]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
[PATCH] VM: early zone reclaim
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/nodemask.h>
36#include <linux/vmalloc.h>
37
38#include <asm/tlbflush.h>
39#include "internal.h"
40
41/*
42 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43 * initializer cleaner
44 */
45nodemask_t node_online_map = { { [0] = 1UL } };
7223a93a 46EXPORT_SYMBOL(node_online_map);
1da177e4 47nodemask_t node_possible_map = NODE_MASK_ALL;
7223a93a 48EXPORT_SYMBOL(node_possible_map);
1da177e4
LT
49struct pglist_data *pgdat_list;
50unsigned long totalram_pages;
51unsigned long totalhigh_pages;
52long nr_swap_pages;
53
54/*
55 * results with 256, 32 in the lowmem_reserve sysctl:
56 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57 * 1G machine -> (16M dma, 784M normal, 224M high)
58 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
61 */
62int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
63
64EXPORT_SYMBOL(totalram_pages);
65EXPORT_SYMBOL(nr_swap_pages);
66
67/*
68 * Used by page_zone() to look up the address of the struct zone whose
69 * id is encoded in the upper bits of page->flags
70 */
71struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)];
72EXPORT_SYMBOL(zone_table);
73
74static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
75int min_free_kbytes = 1024;
76
77unsigned long __initdata nr_kernel_pages;
78unsigned long __initdata nr_all_pages;
79
80/*
81 * Temporary debugging check for pages not lying within a given zone.
82 */
83static int bad_range(struct zone *zone, struct page *page)
84{
85 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
86 return 1;
87 if (page_to_pfn(page) < zone->zone_start_pfn)
88 return 1;
89#ifdef CONFIG_HOLES_IN_ZONE
90 if (!pfn_valid(page_to_pfn(page)))
91 return 1;
92#endif
93 if (zone != page_zone(page))
94 return 1;
95 return 0;
96}
97
98static void bad_page(const char *function, struct page *page)
99{
100 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
101 function, current->comm, page);
102 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
104 page->mapping, page_mapcount(page), page_count(page));
105 printk(KERN_EMERG "Backtrace:\n");
106 dump_stack();
107 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
108 page->flags &= ~(1 << PG_private |
109 1 << PG_locked |
110 1 << PG_lru |
111 1 << PG_active |
112 1 << PG_dirty |
113 1 << PG_swapcache |
114 1 << PG_writeback);
115 set_page_count(page, 0);
116 reset_page_mapcount(page);
117 page->mapping = NULL;
118 tainted |= TAINT_BAD_PAGE;
119}
120
121#ifndef CONFIG_HUGETLB_PAGE
122#define prep_compound_page(page, order) do { } while (0)
123#define destroy_compound_page(page, order) do { } while (0)
124#else
125/*
126 * Higher-order pages are called "compound pages". They are structured thusly:
127 *
128 * The first PAGE_SIZE page is called the "head page".
129 *
130 * The remaining PAGE_SIZE pages are called "tail pages".
131 *
132 * All pages have PG_compound set. All pages have their ->private pointing at
133 * the head page (even the head page has this).
134 *
135 * The first tail page's ->mapping, if non-zero, holds the address of the
136 * compound page's put_page() function.
137 *
138 * The order of the allocation is stored in the first tail page's ->index
139 * This is only for debug at present. This usage means that zero-order pages
140 * may not be compound.
141 */
142static void prep_compound_page(struct page *page, unsigned long order)
143{
144 int i;
145 int nr_pages = 1 << order;
146
147 page[1].mapping = NULL;
148 page[1].index = order;
149 for (i = 0; i < nr_pages; i++) {
150 struct page *p = page + i;
151
152 SetPageCompound(p);
153 p->private = (unsigned long)page;
154 }
155}
156
157static void destroy_compound_page(struct page *page, unsigned long order)
158{
159 int i;
160 int nr_pages = 1 << order;
161
162 if (!PageCompound(page))
163 return;
164
165 if (page[1].index != order)
166 bad_page(__FUNCTION__, page);
167
168 for (i = 0; i < nr_pages; i++) {
169 struct page *p = page + i;
170
171 if (!PageCompound(p))
172 bad_page(__FUNCTION__, page);
173 if (p->private != (unsigned long)page)
174 bad_page(__FUNCTION__, page);
175 ClearPageCompound(p);
176 }
177}
178#endif /* CONFIG_HUGETLB_PAGE */
179
180/*
181 * function for dealing with page's order in buddy system.
182 * zone->lock is already acquired when we use these.
183 * So, we don't need atomic page->flags operations here.
184 */
185static inline unsigned long page_order(struct page *page) {
186 return page->private;
187}
188
189static inline void set_page_order(struct page *page, int order) {
190 page->private = order;
191 __SetPagePrivate(page);
192}
193
194static inline void rmv_page_order(struct page *page)
195{
196 __ClearPagePrivate(page);
197 page->private = 0;
198}
199
200/*
201 * Locate the struct page for both the matching buddy in our
202 * pair (buddy1) and the combined O(n+1) page they form (page).
203 *
204 * 1) Any buddy B1 will have an order O twin B2 which satisfies
205 * the following equation:
206 * B2 = B1 ^ (1 << O)
207 * For example, if the starting buddy (buddy2) is #8 its order
208 * 1 buddy is #10:
209 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
210 *
211 * 2) Any buddy B will have an order O+1 parent P which
212 * satisfies the following equation:
213 * P = B & ~(1 << O)
214 *
215 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
216 */
217static inline struct page *
218__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
219{
220 unsigned long buddy_idx = page_idx ^ (1 << order);
221
222 return page + (buddy_idx - page_idx);
223}
224
225static inline unsigned long
226__find_combined_index(unsigned long page_idx, unsigned int order)
227{
228 return (page_idx & ~(1 << order));
229}
230
231/*
232 * This function checks whether a page is free && is the buddy
233 * we can do coalesce a page and its buddy if
234 * (a) the buddy is free &&
235 * (b) the buddy is on the buddy system &&
236 * (c) a page and its buddy have the same order.
237 * for recording page's order, we use page->private and PG_private.
238 *
239 */
240static inline int page_is_buddy(struct page *page, int order)
241{
242 if (PagePrivate(page) &&
243 (page_order(page) == order) &&
244 !PageReserved(page) &&
245 page_count(page) == 0)
246 return 1;
247 return 0;
248}
249
250/*
251 * Freeing function for a buddy system allocator.
252 *
253 * The concept of a buddy system is to maintain direct-mapped table
254 * (containing bit values) for memory blocks of various "orders".
255 * The bottom level table contains the map for the smallest allocatable
256 * units of memory (here, pages), and each level above it describes
257 * pairs of units from the levels below, hence, "buddies".
258 * At a high level, all that happens here is marking the table entry
259 * at the bottom level available, and propagating the changes upward
260 * as necessary, plus some accounting needed to play nicely with other
261 * parts of the VM system.
262 * At each level, we keep a list of pages, which are heads of continuous
263 * free pages of length of (1 << order) and marked with PG_Private.Page's
264 * order is recorded in page->private field.
265 * So when we are allocating or freeing one, we can derive the state of the
266 * other. That is, if we allocate a small block, and both were
267 * free, the remainder of the region must be split into blocks.
268 * If a block is freed, and its buddy is also free, then this
269 * triggers coalescing into a block of larger size.
270 *
271 * -- wli
272 */
273
274static inline void __free_pages_bulk (struct page *page,
275 struct zone *zone, unsigned int order)
276{
277 unsigned long page_idx;
278 int order_size = 1 << order;
279
280 if (unlikely(order))
281 destroy_compound_page(page, order);
282
283 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
284
285 BUG_ON(page_idx & (order_size - 1));
286 BUG_ON(bad_range(zone, page));
287
288 zone->free_pages += order_size;
289 while (order < MAX_ORDER-1) {
290 unsigned long combined_idx;
291 struct free_area *area;
292 struct page *buddy;
293
294 combined_idx = __find_combined_index(page_idx, order);
295 buddy = __page_find_buddy(page, page_idx, order);
296
297 if (bad_range(zone, buddy))
298 break;
299 if (!page_is_buddy(buddy, order))
300 break; /* Move the buddy up one level. */
301 list_del(&buddy->lru);
302 area = zone->free_area + order;
303 area->nr_free--;
304 rmv_page_order(buddy);
305 page = page + (combined_idx - page_idx);
306 page_idx = combined_idx;
307 order++;
308 }
309 set_page_order(page, order);
310 list_add(&page->lru, &zone->free_area[order].free_list);
311 zone->free_area[order].nr_free++;
312}
313
314static inline void free_pages_check(const char *function, struct page *page)
315{
316 if ( page_mapcount(page) ||
317 page->mapping != NULL ||
318 page_count(page) != 0 ||
319 (page->flags & (
320 1 << PG_lru |
321 1 << PG_private |
322 1 << PG_locked |
323 1 << PG_active |
324 1 << PG_reclaim |
325 1 << PG_slab |
326 1 << PG_swapcache |
327 1 << PG_writeback )))
328 bad_page(function, page);
329 if (PageDirty(page))
330 ClearPageDirty(page);
331}
332
333/*
334 * Frees a list of pages.
