]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
[PATCH] pktcdvd: Reduce stack usage
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
4be38e35 39#include <linux/mempolicy.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44/*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
c3d8c141 48nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 49EXPORT_SYMBOL(node_online_map);
c3d8c141 50nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 51EXPORT_SYMBOL(node_possible_map);
c3d8c141 52struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
53unsigned long totalram_pages __read_mostly;
54unsigned long totalhigh_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
a226f6c8
DH
58static void fastcall free_hot_cold_page(struct page *page, int cold);
59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
a2f1b424 71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
72
73EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
74
75/*
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
78 */
c3d8c141 79struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
80EXPORT_SYMBOL(zone_table);
81
a2f1b424 82static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
83int min_free_kbytes = 1024;
84
85unsigned long __initdata nr_kernel_pages;
86unsigned long __initdata nr_all_pages;
87
13e7444b 88#ifdef CONFIG_DEBUG_VM
c6a57e19 89static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 90{
bdc8cb98
DH
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
c6a57e19 94
bdc8cb98
DH
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
102
103 return ret;
c6a57e19
DH
104}
105
106static int page_is_consistent(struct zone *zone, struct page *page)
107{
1da177e4
LT
108#ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 110 return 0;
1da177e4
LT
111#endif
112 if (zone != page_zone(page))
c6a57e19
DH
113 return 0;
114
115 return 1;
116}
117/*
118 * Temporary debugging check for pages not lying within a given zone.
119 */
120static int bad_range(struct zone *zone, struct page *page)
121{
122 if (page_outside_zone_boundaries(zone, page))
1da177e4 123 return 1;
c6a57e19
DH
124 if (!page_is_consistent(zone, page))
125 return 1;
126
1da177e4
LT
127 return 0;
128}
129
13e7444b
NP
130#else
131static inline int bad_range(struct zone *zone, struct page *page)
132{
133 return 0;
134}
135#endif
136
224abf92 137static void bad_page(struct page *page)
1da177e4 138{
224abf92 139 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG "Backtrace:\n",
224abf92
NP
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
1da177e4 146 dump_stack();
334795ec
HD
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
1da177e4 149 1 << PG_locked |
1da177e4
LT
150 1 << PG_active |
151 1 << PG_dirty |
334795ec
HD
152 1 << PG_reclaim |
153 1 << PG_slab |
1da177e4 154 1 << PG_swapcache |
689bcebf 155 1 << PG_writeback );
1da177e4
LT
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
9f158333 159 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
160}
161
1da177e4
LT
162/*
163 * Higher-order pages are called "compound pages". They are structured thusly:
164 *
165 * The first PAGE_SIZE page is called the "head page".
166 *
167 * The remaining PAGE_SIZE pages are called "tail pages".
168 *
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
171 *
172 * The first tail page's ->mapping, if non-zero, holds the address of the
173 * compound page's put_page() function.
174 *
175 * The order of the allocation is stored in the first tail page's ->index
176 * This is only for debug at present. This usage means that zero-order pages
177 * may not be compound.
178 */
179static void prep_compound_page(struct page *page, unsigned long order)
180{
181 int i;
182 int nr_pages = 1 << order;
183
184 page[1].mapping = NULL;
185 page[1].index = order;
186 for (i = 0; i < nr_pages; i++) {
187 struct page *p = page + i;
188
189 SetPageCompound(p);
4c21e2f2 190 set_page_private(p, (unsigned long)page);
1da177e4
LT
191 }
192}
193
194static void destroy_compound_page(struct page *page, unsigned long order)
195{
196 int i;
197 int nr_pages = 1 << order;
198
224abf92
NP
199 if (unlikely(page[1].index != order))
200 bad_page(page);
1da177e4
LT
201
202 for (i = 0; i < nr_pages; i++) {
203 struct page *p = page + i;
204
224abf92
NP
205 if (unlikely(!PageCompound(p) |
206 (page_private(p) != (unsigned long)page)))
207 bad_page(page);
1da177e4
LT
208 ClearPageCompound(p);
209 }
210}
1da177e4
LT
211
212/*
213 * function for dealing with page's order in buddy system.
214 * zone->lock is already acquired when we use these.
215 * So, we don't need atomic page->flags operations here.
216 */
217static inline unsigned long page_order(struct page *page) {
4c21e2f2 218 return page_private(page);
1da177e4
LT
219}
220
221static inline void set_page_order(struct page *page, int order) {
4c21e2f2 222 set_page_private(page, order);
1da177e4
LT
223 __SetPagePrivate(page);
224}
225
226static inline void rmv_page_order(struct page *page)
227{
228 __ClearPagePrivate(page);
4c21e2f2 229 set_page_private(page, 0);
1da177e4
LT
230}
231
232/*
233 * Locate the struct page for both the matching buddy in our
234 * pair (buddy1) and the combined O(n+1) page they form (page).
235 *
236 * 1) Any buddy B1 will have an order O twin B2 which satisfies
237 * the following equation:
238 * B2 = B1 ^ (1 << O)
239 * For example, if the starting buddy (buddy2) is #8 its order
240 * 1 buddy is #10:
241 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
242 *
243 * 2) Any buddy B will have an order O+1 parent P which
244 * satisfies the following equation:
245 * P = B & ~(1 << O)
246 *
247 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
248 */
249static inline struct page *
250__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
251{
252 unsigned long buddy_idx = page_idx ^ (1 << order);
253
254 return page + (buddy_idx - page_idx);
255}
256
257static inline unsigned long
258__find_combined_index(unsigned long page_idx, unsigned int order)
259{
260 return (page_idx & ~(1 << order));
261}
262
263/*
264 * This function checks whether a page is free && is the buddy
265 * we can do coalesce a page and its buddy if
13e7444b
NP
266 * (a) the buddy is not in a hole &&
267 * (b) the buddy is free &&
268 * (c) the buddy is on the buddy system &&
269 * (d) a page and its buddy have the same order.
4c21e2f2 270 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
271 *
272 */
273static inline int page_is_buddy(struct page *page, int order)
274{
13e7444b
NP
275#ifdef CONFIG_HOLES_IN_ZONE
276 if (!pfn_valid(page_to_pfn(page)))
277 return 0;
278#endif
279
1da177e4
LT
280 if (PagePrivate(page) &&
281 (page_order(page) == order) &&
1da177e4
LT
282 page_count(page) == 0)
283 return 1;
284 return 0;
285}
286
287/*
288 * Freeing function for a buddy system allocator.
289 *
290 * The concept of a buddy system is to maintain direct-mapped table
291 * (containing bit values) for memory blocks of various "orders".
292 * The bottom level table contains the map for the smallest allocatable
293 * units of memory (here, pages), and each level above it describes
294 * pairs of units from the levels below, hence, "buddies".
295 * At a high level, all that happens here is marking the table entry
296 * at the bottom level available, and propagating the changes upward
297 * as necessary, plus some accounting needed to play nicely with other
298 * parts of the VM system.
299 * At each level, we keep a list of pages, which are heads of continuous
300 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 301 * order is recorded in page_private(page) field.
1da177e4
LT
302 * So when we are allocating or freeing one, we can derive the state of the
303 * other. That is, if we allocate a small block, and both were
304 * free, the remainder of the region must be split into blocks.
305 * If a block is freed, and its buddy is also free, then this
306 * triggers coalescing into a block of larger size.
307 *
308 * -- wli
309 */
310
48db57f8 311static inline void __free_one_page(struct page *page,
1da177e4
LT
312 struct zone *zone, unsigned int order)
313{
314 unsigned long page_idx;
315 int order_size = 1 << order;
316
224abf92 317 if (unlikely(PageCompound(page)))
1da177e4
LT
318 destroy_compound_page(page, order);
319
320 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
321
322 BUG_ON(page_idx & (order_size - 1));
323 BUG_ON(bad_range(zone, page));
324
325 zone->free_pages += order_size;
326 while (order < MAX_ORDER-1) {
327 unsigned long combined_idx;
328 struct free_area *area;
329 struct page *buddy;
330
1da177e4 331 buddy = __page_find_buddy(page, page_idx, order);
1da177e4
LT
332 if (!page_is_buddy(buddy, order))
333 break; /* Move the buddy up one level. */
13e7444b 334
1da177e4
LT
335 list_del(&buddy->lru);
336 area = zone->free_area + order;
337 area->nr_free--;
338 rmv_page_order(buddy);
13e7444b 339 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
340 page = page + (combined_idx - page_idx);
341 page_idx = combined_idx;
342 order++;
343 }
344 set_page_order(page, order);
345 list_add(&page->lru, &zone->free_area[order].free_list);
346 zone->free_area[order].nr_free++;
347}
348
224abf92 349static inline int free_pages_check(struct page *page)
1da177e4 350{
92be2e33
NP
351 if (unlikely(page_mapcount(page) |
352 (page->mapping != NULL) |
353 (page_count(page) != 0) |
1da177e4
LT
354 (page->flags & (
355 1 << PG_lru |
356 1 << PG_private |
357 1 << PG_locked |
358 1 << PG_active |
359 1 << PG_reclaim |
360 1 << PG_slab |
361 1 << PG_swapcache |
b5810039 362 1 << PG_writeback |
92be2e33 363 1 << PG_reserved ))))
224abf92 364 bad_page(page);
1da177e4 365 if (PageDirty(page))
242e5468 366 __ClearPageDirty(page);
689bcebf
HD
367 /*
368 * For now, we report if PG_reserved was found set, but do not
369 * clear it, and do not free the page. But we shall soon need
370 * to do more, for when the ZERO_PAGE count wraps negative.
371 */
372 return PageReserved(page);
1da177e4
LT
373}
374
375/*
376 * Frees a list of pages.
377 * Assumes all pages on list are in same zone, and of same order.
207f36ee 378 * count is the number of pages to free.
1da177e4
LT
379 *
380 * If the zone was previously in an "all pages pinned" state then look to
381 * see if this freeing clears that state.
382 *
383 * And clear the zone's pages_scanned counter, to hold off the "all pages are
384 * pinned" detection logic.
