 3481 int *compaction_retries)
3250845d
VB
3482{
3483 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3484 int min_priority;
65190cff
MH
3485 bool ret = false;
3486 int retries = *compaction_retries;
3487 enum compact_priority priority = *compact_priority;
3250845d
VB
3488
3489 if (!order)
3490 return false;
3491
691d9497
AT
3492 if (fatal_signal_pending(current))
3493 return false;
3494
49433085 3495 /*
ecd8b292
JW
3496 * Compaction was skipped due to a lack of free order-0
3497 * migration targets. Continue if reclaim can help.
49433085 3498 */
ecd8b292 3499 if (compact_result == COMPACT_SKIPPED) {
49433085
VB
3500 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3501 goto out;
3502 }
3503
3250845d 3504 /*
511a69b2
JW
3505 * Compaction managed to coalesce some page blocks, but the
3506 * allocation failed presumably due to a race. Retry some.
3250845d 3507 */
511a69b2
JW
3508 if (compact_result == COMPACT_SUCCESS) {
3509 /*
3510 * !costly requests are much more important than
3511 * __GFP_RETRY_MAYFAIL costly ones because they are de
3512 * facto nofail and invoke OOM killer to move on while
3513 * costly can fail and users are ready to cope with
3514 * that. 1/4 retries is rather arbitrary but we would
3515 * need much more detailed feedback from compaction to
3516 * make a better decision.
3517 */
3518 if (order > PAGE_ALLOC_COSTLY_ORDER)
3519 max_retries /= 4;
3250845d 3520
511a69b2
JW
3521 if (++(*compaction_retries) <= max_retries) {
3522 ret = true;
3523 goto out;
3524 }
65190cff 3525 }
3250845d 3526
d9436498 3527 /*
511a69b2 3528 * Compaction failed. Retry with increasing priority.
d9436498 3529 */
c2033b00
VB
3530 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3531 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3532
c2033b00 3533 if (*compact_priority > min_priority) {
d9436498
VB
3534 (*compact_priority)--;
3535 *compaction_retries = 0;
65190cff 3536 ret = true;
d9436498 3537 }
65190cff
MH
3538out:
3539 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3540 return ret;
3250845d 3541}
56de7263
MG
3542#else
3543static inline struct page *
3544__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3545 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3546 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3547{
33c2d214 3548 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3549 return NULL;
3550}
33c2d214
MH
3551
3552static inline bool
86a294a8
MH
3553should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3554 enum compact_result compact_result,
a5508cd8 3555 enum compact_priority *compact_priority,
d9436498 3556 int *compaction_retries)
33c2d214 3557{
31e49bfd
MH
3558 struct zone *zone;
3559 struct zoneref *z;
3560
3561 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3562 return false;
3563
3564 /*
3565 * There are setups with compaction disabled which would prefer to loop
3566 * inside the allocator rather than hit the oom killer prematurely.
3567 * Let's give them a good hope and keep retrying while the order-0
3568 * watermarks are OK.
3569 */
97a225e6
JK
3570 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3571 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 3572 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 3573 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
3574 return true;
3575 }
33c2d214
MH
3576 return false;
3577}
3250845d 3578#endif /* CONFIG_COMPACTION */
56de7263 3579
d92a8cfc 3580#ifdef CONFIG_LOCKDEP
93781325 3581static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3582 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3583
f920e413 3584static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 3585{
d92a8cfc
PZ
3586 /* no reclaim without waiting on it */
3587 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3588 return false;
3589
3590 /* this guy won't enter reclaim */
2e517d68 3591 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3592 return false;
3593
d92a8cfc
PZ
3594 if (gfp_mask & __GFP_NOLOCKDEP)
3595 return false;
3596
3597 return true;
3598}
3599
4f3eaf45 3600void __fs_reclaim_acquire(unsigned long ip)
93781325 3601{
4f3eaf45 3602 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
3603}
3604
4f3eaf45 3605void __fs_reclaim_release(unsigned long ip)
93781325 3606{
4f3eaf45 3607 lock_release(&__fs_reclaim_map, ip);
93781325
OS
3608}
3609
d92a8cfc
PZ
3610void fs_reclaim_acquire(gfp_t gfp_mask)
3611{
f920e413
DV
3612 gfp_mask = current_gfp_context(gfp_mask);
3613
3614 if (__need_reclaim(gfp_mask)) {
3615 if (gfp_mask & __GFP_FS)
4f3eaf45 3616 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
3617
3618#ifdef CONFIG_MMU_NOTIFIER
3619 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3620 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3621#endif
3622
3623 }
d92a8cfc
PZ
3624}
3625EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3626
3627void fs_reclaim_release(gfp_t gfp_mask)
3628{
f920e413
DV
3629 gfp_mask = current_gfp_context(gfp_mask);
3630
3631 if (__need_reclaim(gfp_mask)) {
3632 if (gfp_mask & __GFP_FS)
4f3eaf45 3633 __fs_reclaim_release(_RET_IP_);
f920e413 3634 }
d92a8cfc
PZ
3635}
3636EXPORT_SYMBOL_GPL(fs_reclaim_release);
3637#endif
3638
3d36424b
MG
3639/*
3640 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3641 * have been rebuilt so allocation retries. Reader side does not lock and
3642 * retries the allocation if zonelist changes. Writer side is protected by the
3643 * embedded spin_lock.
3644 */
3645static DEFINE_SEQLOCK(zonelist_update_seq);
3646
3647static unsigned int zonelist_iter_begin(void)
3648{
3649 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3650 return read_seqbegin(&zonelist_update_seq);
3651
3652 return 0;
3653}
3654
3655static unsigned int check_retry_zonelist(unsigned int seq)
3656{
3657 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3658 return read_seqretry(&zonelist_update_seq, seq);
3659
3660 return seq;
3661}
3662
bba90710 3663/* Perform direct synchronous page reclaim */
2187e17b 3664static unsigned long
a9263751
VB
3665__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3666 const struct alloc_context *ac)
11e33f6a 3667{
499118e9 3668 unsigned int noreclaim_flag;
fa7fc75f 3669 unsigned long progress;
11e33f6a
MG
3670
3671 cond_resched();
3672
3673 /* We now go into synchronous reclaim */
3674 cpuset_memory_pressure_bump();
d92a8cfc 3675 fs_reclaim_acquire(gfp_mask);
93781325 3676 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3677
a9263751
VB
3678 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3679 ac->nodemask);
11e33f6a 3680
499118e9 3681 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3682 fs_reclaim_release(gfp_mask);
11e33f6a
MG
3683
3684 cond_resched();
3685
bba90710
MS
3686 return progress;
3687}
3688
3689/* The really slow allocator path where we enter direct reclaim */
3690static inline struct page *
3691__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3692 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3693 unsigned long *did_some_progress)
bba90710
MS
3694{
3695 struct page *page = NULL;
fa7fc75f 3696 unsigned long pflags;
bba90710
MS
3697 bool drained = false;
3698
fa7fc75f 3699 psi_memstall_enter(&pflags);
a9263751 3700 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 3701 if (unlikely(!(*did_some_progress)))
fa7fc75f 3702 goto out;
11e33f6a 3703
9ee493ce 3704retry:
31a6c190 3705 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3706
3707 /*
3708 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 3709 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 3710 * Shrink them and try again
9ee493ce
MG
3711 */
3712 if (!page && !drained) {
29fac03b 3713 unreserve_highatomic_pageblock(ac, false);
93481ff0 3714 drain_all_pages(NULL);
9ee493ce
MG
3715 drained = true;
3716 goto retry;
3717 }
fa7fc75f
SB
3718out:
3719 psi_memstall_leave(&pflags);
9ee493ce 3720
11e33f6a
MG
3721 return page;
3722}
3723
5ecd9d40
DR
3724static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3725 const struct alloc_context *ac)
3a025760
JW
3726{
3727 struct zoneref *z;
3728 struct zone *zone;
e1a55637 3729 pg_data_t *last_pgdat = NULL;
97a225e6 3730 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 3731
97a225e6 3732 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 3733 ac->nodemask) {
bc53008e
WY
3734 if (!managed_zone(zone))
3735 continue;
d137a7cb 3736 if (last_pgdat != zone->zone_pgdat) {
97a225e6 3737 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
d137a7cb
CW
3738 last_pgdat = zone->zone_pgdat;
3739 }
e1a55637 3740 }
3a025760
JW
3741}
3742
c603844b 3743static inline unsigned int
eb2e2b42 3744gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
341ce06f 3745{
c603844b 3746 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3747
736838e9 3748 /*
524c4807 3749 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
736838e9
MN
3750 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3751 * to save two branches.
3752 */
524c4807 3753 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
736838e9 3754 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 3755
341ce06f
PZ
3756 /*
3757 * The caller may dip into page reserves a bit more if the caller
3758 * cannot run direct reclaim, or if the caller has realtime scheduling
3759 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1ebbb218 3760 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
341ce06f 3761 */
736838e9
MN
3762 alloc_flags |= (__force int)
3763 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 3764
1ebbb218 3765 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
5c3240d9 3766 /*
b104a35d
DR
3767 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3768 * if it can't schedule.
5c3240d9 3769 */
eb2e2b42 3770 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1ebbb218 3771 alloc_flags |= ALLOC_NON_BLOCK;
eb2e2b42
MG
3772
3773 if (order > 0)
3774 alloc_flags |= ALLOC_HIGHATOMIC;
3775 }
3776
523b9458 3777 /*
1ebbb218
MG
3778 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3779 * GFP_ATOMIC) rather than fail, see the comment for
8e464522 3780 * cpuset_node_allowed().
523b9458 3781 */
1ebbb218
MG
3782 if (alloc_flags & ALLOC_MIN_RESERVE)
3783 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 3784 } else if (unlikely(rt_task(current)) && in_task())
c988dcbe 3785 alloc_flags |= ALLOC_MIN_RESERVE;
341ce06f 3786
8e3560d9 3787 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 3788
341ce06f
PZ
3789 return alloc_flags;
3790}
3791
cd04ae1e 3792static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3793{
cd04ae1e
MH
3794 if (!tsk_is_oom_victim(tsk))
3795 return false;
3796
3797 /*
3798 * !MMU doesn't have oom reaper so give access to memory reserves
3799 * only to the thread with TIF_MEMDIE set
3800 */
3801 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3802 return false;
3803
cd04ae1e
MH
3804 return true;
3805}
3806
3807/*
3808 * Distinguish requests which really need access to full memory
3809 * reserves from oom victims which can live with a portion of it
3810 */
3811static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3812{
3813 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3814 return 0;
31a6c190 3815 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3816 return ALLOC_NO_WATERMARKS;
31a6c190 3817 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3818 return ALLOC_NO_WATERMARKS;
3819 if (!in_interrupt()) {
3820 if (current->flags & PF_MEMALLOC)
3821 return ALLOC_NO_WATERMARKS;
3822 else if (oom_reserves_allowed(current))
3823 return ALLOC_OOM;
3824 }
31a6c190 3825
cd04ae1e
MH
3826 return 0;
3827}
3828
3829bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3830{
3831 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3832}
3833
0a0337e0
MH
3834/*
3835 * Checks whether it makes sense to retry the reclaim to make a forward progress
3836 * for the given allocation request.
491d79ae
JW
3837 *
3838 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3839 * without success, or when we couldn't even meet the watermark if we
3840 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3841 *
3842 * Returns true if a retry is viable or false to enter the oom path.
3843 */
3844static inline bool
3845should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3846 struct alloc_context *ac, int alloc_flags,
423b452e 3847 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3848{
3849 struct zone *zone;
3850 struct zoneref *z;
15f570bf 3851 bool ret = false;
0a0337e0 3852
423b452e
VB
3853 /*
3854 * Costly allocations might have made a progress but this doesn't mean
3855 * their order will become available due to high fragmentation so
3856 * always increment the no progress counter for them
3857 */
3858 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3859 *no_progress_loops = 0;
3860 else
3861 (*no_progress_loops)++;
3862
0a0337e0
MH
3863 /*
3864 * Make sure we converge to OOM if we cannot make any progress
3865 * several times in the row.
3866 */
04c8716f
MK
3867 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3868 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3869 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3870 }
0a0337e0 3871
bca67592
MG
3872 /*
3873 * Keep reclaiming pages while there is a chance this will lead
3874 * somewhere. If none of the target zones can satisfy our allocation
3875 * request even if all reclaimable pages are considered then we are
3876 * screwed and have to go OOM.
0a0337e0 3877 */
97a225e6
JK
3878 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3879 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 3880 unsigned long available;
ede37713 3881 unsigned long reclaimable;
d379f01d
MH
3882 unsigned long min_wmark = min_wmark_pages(zone);
3883 bool wmark;
0a0337e0 3884
5a1c84b4 3885 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3886 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3887
3888 /*
491d79ae
JW
3889 * Would the allocation succeed if we reclaimed all
3890 * reclaimable pages?
0a0337e0 3891 */
d379f01d 3892 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 3893 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
3894 trace_reclaim_retry_zone(z, order, reclaimable,
3895 available, min_wmark, *no_progress_loops, wmark);
3896 if (wmark) {
15f570bf 3897 ret = true;
132b0d21 3898 break;
0a0337e0
MH
3899 }
3900 }
3901
15f570bf
MH
3902 /*
3903 * Memory allocation/reclaim might be called from a WQ context and the
3904 * current implementation of the WQ concurrency control doesn't
3905 * recognize that a particular WQ is congested if the worker thread is
3906 * looping without ever sleeping. Therefore we have to do a short sleep
3907 * here rather than calling cond_resched().