335 * Assumes all pages on list are in same zone, and of same order.
336 * count is the number of pages to free, or 0 for all on the list.
337 *
338 * If the zone was previously in an "all pages pinned" state then look to
339 * see if this freeing clears that state.
340 *
341 * And clear the zone's pages_scanned counter, to hold off the "all pages are
342 * pinned" detection logic.
343 */
344static int
345free_pages_bulk(struct zone *zone, int count,
346 struct list_head *list, unsigned int order)
347{
348 unsigned long flags;
349 struct page *page = NULL;
350 int ret = 0;
351
352 spin_lock_irqsave(&zone->lock, flags);
353 zone->all_unreclaimable = 0;
354 zone->pages_scanned = 0;
355 while (!list_empty(list) && count--) {
356 page = list_entry(list->prev, struct page, lru);
357 /* have to delete it as __free_pages_bulk list manipulates */
358 list_del(&page->lru);
359 __free_pages_bulk(page, zone, order);
360 ret++;
361 }
362 spin_unlock_irqrestore(&zone->lock, flags);
363 return ret;
364}
365
366void __free_pages_ok(struct page *page, unsigned int order)
367{
368 LIST_HEAD(list);
369 int i;
370
371 arch_free_page(page, order);
372
373 mod_page_state(pgfree, 1 << order);
374
375#ifndef CONFIG_MMU
376 if (order > 0)
377 for (i = 1 ; i < (1 << order) ; ++i)
378 __put_page(page + i);
379#endif
380
381 for (i = 0 ; i < (1 << order) ; ++i)
382 free_pages_check(__FUNCTION__, page + i);
383 list_add(&page->lru, &list);
384 kernel_map_pages(page, 1<<order, 0);
385 free_pages_bulk(page_zone(page), 1, &list, order);
386}
387
388
389/*
390 * The order of subdivision here is critical for the IO subsystem.
391 * Please do not alter this order without good reasons and regression
392 * testing. Specifically, as large blocks of memory are subdivided,
393 * the order in which smaller blocks are delivered depends on the order
394 * they're subdivided in this function. This is the primary factor
395 * influencing the order in which pages are delivered to the IO
396 * subsystem according to empirical testing, and this is also justified
397 * by considering the behavior of a buddy system containing a single
398 * large block of memory acted on by a series of small allocations.
399 * This behavior is a critical factor in sglist merging's success.
400 *
401 * -- wli
402 */
403static inline struct page *
404expand(struct zone *zone, struct page *page,
405 int low, int high, struct free_area *area)
406{
407 unsigned long size = 1 << high;
408
409 while (high > low) {
410 area--;
411 high--;
412 size >>= 1;
413 BUG_ON(bad_range(zone, &page[size]));
414 list_add(&page[size].lru, &area->free_list);
415 area->nr_free++;
416 set_page_order(&page[size], high);
417 }
418 return page;
419}
420
421void set_page_refs(struct page *page, int order)
422{
423#ifdef CONFIG_MMU
424 set_page_count(page, 1);
425#else
426 int i;
427
428 /*
429 * We need to reference all the pages for this order, otherwise if
430 * anyone accesses one of the pages with (get/put) it will be freed.
431 * - eg: access_process_vm()
432 */
433 for (i = 0; i < (1 << order); i++)
434 set_page_count(page + i, 1);
435#endif /* CONFIG_MMU */
436}
437
438/*
439 * This page is about to be returned from the page allocator
440 */
441static void prep_new_page(struct page *page, int order)
442{
443 if (page->mapping || page_mapcount(page) ||
444 (page->flags & (
445 1 << PG_private |
446 1 << PG_locked |
447 1 << PG_lru |
448 1 << PG_active |
449 1 << PG_dirty |
450 1 << PG_reclaim |
451 1 << PG_swapcache |
452 1 << PG_writeback )))
453 bad_page(__FUNCTION__, page);
454
455 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
456 1 << PG_referenced | 1 << PG_arch_1 |
457 1 << PG_checked | 1 << PG_mappedtodisk);
458 page->private = 0;
459 set_page_refs(page, order);
460 kernel_map_pages(page, 1 << order, 1);
461}
462
463/*
464 * Do the hard work of removing an element from the buddy allocator.
465 * Call me with the zone->lock already held.
466 */
467static struct page *__rmqueue(struct zone *zone, unsigned int order)
468{
469 struct free_area * area;
470 unsigned int current_order;
471 struct page *page;
472
473 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
474 area = zone->free_area + current_order;
475 if (list_empty(&area->free_list))
476 continue;
477
478 page = list_entry(area->free_list.next, struct page, lru);
479 list_del(&page->lru);
480 rmv_page_order(page);
481 area->nr_free--;
482 zone->free_pages -= 1UL << order;
483 return expand(zone, page, order, current_order, area);
484 }
485
486 return NULL;
487}
488
489/*
490 * Obtain a specified number of elements from the buddy allocator, all under
491 * a single hold of the lock, for efficiency. Add them to the supplied list.
492 * Returns the number of new pages which were placed at *list.
493 */
494static int rmqueue_bulk(struct zone *zone, unsigned int order,
495 unsigned long count, struct list_head *list)
496{
497 unsigned long flags;
498 int i;
499 int allocated = 0;
500 struct page *page;
501
502 spin_lock_irqsave(&zone->lock, flags);
503 for (i = 0; i < count; ++i) {
504 page = __rmqueue(zone, order);
505 if (page == NULL)
506 break;
507 allocated++;
508 list_add_tail(&page->lru, list);
509 }
510 spin_unlock_irqrestore(&zone->lock, flags);
511 return allocated;
512}
513
514#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
515static void __drain_pages(unsigned int cpu)
516{
517 struct zone *zone;
518 int i;
519
520 for_each_zone(zone) {
521 struct per_cpu_pageset *pset;
522
523 pset = &zone->pageset[cpu];
524 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
525 struct per_cpu_pages *pcp;
526
527 pcp = &pset->pcp[i];
528 pcp->count -= free_pages_bulk(zone, pcp->count,
529 &pcp->list, 0);
530 }
531 }
532}
533#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
534
535#ifdef CONFIG_PM
536
537void mark_free_pages(struct zone *zone)
538{
539 unsigned long zone_pfn, flags;
540 int order;
541 struct list_head *curr;
542
543 if (!zone->spanned_pages)
544 return;
545
546 spin_lock_irqsave(&zone->lock, flags);
547 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
548 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
549
550 for (order = MAX_ORDER - 1; order >= 0; --order)
551 list_for_each(curr, &zone->free_area[order].free_list) {
552 unsigned long start_pfn, i;
553
554 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
555
556 for (i=0; i < (1<<order); i++)
557 SetPageNosaveFree(pfn_to_page(start_pfn+i));
558 }
559 spin_unlock_irqrestore(&zone->lock, flags);
560}
561
562/*
563 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
564 */
565void drain_local_pages(void)
566{
567 unsigned long flags;
568
569 local_irq_save(flags);
570 __drain_pages(smp_processor_id());
571 local_irq_restore(flags);
572}
573#endif /* CONFIG_PM */
574
575static void zone_statistics(struct zonelist *zonelist, struct zone *z)
576{
577#ifdef CONFIG_NUMA
578 unsigned long flags;
579 int cpu;
580 pg_data_t *pg = z->zone_pgdat;
581 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
582 struct per_cpu_pageset *p;
583
584 local_irq_save(flags);
585 cpu = smp_processor_id();
586 p = &z->pageset[cpu];
587 if (pg == orig) {
588 z->pageset[cpu].numa_hit++;
589 } else {
590 p->numa_miss++;
591 zonelist->zones[0]->pageset[cpu].numa_foreign++;
592 }
593 if (pg == NODE_DATA(numa_node_id()))
594 p->local_node++;
595 else
596 p->other_node++;
597 local_irq_restore(flags);
598#endif
599}
600
601/*
602 * Free a 0-order page
603 */
604static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
605static void fastcall free_hot_cold_page(struct page *page, int cold)
606{
607 struct zone *zone = page_zone(page);
608 struct per_cpu_pages *pcp;
609 unsigned long flags;
610
611 arch_free_page(page, 0);
612
613 kernel_map_pages(page, 1, 0);
614 inc_page_state(pgfree);
615 if (PageAnon(page))
616 page->mapping = NULL;
617 free_pages_check(__FUNCTION__, page);
618 pcp = &zone->pageset[get_cpu()].pcp[cold];
619 local_irq_save(flags);
620 if (pcp->count >= pcp->high)
621 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
622 list_add(&page->lru, &pcp->list);
623 pcp->count++;
624 local_irq_restore(flags);
625 put_cpu();
626}
627
628void fastcall free_hot_page(struct page *page)
629{
630 free_hot_cold_page(page, 0);
631}
632
633void fastcall free_cold_page(struct page *page)
634{
635 free_hot_cold_page(page, 1);
636}
637
638static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
639{
640 int i;
641
642 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
643 for(i = 0; i < (1 << order); i++)
644 clear_highpage(page + i);
645}
646
647/*
648 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
649 * we cheat by calling it from here, in the order > 0 path. Saves a branch
650 * or two.