385 */
48db57f8
NP
386static void free_pages_bulk(struct zone *zone, int count,
387 struct list_head *list, int order)
1da177e4 388{
c54ad30c 389 spin_lock(&zone->lock);
1da177e4
LT
390 zone->all_unreclaimable = 0;
391 zone->pages_scanned = 0;
48db57f8
NP
392 while (count--) {
393 struct page *page;
394
395 BUG_ON(list_empty(list));
1da177e4 396 page = list_entry(list->prev, struct page, lru);
48db57f8 397 /* have to delete it as __free_one_page list manipulates */
1da177e4 398 list_del(&page->lru);
48db57f8 399 __free_one_page(page, zone, order);
1da177e4 400 }
c54ad30c 401 spin_unlock(&zone->lock);
1da177e4
LT
402}
403
48db57f8 404static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
405{
406 LIST_HEAD(list);
48db57f8
NP
407 list_add(&page->lru, &list);
408 free_pages_bulk(zone, 1, &list, order);
409}
410
411static void __free_pages_ok(struct page *page, unsigned int order)
412{
413 unsigned long flags;
1da177e4 414 int i;
689bcebf 415 int reserved = 0;
1da177e4
LT
416
417 arch_free_page(page, order);
de5097c2
IM
418 if (!PageHighMem(page))
419 mutex_debug_check_no_locks_freed(page_address(page),
a4fc7ab1 420 PAGE_SIZE<<order);
1da177e4 421
1da177e4 422#ifndef CONFIG_MMU
48db57f8
NP
423 for (i = 1 ; i < (1 << order) ; ++i)
424 __put_page(page + i);
1da177e4
LT
425#endif
426
427 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 428 reserved += free_pages_check(page + i);
689bcebf
HD
429 if (reserved)
430 return;
431
48db57f8 432 kernel_map_pages(page, 1 << order, 0);
c54ad30c 433 local_irq_save(flags);
a74609fa 434 __mod_page_state(pgfree, 1 << order);
48db57f8 435 free_one_page(page_zone(page), page, order);
c54ad30c 436 local_irq_restore(flags);
1da177e4
LT
437}
438
a226f6c8
DH
439/*
440 * permit the bootmem allocator to evade page validation on high-order frees
441 */
442void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
443{
444 if (order == 0) {
445 __ClearPageReserved(page);
446 set_page_count(page, 0);
447
448 free_hot_cold_page(page, 0);
449 } else {
450 LIST_HEAD(list);
451 int loop;
452
453 for (loop = 0; loop < BITS_PER_LONG; loop++) {
454 struct page *p = &page[loop];
455
456 if (loop + 16 < BITS_PER_LONG)
457 prefetchw(p + 16);
458 __ClearPageReserved(p);
459 set_page_count(p, 0);
460 }
461
462 arch_free_page(page, order);
463
464 mod_page_state(pgfree, 1 << order);
465
466 list_add(&page->lru, &list);
467 kernel_map_pages(page, 1 << order, 0);
468 free_pages_bulk(page_zone(page), 1, &list, order);
469 }
470}
471
1da177e4
LT
472
473/*
474 * The order of subdivision here is critical for the IO subsystem.
475 * Please do not alter this order without good reasons and regression
476 * testing. Specifically, as large blocks of memory are subdivided,
477 * the order in which smaller blocks are delivered depends on the order
478 * they're subdivided in this function. This is the primary factor
479 * influencing the order in which pages are delivered to the IO
480 * subsystem according to empirical testing, and this is also justified
481 * by considering the behavior of a buddy system containing a single
482 * large block of memory acted on by a series of small allocations.
483 * This behavior is a critical factor in sglist merging's success.
484 *
485 * -- wli
486 */
085cc7d5 487static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
488 int low, int high, struct free_area *area)
489{
490 unsigned long size = 1 << high;
491
492 while (high > low) {
493 area--;
494 high--;
495 size >>= 1;
496 BUG_ON(bad_range(zone, &page[size]));
497 list_add(&page[size].lru, &area->free_list);
498 area->nr_free++;
499 set_page_order(&page[size], high);
500 }
1da177e4
LT
501}
502
1da177e4
LT
503/*
504 * This page is about to be returned from the page allocator
505 */
689bcebf 506static int prep_new_page(struct page *page, int order)
1da177e4 507{
92be2e33
NP
508 if (unlikely(page_mapcount(page) |
509 (page->mapping != NULL) |
510 (page_count(page) != 0) |
334795ec
HD
511 (page->flags & (
512 1 << PG_lru |
1da177e4
LT
513 1 << PG_private |
514 1 << PG_locked |
1da177e4
LT
515 1 << PG_active |
516 1 << PG_dirty |
517 1 << PG_reclaim |
334795ec 518 1 << PG_slab |
1da177e4 519 1 << PG_swapcache |
b5810039 520 1 << PG_writeback |
92be2e33 521 1 << PG_reserved ))))
224abf92 522 bad_page(page);
1da177e4 523
689bcebf
HD
524 /*
525 * For now, we report if PG_reserved was found set, but do not
526 * clear it, and do not allocate the page: as a safety net.
527 */
528 if (PageReserved(page))
529 return 1;
530
1da177e4
LT
531 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
532 1 << PG_referenced | 1 << PG_arch_1 |
533 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 534 set_page_private(page, 0);
1da177e4
LT
535 set_page_refs(page, order);
536 kernel_map_pages(page, 1 << order, 1);
689bcebf 537 return 0;
1da177e4
LT
538}
539
540/*
541 * Do the hard work of removing an element from the buddy allocator.
542 * Call me with the zone->lock already held.
543 */
544static struct page *__rmqueue(struct zone *zone, unsigned int order)
545{
546 struct free_area * area;
547 unsigned int current_order;
548 struct page *page;
549
550 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
551 area = zone->free_area + current_order;
552 if (list_empty(&area->free_list))
553 continue;
554
555 page = list_entry(area->free_list.next, struct page, lru);
556 list_del(&page->lru);
557 rmv_page_order(page);
558 area->nr_free--;
559 zone->free_pages -= 1UL << order;
085cc7d5
NP
560 expand(zone, page, order, current_order, area);
561 return page;
1da177e4
LT
562 }
563
564 return NULL;
565}
566
567/*
568 * Obtain a specified number of elements from the buddy allocator, all under
569 * a single hold of the lock, for efficiency. Add them to the supplied list.
570 * Returns the number of new pages which were placed at *list.
571 */
572static int rmqueue_bulk(struct zone *zone, unsigned int order,
573 unsigned long count, struct list_head *list)
574{
1da177e4 575 int i;
1da177e4 576
c54ad30c 577 spin_lock(&zone->lock);
1da177e4 578 for (i = 0; i < count; ++i) {
085cc7d5
NP
579 struct page *page = __rmqueue(zone, order);
580 if (unlikely(page == NULL))
1da177e4 581 break;
1da177e4
LT
582 list_add_tail(&page->lru, list);
583 }
c54ad30c 584 spin_unlock(&zone->lock);
085cc7d5 585 return i;
1da177e4
LT
586}
587
4ae7c039
CL
588#ifdef CONFIG_NUMA
589/* Called from the slab reaper to drain remote pagesets */
590void drain_remote_pages(void)
591{
592 struct zone *zone;
593 int i;
594 unsigned long flags;
595
596 local_irq_save(flags);
597 for_each_zone(zone) {
598 struct per_cpu_pageset *pset;
599
600 /* Do not drain local pagesets */
601 if (zone->zone_pgdat->node_id == numa_node_id())
602 continue;
603
23316bc8 604 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
605 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
606 struct per_cpu_pages *pcp;
607
608 pcp = &pset->pcp[i];
48db57f8
NP
609 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
610 pcp->count = 0;
4ae7c039
CL
611 }
612 }
613 local_irq_restore(flags);
614}
615#endif
616
1da177e4
LT
617#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
618static void __drain_pages(unsigned int cpu)
619{
c54ad30c 620 unsigned long flags;
1da177e4
LT
621 struct zone *zone;
622 int i;
623
624 for_each_zone(zone) {
625 struct per_cpu_pageset *pset;
626
e7c8d5c9 627 pset = zone_pcp(zone, cpu);
1da177e4
LT
628 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
629 struct per_cpu_pages *pcp;
630
631 pcp = &pset->pcp[i];
c54ad30c 632 local_irq_save(flags);
48db57f8
NP
633 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
634 pcp->count = 0;
c54ad30c 635 local_irq_restore(flags);
1da177e4
LT
636 }
637 }
638}
639#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
640
641#ifdef CONFIG_PM
642
643void mark_free_pages(struct zone *zone)
644{
645 unsigned long zone_pfn, flags;
646 int order;
647 struct list_head *curr;
648
649 if (!zone->spanned_pages)
650 return;
651
652 spin_lock_irqsave(&zone->lock, flags);
653 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
654 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
655
656 for (order = MAX_ORDER - 1; order >= 0; --order)
657 list_for_each(curr, &zone->free_area[order].free_list) {
658 unsigned long start_pfn, i;
659
660 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
661
662 for (i=0; i < (1<<order); i++)
663 SetPageNosaveFree(pfn_to_page(start_pfn+i));
664 }
665 spin_unlock_irqrestore(&zone->lock, flags);
666}
667
668/*
669 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
670 */
671void drain_local_pages(void)
672{
673 unsigned long flags;
674
675 local_irq_save(flags);
676 __drain_pages(smp_processor_id());
677 local_irq_restore(flags);
678}
679#endif /* CONFIG_PM */
680
a74609fa 681static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
1da177e4
LT
682{
683#ifdef CONFIG_NUMA
1da177e4
LT
684 pg_data_t *pg = z->zone_pgdat;
685 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
686 struct per_cpu_pageset *p;
687
a74609fa 688 p = zone_pcp(z, cpu);
1da177e4 689 if (pg == orig) {
e7c8d5c9 690 p->numa_hit++;
1da177e4
LT
691 } else {
692 p->numa_miss++;
e7c8d5c9 693 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
694 }
695 if (pg == NODE_DATA(numa_node_id()))
696 p->local_node++;
697 else
698 p->other_node++;
1da177e4
LT
699#endif
700}
701
702/*
703 * Free a 0-order page
704 */
1da177e4
LT
705static void fastcall free_hot_cold_page(struct page *page, int cold)
706{
707 struct zone *zone = page_zone(page);
708 struct per_cpu_pages *pcp;
709 unsigned long flags;
710
711 arch_free_page(page, 0);
712
1da177e4
LT
713 if (PageAnon(page))
714 page->mapping = NULL;
224abf92 715 if (free_pages_check(page))
689bcebf
HD
716 return;
717
689bcebf
HD
718 kernel_map_pages(page, 1, 0);
719
e7c8d5c9 720 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 721 local_irq_save(flags);
a74609fa 722 __inc_page_state(pgfree);
1da177e4
LT
723 list_add(&page->lru, &pcp->list);
724 pcp->count++;
48db57f8
NP
725 if (pcp->count >= pcp->high) {
726 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
727 pcp->count -= pcp->batch;
728 }
1da177e4
LT
729 local_irq_restore(flags);
730 put_cpu();
731}
732
733void fastcall free_hot_page(struct page *page)
734{
735 free_hot_cold_page(page, 0);
736}
737
738void fastcall free_cold_page(struct page *page)
739{
740 free_hot_cold_page(page, 1);
741}
742
dd0fc66f 743static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4
LT
744{
745 int i;
746
747 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
748 for(i = 0; i < (1 << order); i++)
749 clear_highpage(page + i);
750}
751
752/*
753 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
754 * we cheat by calling it from here, in the order > 0 path. Saves a branch
755 * or two.