3908 */
3909 if (current->flags & PF_WQ_WORKER)
3910 schedule_timeout_uninterruptible(1);
3911 else
3912 cond_resched();
3913 return ret;
0a0337e0
MH
3914}
3915
902b6281
VB
3916static inline bool
3917check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3918{
3919 /*
3920 * It's possible that cpuset's mems_allowed and the nodemask from
3921 * mempolicy don't intersect. This should be normally dealt with by
3922 * policy_nodemask(), but it's possible to race with cpuset update in
3923 * such a way the check therein was true, and then it became false
3924 * before we got our cpuset_mems_cookie here.
3925 * This assumes that for all allocations, ac->nodemask can come only
3926 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3927 * when it does not intersect with the cpuset restrictions) or the
3928 * caller can deal with a violated nodemask.
3929 */
3930 if (cpusets_enabled() && ac->nodemask &&
3931 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3932 ac->nodemask = NULL;
3933 return true;
3934 }
3935
3936 /*
3937 * When updating a task's mems_allowed or mempolicy nodemask, it is
3938 * possible to race with parallel threads in such a way that our
3939 * allocation can fail while the mask is being updated. If we are about
3940 * to fail, check if the cpuset changed during allocation and if so,
3941 * retry.
3942 */
3943 if (read_mems_allowed_retry(cpuset_mems_cookie))
3944 return true;
3945
3946 return false;
3947}
3948
11e33f6a
MG
3949static inline struct page *
3950__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3951 struct alloc_context *ac)
11e33f6a 3952{
d0164adc 3953 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3954 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3955 struct page *page = NULL;
c603844b 3956 unsigned int alloc_flags;
11e33f6a 3957 unsigned long did_some_progress;
5ce9bfef 3958 enum compact_priority compact_priority;
c5d01d0d 3959 enum compact_result compact_result;
5ce9bfef
VB
3960 int compaction_retries;
3961 int no_progress_loops;
5ce9bfef 3962 unsigned int cpuset_mems_cookie;
3d36424b 3963 unsigned int zonelist_iter_cookie;
cd04ae1e 3964 int reserve_flags;
1da177e4 3965
3d36424b 3966restart:
5ce9bfef
VB
3967 compaction_retries = 0;
3968 no_progress_loops = 0;
3969 compact_priority = DEF_COMPACT_PRIORITY;
3970 cpuset_mems_cookie = read_mems_allowed_begin();
3d36424b 3971 zonelist_iter_cookie = zonelist_iter_begin();
9a67f648
MH
3972
3973 /*
3974 * The fast path uses conservative alloc_flags to succeed only until
3975 * kswapd needs to be woken up, and to avoid the cost of setting up
3976 * alloc_flags precisely. So we do that now.
3977 */
eb2e2b42 3978 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
9a67f648 3979
e47483bc
VB
3980 /*
3981 * We need to recalculate the starting point for the zonelist iterator
3982 * because we might have used different nodemask in the fast path, or
3983 * there was a cpuset modification and we are retrying - otherwise we
3984 * could end up iterating over non-eligible zones endlessly.
3985 */
3986 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 3987 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
3988 if (!ac->preferred_zoneref->zone)
3989 goto nopage;
3990
8ca1b5a4
FT
3991 /*
3992 * Check for insane configurations where the cpuset doesn't contain
3993 * any suitable zone to satisfy the request - e.g. non-movable
3994 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3995 */
3996 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3997 struct zoneref *z = first_zones_zonelist(ac->zonelist,
3998 ac->highest_zoneidx,
3999 &cpuset_current_mems_allowed);
4000 if (!z->zone)
4001 goto nopage;
4002 }
4003
0a79cdad 4004 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4005 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4006
4007 /*
4008 * The adjusted alloc_flags might result in immediate success, so try
4009 * that first
4010 */
4011 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4012 if (page)
4013 goto got_pg;
4014
a8161d1e
VB
4015 /*
4016 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4017 * that we have enough base pages and don't need to reclaim. For non-
4018 * movable high-order allocations, do that as well, as compaction will
4019 * try prevent permanent fragmentation by migrating from blocks of the
4020 * same migratetype.
4021 * Don't try this for allocations that are allowed to ignore
4022 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4023 */
282722b0
VB
4024 if (can_direct_reclaim &&
4025 (costly_order ||
4026 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4027 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4028 page = __alloc_pages_direct_compact(gfp_mask, order,
4029 alloc_flags, ac,
a5508cd8 4030 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4031 &compact_result);
4032 if (page)
4033 goto got_pg;
4034
cc638f32
VB
4035 /*
4036 * Checks for costly allocations with __GFP_NORETRY, which
4037 * includes some THP page fault allocations
4038 */
4039 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4040 /*
4041 * If allocating entire pageblock(s) and compaction
4042 * failed because all zones are below low watermarks
4043 * or is prohibited because it recently failed at this
3f36d866
DR
4044 * order, fail immediately unless the allocator has
4045 * requested compaction and reclaim retry.
b39d0ee2
DR
4046 *
4047 * Reclaim is
4048 * - potentially very expensive because zones are far
4049 * below their low watermarks or this is part of very
4050 * bursty high order allocations,
4051 * - not guaranteed to help because isolate_freepages()
4052 * may not iterate over freed pages as part of its
4053 * linear scan, and
4054 * - unlikely to make entire pageblocks free on its
4055 * own.
4056 */
4057 if (compact_result == COMPACT_SKIPPED ||
4058 compact_result == COMPACT_DEFERRED)
4059 goto nopage;
a8161d1e 4060
a8161d1e 4061 /*
3eb2771b
VB
4062 * Looks like reclaim/compaction is worth trying, but
4063 * sync compaction could be very expensive, so keep
25160354 4064 * using async compaction.
a8161d1e 4065 */
a5508cd8 4066 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4067 }
4068 }
23771235 4069
31a6c190 4070retry:
23771235 4071 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4072 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4073 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4074
cd04ae1e
MH
4075 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4076 if (reserve_flags)
ce96fa62
ML
4077 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4078 (alloc_flags & ALLOC_KSWAPD);
23771235 4079
e46e7b77 4080 /*
d6a24df0
VB
4081 * Reset the nodemask and zonelist iterators if memory policies can be
4082 * ignored. These allocations are high priority and system rather than
4083 * user oriented.
e46e7b77 4084 */
cd04ae1e 4085 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4086 ac->nodemask = NULL;
e46e7b77 4087 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4088 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4089 }
4090
23771235 4091 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4092 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4093 if (page)
4094 goto got_pg;
1da177e4 4095
d0164adc 4096 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4097 if (!can_direct_reclaim)
1da177e4
LT
4098 goto nopage;
4099
9a67f648
MH
4100 /* Avoid recursion of direct reclaim */
4101 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4102 goto nopage;
4103
a8161d1e
VB
4104 /* Try direct reclaim and then allocating */
4105 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4106 &did_some_progress);
4107 if (page)
4108 goto got_pg;
4109
4110 /* Try direct compaction and then allocating */
a9263751 4111 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4112 compact_priority, &compact_result);
56de7263
MG
4113 if (page)
4114 goto got_pg;
75f30861 4115
9083905a
JW
4116 /* Do not loop if specifically requested */
4117 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4118 goto nopage;
9083905a 4119
0a0337e0
MH
4120 /*
4121 * Do not retry costly high order allocations unless they are
dcda9b04 4122 * __GFP_RETRY_MAYFAIL
0a0337e0 4123 */
dcda9b04 4124 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4125 goto nopage;
0a0337e0 4126
0a0337e0 4127 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4128 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4129 goto retry;
4130
33c2d214
MH
4131 /*
4132 * It doesn't make any sense to retry for the compaction if the order-0
4133 * reclaim is not able to make any progress because the current
4134 * implementation of the compaction depends on the sufficient amount
4135 * of free memory (see __compaction_suitable)
4136 */
4137 if (did_some_progress > 0 &&
86a294a8 4138 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4139 compact_result, &compact_priority,
d9436498 4140 &compaction_retries))
33c2d214
MH
4141 goto retry;
4142
902b6281 4143
3d36424b
MG
4144 /*
4145 * Deal with possible cpuset update races or zonelist updates to avoid
4146 * a unnecessary OOM kill.
4147 */
4148 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4149 check_retry_zonelist(zonelist_iter_cookie))
4150 goto restart;
e47483bc 4151
9083905a
JW
4152 /* Reclaim has failed us, start killing things */
4153 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4154 if (page)
4155 goto got_pg;
4156
9a67f648 4157 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4158 if (tsk_is_oom_victim(current) &&
8510e69c 4159 (alloc_flags & ALLOC_OOM ||
c288983d 4160 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4161 goto nopage;
4162
9083905a 4163 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4164 if (did_some_progress) {
4165 no_progress_loops = 0;
9083905a 4166 goto retry;
0a0337e0 4167 }
9083905a 4168
1da177e4 4169nopage:
3d36424b
MG
4170 /*
4171 * Deal with possible cpuset update races or zonelist updates to avoid
4172 * a unnecessary OOM kill.
4173 */
4174 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4175 check_retry_zonelist(zonelist_iter_cookie))
4176 goto restart;
5ce9bfef 4177
9a67f648
MH
4178 /*
4179 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4180 * we always retry
4181 */
4182 if (gfp_mask & __GFP_NOFAIL) {
4183 /*
4184 * All existing users of the __GFP_NOFAIL are blockable, so warn
4185 * of any new users that actually require GFP_NOWAIT
4186 */
3f913fc5 4187 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
9a67f648
MH
4188 goto fail;
4189
4190 /*
4191 * PF_MEMALLOC request from this context is rather bizarre
4192 * because we cannot reclaim anything and only can loop waiting
4193 * for somebody to do a work for us
4194 */
3f913fc5 4195 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
9a67f648
MH
4196
4197 /*
4198 * non failing costly orders are a hard requirement which we
4199 * are not prepared for much so let's warn about these users
4200 * so that we can identify them and convert them to something
4201 * else.
4202 */
896c4d52 4203 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
9a67f648 4204
6c18ba7a 4205 /*
1ebbb218
MG
4206 * Help non-failing allocations by giving some access to memory
4207 * reserves normally used for high priority non-blocking
4208 * allocations but do not use ALLOC_NO_WATERMARKS because this
6c18ba7a 4209 * could deplete whole memory reserves which would just make
1ebbb218 4210 * the situation worse.
6c18ba7a 4211 */
1ebbb218 4212 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
6c18ba7a
MH
4213 if (page)
4214 goto got_pg;
4215
9a67f648
MH
4216 cond_resched();
4217 goto retry;
4218 }
4219fail:
a8e99259 4220 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4221 "page allocation failure: order:%u", order);
1da177e4 4222got_pg:
072bb0aa 4223 return page;
1da177e4 4224}
11e33f6a 4225
9cd75558 4226static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4227 int preferred_nid, nodemask_t *nodemask,
8e6a930b 4228 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 4229 unsigned int *alloc_flags)
11e33f6a 4230{
97a225e6 4231 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4232 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4233 ac->nodemask = nodemask;
01c0bfe0 4234 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4235
682a3385 4236 if (cpusets_enabled()) {
8e6a930b 4237 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
4238 /*
4239 * When we are in the interrupt context, it is irrelevant
4240 * to the current task context. It means that any node ok.
4241 */
88dc6f20 4242 if (in_task() && !ac->nodemask)
9cd75558 4243 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4244 else
4245 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4246 }
4247
446ec838 4248 might_alloc(gfp_mask);
11e33f6a
MG
4249
4250 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4251 return false;
11e33f6a 4252
8e3560d9 4253 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 4254
c9ab0c4f 4255 /* Dirty zone balancing only done in the fast path */
9cd75558 4256 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4257
e46e7b77
MG
4258 /*
4259 * The preferred zone is used for statistics but crucially it is
4260 * also used as the starting point for the zonelist iterator. It
4261 * may get reset for allocations that ignore memory policies.
4262 */
9cd75558 4263 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4264 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4265
4266 return true;
9cd75558
MG
4267}
4268
387ba26f 4269/*
0f87d9d3 4270 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
4271 * @gfp: GFP flags for the allocation
4272 * @preferred_nid: The preferred NUMA node ID to allocate from
4273 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
4274 * @nr_pages: The number of pages desired on the list or array
4275 * @page_list: Optional list to store the allocated pages
4276 * @page_array: Optional array to store the pages
387ba26f
MG
4277 *
4278 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
4279 * allocate nr_pages quickly. Pages are added to page_list if page_list
4280 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 4281 *
0f87d9d3
MG
4282 * For lists, nr_pages is the number of pages that should be allocated.
4283 *
4284 * For arrays, only NULL elements are populated with pages and nr_pages
4285 * is the maximum number of pages that will be stored in the array.
4286 *
4287 * Returns the number of pages on the list or array.
387ba26f
MG
4288 */
4289unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4290 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
4291 struct list_head *page_list,
4292 struct page **page_array)
387ba26f
MG
4293{
4294 struct page *page;
4b23a68f 4295 unsigned long __maybe_unused UP_flags;
387ba26f
MG
4296 struct zone *zone;
4297 struct zoneref *z;
4298 struct per_cpu_pages *pcp;
4299 struct list_head *pcp_list;
4300 struct alloc_context ac;
4301 gfp_t alloc_gfp;
4302 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 4303 int nr_populated = 0, nr_account = 0;
387ba26f 4304
0f87d9d3
MG
4305 /*
4306 * Skip populated array elements to determine if any pages need
4307 * to be allocated before disabling IRQs.