651 */
652static struct page *
653buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
654{
655 unsigned long flags;
656 struct page *page = NULL;
657 int cold = !!(gfp_flags & __GFP_COLD);
658
659 if (order == 0) {
660 struct per_cpu_pages *pcp;
661
662 pcp = &zone->pageset[get_cpu()].pcp[cold];
663 local_irq_save(flags);
664 if (pcp->count <= pcp->low)
665 pcp->count += rmqueue_bulk(zone, 0,
666 pcp->batch, &pcp->list);
667 if (pcp->count) {
668 page = list_entry(pcp->list.next, struct page, lru);
669 list_del(&page->lru);
670 pcp->count--;
671 }
672 local_irq_restore(flags);
673 put_cpu();
674 }
675
676 if (page == NULL) {
677 spin_lock_irqsave(&zone->lock, flags);
678 page = __rmqueue(zone, order);
679 spin_unlock_irqrestore(&zone->lock, flags);
680 }
681
682 if (page != NULL) {
683 BUG_ON(bad_range(zone, page));
684 mod_page_state_zone(zone, pgalloc, 1 << order);
685 prep_new_page(page, order);
686
687 if (gfp_flags & __GFP_ZERO)
688 prep_zero_page(page, order, gfp_flags);
689
690 if (order && (gfp_flags & __GFP_COMP))
691 prep_compound_page(page, order);
692 }
693 return page;
694}
695
696/*
697 * Return 1 if free pages are above 'mark'. This takes into account the order
698 * of the allocation.
699 */
700int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
701 int classzone_idx, int can_try_harder, int gfp_high)
702{
703 /* free_pages my go negative - that's OK */
704 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
705 int o;
706
707 if (gfp_high)
708 min -= min / 2;
709 if (can_try_harder)
710 min -= min / 4;
711
712 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
713 return 0;
714 for (o = 0; o < order; o++) {
715 /* At the next order, this order's pages become unavailable */
716 free_pages -= z->free_area[o].nr_free << o;
717
718 /* Require fewer higher order pages to be free */
719 min >>= 1;
720
721 if (free_pages <= min)
722 return 0;
723 }
724 return 1;
725}
726
753ee728
MH
727static inline int
728should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
729{
730 if (!z->reclaim_pages)
731 return 0;
732 return 1;
733}
734
1da177e4
LT
735/*
736 * This is the 'heart' of the zoned buddy allocator.
737 */
738struct page * fastcall
739__alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
740 struct zonelist *zonelist)
741{
742 const int wait = gfp_mask & __GFP_WAIT;
743 struct zone **zones, *z;
744 struct page *page;
745 struct reclaim_state reclaim_state;
746 struct task_struct *p = current;
747 int i;
748 int classzone_idx;
749 int do_retry;
750 int can_try_harder;
751 int did_some_progress;
752
753 might_sleep_if(wait);
754
755 /*
756 * The caller may dip into page reserves a bit more if the caller
757 * cannot run direct reclaim, or is the caller has realtime scheduling
758 * policy
759 */
760 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
761
762 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
763
764 if (unlikely(zones[0] == NULL)) {
765 /* Should this ever happen?? */
766 return NULL;
767 }
768
769 classzone_idx = zone_idx(zones[0]);
770
753ee728 771restart:
1da177e4
LT
772 /* Go through the zonelist once, looking for a zone with enough free */
773 for (i = 0; (z = zones[i]) != NULL; i++) {
753ee728 774 int do_reclaim = should_reclaim_zone(z, gfp_mask);
1da177e4
LT
775
776 if (!cpuset_zone_allowed(z))
777 continue;
778
753ee728
MH
779 /*
780 * If the zone is to attempt early page reclaim then this loop
781 * will try to reclaim pages and check the watermark a second
782 * time before giving up and falling back to the next zone.
783 */
784zone_reclaim_retry:
785 if (!zone_watermark_ok(z, order, z->pages_low,
786 classzone_idx, 0, 0)) {
787 if (!do_reclaim)
788 continue;
789 else {
790 zone_reclaim(z, gfp_mask, order);
791 /* Only try reclaim once */
792 do_reclaim = 0;
793 goto zone_reclaim_retry;
794 }
795 }
796
1da177e4
LT
797 page = buffered_rmqueue(z, order, gfp_mask);
798 if (page)
799 goto got_pg;
800 }
801
802 for (i = 0; (z = zones[i]) != NULL; i++)
803 wakeup_kswapd(z, order);
804
805 /*
806 * Go through the zonelist again. Let __GFP_HIGH and allocations
807 * coming from realtime tasks to go deeper into reserves
808 *
809 * This is the last chance, in general, before the goto nopage.
810 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
811 */
812 for (i = 0; (z = zones[i]) != NULL; i++) {
813 if (!zone_watermark_ok(z, order, z->pages_min,
814 classzone_idx, can_try_harder,
815 gfp_mask & __GFP_HIGH))
816 continue;
817
818 if (wait && !cpuset_zone_allowed(z))
819 continue;
820
821 page = buffered_rmqueue(z, order, gfp_mask);
822 if (page)
823 goto got_pg;
824 }
825
826 /* This allocation should allow future memory freeing. */
b84a35be
NP
827
828 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
829 && !in_interrupt()) {
830 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
831 /* go through the zonelist yet again, ignoring mins */
832 for (i = 0; (z = zones[i]) != NULL; i++) {
833 if (!cpuset_zone_allowed(z))
834 continue;
835 page = buffered_rmqueue(z, order, gfp_mask);
836 if (page)
837 goto got_pg;
838 }
1da177e4
LT
839 }
840 goto nopage;
841 }
842
843 /* Atomic allocations - we can't balance anything */
844 if (!wait)
845 goto nopage;
846
847rebalance:
848 cond_resched();
849
850 /* We now go into synchronous reclaim */
851 p->flags |= PF_MEMALLOC;
852 reclaim_state.reclaimed_slab = 0;
853 p->reclaim_state = &reclaim_state;
854
855 did_some_progress = try_to_free_pages(zones, gfp_mask, order);
856
857 p->reclaim_state = NULL;
858 p->flags &= ~PF_MEMALLOC;
859
860 cond_resched();
861
862 if (likely(did_some_progress)) {
863 /*
864 * Go through the zonelist yet one more time, keep
865 * very high watermark here, this is only to catch
866 * a parallel oom killing, we must fail if we're still
867 * under heavy pressure.
868 */
869 for (i = 0; (z = zones[i]) != NULL; i++) {
870 if (!zone_watermark_ok(z, order, z->pages_min,
871 classzone_idx, can_try_harder,
872 gfp_mask & __GFP_HIGH))
873 continue;
874
875 if (!cpuset_zone_allowed(z))
876 continue;
877
878 page = buffered_rmqueue(z, order, gfp_mask);
879 if (page)
880 goto got_pg;
881 }
882 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
883 /*
884 * Go through the zonelist yet one more time, keep
885 * very high watermark here, this is only to catch
886 * a parallel oom killing, we must fail if we're still
887 * under heavy pressure.
888 */
889 for (i = 0; (z = zones[i]) != NULL; i++) {
890 if (!zone_watermark_ok(z, order, z->pages_high,
891 classzone_idx, 0, 0))
892 continue;
893
894 if (!cpuset_zone_allowed(z))
895 continue;
896
897 page = buffered_rmqueue(z, order, gfp_mask);
898 if (page)
899 goto got_pg;
900 }
901
902 out_of_memory(gfp_mask);
903 goto restart;
904 }
905
906 /*
907 * Don't let big-order allocations loop unless the caller explicitly
908 * requests that. Wait for some write requests to complete then retry.
909 *
910 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
911 * <= 3, but that may not be true in other implementations.
912 */
913 do_retry = 0;
914 if (!(gfp_mask & __GFP_NORETRY)) {
915 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
916 do_retry = 1;
917 if (gfp_mask & __GFP_NOFAIL)
918 do_retry = 1;
919 }
920 if (do_retry) {
921 blk_congestion_wait(WRITE, HZ/50);
922 goto rebalance;
923 }
924
925nopage:
926 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
927 printk(KERN_WARNING "%s: page allocation failure."
