]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
mm/page_ext: init page_ext early if there are no deferred struct pages
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/swap.h>
bf181c58 22#include <linux/swapops.h>
1da177e4
LT
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
10ed273f 25#include <linux/jiffies.h>
edbe7d23 26#include <linux/memblock.h>
1da177e4 27#include <linux/compiler.h>
9f158333 28#include <linux/kernel.h>
b8c73fc2 29#include <linux/kasan.h>
b073d7f8 30#include <linux/kmsan.h>
1da177e4
LT
31#include <linux/module.h>
32#include <linux/suspend.h>
33#include <linux/pagevec.h>
34#include <linux/blkdev.h>
35#include <linux/slab.h>
a238ab5b 36#include <linux/ratelimit.h>
5a3135c2 37#include <linux/oom.h>
1da177e4
LT
38#include <linux/topology.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/cpuset.h>
bdc8cb98 42#include <linux/memory_hotplug.h>
1da177e4
LT
43#include <linux/nodemask.h>
44#include <linux/vmalloc.h>
a6cccdc3 45#include <linux/vmstat.h>
4be38e35 46#include <linux/mempolicy.h>
4b94ffdc 47#include <linux/memremap.h>
6811378e 48#include <linux/stop_machine.h>
97500a4a 49#include <linux/random.h>
c713216d
MG
50#include <linux/sort.h>
51#include <linux/pfn.h>
3fcfab16 52#include <linux/backing-dev.h>
933e312e 53#include <linux/fault-inject.h>
a5d76b54 54#include <linux/page-isolation.h>
3ac7fe5a 55#include <linux/debugobjects.h>
dbb1f81c 56#include <linux/kmemleak.h>
56de7263 57#include <linux/compaction.h>
0d3d062a 58#include <trace/events/kmem.h>
d379f01d 59#include <trace/events/oom.h>
268bb0ce 60#include <linux/prefetch.h>
6e543d57 61#include <linux/mm_inline.h>
f920e413 62#include <linux/mmu_notifier.h>
041d3a8c 63#include <linux/migrate.h>
949f7ec5 64#include <linux/hugetlb.h>
8bd75c77 65#include <linux/sched/rt.h>
5b3cc15a 66#include <linux/sched/mm.h>
48c96a36 67#include <linux/page_owner.h>
df4e817b 68#include <linux/page_table_check.h>
0e1cc95b 69#include <linux/kthread.h>
4949148a 70#include <linux/memcontrol.h>
42c269c8 71#include <linux/ftrace.h>
d92a8cfc 72#include <linux/lockdep.h>
556b969a 73#include <linux/nmi.h>
eb414681 74#include <linux/psi.h>
e4443149 75#include <linux/padata.h>
4aab2be0 76#include <linux/khugepaged.h>
ba8f3587 77#include <linux/buffer_head.h>
5bf18281 78#include <linux/delayacct.h>
7ee3d4e8 79#include <asm/sections.h>
1da177e4 80#include <asm/tlbflush.h>
ac924c60 81#include <asm/div64.h>
1da177e4 82#include "internal.h"
e900a918 83#include "shuffle.h"
36e66c55 84#include "page_reporting.h"
014bb1de 85#include "swap.h"
1da177e4 86
f04a5d5d
DH
87/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88typedef int __bitwise fpi_t;
89
90/* No special request */
91#define FPI_NONE ((__force fpi_t)0)
92
93/*
94 * Skip free page reporting notification for the (possibly merged) page.
95 * This does not hinder free page reporting from grabbing the page,
96 * reporting it and marking it "reported" - it only skips notifying
97 * the free page reporting infrastructure about a newly freed page. For
98 * example, used when temporarily pulling a page from a freelist and
99 * putting it back unmodified.
100 */
101#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
102
47b6a24a
DH
103/*
104 * Place the (possibly merged) page to the tail of the freelist. Will ignore
105 * page shuffling (relevant code - e.g., memory onlining - is expected to
106 * shuffle the whole zone).
107 *
108 * Note: No code should rely on this flag for correctness - it's purely
109 * to allow for optimizations when handing back either fresh pages
110 * (memory onlining) or untouched pages (page isolation, free page
111 * reporting).
112 */
113#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
114
2c335680
AK
115/*
116 * Don't poison memory with KASAN (only for the tag-based modes).
117 * During boot, all non-reserved memblock memory is exposed to page_alloc.
118 * Poisoning all that memory lengthens boot time, especially on systems with
119 * large amount of RAM. This flag is used to skip that poisoning.
120 * This is only done for the tag-based KASAN modes, as those are able to
121 * detect memory corruptions with the memory tags assigned by default.
122 * All memory allocated normally after boot gets poisoned as usual.
123 */
124#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
125
c8e251fa
CS
126/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 128#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 129
4b23a68f
MG
130#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131/*
132 * On SMP, spin_trylock is sufficient protection.
133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134 */
135#define pcp_trylock_prepare(flags) do { } while (0)
136#define pcp_trylock_finish(flag) do { } while (0)
137#else
138
139/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140#define pcp_trylock_prepare(flags) local_irq_save(flags)
141#define pcp_trylock_finish(flags) local_irq_restore(flags)
142#endif
143
01b44456
MG
144/*
145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146 * a migration causing the wrong PCP to be locked and remote memory being
147 * potentially allocated, pin the task to the CPU for the lookup+lock.
148 * preempt_disable is used on !RT because it is faster than migrate_disable.
149 * migrate_disable is used on RT because otherwise RT spinlock usage is
150 * interfered with and a high priority task cannot preempt the allocator.
151 */
152#ifndef CONFIG_PREEMPT_RT
153#define pcpu_task_pin() preempt_disable()
154#define pcpu_task_unpin() preempt_enable()
155#else
156#define pcpu_task_pin() migrate_disable()
157#define pcpu_task_unpin() migrate_enable()
158#endif
c8e251fa 159
01b44456
MG
160/*
161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162 * Return value should be used with equivalent unlock helper.
163 */
164#define pcpu_spin_lock(type, member, ptr) \
165({ \
166 type *_ret; \
167 pcpu_task_pin(); \
168 _ret = this_cpu_ptr(ptr); \
169 spin_lock(&_ret->member); \
170 _ret; \
171})
172
57490774 173#define pcpu_spin_trylock(type, member, ptr) \
01b44456
MG
174({ \
175 type *_ret; \
176 pcpu_task_pin(); \
177 _ret = this_cpu_ptr(ptr); \
57490774 178 if (!spin_trylock(&_ret->member)) { \
01b44456
MG
179 pcpu_task_unpin(); \
180 _ret = NULL; \
181 } \
182 _ret; \
183})
184
185#define pcpu_spin_unlock(member, ptr) \
186({ \
187 spin_unlock(&ptr->member); \
188 pcpu_task_unpin(); \
189})
190
01b44456
MG
191/* struct per_cpu_pages specific helpers. */
192#define pcp_spin_lock(ptr) \
193 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
194
57490774
MG
195#define pcp_spin_trylock(ptr) \
196 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
01b44456
MG
197
198#define pcp_spin_unlock(ptr) \
199 pcpu_spin_unlock(lock, ptr)
200
72812019
LS
201#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
202DEFINE_PER_CPU(int, numa_node);
203EXPORT_PER_CPU_SYMBOL(numa_node);
204#endif
205
4518085e
KW
206DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
207
7aac7898
LS
208#ifdef CONFIG_HAVE_MEMORYLESS_NODES
209/*
210 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
211 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
212 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
213 * defined in <linux/topology.h>.
214 */
215DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
216EXPORT_PER_CPU_SYMBOL(_numa_mem_);
217#endif
218
8b885f53 219static DEFINE_MUTEX(pcpu_drain_mutex);
bd233f53 220
38addce8 221#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 222volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
223EXPORT_SYMBOL(latent_entropy);
224#endif
225
1da177e4 226/*
13808910 227 * Array of node states.
1da177e4 228 */
13808910
CL
229nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
230 [N_POSSIBLE] = NODE_MASK_ALL,
231 [N_ONLINE] = { { [0] = 1UL } },
232#ifndef CONFIG_NUMA
233 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
234#ifdef CONFIG_HIGHMEM
235 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 236#endif
20b2f52b 237 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
238 [N_CPU] = { { [0] = 1UL } },
239#endif /* NUMA */
240};
241EXPORT_SYMBOL(node_states);
242
ca79b0c2
AK
243atomic_long_t _totalram_pages __read_mostly;
244EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 245unsigned long totalreserve_pages __read_mostly;
e48322ab 246unsigned long totalcma_pages __read_mostly;
ab8fabd4 247
74f44822 248int percpu_pagelist_high_fraction;
dcce284a 249gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 250DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
251EXPORT_SYMBOL(init_on_alloc);
252
51cba1eb 253DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
254EXPORT_SYMBOL(init_on_free);
255
04013513
VB
256static bool _init_on_alloc_enabled_early __read_mostly
257 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
258static int __init early_init_on_alloc(char *buf)
259{
6471384a 260
04013513 261 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
262}
263early_param("init_on_alloc", early_init_on_alloc);
264
04013513
VB
265static bool _init_on_free_enabled_early __read_mostly
266 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
267static int __init early_init_on_free(char *buf)
268{
04013513 269 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
270}
271early_param("init_on_free", early_init_on_free);
1da177e4 272
bb14c2c7
VB
273/*
274 * A cached value of the page's pageblock's migratetype, used when the page is
275 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
276 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
277 * Also the migratetype set in the page does not necessarily match the pcplist
278 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
279 * other index - this ensures that it will be put on the correct CMA freelist.
280 */
281static inline int get_pcppage_migratetype(struct page *page)
282{
283 return page->index;
284}
285
286static inline void set_pcppage_migratetype(struct page *page, int migratetype)
287{
288 page->index = migratetype;
289}
290
452aa699
RW
291#ifdef CONFIG_PM_SLEEP
292/*
293 * The following functions are used by the suspend/hibernate code to temporarily
294 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
295 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
296 * they should always be called with system_transition_mutex held
297 * (gfp_allowed_mask also should only be modified with system_transition_mutex
298 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
299 * with that modification).
452aa699 300 */
c9e664f1
RW
301
302static gfp_t saved_gfp_mask;
303
304void pm_restore_gfp_mask(void)
452aa699 305{
55f2503c 306 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
307 if (saved_gfp_mask) {
308 gfp_allowed_mask = saved_gfp_mask;
309 saved_gfp_mask = 0;
310 }
452aa699
RW
311}
312
c9e664f1 313void pm_restrict_gfp_mask(void)
452aa699 314{
55f2503c 315 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
316 WARN_ON(saved_gfp_mask);
317 saved_gfp_mask = gfp_allowed_mask;
d0164adc 318 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 319}
f90ac398
MG
320
321bool pm_suspended_storage(void)
322{
d0164adc 323 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
324 return false;
325 return true;
326}
452aa699
RW
327#endif /* CONFIG_PM_SLEEP */
328
d9c23400 329#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 330unsigned int pageblock_order __read_mostly;
d9c23400
MG
331#endif
332
7fef431b
DH
333static void __free_pages_ok(struct page *page, unsigned int order,
334 fpi_t fpi_flags);
a226f6c8 335
1da177e4
LT
336/*
337 * results with 256, 32 in the lowmem_reserve sysctl:
338 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
339 * 1G machine -> (16M dma, 784M normal, 224M high)
340 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
341 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 342 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
343 *
344 * TBD: should special case ZONE_DMA32 machines here - in those we normally
345 * don't need any ZONE_NORMAL reservation
1da177e4 346 */
d3cda233 347int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 348#ifdef CONFIG_ZONE_DMA
d3cda233 349 [ZONE_DMA] = 256,
4b51d669 350#endif
fb0e7942 351#ifdef CONFIG_ZONE_DMA32
d3cda233 352 [ZONE_DMA32] = 256,
fb0e7942 353#endif
d3cda233 354 [ZONE_NORMAL] = 32,
e53ef38d 355#ifdef CONFIG_HIGHMEM
d3cda233 356 [ZONE_HIGHMEM] = 0,
e53ef38d 357#endif
d3cda233 358 [ZONE_MOVABLE] = 0,
2f1b6248 359};
1da177e4 360
15ad7cdc 361static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 362#ifdef CONFIG_ZONE_DMA
2f1b6248 363 "DMA",
4b51d669 364#endif
fb0e7942 365#ifdef CONFIG_ZONE_DMA32
2f1b6248 366 "DMA32",
fb0e7942 367#endif
2f1b6248 368 "Normal",
e53ef38d 369#ifdef CONFIG_HIGHMEM
2a1e274a 370 "HighMem",
e53ef38d 371#endif
2a1e274a 372 "Movable",
033fbae9
DW
373#ifdef CONFIG_ZONE_DEVICE
374 "Device",
375#endif
2f1b6248
CL
376};
377
c999fbd3 378const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
379 "Unmovable",
380 "Movable",
381 "Reclaimable",
382 "HighAtomic",
383#ifdef CONFIG_CMA
384 "CMA",
385#endif
386#ifdef CONFIG_MEMORY_ISOLATION
387 "Isolate",
388#endif
389};
390
ae70eddd
AK
391compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
392 [NULL_COMPOUND_DTOR] = NULL,
393 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 394#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 395 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 396#endif
9a982250 397#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 398 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 399#endif
f1e61557
KS
400};
401
1da177e4 402int min_free_kbytes = 1024;
42aa83cb 403int user_min_free_kbytes = -1;
1c30844d 404int watermark_boost_factor __read_mostly = 15000;
795ae7a0 405int watermark_scale_factor = 10;
1da177e4 406
bbe5d993
OS
407static unsigned long nr_kernel_pages __initdata;
408static unsigned long nr_all_pages __initdata;
409static unsigned long dma_reserve __initdata;
1da177e4 410
bbe5d993
OS
411static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
412static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 413static unsigned long required_kernelcore __initdata;
a5c6d650 414static unsigned long required_kernelcore_percent __initdata;
7f16f91f 415static unsigned long required_movablecore __initdata;
a5c6d650 416static unsigned long required_movablecore_percent __initdata;
bbe5d993 417static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
902c2d91 418bool mirrored_kernelcore __initdata_memblock;
0ee332c1
TH
419
420/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
421int movable_zone;
422EXPORT_SYMBOL(movable_zone);
c713216d 423
418508c1 424#if MAX_NUMNODES > 1
b9726c26 425unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 426unsigned int nr_online_nodes __read_mostly = 1;
418508c1 427EXPORT_SYMBOL(nr_node_ids);
62bc62a8 428EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
429#endif
430
9ef9acb0
MG
431int page_group_by_mobility_disabled __read_mostly;
432
7ec7096b
PT
433bool deferred_struct_pages __meminitdata;
434
3a80a7fa 435#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
436/*
437 * During boot we initialize deferred pages on-demand, as needed, but once
438 * page_alloc_init_late() has finished, the deferred pages are all initialized,
439 * and we can permanently disable that path.
440 */
441static DEFINE_STATIC_KEY_TRUE(deferred_pages);
442
94ae8b83 443static inline bool deferred_pages_enabled(void)
3c0c12cc 444{
94ae8b83 445 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
446}
447
fc574488
MRI
448/* Returns true if the struct page for the pfn is initialised */
449static inline bool __meminit early_page_initialised(unsigned long pfn)
3a80a7fa 450{
ef70b6f4
MG
451 int nid = early_pfn_to_nid(pfn);
452
453 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
fc574488 454 return false;
3a80a7fa 455
fc574488 456 return true;
3a80a7fa
MG
457}
458
459/*
d3035be4 460 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
461 * later in the boot cycle when it can be parallelised.
462 */
d3035be4
PT
463static bool __meminit
464defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 465{
d3035be4
PT
466 static unsigned long prev_end_pfn, nr_initialised;
467
c4f20f14
LZ
468 if (early_page_ext_enabled())
469 return false;
d3035be4
PT
470 /*
471 * prev_end_pfn static that contains the end of previous zone
472 * No need to protect because called very early in boot before smp_init.
473 */
474 if (prev_end_pfn != end_pfn) {
475 prev_end_pfn = end_pfn;
476 nr_initialised = 0;
477 }
478
3c2c6488 479 /* Always populate low zones for address-constrained allocations */
d3035be4 480 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 481 return false;
23b68cfa 482
dc2da7b4
BH
483 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
484 return true;
23b68cfa
WY
485 /*
486 * We start only with one section of pages, more pages are added as
487 * needed until the rest of deferred pages are initialized.
488 */
d3035be4 489 nr_initialised++;
23b68cfa 490 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
491 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
492 NODE_DATA(nid)->first_deferred_pfn = pfn;
493 return true;
3a80a7fa 494 }
d3035be4 495 return false;
3a80a7fa
MG
496}
497#else
94ae8b83 498static inline bool deferred_pages_enabled(void)
2c335680 499{
94ae8b83 500 return false;
2c335680 501}
3c0c12cc 502
fc574488 503static inline bool early_page_initialised(unsigned long pfn)
3a80a7fa 504{
fc574488 505 return true;
3a80a7fa
MG
506}
507
d3035be4 508static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 509{
d3035be4 510 return false;
3a80a7fa
MG
511}
512#endif
513
0b423ca2 514/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 515static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
516 unsigned long pfn)
517{
518#ifdef CONFIG_SPARSEMEM
f1eca35a 519 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
520#else
521 return page_zone(page)->pageblock_flags;
522#endif /* CONFIG_SPARSEMEM */
523}
524
ca891f41 525static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
526{
527#ifdef CONFIG_SPARSEMEM
528 pfn &= (PAGES_PER_SECTION-1);
0b423ca2 529#else
4f9bc69a 530 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
0b423ca2 531#endif /* CONFIG_SPARSEMEM */
399b795b 532 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
533}
534
535b81e2 535static __always_inline
ca891f41 536unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 537 unsigned long pfn,
0b423ca2
MG
538 unsigned long mask)
539{
540 unsigned long *bitmap;
541 unsigned long bitidx, word_bitidx;
542 unsigned long word;
543
544 bitmap = get_pageblock_bitmap(page, pfn);
545 bitidx = pfn_to_bitidx(page, pfn);
546 word_bitidx = bitidx / BITS_PER_LONG;
547 bitidx &= (BITS_PER_LONG-1);
1c563432
MK
548 /*
549 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
550 * a consistent read of the memory array, so that results, even though
551 * racy, are not corrupted.
552 */
553 word = READ_ONCE(bitmap[word_bitidx]);
d93d5ab9 554 return (word >> bitidx) & mask;
0b423ca2
MG
555}
556
a00cda3f
MCC
557/**
558 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
559 * @page: The page within the block of interest
560 * @pfn: The target page frame number
561 * @mask: mask of bits that the caller is interested in
562 *
563 * Return: pageblock_bits flags
564 */
ca891f41
MWO
565unsigned long get_pfnblock_flags_mask(const struct page *page,
566 unsigned long pfn, unsigned long mask)
0b423ca2 567{
535b81e2 568 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
569}
570
ca891f41
MWO
571static __always_inline int get_pfnblock_migratetype(const struct page *page,
572 unsigned long pfn)
0b423ca2 573{
535b81e2 574 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
575}
576
577/**
578 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
579 * @page: The page within the block of interest
580 * @flags: The flags to set
581 * @pfn: The target page frame number
0b423ca2
MG
582 * @mask: mask of bits that the caller is interested in
583 */
584void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
585 unsigned long pfn,
0b423ca2
MG
586 unsigned long mask)
587{
588 unsigned long *bitmap;
589 unsigned long bitidx, word_bitidx;
04ec0061 590 unsigned long word;
0b423ca2
MG
591
592 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 593 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
594
595 bitmap = get_pageblock_bitmap(page, pfn);
596 bitidx = pfn_to_bitidx(page, pfn);
597 word_bitidx = bitidx / BITS_PER_LONG;
598 bitidx &= (BITS_PER_LONG-1);
599
600 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
601
d93d5ab9
WY
602 mask <<= bitidx;
603 flags <<= bitidx;
0b423ca2
MG
604
605 word = READ_ONCE(bitmap[word_bitidx]);
04ec0061
UB
606 do {
607 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
0b423ca2 608}
3a80a7fa 609
ee6f509c 610void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 611{
5d0f3f72
KM
612 if (unlikely(page_group_by_mobility_disabled &&
613 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
614 migratetype = MIGRATE_UNMOVABLE;
615
d93d5ab9 616 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 617 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
618}
619
13e7444b 620#ifdef CONFIG_DEBUG_VM
c6a57e19 621static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 622{
bdc8cb98
DH
623 int ret = 0;
624 unsigned seq;
625 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 626 unsigned long sp, start_pfn;
c6a57e19 627
bdc8cb98
DH
628 do {
629 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
630 start_pfn = zone->zone_start_pfn;
631 sp = zone->spanned_pages;
108bcc96 632 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
633 ret = 1;
634 } while (zone_span_seqretry(zone, seq));
635
b5e6a5a2 636 if (ret)
613813e8
DH
637 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
638 pfn, zone_to_nid(zone), zone->name,
639 start_pfn, start_pfn + sp);
b5e6a5a2 640
bdc8cb98 641 return ret;
c6a57e19
DH
642}
643
644static int page_is_consistent(struct zone *zone, struct page *page)
645{
1da177e4 646 if (zone != page_zone(page))
c6a57e19
DH
647 return 0;
648
649 return 1;
650}
651/*
652 * Temporary debugging check for pages not lying within a given zone.
653 */
d73d3c9f 654static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
655{
656 if (page_outside_zone_boundaries(zone, page))
1da177e4 657 return 1;
c6a57e19
DH
658 if (!page_is_consistent(zone, page))
659 return 1;
660
1da177e4
LT
661 return 0;
662}
13e7444b 663#else
d73d3c9f 664static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
665{
666 return 0;
667}
668#endif
669
82a3241a 670static void bad_page(struct page *page, const char *reason)
1da177e4 671{
d936cf9b
HD
672 static unsigned long resume;
673 static unsigned long nr_shown;
674 static unsigned long nr_unshown;
675
676 /*
677 * Allow a burst of 60 reports, then keep quiet for that minute;
678 * or allow a steady drip of one report per second.
679 */
680 if (nr_shown == 60) {
681 if (time_before(jiffies, resume)) {
682 nr_unshown++;
683 goto out;
684 }
685 if (nr_unshown) {
ff8e8116 686 pr_alert(
1e9e6365 687 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
688 nr_unshown);
689 nr_unshown = 0;
690 }
691 nr_shown = 0;
692 }
693 if (nr_shown++ == 0)
694 resume = jiffies + 60 * HZ;
695
ff8e8116 696 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 697 current->comm, page_to_pfn(page));
d2f07ec0 698 dump_page(page, reason);
3dc14741 699
4f31888c 700 print_modules();
1da177e4 701 dump_stack();
d936cf9b 702out:
8cc3b392 703 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 704 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 705 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
706}
707
44042b44
MG
708static inline unsigned int order_to_pindex(int migratetype, int order)
709{
710 int base = order;
711
712#ifdef CONFIG_TRANSPARENT_HUGEPAGE
713 if (order > PAGE_ALLOC_COSTLY_ORDER) {
714 VM_BUG_ON(order != pageblock_order);
5d0a661d 715 return NR_LOWORDER_PCP_LISTS;
44042b44
MG
716 }
717#else
718 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
719#endif
720
721 return (MIGRATE_PCPTYPES * base) + migratetype;
722}
723
724static inline int pindex_to_order(unsigned int pindex)
725{
726 int order = pindex / MIGRATE_PCPTYPES;
727
728#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5d0a661d 729 if (pindex == NR_LOWORDER_PCP_LISTS)
44042b44 730 order = pageblock_order;
44042b44
MG
731#else
732 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
733#endif
734
735 return order;
736}
737
738static inline bool pcp_allowed_order(unsigned int order)
739{
740 if (order <= PAGE_ALLOC_COSTLY_ORDER)
741 return true;
742#ifdef CONFIG_TRANSPARENT_HUGEPAGE
743 if (order == pageblock_order)
744 return true;
745#endif
746 return false;
747}
748
21d02f8f
MG
749static inline void free_the_page(struct page *page, unsigned int order)
750{
44042b44
MG
751 if (pcp_allowed_order(order)) /* Via pcp? */
752 free_unref_page(page, order);
21d02f8f
MG
753 else
754 __free_pages_ok(page, order, FPI_NONE);
755}
756
1da177e4
LT
757/*
758 * Higher-order pages are called "compound pages". They are structured thusly:
759 *
1d798ca3 760 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 761 *
1d798ca3
KS
762 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
763 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 764 *
1d798ca3
KS
765 * The first tail page's ->compound_dtor holds the offset in array of compound
766 * page destructors. See compound_page_dtors.
1da177e4 767 *
1d798ca3 768 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 769 * This usage means that zero-order pages may not be compound.
1da177e4 770 */
d98c7a09 771
9a982250 772void free_compound_page(struct page *page)
d98c7a09 773{
bbc6b703 774 mem_cgroup_uncharge(page_folio(page));
44042b44 775 free_the_page(page, compound_order(page));
d98c7a09
HD
776}
777
5b24eeef
JM
778static void prep_compound_head(struct page *page, unsigned int order)
779{
94688e8e
MWO
780 struct folio *folio = (struct folio *)page;
781
5b24eeef
JM
782 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
783 set_compound_order(page, order);
65a689f3
MWO
784 atomic_set(&folio->_entire_mapcount, -1);
785 atomic_set(&folio->_nr_pages_mapped, 0);
94688e8e 786 atomic_set(&folio->_pincount, 0);
5b24eeef
JM
787}
788
789static void prep_compound_tail(struct page *head, int tail_idx)
790{
791 struct page *p = head + tail_idx;
792
793 p->mapping = TAIL_MAPPING;
794 set_compound_head(p, head);
5aae9265 795 set_page_private(p, 0);
5b24eeef
JM
796}
797
d00181b9 798void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
799{
800 int i;
801 int nr_pages = 1 << order;
802
18229df5 803 __SetPageHead(page);
5b24eeef
JM
804 for (i = 1; i < nr_pages; i++)
805 prep_compound_tail(page, i);
1378a5ee 806
5b24eeef 807 prep_compound_head(page, order);
18229df5
AW
808}
809
5375336c
MWO
810void destroy_large_folio(struct folio *folio)
811{
a60d5942 812 enum compound_dtor_id dtor = folio->_folio_dtor;
5375336c
MWO
813
814 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
815 compound_page_dtors[dtor](&folio->page);
816}
817
c0a32fc5
SG
818#ifdef CONFIG_DEBUG_PAGEALLOC
819unsigned int _debug_guardpage_minorder;
96a2b03f 820
8e57f8ac
VB
821bool _debug_pagealloc_enabled_early __read_mostly
822 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
823EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 824DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 825EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
826
827DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 828
031bc574
JK
829static int __init early_debug_pagealloc(char *buf)
830{
8e57f8ac 831 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
832}
833early_param("debug_pagealloc", early_debug_pagealloc);
834
c0a32fc5
SG
835static int __init debug_guardpage_minorder_setup(char *buf)
836{
837 unsigned long res;
838
839 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 840 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
841 return 0;
842 }
843 _debug_guardpage_minorder = res;
1170532b 844 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
845 return 0;
846}
f1c1e9f7 847early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 848
acbc15a4 849static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 850 unsigned int order, int migratetype)
c0a32fc5 851{
e30825f1 852 if (!debug_guardpage_enabled())
acbc15a4
JK
853 return false;
854
855 if (order >= debug_guardpage_minorder())
856 return false;
e30825f1 857
3972f6bb 858 __SetPageGuard(page);
bf75f200 859 INIT_LIST_HEAD(&page->buddy_list);
2847cf95
JK
860 set_page_private(page, order);
861 /* Guard pages are not available for any usage */
b3618455
ML
862 if (!is_migrate_isolate(migratetype))
863 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
864
865 return true;
c0a32fc5
SG
866}
867
2847cf95
JK
868static inline void clear_page_guard(struct zone *zone, struct page *page,
869 unsigned int order, int migratetype)
c0a32fc5 870{
e30825f1
JK
871 if (!debug_guardpage_enabled())
872 return;
873
3972f6bb 874 __ClearPageGuard(page);
e30825f1 875
2847cf95
JK
876 set_page_private(page, 0);
877 if (!is_migrate_isolate(migratetype))
878 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
879}
880#else
acbc15a4
JK
881static inline bool set_page_guard(struct zone *zone, struct page *page,
882 unsigned int order, int migratetype) { return false; }
2847cf95
JK
883static inline void clear_page_guard(struct zone *zone, struct page *page,
884 unsigned int order, int migratetype) {}
c0a32fc5
SG
885#endif
886
04013513
VB
887/*
888 * Enable static keys related to various memory debugging and hardening options.
889 * Some override others, and depend on early params that are evaluated in the
890 * order of appearance. So we need to first gather the full picture of what was
891 * enabled, and then make decisions.
892 */
5749fcc5 893void __init init_mem_debugging_and_hardening(void)
04013513 894{
9df65f52
ST
895 bool page_poisoning_requested = false;
896
897#ifdef CONFIG_PAGE_POISONING
898 /*
899 * Page poisoning is debug page alloc for some arches. If
900 * either of those options are enabled, enable poisoning.
901 */
902 if (page_poisoning_enabled() ||
903 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
904 debug_pagealloc_enabled())) {
905 static_branch_enable(&_page_poisoning_enabled);
906 page_poisoning_requested = true;
907 }
908#endif
909
69e5d322
ST
910 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
911 page_poisoning_requested) {
912 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
913 "will take precedence over init_on_alloc and init_on_free\n");
914 _init_on_alloc_enabled_early = false;
915 _init_on_free_enabled_early = false;
04013513
VB
916 }
917
69e5d322
ST
918 if (_init_on_alloc_enabled_early)
919 static_branch_enable(&init_on_alloc);
920 else
921 static_branch_disable(&init_on_alloc);
922
923 if (_init_on_free_enabled_early)
924 static_branch_enable(&init_on_free);
925 else
926 static_branch_disable(&init_on_free);
927
42eaa27d
AP
928 if (IS_ENABLED(CONFIG_KMSAN) &&
929 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
930 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
931
04013513
VB
932#ifdef CONFIG_DEBUG_PAGEALLOC
933 if (!debug_pagealloc_enabled())
934 return;
935
936 static_branch_enable(&_debug_pagealloc_enabled);
937
938 if (!debug_guardpage_minorder())
939 return;
940
941 static_branch_enable(&_debug_guardpage_enabled);
942#endif
943}
944
ab130f91 945static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 946{
4c21e2f2 947 set_page_private(page, order);
676165a8 948 __SetPageBuddy(page);
1da177e4
LT
949}
950
5e1f0f09
MG
951#ifdef CONFIG_COMPACTION
952static inline struct capture_control *task_capc(struct zone *zone)
953{
954 struct capture_control *capc = current->capture_control;
955
deba0487 956 return unlikely(capc) &&
5e1f0f09
MG
957 !(current->flags & PF_KTHREAD) &&
958 !capc->page &&
deba0487 959 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
960}
961
962static inline bool
963compaction_capture(struct capture_control *capc, struct page *page,
964 int order, int migratetype)
965{
966 if (!capc || order != capc->cc->order)
967 return false;
968
969 /* Do not accidentally pollute CMA or isolated regions*/
970 if (is_migrate_cma(migratetype) ||
971 is_migrate_isolate(migratetype))
972 return false;
973
974 /*
f0953a1b 975 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
976 * This might let an unmovable request use a reclaimable pageblock
977 * and vice-versa but no more than normal fallback logic which can
978 * have trouble finding a high-order free page.
979 */
980 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
981 return false;
982
983 capc->page = page;
984 return true;
985}
986
987#else
988static inline struct capture_control *task_capc(struct zone *zone)
989{
990 return NULL;
991}
992
993static inline bool
994compaction_capture(struct capture_control *capc, struct page *page,
995 int order, int migratetype)
996{
997 return false;
998}
999#endif /* CONFIG_COMPACTION */
1000
6ab01363
AD
1001/* Used for pages not on another list */
1002static inline void add_to_free_list(struct page *page, struct zone *zone,
1003 unsigned int order, int migratetype)
1004{
1005 struct free_area *area = &zone->free_area[order];
1006
bf75f200 1007 list_add(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
1008 area->nr_free++;
1009}
1010
1011/* Used for pages not on another list */
1012static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1013 unsigned int order, int migratetype)
1014{
1015 struct free_area *area = &zone->free_area[order];
1016
bf75f200 1017 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
1018 area->nr_free++;
1019}
1020
293ffa5e
DH
1021/*
1022 * Used for pages which are on another list. Move the pages to the tail
1023 * of the list - so the moved pages won't immediately be considered for
1024 * allocation again (e.g., optimization for memory onlining).
1025 */
6ab01363
AD
1026static inline void move_to_free_list(struct page *page, struct zone *zone,
1027 unsigned int order, int migratetype)
1028{
1029 struct free_area *area = &zone->free_area[order];
1030
bf75f200 1031 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
1032}
1033
1034static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1035 unsigned int order)
1036{
36e66c55
AD
1037 /* clear reported state and update reported page count */
1038 if (page_reported(page))
1039 __ClearPageReported(page);
1040
bf75f200 1041 list_del(&page->buddy_list);
6ab01363
AD
1042 __ClearPageBuddy(page);
1043 set_page_private(page, 0);
1044 zone->free_area[order].nr_free--;
1045}
1046
a2129f24
AD
1047/*
1048 * If this is not the largest possible page, check if the buddy
1049 * of the next-highest order is free. If it is, it's possible
1050 * that pages are being freed that will coalesce soon. In case,
1051 * that is happening, add the free page to the tail of the list
1052 * so it's less likely to be used soon and more likely to be merged
1053 * as a higher order page
1054 */
1055static inline bool
1056buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1057 struct page *page, unsigned int order)
1058{
8170ac47
ZY
1059 unsigned long higher_page_pfn;
1060 struct page *higher_page;
a2129f24
AD
1061
1062 if (order >= MAX_ORDER - 2)
1063 return false;
1064
8170ac47
ZY
1065 higher_page_pfn = buddy_pfn & pfn;
1066 higher_page = page + (higher_page_pfn - pfn);
a2129f24 1067
8170ac47
ZY
1068 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1069 NULL) != NULL;
a2129f24
AD
1070}
1071
1da177e4
LT
1072/*
1073 * Freeing function for a buddy system allocator.
1074 *
1075 * The concept of a buddy system is to maintain direct-mapped table
1076 * (containing bit values) for memory blocks of various "orders".
1077 * The bottom level table contains the map for the smallest allocatable
1078 * units of memory (here, pages), and each level above it describes
1079 * pairs of units from the levels below, hence, "buddies".
1080 * At a high level, all that happens here is marking the table entry
1081 * at the bottom level available, and propagating the changes upward
1082 * as necessary, plus some accounting needed to play nicely with other
1083 * parts of the VM system.
1084 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1085 * free pages of length of (1 << order) and marked with PageBuddy.
1086 * Page's order is recorded in page_private(page) field.
1da177e4 1087 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1088 * other. That is, if we allocate a small block, and both were
1089 * free, the remainder of the region must be split into blocks.
1da177e4 1090 * If a block is freed, and its buddy is also free, then this
5f63b720 1091 * triggers coalescing into a block of larger size.
1da177e4 1092 *
6d49e352 1093 * -- nyc
1da177e4
LT
1094 */
1095
48db57f8 1096static inline void __free_one_page(struct page *page,
dc4b0caf 1097 unsigned long pfn,
ed0ae21d 1098 struct zone *zone, unsigned int order,
f04a5d5d 1099 int migratetype, fpi_t fpi_flags)
1da177e4 1100{
a2129f24 1101 struct capture_control *capc = task_capc(zone);
dae37a5d 1102 unsigned long buddy_pfn = 0;
a2129f24 1103 unsigned long combined_pfn;
a2129f24
AD
1104 struct page *buddy;
1105 bool to_tail;
d9dddbf5 1106
d29bb978 1107 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1108 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1109
ed0ae21d 1110 VM_BUG_ON(migratetype == -1);
d9dddbf5 1111 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1112 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1113
76741e77 1114 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1115 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1116
bb0e28eb 1117 while (order < MAX_ORDER - 1) {
5e1f0f09
MG
1118 if (compaction_capture(capc, page, order, migratetype)) {
1119 __mod_zone_freepage_state(zone, -(1 << order),
1120 migratetype);
1121 return;
1122 }
13ad59df 1123
8170ac47
ZY
1124 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1125 if (!buddy)
d9dddbf5 1126 goto done_merging;
bb0e28eb
ZY
1127
1128 if (unlikely(order >= pageblock_order)) {
1129 /*
1130 * We want to prevent merge between freepages on pageblock
1131 * without fallbacks and normal pageblock. Without this,
1132 * pageblock isolation could cause incorrect freepage or CMA
1133 * accounting or HIGHATOMIC accounting.
1134 */
1135 int buddy_mt = get_pageblock_migratetype(buddy);
1136
1137 if (migratetype != buddy_mt
1138 && (!migratetype_is_mergeable(migratetype) ||
1139 !migratetype_is_mergeable(buddy_mt)))
1140 goto done_merging;
1141 }
1142
c0a32fc5
SG
1143 /*
1144 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1145 * merge with it and move up one order.
1146 */
b03641af 1147 if (page_is_guard(buddy))
2847cf95 1148 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1149 else
6ab01363 1150 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1151 combined_pfn = buddy_pfn & pfn;
1152 page = page + (combined_pfn - pfn);
1153 pfn = combined_pfn;
1da177e4
LT
1154 order++;
1155 }
d9dddbf5
VB
1156
1157done_merging:
ab130f91 1158 set_buddy_order(page, order);
6dda9d55 1159
47b6a24a
DH
1160 if (fpi_flags & FPI_TO_TAIL)
1161 to_tail = true;
1162 else if (is_shuffle_order(order))
a2129f24 1163 to_tail = shuffle_pick_tail();
97500a4a 1164 else
a2129f24 1165 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1166
a2129f24 1167 if (to_tail)
6ab01363 1168 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1169 else
6ab01363 1170 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1171
1172 /* Notify page reporting subsystem of freed page */
f04a5d5d 1173 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1174 page_reporting_notify_free(order);
1da177e4
LT
1175}
1176
b2c9e2fb
ZY
1177/**
1178 * split_free_page() -- split a free page at split_pfn_offset
1179 * @free_page: the original free page
1180 * @order: the order of the page
1181 * @split_pfn_offset: split offset within the page
1182 *
86d28b07
ZY
1183 * Return -ENOENT if the free page is changed, otherwise 0
1184 *
b2c9e2fb
ZY
1185 * It is used when the free page crosses two pageblocks with different migratetypes
1186 * at split_pfn_offset within the page. The split free page will be put into
1187 * separate migratetype lists afterwards. Otherwise, the function achieves
1188 * nothing.
1189 */
86d28b07
ZY
1190int split_free_page(struct page *free_page,
1191 unsigned int order, unsigned long split_pfn_offset)
b2c9e2fb
ZY
1192{
1193 struct zone *zone = page_zone(free_page);
1194 unsigned long free_page_pfn = page_to_pfn(free_page);
1195 unsigned long pfn;
1196 unsigned long flags;
1197 int free_page_order;
86d28b07
ZY
1198 int mt;
1199 int ret = 0;
b2c9e2fb 1200
88ee1343 1201 if (split_pfn_offset == 0)
86d28b07 1202 return ret;
88ee1343 1203
b2c9e2fb 1204 spin_lock_irqsave(&zone->lock, flags);
86d28b07
ZY
1205
1206 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1207 ret = -ENOENT;
1208 goto out;
1209 }
1210
1211 mt = get_pageblock_migratetype(free_page);
1212 if (likely(!is_migrate_isolate(mt)))
1213 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1214
b2c9e2fb
ZY
1215 del_page_from_free_list(free_page, zone, order);
1216 for (pfn = free_page_pfn;
1217 pfn < free_page_pfn + (1UL << order);) {
1218 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1219
86d28b07 1220 free_page_order = min_t(unsigned int,
88ee1343
ZY
1221 pfn ? __ffs(pfn) : order,
1222 __fls(split_pfn_offset));
b2c9e2fb
ZY
1223 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1224 mt, FPI_NONE);
1225 pfn += 1UL << free_page_order;
1226 split_pfn_offset -= (1UL << free_page_order);
1227 /* we have done the first part, now switch to second part */
1228 if (split_pfn_offset == 0)
1229 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1230 }
86d28b07 1231out:
b2c9e2fb 1232 spin_unlock_irqrestore(&zone->lock, flags);
86d28b07 1233 return ret;
b2c9e2fb 1234}
7bfec6f4
MG
1235/*
1236 * A bad page could be due to a number of fields. Instead of multiple branches,
1237 * try and check multiple fields with one check. The caller must do a detailed
1238 * check if necessary.