756 */
a74609fa
NP
757static struct page *buffered_rmqueue(struct zonelist *zonelist,
758 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
759{
760 unsigned long flags;
689bcebf 761 struct page *page;
1da177e4 762 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 763 int cpu;
1da177e4 764
689bcebf 765again:
a74609fa 766 cpu = get_cpu();
48db57f8 767 if (likely(order == 0)) {
1da177e4
LT
768 struct per_cpu_pages *pcp;
769
a74609fa 770 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 771 local_irq_save(flags);
a74609fa 772 if (!pcp->count) {
1da177e4
LT
773 pcp->count += rmqueue_bulk(zone, 0,
774 pcp->batch, &pcp->list);
a74609fa
NP
775 if (unlikely(!pcp->count))
776 goto failed;
1da177e4 777 }
a74609fa
NP
778 page = list_entry(pcp->list.next, struct page, lru);
779 list_del(&page->lru);
780 pcp->count--;
7fb1d9fc 781 } else {
1da177e4
LT
782 spin_lock_irqsave(&zone->lock, flags);
783 page = __rmqueue(zone, order);
a74609fa
NP
784 spin_unlock(&zone->lock);
785 if (!page)
786 goto failed;
1da177e4
LT
787 }
788
a74609fa
NP
789 __mod_page_state_zone(zone, pgalloc, 1 << order);
790 zone_statistics(zonelist, zone, cpu);
791 local_irq_restore(flags);
792 put_cpu();
1da177e4 793
a74609fa
NP
794 BUG_ON(bad_range(zone, page));
795 if (prep_new_page(page, order))
796 goto again;
1da177e4 797
a74609fa
NP
798 if (gfp_flags & __GFP_ZERO)
799 prep_zero_page(page, order, gfp_flags);
800
801 if (order && (gfp_flags & __GFP_COMP))
802 prep_compound_page(page, order);
1da177e4 803 return page;
a74609fa
NP
804
805failed:
806 local_irq_restore(flags);
807 put_cpu();
808 return NULL;
1da177e4
LT
809}
810
7fb1d9fc 811#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
812#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
813#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
814#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
815#define ALLOC_HARDER 0x10 /* try to alloc harder */
816#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
817#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 818
1da177e4
LT
819/*
820 * Return 1 if free pages are above 'mark'. This takes into account the order
821 * of the allocation.
822 */
823int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 824 int classzone_idx, int alloc_flags)
1da177e4
LT
825{
826 /* free_pages my go negative - that's OK */
827 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
828 int o;
829
7fb1d9fc 830 if (alloc_flags & ALLOC_HIGH)
1da177e4 831 min -= min / 2;
7fb1d9fc 832 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
833 min -= min / 4;
834
835 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
836 return 0;
837 for (o = 0; o < order; o++) {
838 /* At the next order, this order's pages become unavailable */
839 free_pages -= z->free_area[o].nr_free << o;
840
841 /* Require fewer higher order pages to be free */
842 min >>= 1;
843
844 if (free_pages <= min)
845 return 0;
846 }
847 return 1;
848}
849
7fb1d9fc
RS
850/*
851 * get_page_from_freeliest goes through the zonelist trying to allocate
852 * a page.
853 */
854static struct page *
855get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
856 struct zonelist *zonelist, int alloc_flags)
753ee728 857{
7fb1d9fc
RS
858 struct zone **z = zonelist->zones;
859 struct page *page = NULL;
860 int classzone_idx = zone_idx(*z);
861
862 /*
863 * Go through the zonelist once, looking for a zone with enough free.
864 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
865 */
866 do {
867 if ((alloc_flags & ALLOC_CPUSET) &&
868 !cpuset_zone_allowed(*z, gfp_mask))
869 continue;
870
871 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
872 unsigned long mark;
873 if (alloc_flags & ALLOC_WMARK_MIN)
874 mark = (*z)->pages_min;
875 else if (alloc_flags & ALLOC_WMARK_LOW)
876 mark = (*z)->pages_low;
877 else
878 mark = (*z)->pages_high;
879 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc 880 classzone_idx, alloc_flags))
9eeff239
CL
881 if (!zone_reclaim_mode ||
882 !zone_reclaim(*z, gfp_mask, order))
883 continue;
7fb1d9fc
RS
884 }
885
a74609fa 886 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 887 if (page) {
7fb1d9fc
RS
888 break;
889 }
890 } while (*(++z) != NULL);
891 return page;
753ee728
MH
892}
893
1da177e4
LT
894/*
895 * This is the 'heart' of the zoned buddy allocator.
896 */
897struct page * fastcall
dd0fc66f 898__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
899 struct zonelist *zonelist)
900{
260b2367 901 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 902 struct zone **z;
1da177e4
LT
903 struct page *page;
904 struct reclaim_state reclaim_state;
905 struct task_struct *p = current;
1da177e4 906 int do_retry;
7fb1d9fc 907 int alloc_flags;
1da177e4
LT
908 int did_some_progress;
909
910 might_sleep_if(wait);
911
6b1de916 912restart:
7fb1d9fc 913 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 914
7fb1d9fc 915 if (unlikely(*z == NULL)) {
1da177e4
LT
916 /* Should this ever happen?? */
917 return NULL;
918 }
6b1de916 919
7fb1d9fc 920 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 921 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
922 if (page)
923 goto got_pg;
1da177e4 924
6b1de916 925 do {
7fb1d9fc 926 wakeup_kswapd(*z, order);
6b1de916 927 } while (*(++z));
1da177e4 928
9bf2229f 929 /*
7fb1d9fc
RS
930 * OK, we're below the kswapd watermark and have kicked background
931 * reclaim. Now things get more complex, so set up alloc_flags according
932 * to how we want to proceed.
933 *
934 * The caller may dip into page reserves a bit more if the caller
935 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
936 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
937 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 938 */
3148890b 939 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
940 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
941 alloc_flags |= ALLOC_HARDER;
942 if (gfp_mask & __GFP_HIGH)
943 alloc_flags |= ALLOC_HIGH;
47f3a867 944 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
945
946 /*
947 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 948 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
949 *
950 * This is the last chance, in general, before the goto nopage.
951 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 952 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 953 */
7fb1d9fc
RS
954 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
955 if (page)
956 goto got_pg;
1da177e4
LT
957
958 /* This allocation should allow future memory freeing. */
b84a35be
NP
959
960 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
961 && !in_interrupt()) {
962 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 963nofail_alloc:
b84a35be 964 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 965 page = get_page_from_freelist(gfp_mask, order,
47f3a867 966 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
967 if (page)
968 goto got_pg;
885036d3
KK
969 if (gfp_mask & __GFP_NOFAIL) {
970 blk_congestion_wait(WRITE, HZ/50);
971 goto nofail_alloc;
972 }
1da177e4
LT
973 }
974 goto nopage;
975 }
976
977 /* Atomic allocations - we can't balance anything */
978 if (!wait)
979 goto nopage;
980
981rebalance:
982 cond_resched();
983
984 /* We now go into synchronous reclaim */
3e0d98b9 985 cpuset_memory_pressure_bump();
1da177e4
LT
986 p->flags |= PF_MEMALLOC;
987 reclaim_state.reclaimed_slab = 0;
988 p->reclaim_state = &reclaim_state;
989
7fb1d9fc 990 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
991
992 p->reclaim_state = NULL;
993 p->flags &= ~PF_MEMALLOC;
994
995 cond_resched();
996
997 if (likely(did_some_progress)) {
7fb1d9fc
RS
998 page = get_page_from_freelist(gfp_mask, order,
999 zonelist, alloc_flags);
1000 if (page)
1001 goto got_pg;
1da177e4
LT
1002 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1003 /*
1004 * Go through the zonelist yet one more time, keep
1005 * very high watermark here, this is only to catch
1006 * a parallel oom killing, we must fail if we're still
1007 * under heavy pressure.
1008 */
7fb1d9fc 1009 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1010 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1011 if (page)
1012 goto got_pg;
1da177e4 1013
79b9ce31 1014 out_of_memory(gfp_mask, order);
1da177e4
LT
1015 goto restart;
1016 }
1017
1018 /*
1019 * Don't let big-order allocations loop unless the caller explicitly
1020 * requests that. Wait for some write requests to complete then retry.
1021 *
1022 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1023 * <= 3, but that may not be true in other implementations.
1024 */
1025 do_retry = 0;
1026 if (!(gfp_mask & __GFP_NORETRY)) {
1027 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1028 do_retry = 1;
1029 if (gfp_mask & __GFP_NOFAIL)
1030 do_retry = 1;
1031 }
1032 if (do_retry) {
1033 blk_congestion_wait(WRITE, HZ/50);
1034 goto rebalance;
1035 }
1036
1037nopage:
1038 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1039 printk(KERN_WARNING "%s: page allocation failure."
1040 " order:%d, mode:0x%x\n",
1041 p->comm, order, gfp_mask);
1042 dump_stack();
578c2fd6 1043 show_mem();
1da177e4 1044 }
1da177e4 1045got_pg:
1da177e4
LT
1046 return page;
1047}
1048
1049EXPORT_SYMBOL(__alloc_pages);
1050
1051/*
1052 * Common helper functions.