928 " order:%d, mode:0x%x\n",
929 p->comm, order, gfp_mask);
930 dump_stack();
931 }
932 return NULL;
933got_pg:
934 zone_statistics(zonelist, z);
935 return page;
936}
937
938EXPORT_SYMBOL(__alloc_pages);
939
940/*
941 * Common helper functions.
942 */
943fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
944{
945 struct page * page;
946 page = alloc_pages(gfp_mask, order);
947 if (!page)
948 return 0;
949 return (unsigned long) page_address(page);
950}
951
952EXPORT_SYMBOL(__get_free_pages);
953
954fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
955{
956 struct page * page;
957
958 /*
959 * get_zeroed_page() returns a 32-bit address, which cannot represent
960 * a highmem page
961 */
962 BUG_ON(gfp_mask & __GFP_HIGHMEM);
963
964 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
965 if (page)
966 return (unsigned long) page_address(page);
967 return 0;
968}
969
970EXPORT_SYMBOL(get_zeroed_page);
971
972void __pagevec_free(struct pagevec *pvec)
973{
974 int i = pagevec_count(pvec);
975
976 while (--i >= 0)
977 free_hot_cold_page(pvec->pages[i], pvec->cold);
978}
979
980fastcall void __free_pages(struct page *page, unsigned int order)
981{
982 if (!PageReserved(page) && put_page_testzero(page)) {
983 if (order == 0)
984 free_hot_page(page);
985 else
986 __free_pages_ok(page, order);
987 }
988}
989
990EXPORT_SYMBOL(__free_pages);
991
992fastcall void free_pages(unsigned long addr, unsigned int order)
993{
994 if (addr != 0) {
995 BUG_ON(!virt_addr_valid((void *)addr));
996 __free_pages(virt_to_page((void *)addr), order);
997 }
998}
999
1000EXPORT_SYMBOL(free_pages);
1001
1002/*
1003 * Total amount of free (allocatable) RAM:
1004 */
1005unsigned int nr_free_pages(void)
1006{
1007 unsigned int sum = 0;
1008 struct zone *zone;
1009
1010 for_each_zone(zone)
1011 sum += zone->free_pages;
1012
1013 return sum;
1014}
1015
1016EXPORT_SYMBOL(nr_free_pages);
1017
1018#ifdef CONFIG_NUMA
1019unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1020{
1021 unsigned int i, sum = 0;
1022
1023 for (i = 0; i < MAX_NR_ZONES; i++)
1024 sum += pgdat->node_zones[i].free_pages;
1025
1026 return sum;
1027}
1028#endif
1029
1030static unsigned int nr_free_zone_pages(int offset)
1031{
1032 pg_data_t *pgdat;
1033 unsigned int sum = 0;
1034
1035 for_each_pgdat(pgdat) {
1036 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1037 struct zone **zonep = zonelist->zones;
1038 struct zone *zone;
1039
1040 for (zone = *zonep++; zone; zone = *zonep++) {
1041 unsigned long size = zone->present_pages;
1042 unsigned long high = zone->pages_high;
1043 if (size > high)
1044 sum += size - high;
1045 }
1046 }
1047
1048 return sum;
1049}
1050
1051/*
1052 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1053 */
1054unsigned int nr_free_buffer_pages(void)
1055{
1056 return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1057}
1058
1059/*
1060 * Amount of free RAM allocatable within all zones
1061 */
1062unsigned int nr_free_pagecache_pages(void)
1063{
1064 return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1065}
1066
1067#ifdef CONFIG_HIGHMEM
1068unsigned int nr_free_highpages (void)
1069{
1070 pg_data_t *pgdat;
1071 unsigned int pages = 0;
1072
1073 for_each_pgdat(pgdat)
1074 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1075
1076 return pages;
1077}
1078#endif
1079
1080#ifdef CONFIG_NUMA
1081static void show_node(struct zone *zone)
1082{
1083 printk("Node %d ", zone->zone_pgdat->node_id);
1084}
1085#else
1086#define show_node(zone) do { } while (0)
1087#endif
1088
1089/*
1090 * Accumulate the page_state information across all CPUs.
1091 * The result is unavoidably approximate - it can change
1092 * during and after execution of this function.
1093 */
1094static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1095
1096atomic_t nr_pagecache = ATOMIC_INIT(0);
1097EXPORT_SYMBOL(nr_pagecache);
1098#ifdef CONFIG_SMP
1099DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1100#endif
1101
1102void __get_page_state(struct page_state *ret, int nr)
1103{
1104 int cpu = 0;
1105
1106 memset(ret, 0, sizeof(*ret));
1107
1108 cpu = first_cpu(cpu_online_map);
1109 while (cpu < NR_CPUS) {
1110 unsigned long *in, *out, off;
1111
1112 in = (unsigned long *)&per_cpu(page_states, cpu);
1113
1114 cpu = next_cpu(cpu, cpu_online_map);
1115
1116 if (cpu < NR_CPUS)
1117 prefetch(&per_cpu(page_states, cpu));
1118
1119 out = (unsigned long *)ret;
1120 for (off = 0; off < nr; off++)
1121 *out++ += *in++;
1122 }
1123}
1124
1125void get_page_state(struct page_state *ret)
1126{
1127 int nr;
1128
1129 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1130 nr /= sizeof(unsigned long);
1131
1132 __get_page_state(ret, nr + 1);
1133}
1134
1135void get_full_page_state(struct page_state *ret)
1136{
1137 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
1138}
1139
1140unsigned long __read_page_state(unsigned offset)
1141{
1142 unsigned long ret = 0;
1143 int cpu;
1144
1145 for_each_online_cpu(cpu) {
1146 unsigned long in;
1147
1148 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1149 ret += *((unsigned long *)in);
1150 }
1151 return ret;
1152}
1153
1154void __mod_page_state(unsigned offset, unsigned long delta)
1155{
1156 unsigned long flags;
1157 void* ptr;
1158
1159 local_irq_save(flags);
1160 ptr = &__get_cpu_var(page_states);
1161 *(unsigned long*)(ptr + offset) += delta;
1162 local_irq_restore(flags);
1163}
1164
1165EXPORT_SYMBOL(__mod_page_state);
1166
1167void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1168 unsigned long *free, struct pglist_data *pgdat)
1169{
1170 struct zone *zones = pgdat->node_zones;
1171 int i;
1172
1173 *active = 0;
1174 *inactive = 0;
1175 *free = 0;
1176 for (i = 0; i < MAX_NR_ZONES; i++) {
1177 *active += zones[i].nr_active;
1178 *inactive += zones[i].nr_inactive;
1179 *free += zones[i].free_pages;
1180 }
1181}
1182
1183void get_zone_counts(unsigned long *active,
1184 unsigned long *inactive, unsigned long *free)
1185{
1186 struct pglist_data *pgdat;
1187
1188 *active = 0;
1189 *inactive = 0;
1190 *free = 0;
1191 for_each_pgdat(pgdat) {
1192 unsigned long l, m, n;
1193 __get_zone_counts(&l, &m, &n, pgdat);
1194 *active += l;
1195 *inactive += m;
1196 *free += n;
1197 }
1198}
1199
1200void si_meminfo(struct sysinfo *val)
1201{
1202 val->totalram = totalram_pages;
1203 val->sharedram = 0;
1204 val->freeram = nr_free_pages();
1205 val->bufferram = nr_blockdev_pages();
1206#ifdef CONFIG_HIGHMEM
1207 val->totalhigh = totalhigh_pages;
1208 val->freehigh = nr_free_highpages();
1209#else
1210 val->totalhigh = 0;
1211 val->freehigh = 0;
1212#endif
1213 val->mem_unit = PAGE_SIZE;
1214}
1215
1216EXPORT_SYMBOL(si_meminfo);
1217
1218#ifdef CONFIG_NUMA
1219void si_meminfo_node(struct sysinfo *val, int nid)
1220{
1221 pg_data_t *pgdat = NODE_DATA(nid);
1222
1223 val->totalram = pgdat->node_present_pages;
1224 val->freeram = nr_free_pages_pgdat(pgdat);
1225 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1226 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1227 val->mem_unit = PAGE_SIZE;
1228}
1229#endif
1230
1231#define K(x) ((x) << (PAGE_SHIFT-10))
1232
1233/*
1234 * Show free area list (used inside shift_scroll-lock stuff)
1235 * We also calculate the percentage fragmentation. We do this by counting the
1236 * memory on each free list with the exception of the first item on the list.