4308 */
b08e50dd 4309 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
4310 nr_populated++;
4311
06147843
CL
4312 /* No pages requested? */
4313 if (unlikely(nr_pages <= 0))
4314 goto out;
4315
b3b64ebd
MG
4316 /* Already populated array? */
4317 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 4318 goto out;
b3b64ebd 4319
8dcb3060 4320 /* Bulk allocator does not support memcg accounting. */
f7a449f7 4321 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
8dcb3060
SB
4322 goto failed;
4323
387ba26f 4324 /* Use the single page allocator for one page. */
0f87d9d3 4325 if (nr_pages - nr_populated == 1)
387ba26f
MG
4326 goto failed;
4327
187ad460
MG
4328#ifdef CONFIG_PAGE_OWNER
4329 /*
4330 * PAGE_OWNER may recurse into the allocator to allocate space to
4331 * save the stack with pagesets.lock held. Releasing/reacquiring
4332 * removes much of the performance benefit of bulk allocation so
4333 * force the caller to allocate one page at a time as it'll have
4334 * similar performance to added complexity to the bulk allocator.
4335 */
4336 if (static_branch_unlikely(&page_owner_inited))
4337 goto failed;
4338#endif
4339
387ba26f
MG
4340 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4341 gfp &= gfp_allowed_mask;
4342 alloc_gfp = gfp;
4343 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 4344 goto out;
387ba26f
MG
4345 gfp = alloc_gfp;
4346
4347 /* Find an allowed local zone that meets the low watermark. */
4348 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4349 unsigned long mark;
4350
4351 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4352 !__cpuset_zone_allowed(zone, gfp)) {
4353 continue;
4354 }
4355
4356 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4357 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4358 goto failed;
4359 }
4360
4361 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4362 if (zone_watermark_fast(zone, 0, mark,
4363 zonelist_zone_idx(ac.preferred_zoneref),
4364 alloc_flags, gfp)) {
4365 break;
4366 }
4367 }
4368
4369 /*
4370 * If there are no allowed local zones that meets the watermarks then
4371 * try to allocate a single page and reclaim if necessary.
4372 */
ce76f9a1 4373 if (unlikely(!zone))
387ba26f
MG
4374 goto failed;
4375
57490774 4376 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 4377 pcp_trylock_prepare(UP_flags);
57490774 4378 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 4379 if (!pcp)
4b23a68f 4380 goto failed_irq;
387ba26f 4381
387ba26f 4382 /* Attempt the batch allocation */
44042b44 4383 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
0f87d9d3
MG
4384 while (nr_populated < nr_pages) {
4385
4386 /* Skip existing pages */
4387 if (page_array && page_array[nr_populated]) {
4388 nr_populated++;
4389 continue;
4390 }
4391
44042b44 4392 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 4393 pcp, pcp_list);
ce76f9a1 4394 if (unlikely(!page)) {
c572e488 4395 /* Try and allocate at least one page */
4b23a68f 4396 if (!nr_account) {
57490774 4397 pcp_spin_unlock(pcp);
387ba26f 4398 goto failed_irq;
4b23a68f 4399 }
387ba26f
MG
4400 break;
4401 }
3e23060b 4402 nr_account++;
387ba26f
MG
4403
4404 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
4405 if (page_list)
4406 list_add(&page->lru, page_list);
4407 else
4408 page_array[nr_populated] = page;
4409 nr_populated++;
387ba26f
MG
4410 }
4411
57490774 4412 pcp_spin_unlock(pcp);
4b23a68f 4413 pcp_trylock_finish(UP_flags);
43c95bcc 4414
3e23060b
MG
4415 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4416 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 4417
06147843 4418out:
0f87d9d3 4419 return nr_populated;
387ba26f
MG
4420
4421failed_irq:
4b23a68f 4422 pcp_trylock_finish(UP_flags);
387ba26f
MG
4423
4424failed:
4425 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4426 if (page) {
0f87d9d3
MG
4427 if (page_list)
4428 list_add(&page->lru, page_list);
4429 else
4430 page_array[nr_populated] = page;
4431 nr_populated++;
387ba26f
MG
4432 }
4433
06147843 4434 goto out;
387ba26f
MG
4435}
4436EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4437
9cd75558
MG
4438/*
4439 * This is the 'heart' of the zoned buddy allocator.
4440 */
84172f4b 4441struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 4442 nodemask_t *nodemask)
9cd75558
MG
4443{
4444 struct page *page;
4445 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 4446 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4447 struct alloc_context ac = { };
4448
c63ae43b
MH
4449 /*
4450 * There are several places where we assume that the order value is sane
4451 * so bail out early if the request is out of bound.
4452 */
23baf831 4453 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
c63ae43b 4454 return NULL;
c63ae43b 4455
6e5e0f28 4456 gfp &= gfp_allowed_mask;
da6df1b0
PT
4457 /*
4458 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4459 * resp. GFP_NOIO which has to be inherited for all allocation requests
4460 * from a particular context which has been marked by
8e3560d9
PT
4461 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4462 * movable zones are not used during allocation.
da6df1b0
PT
4463 */
4464 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
4465 alloc_gfp = gfp;
4466 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 4467 &alloc_gfp, &alloc_flags))
9cd75558
MG
4468 return NULL;
4469
6bb15450
MG
4470 /*
4471 * Forbid the first pass from falling back to types that fragment
4472 * memory until all local zones are considered.
4473 */
6e5e0f28 4474 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 4475
5117f45d 4476 /* First allocation attempt */
8e6a930b 4477 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
4478 if (likely(page))
4479 goto out;
11e33f6a 4480
da6df1b0 4481 alloc_gfp = gfp;
4fcb0971 4482 ac.spread_dirty_pages = false;
23f086f9 4483
4741526b
MG
4484 /*
4485 * Restore the original nodemask if it was potentially replaced with
4486 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4487 */
97ce86f9 4488 ac.nodemask = nodemask;
16096c25 4489
8e6a930b 4490 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 4491
4fcb0971 4492out:
f7a449f7 4493 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
6e5e0f28 4494 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
4495 __free_pages(page, order);
4496 page = NULL;
4949148a
VD
4497 }
4498
8e6a930b 4499 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
b073d7f8 4500 kmsan_alloc_page(page, order, alloc_gfp);
4fcb0971 4501
11e33f6a 4502 return page;
1da177e4 4503}
84172f4b 4504EXPORT_SYMBOL(__alloc_pages);
1da177e4 4505
cc09cb13
MWO
4506struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4507 nodemask_t *nodemask)
4508{
4509 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4510 preferred_nid, nodemask);
4511
4512 if (page && order > 1)
4513 prep_transhuge_page(page);
4514 return (struct folio *)page;
4515}
4516EXPORT_SYMBOL(__folio_alloc);
4517
1da177e4 4518/*
9ea9a680
MH
4519 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4520 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4521 * you need to access high mem.
1da177e4 4522 */
920c7a5d 4523unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4524{
945a1113
AM
4525 struct page *page;
4526
9ea9a680 4527 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4528 if (!page)
4529 return 0;
4530 return (unsigned long) page_address(page);
4531}
1da177e4
LT
4532EXPORT_SYMBOL(__get_free_pages);
4533
920c7a5d 4534unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4535{
dcc1be11 4536 return __get_free_page(gfp_mask | __GFP_ZERO);
1da177e4 4537}
1da177e4
LT
4538EXPORT_SYMBOL(get_zeroed_page);
4539
7f194fbb
MWO
4540/**
4541 * __free_pages - Free pages allocated with alloc_pages().
4542 * @page: The page pointer returned from alloc_pages().
4543 * @order: The order of the allocation.
4544 *
4545 * This function can free multi-page allocations that are not compound
4546 * pages. It does not check that the @order passed in matches that of
4547 * the allocation, so it is easy to leak memory. Freeing more memory
4548 * than was allocated will probably emit a warning.
4549 *
4550 * If the last reference to this page is speculative, it will be released
4551 * by put_page() which only frees the first page of a non-compound
4552 * allocation. To prevent the remaining pages from being leaked, we free
4553 * the subsequent pages here. If you want to use the page's reference
4554 * count to decide when to free the allocation, you should allocate a
4555 * compound page, and use put_page() instead of __free_pages().
4556 *
4557 * Context: May be called in interrupt context or while holding a normal
4558 * spinlock, but not in NMI context or while holding a raw spinlock.
4559 */
742aa7fb
AL
4560void __free_pages(struct page *page, unsigned int order)
4561{
462a8e08
DC
4562 /* get PageHead before we drop reference */
4563 int head = PageHead(page);
4564
742aa7fb
AL
4565 if (put_page_testzero(page))
4566 free_the_page(page, order);
462a8e08 4567 else if (!head)
e320d301
MWO
4568 while (order-- > 0)
4569 free_the_page(page + (1 << order), order);
742aa7fb 4570}
1da177e4
LT
4571EXPORT_SYMBOL(__free_pages);
4572
920c7a5d 4573void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4574{
4575 if (addr != 0) {
725d704e 4576 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4577 __free_pages(virt_to_page((void *)addr), order);
4578 }
4579}
4580
4581EXPORT_SYMBOL(free_pages);
4582
b63ae8ca
AD
4583/*
4584 * Page Fragment:
4585 * An arbitrary-length arbitrary-offset area of memory which resides
4586 * within a 0 or higher order page. Multiple fragments within that page
4587 * are individually refcounted, in the page's reference counter.
4588 *
4589 * The page_frag functions below provide a simple allocation framework for
4590 * page fragments. This is used by the network stack and network device
4591 * drivers to provide a backing region of memory for use as either an
4592 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4593 */
2976db80
AD
4594static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4595 gfp_t gfp_mask)
b63ae8ca
AD
4596{
4597 struct page *page = NULL;
4598 gfp_t gfp = gfp_mask;
4599
4600#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4601 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4602 __GFP_NOMEMALLOC;
4603 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4604 PAGE_FRAG_CACHE_MAX_ORDER);
4605 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4606#endif
4607 if (unlikely(!page))
4608 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4609
4610 nc->va = page ? page_address(page) : NULL;
4611
4612 return page;
4613}
4614
2976db80 4615void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4616{
4617 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4618
742aa7fb
AL
4619 if (page_ref_sub_and_test(page, count))
4620 free_the_page(page, compound_order(page));
44fdffd7 4621}
2976db80 4622EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4623
b358e212
KH
4624void *page_frag_alloc_align(struct page_frag_cache *nc,
4625 unsigned int fragsz, gfp_t gfp_mask,
4626 unsigned int align_mask)
b63ae8ca
AD
4627{
4628 unsigned int size = PAGE_SIZE;
4629 struct page *page;
4630 int offset;
4631
4632 if (unlikely(!nc->va)) {
4633refill:
2976db80 4634 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4635 if (!page)
4636 return NULL;
4637
4638#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4639 /* if size can vary use size else just use PAGE_SIZE */
4640 size = nc->size;
4641#endif
4642 /* Even if we own the page, we do not use atomic_set().
4643 * This would break get_page_unless_zero() users.
4644 */
86447726 4645 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4646
4647 /* reset page count bias and offset to start of new frag */
2f064f34 4648 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4649 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4650 nc->offset = size;
4651 }
4652
4653 offset = nc->offset - fragsz;
4654 if (unlikely(offset < 0)) {
4655 page = virt_to_page(nc->va);
4656
fe896d18 4657 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4658 goto refill;
4659
d8c19014
DZ
4660 if (unlikely(nc->pfmemalloc)) {
4661 free_the_page(page, compound_order(page));
4662 goto refill;
4663 }
4664
b63ae8ca
AD
4665#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4666 /* if size can vary use size else just use PAGE_SIZE */
4667 size = nc->size;
4668#endif
4669 /* OK, page count is 0, we can safely set it */
86447726 4670 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4671
4672 /* reset page count bias and offset to start of new frag */
86447726 4673 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca 4674 offset = size - fragsz;
dac22531
ML
4675 if (unlikely(offset < 0)) {
4676 /*
4677 * The caller is trying to allocate a fragment
4678 * with fragsz > PAGE_SIZE but the cache isn't big
4679 * enough to satisfy the request, this may
4680 * happen in low memory conditions.
4681 * We don't release the cache page because
4682 * it could make memory pressure worse
4683 * so we simply return NULL here.
4684 */
4685 return NULL;
4686 }
b63ae8ca
AD
4687 }
4688
4689 nc->pagecnt_bias--;
b358e212 4690 offset &= align_mask;
b63ae8ca
AD
4691 nc->offset = offset;
4692
4693 return nc->va + offset;
4694}
b358e212 4695EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
4696
4697/*
4698 * Frees a page fragment allocated out of either a compound or order 0 page.
4699 */
8c2dd3e4 4700void page_frag_free(void *addr)
b63ae8ca
AD
4701{
4702 struct page *page = virt_to_head_page(addr);
4703
742aa7fb
AL
4704 if (unlikely(put_page_testzero(page)))
4705 free_the_page(page, compound_order(page));
b63ae8ca 4706}
8c2dd3e4 4707EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4708
d00181b9
KS
4709static void *make_alloc_exact(unsigned long addr, unsigned int order,
4710 size_t size)
ee85c2e1
AK
4711{
4712 if (addr) {
df48a5f7
LH
4713 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4714 struct page *page = virt_to_page((void *)addr);
4715 struct page *last = page + nr;
4716
4717 split_page_owner(page, 1 << order);
4718 split_page_memcg(page, 1 << order);
4719 while (page < --last)
4720 set_page_refcounted(last);
4721
4722 last = page + (1UL << order);
4723 for (page += nr; page < last; page++)
4724 __free_pages_ok(page, 0, FPI_TO_TAIL);
ee85c2e1
AK
4725 }
4726 return (void *)addr;
4727}
4728
2be0ffe2
TT
4729/**
4730 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4731 * @size: the number of bytes to allocate
63931eb9 4732 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4733 *
4734 * This function is similar to alloc_pages(), except that it allocates the
4735 * minimum number of pages to satisfy the request. alloc_pages() can only
4736 * allocate memory in power-of-two pages.
4737 *
4738 * This function is also limited by MAX_ORDER.
