]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
shmem: convert shmem_init_inodecache() to void
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
7aac7898
LS
85#ifdef CONFIG_HAVE_MEMORYLESS_NODES
86/*
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
91 */
92DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
93EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 94int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
95#endif
96
bd233f53
MG
97/* work_structs for global per-cpu drains */
98DEFINE_MUTEX(pcpu_drain_mutex);
99DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100
38addce8 101#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 102volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
103EXPORT_SYMBOL(latent_entropy);
104#endif
105
1da177e4 106/*
13808910 107 * Array of node states.
1da177e4 108 */
13808910
CL
109nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
110 [N_POSSIBLE] = NODE_MASK_ALL,
111 [N_ONLINE] = { { [0] = 1UL } },
112#ifndef CONFIG_NUMA
113 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
114#ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 116#endif
20b2f52b 117 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
118 [N_CPU] = { { [0] = 1UL } },
119#endif /* NUMA */
120};
121EXPORT_SYMBOL(node_states);
122
c3d5f5f0
JL
123/* Protect totalram_pages and zone->managed_pages */
124static DEFINE_SPINLOCK(managed_page_count_lock);
125
6c231b7b 126unsigned long totalram_pages __read_mostly;
cb45b0e9 127unsigned long totalreserve_pages __read_mostly;
e48322ab 128unsigned long totalcma_pages __read_mostly;
ab8fabd4 129
1b76b02f 130int percpu_pagelist_fraction;
dcce284a 131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 132
bb14c2c7
VB
133/*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141static inline int get_pcppage_migratetype(struct page *page)
142{
143 return page->index;
144}
145
146static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147{
148 page->index = migratetype;
149}
150
452aa699
RW
151#ifdef CONFIG_PM_SLEEP
152/*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
c9e664f1
RW
160
161static gfp_t saved_gfp_mask;
162
163void pm_restore_gfp_mask(void)
452aa699
RW
164{
165 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
452aa699
RW
170}
171
c9e664f1 172void pm_restrict_gfp_mask(void)
452aa699 173{
452aa699 174 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
d0164adc 177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 178}
f90ac398
MG
179
180bool pm_suspended_storage(void)
181{
d0164adc 182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
183 return false;
184 return true;
185}
452aa699
RW
186#endif /* CONFIG_PM_SLEEP */
187
d9c23400 188#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 189unsigned int pageblock_order __read_mostly;
d9c23400
MG
190#endif
191
d98c7a09 192static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 193
1da177e4
LT
194/*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
1da177e4 204 */
2f1b6248 205int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 206#ifdef CONFIG_ZONE_DMA
2f1b6248 207 256,
4b51d669 208#endif
fb0e7942 209#ifdef CONFIG_ZONE_DMA32
2f1b6248 210 256,
fb0e7942 211#endif
e53ef38d 212#ifdef CONFIG_HIGHMEM
2a1e274a 213 32,
e53ef38d 214#endif
2a1e274a 215 32,
2f1b6248 216};
1da177e4
LT
217
218EXPORT_SYMBOL(totalram_pages);
1da177e4 219
15ad7cdc 220static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 221#ifdef CONFIG_ZONE_DMA
2f1b6248 222 "DMA",
4b51d669 223#endif
fb0e7942 224#ifdef CONFIG_ZONE_DMA32
2f1b6248 225 "DMA32",
fb0e7942 226#endif
2f1b6248 227 "Normal",
e53ef38d 228#ifdef CONFIG_HIGHMEM
2a1e274a 229 "HighMem",
e53ef38d 230#endif
2a1e274a 231 "Movable",
033fbae9
DW
232#ifdef CONFIG_ZONE_DEVICE
233 "Device",
234#endif
2f1b6248
CL
235};
236
60f30350
VB
237char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242#ifdef CONFIG_CMA
243 "CMA",
244#endif
245#ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247#endif
248};
249
f1e61557
KS
250compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253#ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255#endif
9a982250
KS
256#ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258#endif
f1e61557
KS
259};
260
1da177e4 261int min_free_kbytes = 1024;
42aa83cb 262int user_min_free_kbytes = -1;
795ae7a0 263int watermark_scale_factor = 10;
1da177e4 264
2c85f51d
JB
265static unsigned long __meminitdata nr_kernel_pages;
266static unsigned long __meminitdata nr_all_pages;
a3142c8e 267static unsigned long __meminitdata dma_reserve;
1da177e4 268
0ee332c1
TH
269#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272static unsigned long __initdata required_kernelcore;
273static unsigned long __initdata required_movablecore;
274static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 275static bool mirrored_kernelcore;
0ee332c1
TH
276
277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278int movable_zone;
279EXPORT_SYMBOL(movable_zone);
280#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 281
418508c1
MS
282#if MAX_NUMNODES > 1
283int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 284int nr_online_nodes __read_mostly = 1;
418508c1 285EXPORT_SYMBOL(nr_node_ids);
62bc62a8 286EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
287#endif
288
9ef9acb0
MG
289int page_group_by_mobility_disabled __read_mostly;
290
3a80a7fa
MG
291#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292static inline void reset_deferred_meminit(pg_data_t *pgdat)
293{
864b9a39
MH
294 unsigned long max_initialise;
295 unsigned long reserved_lowmem;
296
297 /*
298 * Initialise at least 2G of a node but also take into account that
299 * two large system hashes that can take up 1GB for 0.25TB/node.