1237 */
1238void show_free_areas(void)
1239{
1240 struct page_state ps;
1241 int cpu, temperature;
1242 unsigned long active;
1243 unsigned long inactive;
1244 unsigned long free;
1245 struct zone *zone;
1246
1247 for_each_zone(zone) {
1248 show_node(zone);
1249 printk("%s per-cpu:", zone->name);
1250
1251 if (!zone->present_pages) {
1252 printk(" empty\n");
1253 continue;
1254 } else
1255 printk("\n");
1256
1257 for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1258 struct per_cpu_pageset *pageset;
1259
1260 if (!cpu_possible(cpu))
1261 continue;
1262
1263 pageset = zone->pageset + cpu;
1264
1265 for (temperature = 0; temperature < 2; temperature++)
1266 printk("cpu %d %s: low %d, high %d, batch %d\n",
1267 cpu,
1268 temperature ? "cold" : "hot",
1269 pageset->pcp[temperature].low,
1270 pageset->pcp[temperature].high,
1271 pageset->pcp[temperature].batch);
1272 }
1273 }
1274
1275 get_page_state(&ps);
1276 get_zone_counts(&active, &inactive, &free);
1277
1278 printk("\nFree pages: %11ukB (%ukB HighMem)\n",
1279 K(nr_free_pages()),
1280 K(nr_free_highpages()));
1281
1282 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1283 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1284 active,
1285 inactive,
1286 ps.nr_dirty,
1287 ps.nr_writeback,
1288 ps.nr_unstable,
1289 nr_free_pages(),
1290 ps.nr_slab,
1291 ps.nr_mapped,
1292 ps.nr_page_table_pages);
1293
1294 for_each_zone(zone) {
1295 int i;
1296
1297 show_node(zone);
1298 printk("%s"
1299 " free:%lukB"
1300 " min:%lukB"
1301 " low:%lukB"
1302 " high:%lukB"
1303 " active:%lukB"
1304 " inactive:%lukB"
1305 " present:%lukB"
1306 " pages_scanned:%lu"
1307 " all_unreclaimable? %s"
1308 "\n",
1309 zone->name,
1310 K(zone->free_pages),
1311 K(zone->pages_min),
1312 K(zone->pages_low),
1313 K(zone->pages_high),
1314 K(zone->nr_active),
1315 K(zone->nr_inactive),
1316 K(zone->present_pages),
1317 zone->pages_scanned,
1318 (zone->all_unreclaimable ? "yes" : "no")
1319 );
1320 printk("lowmem_reserve[]:");
1321 for (i = 0; i < MAX_NR_ZONES; i++)
1322 printk(" %lu", zone->lowmem_reserve[i]);
1323 printk("\n");
1324 }
1325
1326 for_each_zone(zone) {
1327 unsigned long nr, flags, order, total = 0;
1328
1329 show_node(zone);
1330 printk("%s: ", zone->name);
1331 if (!zone->present_pages) {
1332 printk("empty\n");
1333 continue;
1334 }
1335
1336 spin_lock_irqsave(&zone->lock, flags);
1337 for (order = 0; order < MAX_ORDER; order++) {
1338 nr = zone->free_area[order].nr_free;
1339 total += nr << order;
1340 printk("%lu*%lukB ", nr, K(1UL) << order);
1341 }
1342 spin_unlock_irqrestore(&zone->lock, flags);
1343 printk("= %lukB\n", K(total));
1344 }
1345
1346 show_swap_cache_info();
1347}
1348
1349/*
1350 * Builds allocation fallback zone lists.
1351 */
1352static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1353{
1354 switch (k) {
1355 struct zone *zone;
1356 default:
1357 BUG();
1358 case ZONE_HIGHMEM:
1359 zone = pgdat->node_zones + ZONE_HIGHMEM;
1360 if (zone->present_pages) {
1361#ifndef CONFIG_HIGHMEM
1362 BUG();
1363#endif
1364 zonelist->zones[j++] = zone;
1365 }
1366 case ZONE_NORMAL:
1367 zone = pgdat->node_zones + ZONE_NORMAL;
1368 if (zone->present_pages)
1369 zonelist->zones[j++] = zone;
1370 case ZONE_DMA:
1371 zone = pgdat->node_zones + ZONE_DMA;
1372 if (zone->present_pages)
1373 zonelist->zones[j++] = zone;
1374 }
1375
1376 return j;
1377}
1378
1379#ifdef CONFIG_NUMA
1380#define MAX_NODE_LOAD (num_online_nodes())
1381static int __initdata node_load[MAX_NUMNODES];
1382/**
4dc3b16b 1383 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1384 * @node: node whose fallback list we're appending
1385 * @used_node_mask: nodemask_t of already used nodes
1386 *
1387 * We use a number of factors to determine which is the next node that should
1388 * appear on a given node's fallback list. The node should not have appeared
1389 * already in @node's fallback list, and it should be the next closest node
1390 * according to the distance array (which contains arbitrary distance values
1391 * from each node to each node in the system), and should also prefer nodes
1392 * with no CPUs, since presumably they'll have very little allocation pressure
1393 * on them otherwise.
1394 * It returns -1 if no node is found.
1395 */
1396static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1397{
1398 int i, n, val;
1399 int min_val = INT_MAX;
1400 int best_node = -1;
1401
1402 for_each_online_node(i) {
1403 cpumask_t tmp;
1404
1405 /* Start from local node */
1406 n = (node+i) % num_online_nodes();
1407
1408 /* Don't want a node to appear more than once */
1409 if (node_isset(n, *used_node_mask))
1410 continue;
1411
1412 /* Use the local node if we haven't already */
1413 if (!node_isset(node, *used_node_mask)) {
1414 best_node = node;
1415 break;
1416 }
1417
1418 /* Use the distance array to find the distance */
1419 val = node_distance(node, n);
1420
1421 /* Give preference to headless and unused nodes */
1422 tmp = node_to_cpumask(n);
1423 if (!cpus_empty(tmp))
1424 val += PENALTY_FOR_NODE_WITH_CPUS;
1425
1426 /* Slight preference for less loaded node */
1427 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1428 val += node_load[n];
1429
1430 if (val < min_val) {
1431 min_val = val;
1432 best_node = n;
1433 }
1434 }
1435
1436 if (best_node >= 0)
1437 node_set(best_node, *used_node_mask);
1438
1439 return best_node;
1440}
1441
1442static void __init build_zonelists(pg_data_t *pgdat)
1443{
1444 int i, j, k, node, local_node;
1445 int prev_node, load;
1446 struct zonelist *zonelist;
1447 nodemask_t used_mask;
1448
1449 /* initialize zonelists */
1450 for (i = 0; i < GFP_ZONETYPES; i++) {
1451 zonelist = pgdat->node_zonelists + i;
1452 zonelist->zones[0] = NULL;
1453 }
1454
1455 /* NUMA-aware ordering of nodes */
1456 local_node = pgdat->node_id;
1457 load = num_online_nodes();
1458 prev_node = local_node;
1459 nodes_clear(used_mask);
1460 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1461 /*
1462 * We don't want to pressure a particular node.
1463 * So adding penalty to the first node in same
1464 * distance group to make it round-robin.
1465 */
1466 if (node_distance(local_node, node) !=
1467 node_distance(local_node, prev_node))
1468 node_load[node] += load;
1469 prev_node = node;
1470 load--;
1471 for (i = 0; i < GFP_ZONETYPES; i++) {
1472 zonelist = pgdat->node_zonelists + i;
1473 for (j = 0; zonelist->zones[j] != NULL; j++);
1474
1475 k = ZONE_NORMAL;
1476 if (i & __GFP_HIGHMEM)
1477 k = ZONE_HIGHMEM;
1478 if (i & __GFP_DMA)
1479 k = ZONE_DMA;
1480
1481 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1482 zonelist->zones[j] = NULL;
1483 }
1484 }
1485}
1486
1487#else /* CONFIG_NUMA */
1488
1489static void __init build_zonelists(pg_data_t *pgdat)
1490{
1491 int i, j, k, node, local_node;
1492
1493 local_node = pgdat->node_id;
1494 for (i = 0; i < GFP_ZONETYPES; i++) {
1495 struct zonelist *zonelist;
1496
1497 zonelist = pgdat->node_zonelists + i;
1498
1499 j = 0;
1500 k = ZONE_NORMAL;
1501 if (i & __GFP_HIGHMEM)
1502 k = ZONE_HIGHMEM;
1503 if (i & __GFP_DMA)
1504 k = ZONE_DMA;
1505
1506 j = build_zonelists_node(pgdat, zonelist, j, k);
1507 /*
1508 * Now we build the zonelist so that it contains the zones
1509 * of all the other nodes.
1510 * We don't want to pressure a particular node, so when
1511 * building the zones for node N, we make sure that the
1512 * zones coming right after the local ones are those from
1513 * node N+1 (modulo N)
1514 */
1515 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1516 if (!node_online(node))
1517 continue;
1518 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1519 }
1520 for (node = 0; node < local_node; node++) {
1521 if (!node_online(node))
1522 continue;
1523 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1524 }
1525
1526 zonelist->zones[j] = NULL;
1527 }
1528}
1529
1530#endif /* CONFIG_NUMA */
1531
1532void __init build_all_zonelists(void)
1533{
1534 int i;
1535
1536 for_each_online_node(i)
1537 build_zonelists(NODE_DATA(i));
1538 printk("Built %i zonelists\n", num_online_nodes());
1539 cpuset_init_current_mems_allowed();
1540}
1541
1542/*
1543 * Helper functions to size the waitqueue hash table.