4739 *
4740 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4741 *
4742 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4743 */
4744void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4745{
4746 unsigned int order = get_order(size);
4747 unsigned long addr;
4748
ba7f1b9e
ML
4749 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4750 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 4751
2be0ffe2 4752 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4753 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4754}
4755EXPORT_SYMBOL(alloc_pages_exact);
4756
ee85c2e1
AK
4757/**
4758 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4759 * pages on a node.
b5e6ab58 4760 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4761 * @size: the number of bytes to allocate
63931eb9 4762 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4763 *
4764 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4765 * back.
a862f68a
MR
4766 *
4767 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4768 */
e1931811 4769void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4770{
d00181b9 4771 unsigned int order = get_order(size);
63931eb9
VB
4772 struct page *p;
4773
ba7f1b9e
ML
4774 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4775 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
4776
4777 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4778 if (!p)
4779 return NULL;
4780 return make_alloc_exact((unsigned long)page_address(p), order, size);
4781}
ee85c2e1 4782
2be0ffe2
TT
4783/**
4784 * free_pages_exact - release memory allocated via alloc_pages_exact()
4785 * @virt: the value returned by alloc_pages_exact.
4786 * @size: size of allocation, same value as passed to alloc_pages_exact().
4787 *
4788 * Release the memory allocated by a previous call to alloc_pages_exact.
4789 */
4790void free_pages_exact(void *virt, size_t size)
4791{
4792 unsigned long addr = (unsigned long)virt;
4793 unsigned long end = addr + PAGE_ALIGN(size);
4794
4795 while (addr < end) {
4796 free_page(addr);
4797 addr += PAGE_SIZE;
4798 }
4799}
4800EXPORT_SYMBOL(free_pages_exact);
4801
e0fb5815
ZY
4802/**
4803 * nr_free_zone_pages - count number of pages beyond high watermark
4804 * @offset: The zone index of the highest zone
4805 *
a862f68a 4806 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
4807 * high watermark within all zones at or below a given zone index. For each
4808 * zone, the number of pages is calculated as:
0e056eb5
MCC
4809 *
4810 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
4811 *
4812 * Return: number of pages beyond high watermark.
e0fb5815 4813 */
ebec3862 4814static unsigned long nr_free_zone_pages(int offset)
1da177e4 4815{
dd1a239f 4816 struct zoneref *z;
54a6eb5c
MG
4817 struct zone *zone;
4818
e310fd43 4819 /* Just pick one node, since fallback list is circular */
ebec3862 4820 unsigned long sum = 0;
1da177e4 4821
0e88460d 4822 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4823
54a6eb5c 4824 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4825 unsigned long size = zone_managed_pages(zone);
41858966 4826 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4827 if (size > high)
4828 sum += size - high;
1da177e4
LT
4829 }
4830
4831 return sum;
4832}
4833
e0fb5815
ZY
4834/**
4835 * nr_free_buffer_pages - count number of pages beyond high watermark
4836 *
4837 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4838 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
4839 *
4840 * Return: number of pages beyond high watermark within ZONE_DMA and
4841 * ZONE_NORMAL.
1da177e4 4842 */
ebec3862 4843unsigned long nr_free_buffer_pages(void)
1da177e4 4844{
af4ca457 4845 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4846}
c2f1a551 4847EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4848
19770b32
MG
4849static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4850{
4851 zoneref->zone = zone;
4852 zoneref->zone_idx = zone_idx(zone);
4853}
4854
1da177e4
LT
4855/*
4856 * Builds allocation fallback zone lists.
1a93205b
CL
4857 *
4858 * Add all populated zones of a node to the zonelist.
1da177e4 4859 */
9d3be21b 4860static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4861{
1a93205b 4862 struct zone *zone;
bc732f1d 4863 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4864 int nr_zones = 0;
02a68a5e
CL
4865
4866 do {
2f6726e5 4867 zone_type--;
070f8032 4868 zone = pgdat->node_zones + zone_type;
e553f62f 4869 if (populated_zone(zone)) {
9d3be21b 4870 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4871 check_highest_zone(zone_type);
1da177e4 4872 }
2f6726e5 4873 } while (zone_type);
bc732f1d 4874
070f8032 4875 return nr_zones;
1da177e4
LT
4876}
4877
4878#ifdef CONFIG_NUMA
f0c0b2b8
KH
4879
4880static int __parse_numa_zonelist_order(char *s)
4881{
c9bff3ee 4882 /*
f0953a1b 4883 * We used to support different zonelists modes but they turned
c9bff3ee
MH
4884 * out to be just not useful. Let's keep the warning in place
4885 * if somebody still use the cmd line parameter so that we do
4886 * not fail it silently
4887 */
4888 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4889 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4890 return -EINVAL;
4891 }
4892 return 0;
4893}
4894
e95d372c
KW
4895static char numa_zonelist_order[] = "Node";
4896#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8
KH
4897/*
4898 * sysctl handler for numa_zonelist_order
4899 */
e95d372c 4900static int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 4901 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 4902{
32927393
CH
4903 if (write)
4904 return __parse_numa_zonelist_order(buffer);
4905 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
4906}
4907
f0c0b2b8
KH
4908static int node_load[MAX_NUMNODES];
4909
1da177e4 4910/**
4dc3b16b 4911 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4912 * @node: node whose fallback list we're appending
4913 * @used_node_mask: nodemask_t of already used nodes
4914 *
4915 * We use a number of factors to determine which is the next node that should
4916 * appear on a given node's fallback list. The node should not have appeared
4917 * already in @node's fallback list, and it should be the next closest node
4918 * according to the distance array (which contains arbitrary distance values
4919 * from each node to each node in the system), and should also prefer nodes
4920 * with no CPUs, since presumably they'll have very little allocation pressure
4921 * on them otherwise.
a862f68a
MR
4922 *
4923 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 4924 */
79c28a41 4925int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4926{
4cf808eb 4927 int n, val;
1da177e4 4928 int min_val = INT_MAX;
00ef2d2f 4929 int best_node = NUMA_NO_NODE;
1da177e4 4930
4cf808eb
LT
4931 /* Use the local node if we haven't already */
4932 if (!node_isset(node, *used_node_mask)) {
4933 node_set(node, *used_node_mask);
4934 return node;
4935 }
1da177e4 4936
4b0ef1fe 4937 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4938
4939 /* Don't want a node to appear more than once */
4940 if (node_isset(n, *used_node_mask))
4941 continue;
4942
1da177e4
LT
4943 /* Use the distance array to find the distance */
4944 val = node_distance(node, n);
4945
4cf808eb
LT
4946 /* Penalize nodes under us ("prefer the next node") */
4947 val += (n < node);
4948
1da177e4 4949 /* Give preference to headless and unused nodes */
b630749f 4950 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
4951 val += PENALTY_FOR_NODE_WITH_CPUS;
4952
4953 /* Slight preference for less loaded node */
37931324 4954 val *= MAX_NUMNODES;
1da177e4
LT
4955 val += node_load[n];
4956
4957 if (val < min_val) {
4958 min_val = val;
4959 best_node = n;
4960 }
4961 }
4962
4963 if (best_node >= 0)
4964 node_set(best_node, *used_node_mask);
4965
4966 return best_node;
4967}
4968
f0c0b2b8
KH
4969
4970/*
4971 * Build zonelists ordered by node and zones within node.
4972 * This results in maximum locality--normal zone overflows into local
4973 * DMA zone, if any--but risks exhausting DMA zone.
4974 */
9d3be21b
MH
4975static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4976 unsigned nr_nodes)
1da177e4 4977{
9d3be21b
MH
4978 struct zoneref *zonerefs;
4979 int i;
4980
4981 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4982
4983 for (i = 0; i < nr_nodes; i++) {
4984 int nr_zones;
4985
4986 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 4987
9d3be21b
MH
4988 nr_zones = build_zonerefs_node(node, zonerefs);
4989 zonerefs += nr_zones;
4990 }
4991 zonerefs->zone = NULL;
4992 zonerefs->zone_idx = 0;
f0c0b2b8
KH
4993}
4994
523b9458
CL
4995/*
4996 * Build gfp_thisnode zonelists
4997 */
4998static void build_thisnode_zonelists(pg_data_t *pgdat)
4999{
9d3be21b
MH
5000 struct zoneref *zonerefs;
5001 int nr_zones;
523b9458 5002
9d3be21b
MH
5003 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5004 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5005 zonerefs += nr_zones;
5006 zonerefs->zone = NULL;
5007 zonerefs->zone_idx = 0;
523b9458
CL
5008}
5009
f0c0b2b8
KH
5010/*
5011 * Build zonelists ordered by zone and nodes within zones.
5012 * This results in conserving DMA zone[s] until all Normal memory is
5013 * exhausted, but results in overflowing to remote node while memory
5014 * may still exist in local DMA zone.
5015 */
f0c0b2b8 5016
f0c0b2b8
KH
5017static void build_zonelists(pg_data_t *pgdat)
5018{
9d3be21b 5019 static int node_order[MAX_NUMNODES];
37931324 5020 int node, nr_nodes = 0;
d0ddf49b 5021 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5022 int local_node, prev_node;
1da177e4
LT
5023
5024 /* NUMA-aware ordering of nodes */
5025 local_node = pgdat->node_id;
1da177e4 5026 prev_node = local_node;
f0c0b2b8 5027
f0c0b2b8 5028 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5029 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5030 /*
5031 * We don't want to pressure a particular node.
5032 * So adding penalty to the first node in same
5033 * distance group to make it round-robin.
5034 */
957f822a
DR
5035 if (node_distance(local_node, node) !=
5036 node_distance(local_node, prev_node))
37931324 5037 node_load[node] += 1;
f0c0b2b8 5038
9d3be21b 5039 node_order[nr_nodes++] = node;
1da177e4 5040 prev_node = node;
1da177e4 5041 }
523b9458 5042
9d3be21b 5043 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5044 build_thisnode_zonelists(pgdat);
6cf25392
BR
5045 pr_info("Fallback order for Node %d: ", local_node);
5046 for (node = 0; node < nr_nodes; node++)
5047 pr_cont("%d ", node_order[node]);
5048 pr_cont("\n");
1da177e4
LT
5049}
5050
7aac7898
LS
5051#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5052/*
5053 * Return node id of node used for "local" allocations.
5054 * I.e., first node id of first zone in arg node's generic zonelist.
5055 * Used for initializing percpu 'numa_mem', which is used primarily
5056 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5057 */
5058int local_memory_node(int node)
5059{
c33d6c06 5060 struct zoneref *z;
7aac7898 5061
c33d6c06 5062 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5063 gfp_zone(GFP_KERNEL),
c33d6c06 5064 NULL);
c1093b74 5065 return zone_to_nid(z->zone);
7aac7898
LS
5066}
5067#endif
f0c0b2b8 5068
6423aa81
JK
5069static void setup_min_unmapped_ratio(void);
5070static void setup_min_slab_ratio(void);
1da177e4
LT
5071#else /* CONFIG_NUMA */
5072
f0c0b2b8 5073static void build_zonelists(pg_data_t *pgdat)
1da177e4 5074{
19655d34 5075 int node, local_node;
9d3be21b
MH
5076 struct zoneref *zonerefs;
5077 int nr_zones;
1da177e4
LT
5078
5079 local_node = pgdat->node_id;
1da177e4 5080
9d3be21b
MH
5081 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5082 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5083 zonerefs += nr_zones;
1da177e4 5084
54a6eb5c
MG
5085 /*
5086 * Now we build the zonelist so that it contains the zones
5087 * of all the other nodes.
5088 * We don't want to pressure a particular node, so when
5089 * building the zones for node N, we make sure that the
5090 * zones coming right after the local ones are those from
5091 * node N+1 (modulo N)
5092 */
5093 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5094 if (!node_online(node))
5095 continue;
9d3be21b
MH
5096 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5097 zonerefs += nr_zones;
1da177e4 5098 }
54a6eb5c
MG
5099 for (node = 0; node < local_node; node++) {
5100 if (!node_online(node))
5101 continue;
9d3be21b
MH
5102 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5103 zonerefs += nr_zones;
54a6eb5c
MG
5104 }
5105
9d3be21b
MH
5106 zonerefs->zone = NULL;
5107 zonerefs->zone_idx = 0;
1da177e4
LT
5108}
5109
5110#endif /* CONFIG_NUMA */
5111
99dcc3e5
CL
5112/*
5113 * Boot pageset table. One per cpu which is going to be used for all
5114 * zones and all nodes. The parameters will be set in such a way
5115 * that an item put on a list will immediately be handed over to
5116 * the buddy list. This is safe since pageset manipulation is done
5117 * with interrupts disabled.
5118 *
5119 * The boot_pagesets must be kept even after bootup is complete for
5120 * unused processors and/or zones. They do play a role for bootstrapping
5121 * hotplugged processors.
5122 *
5123 * zoneinfo_show() and maybe other functions do
5124 * not check if the processor is online before following the pageset pointer.
5125 * Other parts of the kernel may not check if the zone is available.
5126 */
28f836b6 5127static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
5128/* These effectively disable the pcplists in the boot pageset completely */
5129#define BOOT_PAGESET_HIGH 0
5130#define BOOT_PAGESET_BATCH 1
28f836b6
MG
5131static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5132static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
99dcc3e5 5133
11cd8638 5134static void __build_all_zonelists(void *data)
1da177e4 5135{
6811378e 5136 int nid;
afb6ebb3 5137 int __maybe_unused cpu;
9adb62a5 5138 pg_data_t *self = data;
1007843a 5139 unsigned long flags;
b93e0f32 5140
1007843a 5141 /*
a2ebb515
SAS
5142 * The zonelist_update_seq must be acquired with irqsave because the
5143 * reader can be invoked from IRQ with GFP_ATOMIC.