1053 */
dd0fc66f 1054fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1055{
1056 struct page * page;
1057 page = alloc_pages(gfp_mask, order);
1058 if (!page)
1059 return 0;
1060 return (unsigned long) page_address(page);
1061}
1062
1063EXPORT_SYMBOL(__get_free_pages);
1064
dd0fc66f 1065fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1066{
1067 struct page * page;
1068
1069 /*
1070 * get_zeroed_page() returns a 32-bit address, which cannot represent
1071 * a highmem page
1072 */
260b2367 1073 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1074
1075 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1076 if (page)
1077 return (unsigned long) page_address(page);
1078 return 0;
1079}
1080
1081EXPORT_SYMBOL(get_zeroed_page);
1082
1083void __pagevec_free(struct pagevec *pvec)
1084{
1085 int i = pagevec_count(pvec);
1086
1087 while (--i >= 0)
1088 free_hot_cold_page(pvec->pages[i], pvec->cold);
1089}
1090
1091fastcall void __free_pages(struct page *page, unsigned int order)
1092{
b5810039 1093 if (put_page_testzero(page)) {
1da177e4
LT
1094 if (order == 0)
1095 free_hot_page(page);
1096 else
1097 __free_pages_ok(page, order);
1098 }
1099}
1100
1101EXPORT_SYMBOL(__free_pages);
1102
1103fastcall void free_pages(unsigned long addr, unsigned int order)
1104{
1105 if (addr != 0) {
1106 BUG_ON(!virt_addr_valid((void *)addr));
1107 __free_pages(virt_to_page((void *)addr), order);
1108 }
1109}
1110
1111EXPORT_SYMBOL(free_pages);
1112
1113/*
1114 * Total amount of free (allocatable) RAM:
1115 */
1116unsigned int nr_free_pages(void)
1117{
1118 unsigned int sum = 0;
1119 struct zone *zone;
1120
1121 for_each_zone(zone)
1122 sum += zone->free_pages;
1123
1124 return sum;
1125}
1126
1127EXPORT_SYMBOL(nr_free_pages);
1128
1129#ifdef CONFIG_NUMA
1130unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1131{
1132 unsigned int i, sum = 0;
1133
1134 for (i = 0; i < MAX_NR_ZONES; i++)
1135 sum += pgdat->node_zones[i].free_pages;
1136
1137 return sum;
1138}
1139#endif
1140
1141static unsigned int nr_free_zone_pages(int offset)
1142{
e310fd43
MB
1143 /* Just pick one node, since fallback list is circular */
1144 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1145 unsigned int sum = 0;
1146
e310fd43
MB
1147 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1148 struct zone **zonep = zonelist->zones;
1149 struct zone *zone;
1da177e4 1150
e310fd43
MB
1151 for (zone = *zonep++; zone; zone = *zonep++) {
1152 unsigned long size = zone->present_pages;
1153 unsigned long high = zone->pages_high;
1154 if (size > high)
1155 sum += size - high;
1da177e4
LT
1156 }
1157
1158 return sum;
1159}
1160
1161/*
1162 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1163 */
1164unsigned int nr_free_buffer_pages(void)
1165{
af4ca457 1166 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1167}
1168
1169/*
1170 * Amount of free RAM allocatable within all zones
1171 */
1172unsigned int nr_free_pagecache_pages(void)
1173{
af4ca457 1174 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1175}
1176
1177#ifdef CONFIG_HIGHMEM
1178unsigned int nr_free_highpages (void)
1179{
1180 pg_data_t *pgdat;
1181 unsigned int pages = 0;
1182
1183 for_each_pgdat(pgdat)
1184 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1185
1186 return pages;
1187}
1188#endif
1189
1190#ifdef CONFIG_NUMA
1191static void show_node(struct zone *zone)
1192{
1193 printk("Node %d ", zone->zone_pgdat->node_id);
1194}
1195#else
1196#define show_node(zone) do { } while (0)
1197#endif
1198
1199/*
1200 * Accumulate the page_state information across all CPUs.
1201 * The result is unavoidably approximate - it can change
1202 * during and after execution of this function.
1203 */
1204static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1205
1206atomic_t nr_pagecache = ATOMIC_INIT(0);
1207EXPORT_SYMBOL(nr_pagecache);
1208#ifdef CONFIG_SMP
1209DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1210#endif
1211
a86b1f53 1212static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4
LT
1213{
1214 int cpu = 0;
1215
88a2a4ac 1216 memset(ret, 0, nr * sizeof(unsigned long));
84c2008a 1217 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1218
c07e02db 1219 cpu = first_cpu(*cpumask);
1da177e4
LT
1220 while (cpu < NR_CPUS) {
1221 unsigned long *in, *out, off;
1222
88a2a4ac
ED
1223 if (!cpu_isset(cpu, *cpumask))
1224 continue;
1225
1da177e4
LT
1226 in = (unsigned long *)&per_cpu(page_states, cpu);
1227
c07e02db 1228 cpu = next_cpu(cpu, *cpumask);
1da177e4 1229
88a2a4ac 1230 if (likely(cpu < NR_CPUS))
1da177e4
LT
1231 prefetch(&per_cpu(page_states, cpu));
1232
1233 out = (unsigned long *)ret;
1234 for (off = 0; off < nr; off++)
1235 *out++ += *in++;
1236 }
1237}
1238
c07e02db
MH
1239void get_page_state_node(struct page_state *ret, int node)
1240{
1241 int nr;
1242 cpumask_t mask = node_to_cpumask(node);
1243
1244 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1245 nr /= sizeof(unsigned long);
1246
1247 __get_page_state(ret, nr+1, &mask);
1248}
1249
1da177e4
LT
1250void get_page_state(struct page_state *ret)
1251{
1252 int nr;
c07e02db 1253 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1254
1255 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1256 nr /= sizeof(unsigned long);
1257
c07e02db 1258 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1259}
1260
1261void get_full_page_state(struct page_state *ret)
1262{
c07e02db
MH
1263 cpumask_t mask = CPU_MASK_ALL;
1264
1265 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1266}
1267
a74609fa 1268unsigned long read_page_state_offset(unsigned long offset)
1da177e4
LT
1269{
1270 unsigned long ret = 0;
1271 int cpu;
1272
84c2008a 1273 for_each_online_cpu(cpu) {
1da177e4
LT
1274 unsigned long in;
1275
1276 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1277 ret += *((unsigned long *)in);
1278 }
1279 return ret;
1280}
1281
a74609fa
NP
1282void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1283{
1284 void *ptr;
1285
1286 ptr = &__get_cpu_var(page_states);
1287 *(unsigned long *)(ptr + offset) += delta;
1288}
1289EXPORT_SYMBOL(__mod_page_state_offset);
1290
1291void mod_page_state_offset(unsigned long offset, unsigned long delta)
1da177e4
LT
1292{
1293 unsigned long flags;
a74609fa 1294 void *ptr;
1da177e4
LT
1295
1296 local_irq_save(flags);
1297 ptr = &__get_cpu_var(page_states);
a74609fa 1298 *(unsigned long *)(ptr + offset) += delta;
1da177e4
LT
1299 local_irq_restore(flags);
1300}
a74609fa 1301EXPORT_SYMBOL(mod_page_state_offset);
1da177e4
LT
1302
1303void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1304 unsigned long *free, struct pglist_data *pgdat)
1305{
1306 struct zone *zones = pgdat->node_zones;
1307 int i;
1308
1309 *active = 0;
1310 *inactive = 0;
1311 *free = 0;
1312 for (i = 0; i < MAX_NR_ZONES; i++) {
1313 *active += zones[i].nr_active;
1314 *inactive += zones[i].nr_inactive;
1315 *free += zones[i].free_pages;
1316 }
1317}
1318
1319void get_zone_counts(unsigned long *active,
1320 unsigned long *inactive, unsigned long *free)
1321{
1322 struct pglist_data *pgdat;
1323
1324 *active = 0;
1325 *inactive = 0;
1326 *free = 0;
1327 for_each_pgdat(pgdat) {
1328 unsigned long l, m, n;
1329 __get_zone_counts(&l, &m, &n, pgdat);
1330 *active += l;
1331 *inactive += m;
1332 *free += n;
1333 }
1334}
1335
1336void si_meminfo(struct sysinfo *val)
1337{
1338 val->totalram = totalram_pages;
1339 val->sharedram = 0;
1340 val->freeram = nr_free_pages();
1341 val->bufferram = nr_blockdev_pages();
1342#ifdef CONFIG_HIGHMEM
1343 val->totalhigh = totalhigh_pages;
1344 val->freehigh = nr_free_highpages();
1345#else
1346 val->totalhigh = 0;
1347 val->freehigh = 0;
1348#endif
1349 val->mem_unit = PAGE_SIZE;
1350}
1351
1352EXPORT_SYMBOL(si_meminfo);
1353
1354#ifdef CONFIG_NUMA
1355void si_meminfo_node(struct sysinfo *val, int nid)
1356{
1357 pg_data_t *pgdat = NODE_DATA(nid);
1358
1359 val->totalram = pgdat->node_present_pages;
1360 val->freeram = nr_free_pages_pgdat(pgdat);
1361 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1362 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1363 val->mem_unit = PAGE_SIZE;
1364}
1365#endif
1366
1367#define K(x) ((x) << (PAGE_SHIFT-10))
1368
1369/*
1370 * Show free area list (used inside shift_scroll-lock stuff)
1371 * We also calculate the percentage fragmentation. We do this by counting the
1372 * memory on each free list with the exception of the first item on the list.