1544 * Essentially these want to choose hash table sizes sufficiently
1545 * large so that collisions trying to wait on pages are rare.
1546 * But in fact, the number of active page waitqueues on typical
1547 * systems is ridiculously low, less than 200. So this is even
1548 * conservative, even though it seems large.
1549 *
1550 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1551 * waitqueues, i.e. the size of the waitq table given the number of pages.
1552 */
1553#define PAGES_PER_WAITQUEUE 256
1554
1555static inline unsigned long wait_table_size(unsigned long pages)
1556{
1557 unsigned long size = 1;
1558
1559 pages /= PAGES_PER_WAITQUEUE;
1560
1561 while (size < pages)
1562 size <<= 1;
1563
1564 /*
1565 * Once we have dozens or even hundreds of threads sleeping
1566 * on IO we've got bigger problems than wait queue collision.
1567 * Limit the size of the wait table to a reasonable size.
1568 */
1569 size = min(size, 4096UL);
1570
1571 return max(size, 4UL);
1572}
1573
1574/*
1575 * This is an integer logarithm so that shifts can be used later
1576 * to extract the more random high bits from the multiplicative
1577 * hash function before the remainder is taken.
1578 */
1579static inline unsigned long wait_table_bits(unsigned long size)
1580{
1581 return ffz(~size);
1582}
1583
1584#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1585
1586static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1587 unsigned long *zones_size, unsigned long *zholes_size)
1588{
1589 unsigned long realtotalpages, totalpages = 0;
1590 int i;
1591
1592 for (i = 0; i < MAX_NR_ZONES; i++)
1593 totalpages += zones_size[i];
1594 pgdat->node_spanned_pages = totalpages;
1595
1596 realtotalpages = totalpages;
1597 if (zholes_size)
1598 for (i = 0; i < MAX_NR_ZONES; i++)
1599 realtotalpages -= zholes_size[i];
1600 pgdat->node_present_pages = realtotalpages;
1601 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1602}
1603
1604
1605/*
1606 * Initially all pages are reserved - free ones are freed
1607 * up by free_all_bootmem() once the early boot process is
1608 * done. Non-atomic initialization, single-pass.
1609 */
1610void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1611 unsigned long start_pfn)
1612{
1613 struct page *start = pfn_to_page(start_pfn);
1614 struct page *page;
1615
1616 for (page = start; page < (start + size); page++) {
1617 set_page_zone(page, NODEZONE(nid, zone));
1618 set_page_count(page, 0);
1619 reset_page_mapcount(page);
1620 SetPageReserved(page);
1621 INIT_LIST_HEAD(&page->lru);
1622#ifdef WANT_PAGE_VIRTUAL
1623 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1624 if (!is_highmem_idx(zone))
1625 set_page_address(page, __va(start_pfn << PAGE_SHIFT));
1626#endif
1627 start_pfn++;
1628 }
1629}
1630
1631void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1632 unsigned long size)
1633{
1634 int order;
1635 for (order = 0; order < MAX_ORDER ; order++) {
1636 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1637 zone->free_area[order].nr_free = 0;
1638 }
1639}
1640
1641#ifndef __HAVE_ARCH_MEMMAP_INIT
1642#define memmap_init(size, nid, zone, start_pfn) \
1643 memmap_init_zone((size), (nid), (zone), (start_pfn))
1644#endif
1645
1646/*
1647 * Set up the zone data structures:
1648 * - mark all pages reserved
1649 * - mark all memory queues empty
1650 * - clear the memory bitmaps
1651 */
1652static void __init free_area_init_core(struct pglist_data *pgdat,
1653 unsigned long *zones_size, unsigned long *zholes_size)
1654{
1655 unsigned long i, j;
1656 const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
1657 int cpu, nid = pgdat->node_id;
1658 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1659
1660 pgdat->nr_zones = 0;
1661 init_waitqueue_head(&pgdat->kswapd_wait);
1662 pgdat->kswapd_max_order = 0;
1663
1664 for (j = 0; j < MAX_NR_ZONES; j++) {
1665 struct zone *zone = pgdat->node_zones + j;
1666 unsigned long size, realsize;
1667 unsigned long batch;
1668
1669 zone_table[NODEZONE(nid, j)] = zone;
1670 realsize = size = zones_size[j];
1671 if (zholes_size)
1672 realsize -= zholes_size[j];
1673
1674 if (j == ZONE_DMA || j == ZONE_NORMAL)
1675 nr_kernel_pages += realsize;
1676 nr_all_pages += realsize;
1677
1678 zone->spanned_pages = size;
1679 zone->present_pages = realsize;
1680 zone->name = zone_names[j];
1681 spin_lock_init(&zone->lock);
1682 spin_lock_init(&zone->lru_lock);
1683 zone->zone_pgdat = pgdat;
1684 zone->free_pages = 0;
1685
1686 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1687
1688 /*
1689 * The per-cpu-pages pools are set to around 1000th of the
1690 * size of the zone. But no more than 1/4 of a meg - there's
1691 * no point in going beyond the size of L2 cache.
1692 *
1693 * OK, so we don't know how big the cache is. So guess.
1694 */
1695 batch = zone->present_pages / 1024;
1696 if (batch * PAGE_SIZE > 256 * 1024)
1697 batch = (256 * 1024) / PAGE_SIZE;
1698 batch /= 4; /* We effectively *= 4 below */
1699 if (batch < 1)
1700 batch = 1;
1701
8e30f272
NP
1702 /*
1703 * Clamp the batch to a 2^n - 1 value. Having a power
1704 * of 2 value was found to be more likely to have
1705 * suboptimal cache aliasing properties in some cases.
1706 *
1707 * For example if 2 tasks are alternately allocating
1708 * batches of pages, one task can end up with a lot
1709 * of pages of one half of the possible page colors
1710 * and the other with pages of the other colors.
1711 */
1712 batch = (1 << fls(batch + batch/2)) - 1;
1713
1da177e4
LT
1714 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1715 struct per_cpu_pages *pcp;
1716
1717 pcp = &zone->pageset[cpu].pcp[0]; /* hot */
1718 pcp->count = 0;
1719 pcp->low = 2 * batch;
1720 pcp->high = 6 * batch;
1721 pcp->batch = 1 * batch;
1722 INIT_LIST_HEAD(&pcp->list);
1723
1724 pcp = &zone->pageset[cpu].pcp[1]; /* cold */
1725 pcp->count = 0;
1726 pcp->low = 0;
1727 pcp->high = 2 * batch;
1728 pcp->batch = 1 * batch;
1729 INIT_LIST_HEAD(&pcp->list);
1730 }
1731 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1732 zone_names[j], realsize, batch);
1733 INIT_LIST_HEAD(&zone->active_list);
1734 INIT_LIST_HEAD(&zone->inactive_list);
1735 zone->nr_scan_active = 0;
1736 zone->nr_scan_inactive = 0;
1737 zone->nr_active = 0;
1738 zone->nr_inactive = 0;
1739 if (!size)
1740 continue;
1741
1742 /*
1743 * The per-page waitqueue mechanism uses hashed waitqueues
1744 * per zone.