1239 */
1240static inline bool page_expected_state(struct page *page,
1241 unsigned long check_flags)
1242{
1243 if (unlikely(atomic_read(&page->_mapcount) != -1))
1244 return false;
1245
1246 if (unlikely((unsigned long)page->mapping |
1247 page_ref_count(page) |
1248#ifdef CONFIG_MEMCG
48060834 1249 page->memcg_data |
7bfec6f4
MG
1250#endif
1251 (page->flags & check_flags)))
1252 return false;
1253
1254 return true;
1255}
1256
58b7f119 1257static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1258{
82a3241a 1259 const char *bad_reason = NULL;
f0b791a3 1260
53f9263b 1261 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1262 bad_reason = "nonzero mapcount";
1263 if (unlikely(page->mapping != NULL))
1264 bad_reason = "non-NULL mapping";
fe896d18 1265 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1266 bad_reason = "nonzero _refcount";
58b7f119
WY
1267 if (unlikely(page->flags & flags)) {
1268 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1269 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1270 else
1271 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1272 }
9edad6ea 1273#ifdef CONFIG_MEMCG
48060834 1274 if (unlikely(page->memcg_data))
9edad6ea
JW
1275 bad_reason = "page still charged to cgroup";
1276#endif
58b7f119
WY
1277 return bad_reason;
1278}
1279
a8368cd8 1280static void free_page_is_bad_report(struct page *page)
58b7f119
WY
1281{
1282 bad_page(page,
1283 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1284}
1285
a8368cd8 1286static inline bool free_page_is_bad(struct page *page)
bb552ac6 1287{
da838d4f 1288 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
a8368cd8 1289 return false;
bb552ac6
MG
1290
1291 /* Something has gone sideways, find it */
a8368cd8
AM
1292 free_page_is_bad_report(page);
1293 return true;
1da177e4
LT
1294}
1295
4db7548c
MG
1296static int free_tail_pages_check(struct page *head_page, struct page *page)
1297{
94688e8e 1298 struct folio *folio = (struct folio *)head_page;
4db7548c
MG
1299 int ret = 1;
1300
1301 /*
1302 * We rely page->lru.next never has bit 0 set, unless the page
1303 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1304 */
1305 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1306
1307 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1308 ret = 0;
1309 goto out;
1310 }
1311 switch (page - head_page) {
1312 case 1:
cb67f428 1313 /* the first tail page: these may be in place of ->mapping */
65a689f3
MWO
1314 if (unlikely(folio_entire_mapcount(folio))) {
1315 bad_page(page, "nonzero entire_mapcount");
4db7548c
MG
1316 goto out;
1317 }
65a689f3
MWO
1318 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1319 bad_page(page, "nonzero nr_pages_mapped");
cb67f428
HD
1320 goto out;
1321 }
94688e8e
MWO
1322 if (unlikely(atomic_read(&folio->_pincount))) {
1323 bad_page(page, "nonzero pincount");
cb67f428
HD
1324 goto out;
1325 }
4db7548c
MG
1326 break;
1327 case 2:
1328 /*
1329 * the second tail page: ->mapping is
fa3015b7 1330 * deferred_list.next -- ignore value.
4db7548c
MG
1331 */
1332 break;
1333 default:
1334 if (page->mapping != TAIL_MAPPING) {
82a3241a 1335 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1336 goto out;
1337 }
1338 break;
1339 }
1340 if (unlikely(!PageTail(page))) {
82a3241a 1341 bad_page(page, "PageTail not set");
4db7548c
MG
1342 goto out;
1343 }
1344 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1345 bad_page(page, "compound_head not consistent");
4db7548c
MG
1346 goto out;
1347 }
1348 ret = 0;
1349out:
1350 page->mapping = NULL;
1351 clear_compound_head(page);
1352 return ret;
1353}
1354
94ae8b83
AK
1355/*
1356 * Skip KASAN memory poisoning when either:
1357 *
1358 * 1. Deferred memory initialization has not yet completed,
1359 * see the explanation below.
1360 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1361 * see the comment next to it.
1362 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1363 * see the comment next to it.
44383cef
AK
1364 * 4. The allocation is excluded from being checked due to sampling,
1365 * see the call to kasan_unpoison_pages.
94ae8b83
AK
1366 *
1367 * Poisoning pages during deferred memory init will greatly lengthen the
1368 * process and cause problem in large memory systems as the deferred pages
1369 * initialization is done with interrupt disabled.
1370 *
1371 * Assuming that there will be no reference to those newly initialized
1372 * pages before they are ever allocated, this should have no effect on
1373 * KASAN memory tracking as the poison will be properly inserted at page
1374 * allocation time. The only corner case is when pages are allocated by
1375 * on-demand allocation and then freed again before the deferred pages
1376 * initialization is done, but this is not likely to happen.
1377 */
1378static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1379{
1380 return deferred_pages_enabled() ||
1381 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1382 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1383 PageSkipKASanPoison(page);
1384}
1385
aeaec8e2 1386static void kernel_init_pages(struct page *page, int numpages)
6471384a
AP
1387{
1388 int i;
1389
9e15afa5
QC
1390 /* s390's use of memset() could override KASAN redzones. */
1391 kasan_disable_current();
d9da8f6c
AK
1392 for (i = 0; i < numpages; i++)
1393 clear_highpage_kasan_tagged(page + i);
9e15afa5 1394 kasan_enable_current();
6471384a
AP
1395}
1396
e2769dbd 1397static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1398 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1399{
e2769dbd 1400 int bad = 0;
c3525330 1401 bool init = want_init_on_free();
4db7548c 1402
4db7548c
MG
1403 VM_BUG_ON_PAGE(PageTail(page), page);
1404
e2769dbd 1405 trace_mm_page_free(page, order);
b073d7f8 1406 kmsan_free_page(page, order);
e2769dbd 1407
79f5f8fa
OS
1408 if (unlikely(PageHWPoison(page)) && !order) {
1409 /*
1410 * Do not let hwpoison pages hit pcplists/buddy
1411 * Untie memcg state and reset page's owner
1412 */
18b2db3b 1413 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1414 __memcg_kmem_uncharge_page(page, order);
1415 reset_page_owner(page, order);
df4e817b 1416 page_table_check_free(page, order);
79f5f8fa
OS
1417 return false;
1418 }
1419
e2769dbd
MG
1420 /*
1421 * Check tail pages before head page information is cleared to
1422 * avoid checking PageCompound for order-0 pages.
1423 */
1424 if (unlikely(order)) {
1425 bool compound = PageCompound(page);
1426 int i;
1427
1428 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1429
cb67f428 1430 if (compound)
eac96c3e 1431 ClearPageHasHWPoisoned(page);
e2769dbd
MG
1432 for (i = 1; i < (1 << order); i++) {
1433 if (compound)
1434 bad += free_tail_pages_check(page, page + i);
a8368cd8 1435 if (unlikely(free_page_is_bad(page + i))) {
e2769dbd
MG
1436 bad++;
1437 continue;
1438 }
1439 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1440 }
1441 }
bda807d4 1442 if (PageMappingFlags(page))
4db7548c 1443 page->mapping = NULL;
18b2db3b 1444 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1445 __memcg_kmem_uncharge_page(page, order);
a8368cd8
AM
1446 if (check_free && free_page_is_bad(page))
1447 bad++;
e2769dbd
MG
1448 if (bad)
1449 return false;
4db7548c 1450
e2769dbd
MG
1451 page_cpupid_reset_last(page);
1452 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1453 reset_page_owner(page, order);
df4e817b 1454 page_table_check_free(page, order);
4db7548c
MG
1455
1456 if (!PageHighMem(page)) {
1457 debug_check_no_locks_freed(page_address(page),
e2769dbd 1458 PAGE_SIZE << order);
4db7548c 1459 debug_check_no_obj_freed(page_address(page),
e2769dbd 1460 PAGE_SIZE << order);
4db7548c 1461 }
6471384a 1462
8db26a3d
VB
1463 kernel_poison_pages(page, 1 << order);
1464
f9d79e8d 1465 /*
1bb5eab3 1466 * As memory initialization might be integrated into KASAN,
7c13c163 1467 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1468 * kept together to avoid discrepancies in behavior.
1469 *
f9d79e8d
AK
1470 * With hardware tag-based KASAN, memory tags must be set before the
1471 * page becomes unavailable via debug_pagealloc or arch_free_page.
1472 */
487a32ec 1473 if (!should_skip_kasan_poison(page, fpi_flags)) {
c3525330 1474 kasan_poison_pages(page, order, init);
f9d79e8d 1475
db8a0477
AK
1476 /* Memory is already initialized if KASAN did it internally. */
1477 if (kasan_has_integrated_init())
1478 init = false;
1479 }
1480 if (init)
aeaec8e2 1481 kernel_init_pages(page, 1 << order);
db8a0477 1482
234fdce8
QC
1483 /*
1484 * arch_free_page() can make the page's contents inaccessible. s390
1485 * does this. So nothing which can access the page's contents should
1486 * happen after this.
1487 */
1488 arch_free_page(page, order);
1489
77bc7fd6 1490 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1491
4db7548c
MG
1492 return true;
1493}
1494
e2769dbd 1495#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1496/*
1497 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1498 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1499 * moved from pcp lists to free lists.
1500 */
44042b44 1501static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1502{
44042b44 1503 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1504}
1505
d452289f 1506/* return true if this page has an inappropriate state */
4462b32c 1507static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1508{
8e57f8ac 1509 if (debug_pagealloc_enabled_static())
a8368cd8 1510 return free_page_is_bad(page);
4462b32c
VB
1511 else
1512 return false;
e2769dbd
MG
1513}
1514#else
4462b32c
VB
1515/*
1516 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1517 * moving from pcp lists to free list in order to reduce overhead. With
1518 * debug_pagealloc enabled, they are checked also immediately when being freed
1519 * to the pcp lists.
1520 */
44042b44 1521static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1522{
8e57f8ac 1523 if (debug_pagealloc_enabled_static())
44042b44 1524 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1525 else
44042b44 1526 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1527}
1528
4db7548c
MG
1529static bool bulkfree_pcp_prepare(struct page *page)
1530{
a8368cd8 1531 return free_page_is_bad(page);
4db7548c
MG
1532}
1533#endif /* CONFIG_DEBUG_VM */
1534
1da177e4 1535/*
5f8dcc21 1536 * Frees a number of pages from the PCP lists
7cba630b 1537 * Assumes all pages on list are in same zone.
207f36ee 1538 * count is the number of pages to free.
1da177e4 1539 */
5f8dcc21 1540static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1541 struct per_cpu_pages *pcp,
1542 int pindex)
1da177e4 1543{
57490774 1544 unsigned long flags;
35b6d770
MG
1545 int min_pindex = 0;
1546 int max_pindex = NR_PCP_LISTS - 1;
44042b44 1547 unsigned int order;
3777999d 1548 bool isolated_pageblocks;
8b10b465 1549 struct page *page;
f2260e6b 1550
88e8ac11
CTR
1551 /*
1552 * Ensure proper count is passed which otherwise would stuck in the
1553 * below while (list_empty(list)) loop.
1554 */
1555 count = min(pcp->count, count);
d61372bc
MG
1556
1557 /* Ensure requested pindex is drained first. */
1558 pindex = pindex - 1;
1559
57490774 1560 spin_lock_irqsave(&zone->lock, flags);
8b10b465
MG
1561 isolated_pageblocks = has_isolate_pageblock(zone);
1562
44042b44 1563 while (count > 0) {
5f8dcc21 1564 struct list_head *list;
fd56eef2 1565 int nr_pages;
5f8dcc21 1566
fd56eef2 1567 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1568 do {
35b6d770
MG
1569 if (++pindex > max_pindex)
1570 pindex = min_pindex;
44042b44 1571 list = &pcp->lists[pindex];
35b6d770
MG
1572 if (!list_empty(list))
1573 break;
1574
1575 if (pindex == max_pindex)
1576 max_pindex--;
1577 if (pindex == min_pindex)
1578 min_pindex++;
1579 } while (1);
48db57f8 1580
44042b44 1581 order = pindex_to_order(pindex);
fd56eef2 1582 nr_pages = 1 << order;
a6f9edd6 1583 do {
8b10b465
MG
1584 int mt;
1585
bf75f200 1586 page = list_last_entry(list, struct page, pcp_list);
8b10b465
MG
1587 mt = get_pcppage_migratetype(page);
1588
0a5f4e5b 1589 /* must delete to avoid corrupting pcp list */
bf75f200 1590 list_del(&page->pcp_list);
fd56eef2
MG
1591 count -= nr_pages;
1592 pcp->count -= nr_pages;
aa016d14 1593
4db7548c
MG
1594 if (bulkfree_pcp_prepare(page))
1595 continue;
1596
8b10b465
MG
1597 /* MIGRATE_ISOLATE page should not go to pcplists */
1598 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1599 /* Pageblock could have been isolated meanwhile */
1600 if (unlikely(isolated_pageblocks))
1601 mt = get_pageblock_migratetype(page);
0a5f4e5b 1602
8b10b465
MG
1603 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1604 trace_mm_page_pcpu_drain(page, order, mt);
1605 } while (count > 0 && !list_empty(list));
0a5f4e5b 1606 }
8b10b465 1607
57490774 1608 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4
LT
1609}
1610
dc4b0caf
MG
1611static void free_one_page(struct zone *zone,
1612 struct page *page, unsigned long pfn,
7aeb09f9 1613 unsigned int order,
7fef431b 1614 int migratetype, fpi_t fpi_flags)
1da177e4 1615{
df1acc85
MG
1616 unsigned long flags;
1617
1618 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1619 if (unlikely(has_isolate_pageblock(zone) ||
1620 is_migrate_isolate(migratetype))) {
1621 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1622 }
7fef431b 1623 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1624 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1625}
1626
1e8ce83c 1627static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1628 unsigned long zone, int nid)
1e8ce83c 1629{
d0dc12e8 1630 mm_zero_struct_page(page);
1e8ce83c 1631 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1632 init_page_count(page);
1633 page_mapcount_reset(page);
1634 page_cpupid_reset_last(page);
2813b9c0 1635 page_kasan_tag_reset(page);
1e8ce83c 1636
1e8ce83c
RH
1637 INIT_LIST_HEAD(&page->lru);
1638#ifdef WANT_PAGE_VIRTUAL
1639 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1640 if (!is_highmem_idx(zone))
1641 set_page_address(page, __va(pfn << PAGE_SHIFT));
1642#endif
1643}
1644
7e18adb4 1645#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1646static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1647{
1648 pg_data_t *pgdat;
1649 int nid, zid;
1650
fc574488 1651 if (early_page_initialised(pfn))
7e18adb4
MG
1652 return;
1653
1654 nid = early_pfn_to_nid(pfn);
1655 pgdat = NODE_DATA(nid);
1656
1657 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1658 struct zone *zone = &pgdat->node_zones[zid];
1659
86fb05b9 1660 if (zone_spans_pfn(zone, pfn))
7e18adb4
MG
1661 break;
1662 }
d0dc12e8 1663 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1664}
1665#else
1666static inline void init_reserved_page(unsigned long pfn)
1667{
1668}
1669#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1670
92923ca3
NZ
1671/*
1672 * Initialised pages do not have PageReserved set. This function is
1673 * called for each range allocated by the bootmem allocator and
1674 * marks the pages PageReserved. The remaining valid pages are later
1675 * sent to the buddy page allocator.
1676 */
4b50bcc7 1677void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1678{
1679 unsigned long start_pfn = PFN_DOWN(start);
1680 unsigned long end_pfn = PFN_UP(end);
1681
7e18adb4
MG
1682 for (; start_pfn < end_pfn; start_pfn++) {
1683 if (pfn_valid(start_pfn)) {
1684 struct page *page = pfn_to_page(start_pfn);
1685
1686 init_reserved_page(start_pfn);
1d798ca3
KS
1687
1688 /* Avoid false-positive PageTail() */
1689 INIT_LIST_HEAD(&page->lru);
1690
d483da5b
AD
1691 /*
1692 * no need for atomic set_bit because the struct
1693 * page is not visible yet so nobody should
1694 * access it yet.
1695 */
1696 __SetPageReserved(page);
7e18adb4
MG
1697 }
1698 }
92923ca3
NZ
1699}
1700
7fef431b
DH
1701static void __free_pages_ok(struct page *page, unsigned int order,
1702 fpi_t fpi_flags)
ec95f53a 1703{
d34b0733 1704 unsigned long flags;
95e34412 1705 int migratetype;
dc4b0caf 1706 unsigned long pfn = page_to_pfn(page);
56f0e661 1707 struct zone *zone = page_zone(page);
ec95f53a 1708
2c335680 1709 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1710 return;
1711
ac4b2901
DW
1712 /*
1713 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1714 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1715 * This will reduce the lock holding time.
1716 */
cfc47a28 1717 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1718
56f0e661 1719 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1720 if (unlikely(has_isolate_pageblock(zone) ||
1721 is_migrate_isolate(migratetype))) {
1722 migratetype = get_pfnblock_migratetype(page, pfn);
1723 }
1724 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1725 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1726
d34b0733 1727 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1728}
1729
a9cd410a 1730void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1731{
c3993076 1732 unsigned int nr_pages = 1 << order;
e2d0bd2b 1733 struct page *p = page;
c3993076 1734 unsigned int loop;
a226f6c8 1735
7fef431b
DH
1736 /*
1737 * When initializing the memmap, __init_single_page() sets the refcount
1738 * of all pages to 1 ("allocated"/"not free"). We have to set the
1739 * refcount of all involved pages to 0.
1740 */
e2d0bd2b
YL
1741 prefetchw(p);
1742 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1743 prefetchw(p + 1);
c3993076
JW
1744 __ClearPageReserved(p);
1745 set_page_count(p, 0);
a226f6c8 1746 }
e2d0bd2b
YL
1747 __ClearPageReserved(p);
1748 set_page_count(p, 0);
c3993076 1749
9705bea5 1750 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1751
1752 /*
1753 * Bypass PCP and place fresh pages right to the tail, primarily
1754 * relevant for memory onlining.
1755 */
2c335680 1756 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1757}
1758
a9ee6cf5 1759#ifdef CONFIG_NUMA
7ace9917 1760
03e92a5e
MR
1761/*
1762 * During memory init memblocks map pfns to nids. The search is expensive and
1763 * this caches recent lookups. The implementation of __early_pfn_to_nid
1764 * treats start/end as pfns.
1765 */
1766struct mminit_pfnnid_cache {
1767 unsigned long last_start;
1768 unsigned long last_end;
1769 int last_nid;
1770};
75a592a4 1771
03e92a5e 1772static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1773
1774/*
1775 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1776 */
03e92a5e 1777static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1778 struct mminit_pfnnid_cache *state)
75a592a4 1779{
6f24fbd3 1780 unsigned long start_pfn, end_pfn;
75a592a4
MG
1781 int nid;
1782
6f24fbd3
MR
1783 if (state->last_start <= pfn && pfn < state->last_end)
1784 return state->last_nid;
1785
1786 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1787 if (nid != NUMA_NO_NODE) {
1788 state->last_start = start_pfn;
1789 state->last_end = end_pfn;
1790 state->last_nid = nid;
1791 }
7ace9917
MG
1792
1793 return nid;
75a592a4 1794}
75a592a4 1795
75a592a4 1796int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1797{
7ace9917 1798 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1799 int nid;
1800
7ace9917 1801 spin_lock(&early_pfn_lock);
56ec43d8 1802 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1803 if (nid < 0)
e4568d38 1804 nid = first_online_node;
7ace9917 1805 spin_unlock(&early_pfn_lock);
75a592a4 1806
7ace9917 1807 return nid;
75a592a4 1808}
a9ee6cf5 1809#endif /* CONFIG_NUMA */
75a592a4 1810
7c2ee349 1811void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1812 unsigned int order)
1813{
fc574488 1814 if (!early_page_initialised(pfn))
3a80a7fa 1815 return;
3c206509
AP
1816 if (!kmsan_memblock_free_pages(page, order)) {
1817 /* KMSAN will take care of these pages. */
1818 return;
1819 }
a9cd410a 1820 __free_pages_core(page, order);
3a80a7fa
MG
1821}
1822
7cf91a98
JK
1823/*
1824 * Check that the whole (or subset of) a pageblock given by the interval of
1825 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1826 * with the migration of free compaction scanner.
7cf91a98
JK
1827 *
1828 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1829 *
1830 * It's possible on some configurations to have a setup like node0 node1 node0
1831 * i.e. it's possible that all pages within a zones range of pages do not
1832 * belong to a single zone. We assume that a border between node0 and node1
1833 * can occur within a single pageblock, but not a node0 node1 node0
1834 * interleaving within a single pageblock. It is therefore sufficient to check
1835 * the first and last page of a pageblock and avoid checking each individual
1836 * page in a pageblock.
1837 */
1838struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1839 unsigned long end_pfn, struct zone *zone)
1840{
1841 struct page *start_page;
1842 struct page *end_page;
1843
1844 /* end_pfn is one past the range we are checking */
1845 end_pfn--;
1846
1847 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1848 return NULL;
1849
2d070eab
MH
1850 start_page = pfn_to_online_page(start_pfn);
1851 if (!start_page)
1852 return NULL;
7cf91a98
JK
1853
1854 if (page_zone(start_page) != zone)
1855 return NULL;
1856
1857 end_page = pfn_to_page(end_pfn);
1858
1859 /* This gives a shorter code than deriving page_zone(end_page) */
1860 if (page_zone_id(start_page) != page_zone_id(end_page))
1861 return NULL;
1862
1863 return start_page;
1864}
1865
1866void set_zone_contiguous(struct zone *zone)
1867{
1868 unsigned long block_start_pfn = zone->zone_start_pfn;
1869 unsigned long block_end_pfn;
1870
4f9bc69a 1871 block_end_pfn = pageblock_end_pfn(block_start_pfn);
7cf91a98
JK
1872 for (; block_start_pfn < zone_end_pfn(zone);
1873 block_start_pfn = block_end_pfn,
1874 block_end_pfn += pageblock_nr_pages) {
1875
1876 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1877
1878 if (!__pageblock_pfn_to_page(block_start_pfn,
1879 block_end_pfn, zone))
1880 return;
e84fe99b 1881 cond_resched();
7cf91a98
JK
1882 }
1883
1884 /* We confirm that there is no hole */
1885 zone->contiguous = true;
1886}
1887
1888void clear_zone_contiguous(struct zone *zone)
1889{
1890 zone->contiguous = false;
1891}
1892
7e18adb4 1893#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1894static void __init deferred_free_range(unsigned long pfn,
1895 unsigned long nr_pages)
a4de83dd 1896{
2f47a91f
PT
1897 struct page *page;
1898 unsigned long i;
a4de83dd 1899
2f47a91f 1900 if (!nr_pages)
a4de83dd
MG
1901 return;
1902
2f47a91f
PT
1903 page = pfn_to_page(pfn);
1904
a4de83dd 1905 /* Free a large naturally-aligned chunk if possible */
ee0913c4 1906 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
ac5d2539 1907 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1908 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1909 return;
1910 }
1911
e780149b 1912 for (i = 0; i < nr_pages; i++, page++, pfn++) {
ee0913c4 1913 if (pageblock_aligned(pfn))
e780149b 1914 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1915 __free_pages_core(page, 0);
e780149b 1916 }
a4de83dd
MG
1917}
1918
d3cd131d
NS
1919/* Completion tracking for deferred_init_memmap() threads */
1920static atomic_t pgdat_init_n_undone __initdata;
1921static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1922
1923static inline void __init pgdat_init_report_one_done(void)
1924{
1925 if (atomic_dec_and_test(&pgdat_init_n_undone))
1926 complete(&pgdat_init_all_done_comp);
1927}
0e1cc95b 1928
2f47a91f 1929/*
80b1f41c
PT
1930 * Returns true if page needs to be initialized or freed to buddy allocator.
1931 *
c9b3637f 1932 * We check if a current large page is valid by only checking the validity
80b1f41c 1933 * of the head pfn.
2f47a91f 1934 */
56ec43d8 1935static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1936{
ee0913c4 1937 if (pageblock_aligned(pfn) && !pfn_valid(pfn))
80b1f41c 1938 return false;
80b1f41c
PT
1939 return true;
1940}
2f47a91f 1941
80b1f41c
PT
1942/*
1943 * Free pages to buddy allocator. Try to free aligned pages in
1944 * pageblock_nr_pages sizes.
1945 */
56ec43d8 1946static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1947 unsigned long end_pfn)
1948{
80b1f41c 1949 unsigned long nr_free = 0;
2f47a91f 1950
80b1f41c 1951 for (; pfn < end_pfn; pfn++) {
56ec43d8 1952 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1953 deferred_free_range(pfn - nr_free, nr_free);
1954 nr_free = 0;
ee0913c4 1955 } else if (pageblock_aligned(pfn)) {
80b1f41c
PT
1956 deferred_free_range(pfn - nr_free, nr_free);
1957 nr_free = 1;
80b1f41c
PT
1958 } else {
1959 nr_free++;
1960 }
1961 }
1962 /* Free the last block of pages to allocator */
1963 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1964}
1965
80b1f41c
PT
1966/*
1967 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1968 * by performing it only once every pageblock_nr_pages.
1969 * Return number of pages initialized.
1970 */
56ec43d8 1971static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1972 unsigned long pfn,
1973 unsigned long end_pfn)
2f47a91f 1974{
56ec43d8 1975 int nid = zone_to_nid(zone);
2f47a91f 1976 unsigned long nr_pages = 0;
56ec43d8 1977 int zid = zone_idx(zone);
2f47a91f 1978 struct page *page = NULL;
2f47a91f 1979
80b1f41c 1980 for (; pfn < end_pfn; pfn++) {
56ec43d8 1981 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1982 page = NULL;
2f47a91f 1983 continue;
ee0913c4 1984 } else if (!page || pageblock_aligned(pfn)) {
2f47a91f 1985 page = pfn_to_page(pfn);
80b1f41c
PT
1986 } else {
1987 page++;
2f47a91f 1988 }
d0dc12e8 1989 __init_single_page(page, pfn, zid, nid);
80b1f41c 1990 nr_pages++;
2f47a91f 1991 }
80b1f41c 1992 return (nr_pages);
2f47a91f
PT
1993}
1994
0e56acae
AD
1995/*
1996 * This function is meant to pre-load the iterator for the zone init.
1997 * Specifically it walks through the ranges until we are caught up to the
1998 * first_init_pfn value and exits there. If we never encounter the value we
1999 * return false indicating there are no valid ranges left.
2000 */
2001static bool __init
2002deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2003 unsigned long *spfn, unsigned long *epfn,
2004 unsigned long first_init_pfn)
2005{
2006 u64 j;
2007
2008 /*
2009 * Start out by walking through the ranges in this zone that have
2010 * already been initialized. We don't need to do anything with them
2011 * so we just need to flush them out of the system.
2012 */
2013 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2014 if (*epfn <= first_init_pfn)
2015 continue;
2016 if (*spfn < first_init_pfn)
2017 *spfn = first_init_pfn;
2018 *i = j;
2019 return true;
2020 }
2021
2022 return false;
2023}
2024
2025/*
2026 * Initialize and free pages. We do it in two loops: first we initialize
2027 * struct page, then free to buddy allocator, because while we are
2028 * freeing pages we can access pages that are ahead (computing buddy
2029 * page in __free_one_page()).
2030 *
2031 * In order to try and keep some memory in the cache we have the loop
2032 * broken along max page order boundaries. This way we will not cause
2033 * any issues with the buddy page computation.
2034 */
2035static unsigned long __init
2036deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2037 unsigned long *end_pfn)
2038{
2039 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2040 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2041 unsigned long nr_pages = 0;
2042 u64 j = *i;
2043
2044 /* First we loop through and initialize the page values */
2045 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2046 unsigned long t;
2047
2048 if (mo_pfn <= *start_pfn)
2049 break;
2050
2051 t = min(mo_pfn, *end_pfn);
2052 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2053
2054 if (mo_pfn < *end_pfn) {
2055 *start_pfn = mo_pfn;
2056 break;
2057 }
2058 }
2059
2060 /* Reset values and now loop through freeing pages as needed */
2061 swap(j, *i);
2062
2063 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2064 unsigned long t;
2065
2066 if (mo_pfn <= spfn)
2067 break;
2068
2069 t = min(mo_pfn, epfn);
2070 deferred_free_pages(spfn, t);
2071
2072 if (mo_pfn <= epfn)
2073 break;
2074 }
2075
2076 return nr_pages;
2077}
2078
e4443149
DJ
2079static void __init
2080deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2081 void *arg)
2082{
2083 unsigned long spfn, epfn;
2084 struct zone *zone = arg;
2085 u64 i;
2086
2087 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2088
2089 /*
2090 * Initialize and free pages in MAX_ORDER sized increments so that we
2091 * can avoid introducing any issues with the buddy allocator.
2092 */
2093 while (spfn < end_pfn) {
2094 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2095 cond_resched();
2096 }
2097}
2098
ecd09650
DJ
2099/* An arch may override for more concurrency. */
2100__weak int __init
2101deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2102{
2103 return 1;
2104}
2105
7e18adb4 2106/* Initialise remaining memory on a node */
0e1cc95b 2107static int __init deferred_init_memmap(void *data)
7e18adb4 2108{
0e1cc95b 2109 pg_data_t *pgdat = data;
0e56acae 2110 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 2111 unsigned long spfn = 0, epfn = 0;
0e56acae 2112 unsigned long first_init_pfn, flags;
7e18adb4 2113 unsigned long start = jiffies;
7e18adb4 2114 struct zone *zone;
e4443149 2115 int zid, max_threads;
2f47a91f 2116 u64 i;
7e18adb4 2117
3a2d7fa8
PT
2118 /* Bind memory initialisation thread to a local node if possible */
2119 if (!cpumask_empty(cpumask))
2120 set_cpus_allowed_ptr(current, cpumask);
2121
2122 pgdat_resize_lock(pgdat, &flags);
2123 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2124 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2125 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2126 pgdat_init_report_one_done();
0e1cc95b
MG
2127 return 0;
2128 }
2129
7e18adb4
MG
2130 /* Sanity check boundaries */
2131 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2132 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2133 pgdat->first_deferred_pfn = ULONG_MAX;
2134
3d060856
PT
2135 /*
2136 * Once we unlock here, the zone cannot be grown anymore, thus if an
2137 * interrupt thread must allocate this early in boot, zone must be
2138 * pre-grown prior to start of deferred page initialization.
2139 */
2140 pgdat_resize_unlock(pgdat, &flags);
2141
7e18adb4
MG
2142 /* Only the highest zone is deferred so find it */
2143 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2144 zone = pgdat->node_zones + zid;
2145 if (first_init_pfn < zone_end_pfn(zone))
2146 break;
2147 }
0e56acae
AD
2148
2149 /* If the zone is empty somebody else may have cleared out the zone */
2150 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2151 first_init_pfn))
2152 goto zone_empty;
7e18adb4 2153
ecd09650 2154 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2155
117003c3 2156 while (spfn < epfn) {
e4443149
DJ
2157 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2158 struct padata_mt_job job = {
2159 .thread_fn = deferred_init_memmap_chunk,
2160 .fn_arg = zone,
2161 .start = spfn,
2162 .size = epfn_align - spfn,
2163 .align = PAGES_PER_SECTION,
2164 .min_chunk = PAGES_PER_SECTION,
2165 .max_threads = max_threads,
2166 };
2167
2168 padata_do_multithreaded(&job);
2169 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2170 epfn_align);
117003c3 2171 }
0e56acae 2172zone_empty:
7e18adb4
MG
2173 /* Sanity check that the next zone really is unpopulated */
2174 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2175
89c7c402
DJ
2176 pr_info("node %d deferred pages initialised in %ums\n",
2177 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2178
2179 pgdat_init_report_one_done();
0e1cc95b
MG
2180 return 0;
2181}
c9e97a19 2182
c9e97a19
PT
2183/*
2184 * If this zone has deferred pages, try to grow it by initializing enough
2185 * deferred pages to satisfy the allocation specified by order, rounded up to
2186 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2187 * of SECTION_SIZE bytes by initializing struct pages in increments of
2188 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2189 *
2190 * Return true when zone was grown, otherwise return false. We return true even
2191 * when we grow less than requested, to let the caller decide if there are
2192 * enough pages to satisfy the allocation.
2193 *
2194 * Note: We use noinline because this function is needed only during boot, and
2195 * it is called from a __ref function _deferred_grow_zone. This way we are
2196 * making sure that it is not inlined into permanent text section.
2197 */
2198static noinline bool __init
2199deferred_grow_zone(struct zone *zone, unsigned int order)
2200{
c9e97a19 2201 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2202 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2203 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2204 unsigned long spfn, epfn, flags;
2205 unsigned long nr_pages = 0;
c9e97a19
PT
2206 u64 i;
2207
2208 /* Only the last zone may have deferred pages */
2209 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2210 return false;
2211
2212 pgdat_resize_lock(pgdat, &flags);
2213
c9e97a19
PT
2214 /*
2215 * If someone grew this zone while we were waiting for spinlock, return
2216 * true, as there might be enough pages already.
2217 */
2218 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2219 pgdat_resize_unlock(pgdat, &flags);
2220 return true;
2221 }
2222
0e56acae
AD
2223 /* If the zone is empty somebody else may have cleared out the zone */
2224 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2225 first_deferred_pfn)) {
2226 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2227 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2228 /* Retry only once. */
2229 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2230 }
2231
0e56acae
AD
2232 /*
2233 * Initialize and free pages in MAX_ORDER sized increments so
2234 * that we can avoid introducing any issues with the buddy
2235 * allocator.
2236 */
2237 while (spfn < epfn) {
2238 /* update our first deferred PFN for this section */
2239 first_deferred_pfn = spfn;
2240
2241 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2242 touch_nmi_watchdog();
c9e97a19 2243
0e56acae
AD
2244 /* We should only stop along section boundaries */
2245 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2246 continue;
c9e97a19 2247
0e56acae 2248 /* If our quota has been met we can stop here */
c9e97a19
PT
2249 if (nr_pages >= nr_pages_needed)
2250 break;
2251 }
2252
0e56acae 2253 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2254 pgdat_resize_unlock(pgdat, &flags);
2255
2256 return nr_pages > 0;
2257}
2258
2259/*
2260 * deferred_grow_zone() is __init, but it is called from
2261 * get_page_from_freelist() during early boot until deferred_pages permanently
2262 * disables this call. This is why we have refdata wrapper to avoid warning,
2263 * and to ensure that the function body gets unloaded.
2264 */
2265static bool __ref
2266_deferred_grow_zone(struct zone *zone, unsigned int order)
2267{
2268 return deferred_grow_zone(zone, order);
2269}
2270
7cf91a98 2271#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2272
2273void __init page_alloc_init_late(void)
2274{
7cf91a98 2275 struct zone *zone;
e900a918 2276 int nid;
7cf91a98
JK
2277
2278#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2279
d3cd131d
NS
2280 /* There will be num_node_state(N_MEMORY) threads */
2281 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2282 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2283 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2284 }
2285
2286 /* Block until all are initialised */
d3cd131d 2287 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2288
c9e97a19
PT
2289 /*
2290 * We initialized the rest of the deferred pages. Permanently disable
2291 * on-demand struct page initialization.
2292 */
2293 static_branch_disable(&deferred_pages);
2294
4248b0da
MG
2295 /* Reinit limits that are based on free pages after the kernel is up */
2296 files_maxfiles_init();
7cf91a98 2297#endif
350e88ba 2298
ba8f3587
LF
2299 buffer_init();
2300
3010f876
PT
2301 /* Discard memblock private memory */
2302 memblock_discard();
7cf91a98 2303
e900a918
DW
2304 for_each_node_state(nid, N_MEMORY)
2305 shuffle_free_memory(NODE_DATA(nid));
2306
7cf91a98
JK
2307 for_each_populated_zone(zone)
2308 set_zone_contiguous(zone);
7e18adb4 2309}
7e18adb4 2310
47118af0 2311#ifdef CONFIG_CMA
9cf510a5 2312/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2313void __init init_cma_reserved_pageblock(struct page *page)
2314{
2315 unsigned i = pageblock_nr_pages;
2316 struct page *p = page;
2317
2318 do {
2319 __ClearPageReserved(p);
2320 set_page_count(p, 0);
d883c6cf 2321 } while (++p, --i);
47118af0 2322
47118af0 2323 set_pageblock_migratetype(page, MIGRATE_CMA);
b3d40a2b
DH
2324 set_page_refcounted(page);
2325 __free_pages(page, pageblock_order);
dc78327c 2326
3dcc0571 2327 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2328 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2329}
2330#endif
1da177e4
LT
2331
2332/*
2333 * The order of subdivision here is critical for the IO subsystem.
2334 * Please do not alter this order without good reasons and regression
2335 * testing. Specifically, as large blocks of memory are subdivided,
2336 * the order in which smaller blocks are delivered depends on the order
2337 * they're subdivided in this function. This is the primary factor
2338 * influencing the order in which pages are delivered to the IO
2339 * subsystem according to empirical testing, and this is also justified
2340 * by considering the behavior of a buddy system containing a single
2341 * large block of memory acted on by a series of small allocations.
2342 * This behavior is a critical factor in sglist merging's success.
2343 *
6d49e352 2344 * -- nyc
1da177e4 2345 */
085cc7d5 2346static inline void expand(struct zone *zone, struct page *page,
6ab01363 2347 int low, int high, int migratetype)
1da177e4
LT
2348{
2349 unsigned long size = 1 << high;
2350
2351 while (high > low) {
1da177e4
LT
2352 high--;
2353 size >>= 1;
309381fe 2354 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2355
acbc15a4
JK
2356 /*
2357 * Mark as guard pages (or page), that will allow to
2358 * merge back to allocator when buddy will be freed.
2359 * Corresponding page table entries will not be touched,
2360 * pages will stay not present in virtual address space
2361 */
2362 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2363 continue;
acbc15a4 2364
6ab01363 2365 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2366 set_buddy_order(&page[size], high);
1da177e4 2367 }
1da177e4
LT
2368}
2369
4e611801 2370static void check_new_page_bad(struct page *page)
1da177e4 2371{
f4c18e6f 2372 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2373 /* Don't complain about hwpoisoned pages */
2374 page_mapcount_reset(page); /* remove PageBuddy */
2375 return;
f4c18e6f 2376 }
58b7f119
WY
2377
2378 bad_page(page,
2379 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2380}
2381
2382/*
2383 * This page is about to be returned from the page allocator
2384 */
2385static inline int check_new_page(struct page *page)
2386{
2387 if (likely(page_expected_state(page,
2388 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2389 return 0;
2390
2391 check_new_page_bad(page);
2392 return 1;
2a7684a2
WF
2393}
2394
77fe7f13
MG
2395static bool check_new_pages(struct page *page, unsigned int order)
2396{
2397 int i;
2398 for (i = 0; i < (1 << order); i++) {
2399 struct page *p = page + i;
2400
2401 if (unlikely(check_new_page(p)))
2402 return true;
2403 }
2404
2405 return false;
2406}
2407
479f854a 2408#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2409/*
2410 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2411 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2412 * also checked when pcp lists are refilled from the free lists.
2413 */
77fe7f13 2414static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2415{
8e57f8ac 2416 if (debug_pagealloc_enabled_static())
77fe7f13 2417 return check_new_pages(page, order);
4462b32c
VB
2418 else
2419 return false;
479f854a
MG
2420}
2421
77fe7f13 2422static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2423{
77fe7f13 2424 return check_new_pages(page, order);
479f854a
MG
2425}
2426#else
4462b32c
VB
2427/*
2428 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2429 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2430 * enabled, they are also checked when being allocated from the pcp lists.
2431 */
77fe7f13 2432static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2433{
77fe7f13 2434 return check_new_pages(page, order);
479f854a 2435}
77fe7f13 2436static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2437{
8e57f8ac 2438 if (debug_pagealloc_enabled_static())
77fe7f13 2439 return check_new_pages(page, order);
4462b32c
VB
2440 else
2441 return false;
479f854a
MG
2442}
2443#endif /* CONFIG_DEBUG_VM */
2444
6d05141a 2445static inline bool should_skip_kasan_unpoison(gfp_t flags)
53ae233c
AK
2446{
2447 /* Don't skip if a software KASAN mode is enabled. */
2448 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2449 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2450 return false;
2451
2452 /* Skip, if hardware tag-based KASAN is not enabled. */
2453 if (!kasan_hw_tags_enabled())
2454 return true;
2455
2456 /*
6d05141a
CM
2457 * With hardware tag-based KASAN enabled, skip if this has been
2458 * requested via __GFP_SKIP_KASAN_UNPOISON.