1373 */
1374void show_free_areas(void)
1375{
1376 struct page_state ps;
1377 int cpu, temperature;
1378 unsigned long active;
1379 unsigned long inactive;
1380 unsigned long free;
1381 struct zone *zone;
1382
1383 for_each_zone(zone) {
1384 show_node(zone);
1385 printk("%s per-cpu:", zone->name);
1386
f3fe6512 1387 if (!populated_zone(zone)) {
1da177e4
LT
1388 printk(" empty\n");
1389 continue;
1390 } else
1391 printk("\n");
1392
6b482c67 1393 for_each_online_cpu(cpu) {
1da177e4
LT
1394 struct per_cpu_pageset *pageset;
1395
e7c8d5c9 1396 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1397
1398 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1399 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1400 cpu,
1401 temperature ? "cold" : "hot",
1da177e4 1402 pageset->pcp[temperature].high,
4ae7c039
CL
1403 pageset->pcp[temperature].batch,
1404 pageset->pcp[temperature].count);
1da177e4
LT
1405 }
1406 }
1407
1408 get_page_state(&ps);
1409 get_zone_counts(&active, &inactive, &free);
1410
c0d62219 1411 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1412 K(nr_free_pages()),
1413 K(nr_free_highpages()));
1414
1415 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1416 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1417 active,
1418 inactive,
1419 ps.nr_dirty,
1420 ps.nr_writeback,
1421 ps.nr_unstable,
1422 nr_free_pages(),
1423 ps.nr_slab,
1424 ps.nr_mapped,
1425 ps.nr_page_table_pages);
1426
1427 for_each_zone(zone) {
1428 int i;
1429
1430 show_node(zone);
1431 printk("%s"
1432 " free:%lukB"
1433 " min:%lukB"
1434 " low:%lukB"
1435 " high:%lukB"
1436 " active:%lukB"
1437 " inactive:%lukB"
1438 " present:%lukB"
1439 " pages_scanned:%lu"
1440 " all_unreclaimable? %s"
1441 "\n",
1442 zone->name,
1443 K(zone->free_pages),
1444 K(zone->pages_min),
1445 K(zone->pages_low),
1446 K(zone->pages_high),
1447 K(zone->nr_active),
1448 K(zone->nr_inactive),
1449 K(zone->present_pages),
1450 zone->pages_scanned,
1451 (zone->all_unreclaimable ? "yes" : "no")
1452 );
1453 printk("lowmem_reserve[]:");
1454 for (i = 0; i < MAX_NR_ZONES; i++)
1455 printk(" %lu", zone->lowmem_reserve[i]);
1456 printk("\n");
1457 }
1458
1459 for_each_zone(zone) {
1460 unsigned long nr, flags, order, total = 0;
1461
1462 show_node(zone);
1463 printk("%s: ", zone->name);
f3fe6512 1464 if (!populated_zone(zone)) {
1da177e4
LT
1465 printk("empty\n");
1466 continue;
1467 }
1468
1469 spin_lock_irqsave(&zone->lock, flags);
1470 for (order = 0; order < MAX_ORDER; order++) {
1471 nr = zone->free_area[order].nr_free;
1472 total += nr << order;
1473 printk("%lu*%lukB ", nr, K(1UL) << order);
1474 }
1475 spin_unlock_irqrestore(&zone->lock, flags);
1476 printk("= %lukB\n", K(total));
1477 }
1478
1479 show_swap_cache_info();
1480}
1481
1482/*
1483 * Builds allocation fallback zone lists.
1a93205b
CL
1484 *
1485 * Add all populated zones of a node to the zonelist.
1da177e4 1486 */
1a93205b 1487static int __init build_zonelists_node(pg_data_t *pgdat,
070f8032 1488 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1489{
1a93205b
CL
1490 struct zone *zone;
1491
070f8032 1492 BUG_ON(zone_type > ZONE_HIGHMEM);
02a68a5e
CL
1493
1494 do {
070f8032 1495 zone = pgdat->node_zones + zone_type;
1a93205b 1496 if (populated_zone(zone)) {
1da177e4 1497#ifndef CONFIG_HIGHMEM
070f8032 1498 BUG_ON(zone_type > ZONE_NORMAL);
1da177e4 1499#endif
070f8032
CL
1500 zonelist->zones[nr_zones++] = zone;
1501 check_highest_zone(zone_type);
1da177e4 1502 }
070f8032 1503 zone_type--;
02a68a5e 1504
070f8032
CL
1505 } while (zone_type >= 0);
1506 return nr_zones;
1da177e4
LT
1507}
1508
260b2367
AV
1509static inline int highest_zone(int zone_bits)
1510{
1511 int res = ZONE_NORMAL;
1512 if (zone_bits & (__force int)__GFP_HIGHMEM)
1513 res = ZONE_HIGHMEM;
a2f1b424
AK
1514 if (zone_bits & (__force int)__GFP_DMA32)
1515 res = ZONE_DMA32;
260b2367
AV
1516 if (zone_bits & (__force int)__GFP_DMA)
1517 res = ZONE_DMA;
1518 return res;
1519}
1520
1da177e4
LT
1521#ifdef CONFIG_NUMA
1522#define MAX_NODE_LOAD (num_online_nodes())
1523static int __initdata node_load[MAX_NUMNODES];
1524/**
4dc3b16b 1525 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1526 * @node: node whose fallback list we're appending
1527 * @used_node_mask: nodemask_t of already used nodes
1528 *
1529 * We use a number of factors to determine which is the next node that should
1530 * appear on a given node's fallback list. The node should not have appeared
1531 * already in @node's fallback list, and it should be the next closest node
1532 * according to the distance array (which contains arbitrary distance values
1533 * from each node to each node in the system), and should also prefer nodes
1534 * with no CPUs, since presumably they'll have very little allocation pressure
1535 * on them otherwise.
1536 * It returns -1 if no node is found.
1537 */
1538static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1539{
1540 int i, n, val;
1541 int min_val = INT_MAX;
1542 int best_node = -1;
1543
1544 for_each_online_node(i) {
1545 cpumask_t tmp;
1546
1547 /* Start from local node */
1548 n = (node+i) % num_online_nodes();
1549
1550 /* Don't want a node to appear more than once */
1551 if (node_isset(n, *used_node_mask))
1552 continue;
1553
1554 /* Use the local node if we haven't already */
1555 if (!node_isset(node, *used_node_mask)) {
1556 best_node = node;
1557 break;
1558 }
1559
1560 /* Use the distance array to find the distance */
1561 val = node_distance(node, n);
1562
1563 /* Give preference to headless and unused nodes */
1564 tmp = node_to_cpumask(n);
1565 if (!cpus_empty(tmp))
1566 val += PENALTY_FOR_NODE_WITH_CPUS;
1567
1568 /* Slight preference for less loaded node */
1569 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1570 val += node_load[n];
1571
1572 if (val < min_val) {
1573 min_val = val;
1574 best_node = n;
1575 }
1576 }
1577
1578 if (best_node >= 0)
1579 node_set(best_node, *used_node_mask);
1580
1581 return best_node;
1582}
1583
1584static void __init build_zonelists(pg_data_t *pgdat)
1585{
1586 int i, j, k, node, local_node;
1587 int prev_node, load;
1588 struct zonelist *zonelist;
1589 nodemask_t used_mask;
1590
1591 /* initialize zonelists */
1592 for (i = 0; i < GFP_ZONETYPES; i++) {
1593 zonelist = pgdat->node_zonelists + i;
1594 zonelist->zones[0] = NULL;
1595 }
1596
1597 /* NUMA-aware ordering of nodes */
1598 local_node = pgdat->node_id;
1599 load = num_online_nodes();
1600 prev_node = local_node;
1601 nodes_clear(used_mask);
1602 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1603 int distance = node_distance(local_node, node);
1604
1605 /*
1606 * If another node is sufficiently far away then it is better
1607 * to reclaim pages in a zone before going off node.
1608 */
1609 if (distance > RECLAIM_DISTANCE)
1610 zone_reclaim_mode = 1;
1611
1da177e4
LT
1612 /*
1613 * We don't want to pressure a particular node.
1614 * So adding penalty to the first node in same
1615 * distance group to make it round-robin.
1616 */
9eeff239
CL
1617
1618 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1619 node_load[node] += load;
1620 prev_node = node;
1621 load--;
1622 for (i = 0; i < GFP_ZONETYPES; i++) {
1623 zonelist = pgdat->node_zonelists + i;
1624 for (j = 0; zonelist->zones[j] != NULL; j++);
1625
260b2367 1626 k = highest_zone(i);
1da177e4
LT
1627
1628 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1629 zonelist->zones[j] = NULL;
1630 }
1631 }
1632}
1633
1634#else /* CONFIG_NUMA */
1635
1636static void __init build_zonelists(pg_data_t *pgdat)
1637{
1638 int i, j, k, node, local_node;
1639
1640 local_node = pgdat->node_id;
1641 for (i = 0; i < GFP_ZONETYPES; i++) {
1642 struct zonelist *zonelist;
1643
1644 zonelist = pgdat->node_zonelists + i;
1645
1646 j = 0;
260b2367 1647 k = highest_zone(i);
1da177e4
LT
1648 j = build_zonelists_node(pgdat, zonelist, j, k);
1649 /*
1650 * Now we build the zonelist so that it contains the zones
1651 * of all the other nodes.
1652 * We don't want to pressure a particular node, so when
1653 * building the zones for node N, we make sure that the
1654 * zones coming right after the local ones are those from
1655 * node N+1 (modulo N)
1656 */
1657 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1658 if (!node_online(node))
1659 continue;
1660 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1661 }
1662 for (node = 0; node < local_node; node++) {
1663 if (!node_online(node))
1664 continue;
1665 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1666 }
1667
1668 zonelist->zones[j] = NULL;
1669 }
1670}
1671
1672#endif /* CONFIG_NUMA */
1673
1674void __init build_all_zonelists(void)
1675{
1676 int i;
1677
1678 for_each_online_node(i)
1679 build_zonelists(NODE_DATA(i));
1680 printk("Built %i zonelists\n", num_online_nodes());
1681 cpuset_init_current_mems_allowed();
1682}
1683
1684/*
1685 * Helper functions to size the waitqueue hash table.
1686 * Essentially these want to choose hash table sizes sufficiently
1687 * large so that collisions trying to wait on pages are rare.
1688 * But in fact, the number of active page waitqueues on typical
1689 * systems is ridiculously low, less than 200. So this is even
1690 * conservative, even though it seems large.
1691 *
1692 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1693 * waitqueues, i.e. the size of the waitq table given the number of pages.
1694 */
1695#define PAGES_PER_WAITQUEUE 256
1696
1697static inline unsigned long wait_table_size(unsigned long pages)
1698{
1699 unsigned long size = 1;
1700
1701 pages /= PAGES_PER_WAITQUEUE;
1702
1703 while (size < pages)
1704 size <<= 1;
1705
1706 /*
1707 * Once we have dozens or even hundreds of threads sleeping
1708 * on IO we've got bigger problems than wait queue collision.
1709 * Limit the size of the wait table to a reasonable size.
1710 */
1711 size = min(size, 4096UL);
1712
1713 return max(size, 4UL);
1714}
1715
1716/*
1717 * This is an integer logarithm so that shifts can be used later
1718 * to extract the more random high bits from the multiplicative
1719 * hash function before the remainder is taken.
1720 */
1721static inline unsigned long wait_table_bits(unsigned long size)
1722{
1723 return ffz(~size);
1724}
1725
1726#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1727
1728static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1729 unsigned long *zones_size, unsigned long *zholes_size)
1730{
1731 unsigned long realtotalpages, totalpages = 0;
1732 int i;
1733
1734 for (i = 0; i < MAX_NR_ZONES; i++)
1735 totalpages += zones_size[i];
1736 pgdat->node_spanned_pages = totalpages;
1737
1738 realtotalpages = totalpages;
1739 if (zholes_size)
1740 for (i = 0; i < MAX_NR_ZONES; i++)
1741 realtotalpages -= zholes_size[i];
1742 pgdat->node_present_pages = realtotalpages;
1743 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1744}
1745
1746
1747/*
1748 * Initially all pages are reserved - free ones are freed
1749 * up by free_all_bootmem() once the early boot process is
1750 * done. Non-atomic initialization, single-pass.