1745 */
1746 zone->wait_table_size = wait_table_size(size);
1747 zone->wait_table_bits =
1748 wait_table_bits(zone->wait_table_size);
1749 zone->wait_table = (wait_queue_head_t *)
1750 alloc_bootmem_node(pgdat, zone->wait_table_size
1751 * sizeof(wait_queue_head_t));
1752
1753 for(i = 0; i < zone->wait_table_size; ++i)
1754 init_waitqueue_head(zone->wait_table + i);
1755
1756 pgdat->nr_zones = j+1;
1757
1758 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1759 zone->zone_start_pfn = zone_start_pfn;
1760
1761 if ((zone_start_pfn) & (zone_required_alignment-1))
1762 printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n");
1763
1764 memmap_init(size, nid, j, zone_start_pfn);
1765
1766 zone_start_pfn += size;
1767
1768 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1769 }
1770}
1771
1772static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1773{
1774 unsigned long size;
1775
1776 /* Skip empty nodes */
1777 if (!pgdat->node_spanned_pages)
1778 return;
1779
1780 /* ia64 gets its own node_mem_map, before this, without bootmem */
1781 if (!pgdat->node_mem_map) {
1782 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1783 pgdat->node_mem_map = alloc_bootmem_node(pgdat, size);
1784 }
1785#ifndef CONFIG_DISCONTIGMEM
1786 /*
1787 * With no DISCONTIG, the global mem_map is just set as node 0's
1788 */
1789 if (pgdat == NODE_DATA(0))
1790 mem_map = NODE_DATA(0)->node_mem_map;
1791#endif
1792}
1793
1794void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1795 unsigned long *zones_size, unsigned long node_start_pfn,
1796 unsigned long *zholes_size)
1797{
1798 pgdat->node_id = nid;
1799 pgdat->node_start_pfn = node_start_pfn;
1800 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1801
1802 alloc_node_mem_map(pgdat);
1803
1804 free_area_init_core(pgdat, zones_size, zholes_size);
1805}
1806
1807#ifndef CONFIG_DISCONTIGMEM
1808static bootmem_data_t contig_bootmem_data;
1809struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
1810
1811EXPORT_SYMBOL(contig_page_data);
1812
1813void __init free_area_init(unsigned long *zones_size)
1814{
1815 free_area_init_node(0, &contig_page_data, zones_size,
1816 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
1817}
1818#endif
1819
1820#ifdef CONFIG_PROC_FS
1821
1822#include <linux/seq_file.h>
1823
1824static void *frag_start(struct seq_file *m, loff_t *pos)
1825{
1826 pg_data_t *pgdat;
1827 loff_t node = *pos;
1828
1829 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
1830 --node;
1831
1832 return pgdat;
1833}
1834
1835static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1836{
1837 pg_data_t *pgdat = (pg_data_t *)arg;
1838
1839 (*pos)++;
1840 return pgdat->pgdat_next;
1841}
1842
1843static void frag_stop(struct seq_file *m, void *arg)
1844{
1845}
1846
1847/*
1848 * This walks the free areas for each zone.
1849 */
1850static int frag_show(struct seq_file *m, void *arg)
1851{
1852 pg_data_t *pgdat = (pg_data_t *)arg;
1853 struct zone *zone;
1854 struct zone *node_zones = pgdat->node_zones;
1855 unsigned long flags;
1856 int order;
1857
1858 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1859 if (!zone->present_pages)
1860 continue;
1861
1862 spin_lock_irqsave(&zone->lock, flags);
1863 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1864 for (order = 0; order < MAX_ORDER; ++order)
1865 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1866 spin_unlock_irqrestore(&zone->lock, flags);
1867 seq_putc(m, '\n');
1868 }
1869 return 0;
1870}
1871
1872struct seq_operations fragmentation_op = {
1873 .start = frag_start,
1874 .next = frag_next,
1875 .stop = frag_stop,
1876 .show = frag_show,
1877};
1878
295ab934
ND
1879/*
1880 * Output information about zones in @pgdat.
1881 */
1882static int zoneinfo_show(struct seq_file *m, void *arg)
1883{
1884 pg_data_t *pgdat = arg;
1885 struct zone *zone;
1886 struct zone *node_zones = pgdat->node_zones;
1887 unsigned long flags;
1888
1889 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
1890 int i;
1891
1892 if (!zone->present_pages)
1893 continue;
1894
1895 spin_lock_irqsave(&zone->lock, flags);
1896 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1897 seq_printf(m,
1898 "\n pages free %lu"
1899 "\n min %lu"
1900 "\n low %lu"
1901 "\n high %lu"
1902 "\n active %lu"
1903 "\n inactive %lu"
1904 "\n scanned %lu (a: %lu i: %lu)"
1905 "\n spanned %lu"
1906 "\n present %lu",
1907 zone->free_pages,
1908 zone->pages_min,
1909 zone->pages_low,
1910 zone->pages_high,
1911 zone->nr_active,
1912 zone->nr_inactive,
1913 zone->pages_scanned,
1914 zone->nr_scan_active, zone->nr_scan_inactive,
1915 zone->spanned_pages,
1916 zone->present_pages);
1917 seq_printf(m,
1918 "\n protection: (%lu",
1919 zone->lowmem_reserve[0]);
1920 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1921 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1922 seq_printf(m,
1923 ")"
1924 "\n pagesets");
1925 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
1926 struct per_cpu_pageset *pageset;
1927 int j;
1928
1929 pageset = &zone->pageset[i];
1930 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
1931 if (pageset->pcp[j].count)
1932 break;
1933 }
1934 if (j == ARRAY_SIZE(pageset->pcp))
1935 continue;
1936 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
1937 seq_printf(m,
1938 "\n cpu: %i pcp: %i"
1939 "\n count: %i"
1940 "\n low: %i"
1941 "\n high: %i"
1942 "\n batch: %i",
1943 i, j,
1944 pageset->pcp[j].count,
1945 pageset->pcp[j].low,
1946 pageset->pcp[j].high,
1947 pageset->pcp[j].batch);
1948 }
1949#ifdef CONFIG_NUMA
1950 seq_printf(m,
1951 "\n numa_hit: %lu"
1952 "\n numa_miss: %lu"
1953 "\n numa_foreign: %lu"
1954 "\n interleave_hit: %lu"
1955 "\n local_node: %lu"
1956 "\n other_node: %lu",
1957 pageset->numa_hit,
1958 pageset->numa_miss,
1959 pageset->numa_foreign,
1960 pageset->interleave_hit,
1961 pageset->local_node,
1962 pageset->other_node);
1963#endif
1964 }
1965 seq_printf(m,
1966 "\n all_unreclaimable: %u"
1967 "\n prev_priority: %i"
1968 "\n temp_priority: %i"
1969 "\n start_pfn: %lu",
1970 zone->all_unreclaimable,
1971 zone->prev_priority,
1972 zone->temp_priority,
1973 zone->zone_start_pfn);
1974 spin_unlock_irqrestore(&zone->lock, flags);
1975 seq_putc(m, '\n');
1976 }
1977 return 0;
1978}
1979
1980struct seq_operations zoneinfo_op = {
1981 .start = frag_start, /* iterate over all zones. The same as in
1982 * fragmentation. */
1983 .next = frag_next,
1984 .stop = frag_stop,
1985 .show = zoneinfo_show,
1986};
1987
1da177e4
LT
1988static char *vmstat_text[] = {
1989 "nr_dirty",
1990 "nr_writeback",
1991 "nr_unstable",
1992 "nr_page_table_pages",
1993 "nr_mapped",
1994 "nr_slab",
1995
1996 "pgpgin",
1997 "pgpgout",
1998 "pswpin",
1999 "pswpout",
2000 "pgalloc_high",
2001
2002 "pgalloc_normal",
2003 "pgalloc_dma",
2004 "pgfree",
2005 "pgactivate",
2006 "pgdeactivate",
2007
2008 "pgfault",
2009 "pgmajfault",
2010 "pgrefill_high",
2011 "pgrefill_normal",
2012 "pgrefill_dma",
2013
2014 "pgsteal_high",
2015 "pgsteal_normal",
2016 "pgsteal_dma",
2017 "pgscan_kswapd_high",
2018 "pgscan_kswapd_normal",
2019
2020 "pgscan_kswapd_dma",
2021 "pgscan_direct_high",
2022 "pgscan_direct_normal",
2023 "pgscan_direct_dma",
2024 "pginodesteal",
2025
2026 "slabs_scanned",
2027 "kswapd_steal",
2028 "kswapd_inodesteal",
2029 "pageoutrun",
2030 "allocstall",
2031
2032 "pgrotated",
edfbe2b0 2033 "nr_bounce",
1da177e4
LT
2034};
2035
2036static void *vmstat_start(struct seq_file *m, loff_t *pos)
2037{
2038 struct page_state *ps;
2039
2040 if (*pos >= ARRAY_SIZE(vmstat_text))
2041 return NULL;
2042
2043 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2044 m->private = ps;
2045 if (!ps)
2046 return ERR_PTR(-ENOMEM);
2047 get_full_page_state(ps);
2048 ps->pgpgin /= 2; /* sectors -> kbytes */
2049 ps->pgpgout /= 2;
2050 return (unsigned long *)ps + *pos;
2051}
2052
2053static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2054{
2055 (*pos)++;
2056 if (*pos >= ARRAY_SIZE(vmstat_text))
2057 return NULL;
2058 return (unsigned long *)m->private + *pos;
2059}
2060
2061static int vmstat_show(struct seq_file *m, void *arg)
2062{
2063 unsigned long *l = arg;
2064 unsigned long off = l - (unsigned long *)m->private;
2065
2066 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2067 return 0;
2068}
2069
2070static void vmstat_stop(struct seq_file *m, void *arg)
2071{
2072 kfree(m->private);
2073 m->private = NULL;
2074}
2075
2076struct seq_operations vmstat_op = {
2077 .start = vmstat_start,
2078 .next = vmstat_next,
2079 .stop = vmstat_stop,
2080 .show = vmstat_show,
2081};
2082
2083#endif /* CONFIG_PROC_FS */
2084
2085#ifdef CONFIG_HOTPLUG_CPU
2086static int page_alloc_cpu_notify(struct notifier_block *self,
2087 unsigned long action, void *hcpu)
2088{
2089 int cpu = (unsigned long)hcpu;
2090 long *count;
2091 unsigned long *src, *dest;
2092
2093 if (action == CPU_DEAD) {
2094 int i;
2095
2096 /* Drain local pagecache count. */
2097 count = &per_cpu(nr_pagecache_local, cpu);
2098 atomic_add(*count, &nr_pagecache);
2099 *count = 0;
2100 local_irq_disable();
2101 __drain_pages(cpu);
2102
2103 /* Add dead cpu's page_states to our own. */
2104 dest = (unsigned long *)&__get_cpu_var(page_states);
2105 src = (unsigned long *)&per_cpu(page_states, cpu);
2106
2107 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2108 i++) {
2109 dest[i] += src[i];
2110 src[i] = 0;
2111 }
2112
2113 local_irq_enable();
2114 }
2115 return NOTIFY_OK;
2116}
2117#endif /* CONFIG_HOTPLUG_CPU */
2118
2119void __init page_alloc_init(void)
2120{
2121 hotcpu_notifier(page_alloc_cpu_notify, 0);
2122}
2123
2124/*
2125 * setup_per_zone_lowmem_reserve - called whenever
2126 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2127 * has a correct pages reserved value, so an adequate number of
2128 * pages are left in the zone after a successful __alloc_pages().