300 */
301 max_initialise = max(2UL << (30 - PAGE_SHIFT),
302 (pgdat->node_spanned_pages >> 8));
303
304 /*
305 * Compensate the all the memblock reservations (e.g. crash kernel)
306 * from the initial estimation to make sure we will initialize enough
307 * memory to boot.
308 */
309 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
310 pgdat->node_start_pfn + max_initialise);
311 max_initialise += reserved_lowmem;
312
313 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
3a80a7fa
MG
314 pgdat->first_deferred_pfn = ULONG_MAX;
315}
316
317/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 318static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 319{
ef70b6f4
MG
320 int nid = early_pfn_to_nid(pfn);
321
322 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
323 return true;
324
325 return false;
326}
327
328/*
329 * Returns false when the remaining initialisation should be deferred until
330 * later in the boot cycle when it can be parallelised.
331 */
332static inline bool update_defer_init(pg_data_t *pgdat,
333 unsigned long pfn, unsigned long zone_end,
334 unsigned long *nr_initialised)
335{
336 /* Always populate low zones for address-contrained allocations */
337 if (zone_end < pgdat_end_pfn(pgdat))
338 return true;
3a80a7fa 339 (*nr_initialised)++;
864b9a39 340 if ((*nr_initialised > pgdat->static_init_size) &&
3a80a7fa
MG
341 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
342 pgdat->first_deferred_pfn = pfn;
343 return false;
344 }
345
346 return true;
347}
348#else
349static inline void reset_deferred_meminit(pg_data_t *pgdat)
350{
351}
352
353static inline bool early_page_uninitialised(unsigned long pfn)
354{
355 return false;
356}
357
358static inline bool update_defer_init(pg_data_t *pgdat,
359 unsigned long pfn, unsigned long zone_end,
360 unsigned long *nr_initialised)
361{
362 return true;
363}
364#endif
365
0b423ca2
MG
366/* Return a pointer to the bitmap storing bits affecting a block of pages */
367static inline unsigned long *get_pageblock_bitmap(struct page *page,
368 unsigned long pfn)
369{
370#ifdef CONFIG_SPARSEMEM
371 return __pfn_to_section(pfn)->pageblock_flags;
372#else
373 return page_zone(page)->pageblock_flags;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
378{
379#ifdef CONFIG_SPARSEMEM
380 pfn &= (PAGES_PER_SECTION-1);
381 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
382#else
383 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
384 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
385#endif /* CONFIG_SPARSEMEM */
386}
387
388/**
389 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
390 * @page: The page within the block of interest
391 * @pfn: The target page frame number
392 * @end_bitidx: The last bit of interest to retrieve
393 * @mask: mask of bits that the caller is interested in
394 *
395 * Return: pageblock_bits flags
396 */
397static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
398 unsigned long pfn,
399 unsigned long end_bitidx,
400 unsigned long mask)
401{
402 unsigned long *bitmap;
403 unsigned long bitidx, word_bitidx;
404 unsigned long word;
405
406 bitmap = get_pageblock_bitmap(page, pfn);
407 bitidx = pfn_to_bitidx(page, pfn);
408 word_bitidx = bitidx / BITS_PER_LONG;
409 bitidx &= (BITS_PER_LONG-1);
410
411 word = bitmap[word_bitidx];
412 bitidx += end_bitidx;
413 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
414}
415
416unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419{
420 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
421}
422
423static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
424{
425 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
426}
427
428/**
429 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
430 * @page: The page within the block of interest
431 * @flags: The flags to set
432 * @pfn: The target page frame number
433 * @end_bitidx: The last bit of interest
434 * @mask: mask of bits that the caller is interested in
435 */
436void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
437 unsigned long pfn,
438 unsigned long end_bitidx,
439 unsigned long mask)
440{
441 unsigned long *bitmap;
442 unsigned long bitidx, word_bitidx;
443 unsigned long old_word, word;
444
445 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
446
447 bitmap = get_pageblock_bitmap(page, pfn);
448 bitidx = pfn_to_bitidx(page, pfn);
449 word_bitidx = bitidx / BITS_PER_LONG;
450 bitidx &= (BITS_PER_LONG-1);
451
452 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
453
454 bitidx += end_bitidx;