1751 */
c09b4240 1752void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1753 unsigned long start_pfn)
1754{
1da177e4 1755 struct page *page;
29751f69
AW
1756 unsigned long end_pfn = start_pfn + size;
1757 unsigned long pfn;
1da177e4 1758
cbe8dd4a 1759 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1760 if (!early_pfn_valid(pfn))
1761 continue;
1762 page = pfn_to_page(pfn);
1763 set_page_links(page, zone, nid, pfn);
b5810039 1764 set_page_count(page, 1);
1da177e4
LT
1765 reset_page_mapcount(page);
1766 SetPageReserved(page);
1767 INIT_LIST_HEAD(&page->lru);
1768#ifdef WANT_PAGE_VIRTUAL
1769 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1770 if (!is_highmem_idx(zone))
3212c6be 1771 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1772#endif
1da177e4
LT
1773 }
1774}
1775
1776void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1777 unsigned long size)
1778{
1779 int order;
1780 for (order = 0; order < MAX_ORDER ; order++) {
1781 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1782 zone->free_area[order].nr_free = 0;
1783 }
1784}
1785
d41dee36
AW
1786#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1787void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1788 unsigned long size)
1789{
1790 unsigned long snum = pfn_to_section_nr(pfn);
1791 unsigned long end = pfn_to_section_nr(pfn + size);
1792
1793 if (FLAGS_HAS_NODE)
1794 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1795 else
1796 for (; snum <= end; snum++)
1797 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1798}
1799
1da177e4
LT
1800#ifndef __HAVE_ARCH_MEMMAP_INIT
1801#define memmap_init(size, nid, zone, start_pfn) \
1802 memmap_init_zone((size), (nid), (zone), (start_pfn))
1803#endif
1804
6292d9aa 1805static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1806{
1807 int batch;
1808
1809 /*
1810 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1811 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1812 *
1813 * OK, so we don't know how big the cache is. So guess.
1814 */
1815 batch = zone->present_pages / 1024;
ba56e91c
SR
1816 if (batch * PAGE_SIZE > 512 * 1024)
1817 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1818 batch /= 4; /* We effectively *= 4 below */
1819 if (batch < 1)
1820 batch = 1;
1821
1822 /*
0ceaacc9
NP
1823 * Clamp the batch to a 2^n - 1 value. Having a power
1824 * of 2 value was found to be more likely to have
1825 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1826 *
0ceaacc9
NP
1827 * For example if 2 tasks are alternately allocating
1828 * batches of pages, one task can end up with a lot
1829 * of pages of one half of the possible page colors
1830 * and the other with pages of the other colors.
e7c8d5c9 1831 */
0ceaacc9 1832 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1833
e7c8d5c9
CL
1834 return batch;
1835}
1836
2caaad41
CL
1837inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1838{
1839 struct per_cpu_pages *pcp;
1840
1c6fe946
MD
1841 memset(p, 0, sizeof(*p));
1842
2caaad41
CL
1843 pcp = &p->pcp[0]; /* hot */
1844 pcp->count = 0;
2caaad41
CL
1845 pcp->high = 6 * batch;
1846 pcp->batch = max(1UL, 1 * batch);
1847 INIT_LIST_HEAD(&pcp->list);
1848
1849 pcp = &p->pcp[1]; /* cold*/
1850 pcp->count = 0;
2caaad41 1851 pcp->high = 2 * batch;
e46a5e28 1852 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1853 INIT_LIST_HEAD(&pcp->list);
1854}
1855
8ad4b1fb
RS
1856/*
1857 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1858 * to the value high for the pageset p.
1859 */
1860
1861static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1862 unsigned long high)
1863{
1864 struct per_cpu_pages *pcp;
1865
1866 pcp = &p->pcp[0]; /* hot list */
1867 pcp->high = high;
1868 pcp->batch = max(1UL, high/4);
1869 if ((high/4) > (PAGE_SHIFT * 8))
1870 pcp->batch = PAGE_SHIFT * 8;
1871}
1872
1873
e7c8d5c9
CL
1874#ifdef CONFIG_NUMA
1875/*
2caaad41
CL
1876 * Boot pageset table. One per cpu which is going to be used for all
1877 * zones and all nodes. The parameters will be set in such a way
1878 * that an item put on a list will immediately be handed over to
1879 * the buddy list. This is safe since pageset manipulation is done
1880 * with interrupts disabled.
1881 *
1882 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1883 *
1884 * The boot_pagesets must be kept even after bootup is complete for
1885 * unused processors and/or zones. They do play a role for bootstrapping
1886 * hotplugged processors.
1887 *
1888 * zoneinfo_show() and maybe other functions do
1889 * not check if the processor is online before following the pageset pointer.
1890 * Other parts of the kernel may not check if the zone is available.
2caaad41 1891 */
88a2a4ac 1892static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1893
1894/*
1895 * Dynamically allocate memory for the
e7c8d5c9
CL
1896 * per cpu pageset array in struct zone.
1897 */
6292d9aa 1898static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1899{
1900 struct zone *zone, *dzone;
e7c8d5c9
CL
1901
1902 for_each_zone(zone) {
e7c8d5c9 1903
23316bc8 1904 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1905 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1906 if (!zone_pcp(zone, cpu))
e7c8d5c9 1907 goto bad;
e7c8d5c9 1908
23316bc8 1909 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1910
1911 if (percpu_pagelist_fraction)
1912 setup_pagelist_highmark(zone_pcp(zone, cpu),
1913 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1914 }
1915
1916 return 0;
1917bad:
1918 for_each_zone(dzone) {
1919 if (dzone == zone)
1920 break;
23316bc8
NP
1921 kfree(zone_pcp(dzone, cpu));
1922 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1923 }
1924 return -ENOMEM;
1925}
1926
1927static inline void free_zone_pagesets(int cpu)
1928{
e7c8d5c9
CL
1929 struct zone *zone;
1930
1931 for_each_zone(zone) {
1932 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1933
1934 zone_pcp(zone, cpu) = NULL;
1935 kfree(pset);
1936 }
e7c8d5c9
CL
1937}
1938
6292d9aa 1939static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1940 unsigned long action,
1941 void *hcpu)
1942{
1943 int cpu = (long)hcpu;
1944 int ret = NOTIFY_OK;
1945
1946 switch (action) {
1947 case CPU_UP_PREPARE:
1948 if (process_zones(cpu))
1949 ret = NOTIFY_BAD;
1950 break;
b0d41693 1951 case CPU_UP_CANCELED:
e7c8d5c9
CL
1952 case CPU_DEAD:
1953 free_zone_pagesets(cpu);
1954 break;
e7c8d5c9
CL
1955 default:
1956 break;
1957 }
1958 return ret;
1959}
1960
1961static struct notifier_block pageset_notifier =
1962 { &pageset_cpuup_callback, NULL, 0 };
1963
78d9955b 1964void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1965{
1966 int err;
1967
1968 /* Initialize per_cpu_pageset for cpu 0.
1969 * A cpuup callback will do this for every cpu
1970 * as it comes online
1971 */
1972 err = process_zones(smp_processor_id());
1973 BUG_ON(err);
1974 register_cpu_notifier(&pageset_notifier);
1975}
1976
1977#endif
1978
c09b4240 1979static __meminit
ed8ece2e
DH
1980void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1981{
1982 int i;
1983 struct pglist_data *pgdat = zone->zone_pgdat;
1984
1985 /*
1986 * The per-page waitqueue mechanism uses hashed waitqueues
1987 * per zone.