1007843a 5144 */
a2ebb515 5145 write_seqlock_irqsave(&zonelist_update_seq, flags);
1007843a 5146 /*
a2ebb515
SAS
5147 * Also disable synchronous printk() to prevent any printk() from
5148 * trying to hold port->lock, for
1007843a
TH
5149 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5150 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5151 */
5152 printk_deferred_enter();
9276b1bc 5153
7f9cfb31
BL
5154#ifdef CONFIG_NUMA
5155 memset(node_load, 0, sizeof(node_load));
5156#endif
9adb62a5 5157
c1152583
WY
5158 /*
5159 * This node is hotadded and no memory is yet present. So just
5160 * building zonelists is fine - no need to touch other nodes.
5161 */
9adb62a5
JL
5162 if (self && !node_online(self->node_id)) {
5163 build_zonelists(self);
c1152583 5164 } else {
09f49dca
MH
5165 /*
5166 * All possible nodes have pgdat preallocated
5167 * in free_area_init
5168 */
5169 for_each_node(nid) {
c1152583 5170 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5171
c1152583
WY
5172 build_zonelists(pgdat);
5173 }
99dcc3e5 5174
7aac7898
LS
5175#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5176 /*
5177 * We now know the "local memory node" for each node--
5178 * i.e., the node of the first zone in the generic zonelist.
5179 * Set up numa_mem percpu variable for on-line cpus. During
5180 * boot, only the boot cpu should be on-line; we'll init the
5181 * secondary cpus' numa_mem as they come on-line. During
5182 * node/memory hotplug, we'll fixup all on-line cpus.
5183 */
d9c9a0b9 5184 for_each_online_cpu(cpu)
7aac7898 5185 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5186#endif
d9c9a0b9 5187 }
b93e0f32 5188
1007843a 5189 printk_deferred_exit();
a2ebb515 5190 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
6811378e
YG
5191}
5192
061f67bc
RV
5193static noinline void __init
5194build_all_zonelists_init(void)
5195{
afb6ebb3
MH
5196 int cpu;
5197
061f67bc 5198 __build_all_zonelists(NULL);
afb6ebb3
MH
5199
5200 /*
5201 * Initialize the boot_pagesets that are going to be used
5202 * for bootstrapping processors. The real pagesets for
5203 * each zone will be allocated later when the per cpu
5204 * allocator is available.
5205 *
5206 * boot_pagesets are used also for bootstrapping offline
5207 * cpus if the system is already booted because the pagesets
5208 * are needed to initialize allocators on a specific cpu too.
5209 * F.e. the percpu allocator needs the page allocator which
5210 * needs the percpu allocator in order to allocate its pagesets
5211 * (a chicken-egg dilemma).
5212 */
5213 for_each_possible_cpu(cpu)
28f836b6 5214 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 5215
061f67bc
RV
5216 mminit_verify_zonelist();
5217 cpuset_init_current_mems_allowed();
5218}
5219
4eaf3f64 5220/*
4eaf3f64 5221 * unless system_state == SYSTEM_BOOTING.
061f67bc 5222 *
72675e13 5223 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5224 * [protected by SYSTEM_BOOTING].
4eaf3f64 5225 */
72675e13 5226void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 5227{
0a18e607
DH
5228 unsigned long vm_total_pages;
5229
6811378e 5230 if (system_state == SYSTEM_BOOTING) {
061f67bc 5231 build_all_zonelists_init();
6811378e 5232 } else {
11cd8638 5233 __build_all_zonelists(pgdat);
6811378e
YG
5234 /* cpuset refresh routine should be here */
5235 }
56b9413b
DH
5236 /* Get the number of free pages beyond high watermark in all zones. */
5237 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
5238 /*
5239 * Disable grouping by mobility if the number of pages in the
5240 * system is too low to allow the mechanism to work. It would be
5241 * more accurate, but expensive to check per-zone. This check is
5242 * made on memory-hotadd so a system can start with mobility
5243 * disabled and enable it later
5244 */
d9c23400 5245 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5246 page_group_by_mobility_disabled = 1;
5247 else
5248 page_group_by_mobility_disabled = 0;
5249
ce0725f7 5250 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5251 nr_online_nodes,
756a025f
JP
5252 page_group_by_mobility_disabled ? "off" : "on",
5253 vm_total_pages);
f0c0b2b8 5254#ifdef CONFIG_NUMA
f88dfff5 5255 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5256#endif
1da177e4
LT
5257}
5258
9420f89d 5259static int zone_batchsize(struct zone *zone)
1da177e4 5260{
9420f89d
MRI
5261#ifdef CONFIG_MMU
5262 int batch;
1da177e4 5263
9420f89d
MRI
5264 /*
5265 * The number of pages to batch allocate is either ~0.1%
5266 * of the zone or 1MB, whichever is smaller. The batch
5267 * size is striking a balance between allocation latency
5268 * and zone lock contention.
5269 */
5270 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5271 batch /= 4; /* We effectively *= 4 below */
5272 if (batch < 1)
5273 batch = 1;
22b31eec 5274
4b94ffdc 5275 /*
9420f89d
MRI
5276 * Clamp the batch to a 2^n - 1 value. Having a power
5277 * of 2 value was found to be more likely to have
5278 * suboptimal cache aliasing properties in some cases.
5279 *
5280 * For example if 2 tasks are alternately allocating
5281 * batches of pages, one task can end up with a lot
5282 * of pages of one half of the possible page colors
5283 * and the other with pages of the other colors.
4b94ffdc 5284 */
9420f89d 5285 batch = rounddown_pow_of_two(batch + batch/2) - 1;
966cf44f 5286
9420f89d 5287 return batch;
3a6be87f
DH
5288
5289#else
5290 /* The deferral and batching of frees should be suppressed under NOMMU
5291 * conditions.
5292 *
5293 * The problem is that NOMMU needs to be able to allocate large chunks
5294 * of contiguous memory as there's no hardware page translation to
5295 * assemble apparent contiguous memory from discontiguous pages.
5296 *
5297 * Queueing large contiguous runs of pages for batching, however,
5298 * causes the pages to actually be freed in smaller chunks. As there
5299 * can be a significant delay between the individual batches being
5300 * recycled, this leads to the once large chunks of space being
5301 * fragmented and becoming unavailable for high-order allocations.
5302 */
5303 return 0;
5304#endif
e7c8d5c9
CL
5305}
5306
e95d372c 5307static int percpu_pagelist_high_fraction;
04f8cfea 5308static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e 5309{
9420f89d
MRI
5310#ifdef CONFIG_MMU
5311 int high;
5312 int nr_split_cpus;
5313 unsigned long total_pages;
c13291a5 5314
9420f89d 5315 if (!percpu_pagelist_high_fraction) {
2a1e274a 5316 /*
9420f89d
MRI
5317 * By default, the high value of the pcp is based on the zone
5318 * low watermark so that if they are full then background
5319 * reclaim will not be started prematurely.
2a1e274a 5320 */
9420f89d
MRI
5321 total_pages = low_wmark_pages(zone);
5322 } else {
2a1e274a 5323 /*
9420f89d
MRI
5324 * If percpu_pagelist_high_fraction is configured, the high
5325 * value is based on a fraction of the managed pages in the
5326 * zone.
2a1e274a 5327 */
9420f89d 5328 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
2a1e274a
MG
5329 }
5330
5331 /*
9420f89d
MRI
5332 * Split the high value across all online CPUs local to the zone. Note
5333 * that early in boot that CPUs may not be online yet and that during
5334 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5335 * onlined. For memory nodes that have no CPUs, split pcp->high across
5336 * all online CPUs to mitigate the risk that reclaim is triggered
5337 * prematurely due to pages stored on pcp lists.
2a1e274a 5338 */
9420f89d
MRI
5339 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5340 if (!nr_split_cpus)
5341 nr_split_cpus = num_online_cpus();
5342 high = total_pages / nr_split_cpus;
2a1e274a 5343
9420f89d
MRI
5344 /*
5345 * Ensure high is at least batch*4. The multiple is based on the
5346 * historical relationship between high and batch.
5347 */
5348 high = max(high, batch << 2);
37b07e41 5349
9420f89d
MRI
5350 return high;
5351#else
5352 return 0;
5353#endif
37b07e41
LS
5354}
5355
51930df5 5356/*
9420f89d
MRI
5357 * pcp->high and pcp->batch values are related and generally batch is lower
5358 * than high. They are also related to pcp->count such that count is lower
5359 * than high, and as soon as it reaches high, the pcplist is flushed.
5360 *
5361 * However, guaranteeing these relations at all times would require e.g. write
5362 * barriers here but also careful usage of read barriers at the read side, and
5363 * thus be prone to error and bad for performance. Thus the update only prevents
5364 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5365 * can cope with those fields changing asynchronously, and fully trust only the
5366 * pcp->count field on the local CPU with interrupts disabled.
5367 *
5368 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5369 * outside of boot time (or some other assurance that no concurrent updaters
5370 * exist).
51930df5 5371 */
9420f89d
MRI
5372static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5373 unsigned long batch)
51930df5 5374{
9420f89d
MRI
5375 WRITE_ONCE(pcp->batch, batch);
5376 WRITE_ONCE(pcp->high, high);
51930df5
MR
5377}
5378
9420f89d 5379static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
c713216d 5380{
9420f89d 5381 int pindex;
90cae1fe 5382
9420f89d
MRI
5383 memset(pcp, 0, sizeof(*pcp));
5384 memset(pzstats, 0, sizeof(*pzstats));
90cae1fe 5385
9420f89d
MRI
5386 spin_lock_init(&pcp->lock);
5387 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5388 INIT_LIST_HEAD(&pcp->lists[pindex]);
2a1e274a 5389
9420f89d
MRI
5390 /*
5391 * Set batch and high values safe for a boot pageset. A true percpu
5392 * pageset's initialization will update them subsequently. Here we don't
5393 * need to be as careful as pageset_update() as nobody can access the
5394 * pageset yet.
5395 */
5396 pcp->high = BOOT_PAGESET_HIGH;
5397 pcp->batch = BOOT_PAGESET_BATCH;
5398 pcp->free_factor = 0;
5399}
c713216d 5400
9420f89d
MRI
5401static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5402 unsigned long batch)
5403{
5404 struct per_cpu_pages *pcp;
5405 int cpu;
2a1e274a 5406
9420f89d
MRI
5407 for_each_possible_cpu(cpu) {
5408 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5409 pageset_update(pcp, high, batch);
2a1e274a 5410 }
9420f89d 5411}
c713216d 5412
9420f89d
MRI
5413/*
5414 * Calculate and set new high and batch values for all per-cpu pagesets of a
5415 * zone based on the zone's size.
5416 */
5417static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5418{
5419 int new_high, new_batch;
09f49dca 5420
9420f89d
MRI
5421 new_batch = max(1, zone_batchsize(zone));
5422 new_high = zone_highsize(zone, new_batch, cpu_online);
09f49dca 5423
9420f89d
MRI
5424 if (zone->pageset_high == new_high &&
5425 zone->pageset_batch == new_batch)
5426 return;
37b07e41 5427
9420f89d
MRI
5428 zone->pageset_high = new_high;
5429 zone->pageset_batch = new_batch;
122e093c 5430
9420f89d 5431 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
c713216d 5432}
2a1e274a 5433
9420f89d 5434void __meminit setup_zone_pageset(struct zone *zone)
2a1e274a 5435{
9420f89d 5436 int cpu;
2a1e274a 5437
9420f89d
MRI
5438 /* Size may be 0 on !SMP && !NUMA */
5439 if (sizeof(struct per_cpu_zonestat) > 0)
5440 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
2a1e274a 5441
9420f89d
MRI
5442 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5443 for_each_possible_cpu(cpu) {
5444 struct per_cpu_pages *pcp;
5445 struct per_cpu_zonestat *pzstats;
2a1e274a 5446
9420f89d
MRI
5447 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5448 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5449 per_cpu_pages_init(pcp, pzstats);
a5c6d650 5450 }
9420f89d
MRI
5451
5452 zone_set_pageset_high_and_batch(zone, 0);
2a1e274a 5453}
ed7ed365 5454
7e63efef 5455/*
9420f89d
MRI
5456 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5457 * page high values need to be recalculated.
7e63efef 5458 */
9420f89d 5459static void zone_pcp_update(struct zone *zone, int cpu_online)
7e63efef 5460{
9420f89d
MRI
5461 mutex_lock(&pcp_batch_high_lock);
5462 zone_set_pageset_high_and_batch(zone, cpu_online);
5463 mutex_unlock(&pcp_batch_high_lock);
7e63efef
MG
5464}
5465
5466/*
9420f89d
MRI
5467 * Allocate per cpu pagesets and initialize them.
5468 * Before this call only boot pagesets were available.
7e63efef 5469 */
9420f89d 5470void __init setup_per_cpu_pageset(void)
7e63efef 5471{
9420f89d
MRI
5472 struct pglist_data *pgdat;
5473 struct zone *zone;
5474 int __maybe_unused cpu;
5475
5476 for_each_populated_zone(zone)
5477 setup_zone_pageset(zone);
5478
5479#ifdef CONFIG_NUMA
5480 /*
5481 * Unpopulated zones continue using the boot pagesets.
5482 * The numa stats for these pagesets need to be reset.
5483 * Otherwise, they will end up skewing the stats of
5484 * the nodes these zones are associated with.
5485 */
5486 for_each_possible_cpu(cpu) {
5487 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5488 memset(pzstats->vm_numa_event, 0,
5489 sizeof(pzstats->vm_numa_event));
5490 }
5491#endif
5492
5493 for_each_online_pgdat(pgdat)
5494 pgdat->per_cpu_nodestats =
5495 alloc_percpu(struct per_cpu_nodestat);
7e63efef
MG
5496}
5497
9420f89d
MRI
5498__meminit void zone_pcp_init(struct zone *zone)
5499{
5500 /*
5501 * per cpu subsystem is not up at this point. The following code
5502 * relies on the ability of the linker to provide the
5503 * offset of a (static) per cpu variable into the per cpu area.