53ae233c 2459 */
6d05141a 2460 return flags & __GFP_SKIP_KASAN_UNPOISON;
53ae233c
AK
2461}
2462
9353ffa6
AK
2463static inline bool should_skip_init(gfp_t flags)
2464{
2465 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2466 if (!kasan_hw_tags_enabled())
2467 return false;
2468
2469 /* For hardware tag-based KASAN, skip if requested. */
2470 return (flags & __GFP_SKIP_ZERO);
2471}
2472
46f24fd8
JK
2473inline void post_alloc_hook(struct page *page, unsigned int order,
2474 gfp_t gfp_flags)
2475{
9353ffa6
AK
2476 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2477 !should_skip_init(gfp_flags);
44383cef
AK
2478 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2479 bool reset_tags = !zero_tags;
70c248ac 2480 int i;
b42090ae 2481
46f24fd8
JK
2482 set_page_private(page, 0);
2483 set_page_refcounted(page);
2484
2485 arch_alloc_page(page, order);
77bc7fd6 2486 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2487
2488 /*
2489 * Page unpoisoning must happen before memory initialization.
2490 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2491 * allocations and the page unpoisoning code will complain.
2492 */
8db26a3d 2493 kernel_unpoison_pages(page, 1 << order);
862b6dee 2494
1bb5eab3
AK
2495 /*
2496 * As memory initialization might be integrated into KASAN,
b42090ae 2497 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
2498 * kept together to avoid discrepancies in behavior.
2499 */
9294b128
AK
2500
2501 /*
44383cef
AK
2502 * If memory tags should be zeroed
2503 * (which happens only when memory should be initialized as well).
9294b128 2504 */
44383cef 2505 if (zero_tags) {
9294b128
AK
2506 /* Initialize both memory and tags. */
2507 for (i = 0; i != 1 << order; ++i)
2508 tag_clear_highpage(page + i);
2509
44383cef 2510 /* Take note that memory was initialized by the loop above. */
9294b128
AK
2511 init = false;
2512 }
6d05141a 2513 if (!should_skip_kasan_unpoison(gfp_flags)) {
44383cef
AK
2514 /* Try unpoisoning (or setting tags) and initializing memory. */
2515 if (kasan_unpoison_pages(page, order, init)) {
2516 /* Take note that memory was initialized by KASAN. */
2517 if (kasan_has_integrated_init())
2518 init = false;
2519 /* Take note that memory tags were set by KASAN. */
2520 reset_tags = false;
2521 } else {
2522 /*
2523 * KASAN decided to exclude this allocation from being
2524 * poisoned due to sampling. Skip poisoning as well.
2525 */
2526 SetPageSkipKASanPoison(page);
2527 }
2528 }
2529 /*
2530 * If memory tags have not been set, reset the page tags to ensure
2531 * page_address() dereferencing does not fault.
2532 */
2533 if (reset_tags) {
70c248ac
CM
2534 for (i = 0; i != 1 << order; ++i)
2535 page_kasan_tag_reset(page + i);
7a3b8353 2536 }
44383cef 2537 /* If memory is still not initialized, initialize it now. */
7e3cbba6 2538 if (init)
aeaec8e2 2539 kernel_init_pages(page, 1 << order);
89b27116
AK
2540 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2541 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2542 SetPageSkipKASanPoison(page);
1bb5eab3
AK
2543
2544 set_page_owner(page, order, gfp_flags);
df4e817b 2545 page_table_check_alloc(page, order);
46f24fd8
JK
2546}
2547
479f854a 2548static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2549 unsigned int alloc_flags)
2a7684a2 2550{
46f24fd8 2551 post_alloc_hook(page, order, gfp_flags);
17cf4406 2552
17cf4406
NP
2553 if (order && (gfp_flags & __GFP_COMP))
2554 prep_compound_page(page, order);
2555
75379191 2556 /*
2f064f34 2557 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2558 * allocate the page. The expectation is that the caller is taking
2559 * steps that will free more memory. The caller should avoid the page
2560 * being used for !PFMEMALLOC purposes.
2561 */
2f064f34
MH
2562 if (alloc_flags & ALLOC_NO_WATERMARKS)
2563 set_page_pfmemalloc(page);
2564 else
2565 clear_page_pfmemalloc(page);
1da177e4
LT
2566}
2567
56fd56b8
MG
2568/*
2569 * Go through the free lists for the given migratetype and remove
2570 * the smallest available page from the freelists
2571 */
85ccc8fa 2572static __always_inline
728ec980 2573struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2574 int migratetype)
2575{
2576 unsigned int current_order;
b8af2941 2577 struct free_area *area;
56fd56b8
MG
2578 struct page *page;
2579
2580 /* Find a page of the appropriate size in the preferred list */
2581 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2582 area = &(zone->free_area[current_order]);
b03641af 2583 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2584 if (!page)
2585 continue;
6ab01363
AD
2586 del_page_from_free_list(page, zone, current_order);
2587 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2588 set_pcppage_migratetype(page, migratetype);
10e0f753
WY
2589 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2590 pcp_allowed_order(order) &&
2591 migratetype < MIGRATE_PCPTYPES);
56fd56b8
MG
2592 return page;
2593 }
2594
2595 return NULL;
2596}
2597
2598
b2a0ac88
MG
2599/*
2600 * This array describes the order lists are fallen back to when
2601 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
2602 *
2603 * The other migratetypes do not have fallbacks.
b2a0ac88 2604 */
da415663 2605static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2606 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2607 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2608 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
b2a0ac88
MG
2609};
2610
dc67647b 2611#ifdef CONFIG_CMA
85ccc8fa 2612static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2613 unsigned int order)
2614{
2615 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2616}
2617#else
2618static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2619 unsigned int order) { return NULL; }
2620#endif
2621
c361be55 2622/*
293ffa5e 2623 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2624 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2625 * boundary. If alignment is required, use move_freepages_block()
2626 */
02aa0cdd 2627static int move_freepages(struct zone *zone,
39ddb991 2628 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2629 int migratetype, int *num_movable)
c361be55
MG
2630{
2631 struct page *page;
39ddb991 2632 unsigned long pfn;
d00181b9 2633 unsigned int order;
d100313f 2634 int pages_moved = 0;
c361be55 2635
39ddb991 2636 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2637 page = pfn_to_page(pfn);
c361be55 2638 if (!PageBuddy(page)) {
02aa0cdd
VB
2639 /*
2640 * We assume that pages that could be isolated for
2641 * migration are movable. But we don't actually try
2642 * isolating, as that would be expensive.
2643 */
2644 if (num_movable &&
2645 (PageLRU(page) || __PageMovable(page)))
2646 (*num_movable)++;
39ddb991 2647 pfn++;
c361be55
MG
2648 continue;
2649 }
2650
cd961038
DR
2651 /* Make sure we are not inadvertently changing nodes */
2652 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2653 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2654
ab130f91 2655 order = buddy_order(page);
6ab01363 2656 move_to_free_list(page, zone, order, migratetype);
39ddb991 2657 pfn += 1 << order;
d100313f 2658 pages_moved += 1 << order;
c361be55
MG
2659 }
2660
d100313f 2661 return pages_moved;
c361be55
MG
2662}
2663
ee6f509c 2664int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2665 int migratetype, int *num_movable)
c361be55 2666{
39ddb991 2667 unsigned long start_pfn, end_pfn, pfn;
c361be55 2668
4a222127
DR
2669 if (num_movable)
2670 *num_movable = 0;
2671
39ddb991 2672 pfn = page_to_pfn(page);
4f9bc69a
KW
2673 start_pfn = pageblock_start_pfn(pfn);
2674 end_pfn = pageblock_end_pfn(pfn) - 1;
c361be55
MG
2675
2676 /* Do not cross zone boundaries */
108bcc96 2677 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2678 start_pfn = pfn;
108bcc96 2679 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2680 return 0;
2681
39ddb991 2682 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2683 num_movable);
c361be55
MG
2684}
2685
2f66a68f
MG
2686static void change_pageblock_range(struct page *pageblock_page,
2687 int start_order, int migratetype)
2688{
2689 int nr_pageblocks = 1 << (start_order - pageblock_order);
2690
2691 while (nr_pageblocks--) {
2692 set_pageblock_migratetype(pageblock_page, migratetype);
2693 pageblock_page += pageblock_nr_pages;
2694 }
2695}
2696
fef903ef 2697/*
9c0415eb
VB
2698 * When we are falling back to another migratetype during allocation, try to
2699 * steal extra free pages from the same pageblocks to satisfy further
2700 * allocations, instead of polluting multiple pageblocks.
2701 *
2702 * If we are stealing a relatively large buddy page, it is likely there will
2703 * be more free pages in the pageblock, so try to steal them all. For
2704 * reclaimable and unmovable allocations, we steal regardless of page size,
2705 * as fragmentation caused by those allocations polluting movable pageblocks
2706 * is worse than movable allocations stealing from unmovable and reclaimable
2707 * pageblocks.
fef903ef 2708 */
4eb7dce6
JK
2709static bool can_steal_fallback(unsigned int order, int start_mt)
2710{
2711 /*
2712 * Leaving this order check is intended, although there is
2713 * relaxed order check in next check. The reason is that
2714 * we can actually steal whole pageblock if this condition met,
2715 * but, below check doesn't guarantee it and that is just heuristic
2716 * so could be changed anytime.
2717 */
2718 if (order >= pageblock_order)
2719 return true;
2720
2721 if (order >= pageblock_order / 2 ||
2722 start_mt == MIGRATE_RECLAIMABLE ||
2723 start_mt == MIGRATE_UNMOVABLE ||
2724 page_group_by_mobility_disabled)
2725 return true;
2726
2727 return false;
2728}
2729
597c8920 2730static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2731{
2732 unsigned long max_boost;
2733
2734 if (!watermark_boost_factor)
597c8920 2735 return false;
14f69140
HW
2736 /*
2737 * Don't bother in zones that are unlikely to produce results.
2738 * On small machines, including kdump capture kernels running
2739 * in a small area, boosting the watermark can cause an out of
2740 * memory situation immediately.
2741 */
2742 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2743 return false;
1c30844d
MG
2744
2745 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2746 watermark_boost_factor, 10000);
94b3334c
MG
2747
2748 /*
2749 * high watermark may be uninitialised if fragmentation occurs
2750 * very early in boot so do not boost. We do not fall
2751 * through and boost by pageblock_nr_pages as failing
2752 * allocations that early means that reclaim is not going
2753 * to help and it may even be impossible to reclaim the
2754 * boosted watermark resulting in a hang.
2755 */
2756 if (!max_boost)
597c8920 2757 return false;
94b3334c 2758
1c30844d
MG
2759 max_boost = max(pageblock_nr_pages, max_boost);
2760
2761 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2762 max_boost);
597c8920
JW
2763
2764 return true;
1c30844d
MG
2765}
2766
4eb7dce6
JK
2767/*
2768 * This function implements actual steal behaviour. If order is large enough,
2769 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2770 * pageblock to our migratetype and determine how many already-allocated pages
2771 * are there in the pageblock with a compatible migratetype. If at least half
2772 * of pages are free or compatible, we can change migratetype of the pageblock
2773 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2774 */
2775static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2776 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2777{
ab130f91 2778 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2779 int free_pages, movable_pages, alike_pages;
2780 int old_block_type;
2781
2782 old_block_type = get_pageblock_migratetype(page);
fef903ef 2783
3bc48f96
VB
2784 /*
2785 * This can happen due to races and we want to prevent broken
2786 * highatomic accounting.
2787 */
02aa0cdd 2788 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2789 goto single_page;
2790
fef903ef
SB
2791 /* Take ownership for orders >= pageblock_order */
2792 if (current_order >= pageblock_order) {
2793 change_pageblock_range(page, current_order, start_type);
3bc48f96 2794 goto single_page;
fef903ef
SB
2795 }
2796
1c30844d
MG
2797 /*
2798 * Boost watermarks to increase reclaim pressure to reduce the
2799 * likelihood of future fallbacks. Wake kswapd now as the node
2800 * may be balanced overall and kswapd will not wake naturally.
2801 */
597c8920 2802 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2803 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2804
3bc48f96
VB
2805 /* We are not allowed to try stealing from the whole block */
2806 if (!whole_block)
2807 goto single_page;
2808
02aa0cdd
VB
2809 free_pages = move_freepages_block(zone, page, start_type,
2810 &movable_pages);
2811 /*
2812 * Determine how many pages are compatible with our allocation.
2813 * For movable allocation, it's the number of movable pages which
2814 * we just obtained. For other types it's a bit more tricky.
2815 */
2816 if (start_type == MIGRATE_MOVABLE) {
2817 alike_pages = movable_pages;
2818 } else {
2819 /*
2820 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2821 * to MOVABLE pageblock, consider all non-movable pages as
2822 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2823 * vice versa, be conservative since we can't distinguish the
2824 * exact migratetype of non-movable pages.
2825 */
2826 if (old_block_type == MIGRATE_MOVABLE)
2827 alike_pages = pageblock_nr_pages
2828 - (free_pages + movable_pages);
2829 else
2830 alike_pages = 0;
2831 }
2832
3bc48f96 2833 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2834 if (!free_pages)
3bc48f96 2835 goto single_page;
fef903ef 2836
02aa0cdd
VB
2837 /*
2838 * If a sufficient number of pages in the block are either free or of
2839 * comparable migratability as our allocation, claim the whole block.
2840 */
2841 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2842 page_group_by_mobility_disabled)
2843 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2844
2845 return;
2846
2847single_page:
6ab01363 2848 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2849}
2850
2149cdae
JK
2851/*
2852 * Check whether there is a suitable fallback freepage with requested order.
2853 * If only_stealable is true, this function returns fallback_mt only if
2854 * we can steal other freepages all together. This would help to reduce
2855 * fragmentation due to mixed migratetype pages in one pageblock.
2856 */
2857int find_suitable_fallback(struct free_area *area, unsigned int order,
2858 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2859{
2860 int i;
2861 int fallback_mt;
2862
2863 if (area->nr_free == 0)
2864 return -1;
2865
2866 *can_steal = false;
2867 for (i = 0;; i++) {
2868 fallback_mt = fallbacks[migratetype][i];
974a786e 2869 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2870 break;
2871
b03641af 2872 if (free_area_empty(area, fallback_mt))
4eb7dce6 2873 continue;
fef903ef 2874
4eb7dce6
JK
2875 if (can_steal_fallback(order, migratetype))
2876 *can_steal = true;
2877
2149cdae
JK
2878 if (!only_stealable)
2879 return fallback_mt;
2880
2881 if (*can_steal)
2882 return fallback_mt;
fef903ef 2883 }
4eb7dce6
JK
2884
2885 return -1;
fef903ef
SB
2886}
2887
0aaa29a5
MG
2888/*
2889 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2890 * there are no empty page blocks that contain a page with a suitable order
2891 */
2892static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2893 unsigned int alloc_order)
2894{
2895 int mt;
2896 unsigned long max_managed, flags;
2897
2898 /*
2899 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2900 * Check is race-prone but harmless.
2901 */
9705bea5 2902 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2903 if (zone->nr_reserved_highatomic >= max_managed)
2904 return;
2905
2906 spin_lock_irqsave(&zone->lock, flags);
2907
2908 /* Recheck the nr_reserved_highatomic limit under the lock */
2909 if (zone->nr_reserved_highatomic >= max_managed)
2910 goto out_unlock;
2911
2912 /* Yoink! */
2913 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2914 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2915 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
2916 zone->nr_reserved_highatomic += pageblock_nr_pages;
2917 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2918 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2919 }
2920
2921out_unlock:
2922 spin_unlock_irqrestore(&zone->lock, flags);
2923}
2924
2925/*
2926 * Used when an allocation is about to fail under memory pressure. This
2927 * potentially hurts the reliability of high-order allocations when under
2928 * intense memory pressure but failed atomic allocations should be easier
2929 * to recover from than an OOM.
29fac03b
MK
2930 *
2931 * If @force is true, try to unreserve a pageblock even though highatomic
2932 * pageblock is exhausted.
0aaa29a5 2933 */
29fac03b
MK
2934static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2935 bool force)
0aaa29a5
MG
2936{
2937 struct zonelist *zonelist = ac->zonelist;
2938 unsigned long flags;
2939 struct zoneref *z;
2940 struct zone *zone;
2941 struct page *page;
2942 int order;
04c8716f 2943 bool ret;
0aaa29a5 2944
97a225e6 2945 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2946 ac->nodemask) {
29fac03b
MK
2947 /*
2948 * Preserve at least one pageblock unless memory pressure
2949 * is really high.
2950 */
2951 if (!force && zone->nr_reserved_highatomic <=
2952 pageblock_nr_pages)
0aaa29a5
MG
2953 continue;
2954
2955 spin_lock_irqsave(&zone->lock, flags);
2956 for (order = 0; order < MAX_ORDER; order++) {
2957 struct free_area *area = &(zone->free_area[order]);
2958
b03641af 2959 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2960 if (!page)
0aaa29a5
MG
2961 continue;
2962
0aaa29a5 2963 /*
4855e4a7
MK
2964 * In page freeing path, migratetype change is racy so
2965 * we can counter several free pages in a pageblock
f0953a1b 2966 * in this loop although we changed the pageblock type
4855e4a7
MK
2967 * from highatomic to ac->migratetype. So we should
2968 * adjust the count once.
0aaa29a5 2969 */
a6ffdc07 2970 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2971 /*
2972 * It should never happen but changes to
2973 * locking could inadvertently allow a per-cpu
2974 * drain to add pages to MIGRATE_HIGHATOMIC
2975 * while unreserving so be safe and watch for
2976 * underflows.
2977 */
2978 zone->nr_reserved_highatomic -= min(
2979 pageblock_nr_pages,
2980 zone->nr_reserved_highatomic);
2981 }
0aaa29a5
MG
2982
2983 /*
2984 * Convert to ac->migratetype and avoid the normal
2985 * pageblock stealing heuristics. Minimally, the caller
2986 * is doing the work and needs the pages. More
2987 * importantly, if the block was always converted to
2988 * MIGRATE_UNMOVABLE or another type then the number
2989 * of pageblocks that cannot be completely freed
2990 * may increase.
2991 */
2992 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2993 ret = move_freepages_block(zone, page, ac->migratetype,
2994 NULL);
29fac03b
MK
2995 if (ret) {
2996 spin_unlock_irqrestore(&zone->lock, flags);
2997 return ret;
2998 }
0aaa29a5
MG
2999 }
3000 spin_unlock_irqrestore(&zone->lock, flags);
3001 }
04c8716f
MK
3002
3003 return false;
0aaa29a5
MG
3004}
3005
3bc48f96
VB
3006/*
3007 * Try finding a free buddy page on the fallback list and put it on the free
3008 * list of requested migratetype, possibly along with other pages from the same
3009 * block, depending on fragmentation avoidance heuristics. Returns true if
3010 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
3011 *
3012 * The use of signed ints for order and current_order is a deliberate
3013 * deviation from the rest of this file, to make the for loop
3014 * condition simpler.
3bc48f96 3015 */
85ccc8fa 3016static __always_inline bool
6bb15450
MG
3017__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3018 unsigned int alloc_flags)
b2a0ac88 3019{
b8af2941 3020 struct free_area *area;
b002529d 3021 int current_order;
6bb15450 3022 int min_order = order;
b2a0ac88 3023 struct page *page;
4eb7dce6
JK
3024 int fallback_mt;
3025 bool can_steal;
b2a0ac88 3026
6bb15450
MG
3027 /*
3028 * Do not steal pages from freelists belonging to other pageblocks
3029 * i.e. orders < pageblock_order. If there are no local zones free,
3030 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3031 */
e933dc4a 3032 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
6bb15450
MG
3033 min_order = pageblock_order;
3034
7a8f58f3
VB
3035 /*
3036 * Find the largest available free page in the other list. This roughly
3037 * approximates finding the pageblock with the most free pages, which
3038 * would be too costly to do exactly.
3039 */
6bb15450 3040 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 3041 --current_order) {
4eb7dce6
JK
3042 area = &(zone->free_area[current_order]);
3043 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 3044 start_migratetype, false, &can_steal);
4eb7dce6
JK
3045 if (fallback_mt == -1)
3046 continue;
b2a0ac88 3047
7a8f58f3
VB
3048 /*
3049 * We cannot steal all free pages from the pageblock and the
3050 * requested migratetype is movable. In that case it's better to
3051 * steal and split the smallest available page instead of the
3052 * largest available page, because even if the next movable
3053 * allocation falls back into a different pageblock than this
3054 * one, it won't cause permanent fragmentation.
3055 */
3056 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3057 && current_order > order)
3058 goto find_smallest;
b2a0ac88 3059
7a8f58f3
VB
3060 goto do_steal;
3061 }
e0fff1bd 3062
7a8f58f3 3063 return false;
e0fff1bd 3064
7a8f58f3
VB
3065find_smallest:
3066 for (current_order = order; current_order < MAX_ORDER;
3067 current_order++) {
3068 area = &(zone->free_area[current_order]);
3069 fallback_mt = find_suitable_fallback(area, current_order,
3070 start_migratetype, false, &can_steal);
3071 if (fallback_mt != -1)
3072 break;
b2a0ac88
MG
3073 }
3074
7a8f58f3
VB
3075 /*
3076 * This should not happen - we already found a suitable fallback
3077 * when looking for the largest page.
3078 */
3079 VM_BUG_ON(current_order == MAX_ORDER);
3080
3081do_steal:
b03641af 3082 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 3083
1c30844d
MG
3084 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3085 can_steal);
7a8f58f3
VB
3086
3087 trace_mm_page_alloc_extfrag(page, order, current_order,
3088 start_migratetype, fallback_mt);
3089
3090 return true;
3091
b2a0ac88
MG
3092}
3093
56fd56b8 3094/*
1da177e4
LT
3095 * Do the hard work of removing an element from the buddy allocator.
3096 * Call me with the zone->lock already held.
3097 */
85ccc8fa 3098static __always_inline struct page *
6bb15450
MG
3099__rmqueue(struct zone *zone, unsigned int order, int migratetype,
3100 unsigned int alloc_flags)
1da177e4 3101{
1da177e4
LT
3102 struct page *page;
3103
ce8f86ee
H
3104 if (IS_ENABLED(CONFIG_CMA)) {
3105 /*
3106 * Balance movable allocations between regular and CMA areas by
3107 * allocating from CMA when over half of the zone's free memory
3108 * is in the CMA area.
3109 */
3110 if (alloc_flags & ALLOC_CMA &&
3111 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3112 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3113 page = __rmqueue_cma_fallback(zone, order);
3114 if (page)
10e0f753 3115 return page;
ce8f86ee 3116 }
16867664 3117 }
3bc48f96 3118retry:
56fd56b8 3119 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 3120 if (unlikely(!page)) {
8510e69c 3121 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
3122 page = __rmqueue_cma_fallback(zone, order);
3123
6bb15450
MG
3124 if (!page && __rmqueue_fallback(zone, order, migratetype,
3125 alloc_flags))
3bc48f96 3126 goto retry;
728ec980 3127 }
b2a0ac88 3128 return page;
1da177e4
LT
3129}
3130
5f63b720 3131/*
1da177e4
LT
3132 * Obtain a specified number of elements from the buddy allocator, all under
3133 * a single hold of the lock, for efficiency. Add them to the supplied list.
3134 * Returns the number of new pages which were placed at *list.
3135 */
5f63b720 3136static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 3137 unsigned long count, struct list_head *list,
6bb15450 3138 int migratetype, unsigned int alloc_flags)
1da177e4 3139{
57490774 3140 unsigned long flags;
cb66bede 3141 int i, allocated = 0;
5f63b720 3142
57490774 3143 spin_lock_irqsave(&zone->lock, flags);
1da177e4 3144 for (i = 0; i < count; ++i) {
6bb15450
MG
3145 struct page *page = __rmqueue(zone, order, migratetype,
3146 alloc_flags);
085cc7d5 3147 if (unlikely(page == NULL))
1da177e4 3148 break;
81eabcbe 3149
77fe7f13 3150 if (unlikely(check_pcp_refill(page, order)))
479f854a
MG
3151 continue;
3152
81eabcbe 3153 /*
0fac3ba5
VB
3154 * Split buddy pages returned by expand() are received here in
3155 * physical page order. The page is added to the tail of
3156 * caller's list. From the callers perspective, the linked list
3157 * is ordered by page number under some conditions. This is
3158 * useful for IO devices that can forward direction from the
3159 * head, thus also in the physical page order. This is useful
3160 * for IO devices that can merge IO requests if the physical
3161 * pages are ordered properly.
81eabcbe 3162 */
bf75f200 3163 list_add_tail(&page->pcp_list, list);
cb66bede 3164 allocated++;
bb14c2c7 3165 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3166 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3167 -(1 << order));
1da177e4 3168 }
a6de734b
MG
3169
3170 /*
3171 * i pages were removed from the buddy list even if some leak due
3172 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3173 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3174 * pages added to the pcp list.
3175 */
f2260e6b 3176 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
57490774 3177 spin_unlock_irqrestore(&zone->lock, flags);
cb66bede 3178 return allocated;
1da177e4
LT
3179}
3180
4ae7c039 3181#ifdef CONFIG_NUMA
8fce4d8e 3182/*
4037d452
CL
3183 * Called from the vmstat counter updater to drain pagesets of this
3184 * currently executing processor on remote nodes after they have
3185 * expired.
8fce4d8e 3186 */
4037d452 3187void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3188{
7be12fc9 3189 int to_drain, batch;
4ae7c039 3190
4db0c3c2 3191 batch = READ_ONCE(pcp->batch);
7be12fc9 3192 to_drain = min(pcp->count, batch);
4b23a68f 3193 if (to_drain > 0) {
57490774 3194 spin_lock(&pcp->lock);
fd56eef2 3195 free_pcppages_bulk(zone, to_drain, pcp, 0);
57490774 3196 spin_unlock(&pcp->lock);
4b23a68f 3197 }
4ae7c039
CL
3198}
3199#endif
3200
9f8f2172 3201/*
93481ff0 3202 * Drain pcplists of the indicated processor and zone.
9f8f2172 3203 */
93481ff0 3204static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3205{
93481ff0 3206 struct per_cpu_pages *pcp;
1da177e4 3207
28f836b6 3208 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
4b23a68f 3209 if (pcp->count) {
57490774 3210 spin_lock(&pcp->lock);
4b23a68f 3211 free_pcppages_bulk(zone, pcp->count, pcp, 0);
57490774 3212 spin_unlock(&pcp->lock);
4b23a68f 3213 }
93481ff0 3214}
3dfa5721 3215
93481ff0
VB
3216/*
3217 * Drain pcplists of all zones on the indicated processor.
93481ff0
VB
3218 */
3219static void drain_pages(unsigned int cpu)
3220{
3221 struct zone *zone;
3222
3223 for_each_populated_zone(zone) {
3224 drain_pages_zone(cpu, zone);
1da177e4
LT
3225 }
3226}
1da177e4 3227
9f8f2172
CL
3228/*
3229 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3230 */
93481ff0 3231void drain_local_pages(struct zone *zone)
9f8f2172 3232{
93481ff0
VB
3233 int cpu = smp_processor_id();
3234
3235 if (zone)
3236 drain_pages_zone(cpu, zone);
3237 else
3238 drain_pages(cpu);
9f8f2172
CL
3239}
3240
3241/*
ec6e8c7e
VB
3242 * The implementation of drain_all_pages(), exposing an extra parameter to
3243 * drain on all cpus.
93481ff0 3244 *
ec6e8c7e
VB
3245 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3246 * not empty. The check for non-emptiness can however race with a free to
3247 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3248 * that need the guarantee that every CPU has drained can disable the
3249 * optimizing racy check.
9f8f2172 3250 */
3b1f3658 3251static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3252{
74046494 3253 int cpu;
74046494
GBY
3254
3255 /*
041711ce 3256 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3257 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3258 */
3259 static cpumask_t cpus_with_pcps;
3260
bd233f53
MG
3261 /*
3262 * Do not drain if one is already in progress unless it's specific to
3263 * a zone. Such callers are primarily CMA and memory hotplug and need
3264 * the drain to be complete when the call returns.
3265 */
3266 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3267 if (!zone)
3268 return;
3269 mutex_lock(&pcpu_drain_mutex);
3270 }
0ccce3b9 3271
74046494
GBY
3272 /*
3273 * We don't care about racing with CPU hotplug event
3274 * as offline notification will cause the notified
3275 * cpu to drain that CPU pcps and on_each_cpu_mask
3276 * disables preemption as part of its processing
3277 */
3278 for_each_online_cpu(cpu) {
28f836b6 3279 struct per_cpu_pages *pcp;
93481ff0 3280 struct zone *z;
74046494 3281 bool has_pcps = false;
93481ff0 3282
ec6e8c7e
VB
3283 if (force_all_cpus) {
3284 /*
3285 * The pcp.count check is racy, some callers need a
3286 * guarantee that no cpu is missed.
3287 */
3288 has_pcps = true;
3289 } else if (zone) {
28f836b6
MG
3290 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3291 if (pcp->count)
74046494 3292 has_pcps = true;
93481ff0
VB
3293 } else {
3294 for_each_populated_zone(z) {
28f836b6
MG
3295 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3296 if (pcp->count) {
93481ff0
VB
3297 has_pcps = true;
3298 break;
3299 }
74046494
GBY
3300 }
3301 }
93481ff0 3302
74046494
GBY
3303 if (has_pcps)
3304 cpumask_set_cpu(cpu, &cpus_with_pcps);
3305 else
3306 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3307 }
0ccce3b9 3308
bd233f53 3309 for_each_cpu(cpu, &cpus_with_pcps) {
443c2acc
NSJ
3310 if (zone)
3311 drain_pages_zone(cpu, zone);
3312 else
3313 drain_pages(cpu);
0ccce3b9 3314 }
bd233f53
MG
3315
3316 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3317}
3318
ec6e8c7e
VB
3319/*
3320 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3321 *
3322 * When zone parameter is non-NULL, spill just the single zone's pages.
ec6e8c7e
VB
3323 */
3324void drain_all_pages(struct zone *zone)
3325{
3326 __drain_all_pages(zone, false);
3327}
3328
296699de 3329#ifdef CONFIG_HIBERNATION
1da177e4 3330
556b969a
CY
3331/*
3332 * Touch the watchdog for every WD_PAGE_COUNT pages.
3333 */
3334#define WD_PAGE_COUNT (128*1024)
3335
1da177e4
LT
3336void mark_free_pages(struct zone *zone)
3337{
556b969a 3338 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3339 unsigned long flags;
7aeb09f9 3340 unsigned int order, t;
86760a2c 3341 struct page *page;
1da177e4 3342
8080fc03 3343 if (zone_is_empty(zone))
1da177e4
LT
3344 return;
3345
3346 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3347
108bcc96 3348 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3349 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3350 if (pfn_valid(pfn)) {
86760a2c 3351 page = pfn_to_page(pfn);
ba6b0979 3352
556b969a
CY
3353 if (!--page_count) {
3354 touch_nmi_watchdog();
3355 page_count = WD_PAGE_COUNT;
3356 }
3357
ba6b0979
JK
3358 if (page_zone(page) != zone)
3359 continue;
3360
7be98234
RW
3361 if (!swsusp_page_is_forbidden(page))
3362 swsusp_unset_page_free(page);
f623f0db 3363 }
1da177e4 3364
b2a0ac88 3365 for_each_migratetype_order(order, t) {
86760a2c 3366 list_for_each_entry(page,
bf75f200 3367 &zone->free_area[order].free_list[t], buddy_list) {
f623f0db 3368 unsigned long i;
1da177e4 3369
86760a2c 3370 pfn = page_to_pfn(page);
556b969a
CY
3371 for (i = 0; i < (1UL << order); i++) {
3372 if (!--page_count) {
3373 touch_nmi_watchdog();
3374 page_count = WD_PAGE_COUNT;
3375 }
7be98234 3376 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3377 }
f623f0db 3378 }
b2a0ac88 3379 }
1da177e4
LT
3380 spin_unlock_irqrestore(&zone->lock, flags);
3381}
e2c55dc8 3382#endif /* CONFIG_PM */
1da177e4 3383
44042b44
MG
3384static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3385 unsigned int order)
1da177e4 3386{
5f8dcc21 3387 int migratetype;
1da177e4 3388
44042b44 3389 if (!free_pcp_prepare(page, order))
9cca35d4 3390 return false;
689bcebf 3391
dc4b0caf 3392 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3393 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3394 return true;
3395}
3396
f26b3fa0
MG
3397static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3398 bool free_high)
3b12e7e9
MG
3399{
3400 int min_nr_free, max_nr_free;
3401
f26b3fa0
MG
3402 /* Free everything if batch freeing high-order pages. */
3403 if (unlikely(free_high))
3404 return pcp->count;
3405
3b12e7e9
MG
3406 /* Check for PCP disabled or boot pageset */
3407 if (unlikely(high < batch))
3408 return 1;
3409
3410 /* Leave at least pcp->batch pages on the list */
3411 min_nr_free = batch;
3412 max_nr_free = high - batch;
3413
3414 /*
3415 * Double the number of pages freed each time there is subsequent
3416 * freeing of pages without any allocation.
3417 */
3418 batch <<= pcp->free_factor;
3419 if (batch < max_nr_free)
3420 pcp->free_factor++;
3421 batch = clamp(batch, min_nr_free, max_nr_free);
3422
3423 return batch;
3424}
3425
f26b3fa0
MG
3426static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3427 bool free_high)
c49c2c47
MG
3428{
3429 int high = READ_ONCE(pcp->high);
3430
f26b3fa0 3431 if (unlikely(!high || free_high))
c49c2c47
MG
3432 return 0;
3433
3434 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3435 return high;
3436
3437 /*
3438 * If reclaim is active, limit the number of pages that can be
3439 * stored on pcp lists
3440 */
3441 return min(READ_ONCE(pcp->batch) << 2, high);
3442}
3443
4b23a68f
MG
3444static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3445 struct page *page, int migratetype,
56651377 3446 unsigned int order)
9cca35d4 3447{
3b12e7e9 3448 int high;
44042b44 3449 int pindex;
f26b3fa0 3450 bool free_high;
9cca35d4 3451
15cd9004 3452 __count_vm_events(PGFREE, 1 << order);
44042b44 3453 pindex = order_to_pindex(migratetype, order);
bf75f200 3454 list_add(&page->pcp_list, &pcp->lists[pindex]);
44042b44 3455 pcp->count += 1 << order;
f26b3fa0
MG
3456
3457 /*
3458 * As high-order pages other than THP's stored on PCP can contribute
3459 * to fragmentation, limit the number stored when PCP is heavily
3460 * freeing without allocation. The remainder after bulk freeing
3461 * stops will be drained from vmstat refresh context.
3462 */
3463 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3464
3465 high = nr_pcp_high(pcp, zone, free_high);
3b12e7e9
MG
3466 if (pcp->count >= high) {
3467 int batch = READ_ONCE(pcp->batch);
3468
f26b3fa0 3469 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3b12e7e9 3470 }
9cca35d4 3471}
5f8dcc21 3472
9cca35d4 3473/*
44042b44 3474 * Free a pcp page
9cca35d4 3475 */
44042b44 3476void free_unref_page(struct page *page, unsigned int order)
9cca35d4 3477{
4b23a68f
MG
3478 unsigned long __maybe_unused UP_flags;
3479 struct per_cpu_pages *pcp;
3480 struct zone *zone;
9cca35d4 3481 unsigned long pfn = page_to_pfn(page);
df1acc85 3482 int migratetype;
9cca35d4 3483
44042b44 3484 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3485 return;
da456f14 3486
5f8dcc21
MG
3487 /*
3488 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3489 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3490 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3491 * areas back if necessary. Otherwise, we may have to free
3492 * excessively into the page allocator
3493 */
df1acc85
MG
3494 migratetype = get_pcppage_migratetype(page);
3495 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3496 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3497 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3498 return;
5f8dcc21
MG
3499 }
3500 migratetype = MIGRATE_MOVABLE;
3501 }
3502
4b23a68f
MG
3503 zone = page_zone(page);
3504 pcp_trylock_prepare(UP_flags);
57490774 3505 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 3506 if (pcp) {
4b23a68f 3507 free_unref_page_commit(zone, pcp, page, migratetype, order);
57490774 3508 pcp_spin_unlock(pcp);
4b23a68f
MG
3509 } else {
3510 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3511 }
3512 pcp_trylock_finish(UP_flags);
1da177e4
LT
3513}
3514
cc59850e
KK
3515/*
3516 * Free a list of 0-order pages
3517 */
2d4894b5 3518void free_unref_page_list(struct list_head *list)
cc59850e 3519{
57490774 3520 unsigned long __maybe_unused UP_flags;
cc59850e 3521 struct page *page, *next;
4b23a68f
MG
3522 struct per_cpu_pages *pcp = NULL;
3523 struct zone *locked_zone = NULL;
c24ad77d 3524 int batch_count = 0;
df1acc85 3525 int migratetype;
9cca35d4
MG
3526
3527 /* Prepare pages for freeing */
3528 list_for_each_entry_safe(page, next, list, lru) {
56651377 3529 unsigned long pfn = page_to_pfn(page);
053cfda1 3530 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 3531 list_del(&page->lru);
053cfda1
ML
3532 continue;
3533 }
df1acc85
MG
3534
3535 /*
3536 * Free isolated pages directly to the allocator, see
3537 * comment in free_unref_page.
3538 */
3539 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3540 if (unlikely(is_migrate_isolate(migratetype))) {
3541 list_del(&page->lru);
3542 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3543 continue;
df1acc85 3544 }
9cca35d4 3545 }
cc59850e
KK
3546
3547 list_for_each_entry_safe(page, next, list, lru) {
4b23a68f
MG
3548 struct zone *zone = page_zone(page);
3549
c3e58a70 3550 list_del(&page->lru);
57490774 3551 migratetype = get_pcppage_migratetype(page);
c3e58a70 3552
a4bafffb
MG
3553 /*
3554 * Either different zone requiring a different pcp lock or
3555 * excessive lock hold times when freeing a large list of
3556 * pages.
3557 */
3558 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
57490774
MG
3559 if (pcp) {
3560 pcp_spin_unlock(pcp);
3561 pcp_trylock_finish(UP_flags);
3562 }
01b44456 3563
a4bafffb
MG
3564 batch_count = 0;
3565
57490774
MG
3566 /*
3567 * trylock is necessary as pages may be getting freed
3568 * from IRQ or SoftIRQ context after an IO completion.
3569 */
3570 pcp_trylock_prepare(UP_flags);
3571 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3572 if (unlikely(!pcp)) {
3573 pcp_trylock_finish(UP_flags);
3574 free_one_page(zone, page, page_to_pfn(page),
3575 0, migratetype, FPI_NONE);
3576 locked_zone = NULL;
3577 continue;
3578 }
4b23a68f 3579 locked_zone = zone;
4b23a68f
MG
3580 }
3581
47aef601
DB
3582 /*
3583 * Non-isolated types over MIGRATE_PCPTYPES get added
3584 * to the MIGRATE_MOVABLE pcp list.
3585 */
47aef601
DB
3586 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3587 migratetype = MIGRATE_MOVABLE;
3588
2d4894b5 3589 trace_mm_page_free_batched(page);
4b23a68f 3590 free_unref_page_commit(zone, pcp, page, migratetype, 0);
a4bafffb 3591 batch_count++;
cc59850e 3592 }
4b23a68f 3593
57490774
MG
3594 if (pcp) {
3595 pcp_spin_unlock(pcp);
3596 pcp_trylock_finish(UP_flags);
3597 }
cc59850e
KK
3598}
3599
8dfcc9ba
NP
3600/*
3601 * split_page takes a non-compound higher-order page, and splits it into
3602 * n (1<<order) sub-pages: page[0..n]
3603 * Each sub-page must be freed individually.
3604 *
3605 * Note: this is probably too low level an operation for use in drivers.
3606 * Please consult with lkml before using this in your driver.