1988 */
1989 zone->wait_table_size = wait_table_size(zone_size_pages);
1990 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1991 zone->wait_table = (wait_queue_head_t *)
1992 alloc_bootmem_node(pgdat, zone->wait_table_size
1993 * sizeof(wait_queue_head_t));
1994
1995 for(i = 0; i < zone->wait_table_size; ++i)
1996 init_waitqueue_head(zone->wait_table + i);
1997}
1998
c09b4240 1999static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2000{
2001 int cpu;
2002 unsigned long batch = zone_batchsize(zone);
2003
2004 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2005#ifdef CONFIG_NUMA
2006 /* Early boot. Slab allocator not functional yet */
23316bc8 2007 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2008 setup_pageset(&boot_pageset[cpu],0);
2009#else
2010 setup_pageset(zone_pcp(zone,cpu), batch);
2011#endif
2012 }
2013 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2014 zone->name, zone->present_pages, batch);
2015}
2016
c09b4240 2017static __meminit void init_currently_empty_zone(struct zone *zone,
ed8ece2e
DH
2018 unsigned long zone_start_pfn, unsigned long size)
2019{
2020 struct pglist_data *pgdat = zone->zone_pgdat;
2021
2022 zone_wait_table_init(zone, size);
2023 pgdat->nr_zones = zone_idx(zone) + 1;
2024
2025 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2026 zone->zone_start_pfn = zone_start_pfn;
2027
2028 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2029
2030 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2031}
2032
1da177e4
LT
2033/*
2034 * Set up the zone data structures:
2035 * - mark all pages reserved
2036 * - mark all memory queues empty
2037 * - clear the memory bitmaps
2038 */
2039static void __init free_area_init_core(struct pglist_data *pgdat,
2040 unsigned long *zones_size, unsigned long *zholes_size)
2041{
ed8ece2e
DH
2042 unsigned long j;
2043 int nid = pgdat->node_id;
1da177e4
LT
2044 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2045
208d54e5 2046 pgdat_resize_init(pgdat);
1da177e4
LT
2047 pgdat->nr_zones = 0;
2048 init_waitqueue_head(&pgdat->kswapd_wait);
2049 pgdat->kswapd_max_order = 0;
2050
2051 for (j = 0; j < MAX_NR_ZONES; j++) {
2052 struct zone *zone = pgdat->node_zones + j;
2053 unsigned long size, realsize;
1da177e4 2054
1da177e4
LT
2055 realsize = size = zones_size[j];
2056 if (zholes_size)
2057 realsize -= zholes_size[j];
2058
a2f1b424 2059 if (j < ZONE_HIGHMEM)
1da177e4
LT
2060 nr_kernel_pages += realsize;
2061 nr_all_pages += realsize;
2062
2063 zone->spanned_pages = size;
2064 zone->present_pages = realsize;
2065 zone->name = zone_names[j];
2066 spin_lock_init(&zone->lock);
2067 spin_lock_init(&zone->lru_lock);
bdc8cb98 2068 zone_seqlock_init(zone);
1da177e4
LT
2069 zone->zone_pgdat = pgdat;
2070 zone->free_pages = 0;
2071
2072 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2073
ed8ece2e 2074 zone_pcp_init(zone);
1da177e4
LT
2075 INIT_LIST_HEAD(&zone->active_list);
2076 INIT_LIST_HEAD(&zone->inactive_list);
2077 zone->nr_scan_active = 0;
2078 zone->nr_scan_inactive = 0;
2079 zone->nr_active = 0;
2080 zone->nr_inactive = 0;
53e9a615 2081 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2082 if (!size)
2083 continue;
2084
d41dee36 2085 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2086 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2087 zone_start_pfn += size;
1da177e4
LT
2088 }
2089}
2090
2091static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2092{
1da177e4
LT
2093 /* Skip empty nodes */
2094 if (!pgdat->node_spanned_pages)
2095 return;
2096
d41dee36 2097#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2098 /* ia64 gets its own node_mem_map, before this, without bootmem */
2099 if (!pgdat->node_mem_map) {
d41dee36
AW
2100 unsigned long size;
2101 struct page *map;
2102
1da177e4 2103 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2104 map = alloc_remap(pgdat->node_id, size);
2105 if (!map)
2106 map = alloc_bootmem_node(pgdat, size);
2107 pgdat->node_mem_map = map;
1da177e4 2108 }
d41dee36 2109#ifdef CONFIG_FLATMEM
1da177e4
LT
2110 /*
2111 * With no DISCONTIG, the global mem_map is just set as node 0's
2112 */
2113 if (pgdat == NODE_DATA(0))
2114 mem_map = NODE_DATA(0)->node_mem_map;
2115#endif
d41dee36 2116#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2117}
2118
2119void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2120 unsigned long *zones_size, unsigned long node_start_pfn,
2121 unsigned long *zholes_size)
2122{
2123 pgdat->node_id = nid;
2124 pgdat->node_start_pfn = node_start_pfn;
2125 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2126
2127 alloc_node_mem_map(pgdat);
2128
2129 free_area_init_core(pgdat, zones_size, zholes_size);
2130}
2131
93b7504e 2132#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2133static bootmem_data_t contig_bootmem_data;
2134struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2135
2136EXPORT_SYMBOL(contig_page_data);
93b7504e 2137#endif
1da177e4
LT
2138
2139void __init free_area_init(unsigned long *zones_size)
2140{
93b7504e 2141 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2142 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2143}
1da177e4
LT
2144
2145#ifdef CONFIG_PROC_FS
2146
2147#include <linux/seq_file.h>
2148
2149static void *frag_start(struct seq_file *m, loff_t *pos)
2150{
2151 pg_data_t *pgdat;
2152 loff_t node = *pos;
2153
2154 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2155 --node;
2156
2157 return pgdat;
2158}
2159
2160static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2161{
2162 pg_data_t *pgdat = (pg_data_t *)arg;
2163
2164 (*pos)++;
2165 return pgdat->pgdat_next;
2166}
2167
2168static void frag_stop(struct seq_file *m, void *arg)
2169{
2170}
2171
2172/*
2173 * This walks the free areas for each zone.
2174 */
2175static int frag_show(struct seq_file *m, void *arg)
2176{
2177 pg_data_t *pgdat = (pg_data_t *)arg;
2178 struct zone *zone;
2179 struct zone *node_zones = pgdat->node_zones;
2180 unsigned long flags;
2181 int order;
2182
2183 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
f3fe6512 2184 if (!populated_zone(zone))
1da177e4
LT
2185 continue;
2186
2187 spin_lock_irqsave(&zone->lock, flags);
2188 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2189 for (order = 0; order < MAX_ORDER; ++order)
2190 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2191 spin_unlock_irqrestore(&zone->lock, flags);
2192 seq_putc(m, '\n');
2193 }
2194 return 0;
2195}
2196
2197struct seq_operations fragmentation_op = {
2198 .start = frag_start,
2199 .next = frag_next,
2200 .stop = frag_stop,
2201 .show = frag_show,
2202};
2203
295ab934
ND
2204/*
2205 * Output information about zones in @pgdat.
2206 */
2207static int zoneinfo_show(struct seq_file *m, void *arg)
2208{
2209 pg_data_t *pgdat = arg;
2210 struct zone *zone;
2211 struct zone *node_zones = pgdat->node_zones;
2212 unsigned long flags;
2213
2214 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2215 int i;
2216
f3fe6512 2217 if (!populated_zone(zone))
295ab934
ND
2218 continue;
2219
2220 spin_lock_irqsave(&zone->lock, flags);
2221 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2222 seq_printf(m,
2223 "\n pages free %lu"
2224 "\n min %lu"
2225 "\n low %lu"
2226 "\n high %lu"
2227 "\n active %lu"
2228 "\n inactive %lu"
2229 "\n scanned %lu (a: %lu i: %lu)"
2230 "\n spanned %lu"
2231 "\n present %lu",
2232 zone->free_pages,
2233 zone->pages_min,
2234 zone->pages_low,
2235 zone->pages_high,
2236 zone->nr_active,
2237 zone->nr_inactive,
2238 zone->pages_scanned,
2239 zone->nr_scan_active, zone->nr_scan_inactive,
2240 zone->spanned_pages,
2241 zone->present_pages);
2242 seq_printf(m,
2243 "\n protection: (%lu",
2244 zone->lowmem_reserve[0]);
2245 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2246 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2247 seq_printf(m,
2248 ")"
2249 "\n pagesets");
23316bc8 2250 for_each_online_cpu(i) {
295ab934
ND
2251 struct per_cpu_pageset *pageset;
2252 int j;
2253
e7c8d5c9 2254 pageset = zone_pcp(zone, i);
295ab934
ND
2255 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2256 if (pageset->pcp[j].count)
2257 break;
2258 }
2259 if (j == ARRAY_SIZE(pageset->pcp))
2260 continue;
2261 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2262 seq_printf(m,
2263 "\n cpu: %i pcp: %i"
2264 "\n count: %i"
295ab934
ND
2265 "\n high: %i"
2266 "\n batch: %i",
2267 i, j,
2268 pageset->pcp[j].count,
295ab934
ND
2269 pageset->pcp[j].high,
2270 pageset->pcp[j].batch);
2271 }
2272#ifdef CONFIG_NUMA
2273 seq_printf(m,
2274 "\n numa_hit: %lu"
2275 "\n numa_miss: %lu"
2276 "\n numa_foreign: %lu"
2277 "\n interleave_hit: %lu"
2278 "\n local_node: %lu"
2279 "\n other_node: %lu",
2280 pageset->numa_hit,
2281 pageset->numa_miss,
2282 pageset->numa_foreign,
2283 pageset->interleave_hit,
2284 pageset->local_node,
2285 pageset->other_node);
2286#endif
2287 }
2288 seq_printf(m,
2289 "\n all_unreclaimable: %u"
2290 "\n prev_priority: %i"
2291 "\n temp_priority: %i"
2292 "\n start_pfn: %lu",
2293 zone->all_unreclaimable,
2294 zone->prev_priority,
2295 zone->temp_priority,
2296 zone->zone_start_pfn);
2297 spin_unlock_irqrestore(&zone->lock, flags);
2298 seq_putc(m, '\n');
2299 }
2300 return 0;
2301}
2302
2303struct seq_operations zoneinfo_op = {
2304 .start = frag_start, /* iterate over all zones. The same as in
2305 * fragmentation. */
2306 .next = frag_next,
2307 .stop = frag_stop,
2308 .show = zoneinfo_show,
2309};
2310
1da177e4
LT
2311static char *vmstat_text[] = {
2312 "nr_dirty",
2313 "nr_writeback",
2314 "nr_unstable",
2315 "nr_page_table_pages",
2316 "nr_mapped",
2317 "nr_slab",
2318
2319 "pgpgin",
2320 "pgpgout",
2321 "pswpin",
2322 "pswpout",
1da177e4 2323
9328b8fa 2324 "pgalloc_high",
1da177e4 2325 "pgalloc_normal",
9328b8fa 2326 "pgalloc_dma32",
1da177e4 2327 "pgalloc_dma",
9328b8fa 2328
1da177e4
LT
2329 "pgfree",
2330 "pgactivate",
2331 "pgdeactivate",
2332
2333 "pgfault",
2334 "pgmajfault",
9328b8fa 2335
1da177e4
LT
2336 "pgrefill_high",
2337 "pgrefill_normal",
9328b8fa 2338 "pgrefill_dma32",
1da177e4
LT
2339 "pgrefill_dma",
2340
2341 "pgsteal_high",
2342 "pgsteal_normal",
9328b8fa 2343 "pgsteal_dma32",
1da177e4 2344 "pgsteal_dma",
9328b8fa 2345
1da177e4
LT
2346 "pgscan_kswapd_high",
2347 "pgscan_kswapd_normal",
9328b8fa 2348 "pgscan_kswapd_dma32",
1da177e4 2349 "pgscan_kswapd_dma",
9328b8fa 2350
1da177e4
LT
2351 "pgscan_direct_high",
2352 "pgscan_direct_normal",
9328b8fa 2353 "pgscan_direct_dma32",
1da177e4 2354 "pgscan_direct_dma",
1da177e4 2355
9328b8fa 2356 "pginodesteal",
1da177e4
LT
2357 "slabs_scanned",
2358 "kswapd_steal",
2359 "kswapd_inodesteal",
2360 "pageoutrun",
2361 "allocstall",
2362
2363 "pgrotated",
edfbe2b0 2364 "nr_bounce",
1da177e4
LT
2365};
2366
2367static void *vmstat_start(struct seq_file *m, loff_t *pos)
2368{
2369 struct page_state *ps;
2370
2371 if (*pos >= ARRAY_SIZE(vmstat_text))
2372 return NULL;
2373
2374 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2375 m->private = ps;
2376 if (!ps)
2377 return ERR_PTR(-ENOMEM);
2378 get_full_page_state(ps);
2379 ps->pgpgin /= 2; /* sectors -> kbytes */
2380 ps->pgpgout /= 2;
2381 return (unsigned long *)ps + *pos;
2382}
2383
2384static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2385{
2386 (*pos)++;
2387 if (*pos >= ARRAY_SIZE(vmstat_text))
2388 return NULL;
2389 return (unsigned long *)m->private + *pos;
2390}
2391
2392static int vmstat_show(struct seq_file *m, void *arg)
2393{
2394 unsigned long *l = arg;
2395 unsigned long off = l - (unsigned long *)m->private;
2396
2397 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2398 return 0;
2399}
2400
2401static void vmstat_stop(struct seq_file *m, void *arg)
2402{
2403 kfree(m->private);
2404 m->private = NULL;
2405}
2406
2407struct seq_operations vmstat_op = {
2408 .start = vmstat_start,
2409 .next = vmstat_next,
2410 .stop = vmstat_stop,
2411 .show = vmstat_show,
2412};
2413
2414#endif /* CONFIG_PROC_FS */
2415
2416#ifdef CONFIG_HOTPLUG_CPU
2417static int page_alloc_cpu_notify(struct notifier_block *self,
2418 unsigned long action, void *hcpu)
2419{
2420 int cpu = (unsigned long)hcpu;
2421 long *count;
2422 unsigned long *src, *dest;
2423
2424 if (action == CPU_DEAD) {
2425 int i;
2426
2427 /* Drain local pagecache count. */
2428 count = &per_cpu(nr_pagecache_local, cpu);
2429 atomic_add(*count, &nr_pagecache);
2430 *count = 0;
2431 local_irq_disable();
2432 __drain_pages(cpu);
2433
2434 /* Add dead cpu's page_states to our own. */
2435 dest = (unsigned long *)&__get_cpu_var(page_states);
2436 src = (unsigned long *)&per_cpu(page_states, cpu);
2437
2438 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2439 i++) {
2440 dest[i] += src[i];
2441 src[i] = 0;
2442 }
2443
2444 local_irq_enable();
2445 }
2446 return NOTIFY_OK;
2447}
2448#endif /* CONFIG_HOTPLUG_CPU */
2449
2450void __init page_alloc_init(void)
2451{
2452 hotcpu_notifier(page_alloc_cpu_notify, 0);
2453}
2454
2455/*
2456 * setup_per_zone_lowmem_reserve - called whenever
2457 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2458 * has a correct pages reserved value, so an adequate number of
2459 * pages are left in the zone after a successful __alloc_pages().