5504 */
5505 zone->per_cpu_pageset = &boot_pageset;
5506 zone->per_cpu_zonestats = &boot_zonestats;
5507 zone->pageset_high = BOOT_PAGESET_HIGH;
5508 zone->pageset_batch = BOOT_PAGESET_BATCH;
5509
5510 if (populated_zone(zone))
5511 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5512 zone->present_pages, zone_batchsize(zone));
5513}
ed7ed365 5514
c3d5f5f0
JL
5515void adjust_managed_page_count(struct page *page, long count)
5516{
9705bea5 5517 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 5518 totalram_pages_add(count);
3dcc0571
JL
5519#ifdef CONFIG_HIGHMEM
5520 if (PageHighMem(page))
ca79b0c2 5521 totalhigh_pages_add(count);
3dcc0571 5522#endif
c3d5f5f0 5523}
3dcc0571 5524EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5525
e5cb113f 5526unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 5527{
11199692
JL
5528 void *pos;
5529 unsigned long pages = 0;
69afade7 5530
11199692
JL
5531 start = (void *)PAGE_ALIGN((unsigned long)start);
5532 end = (void *)((unsigned long)end & PAGE_MASK);
5533 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
5534 struct page *page = virt_to_page(pos);
5535 void *direct_map_addr;
5536
5537 /*
5538 * 'direct_map_addr' might be different from 'pos'
5539 * because some architectures' virt_to_page()
5540 * work with aliases. Getting the direct map
5541 * address ensures that we get a _writeable_
5542 * alias for the memset().
5543 */
5544 direct_map_addr = page_address(page);
c746170d
VF
5545 /*
5546 * Perform a kasan-unchecked memset() since this memory
5547 * has not been initialized.
5548 */
5549 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 5550 if ((unsigned int)poison <= 0xFF)
0d834328
DH
5551 memset(direct_map_addr, poison, PAGE_SIZE);
5552
5553 free_reserved_page(page);
69afade7
JL
5554 }
5555
5556 if (pages && s)
ff7ed9e4 5557 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
5558
5559 return pages;
5560}
5561
005fd4bb 5562static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 5563{
04f8cfea 5564 struct zone *zone;
1da177e4 5565
005fd4bb 5566 lru_add_drain_cpu(cpu);
96f97c43 5567 mlock_drain_remote(cpu);
005fd4bb 5568 drain_pages(cpu);
9f8f2172 5569
005fd4bb
SAS
5570 /*
5571 * Spill the event counters of the dead processor
5572 * into the current processors event counters.
5573 * This artificially elevates the count of the current
5574 * processor.
5575 */
5576 vm_events_fold_cpu(cpu);
9f8f2172 5577
005fd4bb
SAS
5578 /*
5579 * Zero the differential counters of the dead processor
5580 * so that the vm statistics are consistent.
5581 *
5582 * This is only okay since the processor is dead and cannot
5583 * race with what we are doing.
5584 */
5585 cpu_vm_stats_fold(cpu);
04f8cfea
MG
5586
5587 for_each_populated_zone(zone)
5588 zone_pcp_update(zone, 0);
5589
5590 return 0;
5591}
5592
5593static int page_alloc_cpu_online(unsigned int cpu)
5594{
5595 struct zone *zone;
5596
5597 for_each_populated_zone(zone)
5598 zone_pcp_update(zone, 1);
005fd4bb 5599 return 0;
1da177e4 5600}
1da177e4 5601
c4fbed4b 5602void __init page_alloc_init_cpuhp(void)
1da177e4 5603{
005fd4bb
SAS
5604 int ret;
5605
04f8cfea
MG
5606 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5607 "mm/page_alloc:pcp",
5608 page_alloc_cpu_online,
005fd4bb
SAS
5609 page_alloc_cpu_dead);
5610 WARN_ON(ret < 0);
1da177e4
LT
5611}
5612
cb45b0e9 5613/*
34b10060 5614 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
5615 * or min_free_kbytes changes.
5616 */
5617static void calculate_totalreserve_pages(void)
5618{
5619 struct pglist_data *pgdat;
5620 unsigned long reserve_pages = 0;
2f6726e5 5621 enum zone_type i, j;
cb45b0e9
HA
5622
5623 for_each_online_pgdat(pgdat) {
281e3726
MG
5624
5625 pgdat->totalreserve_pages = 0;
5626
cb45b0e9
HA
5627 for (i = 0; i < MAX_NR_ZONES; i++) {
5628 struct zone *zone = pgdat->node_zones + i;
3484b2de 5629 long max = 0;
9705bea5 5630 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
5631
5632 /* Find valid and maximum lowmem_reserve in the zone */
5633 for (j = i; j < MAX_NR_ZONES; j++) {
5634 if (zone->lowmem_reserve[j] > max)
5635 max = zone->lowmem_reserve[j];
5636 }
5637
41858966
MG
5638 /* we treat the high watermark as reserved pages. */
5639 max += high_wmark_pages(zone);
cb45b0e9 5640
3d6357de
AK
5641 if (max > managed_pages)
5642 max = managed_pages;
a8d01437 5643
281e3726 5644 pgdat->totalreserve_pages += max;
a8d01437 5645
cb45b0e9
HA
5646 reserve_pages += max;
5647 }
5648 }
5649 totalreserve_pages = reserve_pages;
5650}
5651
1da177e4
LT
5652/*
5653 * setup_per_zone_lowmem_reserve - called whenever
34b10060 5654 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
5655 * has a correct pages reserved value, so an adequate number of
5656 * pages are left in the zone after a successful __alloc_pages().
5657 */
5658static void setup_per_zone_lowmem_reserve(void)
5659{
5660 struct pglist_data *pgdat;
470c61d7 5661 enum zone_type i, j;
1da177e4 5662
ec936fc5 5663 for_each_online_pgdat(pgdat) {
470c61d7
LS
5664 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5665 struct zone *zone = &pgdat->node_zones[i];
5666 int ratio = sysctl_lowmem_reserve_ratio[i];
5667 bool clear = !ratio || !zone_managed_pages(zone);
5668 unsigned long managed_pages = 0;
5669
5670 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
5671 struct zone *upper_zone = &pgdat->node_zones[j];
5672
5673 managed_pages += zone_managed_pages(upper_zone);
470c61d7 5674
f7ec1044
LS
5675 if (clear)
5676 zone->lowmem_reserve[j] = 0;
5677 else
470c61d7 5678 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
5679 }
5680 }
5681 }
cb45b0e9
HA
5682
5683 /* update totalreserve_pages */
5684 calculate_totalreserve_pages();
1da177e4
LT
5685}
5686
cfd3da1e 5687static void __setup_per_zone_wmarks(void)
1da177e4
LT
5688{
5689 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5690 unsigned long lowmem_pages = 0;
5691 struct zone *zone;
5692 unsigned long flags;
5693
416ef04f 5694 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
1da177e4 5695 for_each_zone(zone) {
416ef04f 5696 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
9705bea5 5697 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
5698 }
5699
5700 for_each_zone(zone) {
ac924c60
AM
5701 u64 tmp;
5702
1125b4e3 5703 spin_lock_irqsave(&zone->lock, flags);
9705bea5 5704 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 5705 do_div(tmp, lowmem_pages);
416ef04f 5706 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
1da177e4 5707 /*
669ed175 5708 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
416ef04f 5709 * need highmem and movable zones pages, so cap pages_min
5710 * to a small value here.
669ed175 5711 *
41858966 5712 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 5713 * deltas control async page reclaim, and so should
416ef04f 5714 * not be capped for highmem and movable zones.
1da177e4 5715 */
90ae8d67 5716 unsigned long min_pages;
1da177e4 5717
9705bea5 5718 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 5719 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 5720 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 5721 } else {
669ed175
NP
5722 /*
5723 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5724 * proportionate to the zone's size.
5725 */
a9214443 5726 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
5727 }
5728
795ae7a0
JW
5729 /*
5730 * Set the kswapd watermarks distance according to the
5731 * scale factor in proportion to available memory, but
5732 * ensure a minimum size on small systems.
5733 */
5734 tmp = max_t(u64, tmp >> 2,
9705bea5 5735 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
5736 watermark_scale_factor, 10000));
5737
aa092591 5738 zone->watermark_boost = 0;
a9214443 5739 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
HY
5740 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5741 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 5742
1125b4e3 5743 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5744 }
cb45b0e9
HA
5745
5746 /* update totalreserve_pages */
5747 calculate_totalreserve_pages();
1da177e4
LT
5748}
5749
cfd3da1e
MG
5750/**
5751 * setup_per_zone_wmarks - called when min_free_kbytes changes
5752 * or when memory is hot-{added|removed}
5753 *
5754 * Ensures that the watermark[min,low,high] values for each zone are set
5755 * correctly with respect to min_free_kbytes.
5756 */
5757void setup_per_zone_wmarks(void)
5758{
b92ca18e 5759 struct zone *zone;
b93e0f32
MH
5760 static DEFINE_SPINLOCK(lock);
5761
5762 spin_lock(&lock);
cfd3da1e 5763 __setup_per_zone_wmarks();
b93e0f32 5764 spin_unlock(&lock);
b92ca18e
MG
5765
5766 /*
5767 * The watermark size have changed so update the pcpu batch
5768 * and high limits or the limits may be inappropriate.
5769 */
5770 for_each_zone(zone)
04f8cfea 5771 zone_pcp_update(zone, 0);
cfd3da1e
MG
5772}
5773
1da177e4
LT
5774/*
5775 * Initialise min_free_kbytes.
5776 *
5777 * For small machines we want it small (128k min). For large machines
8beeae86 5778 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
5779 * bandwidth does not increase linearly with machine size. We use
5780 *
b8af2941 5781 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5782 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5783 *
5784 * which yields
5785 *
5786 * 16MB: 512k
5787 * 32MB: 724k
5788 * 64MB: 1024k
5789 * 128MB: 1448k
5790 * 256MB: 2048k
5791 * 512MB: 2896k
5792 * 1024MB: 4096k
5793 * 2048MB: 5792k
5794 * 4096MB: 8192k
5795 * 8192MB: 11584k
5796 * 16384MB: 16384k
5797 */
bd3400ea 5798void calculate_min_free_kbytes(void)
1da177e4
LT
5799{
5800 unsigned long lowmem_kbytes;
5f12733e 5801 int new_min_free_kbytes;
1da177e4
LT
5802
5803 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5804 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5805
59d336bd
WS
5806 if (new_min_free_kbytes > user_min_free_kbytes)
5807 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5808 else
5f12733e
MH
5809 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5810 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 5811
bd3400ea
LF
5812}
5813
5814int __meminit init_per_zone_wmark_min(void)
5815{
5816 calculate_min_free_kbytes();
bc75d33f 5817 setup_per_zone_wmarks();
a6cccdc3 5818 refresh_zone_stat_thresholds();
1da177e4 5819 setup_per_zone_lowmem_reserve();
6423aa81
JK
5820
5821#ifdef CONFIG_NUMA
5822 setup_min_unmapped_ratio();
5823 setup_min_slab_ratio();
5824#endif
5825
4aab2be0
VB
5826 khugepaged_min_free_kbytes_update();
5827
1da177e4
LT
5828 return 0;
5829}
e08d3fdf 5830postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
5831
5832/*
b8af2941 5833 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5834 * that we can call two helper functions whenever min_free_kbytes
5835 * changes.
5836 */
e95d372c 5837static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 5838 void *buffer, size_t *length, loff_t *ppos)
1da177e4 5839{
da8c757b
HP
5840 int rc;
5841
5842 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5843 if (rc)
5844 return rc;
5845
5f12733e
MH
5846 if (write) {
5847 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5848 setup_per_zone_wmarks();
5f12733e 5849 }
1da177e4
LT
5850 return 0;
5851}
5852
e95d372c 5853static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 5854 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
5855{
5856 int rc;
5857
5858 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5859 if (rc)
5860 return rc;
5861
5862 if (write)
5863 setup_per_zone_wmarks();
5864
5865 return 0;
5866}
5867
9614634f 5868#ifdef CONFIG_NUMA
6423aa81 5869static void setup_min_unmapped_ratio(void)
9614634f 5870{
6423aa81 5871 pg_data_t *pgdat;
9614634f 5872 struct zone *zone;
9614634f 5873
a5f5f91d 5874 for_each_online_pgdat(pgdat)
81cbcbc2 5875 pgdat->min_unmapped_pages = 0;
a5f5f91d 5876
9614634f 5877 for_each_zone(zone)
9705bea5
AK
5878 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5879 sysctl_min_unmapped_ratio) / 100;
9614634f 5880}
0ff38490 5881
6423aa81 5882
e95d372c 5883static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 5884 void *buffer, size_t *length, loff_t *ppos)
0ff38490 5885{
0ff38490
CL
5886 int rc;
5887
8d65af78 5888 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5889 if (rc)
5890 return rc;
5891
6423aa81
JK
5892 setup_min_unmapped_ratio();
5893
5894 return 0;
5895}
5896
5897static void setup_min_slab_ratio(void)
5898{
5899 pg_data_t *pgdat;
5900 struct zone *zone;
5901
a5f5f91d
MG
5902 for_each_online_pgdat(pgdat)
5903 pgdat->min_slab_pages = 0;
5904
0ff38490 5905 for_each_zone(zone)
9705bea5
AK
5906 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5907 sysctl_min_slab_ratio) / 100;
6423aa81
JK
5908}
5909
e95d372c 5910static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 5911 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
5912{
5913 int rc;
5914
5915 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5916 if (rc)
5917 return rc;
5918
5919 setup_min_slab_ratio();
5920
0ff38490
CL
5921 return 0;
5922}
9614634f
CL
5923#endif
5924
1da177e4
LT
5925/*
5926 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5927 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5928 * whenever sysctl_lowmem_reserve_ratio changes.