3607 */
3608void split_page(struct page *page, unsigned int order)
3609{
3610 int i;
3611
309381fe
SL
3612 VM_BUG_ON_PAGE(PageCompound(page), page);
3613 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3614
a9627bc5 3615 for (i = 1; i < (1 << order); i++)
7835e98b 3616 set_page_refcounted(page + i);
8fb156c9 3617 split_page_owner(page, 1 << order);
e1baddf8 3618 split_page_memcg(page, 1 << order);
8dfcc9ba 3619}
5853ff23 3620EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3621
3c605096 3622int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3623{
9a157dd8
KW
3624 struct zone *zone = page_zone(page);
3625 int mt = get_pageblock_migratetype(page);
748446bb 3626
194159fb 3627 if (!is_migrate_isolate(mt)) {
9a157dd8 3628 unsigned long watermark;
8348faf9
VB
3629 /*
3630 * Obey watermarks as if the page was being allocated. We can
3631 * emulate a high-order watermark check with a raised order-0
3632 * watermark, because we already know our high-order page
3633 * exists.
3634 */
fd1444b2 3635 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3636 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3637 return 0;
3638
8fb74b9f 3639 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3640 }
748446bb 3641
6ab01363 3642 del_page_from_free_list(page, zone, order);
2139cbe6 3643
400bc7fd 3644 /*
3645 * Set the pageblock if the isolated page is at least half of a
3646 * pageblock
3647 */
748446bb
MG
3648 if (order >= pageblock_order - 1) {
3649 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3650 for (; page < endpage; page += pageblock_nr_pages) {
3651 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
3652 /*
3653 * Only change normal pageblocks (i.e., they can merge
3654 * with others)
3655 */
3656 if (migratetype_is_mergeable(mt))
47118af0
MN
3657 set_pageblock_migratetype(page,
3658 MIGRATE_MOVABLE);
3659 }
748446bb
MG
3660 }
3661
8fb74b9f 3662 return 1UL << order;
1fb3f8ca
MG
3663}
3664
624f58d8
AD
3665/**
3666 * __putback_isolated_page - Return a now-isolated page back where we got it
3667 * @page: Page that was isolated
3668 * @order: Order of the isolated page
e6a0a7ad 3669 * @mt: The page's pageblock's migratetype
624f58d8
AD
3670 *
3671 * This function is meant to return a page pulled from the free lists via
3672 * __isolate_free_page back to the free lists they were pulled from.
3673 */
3674void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3675{
3676 struct zone *zone = page_zone(page);
3677
3678 /* zone lock should be held when this function is called */
3679 lockdep_assert_held(&zone->lock);
3680
3681 /* Return isolated page to tail of freelist. */
f04a5d5d 3682 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3683 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3684}
3685
060e7417
MG
3686/*
3687 * Update NUMA hit/miss statistics
060e7417 3688 */
3e23060b
MG
3689static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3690 long nr_account)
060e7417
MG
3691{
3692#ifdef CONFIG_NUMA
3a321d2a 3693 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3694
4518085e
KW
3695 /* skip numa counters update if numa stats is disabled */
3696 if (!static_branch_likely(&vm_numa_stat_key))
3697 return;
3698
c1093b74 3699 if (zone_to_nid(z) != numa_node_id())
060e7417 3700 local_stat = NUMA_OTHER;
060e7417 3701
c1093b74 3702 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3703 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3704 else {
3e23060b
MG
3705 __count_numa_events(z, NUMA_MISS, nr_account);
3706 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3707 }
3e23060b 3708 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3709#endif
3710}
3711
589d9973
MG
3712static __always_inline
3713struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3714 unsigned int order, unsigned int alloc_flags,
3715 int migratetype)
3716{
3717 struct page *page;
3718 unsigned long flags;
3719
3720 do {
3721 page = NULL;
3722 spin_lock_irqsave(&zone->lock, flags);
3723 /*
3724 * order-0 request can reach here when the pcplist is skipped
3725 * due to non-CMA allocation context. HIGHATOMIC area is
3726 * reserved for high-order atomic allocation, so order-0
3727 * request should skip it.
3728 */
eb2e2b42 3729 if (alloc_flags & ALLOC_HIGHATOMIC)
589d9973
MG
3730 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3731 if (!page) {
3732 page = __rmqueue(zone, order, migratetype, alloc_flags);
eb2e2b42
MG
3733
3734 /*
3735 * If the allocation fails, allow OOM handling access
3736 * to HIGHATOMIC reserves as failing now is worse than
3737 * failing a high-order atomic allocation in the
3738 * future.
3739 */
3740 if (!page && (alloc_flags & ALLOC_OOM))
3741 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3742
589d9973
MG
3743 if (!page) {
3744 spin_unlock_irqrestore(&zone->lock, flags);
3745 return NULL;
3746 }
3747 }
3748 __mod_zone_freepage_state(zone, -(1 << order),
3749 get_pcppage_migratetype(page));
3750 spin_unlock_irqrestore(&zone->lock, flags);
3751 } while (check_new_pages(page, order));
3752
3753 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3754 zone_statistics(preferred_zone, zone, 1);
3755
3756 return page;
3757}
3758
066b2393 3759/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3760static inline
44042b44
MG
3761struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3762 int migratetype,
6bb15450 3763 unsigned int alloc_flags,
453f85d4 3764 struct per_cpu_pages *pcp,
066b2393
MG
3765 struct list_head *list)
3766{
3767 struct page *page;
3768
3769 do {
3770 if (list_empty(list)) {
44042b44
MG
3771 int batch = READ_ONCE(pcp->batch);
3772 int alloced;
3773
3774 /*
3775 * Scale batch relative to order if batch implies
3776 * free pages can be stored on the PCP. Batch can
3777 * be 1 for small zones or for boot pagesets which
3778 * should never store free pages as the pages may
3779 * belong to arbitrary zones.
3780 */
3781 if (batch > 1)
3782 batch = max(batch >> order, 2);
3783 alloced = rmqueue_bulk(zone, order,
3784 batch, list,
6bb15450 3785 migratetype, alloc_flags);
44042b44
MG
3786
3787 pcp->count += alloced << order;
066b2393
MG
3788 if (unlikely(list_empty(list)))
3789 return NULL;
3790 }
3791
bf75f200
MG
3792 page = list_first_entry(list, struct page, pcp_list);
3793 list_del(&page->pcp_list);
44042b44 3794 pcp->count -= 1 << order;
77fe7f13 3795 } while (check_new_pcp(page, order));
066b2393
MG
3796
3797 return page;
3798}
3799
3800/* Lock and remove page from the per-cpu list */
3801static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44 3802 struct zone *zone, unsigned int order,
663d0cfd 3803 int migratetype, unsigned int alloc_flags)
066b2393
MG
3804{
3805 struct per_cpu_pages *pcp;
3806 struct list_head *list;
066b2393 3807 struct page *page;
4b23a68f 3808 unsigned long __maybe_unused UP_flags;
066b2393 3809
57490774 3810 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 3811 pcp_trylock_prepare(UP_flags);
57490774 3812 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 3813 if (!pcp) {
4b23a68f 3814 pcp_trylock_finish(UP_flags);
4b23a68f
MG
3815 return NULL;
3816 }
3b12e7e9
MG
3817
3818 /*
3819 * On allocation, reduce the number of pages that are batch freed.
3820 * See nr_pcp_free() where free_factor is increased for subsequent
3821 * frees.
3822 */
3b12e7e9 3823 pcp->free_factor >>= 1;
44042b44
MG
3824 list = &pcp->lists[order_to_pindex(migratetype, order)];
3825 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
57490774 3826 pcp_spin_unlock(pcp);
4b23a68f 3827 pcp_trylock_finish(UP_flags);
066b2393 3828 if (page) {
15cd9004 3829 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3830 zone_statistics(preferred_zone, zone, 1);
066b2393 3831 }
066b2393
MG
3832 return page;
3833}
3834
1da177e4 3835/*
a57ae9ef
RX
3836 * Allocate a page from the given zone.
3837 * Use pcplists for THP or "cheap" high-order allocations.
1da177e4 3838 */
b073d7f8
AP
3839
3840/*
3841 * Do not instrument rmqueue() with KMSAN. This function may call
3842 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3843 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3844 * may call rmqueue() again, which will result in a deadlock.
1da177e4 3845 */
b073d7f8 3846__no_sanitize_memory
0a15c3e9 3847static inline
066b2393 3848struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3849 struct zone *zone, unsigned int order,
c603844b
MG
3850 gfp_t gfp_flags, unsigned int alloc_flags,
3851 int migratetype)
1da177e4 3852{
689bcebf 3853 struct page *page;
1da177e4 3854
589d9973
MG
3855 /*
3856 * We most definitely don't want callers attempting to
3857 * allocate greater than order-1 page units with __GFP_NOFAIL.
3858 */
3859 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3860
44042b44 3861 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3862 /*
3863 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3864 * we need to skip it when CMA area isn't allowed.
3865 */
3866 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3867 migratetype != MIGRATE_MOVABLE) {
44042b44 3868 page = rmqueue_pcplist(preferred_zone, zone, order,
663d0cfd 3869 migratetype, alloc_flags);
4b23a68f
MG
3870 if (likely(page))
3871 goto out;
1d91df85 3872 }
066b2393 3873 }
83b9355b 3874
589d9973
MG
3875 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3876 migratetype);
1da177e4 3877
066b2393 3878out:
73444bc4 3879 /* Separate test+clear to avoid unnecessary atomics */
e2a66c21 3880 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
73444bc4
MG
3881 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3882 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3883 }
3884
066b2393 3885 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4
LT
3886 return page;
3887}
3888
933e312e
AM
3889#ifdef CONFIG_FAIL_PAGE_ALLOC
3890
b2588c4b 3891static struct {
933e312e
AM
3892 struct fault_attr attr;
3893
621a5f7a 3894 bool ignore_gfp_highmem;
71baba4b 3895 bool ignore_gfp_reclaim;
54114994 3896 u32 min_order;
933e312e
AM
3897} fail_page_alloc = {
3898 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3899 .ignore_gfp_reclaim = true,
621a5f7a 3900 .ignore_gfp_highmem = true,
54114994 3901 .min_order = 1,
933e312e
AM
3902};
3903
3904static int __init setup_fail_page_alloc(char *str)
3905{
3906 return setup_fault_attr(&fail_page_alloc.attr, str);
3907}
3908__setup("fail_page_alloc=", setup_fail_page_alloc);
3909
af3b8544 3910static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3911{
ea4452de
QZ
3912 int flags = 0;
3913
54114994 3914 if (order < fail_page_alloc.min_order)
deaf386e 3915 return false;
933e312e 3916 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3917 return false;
933e312e 3918 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3919 return false;
71baba4b
MG
3920 if (fail_page_alloc.ignore_gfp_reclaim &&
3921 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3922 return false;
933e312e 3923
ea4452de 3924 /* See comment in __should_failslab() */
3f913fc5 3925 if (gfp_mask & __GFP_NOWARN)
ea4452de 3926 flags |= FAULT_NOWARN;
3f913fc5 3927
ea4452de 3928 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
933e312e
AM
3929}
3930
3931#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3932
3933static int __init fail_page_alloc_debugfs(void)
3934{
0825a6f9 3935 umode_t mode = S_IFREG | 0600;
933e312e 3936 struct dentry *dir;
933e312e 3937
dd48c085
AM
3938 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3939 &fail_page_alloc.attr);
b2588c4b 3940
d9f7979c
GKH
3941 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3942 &fail_page_alloc.ignore_gfp_reclaim);
3943 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3944 &fail_page_alloc.ignore_gfp_highmem);
3945 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3946
d9f7979c 3947 return 0;
933e312e
AM
3948}
3949
3950late_initcall(fail_page_alloc_debugfs);
3951
3952#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3953
3954#else /* CONFIG_FAIL_PAGE_ALLOC */
3955
af3b8544 3956static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3957{
deaf386e 3958 return false;
933e312e
AM
3959}
3960
3961#endif /* CONFIG_FAIL_PAGE_ALLOC */
3962
54aa3866 3963noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3964{
3965 return __should_fail_alloc_page(gfp_mask, order);
3966}
3967ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3968
f27ce0e1
JK
3969static inline long __zone_watermark_unusable_free(struct zone *z,
3970 unsigned int order, unsigned int alloc_flags)
3971{
f27ce0e1
JK
3972 long unusable_free = (1 << order) - 1;
3973
3974 /*
ab350885
MG
3975 * If the caller does not have rights to reserves below the min
3976 * watermark then subtract the high-atomic reserves. This will
3977 * over-estimate the size of the atomic reserve but it avoids a search.
f27ce0e1 3978 */
ab350885 3979 if (likely(!(alloc_flags & ALLOC_RESERVES)))
f27ce0e1
JK
3980 unusable_free += z->nr_reserved_highatomic;
3981
3982#ifdef CONFIG_CMA
3983 /* If allocation can't use CMA areas don't use free CMA pages */
3984 if (!(alloc_flags & ALLOC_CMA))
3985 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3986#endif
3987
3988 return unusable_free;
3989}
3990
1da177e4 3991/*
97a16fc8
MG
3992 * Return true if free base pages are above 'mark'. For high-order checks it
3993 * will return true of the order-0 watermark is reached and there is at least
3994 * one free page of a suitable size. Checking now avoids taking the zone lock
3995 * to check in the allocation paths if no pages are free.
1da177e4 3996 */
86a294a8 3997bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3998 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3999 long free_pages)
1da177e4 4000{
d23ad423 4001 long min = mark;
1da177e4
LT
4002 int o;
4003
0aaa29a5 4004 /* free_pages may go negative - that's OK */
f27ce0e1 4005 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 4006
ab350885
MG
4007 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
4008 /*
4009 * __GFP_HIGH allows access to 50% of the min reserve as well
4010 * as OOM.
4011 */
1ebbb218 4012 if (alloc_flags & ALLOC_MIN_RESERVE) {
ab350885 4013 min -= min / 2;
0aaa29a5 4014
1ebbb218
MG
4015 /*
4016 * Non-blocking allocations (e.g. GFP_ATOMIC) can
4017 * access more reserves than just __GFP_HIGH. Other
4018 * non-blocking allocations requests such as GFP_NOWAIT
4019 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
4020 * access to the min reserve.
4021 */
4022 if (alloc_flags & ALLOC_NON_BLOCK)
4023 min -= min / 4;
4024 }
ab350885
MG
4025
4026 /*
4027 * OOM victims can try even harder than the normal reserve
cd04ae1e
MH
4028 * users on the grounds that it's definitely going to be in
4029 * the exit path shortly and free memory. Any allocation it
4030 * makes during the free path will be small and short-lived.
4031 */
4032 if (alloc_flags & ALLOC_OOM)
4033 min -= min / 2;
cd04ae1e
MH
4034 }
4035
97a16fc8
MG
4036 /*
4037 * Check watermarks for an order-0 allocation request. If these
4038 * are not met, then a high-order request also cannot go ahead
4039 * even if a suitable page happened to be free.
4040 */
97a225e6 4041 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 4042 return false;
1da177e4 4043
97a16fc8
MG
4044 /* If this is an order-0 request then the watermark is fine */
4045 if (!order)
4046 return true;
4047
4048 /* For a high-order request, check at least one suitable page is free */
4049 for (o = order; o < MAX_ORDER; o++) {
4050 struct free_area *area = &z->free_area[o];
4051 int mt;
4052
4053 if (!area->nr_free)
4054 continue;
4055
97a16fc8 4056 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 4057 if (!free_area_empty(area, mt))
97a16fc8
MG
4058 return true;
4059 }
4060
4061#ifdef CONFIG_CMA
d883c6cf 4062 if ((alloc_flags & ALLOC_CMA) &&
b03641af 4063 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 4064 return true;
d883c6cf 4065 }
97a16fc8 4066#endif
eb2e2b42
MG
4067 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
4068 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
b050e376 4069 return true;
eb2e2b42 4070 }
1da177e4 4071 }
97a16fc8 4072 return false;
88f5acf8
MG
4073}
4074
7aeb09f9 4075bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 4076 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 4077{
97a225e6 4078 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
4079 zone_page_state(z, NR_FREE_PAGES));
4080}
4081
48ee5f36 4082static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 4083 unsigned long mark, int highest_zoneidx,
f80b08fc 4084 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 4085{
f27ce0e1 4086 long free_pages;
d883c6cf 4087
f27ce0e1 4088 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
4089
4090 /*
4091 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 4092 * need to be calculated.
48ee5f36 4093 */
f27ce0e1 4094 if (!order) {
9282012f
JK
4095 long usable_free;
4096 long reserved;
f27ce0e1 4097
9282012f
JK
4098 usable_free = free_pages;
4099 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4100
4101 /* reserved may over estimate high-atomic reserves. */
4102 usable_free -= min(usable_free, reserved);
4103 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
f27ce0e1
JK
4104 return true;
4105 }
48ee5f36 4106
f80b08fc
CTR
4107 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4108 free_pages))
4109 return true;
2973d822 4110
f80b08fc 4111 /*
2973d822 4112 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
f80b08fc
CTR
4113 * when checking the min watermark. The min watermark is the
4114 * point where boosting is ignored so that kswapd is woken up
4115 * when below the low watermark.
4116 */
2973d822 4117 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
f80b08fc
CTR
4118 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4119 mark = z->_watermark[WMARK_MIN];
4120 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4121 alloc_flags, free_pages);
4122 }
4123
4124 return false;
48ee5f36
MG
4125}
4126
7aeb09f9 4127bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 4128 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
4129{
4130 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4131
4132 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4133 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4134
97a225e6 4135 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 4136 free_pages);
1da177e4
LT
4137}
4138
9276b1bc 4139#ifdef CONFIG_NUMA
61bb6cd2
GU
4140int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4141
957f822a
DR
4142static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4143{
e02dc017 4144 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 4145 node_reclaim_distance;
957f822a 4146}
9276b1bc 4147#else /* CONFIG_NUMA */
957f822a
DR
4148static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4149{
4150 return true;
4151}
9276b1bc
PJ
4152#endif /* CONFIG_NUMA */
4153
6bb15450
MG
4154/*
4155 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4156 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4157 * premature use of a lower zone may cause lowmem pressure problems that
4158 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4159 * probably too small. It only makes sense to spread allocations to avoid
4160 * fragmentation between the Normal and DMA32 zones.
4161 */
4162static inline unsigned int
0a79cdad 4163alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 4164{
736838e9 4165 unsigned int alloc_flags;
0a79cdad 4166
736838e9
MN
4167 /*
4168 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4169 * to save a branch.
4170 */
4171 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
4172
4173#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
4174 if (!zone)
4175 return alloc_flags;
4176
6bb15450 4177 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 4178 return alloc_flags;
6bb15450
MG
4179
4180 /*
4181 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4182 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4183 * on UMA that if Normal is populated then so is DMA32.
4184 */
4185 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4186 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 4187 return alloc_flags;
6bb15450 4188
8118b82e 4189 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
4190#endif /* CONFIG_ZONE_DMA32 */
4191 return alloc_flags;
6bb15450 4192}
6bb15450 4193
8e3560d9
PT
4194/* Must be called after current_gfp_context() which can change gfp_mask */
4195static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4196 unsigned int alloc_flags)
8510e69c
JK
4197{
4198#ifdef CONFIG_CMA
8e3560d9 4199 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 4200 alloc_flags |= ALLOC_CMA;
8510e69c
JK
4201#endif
4202 return alloc_flags;
4203}
4204
7fb1d9fc 4205/*
0798e519 4206 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4207 * a page.
4208 */
4209static struct page *
a9263751
VB
4210get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4211 const struct alloc_context *ac)
753ee728 4212{
6bb15450 4213 struct zoneref *z;
5117f45d 4214 struct zone *zone;
8a87d695
WY
4215 struct pglist_data *last_pgdat = NULL;
4216 bool last_pgdat_dirty_ok = false;
6bb15450 4217 bool no_fallback;
3b8c0be4 4218
6bb15450 4219retry:
7fb1d9fc 4220 /*
9276b1bc 4221 * Scan zonelist, looking for a zone with enough free.
189cdcfe 4222 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
7fb1d9fc 4223 */
6bb15450
MG
4224 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4225 z = ac->preferred_zoneref;
30d8ec73
MN
4226 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4227 ac->nodemask) {
be06af00 4228 struct page *page;
e085dbc5
JW
4229 unsigned long mark;
4230
664eedde
MG
4231 if (cpusets_enabled() &&
4232 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4233 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4234 continue;
a756cf59
JW
4235 /*
4236 * When allocating a page cache page for writing, we
281e3726
MG
4237 * want to get it from a node that is within its dirty
4238 * limit, such that no single node holds more than its
a756cf59 4239 * proportional share of globally allowed dirty pages.
281e3726 4240 * The dirty limits take into account the node's
a756cf59
JW
4241 * lowmem reserves and high watermark so that kswapd
4242 * should be able to balance it without having to
4243 * write pages from its LRU list.
4244 *
a756cf59 4245 * XXX: For now, allow allocations to potentially
281e3726 4246 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4247 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4248 * which is important when on a NUMA setup the allowed
281e3726 4249 * nodes are together not big enough to reach the
a756cf59 4250 * global limit. The proper fix for these situations
281e3726 4251 * will require awareness of nodes in the
a756cf59
JW
4252 * dirty-throttling and the flusher threads.
4253 */
3b8c0be4 4254 if (ac->spread_dirty_pages) {
8a87d695
WY
4255 if (last_pgdat != zone->zone_pgdat) {
4256 last_pgdat = zone->zone_pgdat;
4257 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4258 }
3b8c0be4 4259
8a87d695 4260 if (!last_pgdat_dirty_ok)
3b8c0be4 4261 continue;
3b8c0be4 4262 }
7fb1d9fc 4263
6bb15450
MG
4264 if (no_fallback && nr_online_nodes > 1 &&
4265 zone != ac->preferred_zoneref->zone) {
4266 int local_nid;
4267
4268 /*
4269 * If moving to a remote node, retry but allow
4270 * fragmenting fallbacks. Locality is more important
4271 * than fragmentation avoidance.
4272 */
4273 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4274 if (zone_to_nid(zone) != local_nid) {
4275 alloc_flags &= ~ALLOC_NOFRAGMENT;
4276 goto retry;
4277 }
4278 }
4279
a9214443 4280 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4281 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4282 ac->highest_zoneidx, alloc_flags,
4283 gfp_mask)) {
fa5e084e
MG
4284 int ret;
4285
c9e97a19
PT
4286#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4287 /*
4288 * Watermark failed for this zone, but see if we can
4289 * grow this zone if it contains deferred pages.
4290 */
4291 if (static_branch_unlikely(&deferred_pages)) {
4292 if (_deferred_grow_zone(zone, order))
4293 goto try_this_zone;
4294 }
4295#endif
5dab2911
MG
4296 /* Checked here to keep the fast path fast */
4297 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4298 if (alloc_flags & ALLOC_NO_WATERMARKS)
4299 goto try_this_zone;
4300
202e35db 4301 if (!node_reclaim_enabled() ||
c33d6c06 4302 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4303 continue;
4304
a5f5f91d 4305 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4306 switch (ret) {
a5f5f91d 4307 case NODE_RECLAIM_NOSCAN:
fa5e084e 4308 /* did not scan */
cd38b115 4309 continue;
a5f5f91d 4310 case NODE_RECLAIM_FULL:
fa5e084e 4311 /* scanned but unreclaimable */
cd38b115 4312 continue;
fa5e084e
MG
4313 default:
4314 /* did we reclaim enough */
fed2719e 4315 if (zone_watermark_ok(zone, order, mark,
97a225e6 4316 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4317 goto try_this_zone;
4318
fed2719e 4319 continue;
0798e519 4320 }
7fb1d9fc
RS
4321 }
4322
fa5e084e 4323try_this_zone:
066b2393 4324 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4325 gfp_mask, alloc_flags, ac->migratetype);
75379191 4326 if (page) {
479f854a 4327 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4328
4329 /*
4330 * If this is a high-order atomic allocation then check
4331 * if the pageblock should be reserved for the future
4332 */
eb2e2b42 4333 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
0aaa29a5
MG
4334 reserve_highatomic_pageblock(page, zone, order);
4335
75379191 4336 return page;
c9e97a19
PT
4337 } else {
4338#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4339 /* Try again if zone has deferred pages */
4340 if (static_branch_unlikely(&deferred_pages)) {
4341 if (_deferred_grow_zone(zone, order))
4342 goto try_this_zone;
4343 }
4344#endif
75379191 4345 }
54a6eb5c 4346 }
9276b1bc 4347
6bb15450
MG
4348 /*
4349 * It's possible on a UMA machine to get through all zones that are
4350 * fragmented. If avoiding fragmentation, reset and try again.
4351 */
4352 if (no_fallback) {
4353 alloc_flags &= ~ALLOC_NOFRAGMENT;
4354 goto retry;
4355 }
4356
4ffeaf35 4357 return NULL;
753ee728
MH
4358}
4359
9af744d7 4360static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4361{
a238ab5b 4362 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4363
4364 /*
4365 * This documents exceptions given to allocations in certain
4366 * contexts that are allowed to allocate outside current's set
4367 * of allowed nodes.
4368 */
4369 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4370 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4371 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4372 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4373 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4374 filter &= ~SHOW_MEM_FILTER_NODES;
4375
974f4367 4376 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
aa187507
MH
4377}
4378
a8e99259 4379void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4380{
4381 struct va_format vaf;
4382 va_list args;
1be334e5 4383 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4384
c4dc63f0
BH
4385 if ((gfp_mask & __GFP_NOWARN) ||
4386 !__ratelimit(&nopage_rs) ||
4387 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
4388 return;
4389
7877cdcc
MH
4390 va_start(args, fmt);
4391 vaf.fmt = fmt;
4392 vaf.va = &args;
ef8444ea 4393 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4394 current->comm, &vaf, gfp_mask, &gfp_mask,
4395 nodemask_pr_args(nodemask));
7877cdcc 4396 va_end(args);
3ee9a4f0 4397
a8e99259 4398 cpuset_print_current_mems_allowed();
ef8444ea 4399 pr_cont("\n");
a238ab5b 4400 dump_stack();
685dbf6f 4401 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4402}
4403
6c18ba7a
MH
4404static inline struct page *
4405__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4406 unsigned int alloc_flags,
4407 const struct alloc_context *ac)
4408{
4409 struct page *page;
4410
4411 page = get_page_from_freelist(gfp_mask, order,
4412 alloc_flags|ALLOC_CPUSET, ac);
4413 /*
4414 * fallback to ignore cpuset restriction if our nodes
4415 * are depleted
4416 */
4417 if (!page)
4418 page = get_page_from_freelist(gfp_mask, order,
4419 alloc_flags, ac);
4420
4421 return page;
4422}
4423
11e33f6a
MG
4424static inline struct page *
4425__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4426 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4427{
6e0fc46d
DR
4428 struct oom_control oc = {
4429 .zonelist = ac->zonelist,
4430 .nodemask = ac->nodemask,
2a966b77 4431 .memcg = NULL,
6e0fc46d
DR
4432 .gfp_mask = gfp_mask,
4433 .order = order,
6e0fc46d 4434 };
11e33f6a
MG
4435 struct page *page;
4436
9879de73
JW
4437 *did_some_progress = 0;
4438
9879de73 4439 /*
dc56401f
JW
4440 * Acquire the oom lock. If that fails, somebody else is
4441 * making progress for us.
9879de73 4442 */
dc56401f 4443 if (!mutex_trylock(&oom_lock)) {
9879de73 4444 *did_some_progress = 1;
11e33f6a 4445 schedule_timeout_uninterruptible(1);
1da177e4
LT
4446 return NULL;
4447 }
6b1de916 4448
11e33f6a
MG
4449 /*
4450 * Go through the zonelist yet one more time, keep very high watermark
4451 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4452 * we're still under heavy pressure. But make sure that this reclaim
4453 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4454 * allocation which will never fail due to oom_lock already held.
11e33f6a 4455 */
e746bf73
TH
4456 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4457 ~__GFP_DIRECT_RECLAIM, order,
4458 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4459 if (page)
11e33f6a
MG
4460 goto out;
4461
06ad276a
MH
4462 /* Coredumps can quickly deplete all memory reserves */
4463 if (current->flags & PF_DUMPCORE)
4464 goto out;
4465 /* The OOM killer will not help higher order allocs */
4466 if (order > PAGE_ALLOC_COSTLY_ORDER)
4467 goto out;
dcda9b04
MH
4468 /*
4469 * We have already exhausted all our reclaim opportunities without any
4470 * success so it is time to admit defeat. We will skip the OOM killer
4471 * because it is very likely that the caller has a more reasonable
4472 * fallback than shooting a random task.
cfb4a541
MN
4473 *
4474 * The OOM killer may not free memory on a specific node.
dcda9b04 4475 */
cfb4a541 4476 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4477 goto out;
06ad276a 4478 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4479 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4480 goto out;
4481 if (pm_suspended_storage())
4482 goto out;
4483 /*
4484 * XXX: GFP_NOFS allocations should rather fail than rely on
4485 * other request to make a forward progress.
4486 * We are in an unfortunate situation where out_of_memory cannot
4487 * do much for this context but let's try it to at least get
4488 * access to memory reserved if the current task is killed (see
4489 * out_of_memory). Once filesystems are ready to handle allocation
4490 * failures more gracefully we should just bail out here.
4491 */
4492
3c2c6488 4493 /* Exhausted what can be done so it's blame time */
3f913fc5
QZ
4494 if (out_of_memory(&oc) ||
4495 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
c32b3cbe 4496 *did_some_progress = 1;
5020e285 4497
6c18ba7a
MH
4498 /*
4499 * Help non-failing allocations by giving them access to memory
4500 * reserves
4501 */
4502 if (gfp_mask & __GFP_NOFAIL)
4503 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4504 ALLOC_NO_WATERMARKS, ac);
5020e285 4505 }
11e33f6a 4506out:
dc56401f 4507 mutex_unlock(&oom_lock);
11e33f6a
MG
4508 return page;
4509}
4510
33c2d214 4511/*
baf2f90b 4512 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4513 * killer is consider as the only way to move forward.
4514 */
4515#define MAX_COMPACT_RETRIES 16
4516
56de7263
MG
4517#ifdef CONFIG_COMPACTION
4518/* Try memory compaction for high-order allocations before reclaim */
4519static struct page *
4520__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4521 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4522 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4523{
5e1f0f09 4524 struct page *page = NULL;
eb414681 4525 unsigned long pflags;
499118e9 4526 unsigned int noreclaim_flag;
53853e2d
VB
4527
4528 if (!order)
66199712 4529 return NULL;
66199712 4530
eb414681 4531 psi_memstall_enter(&pflags);
5bf18281 4532 delayacct_compact_start();
499118e9 4533 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4534
c5d01d0d 4535 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4536 prio, &page);
eb414681 4537
499118e9 4538 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4539 psi_memstall_leave(&pflags);
5bf18281 4540 delayacct_compact_end();
56de7263 4541
06dac2f4
CTR
4542 if (*compact_result == COMPACT_SKIPPED)
4543 return NULL;
98dd3b48
VB
4544 /*
4545 * At least in one zone compaction wasn't deferred or skipped, so let's
4546 * count a compaction stall
4547 */
4548 count_vm_event(COMPACTSTALL);
8fb74b9f 4549
5e1f0f09
MG
4550 /* Prep a captured page if available */
4551 if (page)
4552 prep_new_page(page, order, gfp_mask, alloc_flags);
4553
4554 /* Try get a page from the freelist if available */
4555 if (!page)
4556 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4557
98dd3b48
VB
4558 if (page) {
4559 struct zone *zone = page_zone(page);
53853e2d 4560
98dd3b48
VB
4561 zone->compact_blockskip_flush = false;
4562 compaction_defer_reset(zone, order, true);
4563 count_vm_event(COMPACTSUCCESS);
4564 return page;
4565 }
56de7263 4566
98dd3b48
VB
4567 /*
4568 * It's bad if compaction run occurs and fails. The most likely reason
4569 * is that pages exist, but not enough to satisfy watermarks.
4570 */
4571 count_vm_event(COMPACTFAIL);
66199712 4572
98dd3b48 4573 cond_resched();
56de7263
MG
4574
4575 return NULL;
4576}
33c2d214 4577
3250845d
VB
4578static inline bool
4579should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4580 enum compact_result compact_result,
4581 enum compact_priority *compact_priority,
d9436498 4582 int *compaction_retries)
3250845d
VB
4583{
4584 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4585 int min_priority;
65190cff
MH
4586 bool ret = false;
4587 int retries = *compaction_retries;
4588 enum compact_priority priority = *compact_priority;
3250845d
VB
4589
4590 if (!order)
4591 return false;
4592
691d9497
AT
4593 if (fatal_signal_pending(current))
4594 return false;
4595
d9436498
VB
4596 if (compaction_made_progress(compact_result))
4597 (*compaction_retries)++;
4598
3250845d
VB
4599 /*
4600 * compaction considers all the zone as desperately out of memory
4601 * so it doesn't really make much sense to retry except when the
4602 * failure could be caused by insufficient priority
4603 */
d9436498
VB
4604 if (compaction_failed(compact_result))
4605 goto check_priority;
3250845d 4606
49433085
VB
4607 /*
4608 * compaction was skipped because there are not enough order-0 pages
4609 * to work with, so we retry only if it looks like reclaim can help.
4610 */
4611 if (compaction_needs_reclaim(compact_result)) {
4612 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4613 goto out;
4614 }
4615
3250845d
VB
4616 /*
4617 * make sure the compaction wasn't deferred or didn't bail out early
4618 * due to locks contention before we declare that we should give up.
49433085
VB
4619 * But the next retry should use a higher priority if allowed, so
4620 * we don't just keep bailing out endlessly.
3250845d 4621 */
65190cff 4622 if (compaction_withdrawn(compact_result)) {
49433085 4623 goto check_priority;
65190cff 4624 }
3250845d
VB
4625
4626 /*
dcda9b04 4627 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4628 * costly ones because they are de facto nofail and invoke OOM
4629 * killer to move on while costly can fail and users are ready
4630 * to cope with that. 1/4 retries is rather arbitrary but we
4631 * would need much more detailed feedback from compaction to
4632 * make a better decision.
4633 */
4634 if (order > PAGE_ALLOC_COSTLY_ORDER)
4635 max_retries /= 4;
65190cff
MH
4636 if (*compaction_retries <= max_retries) {
4637 ret = true;
4638 goto out;
4639 }
3250845d 4640
d9436498
VB
4641 /*
4642 * Make sure there are attempts at the highest priority if we exhausted
4643 * all retries or failed at the lower priorities.
4644 */
4645check_priority:
c2033b00
VB
4646 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4647 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4648
c2033b00 4649 if (*compact_priority > min_priority) {
d9436498
VB
4650 (*compact_priority)--;
4651 *compaction_retries = 0;
65190cff 4652 ret = true;
d9436498 4653 }
65190cff
MH
4654out:
4655 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4656 return ret;
3250845d 4657}
56de7263
MG
4658#else
4659static inline struct page *
4660__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4661 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4662 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4663{
33c2d214 4664 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4665 return NULL;
4666}
33c2d214
MH
4667
4668static inline bool
86a294a8
MH
4669should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4670 enum compact_result compact_result,
a5508cd8 4671 enum compact_priority *compact_priority,
d9436498 4672 int *compaction_retries)
33c2d214 4673{
31e49bfd
MH
4674 struct zone *zone;
4675 struct zoneref *z;
4676
4677 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4678 return false;
4679
4680 /*
4681 * There are setups with compaction disabled which would prefer to loop
4682 * inside the allocator rather than hit the oom killer prematurely.
4683 * Let's give them a good hope and keep retrying while the order-0
4684 * watermarks are OK.
4685 */
97a225e6
JK
4686 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4687 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4688 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4689 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4690 return true;
4691 }
33c2d214
MH
4692 return false;
4693}
3250845d 4694#endif /* CONFIG_COMPACTION */
56de7263 4695
d92a8cfc 4696#ifdef CONFIG_LOCKDEP
93781325 4697static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4698 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4699
f920e413 4700static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4701{
d92a8cfc
PZ
4702 /* no reclaim without waiting on it */
4703 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4704 return false;
4705
4706 /* this guy won't enter reclaim */
2e517d68 4707 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4708 return false;
4709
d92a8cfc
PZ
4710 if (gfp_mask & __GFP_NOLOCKDEP)
4711 return false;
4712
4713 return true;
4714}
4715
4f3eaf45 4716void __fs_reclaim_acquire(unsigned long ip)
93781325 4717{
4f3eaf45 4718 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4719}
4720
4f3eaf45 4721void __fs_reclaim_release(unsigned long ip)
93781325 4722{
4f3eaf45 4723 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4724}
4725
d92a8cfc
PZ
4726void fs_reclaim_acquire(gfp_t gfp_mask)
4727{
f920e413
SV
4728 gfp_mask = current_gfp_context(gfp_mask);
4729
4730 if (__need_reclaim(gfp_mask)) {
4731 if (gfp_mask & __GFP_FS)
4f3eaf45 4732 __fs_reclaim_acquire(_RET_IP_);
f920e413
SV
4733
4734#ifdef CONFIG_MMU_NOTIFIER
4735 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4736 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4737#endif
4738
4739 }
d92a8cfc
PZ
4740}
4741EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4742
4743void fs_reclaim_release(gfp_t gfp_mask)
4744{
f920e413
SV
4745 gfp_mask = current_gfp_context(gfp_mask);
4746
4747 if (__need_reclaim(gfp_mask)) {
4748 if (gfp_mask & __GFP_FS)
4f3eaf45 4749 __fs_reclaim_release(_RET_IP_);
f920e413 4750 }
d92a8cfc
PZ
4751}
4752EXPORT_SYMBOL_GPL(fs_reclaim_release);
4753#endif
4754
3d36424b
MG
4755/*
4756 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4757 * have been rebuilt so allocation retries. Reader side does not lock and
4758 * retries the allocation if zonelist changes. Writer side is protected by the
4759 * embedded spin_lock.
4760 */
4761static DEFINE_SEQLOCK(zonelist_update_seq);
4762
4763static unsigned int zonelist_iter_begin(void)
4764{
4765 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4766 return read_seqbegin(&zonelist_update_seq);
4767
4768 return 0;
4769}
4770
4771static unsigned int check_retry_zonelist(unsigned int seq)
4772{
4773 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4774 return read_seqretry(&zonelist_update_seq, seq);
4775
4776 return seq;
4777}
4778
bba90710 4779/* Perform direct synchronous page reclaim */
2187e17b 4780static unsigned long
a9263751
VB
4781__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4782 const struct alloc_context *ac)
11e33f6a 4783{
499118e9 4784 unsigned int noreclaim_flag;
fa7fc75f 4785 unsigned long progress;
11e33f6a
MG
4786
4787 cond_resched();
4788
4789 /* We now go into synchronous reclaim */
4790 cpuset_memory_pressure_bump();
d92a8cfc 4791 fs_reclaim_acquire(gfp_mask);
93781325 4792 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4793
a9263751
VB
4794 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4795 ac->nodemask);
11e33f6a 4796
499118e9 4797 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4798 fs_reclaim_release(gfp_mask);
11e33f6a
MG
4799
4800 cond_resched();
4801
bba90710
MS
4802 return progress;
4803}
4804
4805/* The really slow allocator path where we enter direct reclaim */
4806static inline struct page *
4807__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4808 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4809 unsigned long *did_some_progress)
bba90710
MS
4810{
4811 struct page *page = NULL;
fa7fc75f 4812 unsigned long pflags;
bba90710
MS
4813 bool drained = false;
4814
fa7fc75f 4815 psi_memstall_enter(&pflags);
a9263751 4816 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 4817 if (unlikely(!(*did_some_progress)))
fa7fc75f 4818 goto out;
11e33f6a 4819
9ee493ce 4820retry:
31a6c190 4821 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4822
4823 /*
4824 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4825 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4826 * Shrink them and try again
9ee493ce
MG
4827 */
4828 if (!page && !drained) {
29fac03b 4829 unreserve_highatomic_pageblock(ac, false);
93481ff0 4830 drain_all_pages(NULL);
9ee493ce
MG
4831 drained = true;
4832 goto retry;
4833 }
fa7fc75f
SB
4834out:
4835 psi_memstall_leave(&pflags);
9ee493ce 4836
11e33f6a
MG
4837 return page;
4838}
4839
5ecd9d40
DR
4840static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4841 const struct alloc_context *ac)
3a025760
JW
4842{
4843 struct zoneref *z;
4844 struct zone *zone;
e1a55637 4845 pg_data_t *last_pgdat = NULL;
97a225e6 4846 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4847
97a225e6 4848 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4849 ac->nodemask) {
bc53008e
WY
4850 if (!managed_zone(zone))
4851 continue;
d137a7cb 4852 if (last_pgdat != zone->zone_pgdat) {
97a225e6 4853 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
d137a7cb
CW
4854 last_pgdat = zone->zone_pgdat;
4855 }
e1a55637 4856 }
3a025760
JW
4857}
4858
c603844b 4859static inline unsigned int
eb2e2b42 4860gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
341ce06f 4861{
c603844b 4862 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4863
736838e9 4864 /*
524c4807 4865 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
736838e9
MN
4866 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4867 * to save two branches.