2129 */
2130static void setup_per_zone_lowmem_reserve(void)
2131{
2132 struct pglist_data *pgdat;
2133 int j, idx;
2134
2135 for_each_pgdat(pgdat) {
2136 for (j = 0; j < MAX_NR_ZONES; j++) {
2137 struct zone *zone = pgdat->node_zones + j;
2138 unsigned long present_pages = zone->present_pages;
2139
2140 zone->lowmem_reserve[j] = 0;
2141
2142 for (idx = j-1; idx >= 0; idx--) {
2143 struct zone *lower_zone;
2144
2145 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2146 sysctl_lowmem_reserve_ratio[idx] = 1;
2147
2148 lower_zone = pgdat->node_zones + idx;
2149 lower_zone->lowmem_reserve[j] = present_pages /
2150 sysctl_lowmem_reserve_ratio[idx];
2151 present_pages += lower_zone->present_pages;
2152 }
2153 }
2154 }
2155}
2156
2157/*
2158 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2159 * that the pages_{min,low,high} values for each zone are set correctly
2160 * with respect to min_free_kbytes.
2161 */
2162static void setup_per_zone_pages_min(void)
2163{
2164 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2165 unsigned long lowmem_pages = 0;
2166 struct zone *zone;
2167 unsigned long flags;
2168
2169 /* Calculate total number of !ZONE_HIGHMEM pages */
2170 for_each_zone(zone) {
2171 if (!is_highmem(zone))
2172 lowmem_pages += zone->present_pages;
2173 }
2174
2175 for_each_zone(zone) {
2176 spin_lock_irqsave(&zone->lru_lock, flags);
2177 if (is_highmem(zone)) {
2178 /*
2179 * Often, highmem doesn't need to reserve any pages.
2180 * But the pages_min/low/high values are also used for
2181 * batching up page reclaim activity so we need a
2182 * decent value here.
2183 */
2184 int min_pages;
2185
2186 min_pages = zone->present_pages / 1024;
2187 if (min_pages < SWAP_CLUSTER_MAX)
2188 min_pages = SWAP_CLUSTER_MAX;
2189 if (min_pages > 128)
2190 min_pages = 128;
2191 zone->pages_min = min_pages;
2192 } else {
295ab934 2193 /* if it's a lowmem zone, reserve a number of pages
1da177e4
LT
2194 * proportionate to the zone's size.
2195 */
295ab934 2196 zone->pages_min = (pages_min * zone->present_pages) /
1da177e4
LT
2197 lowmem_pages;
2198 }
2199
2200 /*
2201 * When interpreting these watermarks, just keep in mind that:
2202 * zone->pages_min == (zone->pages_min * 4) / 4;
2203 */
2204 zone->pages_low = (zone->pages_min * 5) / 4;
2205 zone->pages_high = (zone->pages_min * 6) / 4;
2206 spin_unlock_irqrestore(&zone->lru_lock, flags);
2207 }
2208}
2209
2210/*
2211 * Initialise min_free_kbytes.
2212 *
2213 * For small machines we want it small (128k min). For large machines
2214 * we want it large (64MB max). But it is not linear, because network
2215 * bandwidth does not increase linearly with machine size. We use
2216 *
2217 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2218 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2219 *
2220 * which yields
2221 *
2222 * 16MB: 512k
2223 * 32MB: 724k
2224 * 64MB: 1024k
2225 * 128MB: 1448k
2226 * 256MB: 2048k
2227 * 512MB: 2896k
2228 * 1024MB: 4096k
2229 * 2048MB: 5792k
2230 * 4096MB: 8192k
2231 * 8192MB: 11584k
2232 * 16384MB: 16384k
2233 */
2234static int __init init_per_zone_pages_min(void)
2235{
2236 unsigned long lowmem_kbytes;
2237
2238 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2239
2240 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2241 if (min_free_kbytes < 128)
2242 min_free_kbytes = 128;
2243 if (min_free_kbytes > 65536)
2244 min_free_kbytes = 65536;
2245 setup_per_zone_pages_min();
2246 setup_per_zone_lowmem_reserve();
2247 return 0;
2248}
2249module_init(init_per_zone_pages_min)
2250
2251/*
2252 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2253 * that we can call two helper functions whenever min_free_kbytes
2254 * changes.
2255 */
2256int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2257 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2258{
2259 proc_dointvec(table, write, file, buffer, length, ppos);
2260 setup_per_zone_pages_min();
2261 return 0;
2262}
2263
2264/*
2265 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2266 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2267 * whenever sysctl_lowmem_reserve_ratio changes.
2268 *
2269 * The reserve ratio obviously has absolutely no relation with the
2270 * pages_min watermarks. The lowmem reserve ratio can only make sense
2271 * if in function of the boot time zone sizes.
2272 */
2273int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2274 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2275{
2276 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2277 setup_per_zone_lowmem_reserve();
2278 return 0;
2279}
2280
2281__initdata int hashdist = HASHDIST_DEFAULT;
2282
2283#ifdef CONFIG_NUMA
2284static int __init set_hashdist(char *str)
2285{
2286 if (!str)
2287 return 0;
2288 hashdist = simple_strtoul(str, &str, 0);
2289 return 1;
2290}
2291__setup("hashdist=", set_hashdist);
2292#endif
2293
2294/*
2295 * allocate a large system hash table from bootmem
2296 * - it is assumed that the hash table must contain an exact power-of-2
2297 * quantity of entries
2298 * - limit is the number of hash buckets, not the total allocation size
2299 */
2300void *__init alloc_large_system_hash(const char *tablename,
2301 unsigned long bucketsize,
2302 unsigned long numentries,
2303 int scale,
2304 int flags,
2305 unsigned int *_hash_shift,
2306 unsigned int *_hash_mask,
2307 unsigned long limit)
2308{
2309 unsigned long long max = limit;
2310 unsigned long log2qty, size;
2311 void *table = NULL;
2312
2313 /* allow the kernel cmdline to have a say */
2314 if (!numentries) {
2315 /* round applicable memory size up to nearest megabyte */
2316 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2317 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2318 numentries >>= 20 - PAGE_SHIFT;
2319 numentries <<= 20 - PAGE_SHIFT;
2320
2321 /* limit to 1 bucket per 2^scale bytes of low memory */
2322 if (scale > PAGE_SHIFT)
2323 numentries >>= (scale - PAGE_SHIFT);
2324 else
2325 numentries <<= (PAGE_SHIFT - scale);
2326 }
2327 /* rounded up to nearest power of 2 in size */
2328 numentries = 1UL << (long_log2(numentries) + 1);
2329
2330 /* limit allocation size to 1/16 total memory by default */
2331 if (max == 0) {
2332 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2333 do_div(max, bucketsize);
2334 }
2335
2336 if (numentries > max)
2337 numentries = max;
2338
2339 log2qty = long_log2(numentries);
2340
2341 do {
2342 size = bucketsize << log2qty;
2343 if (flags & HASH_EARLY)
2344 table = alloc_bootmem(size);
2345 else if (hashdist)
2346 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2347 else {
2348 unsigned long order;
2349 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2350 ;
2351 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2352 }
2353 } while (!table && size > PAGE_SIZE && --log2qty);
2354
2355 if (!table)
2356 panic("Failed to allocate %s hash table\n", tablename);
2357
2358 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2359 tablename,
2360 (1U << log2qty),
2361 long_log2(size) - PAGE_SHIFT,
2362 size);
2363
2364 if (_hash_shift)
2365 *_hash_shift = log2qty;
2366 if (_hash_mask)
2367 *_hash_mask = (1 << log2qty) - 1;
2368
2369 return table;
2370}