5929 *
5930 * The reserve ratio obviously has absolutely no relation with the
41858966 5931 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5932 * if in function of the boot time zone sizes.
5933 */
e95d372c
KW
5934static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5935 int write, void *buffer, size_t *length, loff_t *ppos)
1da177e4 5936{
86aaf255
BH
5937 int i;
5938
8d65af78 5939 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
5940
5941 for (i = 0; i < MAX_NR_ZONES; i++) {
5942 if (sysctl_lowmem_reserve_ratio[i] < 1)
5943 sysctl_lowmem_reserve_ratio[i] = 0;
5944 }
5945
1da177e4
LT
5946 setup_per_zone_lowmem_reserve();
5947 return 0;
5948}
5949
8ad4b1fb 5950/*
74f44822
MG
5951 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5952 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 5953 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5954 */
e95d372c 5955static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
74f44822 5956 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5957{
5958 struct zone *zone;
74f44822 5959 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
5960 int ret;
5961
7cd2b0a3 5962 mutex_lock(&pcp_batch_high_lock);
74f44822 5963 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 5964
8d65af78 5965 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5966 if (!write || ret < 0)
5967 goto out;
5968
5969 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
5970 if (percpu_pagelist_high_fraction &&
5971 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5972 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
5973 ret = -EINVAL;
5974 goto out;
5975 }
5976
5977 /* No change? */
74f44822 5978 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 5979 goto out;
c8e251fa 5980
cb1ef534 5981 for_each_populated_zone(zone)
74f44822 5982 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 5983out:
c8e251fa 5984 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5985 return ret;
8ad4b1fb
RS
5986}
5987
e95d372c
KW
5988static struct ctl_table page_alloc_sysctl_table[] = {
5989 {
5990 .procname = "min_free_kbytes",
5991 .data = &min_free_kbytes,
5992 .maxlen = sizeof(min_free_kbytes),
5993 .mode = 0644,
5994 .proc_handler = min_free_kbytes_sysctl_handler,
5995 .extra1 = SYSCTL_ZERO,
5996 },
5997 {
5998 .procname = "watermark_boost_factor",
5999 .data = &watermark_boost_factor,
6000 .maxlen = sizeof(watermark_boost_factor),
6001 .mode = 0644,
6002 .proc_handler = proc_dointvec_minmax,
6003 .extra1 = SYSCTL_ZERO,
6004 },
6005 {
6006 .procname = "watermark_scale_factor",
6007 .data = &watermark_scale_factor,
6008 .maxlen = sizeof(watermark_scale_factor),
6009 .mode = 0644,
6010 .proc_handler = watermark_scale_factor_sysctl_handler,
6011 .extra1 = SYSCTL_ONE,
6012 .extra2 = SYSCTL_THREE_THOUSAND,
6013 },
6014 {
6015 .procname = "percpu_pagelist_high_fraction",
6016 .data = &percpu_pagelist_high_fraction,
6017 .maxlen = sizeof(percpu_pagelist_high_fraction),
6018 .mode = 0644,
6019 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6020 .extra1 = SYSCTL_ZERO,
6021 },
6022 {
6023 .procname = "lowmem_reserve_ratio",
6024 .data = &sysctl_lowmem_reserve_ratio,
6025 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6026 .mode = 0644,
6027 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6028 },
6029#ifdef CONFIG_NUMA
6030 {
6031 .procname = "numa_zonelist_order",
6032 .data = &numa_zonelist_order,
6033 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6034 .mode = 0644,
6035 .proc_handler = numa_zonelist_order_handler,
6036 },
6037 {
6038 .procname = "min_unmapped_ratio",
6039 .data = &sysctl_min_unmapped_ratio,
6040 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6041 .mode = 0644,
6042 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6043 .extra1 = SYSCTL_ZERO,
6044 .extra2 = SYSCTL_ONE_HUNDRED,
6045 },
6046 {
6047 .procname = "min_slab_ratio",
6048 .data = &sysctl_min_slab_ratio,
6049 .maxlen = sizeof(sysctl_min_slab_ratio),
6050 .mode = 0644,
6051 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6052 .extra1 = SYSCTL_ZERO,
6053 .extra2 = SYSCTL_ONE_HUNDRED,
6054 },
6055#endif
6056 {}
6057};
6058
6059void __init page_alloc_sysctl_init(void)
6060{
6061 register_sysctl_init("vm", page_alloc_sysctl_table);
6062}
6063
8df995f6 6064#ifdef CONFIG_CONTIG_ALLOC
a1394bdd
MK
6065/* Usage: See admin-guide/dynamic-debug-howto.rst */
6066static void alloc_contig_dump_pages(struct list_head *page_list)
6067{
6068 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6069
6070 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6071 struct page *page;
6072
6073 dump_stack();
6074 list_for_each_entry(page, page_list, lru)
6075 dump_page(page, "migration failure");
6076 }
6077}
a1394bdd 6078
041d3a8c 6079/* [start, end) must belong to a single zone. */
b2c9e2fb 6080int __alloc_contig_migrate_range(struct compact_control *cc,
bb13ffeb 6081 unsigned long start, unsigned long end)
041d3a8c
MN
6082{
6083 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 6084 unsigned int nr_reclaimed;
041d3a8c
MN
6085 unsigned long pfn = start;
6086 unsigned int tries = 0;
6087 int ret = 0;
8b94e0b8
JK
6088 struct migration_target_control mtc = {
6089 .nid = zone_to_nid(cc->zone),
6090 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6091 };
041d3a8c 6092
361a2a22 6093 lru_cache_disable();
041d3a8c 6094
bb13ffeb 6095 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6096 if (fatal_signal_pending(current)) {
6097 ret = -EINTR;
6098 break;
6099 }
6100
bb13ffeb
MG
6101 if (list_empty(&cc->migratepages)) {
6102 cc->nr_migratepages = 0;
c2ad7a1f
OS
6103 ret = isolate_migratepages_range(cc, pfn, end);
6104 if (ret && ret != -EAGAIN)
041d3a8c 6105 break;
c2ad7a1f 6106 pfn = cc->migrate_pfn;
041d3a8c
MN
6107 tries = 0;
6108 } else if (++tries == 5) {
c8e28b47 6109 ret = -EBUSY;
041d3a8c
MN
6110 break;
6111 }
6112
beb51eaa
MK
6113 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6114 &cc->migratepages);
6115 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6116
8b94e0b8 6117 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 6118 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
6119
6120 /*
6121 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6122 * to retry again over this error, so do the same here.
6123 */
6124 if (ret == -ENOMEM)
6125 break;
041d3a8c 6126 }
d479960e 6127
361a2a22 6128 lru_cache_enable();
2a6f5124 6129 if (ret < 0) {
3f913fc5 6130 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
151e084a 6131 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
6132 putback_movable_pages(&cc->migratepages);
6133 return ret;
6134 }
6135 return 0;
041d3a8c
MN
6136}
6137
6138/**
6139 * alloc_contig_range() -- tries to allocate given range of pages
6140 * @start: start PFN to allocate
6141 * @end: one-past-the-last PFN to allocate
f0953a1b 6142 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
6143 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6144 * in range must have the same migratetype and it must
6145 * be either of the two.
ca96b625 6146 * @gfp_mask: GFP mask to use during compaction
041d3a8c 6147 *
11ac3e87
ZY
6148 * The PFN range does not have to be pageblock aligned. The PFN range must
6149 * belong to a single zone.
041d3a8c 6150 *
2c7452a0
MK
6151 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6152 * pageblocks in the range. Once isolated, the pageblocks should not
6153 * be modified by others.
041d3a8c 6154 *
a862f68a 6155 * Return: zero on success or negative error code. On success all
041d3a8c
MN
6156 * pages which PFN is in [start, end) are allocated for the caller and
6157 * need to be freed with free_contig_range().
6158 */
0815f3d8 6159int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 6160 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 6161{
041d3a8c 6162 unsigned long outer_start, outer_end;
b2c9e2fb 6163 int order;
d00181b9 6164 int ret = 0;
041d3a8c 6165
bb13ffeb
MG
6166 struct compact_control cc = {
6167 .nr_migratepages = 0,
6168 .order = -1,
6169 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6170 .mode = MIGRATE_SYNC,
bb13ffeb 6171 .ignore_skip_hint = true,
2583d671 6172 .no_set_skip_hint = true,
7dea19f9 6173 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 6174 .alloc_contig = true,
bb13ffeb
MG
6175 };
6176 INIT_LIST_HEAD(&cc.migratepages);
6177
041d3a8c
MN
6178 /*
6179 * What we do here is we mark all pageblocks in range as
6180 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6181 * have different sizes, and due to the way page allocator
b2c9e2fb 6182 * work, start_isolate_page_range() has special handlings for this.
041d3a8c
MN
6183 *
6184 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6185 * migrate the pages from an unaligned range (ie. pages that
b2c9e2fb 6186 * we are interested in). This will put all the pages in
041d3a8c
MN
6187 * range back to page allocator as MIGRATE_ISOLATE.
6188 *
6189 * When this is done, we take the pages in range from page
6190 * allocator removing them from the buddy system. This way
6191 * page allocator will never consider using them.
6192 *
6193 * This lets us mark the pageblocks back as
6194 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6195 * aligned range but not in the unaligned, original range are
6196 * put back to page allocator so that buddy can use them.
6197 */
6198
6e263fff 6199 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
3fa0c7c7 6200 if (ret)
b2c9e2fb 6201 goto done;
041d3a8c 6202
7612921f
VB
6203 drain_all_pages(cc.zone);
6204
8ef5849f
JK
6205 /*
6206 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
6207 * So, just fall through. test_pages_isolated() has a tracepoint
6208 * which will report the busy page.
6209 *
6210 * It is possible that busy pages could become available before
6211 * the call to test_pages_isolated, and the range will actually be
6212 * allocated. So, if we fall through be sure to clear ret so that
6213 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 6214 */
bb13ffeb 6215 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6216 if (ret && ret != -EBUSY)
041d3a8c 6217 goto done;
68d68ff6 6218 ret = 0;
041d3a8c
MN
6219
6220 /*
b2c9e2fb 6221 * Pages from [start, end) are within a pageblock_nr_pages
041d3a8c
MN
6222 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6223 * more, all pages in [start, end) are free in page allocator.
6224 * What we are going to do is to allocate all pages from
6225 * [start, end) (that is remove them from page allocator).
6226 *
6227 * The only problem is that pages at the beginning and at the
6228 * end of interesting range may be not aligned with pages that
6229 * page allocator holds, ie. they can be part of higher order
6230 * pages. Because of this, we reserve the bigger range and
6231 * once this is done free the pages we are not interested in.
6232 *
6233 * We don't have to hold zone->lock here because the pages are
6234 * isolated thus they won't get removed from buddy.
6235 */
6236
041d3a8c
MN
6237 order = 0;
6238 outer_start = start;
6239 while (!PageBuddy(pfn_to_page(outer_start))) {
23baf831 6240 if (++order > MAX_ORDER) {
8ef5849f
JK
6241 outer_start = start;
6242 break;
041d3a8c
MN
6243 }
6244 outer_start &= ~0UL << order;
6245 }
6246
8ef5849f 6247 if (outer_start != start) {
ab130f91 6248 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
6249
6250 /*
6251 * outer_start page could be small order buddy page and
6252 * it doesn't include start page. Adjust outer_start
6253 * in this case to report failed page properly
6254 * on tracepoint in test_pages_isolated()
6255 */
6256 if (outer_start + (1UL << order) <= start)
6257 outer_start = start;
6258 }
6259
041d3a8c 6260 /* Make sure the range is really isolated. */
756d25be 6261 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
6262 ret = -EBUSY;
6263 goto done;
6264 }
6265
49f223a9 6266 /* Grab isolated pages from freelists. */
bb13ffeb 6267 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6268 if (!outer_end) {
6269 ret = -EBUSY;
6270 goto done;
6271 }
6272
6273 /* Free head and tail (if any) */
6274 if (start != outer_start)
6275 free_contig_range(outer_start, start - outer_start);
6276 if (end != outer_end)
6277 free_contig_range(end, outer_end - end);
6278
6279done:
6e263fff 6280 undo_isolate_page_range(start, end, migratetype);
041d3a8c
MN
6281 return ret;
6282}
255f5985 6283EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
6284
6285static int __alloc_contig_pages(unsigned long start_pfn,
6286 unsigned long nr_pages, gfp_t gfp_mask)
6287{
6288 unsigned long end_pfn = start_pfn + nr_pages;
6289
6290 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6291 gfp_mask);
6292}
6293
6294static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6295 unsigned long nr_pages)
6296{
6297 unsigned long i, end_pfn = start_pfn + nr_pages;
6298 struct page *page;
6299
6300 for (i = start_pfn; i < end_pfn; i++) {
6301 page = pfn_to_online_page(i);
6302 if (!page)
6303 return false;
6304
6305 if (page_zone(page) != z)
6306 return false;
6307
6308 if (PageReserved(page))
4d73ba5f
MG
6309 return false;
6310
6311 if (PageHuge(page))
5e27a2df 6312 return false;
5e27a2df
AK
6313 }
6314 return true;
6315}
6316
6317static bool zone_spans_last_pfn(const struct zone *zone,
6318 unsigned long start_pfn, unsigned long nr_pages)
6319{
6320 unsigned long last_pfn = start_pfn + nr_pages - 1;
6321
6322 return zone_spans_pfn(zone, last_pfn);
6323}
6324
6325/**
6326 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6327 * @nr_pages: Number of contiguous pages to allocate
6328 * @gfp_mask: GFP mask to limit search and used during compaction
6329 * @nid: Target node
6330 * @nodemask: Mask for other possible nodes
6331 *
6332 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6333 * on an applicable zonelist to find a contiguous pfn range which can then be
6334 * tried for allocation with alloc_contig_range(). This routine is intended
6335 * for allocation requests which can not be fulfilled with the buddy allocator.