2460 */
2461static void setup_per_zone_lowmem_reserve(void)
2462{
2463 struct pglist_data *pgdat;
2464 int j, idx;
2465
2466 for_each_pgdat(pgdat) {
2467 for (j = 0; j < MAX_NR_ZONES; j++) {
2468 struct zone *zone = pgdat->node_zones + j;
2469 unsigned long present_pages = zone->present_pages;
2470
2471 zone->lowmem_reserve[j] = 0;
2472
2473 for (idx = j-1; idx >= 0; idx--) {
2474 struct zone *lower_zone;
2475
2476 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2477 sysctl_lowmem_reserve_ratio[idx] = 1;
2478
2479 lower_zone = pgdat->node_zones + idx;
2480 lower_zone->lowmem_reserve[j] = present_pages /
2481 sysctl_lowmem_reserve_ratio[idx];
2482 present_pages += lower_zone->present_pages;
2483 }
2484 }
2485 }
2486}
2487
2488/*
2489 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2490 * that the pages_{min,low,high} values for each zone are set correctly
2491 * with respect to min_free_kbytes.
2492 */
3947be19 2493void setup_per_zone_pages_min(void)
1da177e4
LT
2494{
2495 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2496 unsigned long lowmem_pages = 0;
2497 struct zone *zone;
2498 unsigned long flags;
2499
2500 /* Calculate total number of !ZONE_HIGHMEM pages */
2501 for_each_zone(zone) {
2502 if (!is_highmem(zone))
2503 lowmem_pages += zone->present_pages;
2504 }
2505
2506 for_each_zone(zone) {
669ed175 2507 unsigned long tmp;
1da177e4 2508 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2509 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2510 if (is_highmem(zone)) {
2511 /*
669ed175
NP
2512 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2513 * need highmem pages, so cap pages_min to a small
2514 * value here.
2515 *
2516 * The (pages_high-pages_low) and (pages_low-pages_min)
2517 * deltas controls asynch page reclaim, and so should
2518 * not be capped for highmem.
1da177e4
LT
2519 */
2520 int min_pages;
2521
2522 min_pages = zone->present_pages / 1024;
2523 if (min_pages < SWAP_CLUSTER_MAX)
2524 min_pages = SWAP_CLUSTER_MAX;
2525 if (min_pages > 128)
2526 min_pages = 128;
2527 zone->pages_min = min_pages;
2528 } else {
669ed175
NP
2529 /*
2530 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2531 * proportionate to the zone's size.
2532 */
669ed175 2533 zone->pages_min = tmp;
1da177e4
LT
2534 }
2535
669ed175
NP
2536 zone->pages_low = zone->pages_min + tmp / 4;
2537 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2538 spin_unlock_irqrestore(&zone->lru_lock, flags);
2539 }
2540}
2541
2542/*
2543 * Initialise min_free_kbytes.
2544 *
2545 * For small machines we want it small (128k min). For large machines
2546 * we want it large (64MB max). But it is not linear, because network
2547 * bandwidth does not increase linearly with machine size. We use
2548 *
2549 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2550 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2551 *
2552 * which yields
2553 *
2554 * 16MB: 512k
2555 * 32MB: 724k
2556 * 64MB: 1024k
2557 * 128MB: 1448k
2558 * 256MB: 2048k
2559 * 512MB: 2896k
2560 * 1024MB: 4096k
2561 * 2048MB: 5792k
2562 * 4096MB: 8192k
2563 * 8192MB: 11584k
2564 * 16384MB: 16384k
2565 */
2566static int __init init_per_zone_pages_min(void)
2567{
2568 unsigned long lowmem_kbytes;
2569
2570 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2571
2572 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2573 if (min_free_kbytes < 128)
2574 min_free_kbytes = 128;
2575 if (min_free_kbytes > 65536)
2576 min_free_kbytes = 65536;
2577 setup_per_zone_pages_min();
2578 setup_per_zone_lowmem_reserve();
2579 return 0;
2580}
2581module_init(init_per_zone_pages_min)
2582
2583/*
2584 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2585 * that we can call two helper functions whenever min_free_kbytes
2586 * changes.
2587 */
2588int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2589 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2590{
2591 proc_dointvec(table, write, file, buffer, length, ppos);
2592 setup_per_zone_pages_min();
2593 return 0;
2594}
2595
2596/*
2597 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2598 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2599 * whenever sysctl_lowmem_reserve_ratio changes.
2600 *
2601 * The reserve ratio obviously has absolutely no relation with the
2602 * pages_min watermarks. The lowmem reserve ratio can only make sense
2603 * if in function of the boot time zone sizes.
2604 */
2605int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2606 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2607{
2608 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2609 setup_per_zone_lowmem_reserve();
2610 return 0;
2611}
2612
8ad4b1fb
RS
2613/*
2614 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2615 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2616 * can have before it gets flushed back to buddy allocator.
2617 */
2618
2619int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2620 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2621{
2622 struct zone *zone;
2623 unsigned int cpu;
2624 int ret;
2625
2626 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2627 if (!write || (ret == -EINVAL))
2628 return ret;
2629 for_each_zone(zone) {
2630 for_each_online_cpu(cpu) {
2631 unsigned long high;
2632 high = zone->present_pages / percpu_pagelist_fraction;
2633 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2634 }
2635 }
2636 return 0;
2637}
2638
1da177e4
LT
2639__initdata int hashdist = HASHDIST_DEFAULT;
2640
2641#ifdef CONFIG_NUMA
2642static int __init set_hashdist(char *str)
2643{
2644 if (!str)
2645 return 0;
2646 hashdist = simple_strtoul(str, &str, 0);
2647 return 1;
2648}
2649__setup("hashdist=", set_hashdist);
2650#endif
2651
2652/*
2653 * allocate a large system hash table from bootmem
2654 * - it is assumed that the hash table must contain an exact power-of-2
2655 * quantity of entries
2656 * - limit is the number of hash buckets, not the total allocation size
2657 */
2658void *__init alloc_large_system_hash(const char *tablename,
2659 unsigned long bucketsize,
2660 unsigned long numentries,
2661 int scale,
2662 int flags,
2663 unsigned int *_hash_shift,
2664 unsigned int *_hash_mask,
2665 unsigned long limit)
2666{
2667 unsigned long long max = limit;
2668 unsigned long log2qty, size;
2669 void *table = NULL;
2670
2671 /* allow the kernel cmdline to have a say */
2672 if (!numentries) {
2673 /* round applicable memory size up to nearest megabyte */
2674 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2675 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2676 numentries >>= 20 - PAGE_SHIFT;
2677 numentries <<= 20 - PAGE_SHIFT;
2678
2679 /* limit to 1 bucket per 2^scale bytes of low memory */
2680 if (scale > PAGE_SHIFT)
2681 numentries >>= (scale - PAGE_SHIFT);
2682 else
2683 numentries <<= (PAGE_SHIFT - scale);
2684 }
2685 /* rounded up to nearest power of 2 in size */
2686 numentries = 1UL << (long_log2(numentries) + 1);
2687
2688 /* limit allocation size to 1/16 total memory by default */
2689 if (max == 0) {
2690 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2691 do_div(max, bucketsize);
2692 }
2693
2694 if (numentries > max)
2695 numentries = max;
2696
2697 log2qty = long_log2(numentries);
2698
2699 do {
2700 size = bucketsize << log2qty;
2701 if (flags & HASH_EARLY)
2702 table = alloc_bootmem(size);
2703 else if (hashdist)
2704 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2705 else {
2706 unsigned long order;
2707 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2708 ;
2709 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2710 }
2711 } while (!table && size > PAGE_SIZE && --log2qty);
2712
2713 if (!table)
2714 panic("Failed to allocate %s hash table\n", tablename);
2715
2716 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2717 tablename,
2718 (1U << log2qty),
2719 long_log2(size) - PAGE_SHIFT,
2720 size);
2721
2722 if (_hash_shift)
2723 *_hash_shift = log2qty;
2724 if (_hash_mask)
2725 *_hash_mask = (1 << log2qty) - 1;
2726
2727 return table;
2728}