4868 */
524c4807 4869 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
736838e9 4870 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4871
341ce06f
PZ
4872 /*
4873 * The caller may dip into page reserves a bit more if the caller
4874 * cannot run direct reclaim, or if the caller has realtime scheduling
4875 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1ebbb218 4876 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
341ce06f 4877 */
736838e9
MN
4878 alloc_flags |= (__force int)
4879 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4880
1ebbb218 4881 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
5c3240d9 4882 /*
b104a35d
DR
4883 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4884 * if it can't schedule.
5c3240d9 4885 */
eb2e2b42 4886 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1ebbb218 4887 alloc_flags |= ALLOC_NON_BLOCK;
eb2e2b42
MG
4888
4889 if (order > 0)
4890 alloc_flags |= ALLOC_HIGHATOMIC;
4891 }
4892
523b9458 4893 /*
1ebbb218
MG
4894 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4895 * GFP_ATOMIC) rather than fail, see the comment for
4896 * __cpuset_node_allowed().
523b9458 4897 */
1ebbb218
MG
4898 if (alloc_flags & ALLOC_MIN_RESERVE)
4899 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4900 } else if (unlikely(rt_task(current)) && in_task())
c988dcbe 4901 alloc_flags |= ALLOC_MIN_RESERVE;
341ce06f 4902
8e3560d9 4903 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4904
341ce06f
PZ
4905 return alloc_flags;
4906}
4907
cd04ae1e 4908static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4909{
cd04ae1e
MH
4910 if (!tsk_is_oom_victim(tsk))
4911 return false;
4912
4913 /*
4914 * !MMU doesn't have oom reaper so give access to memory reserves
4915 * only to the thread with TIF_MEMDIE set
4916 */
4917 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4918 return false;
4919
cd04ae1e
MH
4920 return true;
4921}
4922
4923/*
4924 * Distinguish requests which really need access to full memory
4925 * reserves from oom victims which can live with a portion of it
4926 */
4927static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4928{
4929 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4930 return 0;
31a6c190 4931 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4932 return ALLOC_NO_WATERMARKS;
31a6c190 4933 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4934 return ALLOC_NO_WATERMARKS;
4935 if (!in_interrupt()) {
4936 if (current->flags & PF_MEMALLOC)
4937 return ALLOC_NO_WATERMARKS;
4938 else if (oom_reserves_allowed(current))
4939 return ALLOC_OOM;
4940 }
31a6c190 4941
cd04ae1e
MH
4942 return 0;
4943}
4944
4945bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4946{
4947 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4948}
4949
0a0337e0
MH
4950/*
4951 * Checks whether it makes sense to retry the reclaim to make a forward progress
4952 * for the given allocation request.
491d79ae
JW
4953 *
4954 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4955 * without success, or when we couldn't even meet the watermark if we
4956 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4957 *
4958 * Returns true if a retry is viable or false to enter the oom path.
4959 */
4960static inline bool
4961should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4962 struct alloc_context *ac, int alloc_flags,
423b452e 4963 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4964{
4965 struct zone *zone;
4966 struct zoneref *z;
15f570bf 4967 bool ret = false;
0a0337e0 4968
423b452e
VB
4969 /*
4970 * Costly allocations might have made a progress but this doesn't mean
4971 * their order will become available due to high fragmentation so
4972 * always increment the no progress counter for them
4973 */
4974 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4975 *no_progress_loops = 0;
4976 else
4977 (*no_progress_loops)++;
4978
0a0337e0
MH
4979 /*
4980 * Make sure we converge to OOM if we cannot make any progress
4981 * several times in the row.
4982 */
04c8716f
MK
4983 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4984 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4985 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4986 }
0a0337e0 4987
bca67592
MG
4988 /*
4989 * Keep reclaiming pages while there is a chance this will lead
4990 * somewhere. If none of the target zones can satisfy our allocation
4991 * request even if all reclaimable pages are considered then we are
4992 * screwed and have to go OOM.
0a0337e0 4993 */
97a225e6
JK
4994 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4995 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4996 unsigned long available;
ede37713 4997 unsigned long reclaimable;
d379f01d
MH
4998 unsigned long min_wmark = min_wmark_pages(zone);
4999 bool wmark;
0a0337e0 5000
5a1c84b4 5001 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 5002 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
5003
5004 /*
491d79ae
JW
5005 * Would the allocation succeed if we reclaimed all
5006 * reclaimable pages?
0a0337e0 5007 */
d379f01d 5008 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 5009 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
5010 trace_reclaim_retry_zone(z, order, reclaimable,
5011 available, min_wmark, *no_progress_loops, wmark);
5012 if (wmark) {
15f570bf 5013 ret = true;
132b0d21 5014 break;
0a0337e0
MH
5015 }
5016 }
5017
15f570bf
MH
5018 /*
5019 * Memory allocation/reclaim might be called from a WQ context and the
5020 * current implementation of the WQ concurrency control doesn't
5021 * recognize that a particular WQ is congested if the worker thread is
5022 * looping without ever sleeping. Therefore we have to do a short sleep
5023 * here rather than calling cond_resched().
5024 */
5025 if (current->flags & PF_WQ_WORKER)
5026 schedule_timeout_uninterruptible(1);
5027 else
5028 cond_resched();
5029 return ret;
0a0337e0
MH
5030}
5031
902b6281
VB
5032static inline bool
5033check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
5034{
5035 /*
5036 * It's possible that cpuset's mems_allowed and the nodemask from
5037 * mempolicy don't intersect. This should be normally dealt with by
5038 * policy_nodemask(), but it's possible to race with cpuset update in
5039 * such a way the check therein was true, and then it became false
5040 * before we got our cpuset_mems_cookie here.
5041 * This assumes that for all allocations, ac->nodemask can come only
5042 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5043 * when it does not intersect with the cpuset restrictions) or the
5044 * caller can deal with a violated nodemask.
5045 */
5046 if (cpusets_enabled() && ac->nodemask &&
5047 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5048 ac->nodemask = NULL;
5049 return true;
5050 }
5051
5052 /*
5053 * When updating a task's mems_allowed or mempolicy nodemask, it is
5054 * possible to race with parallel threads in such a way that our
5055 * allocation can fail while the mask is being updated. If we are about
5056 * to fail, check if the cpuset changed during allocation and if so,
5057 * retry.
5058 */
5059 if (read_mems_allowed_retry(cpuset_mems_cookie))
5060 return true;
5061
5062 return false;
5063}
5064
11e33f6a
MG
5065static inline struct page *
5066__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 5067 struct alloc_context *ac)
11e33f6a 5068{
d0164adc 5069 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 5070 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 5071 struct page *page = NULL;
c603844b 5072 unsigned int alloc_flags;
11e33f6a 5073 unsigned long did_some_progress;
5ce9bfef 5074 enum compact_priority compact_priority;
c5d01d0d 5075 enum compact_result compact_result;
5ce9bfef
VB
5076 int compaction_retries;
5077 int no_progress_loops;
5ce9bfef 5078 unsigned int cpuset_mems_cookie;
3d36424b 5079 unsigned int zonelist_iter_cookie;
cd04ae1e 5080 int reserve_flags;
1da177e4 5081
3d36424b 5082restart:
5ce9bfef
VB
5083 compaction_retries = 0;
5084 no_progress_loops = 0;
5085 compact_priority = DEF_COMPACT_PRIORITY;
5086 cpuset_mems_cookie = read_mems_allowed_begin();
3d36424b 5087 zonelist_iter_cookie = zonelist_iter_begin();
9a67f648
MH
5088
5089 /*
5090 * The fast path uses conservative alloc_flags to succeed only until
5091 * kswapd needs to be woken up, and to avoid the cost of setting up
5092 * alloc_flags precisely. So we do that now.
5093 */
eb2e2b42 5094 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
9a67f648 5095
e47483bc
VB
5096 /*
5097 * We need to recalculate the starting point for the zonelist iterator
5098 * because we might have used different nodemask in the fast path, or
5099 * there was a cpuset modification and we are retrying - otherwise we
5100 * could end up iterating over non-eligible zones endlessly.
5101 */
5102 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5103 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
5104 if (!ac->preferred_zoneref->zone)
5105 goto nopage;
5106
8ca1b5a4
FT
5107 /*
5108 * Check for insane configurations where the cpuset doesn't contain
5109 * any suitable zone to satisfy the request - e.g. non-movable
5110 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5111 */
5112 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5113 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5114 ac->highest_zoneidx,
5115 &cpuset_current_mems_allowed);
5116 if (!z->zone)
5117 goto nopage;
5118 }
5119
0a79cdad 5120 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 5121 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
5122
5123 /*
5124 * The adjusted alloc_flags might result in immediate success, so try
5125 * that first
5126 */
5127 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5128 if (page)
5129 goto got_pg;
5130
a8161d1e
VB
5131 /*
5132 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
5133 * that we have enough base pages and don't need to reclaim. For non-
5134 * movable high-order allocations, do that as well, as compaction will
5135 * try prevent permanent fragmentation by migrating from blocks of the
5136 * same migratetype.
5137 * Don't try this for allocations that are allowed to ignore
5138 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 5139 */
282722b0
VB
5140 if (can_direct_reclaim &&
5141 (costly_order ||
5142 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5143 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
5144 page = __alloc_pages_direct_compact(gfp_mask, order,
5145 alloc_flags, ac,
a5508cd8 5146 INIT_COMPACT_PRIORITY,
a8161d1e
VB
5147 &compact_result);
5148 if (page)
5149 goto got_pg;
5150
cc638f32
VB
5151 /*
5152 * Checks for costly allocations with __GFP_NORETRY, which
5153 * includes some THP page fault allocations
5154 */
5155 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
5156 /*
5157 * If allocating entire pageblock(s) and compaction
5158 * failed because all zones are below low watermarks
5159 * or is prohibited because it recently failed at this
3f36d866
DR
5160 * order, fail immediately unless the allocator has
5161 * requested compaction and reclaim retry.
b39d0ee2
DR
5162 *
5163 * Reclaim is
5164 * - potentially very expensive because zones are far
5165 * below their low watermarks or this is part of very
5166 * bursty high order allocations,
5167 * - not guaranteed to help because isolate_freepages()
5168 * may not iterate over freed pages as part of its
5169 * linear scan, and
5170 * - unlikely to make entire pageblocks free on its
5171 * own.
5172 */
5173 if (compact_result == COMPACT_SKIPPED ||
5174 compact_result == COMPACT_DEFERRED)
5175 goto nopage;
a8161d1e 5176
a8161d1e 5177 /*
3eb2771b
VB
5178 * Looks like reclaim/compaction is worth trying, but
5179 * sync compaction could be very expensive, so keep
25160354 5180 * using async compaction.
a8161d1e 5181 */
a5508cd8 5182 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
5183 }
5184 }
23771235 5185
31a6c190 5186retry:
23771235 5187 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 5188 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 5189 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 5190
cd04ae1e
MH
5191 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5192 if (reserve_flags)
ce96fa62
ML
5193 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5194 (alloc_flags & ALLOC_KSWAPD);
23771235 5195
e46e7b77 5196 /*
d6a24df0
VB
5197 * Reset the nodemask and zonelist iterators if memory policies can be
5198 * ignored. These allocations are high priority and system rather than
5199 * user oriented.
e46e7b77 5200 */
cd04ae1e 5201 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 5202 ac->nodemask = NULL;
e46e7b77 5203 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5204 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
5205 }
5206
23771235 5207 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 5208 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
5209 if (page)
5210 goto got_pg;
1da177e4 5211
d0164adc 5212 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 5213 if (!can_direct_reclaim)
1da177e4
LT
5214 goto nopage;
5215
9a67f648
MH
5216 /* Avoid recursion of direct reclaim */
5217 if (current->flags & PF_MEMALLOC)
6583bb64
DR
5218 goto nopage;
5219
a8161d1e
VB
5220 /* Try direct reclaim and then allocating */
5221 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5222 &did_some_progress);
5223 if (page)
5224 goto got_pg;
5225
5226 /* Try direct compaction and then allocating */
a9263751 5227 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 5228 compact_priority, &compact_result);
56de7263
MG
5229 if (page)
5230 goto got_pg;
75f30861 5231
9083905a
JW
5232 /* Do not loop if specifically requested */
5233 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5234 goto nopage;
9083905a 5235
0a0337e0
MH
5236 /*
5237 * Do not retry costly high order allocations unless they are
dcda9b04 5238 * __GFP_RETRY_MAYFAIL
0a0337e0 5239 */
dcda9b04 5240 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5241 goto nopage;
0a0337e0 5242
0a0337e0 5243 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5244 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5245 goto retry;
5246
33c2d214
MH
5247 /*
5248 * It doesn't make any sense to retry for the compaction if the order-0
5249 * reclaim is not able to make any progress because the current
5250 * implementation of the compaction depends on the sufficient amount
5251 * of free memory (see __compaction_suitable)
5252 */
5253 if (did_some_progress > 0 &&
86a294a8 5254 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5255 compact_result, &compact_priority,
d9436498 5256 &compaction_retries))
33c2d214
MH
5257 goto retry;
5258
902b6281 5259
3d36424b
MG
5260 /*
5261 * Deal with possible cpuset update races or zonelist updates to avoid
5262 * a unnecessary OOM kill.
5263 */
5264 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5265 check_retry_zonelist(zonelist_iter_cookie))
5266 goto restart;
e47483bc 5267
9083905a
JW
5268 /* Reclaim has failed us, start killing things */
5269 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5270 if (page)
5271 goto got_pg;
5272
9a67f648 5273 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5274 if (tsk_is_oom_victim(current) &&
8510e69c 5275 (alloc_flags & ALLOC_OOM ||
c288983d 5276 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5277 goto nopage;
5278
9083905a 5279 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5280 if (did_some_progress) {
5281 no_progress_loops = 0;
9083905a 5282 goto retry;
0a0337e0 5283 }
9083905a 5284
1da177e4 5285nopage:
3d36424b
MG
5286 /*
5287 * Deal with possible cpuset update races or zonelist updates to avoid
5288 * a unnecessary OOM kill.
5289 */
5290 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5291 check_retry_zonelist(zonelist_iter_cookie))
5292 goto restart;
5ce9bfef 5293
9a67f648
MH
5294 /*
5295 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5296 * we always retry
5297 */
5298 if (gfp_mask & __GFP_NOFAIL) {
5299 /*
5300 * All existing users of the __GFP_NOFAIL are blockable, so warn
5301 * of any new users that actually require GFP_NOWAIT
5302 */
3f913fc5 5303 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
9a67f648
MH
5304 goto fail;
5305
5306 /*
5307 * PF_MEMALLOC request from this context is rather bizarre
5308 * because we cannot reclaim anything and only can loop waiting
5309 * for somebody to do a work for us
5310 */
3f913fc5 5311 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
9a67f648
MH
5312
5313 /*
5314 * non failing costly orders are a hard requirement which we
5315 * are not prepared for much so let's warn about these users
5316 * so that we can identify them and convert them to something
5317 * else.
5318 */
896c4d52 5319 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
9a67f648 5320
6c18ba7a 5321 /*
1ebbb218
MG
5322 * Help non-failing allocations by giving some access to memory
5323 * reserves normally used for high priority non-blocking
5324 * allocations but do not use ALLOC_NO_WATERMARKS because this
6c18ba7a 5325 * could deplete whole memory reserves which would just make
1ebbb218 5326 * the situation worse.
6c18ba7a 5327 */
1ebbb218 5328 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
6c18ba7a
MH
5329 if (page)
5330 goto got_pg;
5331
9a67f648
MH
5332 cond_resched();
5333 goto retry;
5334 }
5335fail:
a8e99259 5336 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5337 "page allocation failure: order:%u", order);
1da177e4 5338got_pg:
072bb0aa 5339 return page;
1da177e4 5340}
11e33f6a 5341
9cd75558 5342static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5343 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5344 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5345 unsigned int *alloc_flags)
11e33f6a 5346{
97a225e6 5347 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5348 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5349 ac->nodemask = nodemask;
01c0bfe0 5350 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5351
682a3385 5352 if (cpusets_enabled()) {
8e6a930b 5353 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5354 /*
5355 * When we are in the interrupt context, it is irrelevant
5356 * to the current task context. It means that any node ok.
5357 */
88dc6f20 5358 if (in_task() && !ac->nodemask)
9cd75558 5359 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5360 else
5361 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5362 }
5363
446ec838 5364 might_alloc(gfp_mask);
11e33f6a
MG
5365
5366 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5367 return false;
11e33f6a 5368
8e3560d9 5369 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5370
c9ab0c4f 5371 /* Dirty zone balancing only done in the fast path */
9cd75558 5372 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5373
e46e7b77
MG
5374 /*
5375 * The preferred zone is used for statistics but crucially it is
5376 * also used as the starting point for the zonelist iterator. It
5377 * may get reset for allocations that ignore memory policies.
5378 */
9cd75558 5379 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5380 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5381
5382 return true;
9cd75558
MG
5383}
5384
387ba26f 5385/*
0f87d9d3 5386 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5387 * @gfp: GFP flags for the allocation
5388 * @preferred_nid: The preferred NUMA node ID to allocate from
5389 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5390 * @nr_pages: The number of pages desired on the list or array
5391 * @page_list: Optional list to store the allocated pages
5392 * @page_array: Optional array to store the pages
387ba26f
MG
5393 *
5394 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5395 * allocate nr_pages quickly. Pages are added to page_list if page_list
5396 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5397 *
0f87d9d3
MG
5398 * For lists, nr_pages is the number of pages that should be allocated.
5399 *
5400 * For arrays, only NULL elements are populated with pages and nr_pages
5401 * is the maximum number of pages that will be stored in the array.
5402 *
5403 * Returns the number of pages on the list or array.
387ba26f
MG
5404 */
5405unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5406 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5407 struct list_head *page_list,
5408 struct page **page_array)
387ba26f
MG
5409{
5410 struct page *page;
4b23a68f 5411 unsigned long __maybe_unused UP_flags;
387ba26f
MG
5412 struct zone *zone;
5413 struct zoneref *z;
5414 struct per_cpu_pages *pcp;
5415 struct list_head *pcp_list;
5416 struct alloc_context ac;
5417 gfp_t alloc_gfp;
5418 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5419 int nr_populated = 0, nr_account = 0;
387ba26f 5420
0f87d9d3
MG
5421 /*
5422 * Skip populated array elements to determine if any pages need
5423 * to be allocated before disabling IRQs.
5424 */
b08e50dd 5425 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5426 nr_populated++;
5427
06147843
CL
5428 /* No pages requested? */
5429 if (unlikely(nr_pages <= 0))
5430 goto out;
5431
b3b64ebd
MG
5432 /* Already populated array? */
5433 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5434 goto out;
b3b64ebd 5435
8dcb3060
SB
5436 /* Bulk allocator does not support memcg accounting. */
5437 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5438 goto failed;
5439
387ba26f 5440 /* Use the single page allocator for one page. */
0f87d9d3 5441 if (nr_pages - nr_populated == 1)
387ba26f
MG
5442 goto failed;
5443
187ad460
MG
5444#ifdef CONFIG_PAGE_OWNER
5445 /*
5446 * PAGE_OWNER may recurse into the allocator to allocate space to
5447 * save the stack with pagesets.lock held. Releasing/reacquiring
5448 * removes much of the performance benefit of bulk allocation so
5449 * force the caller to allocate one page at a time as it'll have
5450 * similar performance to added complexity to the bulk allocator.
5451 */
5452 if (static_branch_unlikely(&page_owner_inited))
5453 goto failed;
5454#endif
5455
387ba26f
MG
5456 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5457 gfp &= gfp_allowed_mask;
5458 alloc_gfp = gfp;
5459 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5460 goto out;
387ba26f
MG
5461 gfp = alloc_gfp;
5462
5463 /* Find an allowed local zone that meets the low watermark. */
5464 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5465 unsigned long mark;
5466
5467 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5468 !__cpuset_zone_allowed(zone, gfp)) {
5469 continue;
5470 }
5471
5472 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5473 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5474 goto failed;
5475 }
5476
5477 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5478 if (zone_watermark_fast(zone, 0, mark,
5479 zonelist_zone_idx(ac.preferred_zoneref),
5480 alloc_flags, gfp)) {
5481 break;
5482 }
5483 }
5484
5485 /*
5486 * If there are no allowed local zones that meets the watermarks then
5487 * try to allocate a single page and reclaim if necessary.
5488 */
ce76f9a1 5489 if (unlikely(!zone))
387ba26f
MG
5490 goto failed;
5491
57490774 5492 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 5493 pcp_trylock_prepare(UP_flags);
57490774 5494 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 5495 if (!pcp)
4b23a68f 5496 goto failed_irq;
387ba26f 5497
387ba26f 5498 /* Attempt the batch allocation */
44042b44 5499 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
0f87d9d3
MG
5500 while (nr_populated < nr_pages) {
5501
5502 /* Skip existing pages */
5503 if (page_array && page_array[nr_populated]) {
5504 nr_populated++;
5505 continue;
5506 }
5507
44042b44 5508 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5509 pcp, pcp_list);
ce76f9a1 5510 if (unlikely(!page)) {
c572e488 5511 /* Try and allocate at least one page */
4b23a68f 5512 if (!nr_account) {
57490774 5513 pcp_spin_unlock(pcp);
387ba26f 5514 goto failed_irq;
4b23a68f 5515 }
387ba26f
MG
5516 break;
5517 }
3e23060b 5518 nr_account++;
387ba26f
MG
5519
5520 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5521 if (page_list)
5522 list_add(&page->lru, page_list);
5523 else
5524 page_array[nr_populated] = page;
5525 nr_populated++;
387ba26f
MG
5526 }
5527
57490774 5528 pcp_spin_unlock(pcp);
4b23a68f 5529 pcp_trylock_finish(UP_flags);
43c95bcc 5530
3e23060b
MG
5531 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5532 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5533
06147843 5534out:
0f87d9d3 5535 return nr_populated;
387ba26f
MG
5536
5537failed_irq:
4b23a68f 5538 pcp_trylock_finish(UP_flags);
387ba26f
MG
5539
5540failed:
5541 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5542 if (page) {
0f87d9d3
MG
5543 if (page_list)
5544 list_add(&page->lru, page_list);
5545 else
5546 page_array[nr_populated] = page;
5547 nr_populated++;
387ba26f
MG
5548 }
5549
06147843 5550 goto out;
387ba26f
MG
5551}
5552EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5553
9cd75558
MG
5554/*
5555 * This is the 'heart' of the zoned buddy allocator.
5556 */
84172f4b 5557struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5558 nodemask_t *nodemask)
9cd75558
MG
5559{
5560 struct page *page;
5561 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5562 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5563 struct alloc_context ac = { };
5564
c63ae43b
MH
5565 /*
5566 * There are several places where we assume that the order value is sane
5567 * so bail out early if the request is out of bound.
5568 */
3f913fc5 5569 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
c63ae43b 5570 return NULL;
c63ae43b 5571
6e5e0f28 5572 gfp &= gfp_allowed_mask;
da6df1b0
PT
5573 /*
5574 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5575 * resp. GFP_NOIO which has to be inherited for all allocation requests
5576 * from a particular context which has been marked by
8e3560d9
PT
5577 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5578 * movable zones are not used during allocation.
da6df1b0
PT
5579 */
5580 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5581 alloc_gfp = gfp;
5582 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5583 &alloc_gfp, &alloc_flags))
9cd75558
MG
5584 return NULL;
5585
6bb15450
MG
5586 /*
5587 * Forbid the first pass from falling back to types that fragment
5588 * memory until all local zones are considered.
5589 */
6e5e0f28 5590 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5591
5117f45d 5592 /* First allocation attempt */
8e6a930b 5593 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5594 if (likely(page))
5595 goto out;
11e33f6a 5596
da6df1b0 5597 alloc_gfp = gfp;
4fcb0971 5598 ac.spread_dirty_pages = false;
23f086f9 5599
4741526b
MG
5600 /*
5601 * Restore the original nodemask if it was potentially replaced with
5602 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5603 */
97ce86f9 5604 ac.nodemask = nodemask;
16096c25 5605
8e6a930b 5606 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5607
4fcb0971 5608out:
6e5e0f28
MWO
5609 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5610 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5611 __free_pages(page, order);
5612 page = NULL;
4949148a
VD
5613 }
5614
8e6a930b 5615 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
b073d7f8 5616 kmsan_alloc_page(page, order, alloc_gfp);
4fcb0971 5617
11e33f6a 5618 return page;
1da177e4 5619}
84172f4b 5620EXPORT_SYMBOL(__alloc_pages);
1da177e4 5621
cc09cb13
MWO
5622struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5623 nodemask_t *nodemask)
5624{
5625 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5626 preferred_nid, nodemask);
5627
5628 if (page && order > 1)
5629 prep_transhuge_page(page);
5630 return (struct folio *)page;
5631}
5632EXPORT_SYMBOL(__folio_alloc);
5633
1da177e4 5634/*
9ea9a680
MH
5635 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5636 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5637 * you need to access high mem.
1da177e4 5638 */
920c7a5d 5639unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5640{
945a1113
AM
5641 struct page *page;
5642
9ea9a680 5643 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5644 if (!page)
5645 return 0;
5646 return (unsigned long) page_address(page);
5647}
1da177e4
LT
5648EXPORT_SYMBOL(__get_free_pages);
5649
920c7a5d 5650unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5651{
945a1113 5652 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5653}
1da177e4
LT
5654EXPORT_SYMBOL(get_zeroed_page);
5655
7f194fbb
MWO
5656/**
5657 * __free_pages - Free pages allocated with alloc_pages().
5658 * @page: The page pointer returned from alloc_pages().
5659 * @order: The order of the allocation.
5660 *
5661 * This function can free multi-page allocations that are not compound
5662 * pages. It does not check that the @order passed in matches that of
5663 * the allocation, so it is easy to leak memory. Freeing more memory
5664 * than was allocated will probably emit a warning.
5665 *
5666 * If the last reference to this page is speculative, it will be released
5667 * by put_page() which only frees the first page of a non-compound
5668 * allocation. To prevent the remaining pages from being leaked, we free
5669 * the subsequent pages here. If you want to use the page's reference
5670 * count to decide when to free the allocation, you should allocate a
5671 * compound page, and use put_page() instead of __free_pages().
5672 *
5673 * Context: May be called in interrupt context or while holding a normal
5674 * spinlock, but not in NMI context or while holding a raw spinlock.
5675 */
742aa7fb
AL
5676void __free_pages(struct page *page, unsigned int order)
5677{
5678 if (put_page_testzero(page))
5679 free_the_page(page, order);
e320d301
MWO
5680 else if (!PageHead(page))
5681 while (order-- > 0)
5682 free_the_page(page + (1 << order), order);
742aa7fb 5683}
1da177e4
LT
5684EXPORT_SYMBOL(__free_pages);
5685
920c7a5d 5686void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5687{
5688 if (addr != 0) {
725d704e 5689 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5690 __free_pages(virt_to_page((void *)addr), order);
5691 }
5692}
5693
5694EXPORT_SYMBOL(free_pages);
5695
b63ae8ca
AD
5696/*
5697 * Page Fragment:
5698 * An arbitrary-length arbitrary-offset area of memory which resides
5699 * within a 0 or higher order page. Multiple fragments within that page
5700 * are individually refcounted, in the page's reference counter.
5701 *
5702 * The page_frag functions below provide a simple allocation framework for
5703 * page fragments. This is used by the network stack and network device
5704 * drivers to provide a backing region of memory for use as either an
5705 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5706 */
2976db80
AD
5707static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5708 gfp_t gfp_mask)
b63ae8ca
AD
5709{
5710 struct page *page = NULL;
5711 gfp_t gfp = gfp_mask;
5712
5713#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5714 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5715 __GFP_NOMEMALLOC;
5716 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5717 PAGE_FRAG_CACHE_MAX_ORDER);
5718 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5719#endif
5720 if (unlikely(!page))
5721 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5722
5723 nc->va = page ? page_address(page) : NULL;
5724
5725 return page;
5726}
5727
2976db80 5728void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5729{
5730 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5731
742aa7fb
AL
5732 if (page_ref_sub_and_test(page, count))
5733 free_the_page(page, compound_order(page));
44fdffd7 5734}
2976db80 5735EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5736
b358e212
KH
5737void *page_frag_alloc_align(struct page_frag_cache *nc,
5738 unsigned int fragsz, gfp_t gfp_mask,
5739 unsigned int align_mask)
b63ae8ca
AD
5740{
5741 unsigned int size = PAGE_SIZE;
5742 struct page *page;
5743 int offset;
5744
5745 if (unlikely(!nc->va)) {
5746refill:
2976db80 5747 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5748 if (!page)
5749 return NULL;
5750
5751#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5752 /* if size can vary use size else just use PAGE_SIZE */
5753 size = nc->size;
5754#endif
5755 /* Even if we own the page, we do not use atomic_set().
5756 * This would break get_page_unless_zero() users.
5757 */
86447726 5758 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5759
5760 /* reset page count bias and offset to start of new frag */
2f064f34 5761 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5762 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5763 nc->offset = size;
5764 }
5765
5766 offset = nc->offset - fragsz;
5767 if (unlikely(offset < 0)) {
5768 page = virt_to_page(nc->va);
5769
fe896d18 5770 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5771 goto refill;
5772
d8c19014
DZ
5773 if (unlikely(nc->pfmemalloc)) {
5774 free_the_page(page, compound_order(page));
5775 goto refill;
5776 }
5777
b63ae8ca
AD
5778#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5779 /* if size can vary use size else just use PAGE_SIZE */
5780 size = nc->size;
5781#endif
5782 /* OK, page count is 0, we can safely set it */
86447726 5783 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5784
5785 /* reset page count bias and offset to start of new frag */
86447726 5786 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca 5787 offset = size - fragsz;
dac22531
ML
5788 if (unlikely(offset < 0)) {
5789 /*
5790 * The caller is trying to allocate a fragment
5791 * with fragsz > PAGE_SIZE but the cache isn't big
5792 * enough to satisfy the request, this may
5793 * happen in low memory conditions.
5794 * We don't release the cache page because
5795 * it could make memory pressure worse
5796 * so we simply return NULL here.
5797 */
5798 return NULL;
5799 }
b63ae8ca
AD
5800 }
5801
5802 nc->pagecnt_bias--;
b358e212 5803 offset &= align_mask;
b63ae8ca
AD
5804 nc->offset = offset;
5805
5806 return nc->va + offset;
5807}
b358e212 5808EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5809
5810/*
5811 * Frees a page fragment allocated out of either a compound or order 0 page.
5812 */
8c2dd3e4 5813void page_frag_free(void *addr)
b63ae8ca
AD
5814{
5815 struct page *page = virt_to_head_page(addr);
5816
742aa7fb
AL
5817 if (unlikely(put_page_testzero(page)))
5818 free_the_page(page, compound_order(page));
b63ae8ca 5819}
8c2dd3e4 5820EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5821
d00181b9
KS
5822static void *make_alloc_exact(unsigned long addr, unsigned int order,
5823 size_t size)
ee85c2e1
AK
5824{
5825 if (addr) {
df48a5f7
LH
5826 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5827 struct page *page = virt_to_page((void *)addr);
5828 struct page *last = page + nr;
5829
5830 split_page_owner(page, 1 << order);
5831 split_page_memcg(page, 1 << order);
5832 while (page < --last)
5833 set_page_refcounted(last);
5834
5835 last = page + (1UL << order);
5836 for (page += nr; page < last; page++)
5837 __free_pages_ok(page, 0, FPI_TO_TAIL);
ee85c2e1
AK
5838 }
5839 return (void *)addr;
5840}
5841
2be0ffe2
TT
5842/**
5843 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5844 * @size: the number of bytes to allocate
63931eb9 5845 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5846 *
5847 * This function is similar to alloc_pages(), except that it allocates the
5848 * minimum number of pages to satisfy the request. alloc_pages() can only
5849 * allocate memory in power-of-two pages.
5850 *
5851 * This function is also limited by MAX_ORDER.
5852 *
5853 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5854 *
5855 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5856 */
5857void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5858{
5859 unsigned int order = get_order(size);
5860 unsigned long addr;
5861
ba7f1b9e
ML
5862 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5863 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 5864
2be0ffe2 5865 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5866 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5867}
5868EXPORT_SYMBOL(alloc_pages_exact);
5869
ee85c2e1
AK
5870/**
5871 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5872 * pages on a node.
b5e6ab58 5873 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5874 * @size: the number of bytes to allocate
63931eb9 5875 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5876 *
5877 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5878 * back.
a862f68a
MR
5879 *
5880 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5881 */
e1931811 5882void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5883{
d00181b9 5884 unsigned int order = get_order(size);
63931eb9
VB
5885 struct page *p;
5886
ba7f1b9e
ML
5887 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5888 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
5889
5890 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5891 if (!p)
5892 return NULL;
5893 return make_alloc_exact((unsigned long)page_address(p), order, size);
5894}
ee85c2e1 5895
2be0ffe2
TT
5896/**
5897 * free_pages_exact - release memory allocated via alloc_pages_exact()
5898 * @virt: the value returned by alloc_pages_exact.
5899 * @size: size of allocation, same value as passed to alloc_pages_exact().
5900 *
5901 * Release the memory allocated by a previous call to alloc_pages_exact.
5902 */
5903void free_pages_exact(void *virt, size_t size)
5904{
5905 unsigned long addr = (unsigned long)virt;
5906 unsigned long end = addr + PAGE_ALIGN(size);
5907
5908 while (addr < end) {
5909 free_page(addr);
5910 addr += PAGE_SIZE;
5911 }
5912}
5913EXPORT_SYMBOL(free_pages_exact);
5914
e0fb5815
ZY
5915/**
5916 * nr_free_zone_pages - count number of pages beyond high watermark
5917 * @offset: The zone index of the highest zone
5918 *
a862f68a 5919 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5920 * high watermark within all zones at or below a given zone index. For each
5921 * zone, the number of pages is calculated as:
0e056eb5
MCC
5922 *
5923 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5924 *
5925 * Return: number of pages beyond high watermark.
e0fb5815 5926 */
ebec3862 5927static unsigned long nr_free_zone_pages(int offset)
1da177e4 5928{
dd1a239f 5929 struct zoneref *z;
54a6eb5c
MG
5930 struct zone *zone;
5931
e310fd43 5932 /* Just pick one node, since fallback list is circular */
ebec3862 5933 unsigned long sum = 0;
1da177e4 5934
0e88460d 5935 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5936
54a6eb5c 5937 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5938 unsigned long size = zone_managed_pages(zone);
41858966 5939 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5940 if (size > high)
5941 sum += size - high;
1da177e4
LT
5942 }
5943
5944 return sum;
5945}
5946
e0fb5815
ZY
5947/**
5948 * nr_free_buffer_pages - count number of pages beyond high watermark
5949 *
5950 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5951 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5952 *
5953 * Return: number of pages beyond high watermark within ZONE_DMA and
5954 * ZONE_NORMAL.
1da177e4 5955 */
ebec3862 5956unsigned long nr_free_buffer_pages(void)
1da177e4 5957{
af4ca457 5958 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5959}
c2f1a551 5960EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5961
08e0f6a9 5962static inline void show_node(struct zone *zone)
1da177e4 5963{
e5adfffc 5964 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5965 printk("Node %d ", zone_to_nid(zone));
1da177e4 5966}
1da177e4 5967
d02bd27b
IR
5968long si_mem_available(void)
5969{
5970 long available;
5971 unsigned long pagecache;
5972 unsigned long wmark_low = 0;
5973 unsigned long pages[NR_LRU_LISTS];
b29940c1 5974 unsigned long reclaimable;
d02bd27b
IR
5975 struct zone *zone;
5976 int lru;
5977
5978 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5979 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5980
5981 for_each_zone(zone)
a9214443 5982 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5983
5984 /*
5985 * Estimate the amount of memory available for userspace allocations,
ade63b41 5986 * without causing swapping or OOM.
d02bd27b 5987 */
c41f012a 5988 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5989
5990 /*
5991 * Not all the page cache can be freed, otherwise the system will
ade63b41
YY
5992 * start swapping or thrashing. Assume at least half of the page
5993 * cache, or the low watermark worth of cache, needs to stay.
d02bd27b
IR
5994 */
5995 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5996 pagecache -= min(pagecache / 2, wmark_low);
5997 available += pagecache;
5998
5999 /*
b29940c1
VB
6000 * Part of the reclaimable slab and other kernel memory consists of
6001 * items that are in use, and cannot be freed. Cap this estimate at the
6002 * low watermark.
d02bd27b 6003 */
d42f3245
RG
6004 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
6005 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 6006 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 6007
d02bd27b
IR
6008 if (available < 0)
6009 available = 0;
6010 return available;
6011}
6012EXPORT_SYMBOL_GPL(si_mem_available);
6013
1da177e4
LT
6014void si_meminfo(struct sysinfo *val)
6015{
ca79b0c2 6016 val->totalram = totalram_pages();
11fb9989 6017 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 6018 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 6019 val->bufferram = nr_blockdev_pages();
ca79b0c2 6020 val->totalhigh = totalhigh_pages();
1da177e4 6021 val->freehigh = nr_free_highpages();
1da177e4
LT
6022 val->mem_unit = PAGE_SIZE;
6023}
6024
6025EXPORT_SYMBOL(si_meminfo);
6026
6027#ifdef CONFIG_NUMA
6028void si_meminfo_node(struct sysinfo *val, int nid)
6029{
cdd91a77
JL
6030 int zone_type; /* needs to be signed */
6031 unsigned long managed_pages = 0;
fc2bd799
JK
6032 unsigned long managed_highpages = 0;
6033 unsigned long free_highpages = 0;
1da177e4
LT
6034 pg_data_t *pgdat = NODE_DATA(nid);
6035
cdd91a77 6036 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 6037 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 6038 val->totalram = managed_pages;
11fb9989 6039 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 6040 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 6041#ifdef CONFIG_HIGHMEM
fc2bd799
JK
6042 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6043 struct zone *zone = &pgdat->node_zones[zone_type];
6044
6045 if (is_highmem(zone)) {
9705bea5 6046 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
6047 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6048 }
6049 }
6050 val->totalhigh = managed_highpages;
6051 val->freehigh = free_highpages;
98d2b0eb 6052#else
fc2bd799
JK
6053 val->totalhigh = managed_highpages;
6054 val->freehigh = free_highpages;
98d2b0eb 6055#endif
1da177e4
LT
6056 val->mem_unit = PAGE_SIZE;
6057}
6058#endif
6059
ddd588b5 6060/*
7bf02ea2
DR
6061 * Determine whether the node should be displayed or not, depending on whether
6062 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 6063 */
9af744d7 6064static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 6065{
ddd588b5 6066 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 6067 return false;
ddd588b5 6068
9af744d7
MH
6069 /*
6070 * no node mask - aka implicit memory numa policy. Do not bother with
6071 * the synchronization - read_mems_allowed_begin - because we do not
6072 * have to be precise here.
6073 */
6074 if (!nodemask)
6075 nodemask = &cpuset_current_mems_allowed;
6076
6077 return !node_isset(nid, *nodemask);
ddd588b5
DR
6078}
6079
1da177e4
LT
6080#define K(x) ((x) << (PAGE_SHIFT-10))
6081
377e4f16
RV
6082static void show_migration_types(unsigned char type)
6083{
6084 static const char types[MIGRATE_TYPES] = {
6085 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 6086 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
6087 [MIGRATE_RECLAIMABLE] = 'E',
6088 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
6089#ifdef CONFIG_CMA
6090 [MIGRATE_CMA] = 'C',
6091#endif
194159fb 6092#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 6093 [MIGRATE_ISOLATE] = 'I',
194159fb 6094#endif
377e4f16
RV
6095 };
6096 char tmp[MIGRATE_TYPES + 1];
6097 char *p = tmp;
6098 int i;
6099
6100 for (i = 0; i < MIGRATE_TYPES; i++) {
6101 if (type & (1 << i))
6102 *p++ = types[i];
6103 }
6104
6105 *p = '\0';
1f84a18f 6106 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
6107}
6108
974f4367
MH
6109static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6110{
6111 int zone_idx;
6112 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6113 if (zone_managed_pages(pgdat->node_zones + zone_idx))
6114 return true;
6115 return false;
6116}
6117
1da177e4
LT
6118/*
6119 * Show free area list (used inside shift_scroll-lock stuff)
6120 * We also calculate the percentage fragmentation. We do this by counting the
6121 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
6122 *
6123 * Bits in @filter:
6124 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6125 * cpuset.