6336 *
6337 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
6338 * power of two, then allocated range is also guaranteed to be aligned to same
6339 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
6340 *
6341 * Allocated pages can be freed with free_contig_range() or by manually calling
6342 * __free_page() on each allocated page.
6343 *
6344 * Return: pointer to contiguous pages on success, or NULL if not successful.
6345 */
6346struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6347 int nid, nodemask_t *nodemask)
6348{
6349 unsigned long ret, pfn, flags;
6350 struct zonelist *zonelist;
6351 struct zone *zone;
6352 struct zoneref *z;
6353
6354 zonelist = node_zonelist(nid, gfp_mask);
6355 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6356 gfp_zone(gfp_mask), nodemask) {
6357 spin_lock_irqsave(&zone->lock, flags);
6358
6359 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6360 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6361 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6362 /*
6363 * We release the zone lock here because
6364 * alloc_contig_range() will also lock the zone
6365 * at some point. If there's an allocation
6366 * spinning on this lock, it may win the race
6367 * and cause alloc_contig_range() to fail...
6368 */
6369 spin_unlock_irqrestore(&zone->lock, flags);
6370 ret = __alloc_contig_pages(pfn, nr_pages,
6371 gfp_mask);
6372 if (!ret)
6373 return pfn_to_page(pfn);
6374 spin_lock_irqsave(&zone->lock, flags);
6375 }
6376 pfn += nr_pages;
6377 }
6378 spin_unlock_irqrestore(&zone->lock, flags);
6379 }
6380 return NULL;
6381}
4eb0716e 6382#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 6383
78fa5150 6384void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 6385{
78fa5150 6386 unsigned long count = 0;
bcc2b02f
MS
6387
6388 for (; nr_pages--; pfn++) {
6389 struct page *page = pfn_to_page(pfn);
6390
6391 count += page_count(page) != 1;
6392 __free_page(page);
6393 }
78fa5150 6394 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 6395}
255f5985 6396EXPORT_SYMBOL(free_contig_range);
041d3a8c 6397
ec6e8c7e
VB
6398/*
6399 * Effectively disable pcplists for the zone by setting the high limit to 0
6400 * and draining all cpus. A concurrent page freeing on another CPU that's about
6401 * to put the page on pcplist will either finish before the drain and the page
6402 * will be drained, or observe the new high limit and skip the pcplist.
6403 *
6404 * Must be paired with a call to zone_pcp_enable().
6405 */
6406void zone_pcp_disable(struct zone *zone)
6407{
6408 mutex_lock(&pcp_batch_high_lock);
6409 __zone_set_pageset_high_and_batch(zone, 0, 1);
6410 __drain_all_pages(zone, true);
6411}
6412
6413void zone_pcp_enable(struct zone *zone)
6414{
6415 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6416 mutex_unlock(&pcp_batch_high_lock);
6417}
6418
340175b7
JL
6419void zone_pcp_reset(struct zone *zone)
6420{
5a883813 6421 int cpu;
28f836b6 6422 struct per_cpu_zonestat *pzstats;
340175b7 6423
28f836b6 6424 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 6425 for_each_online_cpu(cpu) {
28f836b6
MG
6426 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6427 drain_zonestat(zone, pzstats);
5a883813 6428 }
28f836b6 6429 free_percpu(zone->per_cpu_pageset);
28f836b6 6430 zone->per_cpu_pageset = &boot_pageset;
022e7fa0
ML
6431 if (zone->per_cpu_zonestats != &boot_zonestats) {
6432 free_percpu(zone->per_cpu_zonestats);
6433 zone->per_cpu_zonestats = &boot_zonestats;
6434 }
340175b7 6435 }
340175b7
JL
6436}
6437
6dcd73d7 6438#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 6439/*
257bea71
DH
6440 * All pages in the range must be in a single zone, must not contain holes,
6441 * must span full sections, and must be isolated before calling this function.
0c0e6195 6442 */
257bea71 6443void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 6444{
257bea71 6445 unsigned long pfn = start_pfn;
0c0e6195
KH
6446 struct page *page;
6447 struct zone *zone;
0ee5f4f3 6448 unsigned int order;
0c0e6195 6449 unsigned long flags;
5557c766 6450
2d070eab 6451 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
6452 zone = page_zone(pfn_to_page(pfn));
6453 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 6454 while (pfn < end_pfn) {
0c0e6195 6455 page = pfn_to_page(pfn);
b023f468
WC
6456 /*
6457 * The HWPoisoned page may be not in buddy system, and
6458 * page_count() is not 0.
6459 */
6460 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6461 pfn++;
b023f468
WC
6462 continue;
6463 }
aa218795
DH
6464 /*
6465 * At this point all remaining PageOffline() pages have a
6466 * reference count of 0 and can simply be skipped.
6467 */
6468 if (PageOffline(page)) {
6469 BUG_ON(page_count(page));
6470 BUG_ON(PageBuddy(page));
6471 pfn++;
aa218795
DH
6472 continue;
6473 }
b023f468 6474
0c0e6195
KH
6475 BUG_ON(page_count(page));
6476 BUG_ON(!PageBuddy(page));
ab130f91 6477 order = buddy_order(page);
6ab01363 6478 del_page_from_free_list(page, zone, order);
0c0e6195
KH
6479 pfn += (1 << order);
6480 }
6481 spin_unlock_irqrestore(&zone->lock, flags);
6482}
6483#endif
8d22ba1b 6484
8446b59b
ED
6485/*
6486 * This function returns a stable result only if called under zone lock.
6487 */
8d22ba1b
WF
6488bool is_free_buddy_page(struct page *page)
6489{
8d22ba1b 6490 unsigned long pfn = page_to_pfn(page);
7aeb09f9 6491 unsigned int order;
8d22ba1b 6492
23baf831 6493 for (order = 0; order <= MAX_ORDER; order++) {
8d22ba1b
WF
6494 struct page *page_head = page - (pfn & ((1 << order) - 1));
6495
8446b59b
ED
6496 if (PageBuddy(page_head) &&
6497 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
6498 break;
6499 }
8d22ba1b 6500
23baf831 6501 return order <= MAX_ORDER;
8d22ba1b 6502}
a581865e 6503EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
6504
6505#ifdef CONFIG_MEMORY_FAILURE
6506/*
06be6ff3
OS
6507 * Break down a higher-order page in sub-pages, and keep our target out of
6508 * buddy allocator.
d4ae9916 6509 */
06be6ff3
OS
6510static void break_down_buddy_pages(struct zone *zone, struct page *page,
6511 struct page *target, int low, int high,
6512 int migratetype)
6513{
6514 unsigned long size = 1 << high;
6515 struct page *current_buddy, *next_page;
6516
6517 while (high > low) {
6518 high--;
6519 size >>= 1;
6520
6521 if (target >= &page[size]) {
6522 next_page = page + size;
6523 current_buddy = page;
6524 } else {
6525 next_page = page;
6526 current_buddy = page + size;
6527 }
6528
6529 if (set_page_guard(zone, current_buddy, high, migratetype))
6530 continue;
6531
6532 if (current_buddy != target) {
6533 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 6534 set_buddy_order(current_buddy, high);
06be6ff3
OS
6535 page = next_page;
6536 }
6537 }
6538}
6539
6540/*
6541 * Take a page that will be marked as poisoned off the buddy allocator.
6542 */
6543bool take_page_off_buddy(struct page *page)
d4ae9916
NH
6544{
6545 struct zone *zone = page_zone(page);
6546 unsigned long pfn = page_to_pfn(page);
6547 unsigned long flags;
6548 unsigned int order;
06be6ff3 6549 bool ret = false;
d4ae9916
NH
6550
6551 spin_lock_irqsave(&zone->lock, flags);
23baf831 6552 for (order = 0; order <= MAX_ORDER; order++) {
d4ae9916 6553 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 6554 int page_order = buddy_order(page_head);
d4ae9916 6555
ab130f91 6556 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
6557 unsigned long pfn_head = page_to_pfn(page_head);
6558 int migratetype = get_pfnblock_migratetype(page_head,
6559 pfn_head);
6560
ab130f91 6561 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 6562 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 6563 page_order, migratetype);
bf181c58 6564 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
6565 if (!is_migrate_isolate(migratetype))
6566 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 6567 ret = true;
d4ae9916
NH
6568 break;
6569 }
06be6ff3
OS
6570 if (page_count(page_head) > 0)
6571 break;
d4ae9916
NH
6572 }
6573 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 6574 return ret;
d4ae9916 6575}
bf181c58
NH
6576
6577/*
6578 * Cancel takeoff done by take_page_off_buddy().
6579 */
6580bool put_page_back_buddy(struct page *page)
6581{
6582 struct zone *zone = page_zone(page);
6583 unsigned long pfn = page_to_pfn(page);
6584 unsigned long flags;
6585 int migratetype = get_pfnblock_migratetype(page, pfn);
6586 bool ret = false;
6587
6588 spin_lock_irqsave(&zone->lock, flags);
6589 if (put_page_testzero(page)) {
6590 ClearPageHWPoisonTakenOff(page);
6591 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6592 if (TestClearPageHWPoison(page)) {
bf181c58
NH
6593 ret = true;
6594 }
6595 }
6596 spin_unlock_irqrestore(&zone->lock, flags);
6597
6598 return ret;
6599}
d4ae9916 6600#endif
62b31070
BH
6601
6602#ifdef CONFIG_ZONE_DMA
6603bool has_managed_dma(void)
6604{
6605 struct pglist_data *pgdat;
6606
6607 for_each_online_pgdat(pgdat) {
6608 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6609
6610 if (managed_zone(zone))
6611 return true;
6612 }
6613 return false;
6614}
6615#endif /* CONFIG_ZONE_DMA */
dcdfdd40
KS
6616
6617#ifdef CONFIG_UNACCEPTED_MEMORY
6618
6619/* Counts number of zones with unaccepted pages. */
6620static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6621
6622static bool lazy_accept = true;
6623
6624static int __init accept_memory_parse(char *p)
6625{
6626 if (!strcmp(p, "lazy")) {
6627 lazy_accept = true;
6628 return 0;
6629 } else if (!strcmp(p, "eager")) {
6630 lazy_accept = false;
6631 return 0;
6632 } else {
6633 return -EINVAL;
6634 }
6635}
6636early_param("accept_memory", accept_memory_parse);
6637
6638static bool page_contains_unaccepted(struct page *page, unsigned int order)
6639{
6640 phys_addr_t start = page_to_phys(page);
6641 phys_addr_t end = start + (PAGE_SIZE << order);
6642
6643 return range_contains_unaccepted_memory(start, end);
6644}
6645
6646static void accept_page(struct page *page, unsigned int order)
6647{
6648 phys_addr_t start = page_to_phys(page);
6649
6650 accept_memory(start, start + (PAGE_SIZE << order));
6651}
6652
6653static bool try_to_accept_memory_one(struct zone *zone)
6654{
6655 unsigned long flags;
6656 struct page *page;
6657 bool last;
6658
6659 if (list_empty(&zone->unaccepted_pages))
6660 return false;
6661
6662 spin_lock_irqsave(&zone->lock, flags);
6663 page = list_first_entry_or_null(&zone->unaccepted_pages,
6664 struct page, lru);
6665 if (!page) {
6666 spin_unlock_irqrestore(&zone->lock, flags);
6667 return false;
6668 }
6669
6670 list_del(&page->lru);
6671 last = list_empty(&zone->unaccepted_pages);
6672
6673 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6674 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6675 spin_unlock_irqrestore(&zone->lock, flags);
6676
6677 accept_page(page, MAX_ORDER);
6678
6679 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6680
6681 if (last)
6682 static_branch_dec(&zones_with_unaccepted_pages);
6683
6684 return true;
6685}
6686
6687static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6688{
6689 long to_accept;
6690 int ret = false;
6691
6692 /* How much to accept to get to high watermark? */
6693 to_accept = high_wmark_pages(zone) -
6694 (zone_page_state(zone, NR_FREE_PAGES) -
6695 __zone_watermark_unusable_free(zone, order, 0));
6696
6697 /* Accept at least one page */
6698 do {
6699 if (!try_to_accept_memory_one(zone))
6700 break;
6701 ret = true;
6702 to_accept -= MAX_ORDER_NR_PAGES;
6703 } while (to_accept > 0);
6704
6705 return ret;
6706}
6707
6708static inline bool has_unaccepted_memory(void)
6709{
6710 return static_branch_unlikely(&zones_with_unaccepted_pages);
6711}
6712
6713static bool __free_unaccepted(struct page *page)
6714{
6715 struct zone *zone = page_zone(page);
6716 unsigned long flags;
6717 bool first = false;
6718
6719 if (!lazy_accept)
6720 return false;
6721
6722 spin_lock_irqsave(&zone->lock, flags);
6723 first = list_empty(&zone->unaccepted_pages);
6724 list_add_tail(&page->lru, &zone->unaccepted_pages);
6725 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6726 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6727 spin_unlock_irqrestore(&zone->lock, flags);
6728
6729 if (first)
6730 static_branch_inc(&zones_with_unaccepted_pages);
6731
6732 return true;
6733}
6734
6735#else
6736
6737static bool page_contains_unaccepted(struct page *page, unsigned int order)
6738{
6739 return false;
6740}
6741
6742static void accept_page(struct page *page, unsigned int order)
6743{
6744}
6745
6746static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6747{
6748 return false;
6749}
6750
6751static inline bool has_unaccepted_memory(void)
6752{
6753 return false;
6754}
6755
6756static bool __free_unaccepted(struct page *page)
6757{
6758 BUILD_BUG();
6759 return false;
6760}
6761
6762#endif /* CONFIG_UNACCEPTED_MEMORY */