1da177e4 6126 */
974f4367 6127void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
1da177e4 6128{
d1bfcdb8 6129 unsigned long free_pcp = 0;
dcadcf1c 6130 int cpu, nid;
1da177e4 6131 struct zone *zone;
599d0c95 6132 pg_data_t *pgdat;
1da177e4 6133
ee99c71c 6134 for_each_populated_zone(zone) {
974f4367
MH
6135 if (zone_idx(zone) > max_zone_idx)
6136 continue;
9af744d7 6137 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6138 continue;
d1bfcdb8 6139
761b0677 6140 for_each_online_cpu(cpu)
28f836b6 6141 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
6142 }
6143
a731286d
KM
6144 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6145 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 6146 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 6147 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
ebc97a52
YA
6148 " mapped:%lu shmem:%lu pagetables:%lu\n"
6149 " sec_pagetables:%lu bounce:%lu\n"
eb2169ce 6150 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 6151 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
6152 global_node_page_state(NR_ACTIVE_ANON),
6153 global_node_page_state(NR_INACTIVE_ANON),
6154 global_node_page_state(NR_ISOLATED_ANON),
6155 global_node_page_state(NR_ACTIVE_FILE),
6156 global_node_page_state(NR_INACTIVE_FILE),
6157 global_node_page_state(NR_ISOLATED_FILE),
6158 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
6159 global_node_page_state(NR_FILE_DIRTY),
6160 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
6161 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6162 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 6163 global_node_page_state(NR_FILE_MAPPED),
11fb9989 6164 global_node_page_state(NR_SHMEM),
f0c0c115 6165 global_node_page_state(NR_PAGETABLE),
ebc97a52 6166 global_node_page_state(NR_SECONDARY_PAGETABLE),
c41f012a 6167 global_zone_page_state(NR_BOUNCE),
eb2169ce 6168 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 6169 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 6170 free_pcp,
c41f012a 6171 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 6172
599d0c95 6173 for_each_online_pgdat(pgdat) {
9af744d7 6174 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb 6175 continue;
974f4367
MH
6176 if (!node_has_managed_zones(pgdat, max_zone_idx))
6177 continue;
c02e50bb 6178
599d0c95
MG
6179 printk("Node %d"
6180 " active_anon:%lukB"
6181 " inactive_anon:%lukB"
6182 " active_file:%lukB"
6183 " inactive_file:%lukB"
6184 " unevictable:%lukB"
6185 " isolated(anon):%lukB"
6186 " isolated(file):%lukB"
50658e2e 6187 " mapped:%lukB"
11fb9989
MG
6188 " dirty:%lukB"
6189 " writeback:%lukB"
6190 " shmem:%lukB"
6191#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6192 " shmem_thp: %lukB"
6193 " shmem_pmdmapped: %lukB"
6194 " anon_thp: %lukB"
6195#endif
6196 " writeback_tmp:%lukB"
991e7673
SB
6197 " kernel_stack:%lukB"
6198#ifdef CONFIG_SHADOW_CALL_STACK
6199 " shadow_call_stack:%lukB"
6200#endif
f0c0c115 6201 " pagetables:%lukB"
ebc97a52 6202 " sec_pagetables:%lukB"
599d0c95
MG
6203 " all_unreclaimable? %s"
6204 "\n",
6205 pgdat->node_id,
6206 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6207 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6208 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6209 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6210 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6211 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6212 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 6213 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
6214 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6215 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 6216 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 6217#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 6218 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 6219 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 6220 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 6221#endif
11fb9989 6222 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
6223 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6224#ifdef CONFIG_SHADOW_CALL_STACK
6225 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6226#endif
f0c0c115 6227 K(node_page_state(pgdat, NR_PAGETABLE)),
ebc97a52 6228 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
c73322d0
JW
6229 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6230 "yes" : "no");
599d0c95
MG
6231 }
6232
ee99c71c 6233 for_each_populated_zone(zone) {
1da177e4
LT
6234 int i;
6235
974f4367
MH
6236 if (zone_idx(zone) > max_zone_idx)
6237 continue;
9af744d7 6238 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6239 continue;
d1bfcdb8
KK
6240
6241 free_pcp = 0;
6242 for_each_online_cpu(cpu)
28f836b6 6243 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 6244
1da177e4 6245 show_node(zone);
1f84a18f
JP
6246 printk(KERN_CONT
6247 "%s"
1da177e4 6248 " free:%lukB"
a6ea8b5b 6249 " boost:%lukB"
1da177e4
LT
6250 " min:%lukB"
6251 " low:%lukB"
6252 " high:%lukB"
e47b346a 6253 " reserved_highatomic:%luKB"
71c799f4
MK
6254 " active_anon:%lukB"
6255 " inactive_anon:%lukB"
6256 " active_file:%lukB"
6257 " inactive_file:%lukB"
6258 " unevictable:%lukB"
5a1c84b4 6259 " writepending:%lukB"
1da177e4 6260 " present:%lukB"
9feedc9d 6261 " managed:%lukB"
4a0aa73f 6262 " mlocked:%lukB"
4a0aa73f 6263 " bounce:%lukB"
d1bfcdb8
KK
6264 " free_pcp:%lukB"
6265 " local_pcp:%ukB"
d1ce749a 6266 " free_cma:%lukB"
1da177e4
LT
6267 "\n",
6268 zone->name,
88f5acf8 6269 K(zone_page_state(zone, NR_FREE_PAGES)),
a6ea8b5b 6270 K(zone->watermark_boost),
41858966
MG
6271 K(min_wmark_pages(zone)),
6272 K(low_wmark_pages(zone)),
6273 K(high_wmark_pages(zone)),
e47b346a 6274 K(zone->nr_reserved_highatomic),
71c799f4
MK
6275 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6276 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6277 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6278 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6279 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6280 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6281 K(zone->present_pages),
9705bea5 6282 K(zone_managed_pages(zone)),
4a0aa73f 6283 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6284 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6285 K(free_pcp),
28f836b6 6286 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6287 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6288 printk("lowmem_reserve[]:");
6289 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6290 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6291 printk(KERN_CONT "\n");
1da177e4
LT
6292 }
6293
ee99c71c 6294 for_each_populated_zone(zone) {
d00181b9
KS
6295 unsigned int order;
6296 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6297 unsigned char types[MAX_ORDER];
1da177e4 6298
974f4367
MH
6299 if (zone_idx(zone) > max_zone_idx)
6300 continue;
9af744d7 6301 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6302 continue;
1da177e4 6303 show_node(zone);
1f84a18f 6304 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6305
6306 spin_lock_irqsave(&zone->lock, flags);
6307 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6308 struct free_area *area = &zone->free_area[order];
6309 int type;
6310
6311 nr[order] = area->nr_free;
8f9de51a 6312 total += nr[order] << order;
377e4f16
RV
6313
6314 types[order] = 0;
6315 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6316 if (!free_area_empty(area, type))
377e4f16
RV
6317 types[order] |= 1 << type;
6318 }
1da177e4
LT
6319 }
6320 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6321 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6322 printk(KERN_CONT "%lu*%lukB ",
6323 nr[order], K(1UL) << order);
377e4f16
RV
6324 if (nr[order])
6325 show_migration_types(types[order]);
6326 }
1f84a18f 6327 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6328 }
6329
dcadcf1c
GL
6330 for_each_online_node(nid) {
6331 if (show_mem_node_skip(filter, nid, nodemask))
6332 continue;
6333 hugetlb_show_meminfo_node(nid);
6334 }
949f7ec5 6335
11fb9989 6336 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6337
1da177e4
LT
6338 show_swap_cache_info();
6339}
6340
19770b32
MG
6341static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6342{
6343 zoneref->zone = zone;
6344 zoneref->zone_idx = zone_idx(zone);
6345}
6346
1da177e4
LT
6347/*
6348 * Builds allocation fallback zone lists.
1a93205b
CL
6349 *
6350 * Add all populated zones of a node to the zonelist.
1da177e4 6351 */
9d3be21b 6352static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6353{
1a93205b 6354 struct zone *zone;
bc732f1d 6355 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6356 int nr_zones = 0;
02a68a5e
CL
6357
6358 do {
2f6726e5 6359 zone_type--;
070f8032 6360 zone = pgdat->node_zones + zone_type;
e553f62f 6361 if (populated_zone(zone)) {
9d3be21b 6362 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6363 check_highest_zone(zone_type);
1da177e4 6364 }
2f6726e5 6365 } while (zone_type);
bc732f1d 6366
070f8032 6367 return nr_zones;
1da177e4
LT
6368}
6369
6370#ifdef CONFIG_NUMA
f0c0b2b8
KH
6371
6372static int __parse_numa_zonelist_order(char *s)
6373{
c9bff3ee 6374 /*
f0953a1b 6375 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6376 * out to be just not useful. Let's keep the warning in place
6377 * if somebody still use the cmd line parameter so that we do
6378 * not fail it silently
6379 */
6380 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6381 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6382 return -EINVAL;
6383 }
6384 return 0;
6385}
6386
c9bff3ee
MH
6387char numa_zonelist_order[] = "Node";
6388
f0c0b2b8
KH
6389/*
6390 * sysctl handler for numa_zonelist_order
6391 */
cccad5b9 6392int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6393 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6394{
32927393
CH
6395 if (write)
6396 return __parse_numa_zonelist_order(buffer);
6397 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6398}
6399
6400
f0c0b2b8
KH
6401static int node_load[MAX_NUMNODES];
6402
1da177e4 6403/**
4dc3b16b 6404 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6405 * @node: node whose fallback list we're appending
6406 * @used_node_mask: nodemask_t of already used nodes
6407 *
6408 * We use a number of factors to determine which is the next node that should
6409 * appear on a given node's fallback list. The node should not have appeared
6410 * already in @node's fallback list, and it should be the next closest node
6411 * according to the distance array (which contains arbitrary distance values
6412 * from each node to each node in the system), and should also prefer nodes
6413 * with no CPUs, since presumably they'll have very little allocation pressure
6414 * on them otherwise.
a862f68a
MR
6415 *
6416 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6417 */
79c28a41 6418int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6419{
4cf808eb 6420 int n, val;
1da177e4 6421 int min_val = INT_MAX;
00ef2d2f 6422 int best_node = NUMA_NO_NODE;
1da177e4 6423
4cf808eb
LT
6424 /* Use the local node if we haven't already */
6425 if (!node_isset(node, *used_node_mask)) {
6426 node_set(node, *used_node_mask);
6427 return node;
6428 }
1da177e4 6429
4b0ef1fe 6430 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6431
6432 /* Don't want a node to appear more than once */
6433 if (node_isset(n, *used_node_mask))
6434 continue;
6435
1da177e4
LT
6436 /* Use the distance array to find the distance */
6437 val = node_distance(node, n);
6438
4cf808eb
LT
6439 /* Penalize nodes under us ("prefer the next node") */
6440 val += (n < node);
6441
1da177e4 6442 /* Give preference to headless and unused nodes */
b630749f 6443 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6444 val += PENALTY_FOR_NODE_WITH_CPUS;
6445
6446 /* Slight preference for less loaded node */
37931324 6447 val *= MAX_NUMNODES;
1da177e4
LT
6448 val += node_load[n];
6449
6450 if (val < min_val) {
6451 min_val = val;
6452 best_node = n;
6453 }
6454 }
6455
6456 if (best_node >= 0)
6457 node_set(best_node, *used_node_mask);
6458
6459 return best_node;
6460}
6461
f0c0b2b8
KH
6462
6463/*
6464 * Build zonelists ordered by node and zones within node.
6465 * This results in maximum locality--normal zone overflows into local
6466 * DMA zone, if any--but risks exhausting DMA zone.
6467 */
9d3be21b
MH
6468static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6469 unsigned nr_nodes)
1da177e4 6470{
9d3be21b
MH
6471 struct zoneref *zonerefs;
6472 int i;
6473
6474 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6475
6476 for (i = 0; i < nr_nodes; i++) {
6477 int nr_zones;
6478
6479 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6480
9d3be21b
MH
6481 nr_zones = build_zonerefs_node(node, zonerefs);
6482 zonerefs += nr_zones;
6483 }
6484 zonerefs->zone = NULL;
6485 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6486}
6487
523b9458
CL
6488/*
6489 * Build gfp_thisnode zonelists
6490 */
6491static void build_thisnode_zonelists(pg_data_t *pgdat)
6492{
9d3be21b
MH
6493 struct zoneref *zonerefs;
6494 int nr_zones;
523b9458 6495
9d3be21b
MH
6496 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6497 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6498 zonerefs += nr_zones;
6499 zonerefs->zone = NULL;
6500 zonerefs->zone_idx = 0;
523b9458
CL
6501}
6502
f0c0b2b8
KH
6503/*
6504 * Build zonelists ordered by zone and nodes within zones.
6505 * This results in conserving DMA zone[s] until all Normal memory is
6506 * exhausted, but results in overflowing to remote node while memory
6507 * may still exist in local DMA zone.
6508 */
f0c0b2b8 6509
f0c0b2b8
KH
6510static void build_zonelists(pg_data_t *pgdat)
6511{
9d3be21b 6512 static int node_order[MAX_NUMNODES];
37931324 6513 int node, nr_nodes = 0;
d0ddf49b 6514 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6515 int local_node, prev_node;
1da177e4
LT
6516
6517 /* NUMA-aware ordering of nodes */
6518 local_node = pgdat->node_id;
1da177e4 6519 prev_node = local_node;
f0c0b2b8 6520
f0c0b2b8 6521 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6522 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6523 /*
6524 * We don't want to pressure a particular node.
6525 * So adding penalty to the first node in same
6526 * distance group to make it round-robin.
6527 */
957f822a
DR
6528 if (node_distance(local_node, node) !=
6529 node_distance(local_node, prev_node))
37931324 6530 node_load[node] += 1;
f0c0b2b8 6531
9d3be21b 6532 node_order[nr_nodes++] = node;
1da177e4 6533 prev_node = node;
1da177e4 6534 }
523b9458 6535
9d3be21b 6536 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6537 build_thisnode_zonelists(pgdat);
6cf25392
BR
6538 pr_info("Fallback order for Node %d: ", local_node);
6539 for (node = 0; node < nr_nodes; node++)
6540 pr_cont("%d ", node_order[node]);
6541 pr_cont("\n");
1da177e4
LT
6542}
6543
7aac7898
LS
6544#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6545/*
6546 * Return node id of node used for "local" allocations.
6547 * I.e., first node id of first zone in arg node's generic zonelist.
6548 * Used for initializing percpu 'numa_mem', which is used primarily
6549 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6550 */
6551int local_memory_node(int node)
6552{
c33d6c06 6553 struct zoneref *z;
7aac7898 6554
c33d6c06 6555 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6556 gfp_zone(GFP_KERNEL),
c33d6c06 6557 NULL);
c1093b74 6558 return zone_to_nid(z->zone);
7aac7898
LS
6559}
6560#endif
f0c0b2b8 6561
6423aa81
JK
6562static void setup_min_unmapped_ratio(void);
6563static void setup_min_slab_ratio(void);
1da177e4
LT
6564#else /* CONFIG_NUMA */
6565
f0c0b2b8 6566static void build_zonelists(pg_data_t *pgdat)
1da177e4 6567{
19655d34 6568 int node, local_node;
9d3be21b
MH
6569 struct zoneref *zonerefs;
6570 int nr_zones;
1da177e4
LT
6571
6572 local_node = pgdat->node_id;
1da177e4 6573
9d3be21b
MH
6574 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6575 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6576 zonerefs += nr_zones;
1da177e4 6577
54a6eb5c
MG
6578 /*
6579 * Now we build the zonelist so that it contains the zones
6580 * of all the other nodes.
6581 * We don't want to pressure a particular node, so when
6582 * building the zones for node N, we make sure that the
6583 * zones coming right after the local ones are those from
6584 * node N+1 (modulo N)
6585 */
6586 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6587 if (!node_online(node))
6588 continue;
9d3be21b
MH
6589 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6590 zonerefs += nr_zones;
1da177e4 6591 }
54a6eb5c
MG
6592 for (node = 0; node < local_node; node++) {
6593 if (!node_online(node))
6594 continue;
9d3be21b
MH
6595 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6596 zonerefs += nr_zones;
54a6eb5c
MG
6597 }
6598
9d3be21b
MH
6599 zonerefs->zone = NULL;
6600 zonerefs->zone_idx = 0;
1da177e4
LT
6601}
6602
6603#endif /* CONFIG_NUMA */
6604
99dcc3e5
CL
6605/*
6606 * Boot pageset table. One per cpu which is going to be used for all
6607 * zones and all nodes. The parameters will be set in such a way
6608 * that an item put on a list will immediately be handed over to
6609 * the buddy list. This is safe since pageset manipulation is done
6610 * with interrupts disabled.
6611 *
6612 * The boot_pagesets must be kept even after bootup is complete for
6613 * unused processors and/or zones. They do play a role for bootstrapping
6614 * hotplugged processors.
6615 *
6616 * zoneinfo_show() and maybe other functions do
6617 * not check if the processor is online before following the pageset pointer.
6618 * Other parts of the kernel may not check if the zone is available.
6619 */
28f836b6 6620static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6621/* These effectively disable the pcplists in the boot pageset completely */
6622#define BOOT_PAGESET_HIGH 0
6623#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6624static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6625static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6dc2c87a 6626static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6627
11cd8638 6628static void __build_all_zonelists(void *data)
1da177e4 6629{
6811378e 6630 int nid;
afb6ebb3 6631 int __maybe_unused cpu;
9adb62a5 6632 pg_data_t *self = data;
b93e0f32 6633
3d36424b 6634 write_seqlock(&zonelist_update_seq);
9276b1bc 6635
7f9cfb31
BL
6636#ifdef CONFIG_NUMA
6637 memset(node_load, 0, sizeof(node_load));
6638#endif
9adb62a5 6639
c1152583
WY
6640 /*
6641 * This node is hotadded and no memory is yet present. So just
6642 * building zonelists is fine - no need to touch other nodes.
6643 */
9adb62a5
JL
6644 if (self && !node_online(self->node_id)) {
6645 build_zonelists(self);
c1152583 6646 } else {
09f49dca
MH
6647 /*
6648 * All possible nodes have pgdat preallocated
6649 * in free_area_init
6650 */
6651 for_each_node(nid) {
c1152583 6652 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6653
c1152583
WY
6654 build_zonelists(pgdat);
6655 }
99dcc3e5 6656
7aac7898
LS
6657#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6658 /*
6659 * We now know the "local memory node" for each node--
6660 * i.e., the node of the first zone in the generic zonelist.
6661 * Set up numa_mem percpu variable for on-line cpus. During
6662 * boot, only the boot cpu should be on-line; we'll init the
6663 * secondary cpus' numa_mem as they come on-line. During
6664 * node/memory hotplug, we'll fixup all on-line cpus.
6665 */
d9c9a0b9 6666 for_each_online_cpu(cpu)
7aac7898 6667 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6668#endif
d9c9a0b9 6669 }
b93e0f32 6670
3d36424b 6671 write_sequnlock(&zonelist_update_seq);
6811378e
YG
6672}
6673
061f67bc
RV
6674static noinline void __init
6675build_all_zonelists_init(void)
6676{
afb6ebb3
MH
6677 int cpu;
6678
061f67bc 6679 __build_all_zonelists(NULL);
afb6ebb3
MH
6680
6681 /*
6682 * Initialize the boot_pagesets that are going to be used
6683 * for bootstrapping processors. The real pagesets for
6684 * each zone will be allocated later when the per cpu
6685 * allocator is available.
6686 *
6687 * boot_pagesets are used also for bootstrapping offline
6688 * cpus if the system is already booted because the pagesets
6689 * are needed to initialize allocators on a specific cpu too.
6690 * F.e. the percpu allocator needs the page allocator which
6691 * needs the percpu allocator in order to allocate its pagesets
6692 * (a chicken-egg dilemma).
6693 */
6694 for_each_possible_cpu(cpu)
28f836b6 6695 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6696
061f67bc
RV
6697 mminit_verify_zonelist();
6698 cpuset_init_current_mems_allowed();
6699}
6700
4eaf3f64 6701/*
4eaf3f64 6702 * unless system_state == SYSTEM_BOOTING.
061f67bc 6703 *
72675e13 6704 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6705 * [protected by SYSTEM_BOOTING].
4eaf3f64 6706 */
72675e13 6707void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6708{
0a18e607
DH
6709 unsigned long vm_total_pages;
6710
6811378e 6711 if (system_state == SYSTEM_BOOTING) {
061f67bc 6712 build_all_zonelists_init();
6811378e 6713 } else {
11cd8638 6714 __build_all_zonelists(pgdat);
6811378e
YG
6715 /* cpuset refresh routine should be here */
6716 }
56b9413b
DH
6717 /* Get the number of free pages beyond high watermark in all zones. */
6718 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6719 /*
6720 * Disable grouping by mobility if the number of pages in the
6721 * system is too low to allow the mechanism to work. It would be
6722 * more accurate, but expensive to check per-zone. This check is
6723 * made on memory-hotadd so a system can start with mobility
6724 * disabled and enable it later
6725 */
d9c23400 6726 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6727 page_group_by_mobility_disabled = 1;
6728 else
6729 page_group_by_mobility_disabled = 0;
6730
ce0725f7 6731 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6732 nr_online_nodes,
756a025f
JP
6733 page_group_by_mobility_disabled ? "off" : "on",
6734 vm_total_pages);
f0c0b2b8 6735#ifdef CONFIG_NUMA
f88dfff5 6736 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6737#endif
1da177e4
LT
6738}
6739
a9a9e77f
PT
6740/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6741static bool __meminit
6742overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6743{
a9a9e77f
PT
6744 static struct memblock_region *r;
6745
6746 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6747 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6748 for_each_mem_region(r) {
a9a9e77f
PT
6749 if (*pfn < memblock_region_memory_end_pfn(r))
6750 break;
6751 }
6752 }
6753 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6754 memblock_is_mirror(r)) {
6755 *pfn = memblock_region_memory_end_pfn(r);
6756 return true;
6757 }
6758 }
a9a9e77f
PT
6759 return false;
6760}
6761
1da177e4
LT
6762/*
6763 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6764 * up by memblock_free_all() once the early boot process is
1da177e4 6765 * done. Non-atomic initialization, single-pass.
d882c006
DH
6766 *
6767 * All aligned pageblocks are initialized to the specified migratetype
6768 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6769 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6770 */
ab28cb6e 6771void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6772 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6773 enum meminit_context context,
6774 struct vmem_altmap *altmap, int migratetype)
1da177e4 6775{
a9a9e77f 6776 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6777 struct page *page;
1da177e4 6778
22b31eec
HD
6779 if (highest_memmap_pfn < end_pfn - 1)
6780 highest_memmap_pfn = end_pfn - 1;
6781
966cf44f 6782#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6783 /*
6784 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6785 * memory. We limit the total number of pages to initialize to just
6786 * those that might contain the memory mapping. We will defer the
6787 * ZONE_DEVICE page initialization until after we have released
6788 * the hotplug lock.
4b94ffdc 6789 */
966cf44f
AD
6790 if (zone == ZONE_DEVICE) {
6791 if (!altmap)
6792 return;
6793
6794 if (start_pfn == altmap->base_pfn)
6795 start_pfn += altmap->reserve;
6796 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6797 }
6798#endif
4b94ffdc 6799
948c436e 6800 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6801 /*
b72d0ffb
AM
6802 * There can be holes in boot-time mem_map[]s handed to this
6803 * function. They do not exist on hotplugged memory.
a2f3aa02 6804 */
c1d0da83 6805 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6806 if (overlap_memmap_init(zone, &pfn))
6807 continue;
7ec7096b
PT
6808 if (defer_init(nid, pfn, zone_end_pfn)) {
6809 deferred_struct_pages = true;
a9a9e77f 6810 break;
7ec7096b 6811 }
a2f3aa02 6812 }
ac5d2539 6813
d0dc12e8
PT
6814 page = pfn_to_page(pfn);
6815 __init_single_page(page, pfn, zone, nid);
c1d0da83 6816 if (context == MEMINIT_HOTPLUG)
d483da5b 6817 __SetPageReserved(page);
d0dc12e8 6818
ac5d2539 6819 /*
d882c006
DH
6820 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6821 * such that unmovable allocations won't be scattered all
6822 * over the place during system boot.
ac5d2539 6823 */
ee0913c4 6824 if (pageblock_aligned(pfn)) {
d882c006 6825 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6826 cond_resched();
ac5d2539 6827 }
948c436e 6828 pfn++;
1da177e4
LT
6829 }
6830}
6831
966cf44f 6832#ifdef CONFIG_ZONE_DEVICE
46487e00
JM
6833static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6834 unsigned long zone_idx, int nid,
6835 struct dev_pagemap *pgmap)
6836{
6837
6838 __init_single_page(page, pfn, zone_idx, nid);
6839
6840 /*
6841 * Mark page reserved as it will need to wait for onlining
6842 * phase for it to be fully associated with a zone.
6843 *
6844 * We can use the non-atomic __set_bit operation for setting
6845 * the flag as we are still initializing the pages.
6846 */
6847 __SetPageReserved(page);
6848
6849 /*
6850 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6851 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6852 * ever freed or placed on a driver-private list.
6853 */
6854 page->pgmap = pgmap;
6855 page->zone_device_data = NULL;
6856
6857 /*
6858 * Mark the block movable so that blocks are reserved for
6859 * movable at startup. This will force kernel allocations
6860 * to reserve their blocks rather than leaking throughout
6861 * the address space during boot when many long-lived
6862 * kernel allocations are made.
6863 *
6864 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6865 * because this is done early in section_activate()
6866 */
ee0913c4 6867 if (pageblock_aligned(pfn)) {
46487e00
JM
6868 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6869 cond_resched();
6870 }
ef233450
AP
6871
6872 /*
6873 * ZONE_DEVICE pages are released directly to the driver page allocator
6874 * which will set the page count to 1 when allocating the page.
6875 */
6876 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6877 pgmap->type == MEMORY_DEVICE_COHERENT)
6878 set_page_count(page, 0);
46487e00
JM
6879}
6880
6fd3620b
JM
6881/*
6882 * With compound page geometry and when struct pages are stored in ram most
6883 * tail pages are reused. Consequently, the amount of unique struct pages to
6884 * initialize is a lot smaller that the total amount of struct pages being
6885 * mapped. This is a paired / mild layering violation with explicit knowledge
6886 * of how the sparse_vmemmap internals handle compound pages in the lack
6887 * of an altmap. See vmemmap_populate_compound_pages().
6888 */
6889static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6890 unsigned long nr_pages)
6891{
6892 return is_power_of_2(sizeof(struct page)) &&
6893 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6894}
6895
c4386bd8
JM
6896static void __ref memmap_init_compound(struct page *head,
6897 unsigned long head_pfn,
6898 unsigned long zone_idx, int nid,
6899 struct dev_pagemap *pgmap,
6900 unsigned long nr_pages)
6901{
6902 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6903 unsigned int order = pgmap->vmemmap_shift;
6904
6905 __SetPageHead(head);
6906 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6907 struct page *page = pfn_to_page(pfn);
6908
6909 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6910 prep_compound_tail(head, pfn - head_pfn);
6911 set_page_count(page, 0);
6912
6913 /*
cb67f428
HD
6914 * The first tail page stores important compound page info.
6915 * Call prep_compound_head() after the first tail page has
6916 * been initialized, to not have the data overwritten.
c4386bd8 6917 */
cb67f428 6918 if (pfn == head_pfn + 1)
c4386bd8
JM
6919 prep_compound_head(head, order);
6920 }
6921}
6922
966cf44f
AD
6923void __ref memmap_init_zone_device(struct zone *zone,
6924 unsigned long start_pfn,
1f8d75c1 6925 unsigned long nr_pages,
966cf44f
AD
6926 struct dev_pagemap *pgmap)
6927{
1f8d75c1 6928 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6929 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6930 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
c4386bd8 6931 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
966cf44f
AD
6932 unsigned long zone_idx = zone_idx(zone);
6933 unsigned long start = jiffies;
6934 int nid = pgdat->node_id;
6935
c0352904 6936 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
966cf44f
AD
6937 return;
6938
6939 /*
122e093c 6940 * The call to memmap_init should have already taken care
966cf44f
AD
6941 * of the pages reserved for the memmap, so we can just jump to
6942 * the end of that region and start processing the device pages.
6943 */
514caf23 6944 if (altmap) {
966cf44f 6945 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6946 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6947 }
6948
c4386bd8 6949 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
966cf44f
AD
6950 struct page *page = pfn_to_page(pfn);
6951
46487e00 6952 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
c4386bd8
JM
6953
6954 if (pfns_per_compound == 1)
6955 continue;
6956
6957 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6fd3620b 6958 compound_nr_pages(altmap, pfns_per_compound));
966cf44f
AD
6959 }
6960
fdc029b1 6961 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6962 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6963}
6964
6965#endif
1e548deb 6966static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6967{
7aeb09f9 6968 unsigned int order, t;
b2a0ac88
MG
6969 for_each_migratetype_order(order, t) {
6970 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6971 zone->free_area[order].nr_free = 0;
6972 }
6973}
6974
0740a50b
MR
6975/*
6976 * Only struct pages that correspond to ranges defined by memblock.memory
6977 * are zeroed and initialized by going through __init_single_page() during
122e093c 6978 * memmap_init_zone_range().
0740a50b
MR
6979 *
6980 * But, there could be struct pages that correspond to holes in
6981 * memblock.memory. This can happen because of the following reasons:
6982 * - physical memory bank size is not necessarily the exact multiple of the
6983 * arbitrary section size
6984 * - early reserved memory may not be listed in memblock.memory
6985 * - memory layouts defined with memmap= kernel parameter may not align
6986 * nicely with memmap sections
6987 *
6988 * Explicitly initialize those struct pages so that:
6989 * - PG_Reserved is set
6990 * - zone and node links point to zone and node that span the page if the
6991 * hole is in the middle of a zone
6992 * - zone and node links point to adjacent zone/node if the hole falls on
6993 * the zone boundary; the pages in such holes will be prepended to the
6994 * zone/node above the hole except for the trailing pages in the last
6995 * section that will be appended to the zone/node below.
6996 */
122e093c
MR
6997static void __init init_unavailable_range(unsigned long spfn,
6998 unsigned long epfn,
6999 int zone, int node)
0740a50b
MR
7000{
7001 unsigned long pfn;
7002 u64 pgcnt = 0;
7003
7004 for (pfn = spfn; pfn < epfn; pfn++) {
4f9bc69a
KW
7005 if (!pfn_valid(pageblock_start_pfn(pfn))) {
7006 pfn = pageblock_end_pfn(pfn) - 1;
0740a50b
MR
7007 continue;
7008 }
7009 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
7010 __SetPageReserved(pfn_to_page(pfn));
7011 pgcnt++;
7012 }
7013
122e093c
MR
7014 if (pgcnt)
7015 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
7016 node, zone_names[zone], pgcnt);
0740a50b 7017}
0740a50b 7018
122e093c
MR
7019static void __init memmap_init_zone_range(struct zone *zone,
7020 unsigned long start_pfn,
7021 unsigned long end_pfn,
7022 unsigned long *hole_pfn)
dfb3ccd0 7023{
3256ff83
BH
7024 unsigned long zone_start_pfn = zone->zone_start_pfn;
7025 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
7026 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
7027
7028 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
7029 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
7030
7031 if (start_pfn >= end_pfn)
7032 return;
7033
7034 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7035 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7036
7037 if (*hole_pfn < start_pfn)
7038 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7039
7040 *hole_pfn = end_pfn;
7041}
7042
7043static void __init memmap_init(void)
7044{
73a6e474 7045 unsigned long start_pfn, end_pfn;
122e093c 7046 unsigned long hole_pfn = 0;
b346075f 7047 int i, j, zone_id = 0, nid;
73a6e474 7048
122e093c
MR
7049 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7050 struct pglist_data *node = NODE_DATA(nid);
73a6e474 7051
122e093c
MR
7052 for (j = 0; j < MAX_NR_ZONES; j++) {
7053 struct zone *zone = node->node_zones + j;
0740a50b 7054
122e093c
MR
7055 if (!populated_zone(zone))
7056 continue;
0740a50b 7057
122e093c
MR
7058 memmap_init_zone_range(zone, start_pfn, end_pfn,
7059 &hole_pfn);
7060 zone_id = j;
7061 }
73a6e474 7062 }
0740a50b
MR
7063
7064#ifdef CONFIG_SPARSEMEM
7065 /*
122e093c
MR
7066 * Initialize the memory map for hole in the range [memory_end,
7067 * section_end].
7068 * Append the pages in this hole to the highest zone in the last
7069 * node.
7070 * The call to init_unavailable_range() is outside the ifdef to
7071 * silence the compiler warining about zone_id set but not used;
7072 * for FLATMEM it is a nop anyway
0740a50b 7073 */
122e093c 7074 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 7075 if (hole_pfn < end_pfn)
0740a50b 7076#endif
122e093c 7077 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 7078}
1da177e4 7079
c803b3c8
MR
7080void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7081 phys_addr_t min_addr, int nid, bool exact_nid)
7082{
7083 void *ptr;
7084
7085 if (exact_nid)
7086 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7087 MEMBLOCK_ALLOC_ACCESSIBLE,
7088 nid);
7089 else
7090 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7091 MEMBLOCK_ALLOC_ACCESSIBLE,
7092 nid);
7093
7094 if (ptr && size > 0)
7095 page_init_poison(ptr, size);
7096
7097 return ptr;
7098}
7099
7cd2b0a3 7100static int zone_batchsize(struct zone *zone)
e7c8d5c9 7101{
3a6be87f 7102#ifdef CONFIG_MMU
e7c8d5c9
CL
7103 int batch;
7104
7105 /*
b92ca18e
MG
7106 * The number of pages to batch allocate is either ~0.1%
7107 * of the zone or 1MB, whichever is smaller. The batch
7108 * size is striking a balance between allocation latency
7109 * and zone lock contention.
e7c8d5c9 7110 */
c940e020 7111 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
e7c8d5c9
CL
7112 batch /= 4; /* We effectively *= 4 below */
7113 if (batch < 1)
7114 batch = 1;
7115
7116 /*
0ceaacc9
NP
7117 * Clamp the batch to a 2^n - 1 value. Having a power
7118 * of 2 value was found to be more likely to have
7119 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 7120 *
0ceaacc9
NP
7121 * For example if 2 tasks are alternately allocating
7122 * batches of pages, one task can end up with a lot
7123 * of pages of one half of the possible page colors
7124 * and the other with pages of the other colors.
e7c8d5c9 7125 */
9155203a 7126 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 7127
e7c8d5c9 7128 return batch;
3a6be87f
DH
7129
7130#else
7131 /* The deferral and batching of frees should be suppressed under NOMMU
7132 * conditions.
7133 *
7134 * The problem is that NOMMU needs to be able to allocate large chunks
7135 * of contiguous memory as there's no hardware page translation to
7136 * assemble apparent contiguous memory from discontiguous pages.
7137 *
7138 * Queueing large contiguous runs of pages for batching, however,
7139 * causes the pages to actually be freed in smaller chunks. As there
7140 * can be a significant delay between the individual batches being
7141 * recycled, this leads to the once large chunks of space being
7142 * fragmented and becoming unavailable for high-order allocations.
7143 */
7144 return 0;
7145#endif
e7c8d5c9
CL
7146}
7147
04f8cfea 7148static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
7149{
7150#ifdef CONFIG_MMU
7151 int high;
203c06ee 7152 int nr_split_cpus;
74f44822
MG
7153 unsigned long total_pages;
7154
7155 if (!percpu_pagelist_high_fraction) {
7156 /*
7157 * By default, the high value of the pcp is based on the zone
7158 * low watermark so that if they are full then background
7159 * reclaim will not be started prematurely.
7160 */
7161 total_pages = low_wmark_pages(zone);
7162 } else {
7163 /*
7164 * If percpu_pagelist_high_fraction is configured, the high
7165 * value is based on a fraction of the managed pages in the
7166 * zone.
7167 */
7168 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7169 }
b92ca18e
MG
7170
7171 /*
74f44822
MG
7172 * Split the high value across all online CPUs local to the zone. Note
7173 * that early in boot that CPUs may not be online yet and that during
7174 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
7175 * onlined. For memory nodes that have no CPUs, split pcp->high across
7176 * all online CPUs to mitigate the risk that reclaim is triggered
7177 * prematurely due to pages stored on pcp lists.
b92ca18e 7178 */
203c06ee
MG
7179 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7180 if (!nr_split_cpus)
7181 nr_split_cpus = num_online_cpus();
7182 high = total_pages / nr_split_cpus;
b92ca18e
MG
7183
7184 /*
7185 * Ensure high is at least batch*4. The multiple is based on the
7186 * historical relationship between high and batch.
7187 */
7188 high = max(high, batch << 2);
7189
7190 return high;
7191#else
7192 return 0;
7193#endif
7194}
7195
8d7a8fa9 7196/*
5c3ad2eb
VB
7197 * pcp->high and pcp->batch values are related and generally batch is lower
7198 * than high. They are also related to pcp->count such that count is lower
7199 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 7200 *
5c3ad2eb
VB
7201 * However, guaranteeing these relations at all times would require e.g. write
7202 * barriers here but also careful usage of read barriers at the read side, and
7203 * thus be prone to error and bad for performance. Thus the update only prevents
7204 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7205 * can cope with those fields changing asynchronously, and fully trust only the
7206 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
7207 *
7208 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7209 * outside of boot time (or some other assurance that no concurrent updaters
7210 * exist).
7211 */
7212static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7213 unsigned long batch)
7214{
5c3ad2eb
VB
7215 WRITE_ONCE(pcp->batch, batch);
7216 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
7217}
7218
28f836b6 7219static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 7220{
44042b44 7221 int pindex;
2caaad41 7222
28f836b6
MG
7223 memset(pcp, 0, sizeof(*pcp));
7224 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 7225
4b23a68f 7226 spin_lock_init(&pcp->lock);
44042b44
MG
7227 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7228 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 7229
69a8396a
VB
7230 /*
7231 * Set batch and high values safe for a boot pageset. A true percpu
7232 * pageset's initialization will update them subsequently. Here we don't
7233 * need to be as careful as pageset_update() as nobody can access the
7234 * pageset yet.
7235 */
952eaf81
VB
7236 pcp->high = BOOT_PAGESET_HIGH;
7237 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 7238 pcp->free_factor = 0;
88c90dbc
CS
7239}
7240
3b1f3658 7241static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
7242 unsigned long batch)
7243{
28f836b6 7244 struct per_cpu_pages *pcp;
ec6e8c7e
VB
7245 int cpu;
7246
7247 for_each_possible_cpu(cpu) {
28f836b6
MG
7248 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7249 pageset_update(pcp, high, batch);
ec6e8c7e
VB
7250 }
7251}
7252
8ad4b1fb 7253/*
0a8b4f1d 7254 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 7255 * zone based on the zone's size.
8ad4b1fb 7256 */
04f8cfea 7257static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 7258{
b92ca18e 7259 int new_high, new_batch;
7115ac6e 7260
b92ca18e 7261 new_batch = max(1, zone_batchsize(zone));
04f8cfea 7262 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 7263
952eaf81
VB
7264 if (zone->pageset_high == new_high &&
7265 zone->pageset_batch == new_batch)
7266 return;
7267
7268 zone->pageset_high = new_high;
7269 zone->pageset_batch = new_batch;
7270
ec6e8c7e 7271 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
7272}
7273
72675e13 7274void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
7275{
7276 int cpu;
0a8b4f1d 7277
28f836b6
MG
7278 /* Size may be 0 on !SMP && !NUMA */
7279 if (sizeof(struct per_cpu_zonestat) > 0)
7280 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7281
7282 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 7283 for_each_possible_cpu(cpu) {
28f836b6
MG
7284 struct per_cpu_pages *pcp;
7285 struct per_cpu_zonestat *pzstats;
7286
7287 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7288 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7289 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
7290 }
7291
04f8cfea 7292 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
7293}
7294
b89f1735
ML
7295/*
7296 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7297 * page high values need to be recalculated.
7298 */
7299static void zone_pcp_update(struct zone *zone, int cpu_online)
7300{
7301 mutex_lock(&pcp_batch_high_lock);
7302 zone_set_pageset_high_and_batch(zone, cpu_online);
7303 mutex_unlock(&pcp_batch_high_lock);
7304}
7305
2caaad41 7306/*
99dcc3e5
CL
7307 * Allocate per cpu pagesets and initialize them.
7308 * Before this call only boot pagesets were available.
e7c8d5c9 7309 */
99dcc3e5 7310void __init setup_per_cpu_pageset(void)
e7c8d5c9 7311{
b4911ea2 7312 struct pglist_data *pgdat;
99dcc3e5 7313 struct zone *zone;
b418a0f9 7314 int __maybe_unused cpu;
e7c8d5c9 7315
319774e2
WF
7316 for_each_populated_zone(zone)
7317 setup_zone_pageset(zone);
b4911ea2 7318
b418a0f9
SD
7319#ifdef CONFIG_NUMA
7320 /*
7321 * Unpopulated zones continue using the boot pagesets.
7322 * The numa stats for these pagesets need to be reset.
7323 * Otherwise, they will end up skewing the stats of
7324 * the nodes these zones are associated with.
7325 */
7326 for_each_possible_cpu(cpu) {
28f836b6 7327 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
7328 memset(pzstats->vm_numa_event, 0,
7329 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
7330 }
7331#endif
7332
b4911ea2
MG
7333 for_each_online_pgdat(pgdat)
7334 pgdat->per_cpu_nodestats =
7335 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
7336}
7337
c09b4240 7338static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 7339{
99dcc3e5
CL
7340 /*
7341 * per cpu subsystem is not up at this point. The following code
7342 * relies on the ability of the linker to provide the
7343 * offset of a (static) per cpu variable into the per cpu area.
7344 */
28f836b6
MG
7345 zone->per_cpu_pageset = &boot_pageset;
7346 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
7347 zone->pageset_high = BOOT_PAGESET_HIGH;
7348 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 7349
b38a8725 7350 if (populated_zone(zone))
9660ecaa
HK
7351 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7352 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
7353}
7354
dc0bbf3b 7355void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 7356 unsigned long zone_start_pfn,
b171e409 7357 unsigned long size)
ed8ece2e
DH
7358{
7359 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7360 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7361
8f416836
WY
7362 if (zone_idx > pgdat->nr_zones)
7363 pgdat->nr_zones = zone_idx;
ed8ece2e 7364
ed8ece2e
DH
7365 zone->zone_start_pfn = zone_start_pfn;
7366
708614e6
MG
7367 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7368 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7369 pgdat->node_id,
7370 (unsigned long)zone_idx(zone),
7371 zone_start_pfn, (zone_start_pfn + size));
7372
1e548deb 7373 zone_init_free_lists(zone);
9dcb8b68 7374 zone->initialized = 1;
ed8ece2e
DH
7375}
7376
c713216d
MG
7377/**
7378 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7379 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7380 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7381 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7382 *
7383 * It returns the start and end page frame of a node based on information
7d018176 7384 * provided by memblock_set_node(). If called for a node
c713216d 7385 * with no available memory, a warning is printed and the start and end
88ca3b94 7386 * PFNs will be 0.
c713216d 7387 */
bbe5d993 7388void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7389 unsigned long *start_pfn, unsigned long *end_pfn)
7390{
c13291a5 7391 unsigned long this_start_pfn, this_end_pfn;
c713216d 7392 int i;
c13291a5 7393
c713216d
MG
7394 *start_pfn = -1UL;
7395 *end_pfn = 0;
7396
c13291a5
TH
7397 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7398 *start_pfn = min(*start_pfn, this_start_pfn);
7399 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7400 }
7401
633c0666 7402 if (*start_pfn == -1UL)
c713216d 7403 *start_pfn = 0;
c713216d
MG
7404}
7405
2a1e274a
MG
7406/*
7407 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7408 * assumption is made that zones within a node are ordered in monotonic
7409 * increasing memory addresses so that the "highest" populated zone is used
7410 */
b69a7288 7411static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7412{
7413 int zone_index;
7414 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7415 if (zone_index == ZONE_MOVABLE)
7416 continue;
7417
7418 if (arch_zone_highest_possible_pfn[zone_index] >
7419 arch_zone_lowest_possible_pfn[zone_index])
7420 break;
7421 }
7422
7423 VM_BUG_ON(zone_index == -1);
7424 movable_zone = zone_index;
7425}
7426
7427/*
7428 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7429 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7430 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7431 * in each node depending on the size of each node and how evenly kernelcore
7432 * is distributed. This helper function adjusts the zone ranges
7433 * provided by the architecture for a given node by using the end of the
7434 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7435 * zones within a node are in order of monotonic increases memory addresses
7436 */
bbe5d993 7437static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7438 unsigned long zone_type,
7439 unsigned long node_start_pfn,
7440 unsigned long node_end_pfn,
7441 unsigned long *zone_start_pfn,
7442 unsigned long *zone_end_pfn)
7443{
7444 /* Only adjust if ZONE_MOVABLE is on this node */
7445 if (zone_movable_pfn[nid]) {
7446 /* Size ZONE_MOVABLE */
7447 if (zone_type == ZONE_MOVABLE) {
7448 *zone_start_pfn = zone_movable_pfn[nid];
7449 *zone_end_pfn = min(node_end_pfn,
7450 arch_zone_highest_possible_pfn[movable_zone]);
7451
e506b996
XQ
7452 /* Adjust for ZONE_MOVABLE starting within this range */
7453 } else if (!mirrored_kernelcore &&
7454 *zone_start_pfn < zone_movable_pfn[nid] &&
7455 *zone_end_pfn > zone_movable_pfn[nid]) {
7456 *zone_end_pfn = zone_movable_pfn[nid];
7457
2a1e274a
MG
7458 /* Check if this whole range is within ZONE_MOVABLE */
7459 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7460 *zone_start_pfn = *zone_end_pfn;
7461 }
7462}
7463
c713216d
MG
7464/*
7465 * Return the number of pages a zone spans in a node, including holes
7466 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7467 */
bbe5d993 7468static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7469 unsigned long zone_type,
7960aedd
ZY
7470 unsigned long node_start_pfn,
7471 unsigned long node_end_pfn,
d91749c1 7472 unsigned long *zone_start_pfn,
854e8848 7473 unsigned long *zone_end_pfn)
c713216d 7474{
299c83dc
LF
7475 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7476 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7477 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7478 if (!node_start_pfn && !node_end_pfn)
7479 return 0;
7480
7960aedd 7481 /* Get the start and end of the zone */
299c83dc
LF
7482 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7483 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7484 adjust_zone_range_for_zone_movable(nid, zone_type,
7485 node_start_pfn, node_end_pfn,
d91749c1 7486 zone_start_pfn, zone_end_pfn);
c713216d
MG
7487
7488 /* Check that this node has pages within the zone's required range */
d91749c1 7489 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7490 return 0;
7491
7492 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7493 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7494 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7495
7496 /* Return the spanned pages */
d91749c1 7497 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7498}
7499
7500/*
7501 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7502 * then all holes in the requested range will be accounted for.
c713216d 7503 */
bbe5d993 7504unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7505 unsigned long range_start_pfn,
7506 unsigned long range_end_pfn)
7507{
96e907d1
TH
7508 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7509 unsigned long start_pfn, end_pfn;
7510 int i;
c713216d 7511
96e907d1
TH
7512 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7513 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7514 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7515 nr_absent -= end_pfn - start_pfn;
c713216d 7516 }
96e907d1 7517 return nr_absent;
c713216d
MG
7518}
7519
7520/**
7521 * absent_pages_in_range - Return number of page frames in holes within a range
7522 * @start_pfn: The start PFN to start searching for holes
7523 * @end_pfn: The end PFN to stop searching for holes
7524 *
a862f68a 7525 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7526 */
7527unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7528 unsigned long end_pfn)
7529{
7530 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7531}
7532
7533/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7534static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7535 unsigned long zone_type,
7960aedd 7536 unsigned long node_start_pfn,
854e8848 7537 unsigned long node_end_pfn)
c713216d 7538{
96e907d1
TH
7539 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7540 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7541 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7542 unsigned long nr_absent;
9c7cd687 7543
b5685e92 7544 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7545 if (!node_start_pfn && !node_end_pfn)
7546 return 0;
7547
96e907d1
TH
7548 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7549 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7550
2a1e274a
MG
7551 adjust_zone_range_for_zone_movable(nid, zone_type,
7552 node_start_pfn, node_end_pfn,
7553 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7554 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7555
7556 /*
7557 * ZONE_MOVABLE handling.
7558 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7559 * and vice versa.
7560 */
e506b996
XQ
7561 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7562 unsigned long start_pfn, end_pfn;
7563 struct memblock_region *r;
7564
cc6de168 7565 for_each_mem_region(r) {
e506b996
XQ
7566 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7567 zone_start_pfn, zone_end_pfn);
7568 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7569 zone_start_pfn, zone_end_pfn);
7570
7571 if (zone_type == ZONE_MOVABLE &&
7572 memblock_is_mirror(r))
7573 nr_absent += end_pfn - start_pfn;
7574
7575 if (zone_type == ZONE_NORMAL &&
7576 !memblock_is_mirror(r))
7577 nr_absent += end_pfn - start_pfn;
342332e6
TI
7578 }
7579 }
7580
7581 return nr_absent;
c713216d 7582}
0e0b864e 7583
bbe5d993 7584static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7585 unsigned long node_start_pfn,
854e8848 7586 unsigned long node_end_pfn)
c713216d 7587{
febd5949 7588 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7589 enum zone_type i;
7590
febd5949
GZ
7591 for (i = 0; i < MAX_NR_ZONES; i++) {
7592 struct zone *zone = pgdat->node_zones + i;
d91749c1 7593 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7594 unsigned long spanned, absent;
febd5949 7595 unsigned long size, real_size;
c713216d 7596
854e8848
MR
7597 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7598 node_start_pfn,
7599 node_end_pfn,
7600 &zone_start_pfn,
7601 &zone_end_pfn);
7602 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7603 node_start_pfn,
7604 node_end_pfn);
3f08a302
MR
7605
7606 size = spanned;
7607 real_size = size - absent;
7608
d91749c1
TI
7609 if (size)
7610 zone->zone_start_pfn = zone_start_pfn;
7611 else
7612 zone->zone_start_pfn = 0;
febd5949
GZ
7613 zone->spanned_pages = size;
7614 zone->present_pages = real_size;
4b097002
DH
7615#if defined(CONFIG_MEMORY_HOTPLUG)
7616 zone->present_early_pages = real_size;
7617#endif
febd5949
GZ
7618
7619 totalpages += size;
7620 realtotalpages += real_size;
7621 }
7622
7623 pgdat->node_spanned_pages = totalpages;
c713216d 7624 pgdat->node_present_pages = realtotalpages;
9660ecaa 7625 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7626}
7627
835c134e
MG
7628#ifndef CONFIG_SPARSEMEM
7629/*
7630 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7631 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7632 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7633 * round what is now in bits to nearest long in bits, then return it in
7634 * bytes.
7635 */
7c45512d 7636static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7637{
7638 unsigned long usemapsize;
7639
7c45512d 7640 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7641 usemapsize = roundup(zonesize, pageblock_nr_pages);
7642 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7643 usemapsize *= NR_PAGEBLOCK_BITS;
7644 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7645
7646 return usemapsize / 8;
7647}
7648
7010a6ec 7649static void __ref setup_usemap(struct zone *zone)
835c134e 7650{
7010a6ec
BH
7651 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7652 zone->spanned_pages);
835c134e 7653 zone->pageblock_flags = NULL;
23a7052a 7654 if (usemapsize) {
6782832e 7655 zone->pageblock_flags =
26fb3dae 7656 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7657 zone_to_nid(zone));
23a7052a
MR
7658 if (!zone->pageblock_flags)
7659 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7660 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7661 }
835c134e
MG
7662}
7663#else
7010a6ec 7664static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7665#endif /* CONFIG_SPARSEMEM */
7666
d9c23400 7667#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7668
d9c23400 7669/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7670void __init set_pageblock_order(void)
d9c23400 7671{
b3d40a2b 7672 unsigned int order = MAX_ORDER - 1;
955c1cd7 7673
d9c23400
MG
7674 /* Check that pageblock_nr_pages has not already been setup */
7675 if (pageblock_order)
7676 return;
7677
b3d40a2b
DH
7678 /* Don't let pageblocks exceed the maximum allocation granularity. */
7679 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
955c1cd7 7680 order = HUGETLB_PAGE_ORDER;
955c1cd7 7681
d9c23400
MG
7682 /*
7683 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7684 * This value may be variable depending on boot parameters on IA64 and
7685 * powerpc.
d9c23400
MG
7686 */
7687 pageblock_order = order;
7688}
7689#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7690
ba72cb8c
MG
7691/*
7692 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7693 * is unused as pageblock_order is set at compile-time. See
7694 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7695 * the kernel config
ba72cb8c 7696 */
03e85f9d 7697void __init set_pageblock_order(void)
ba72cb8c 7698{
ba72cb8c 7699}
d9c23400
MG
7700
7701#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7702
03e85f9d 7703static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7704 unsigned long present_pages)
01cefaef
JL
7705{
7706 unsigned long pages = spanned_pages;
7707
7708 /*
7709 * Provide a more accurate estimation if there are holes within
7710 * the zone and SPARSEMEM is in use. If there are holes within the
7711 * zone, each populated memory region may cost us one or two extra
7712 * memmap pages due to alignment because memmap pages for each
89d790ab 7713 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7714 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7715 */
7716 if (spanned_pages > present_pages + (present_pages >> 4) &&
7717 IS_ENABLED(CONFIG_SPARSEMEM))
7718 pages = present_pages;
7719
7720 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7721}
7722
ace1db39
OS
7723#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7724static void pgdat_init_split_queue(struct pglist_data *pgdat)
7725{
364c1eeb
YS
7726 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7727
7728 spin_lock_init(&ds_queue->split_queue_lock);
7729 INIT_LIST_HEAD(&ds_queue->split_queue);
7730 ds_queue->split_queue_len = 0;
ace1db39
OS
7731}
7732#else
7733static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7734#endif
7735
7736#ifdef CONFIG_COMPACTION
7737static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7738{
7739 init_waitqueue_head(&pgdat->kcompactd_wait);
7740}
7741#else
7742static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7743#endif
7744
03e85f9d 7745static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7746{
8cd7c588
MG
7747 int i;
7748
208d54e5 7749 pgdat_resize_init(pgdat);
b4a0215e 7750 pgdat_kswapd_lock_init(pgdat);
ace1db39 7751
ace1db39
OS
7752 pgdat_init_split_queue(pgdat);
7753 pgdat_init_kcompactd(pgdat);
7754
1da177e4 7755 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7756 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7757
8cd7c588
MG
7758 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7759 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7760
eefa864b 7761 pgdat_page_ext_init(pgdat);
867e5e1d 7762 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7763}
7764
7765static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7766 unsigned long remaining_pages)
7767{
9705bea5 7768 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7769 zone_set_nid(zone, nid);
7770 zone->name = zone_names[idx];
7771 zone->zone_pgdat = NODE_DATA(nid);
7772 spin_lock_init(&zone->lock);
7773 zone_seqlock_init(zone);
7774 zone_pcp_init(zone);
7775}
7776
7777/*
7778 * Set up the zone data structures
7779 * - init pgdat internals
7780 * - init all zones belonging to this node
7781 *
7782 * NOTE: this function is only called during memory hotplug
7783 */
7784#ifdef CONFIG_MEMORY_HOTPLUG
70b5b46a 7785void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
03e85f9d 7786{
70b5b46a 7787 int nid = pgdat->node_id;
03e85f9d 7788 enum zone_type z;
70b5b46a 7789 int cpu;
03e85f9d
OS
7790
7791 pgdat_init_internals(pgdat);
70b5b46a
MH
7792
7793 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7794 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7795
7796 /*
7797 * Reset the nr_zones, order and highest_zoneidx before reuse.
7798 * Note that kswapd will init kswapd_highest_zoneidx properly
7799 * when it starts in the near future.
7800 */
7801 pgdat->nr_zones = 0;
7802 pgdat->kswapd_order = 0;
7803 pgdat->kswapd_highest_zoneidx = 0;
7804 pgdat->node_start_pfn = 0;
7805 for_each_online_cpu(cpu) {
7806 struct per_cpu_nodestat *p;
7807
7808 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7809 memset(p, 0, sizeof(*p));
7810 }
7811
03e85f9d
OS
7812 for (z = 0; z < MAX_NR_ZONES; z++)
7813 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7814}
7815#endif
7816
7817/*
7818 * Set up the zone data structures:
7819 * - mark all pages reserved
7820 * - mark all memory queues empty
7821 * - clear the memory bitmaps
7822 *
7823 * NOTE: pgdat should get zeroed by caller.
7824 * NOTE: this function is only called during early init.
7825 */
7826static void __init free_area_init_core(struct pglist_data *pgdat)
7827{
7828 enum zone_type j;
7829 int nid = pgdat->node_id;
5f63b720 7830
03e85f9d 7831 pgdat_init_internals(pgdat);
385386cf
JW
7832 pgdat->per_cpu_nodestats = &boot_nodestats;
7833
1da177e4
LT
7834 for (j = 0; j < MAX_NR_ZONES; j++) {
7835 struct zone *zone = pgdat->node_zones + j;
e6943859 7836 unsigned long size, freesize, memmap_pages;
1da177e4 7837
febd5949 7838 size = zone->spanned_pages;
e6943859 7839 freesize = zone->present_pages;
1da177e4 7840
0e0b864e 7841 /*
9feedc9d 7842 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7843 * is used by this zone for memmap. This affects the watermark
7844 * and per-cpu initialisations
7845 */
e6943859 7846 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7847 if (!is_highmem_idx(j)) {
7848 if (freesize >= memmap_pages) {
7849 freesize -= memmap_pages;
7850 if (memmap_pages)
9660ecaa
HK
7851 pr_debug(" %s zone: %lu pages used for memmap\n",
7852 zone_names[j], memmap_pages);
ba914f48 7853 } else
e47aa905 7854 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7855 zone_names[j], memmap_pages, freesize);
7856 }
0e0b864e 7857
6267276f 7858 /* Account for reserved pages */
9feedc9d
JL
7859 if (j == 0 && freesize > dma_reserve) {
7860 freesize -= dma_reserve;
9660ecaa 7861 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7862 }
7863
98d2b0eb 7864 if (!is_highmem_idx(j))
9feedc9d 7865 nr_kernel_pages += freesize;
01cefaef
JL
7866 /* Charge for highmem memmap if there are enough kernel pages */
7867 else if (nr_kernel_pages > memmap_pages * 2)
7868 nr_kernel_pages -= memmap_pages;
9feedc9d 7869 nr_all_pages += freesize;
1da177e4 7870
9feedc9d
JL
7871 /*
7872 * Set an approximate value for lowmem here, it will be adjusted
7873 * when the bootmem allocator frees pages into the buddy system.
7874 * And all highmem pages will be managed by the buddy system.
7875 */
03e85f9d 7876 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7877
d883c6cf 7878 if (!size)
1da177e4
LT
7879 continue;
7880
955c1cd7 7881 set_pageblock_order();
7010a6ec 7882 setup_usemap(zone);
9699ee7b 7883 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7884 }
7885}
7886
43b02ba9 7887#ifdef CONFIG_FLATMEM
3b446da6 7888static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7889{
b0aeba74 7890 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7891 unsigned long __maybe_unused offset = 0;
7892
1da177e4
LT
7893 /* Skip empty nodes */
7894 if (!pgdat->node_spanned_pages)
7895 return;
7896
b0aeba74
TL
7897 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7898 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7899 /* ia64 gets its own node_mem_map, before this, without bootmem */
7900 if (!pgdat->node_mem_map) {
b0aeba74 7901 unsigned long size, end;
d41dee36
AW
7902 struct page *map;
7903
e984bb43
BP
7904 /*
7905 * The zone's endpoints aren't required to be MAX_ORDER
7906 * aligned but the node_mem_map endpoints must be in order
7907 * for the buddy allocator to function correctly.
7908 */
108bcc96 7909 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7910 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7911 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7912 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7913 pgdat->node_id, false);
23a7052a
MR
7914 if (!map)
7915 panic("Failed to allocate %ld bytes for node %d memory map\n",
7916 size, pgdat->node_id);
a1c34a3b 7917 pgdat->node_mem_map = map + offset;
1da177e4 7918 }
0cd842f9
OS
7919 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7920 __func__, pgdat->node_id, (unsigned long)pgdat,
7921 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7922#ifndef CONFIG_NUMA
1da177e4
LT
7923 /*
7924 * With no DISCONTIG, the global mem_map is just set as node 0's
7925 */
c713216d 7926 if (pgdat == NODE_DATA(0)) {
1da177e4 7927 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7928 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7929 mem_map -= offset;
c713216d 7930 }
1da177e4
LT
7931#endif
7932}
0cd842f9 7933#else
3b446da6 7934static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7935#endif /* CONFIG_FLATMEM */
1da177e4 7936
0188dc98
OS
7937#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7938static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7939{
0188dc98
OS
7940 pgdat->first_deferred_pfn = ULONG_MAX;
7941}
7942#else
7943static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7944#endif
7945
854e8848 7946static void __init free_area_init_node(int nid)
1da177e4 7947{
9109fb7b 7948 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7949 unsigned long start_pfn = 0;
7950 unsigned long end_pfn = 0;
9109fb7b 7951
88fdf75d 7952 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7953 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7954
854e8848 7955 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7956
1da177e4 7957 pgdat->node_id = nid;
854e8848 7958 pgdat->node_start_pfn = start_pfn;
75ef7184 7959 pgdat->per_cpu_nodestats = NULL;
854e8848 7960
7c30daac
MH
7961 if (start_pfn != end_pfn) {
7962 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7963 (u64)start_pfn << PAGE_SHIFT,
7964 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7965 } else {
7966 pr_info("Initmem setup node %d as memoryless\n", nid);
7967 }
7968
854e8848 7969 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7970
7971 alloc_node_mem_map(pgdat);
0188dc98 7972 pgdat_set_deferred_range(pgdat);
1da177e4 7973
7f3eb55b 7974 free_area_init_core(pgdat);
e4dde56c 7975 lru_gen_init_pgdat(pgdat);
1da177e4
LT
7976}
7977
1ca75fa7 7978static void __init free_area_init_memoryless_node(int nid)
3f08a302 7979{
854e8848 7980 free_area_init_node(nid);
3f08a302
MR
7981}
7982
418508c1
MS
7983#if MAX_NUMNODES > 1
7984/*
7985 * Figure out the number of possible node ids.
7986 */
f9872caf 7987void __init setup_nr_node_ids(void)
418508c1 7988{
904a9553 7989 unsigned int highest;
418508c1 7990
904a9553 7991 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7992 nr_node_ids = highest + 1;
7993}
418508c1
MS
7994#endif
7995
1e01979c
TH
7996/**
7997 * node_map_pfn_alignment - determine the maximum internode alignment
7998 *
7999 * This function should be called after node map is populated and sorted.
8000 * It calculates the maximum power of two alignment which can distinguish
8001 * all the nodes.
8002 *
8003 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
8004 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
8005 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
8006 * shifted, 1GiB is enough and this function will indicate so.
8007 *
8008 * This is used to test whether pfn -> nid mapping of the chosen memory
8009 * model has fine enough granularity to avoid incorrect mapping for the
8010 * populated node map.
8011 *
a862f68a 8012 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
8013 * requirement (single node).
8014 */
8015unsigned long __init node_map_pfn_alignment(void)
8016{
8017 unsigned long accl_mask = 0, last_end = 0;
c13291a5 8018 unsigned long start, end, mask;
98fa15f3 8019 int last_nid = NUMA_NO_NODE;
c13291a5 8020 int i, nid;
1e01979c 8021
c13291a5 8022 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
8023 if (!start || last_nid < 0 || last_nid == nid) {
8024 last_nid = nid;
8025 last_end = end;
8026 continue;
8027 }
8028
8029 /*
8030 * Start with a mask granular enough to pin-point to the
8031 * start pfn and tick off bits one-by-one until it becomes
8032 * too coarse to separate the current node from the last.
8033 */
8034 mask = ~((1 << __ffs(start)) - 1);
8035 while (mask && last_end <= (start & (mask << 1)))
8036 mask <<= 1;
8037
8038 /* accumulate all internode masks */
8039 accl_mask |= mask;
8040 }
8041
8042 /* convert mask to number of pages */
8043 return ~accl_mask + 1;
8044}
8045
37b07e41
LS
8046/*
8047 * early_calculate_totalpages()
8048 * Sum pages in active regions for movable zone.
4b0ef1fe 8049 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 8050 */
484f51f8 8051static unsigned long __init early_calculate_totalpages(void)
7e63efef 8052{
7e63efef 8053 unsigned long totalpages = 0;
c13291a5
TH
8054 unsigned long start_pfn, end_pfn;
8055 int i, nid;
8056
8057 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8058 unsigned long pages = end_pfn - start_pfn;
7e63efef 8059
37b07e41
LS
8060 totalpages += pages;
8061 if (pages)
4b0ef1fe 8062 node_set_state(nid, N_MEMORY);
37b07e41 8063 }
b8af2941 8064 return totalpages;
7e63efef
MG
8065}
8066
2a1e274a
MG
8067/*
8068 * Find the PFN the Movable zone begins in each node. Kernel memory
8069 * is spread evenly between nodes as long as the nodes have enough
8070 * memory. When they don't, some nodes will have more kernelcore than
8071 * others
8072 */
b224ef85 8073static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
8074{
8075 int i, nid;
8076 unsigned long usable_startpfn;
8077 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 8078 /* save the state before borrow the nodemask */
4b0ef1fe 8079 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 8080 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 8081 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 8082 struct memblock_region *r;
b2f3eebe
TC
8083
8084 /* Need to find movable_zone earlier when movable_node is specified. */
8085 find_usable_zone_for_movable();
8086
8087 /*
8088 * If movable_node is specified, ignore kernelcore and movablecore
8089 * options.
8090 */
8091 if (movable_node_is_enabled()) {
cc6de168 8092 for_each_mem_region(r) {
136199f0 8093 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
8094 continue;
8095
d622abf7 8096 nid = memblock_get_region_node(r);
b2f3eebe 8097
136199f0 8098 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
8099 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8100 min(usable_startpfn, zone_movable_pfn[nid]) :
8101 usable_startpfn;
8102 }
8103
8104 goto out2;
8105 }
2a1e274a 8106
342332e6
TI
8107 /*
8108 * If kernelcore=mirror is specified, ignore movablecore option
8109 */
8110 if (mirrored_kernelcore) {
8111 bool mem_below_4gb_not_mirrored = false;
8112
cc6de168 8113 for_each_mem_region(r) {
342332e6
TI
8114 if (memblock_is_mirror(r))
8115 continue;
8116
d622abf7 8117 nid = memblock_get_region_node(r);
342332e6
TI
8118
8119 usable_startpfn = memblock_region_memory_base_pfn(r);
8120
aa282a15 8121 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
342332e6
TI
8122 mem_below_4gb_not_mirrored = true;
8123 continue;
8124 }
8125
8126 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8127 min(usable_startpfn, zone_movable_pfn[nid]) :
8128 usable_startpfn;
8129 }
8130
8131 if (mem_below_4gb_not_mirrored)
633bf2fe 8132 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
8133
8134 goto out2;
8135 }
8136
7e63efef 8137 /*
a5c6d650
DR
8138 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8139 * amount of necessary memory.
8140 */
8141 if (required_kernelcore_percent)
8142 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8143 10000UL;
8144 if (required_movablecore_percent)
8145 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8146 10000UL;
8147
8148 /*
8149 * If movablecore= was specified, calculate what size of
7e63efef
MG
8150 * kernelcore that corresponds so that memory usable for
8151 * any allocation type is evenly spread. If both kernelcore
8152 * and movablecore are specified, then the value of kernelcore
8153 * will be used for required_kernelcore if it's greater than
8154 * what movablecore would have allowed.
8155 */
8156 if (required_movablecore) {
7e63efef
MG
8157 unsigned long corepages;
8158
8159 /*
8160 * Round-up so that ZONE_MOVABLE is at least as large as what
8161 * was requested by the user
8162 */
8163 required_movablecore =
8164 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 8165 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
8166 corepages = totalpages - required_movablecore;
8167
8168 required_kernelcore = max(required_kernelcore, corepages);
8169 }
8170
bde304bd
XQ
8171 /*
8172 * If kernelcore was not specified or kernelcore size is larger
8173 * than totalpages, there is no ZONE_MOVABLE.
8174 */
8175 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 8176 goto out;
2a1e274a
MG
8177
8178 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
8179 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8180
8181restart:
8182 /* Spread kernelcore memory as evenly as possible throughout nodes */
8183 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 8184 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
8185 unsigned long start_pfn, end_pfn;
8186
2a1e274a
MG
8187 /*
8188 * Recalculate kernelcore_node if the division per node
8189 * now exceeds what is necessary to satisfy the requested
8190 * amount of memory for the kernel
8191 */
8192 if (required_kernelcore < kernelcore_node)
8193 kernelcore_node = required_kernelcore / usable_nodes;
8194
8195 /*
8196 * As the map is walked, we track how much memory is usable
8197 * by the kernel using kernelcore_remaining. When it is
8198 * 0, the rest of the node is usable by ZONE_MOVABLE
8199 */
8200 kernelcore_remaining = kernelcore_node;
8201
8202 /* Go through each range of PFNs within this node */
c13291a5 8203 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
8204 unsigned long size_pages;
8205
c13291a5 8206 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
8207 if (start_pfn >= end_pfn)
8208 continue;
8209
8210 /* Account for what is only usable for kernelcore */
8211 if (start_pfn < usable_startpfn) {
8212 unsigned long kernel_pages;
8213 kernel_pages = min(end_pfn, usable_startpfn)
8214 - start_pfn;
8215
8216 kernelcore_remaining -= min(kernel_pages,
8217 kernelcore_remaining);
8218 required_kernelcore -= min(kernel_pages,
8219 required_kernelcore);
8220
8221 /* Continue if range is now fully accounted */
8222 if (end_pfn <= usable_startpfn) {
8223
8224 /*
8225 * Push zone_movable_pfn to the end so
8226 * that if we have to rebalance
8227 * kernelcore across nodes, we will
8228 * not double account here
8229 */
8230 zone_movable_pfn[nid] = end_pfn;
8231 continue;
8232 }
8233 start_pfn = usable_startpfn;
8234 }
8235
8236 /*
8237 * The usable PFN range for ZONE_MOVABLE is from
8238 * start_pfn->end_pfn. Calculate size_pages as the
8239 * number of pages used as kernelcore
8240 */
8241 size_pages = end_pfn - start_pfn;
8242 if (size_pages > kernelcore_remaining)
8243 size_pages = kernelcore_remaining;
8244 zone_movable_pfn[nid] = start_pfn + size_pages;
8245
8246 /*
8247 * Some kernelcore has been met, update counts and
8248 * break if the kernelcore for this node has been
b8af2941 8249 * satisfied
2a1e274a
MG
8250 */
8251 required_kernelcore -= min(required_kernelcore,
8252 size_pages);
8253 kernelcore_remaining -= size_pages;
8254 if (!kernelcore_remaining)
8255 break;
8256 }
8257 }
8258
8259 /*
8260 * If there is still required_kernelcore, we do another pass with one
8261 * less node in the count. This will push zone_movable_pfn[nid] further
8262 * along on the nodes that still have memory until kernelcore is
b8af2941 8263 * satisfied
2a1e274a
MG
8264 */
8265 usable_nodes--;
8266 if (usable_nodes && required_kernelcore > usable_nodes)
8267 goto restart;
8268
b2f3eebe 8269out2:
2a1e274a 8270 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
ddbc84f3
AP
8271 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8272 unsigned long start_pfn, end_pfn;
8273
2a1e274a
MG
8274 zone_movable_pfn[nid] =
8275 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 8276
ddbc84f3
AP
8277 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8278 if (zone_movable_pfn[nid] >= end_pfn)
8279 zone_movable_pfn[nid] = 0;
8280 }
8281
20e6926d 8282out:
66918dcd 8283 /* restore the node_state */
4b0ef1fe 8284 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
8285}
8286
4b0ef1fe
LJ
8287/* Any regular or high memory on that node ? */
8288static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 8289{
37b07e41
LS
8290 enum zone_type zone_type;
8291
4b0ef1fe 8292 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 8293 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 8294 if (populated_zone(zone)) {
7b0e0c0e
OS
8295 if (IS_ENABLED(CONFIG_HIGHMEM))
8296 node_set_state(nid, N_HIGH_MEMORY);
8297 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 8298 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
8299 break;
8300 }
37b07e41 8301 }
37b07e41
LS
8302}
8303
51930df5 8304/*
f0953a1b 8305 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
8306 * such cases we allow max_zone_pfn sorted in the descending order
8307 */
8308bool __weak arch_has_descending_max_zone_pfns(void)
8309{
8310 return false;
8311}
8312
c713216d 8313/**
9691a071 8314 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 8315 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
8316 *
8317 * This will call free_area_init_node() for each active node in the system.
7d018176 8318 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
8319 * zone in each node and their holes is calculated. If the maximum PFN
8320 * between two adjacent zones match, it is assumed that the zone is empty.
8321 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8322 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8323 * starts where the previous one ended. For example, ZONE_DMA32 starts
8324 * at arch_max_dma_pfn.
8325 */
9691a071 8326void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 8327{
c13291a5 8328 unsigned long start_pfn, end_pfn;
51930df5
MR
8329 int i, nid, zone;
8330 bool descending;
a6af2bc3 8331
c713216d
MG
8332 /* Record where the zone boundaries are */
8333 memset(arch_zone_lowest_possible_pfn, 0,
8334 sizeof(arch_zone_lowest_possible_pfn));
8335 memset(arch_zone_highest_possible_pfn, 0,
8336 sizeof(arch_zone_highest_possible_pfn));
90cae1fe 8337
fb70c487 8338 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
51930df5 8339 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
8340
8341 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
8342 if (descending)
8343 zone = MAX_NR_ZONES - i - 1;
8344 else
8345 zone = i;
8346
8347 if (zone == ZONE_MOVABLE)
2a1e274a 8348 continue;
90cae1fe 8349
51930df5
MR
8350 end_pfn = max(max_zone_pfn[zone], start_pfn);
8351 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8352 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
8353
8354 start_pfn = end_pfn;
c713216d 8355 }
2a1e274a
MG
8356
8357 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8358 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 8359 find_zone_movable_pfns_for_nodes();
c713216d 8360
c713216d 8361 /* Print out the zone ranges */
f88dfff5 8362 pr_info("Zone ranges:\n");
2a1e274a
MG
8363 for (i = 0; i < MAX_NR_ZONES; i++) {
8364 if (i == ZONE_MOVABLE)
8365 continue;
f88dfff5 8366 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
8367 if (arch_zone_lowest_possible_pfn[i] ==
8368 arch_zone_highest_possible_pfn[i])
f88dfff5 8369 pr_cont("empty\n");
72f0ba02 8370 else
8d29e18a
JG
8371 pr_cont("[mem %#018Lx-%#018Lx]\n",
8372 (u64)arch_zone_lowest_possible_pfn[i]
8373 << PAGE_SHIFT,
8374 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 8375 << PAGE_SHIFT) - 1);
2a1e274a
MG
8376 }
8377
8378 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 8379 pr_info("Movable zone start for each node\n");
2a1e274a
MG
8380 for (i = 0; i < MAX_NUMNODES; i++) {
8381 if (zone_movable_pfn[i])
8d29e18a
JG
8382 pr_info(" Node %d: %#018Lx\n", i,
8383 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 8384 }
c713216d 8385
f46edbd1
DW
8386 /*
8387 * Print out the early node map, and initialize the
8388 * subsection-map relative to active online memory ranges to
8389 * enable future "sub-section" extensions of the memory map.
8390 */
f88dfff5 8391 pr_info("Early memory node ranges\n");
f46edbd1 8392 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8393 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8394 (u64)start_pfn << PAGE_SHIFT,
8395 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8396 subsection_map_init(start_pfn, end_pfn - start_pfn);
8397 }
c713216d
MG
8398
8399 /* Initialise every node */
708614e6 8400 mminit_verify_pageflags_layout();
8ef82866 8401 setup_nr_node_ids();
09f49dca
MH
8402 for_each_node(nid) {
8403 pg_data_t *pgdat;
8404
8405 if (!node_online(nid)) {
8406 pr_info("Initializing node %d as memoryless\n", nid);
8407
8408 /* Allocator not initialized yet */
8409 pgdat = arch_alloc_nodedata(nid);
8410 if (!pgdat) {
8411 pr_err("Cannot allocate %zuB for node %d.\n",
8412 sizeof(*pgdat), nid);
8413 continue;
8414 }
8415 arch_refresh_nodedata(nid, pgdat);
8416 free_area_init_memoryless_node(nid);
8417
8418 /*
8419 * We do not want to confuse userspace by sysfs
8420 * files/directories for node without any memory
8421 * attached to it, so this node is not marked as
8422 * N_MEMORY and not marked online so that no sysfs
8423 * hierarchy will be created via register_one_node for
8424 * it. The pgdat will get fully initialized by
8425 * hotadd_init_pgdat() when memory is hotplugged into
8426 * this node.
8427 */
8428 continue;
8429 }
8430
8431 pgdat = NODE_DATA(nid);
854e8848 8432 free_area_init_node(nid);
37b07e41
LS
8433
8434 /* Any memory on that node */
8435 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8436 node_set_state(nid, N_MEMORY);
8437 check_for_memory(pgdat, nid);
c713216d 8438 }
122e093c
MR
8439
8440 memmap_init();
c713216d 8441}
2a1e274a 8442
a5c6d650
DR
8443static int __init cmdline_parse_core(char *p, unsigned long *core,
8444 unsigned long *percent)
2a1e274a
MG
8445{
8446 unsigned long long coremem;
a5c6d650
DR
8447 char *endptr;
8448
2a1e274a
MG
8449 if (!p)
8450 return -EINVAL;
8451
a5c6d650
DR
8452 /* Value may be a percentage of total memory, otherwise bytes */
8453 coremem = simple_strtoull(p, &endptr, 0);
8454 if (*endptr == '%') {
8455 /* Paranoid check for percent values greater than 100 */
8456 WARN_ON(coremem > 100);
2a1e274a 8457
a5c6d650
DR
8458 *percent = coremem;
8459 } else {
8460 coremem = memparse(p, &p);
8461 /* Paranoid check that UL is enough for the coremem value */
8462 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8463
a5c6d650
DR
8464 *core = coremem >> PAGE_SHIFT;
8465 *percent = 0UL;
8466 }
2a1e274a
MG
8467 return 0;
8468}
ed7ed365 8469
7e63efef
MG
8470/*
8471 * kernelcore=size sets the amount of memory for use for allocations that
8472 * cannot be reclaimed or migrated.
8473 */
8474static int __init cmdline_parse_kernelcore(char *p)
8475{
342332e6
TI
8476 /* parse kernelcore=mirror */
8477 if (parse_option_str(p, "mirror")) {
8478 mirrored_kernelcore = true;
8479 return 0;
8480 }
8481
a5c6d650
DR
8482 return cmdline_parse_core(p, &required_kernelcore,
8483 &required_kernelcore_percent);
7e63efef
MG
8484}
8485
8486/*
8487 * movablecore=size sets the amount of memory for use for allocations that
8488 * can be reclaimed or migrated.
8489 */
8490static int __init cmdline_parse_movablecore(char *p)
8491{
a5c6d650
DR
8492 return cmdline_parse_core(p, &required_movablecore,
8493 &required_movablecore_percent);
7e63efef
MG
8494}
8495
ed7ed365 8496early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8497early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8498
c3d5f5f0
JL
8499void adjust_managed_page_count(struct page *page, long count)
8500{
9705bea5 8501 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8502 totalram_pages_add(count);
3dcc0571
JL
8503#ifdef CONFIG_HIGHMEM
8504 if (PageHighMem(page))
ca79b0c2 8505 totalhigh_pages_add(count);
3dcc0571 8506#endif
c3d5f5f0 8507}
3dcc0571 8508EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8509
e5cb113f 8510unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8511{
11199692
JL
8512 void *pos;
8513 unsigned long pages = 0;
69afade7 8514
11199692
JL
8515 start = (void *)PAGE_ALIGN((unsigned long)start);
8516 end = (void *)((unsigned long)end & PAGE_MASK);
8517 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8518 struct page *page = virt_to_page(pos);
8519 void *direct_map_addr;
8520
8521 /*
8522 * 'direct_map_addr' might be different from 'pos'
8523 * because some architectures' virt_to_page()
8524 * work with aliases. Getting the direct map
8525 * address ensures that we get a _writeable_
8526 * alias for the memset().
8527 */
8528 direct_map_addr = page_address(page);
c746170d
VF
8529 /*
8530 * Perform a kasan-unchecked memset() since this memory
8531 * has not been initialized.
8532 */
8533 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8534 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8535 memset(direct_map_addr, poison, PAGE_SIZE);
8536
8537 free_reserved_page(page);
69afade7
JL
8538 }
8539
8540 if (pages && s)
ff7ed9e4 8541 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
8542
8543 return pages;
8544}
8545
1f9d03c5 8546void __init mem_init_print_info(void)
7ee3d4e8
JL
8547{
8548 unsigned long physpages, codesize, datasize, rosize, bss_size;
8549 unsigned long init_code_size, init_data_size;
8550
8551 physpages = get_num_physpages();
8552 codesize = _etext - _stext;
8553 datasize = _edata - _sdata;
8554 rosize = __end_rodata - __start_rodata;
8555 bss_size = __bss_stop - __bss_start;
8556 init_data_size = __init_end - __init_begin;
8557 init_code_size = _einittext - _sinittext;
8558
8559 /*
8560 * Detect special cases and adjust section sizes accordingly:
8561 * 1) .init.* may be embedded into .data sections
8562 * 2) .init.text.* may be out of [__init_begin, __init_end],
8563 * please refer to arch/tile/kernel/vmlinux.lds.S.
8564 * 3) .rodata.* may be embedded into .text or .data sections.
8565 */
8566#define adj_init_size(start, end, size, pos, adj) \
b8af2941 8567 do { \
ca831f29 8568 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
b8af2941
PK
8569 size -= adj; \
8570 } while (0)
7ee3d4e8
JL
8571
8572 adj_init_size(__init_begin, __init_end, init_data_size,
8573 _sinittext, init_code_size);
8574 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8575 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8576 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8577 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8578
8579#undef adj_init_size
8580
756a025f 8581 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8582#ifdef CONFIG_HIGHMEM
756a025f 8583 ", %luK highmem"
7ee3d4e8 8584#endif
1f9d03c5 8585 ")\n",
ff7ed9e4 8586 K(nr_free_pages()), K(physpages),
c940e020
ML
8587 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8588 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
ff7ed9e4
ML
8589 K(physpages - totalram_pages() - totalcma_pages),
8590 K(totalcma_pages)
7ee3d4e8 8591#ifdef CONFIG_HIGHMEM
ff7ed9e4 8592 , K(totalhigh_pages())
7ee3d4e8 8593#endif
1f9d03c5 8594 );
7ee3d4e8
JL
8595}
8596
0e0b864e 8597/**
88ca3b94
RD
8598 * set_dma_reserve - set the specified number of pages reserved in the first zone
8599 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8600 *
013110a7 8601 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8602 * In the DMA zone, a significant percentage may be consumed by kernel image
8603 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8604 * function may optionally be used to account for unfreeable pages in the
8605 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8606 * smaller per-cpu batchsize.
0e0b864e
MG
8607 */
8608void __init set_dma_reserve(unsigned long new_dma_reserve)
8609{
8610 dma_reserve = new_dma_reserve;
8611}
8612
005fd4bb 8613static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8614{
04f8cfea 8615 struct zone *zone;
1da177e4 8616
005fd4bb 8617 lru_add_drain_cpu(cpu);
96f97c43 8618 mlock_drain_remote(cpu);
005fd4bb 8619 drain_pages(cpu);
9f8f2172 8620
005fd4bb
SAS
8621 /*
8622 * Spill the event counters of the dead processor
8623 * into the current processors event counters.
8624 * This artificially elevates the count of the current
8625 * processor.
8626 */
8627 vm_events_fold_cpu(cpu);
9f8f2172 8628
005fd4bb
SAS
8629 /*
8630 * Zero the differential counters of the dead processor
8631 * so that the vm statistics are consistent.
8632 *
8633 * This is only okay since the processor is dead and cannot
8634 * race with what we are doing.
8635 */
8636 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8637
8638 for_each_populated_zone(zone)
8639 zone_pcp_update(zone, 0);
8640
8641 return 0;
8642}
8643
8644static int page_alloc_cpu_online(unsigned int cpu)
8645{
8646 struct zone *zone;
8647
8648 for_each_populated_zone(zone)
8649 zone_pcp_update(zone, 1);
005fd4bb 8650 return 0;
1da177e4 8651}
1da177e4 8652
e03a5125
NP
8653#ifdef CONFIG_NUMA
8654int hashdist = HASHDIST_DEFAULT;
8655
8656static int __init set_hashdist(char *str)
8657{
8658 if (!str)
8659 return 0;
8660 hashdist = simple_strtoul(str, &str, 0);
8661 return 1;
8662}
8663__setup("hashdist=", set_hashdist);
8664#endif
8665
1da177e4
LT
8666void __init page_alloc_init(void)
8667{
005fd4bb
SAS
8668 int ret;
8669
e03a5125
NP
8670#ifdef CONFIG_NUMA
8671 if (num_node_state(N_MEMORY) == 1)
8672 hashdist = 0;
8673#endif
8674
04f8cfea
MG
8675 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8676 "mm/page_alloc:pcp",
8677 page_alloc_cpu_online,
005fd4bb
SAS
8678 page_alloc_cpu_dead);
8679 WARN_ON(ret < 0);
1da177e4
LT
8680}
8681
cb45b0e9 8682/*
34b10060 8683 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8684 * or min_free_kbytes changes.
8685 */
8686static void calculate_totalreserve_pages(void)
8687{
8688 struct pglist_data *pgdat;
8689 unsigned long reserve_pages = 0;
2f6726e5 8690 enum zone_type i, j;
cb45b0e9
HA
8691
8692 for_each_online_pgdat(pgdat) {
281e3726
MG
8693
8694 pgdat->totalreserve_pages = 0;
8695
cb45b0e9
HA
8696 for (i = 0; i < MAX_NR_ZONES; i++) {
8697 struct zone *zone = pgdat->node_zones + i;
3484b2de 8698 long max = 0;
9705bea5 8699 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8700
8701 /* Find valid and maximum lowmem_reserve in the zone */
8702 for (j = i; j < MAX_NR_ZONES; j++) {
8703 if (zone->lowmem_reserve[j] > max)
8704 max = zone->lowmem_reserve[j];
8705 }
8706
41858966
MG
8707 /* we treat the high watermark as reserved pages. */
8708 max += high_wmark_pages(zone);
cb45b0e9 8709
3d6357de
AK
8710 if (max > managed_pages)
8711 max = managed_pages;
a8d01437 8712
281e3726 8713 pgdat->totalreserve_pages += max;
a8d01437 8714
cb45b0e9
HA
8715 reserve_pages += max;
8716 }
8717 }
8718 totalreserve_pages = reserve_pages;
8719}
8720
1da177e4
LT
8721/*
8722 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8723 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8724 * has a correct pages reserved value, so an adequate number of
8725 * pages are left in the zone after a successful __alloc_pages().
8726 */
8727static void setup_per_zone_lowmem_reserve(void)
8728{
8729 struct pglist_data *pgdat;
470c61d7 8730 enum zone_type i, j;
1da177e4 8731
ec936fc5 8732 for_each_online_pgdat(pgdat) {
470c61d7
LS
8733 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8734 struct zone *zone = &pgdat->node_zones[i];
8735 int ratio = sysctl_lowmem_reserve_ratio[i];
8736 bool clear = !ratio || !zone_managed_pages(zone);
8737 unsigned long managed_pages = 0;
8738
8739 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8740 struct zone *upper_zone = &pgdat->node_zones[j];
8741
8742 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8743
f7ec1044
LS
8744 if (clear)
8745 zone->lowmem_reserve[j] = 0;
8746 else
470c61d7 8747 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8748 }
8749 }
8750 }
cb45b0e9
HA
8751
8752 /* update totalreserve_pages */
8753 calculate_totalreserve_pages();
1da177e4
LT
8754}
8755
cfd3da1e 8756static void __setup_per_zone_wmarks(void)
1da177e4
LT
8757{
8758 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8759 unsigned long lowmem_pages = 0;
8760 struct zone *zone;
8761 unsigned long flags;
8762
8763 /* Calculate total number of !ZONE_HIGHMEM pages */
8764 for_each_zone(zone) {
8765 if (!is_highmem(zone))
9705bea5 8766 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8767 }
8768
8769 for_each_zone(zone) {
ac924c60
AM
8770 u64 tmp;
8771
1125b4e3 8772 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8773 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8774 do_div(tmp, lowmem_pages);
1da177e4
LT
8775 if (is_highmem(zone)) {
8776 /*
669ed175
NP
8777 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8778 * need highmem pages, so cap pages_min to a small
8779 * value here.
8780 *
41858966 8781 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8782 * deltas control async page reclaim, and so should
669ed175 8783 * not be capped for highmem.
1da177e4 8784 */
90ae8d67 8785 unsigned long min_pages;
1da177e4 8786
9705bea5 8787 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8788 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8789 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8790 } else {
669ed175
NP
8791 /*
8792 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8793 * proportionate to the zone's size.
8794 */
a9214443 8795 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8796 }
8797
795ae7a0
JW
8798 /*
8799 * Set the kswapd watermarks distance according to the
8800 * scale factor in proportion to available memory, but
8801 * ensure a minimum size on small systems.
8802 */
8803 tmp = max_t(u64, tmp >> 2,
9705bea5 8804 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8805 watermark_scale_factor, 10000));
8806
aa092591 8807 zone->watermark_boost = 0;
a9214443 8808 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
HY
8809 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8810 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 8811
1125b4e3 8812 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8813 }
cb45b0e9
HA
8814
8815 /* update totalreserve_pages */
8816 calculate_totalreserve_pages();
1da177e4
LT
8817}
8818
cfd3da1e
MG
8819/**
8820 * setup_per_zone_wmarks - called when min_free_kbytes changes
8821 * or when memory is hot-{added|removed}
8822 *
8823 * Ensures that the watermark[min,low,high] values for each zone are set
8824 * correctly with respect to min_free_kbytes.
8825 */
8826void setup_per_zone_wmarks(void)
8827{
b92ca18e 8828 struct zone *zone;
b93e0f32
MH
8829 static DEFINE_SPINLOCK(lock);
8830
8831 spin_lock(&lock);
cfd3da1e 8832 __setup_per_zone_wmarks();
b93e0f32 8833 spin_unlock(&lock);
b92ca18e
MG
8834
8835 /*
8836 * The watermark size have changed so update the pcpu batch
8837 * and high limits or the limits may be inappropriate.
8838 */
8839 for_each_zone(zone)
04f8cfea 8840 zone_pcp_update(zone, 0);
cfd3da1e
MG
8841}
8842
1da177e4
LT
8843/*
8844 * Initialise min_free_kbytes.
8845 *
8846 * For small machines we want it small (128k min). For large machines
8beeae86 8847 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8848 * bandwidth does not increase linearly with machine size. We use
8849 *
b8af2941 8850 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8851 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8852 *
8853 * which yields
8854 *
8855 * 16MB: 512k
8856 * 32MB: 724k
8857 * 64MB: 1024k
8858 * 128MB: 1448k
8859 * 256MB: 2048k
8860 * 512MB: 2896k
8861 * 1024MB: 4096k
8862 * 2048MB: 5792k
8863 * 4096MB: 8192k
8864 * 8192MB: 11584k
8865 * 16384MB: 16384k
8866 */
bd3400ea 8867void calculate_min_free_kbytes(void)
1da177e4
LT
8868{
8869 unsigned long lowmem_kbytes;
5f12733e 8870 int new_min_free_kbytes;
1da177e4
LT
8871
8872 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8873 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8874
59d336bd
WS
8875 if (new_min_free_kbytes > user_min_free_kbytes)
8876 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8877 else
5f12733e
MH
8878 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8879 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 8880
bd3400ea
LF
8881}
8882
8883int __meminit init_per_zone_wmark_min(void)
8884{
8885 calculate_min_free_kbytes();
bc75d33f 8886 setup_per_zone_wmarks();
a6cccdc3 8887 refresh_zone_stat_thresholds();
1da177e4 8888 setup_per_zone_lowmem_reserve();
6423aa81
JK
8889
8890#ifdef CONFIG_NUMA
8891 setup_min_unmapped_ratio();
8892 setup_min_slab_ratio();
8893#endif
8894
4aab2be0
VB
8895 khugepaged_min_free_kbytes_update();
8896
1da177e4
LT
8897 return 0;
8898}
e08d3fdf 8899postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8900
8901/*
b8af2941 8902 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8903 * that we can call two helper functions whenever min_free_kbytes
8904 * changes.
8905 */
cccad5b9 8906int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8907 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8908{
da8c757b
HP
8909 int rc;
8910
8911 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8912 if (rc)
8913 return rc;
8914
5f12733e
MH
8915 if (write) {
8916 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8917 setup_per_zone_wmarks();
5f12733e 8918 }
1da177e4
LT
8919 return 0;
8920}
8921
795ae7a0 8922int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8923 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8924{
8925 int rc;
8926
8927 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8928 if (rc)
8929 return rc;
8930
8931 if (write)
8932 setup_per_zone_wmarks();
8933
8934 return 0;
8935}
8936
9614634f 8937#ifdef CONFIG_NUMA
6423aa81 8938static void setup_min_unmapped_ratio(void)
9614634f 8939{
6423aa81 8940 pg_data_t *pgdat;
9614634f 8941 struct zone *zone;
9614634f 8942
a5f5f91d 8943 for_each_online_pgdat(pgdat)
81cbcbc2 8944 pgdat->min_unmapped_pages = 0;
a5f5f91d 8945
9614634f 8946 for_each_zone(zone)
9705bea5
AK
8947 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8948 sysctl_min_unmapped_ratio) / 100;
9614634f 8949}
0ff38490 8950
6423aa81
JK
8951
8952int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8953 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8954{
0ff38490
CL
8955 int rc;
8956
8d65af78 8957 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8958 if (rc)
8959 return rc;
8960
6423aa81
JK
8961 setup_min_unmapped_ratio();
8962
8963 return 0;
8964}
8965
8966static void setup_min_slab_ratio(void)
8967{
8968 pg_data_t *pgdat;
8969 struct zone *zone;
8970
a5f5f91d
MG
8971 for_each_online_pgdat(pgdat)
8972 pgdat->min_slab_pages = 0;
8973
0ff38490 8974 for_each_zone(zone)
9705bea5
AK
8975 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8976 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8977}
8978
8979int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8980 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8981{
8982 int rc;
8983
8984 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8985 if (rc)
8986 return rc;
8987
8988 setup_min_slab_ratio();
8989
0ff38490
CL
8990 return 0;
8991}
9614634f
CL
8992#endif
8993
1da177e4
LT
8994/*
8995 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8996 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8997 * whenever sysctl_lowmem_reserve_ratio changes.
8998 *
8999 * The reserve ratio obviously has absolutely no relation with the
41858966 9000 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
9001 * if in function of the boot time zone sizes.
9002 */
cccad5b9 9003int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 9004 void *buffer, size_t *length, loff_t *ppos)
1da177e4 9005{
86aaf255
BH
9006 int i;
9007
8d65af78 9008 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
9009
9010 for (i = 0; i < MAX_NR_ZONES; i++) {
9011 if (sysctl_lowmem_reserve_ratio[i] < 1)
9012 sysctl_lowmem_reserve_ratio[i] = 0;
9013 }
9014
1da177e4
LT
9015 setup_per_zone_lowmem_reserve();
9016 return 0;
9017}
9018
8ad4b1fb 9019/*
74f44822
MG
9020 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
9021 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 9022 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 9023 */
74f44822
MG
9024int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
9025 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
9026{
9027 struct zone *zone;
74f44822 9028 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
9029 int ret;
9030
7cd2b0a3 9031 mutex_lock(&pcp_batch_high_lock);
74f44822 9032 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 9033
8d65af78 9034 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
9035 if (!write || ret < 0)
9036 goto out;
9037
9038 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
9039 if (percpu_pagelist_high_fraction &&
9040 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9041 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
9042 ret = -EINVAL;
9043 goto out;
9044 }
9045
9046 /* No change? */
74f44822 9047 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 9048 goto out;
c8e251fa 9049
cb1ef534 9050 for_each_populated_zone(zone)
74f44822 9051 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 9052out:
c8e251fa 9053 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 9054 return ret;
8ad4b1fb
RS
9055}
9056
f6f34b43
SD
9057#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9058/*
9059 * Returns the number of pages that arch has reserved but
9060 * is not known to alloc_large_system_hash().
9061 */
9062static unsigned long __init arch_reserved_kernel_pages(void)
9063{
9064 return 0;
9065}
9066#endif
9067
9017217b
PT
9068/*
9069 * Adaptive scale is meant to reduce sizes of hash tables on large memory
9070 * machines. As memory size is increased the scale is also increased but at
9071 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
9072 * quadruples the scale is increased by one, which means the size of hash table
9073 * only doubles, instead of quadrupling as well.
9074 * Because 32-bit systems cannot have large physical memory, where this scaling
9075 * makes sense, it is disabled on such platforms.
9076 */
9077#if __BITS_PER_LONG > 32
9078#define ADAPT_SCALE_BASE (64ul << 30)
9079#define ADAPT_SCALE_SHIFT 2
9080#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9081#endif
9082
1da177e4
LT
9083/*
9084 * allocate a large system hash table from bootmem
9085 * - it is assumed that the hash table must contain an exact power-of-2
9086 * quantity of entries
9087 * - limit is the number of hash buckets, not the total allocation size
9088 */
9089void *__init alloc_large_system_hash(const char *tablename,
9090 unsigned long bucketsize,
9091 unsigned long numentries,
9092 int scale,
9093 int flags,
9094 unsigned int *_hash_shift,
9095 unsigned int *_hash_mask,
31fe62b9
TB
9096 unsigned long low_limit,
9097 unsigned long high_limit)
1da177e4 9098{
31fe62b9 9099 unsigned long long max = high_limit;
1da177e4 9100 unsigned long log2qty, size;
97bab178 9101 void *table;
3749a8f0 9102 gfp_t gfp_flags;
ec11408a 9103 bool virt;
121e6f32 9104 bool huge;
1da177e4
LT
9105
9106 /* allow the kernel cmdline to have a say */
9107 if (!numentries) {
9108 /* round applicable memory size up to nearest megabyte */
04903664 9109 numentries = nr_kernel_pages;
f6f34b43 9110 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
9111
9112 /* It isn't necessary when PAGE_SIZE >= 1MB */
c940e020
ML
9113 if (PAGE_SIZE < SZ_1M)
9114 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
1da177e4 9115
9017217b
PT
9116#if __BITS_PER_LONG > 32
9117 if (!high_limit) {
9118 unsigned long adapt;
9119
9120 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9121 adapt <<= ADAPT_SCALE_SHIFT)
9122 scale++;
9123 }
9124#endif
9125
1da177e4
LT
9126 /* limit to 1 bucket per 2^scale bytes of low memory */
9127 if (scale > PAGE_SHIFT)
9128 numentries >>= (scale - PAGE_SHIFT);
9129 else
9130 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
9131
9132 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
9133 if (unlikely(flags & HASH_SMALL)) {
9134 /* Makes no sense without HASH_EARLY */
9135 WARN_ON(!(flags & HASH_EARLY));
9136 if (!(numentries >> *_hash_shift)) {
9137 numentries = 1UL << *_hash_shift;
9138 BUG_ON(!numentries);
9139 }
9140 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 9141 numentries = PAGE_SIZE / bucketsize;
1da177e4 9142 }
6e692ed3 9143 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
9144
9145 /* limit allocation size to 1/16 total memory by default */
9146 if (max == 0) {
9147 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9148 do_div(max, bucketsize);
9149 }
074b8517 9150 max = min(max, 0x80000000ULL);
1da177e4 9151
31fe62b9
TB
9152 if (numentries < low_limit)
9153 numentries = low_limit;
1da177e4
LT
9154 if (numentries > max)
9155 numentries = max;
9156
f0d1b0b3 9157 log2qty = ilog2(numentries);
1da177e4 9158
3749a8f0 9159 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 9160 do {
ec11408a 9161 virt = false;
1da177e4 9162 size = bucketsize << log2qty;
ea1f5f37
PT
9163 if (flags & HASH_EARLY) {
9164 if (flags & HASH_ZERO)
26fb3dae 9165 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 9166 else
7e1c4e27
MR
9167 table = memblock_alloc_raw(size,
9168 SMP_CACHE_BYTES);
ec11408a 9169 } else if (get_order(size) >= MAX_ORDER || hashdist) {
f2edd118 9170 table = vmalloc_huge(size, gfp_flags);
ec11408a 9171 virt = true;
084f7e23
ED
9172 if (table)
9173 huge = is_vm_area_hugepages(table);
ea1f5f37 9174 } else {
1037b83b
ED
9175 /*
9176 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
9177 * some pages at the end of hash table which
9178 * alloc_pages_exact() automatically does
1037b83b 9179 */
ec11408a
NP
9180 table = alloc_pages_exact(size, gfp_flags);
9181 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
9182 }
9183 } while (!table && size > PAGE_SIZE && --log2qty);
9184
9185 if (!table)
9186 panic("Failed to allocate %s hash table\n", tablename);
9187
ec11408a
NP
9188 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9189 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 9190 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
9191
9192 if (_hash_shift)
9193 *_hash_shift = log2qty;
9194 if (_hash_mask)
9195 *_hash_mask = (1 << log2qty) - 1;
9196
9197 return table;
9198}
a117e66e 9199
8df995f6 9200#ifdef CONFIG_CONTIG_ALLOC
a1394bdd
MK
9201#if defined(CONFIG_DYNAMIC_DEBUG) || \
9202 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9203/* Usage: See admin-guide/dynamic-debug-howto.rst */
9204static void alloc_contig_dump_pages(struct list_head *page_list)
9205{
9206 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9207
9208 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9209 struct page *page;
9210
9211 dump_stack();
9212 list_for_each_entry(page, page_list, lru)
9213 dump_page(page, "migration failure");
9214 }
9215}
9216#else
9217static inline void alloc_contig_dump_pages(struct list_head *page_list)
9218{
9219}
9220#endif
9221
041d3a8c 9222/* [start, end) must belong to a single zone. */
b2c9e2fb 9223int __alloc_contig_migrate_range(struct compact_control *cc,
bb13ffeb 9224 unsigned long start, unsigned long end)
041d3a8c
MN
9225{
9226 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 9227 unsigned int nr_reclaimed;
041d3a8c
MN
9228 unsigned long pfn = start;
9229 unsigned int tries = 0;
9230 int ret = 0;
8b94e0b8
JK
9231 struct migration_target_control mtc = {
9232 .nid = zone_to_nid(cc->zone),
9233 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9234 };
041d3a8c 9235
361a2a22 9236 lru_cache_disable();
041d3a8c 9237
bb13ffeb 9238 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
9239 if (fatal_signal_pending(current)) {
9240 ret = -EINTR;
9241 break;
9242 }
9243
bb13ffeb
MG
9244 if (list_empty(&cc->migratepages)) {
9245 cc->nr_migratepages = 0;
c2ad7a1f
OS
9246 ret = isolate_migratepages_range(cc, pfn, end);
9247 if (ret && ret != -EAGAIN)
041d3a8c 9248 break;
c2ad7a1f 9249 pfn = cc->migrate_pfn;
041d3a8c
MN
9250 tries = 0;
9251 } else if (++tries == 5) {
c8e28b47 9252 ret = -EBUSY;
041d3a8c
MN
9253 break;
9254 }
9255
beb51eaa
MK
9256 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9257 &cc->migratepages);
9258 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 9259
8b94e0b8 9260 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 9261 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
9262
9263 /*
9264 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9265 * to retry again over this error, so do the same here.
9266 */
9267 if (ret == -ENOMEM)
9268 break;
041d3a8c 9269 }
d479960e 9270
361a2a22 9271 lru_cache_enable();
2a6f5124 9272 if (ret < 0) {
3f913fc5 9273 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
151e084a 9274 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
9275 putback_movable_pages(&cc->migratepages);
9276 return ret;
9277 }
9278 return 0;
041d3a8c
MN
9279}
9280
9281/**
9282 * alloc_contig_range() -- tries to allocate given range of pages
9283 * @start: start PFN to allocate
9284 * @end: one-past-the-last PFN to allocate
f0953a1b 9285 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9286 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9287 * in range must have the same migratetype and it must
9288 * be either of the two.
ca96b625 9289 * @gfp_mask: GFP mask to use during compaction
041d3a8c 9290 *
11ac3e87
ZY
9291 * The PFN range does not have to be pageblock aligned. The PFN range must
9292 * belong to a single zone.
041d3a8c 9293 *
2c7452a0
MK
9294 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9295 * pageblocks in the range. Once isolated, the pageblocks should not
9296 * be modified by others.
041d3a8c 9297 *
a862f68a 9298 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9299 * pages which PFN is in [start, end) are allocated for the caller and
9300 * need to be freed with free_contig_range().
9301 */
0815f3d8 9302int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9303 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9304{
041d3a8c 9305 unsigned long outer_start, outer_end;
b2c9e2fb 9306 int order;
d00181b9 9307 int ret = 0;
041d3a8c 9308
bb13ffeb
MG
9309 struct compact_control cc = {
9310 .nr_migratepages = 0,
9311 .order = -1,
9312 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9313 .mode = MIGRATE_SYNC,
bb13ffeb 9314 .ignore_skip_hint = true,
2583d671 9315 .no_set_skip_hint = true,
7dea19f9 9316 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9317 .alloc_contig = true,
bb13ffeb
MG
9318 };
9319 INIT_LIST_HEAD(&cc.migratepages);
9320
041d3a8c
MN
9321 /*
9322 * What we do here is we mark all pageblocks in range as
9323 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9324 * have different sizes, and due to the way page allocator
b2c9e2fb 9325 * work, start_isolate_page_range() has special handlings for this.
041d3a8c
MN
9326 *
9327 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9328 * migrate the pages from an unaligned range (ie. pages that
b2c9e2fb 9329 * we are interested in). This will put all the pages in
041d3a8c
MN
9330 * range back to page allocator as MIGRATE_ISOLATE.
9331 *
9332 * When this is done, we take the pages in range from page
9333 * allocator removing them from the buddy system. This way
9334 * page allocator will never consider using them.
9335 *
9336 * This lets us mark the pageblocks back as
9337 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9338 * aligned range but not in the unaligned, original range are
9339 * put back to page allocator so that buddy can use them.
9340 */
9341
6e263fff 9342 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
3fa0c7c7 9343 if (ret)
b2c9e2fb 9344 goto done;
041d3a8c 9345
7612921f
VB
9346 drain_all_pages(cc.zone);
9347
8ef5849f
JK
9348 /*
9349 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9350 * So, just fall through. test_pages_isolated() has a tracepoint
9351 * which will report the busy page.
9352 *
9353 * It is possible that busy pages could become available before
9354 * the call to test_pages_isolated, and the range will actually be
9355 * allocated. So, if we fall through be sure to clear ret so that
9356 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9357 */
bb13ffeb 9358 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9359 if (ret && ret != -EBUSY)
041d3a8c 9360 goto done;
68d68ff6 9361 ret = 0;
041d3a8c
MN
9362
9363 /*
b2c9e2fb 9364 * Pages from [start, end) are within a pageblock_nr_pages
041d3a8c
MN
9365 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9366 * more, all pages in [start, end) are free in page allocator.
9367 * What we are going to do is to allocate all pages from
9368 * [start, end) (that is remove them from page allocator).
9369 *
9370 * The only problem is that pages at the beginning and at the
9371 * end of interesting range may be not aligned with pages that
9372 * page allocator holds, ie. they can be part of higher order
9373 * pages. Because of this, we reserve the bigger range and
9374 * once this is done free the pages we are not interested in.
9375 *
9376 * We don't have to hold zone->lock here because the pages are
9377 * isolated thus they won't get removed from buddy.
9378 */
9379
041d3a8c
MN
9380 order = 0;
9381 outer_start = start;
9382 while (!PageBuddy(pfn_to_page(outer_start))) {
9383 if (++order >= MAX_ORDER) {
8ef5849f
JK
9384 outer_start = start;
9385 break;
041d3a8c
MN
9386 }
9387 outer_start &= ~0UL << order;
9388 }
9389
8ef5849f 9390 if (outer_start != start) {
ab130f91 9391 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9392
9393 /*
9394 * outer_start page could be small order buddy page and
9395 * it doesn't include start page. Adjust outer_start
9396 * in this case to report failed page properly
9397 * on tracepoint in test_pages_isolated()
9398 */
9399 if (outer_start + (1UL << order) <= start)
9400 outer_start = start;
9401 }
9402
041d3a8c 9403 /* Make sure the range is really isolated. */
756d25be 9404 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9405 ret = -EBUSY;
9406 goto done;
9407 }
9408
49f223a9 9409 /* Grab isolated pages from freelists. */
bb13ffeb 9410 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9411 if (!outer_end) {
9412 ret = -EBUSY;
9413 goto done;
9414 }
9415
9416 /* Free head and tail (if any) */
9417 if (start != outer_start)
9418 free_contig_range(outer_start, start - outer_start);
9419 if (end != outer_end)
9420 free_contig_range(end, outer_end - end);
9421
9422done:
6e263fff 9423 undo_isolate_page_range(start, end, migratetype);
041d3a8c
MN
9424 return ret;
9425}
255f5985 9426EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9427
9428static int __alloc_contig_pages(unsigned long start_pfn,
9429 unsigned long nr_pages, gfp_t gfp_mask)
9430{
9431 unsigned long end_pfn = start_pfn + nr_pages;
9432
9433 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9434 gfp_mask);
9435}
9436
9437static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9438 unsigned long nr_pages)
9439{
9440 unsigned long i, end_pfn = start_pfn + nr_pages;
9441 struct page *page;
9442
9443 for (i = start_pfn; i < end_pfn; i++) {
9444 page = pfn_to_online_page(i);
9445 if (!page)
9446 return false;
9447
9448 if (page_zone(page) != z)
9449 return false;
9450
9451 if (PageReserved(page))
9452 return false;
5e27a2df
AK
9453 }
9454 return true;
9455}
9456
9457static bool zone_spans_last_pfn(const struct zone *zone,
9458 unsigned long start_pfn, unsigned long nr_pages)
9459{
9460 unsigned long last_pfn = start_pfn + nr_pages - 1;
9461
9462 return zone_spans_pfn(zone, last_pfn);
9463}
9464
9465/**
9466 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9467 * @nr_pages: Number of contiguous pages to allocate
9468 * @gfp_mask: GFP mask to limit search and used during compaction
9469 * @nid: Target node
9470 * @nodemask: Mask for other possible nodes
9471 *
9472 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9473 * on an applicable zonelist to find a contiguous pfn range which can then be
9474 * tried for allocation with alloc_contig_range(). This routine is intended
9475 * for allocation requests which can not be fulfilled with the buddy allocator.
9476 *
9477 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
9478 * power of two, then allocated range is also guaranteed to be aligned to same
9479 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
9480 *
9481 * Allocated pages can be freed with free_contig_range() or by manually calling
9482 * __free_page() on each allocated page.
9483 *
9484 * Return: pointer to contiguous pages on success, or NULL if not successful.
9485 */
9486struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9487 int nid, nodemask_t *nodemask)
9488{
9489 unsigned long ret, pfn, flags;
9490 struct zonelist *zonelist;
9491 struct zone *zone;
9492 struct zoneref *z;
9493
9494 zonelist = node_zonelist(nid, gfp_mask);
9495 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9496 gfp_zone(gfp_mask), nodemask) {
9497 spin_lock_irqsave(&zone->lock, flags);
9498
9499 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9500 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9501 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9502 /*
9503 * We release the zone lock here because
9504 * alloc_contig_range() will also lock the zone
9505 * at some point. If there's an allocation
9506 * spinning on this lock, it may win the race
9507 * and cause alloc_contig_range() to fail...
9508 */
9509 spin_unlock_irqrestore(&zone->lock, flags);
9510 ret = __alloc_contig_pages(pfn, nr_pages,
9511 gfp_mask);
9512 if (!ret)
9513 return pfn_to_page(pfn);
9514 spin_lock_irqsave(&zone->lock, flags);
9515 }
9516 pfn += nr_pages;
9517 }
9518 spin_unlock_irqrestore(&zone->lock, flags);
9519 }
9520 return NULL;
9521}
4eb0716e 9522#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9523
78fa5150 9524void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9525{
78fa5150 9526 unsigned long count = 0;
bcc2b02f
MS
9527
9528 for (; nr_pages--; pfn++) {
9529 struct page *page = pfn_to_page(pfn);
9530
9531 count += page_count(page) != 1;
9532 __free_page(page);
9533 }
78fa5150 9534 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9535}
255f5985 9536EXPORT_SYMBOL(free_contig_range);
041d3a8c 9537
ec6e8c7e
VB
9538/*
9539 * Effectively disable pcplists for the zone by setting the high limit to 0
9540 * and draining all cpus. A concurrent page freeing on another CPU that's about
9541 * to put the page on pcplist will either finish before the drain and the page
9542 * will be drained, or observe the new high limit and skip the pcplist.
9543 *
9544 * Must be paired with a call to zone_pcp_enable().
9545 */
9546void zone_pcp_disable(struct zone *zone)
9547{
9548 mutex_lock(&pcp_batch_high_lock);
9549 __zone_set_pageset_high_and_batch(zone, 0, 1);
9550 __drain_all_pages(zone, true);
9551}
9552
9553void zone_pcp_enable(struct zone *zone)
9554{
9555 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9556 mutex_unlock(&pcp_batch_high_lock);
9557}
9558
340175b7
JL
9559void zone_pcp_reset(struct zone *zone)
9560{
5a883813 9561 int cpu;
28f836b6 9562 struct per_cpu_zonestat *pzstats;
340175b7 9563
28f836b6 9564 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9565 for_each_online_cpu(cpu) {
28f836b6
MG
9566 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9567 drain_zonestat(zone, pzstats);
5a883813 9568 }
28f836b6 9569 free_percpu(zone->per_cpu_pageset);
28f836b6 9570 zone->per_cpu_pageset = &boot_pageset;
022e7fa0
ML
9571 if (zone->per_cpu_zonestats != &boot_zonestats) {
9572 free_percpu(zone->per_cpu_zonestats);
9573 zone->per_cpu_zonestats = &boot_zonestats;
9574 }
340175b7 9575 }
340175b7
JL
9576}
9577
6dcd73d7 9578#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9579/*
257bea71
DH
9580 * All pages in the range must be in a single zone, must not contain holes,
9581 * must span full sections, and must be isolated before calling this function.
0c0e6195 9582 */
257bea71 9583void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9584{
257bea71 9585 unsigned long pfn = start_pfn;
0c0e6195
KH
9586 struct page *page;
9587 struct zone *zone;
0ee5f4f3 9588 unsigned int order;
0c0e6195 9589 unsigned long flags;
5557c766 9590
2d070eab 9591 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9592 zone = page_zone(pfn_to_page(pfn));
9593 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9594 while (pfn < end_pfn) {
0c0e6195 9595 page = pfn_to_page(pfn);
b023f468
WC
9596 /*
9597 * The HWPoisoned page may be not in buddy system, and
9598 * page_count() is not 0.
9599 */
9600 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9601 pfn++;
b023f468
WC
9602 continue;
9603 }
aa218795
DH
9604 /*
9605 * At this point all remaining PageOffline() pages have a
9606 * reference count of 0 and can simply be skipped.
9607 */
9608 if (PageOffline(page)) {
9609 BUG_ON(page_count(page));
9610 BUG_ON(PageBuddy(page));
9611 pfn++;
aa218795
DH
9612 continue;
9613 }
b023f468 9614
0c0e6195
KH
9615 BUG_ON(page_count(page));
9616 BUG_ON(!PageBuddy(page));
ab130f91 9617 order = buddy_order(page);
6ab01363 9618 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9619 pfn += (1 << order);
9620 }
9621 spin_unlock_irqrestore(&zone->lock, flags);
9622}
9623#endif
8d22ba1b 9624
8446b59b
ED
9625/*
9626 * This function returns a stable result only if called under zone lock.
9627 */
8d22ba1b
WF
9628bool is_free_buddy_page(struct page *page)
9629{
8d22ba1b 9630 unsigned long pfn = page_to_pfn(page);
7aeb09f9 9631 unsigned int order;
8d22ba1b 9632
8d22ba1b
WF
9633 for (order = 0; order < MAX_ORDER; order++) {
9634 struct page *page_head = page - (pfn & ((1 << order) - 1));
9635
8446b59b
ED
9636 if (PageBuddy(page_head) &&
9637 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
9638 break;
9639 }
8d22ba1b
WF
9640
9641 return order < MAX_ORDER;
9642}
a581865e 9643EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
9644
9645#ifdef CONFIG_MEMORY_FAILURE
9646/*
06be6ff3
OS
9647 * Break down a higher-order page in sub-pages, and keep our target out of
9648 * buddy allocator.
d4ae9916 9649 */
06be6ff3
OS
9650static void break_down_buddy_pages(struct zone *zone, struct page *page,
9651 struct page *target, int low, int high,
9652 int migratetype)
9653{
9654 unsigned long size = 1 << high;
9655 struct page *current_buddy, *next_page;
9656
9657 while (high > low) {
9658 high--;
9659 size >>= 1;
9660
9661 if (target >= &page[size]) {
9662 next_page = page + size;
9663 current_buddy = page;
9664 } else {
9665 next_page = page;
9666 current_buddy = page + size;
9667 }
9668
9669 if (set_page_guard(zone, current_buddy, high, migratetype))
9670 continue;
9671
9672 if (current_buddy != target) {
9673 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9674 set_buddy_order(current_buddy, high);
06be6ff3
OS
9675 page = next_page;
9676 }
9677 }
9678}
9679
9680/*
9681 * Take a page that will be marked as poisoned off the buddy allocator.
9682 */
9683bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9684{
9685 struct zone *zone = page_zone(page);
9686 unsigned long pfn = page_to_pfn(page);
9687 unsigned long flags;
9688 unsigned int order;
06be6ff3 9689 bool ret = false;
d4ae9916
NH
9690
9691 spin_lock_irqsave(&zone->lock, flags);
9692 for (order = 0; order < MAX_ORDER; order++) {
9693 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9694 int page_order = buddy_order(page_head);
d4ae9916 9695
ab130f91 9696 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9697 unsigned long pfn_head = page_to_pfn(page_head);
9698 int migratetype = get_pfnblock_migratetype(page_head,
9699 pfn_head);
9700
ab130f91 9701 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9702 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9703 page_order, migratetype);
bf181c58 9704 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
9705 if (!is_migrate_isolate(migratetype))
9706 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9707 ret = true;
d4ae9916
NH
9708 break;
9709 }
06be6ff3
OS
9710 if (page_count(page_head) > 0)
9711 break;
d4ae9916
NH
9712 }
9713 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9714 return ret;
d4ae9916 9715}
bf181c58
NH
9716
9717/*
9718 * Cancel takeoff done by take_page_off_buddy().
9719 */
9720bool put_page_back_buddy(struct page *page)
9721{
9722 struct zone *zone = page_zone(page);
9723 unsigned long pfn = page_to_pfn(page);
9724 unsigned long flags;
9725 int migratetype = get_pfnblock_migratetype(page, pfn);
9726 bool ret = false;
9727
9728 spin_lock_irqsave(&zone->lock, flags);
9729 if (put_page_testzero(page)) {
9730 ClearPageHWPoisonTakenOff(page);
9731 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9732 if (TestClearPageHWPoison(page)) {
bf181c58
NH
9733 ret = true;
9734 }
9735 }
9736 spin_unlock_irqrestore(&zone->lock, flags);
9737
9738 return ret;
9739}
d4ae9916 9740#endif
62b31070
BH
9741
9742#ifdef CONFIG_ZONE_DMA
9743bool has_managed_dma(void)
9744{
9745 struct pglist_data *pgdat;
9746
9747 for_each_online_pgdat(pgdat) {
9748 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9749
9750 if (managed_zone(zone))
9751 return true;
9752 }
9753 return false;
9754}
9755#endif /* CONFIG_ZONE_DMA */