455 mask <<= (BITS_PER_LONG - bitidx - 1);
456 flags <<= (BITS_PER_LONG - bitidx - 1);
457
458 word = READ_ONCE(bitmap[word_bitidx]);
459 for (;;) {
460 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
461 if (word == old_word)
462 break;
463 word = old_word;
464 }
465}
3a80a7fa 466
ee6f509c 467void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 468{
5d0f3f72
KM
469 if (unlikely(page_group_by_mobility_disabled &&
470 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
471 migratetype = MIGRATE_UNMOVABLE;
472
b2a0ac88
MG
473 set_pageblock_flags_group(page, (unsigned long)migratetype,
474 PB_migrate, PB_migrate_end);
475}
476
13e7444b 477#ifdef CONFIG_DEBUG_VM
c6a57e19 478static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 479{
bdc8cb98
DH
480 int ret = 0;
481 unsigned seq;
482 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 483 unsigned long sp, start_pfn;
c6a57e19 484
bdc8cb98
DH
485 do {
486 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
487 start_pfn = zone->zone_start_pfn;
488 sp = zone->spanned_pages;
108bcc96 489 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
490 ret = 1;
491 } while (zone_span_seqretry(zone, seq));
492
b5e6a5a2 493 if (ret)
613813e8
DH
494 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
495 pfn, zone_to_nid(zone), zone->name,
496 start_pfn, start_pfn + sp);
b5e6a5a2 497
bdc8cb98 498 return ret;
c6a57e19
DH
499}
500
501static int page_is_consistent(struct zone *zone, struct page *page)
502{
14e07298 503 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 504 return 0;
1da177e4 505 if (zone != page_zone(page))
c6a57e19
DH
506 return 0;
507
508 return 1;
509}
510/*
511 * Temporary debugging check for pages not lying within a given zone.
512 */
d73d3c9f 513static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
514{
515 if (page_outside_zone_boundaries(zone, page))
1da177e4 516 return 1;
c6a57e19
DH
517 if (!page_is_consistent(zone, page))
518 return 1;
519
1da177e4
LT
520 return 0;
521}
13e7444b 522#else
d73d3c9f 523static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
524{
525 return 0;
526}
527#endif
528
d230dec1
KS
529static void bad_page(struct page *page, const char *reason,
530 unsigned long bad_flags)
1da177e4 531{
d936cf9b
HD
532 static unsigned long resume;
533 static unsigned long nr_shown;
534 static unsigned long nr_unshown;
535
536 /*
537 * Allow a burst of 60 reports, then keep quiet for that minute;
538 * or allow a steady drip of one report per second.
539 */
540 if (nr_shown == 60) {
541 if (time_before(jiffies, resume)) {
542 nr_unshown++;
543 goto out;
544 }
545 if (nr_unshown) {
ff8e8116 546 pr_alert(
1e9e6365 547 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
548 nr_unshown);
549 nr_unshown = 0;
550 }
551 nr_shown = 0;
552 }
553 if (nr_shown++ == 0)
554 resume = jiffies + 60 * HZ;
555
ff8e8116 556 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 557 current->comm, page_to_pfn(page));
ff8e8116
VB
558 __dump_page(page, reason);
559 bad_flags &= page->flags;
560 if (bad_flags)
561 pr_alert("bad because of flags: %#lx(%pGp)\n",
562 bad_flags, &bad_flags);
4e462112 563 dump_page_owner(page);
3dc14741 564
4f31888c 565 print_modules();
1da177e4 566 dump_stack();
d936cf9b 567out:
8cc3b392 568 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 569 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
571}
572
1da177e4
LT
573/*
574 * Higher-order pages are called "compound pages". They are structured thusly:
575 *
1d798ca3 576 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 577 *
1d798ca3
KS
578 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
579 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 580 *
1d798ca3
KS
581 * The first tail page's ->compound_dtor holds the offset in array of compound
582 * page destructors. See compound_page_dtors.
1da177e4 583 *
1d798ca3 584 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 585 * This usage means that zero-order pages may not be compound.
1da177e4 586 */
d98c7a09 587
9a982250 588void free_compound_page(struct page *page)
d98c7a09 589{
d85f3385 590 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
591}
592
d00181b9 593void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
594{
595 int i;
596 int nr_pages = 1 << order;
597
f1e61557 598 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
599 set_compound_order(page, order);
600 __SetPageHead(page);
601 for (i = 1; i < nr_pages; i++) {
602 struct page *p = page + i;
58a84aa9 603 set_page_count(p, 0);
1c290f64 604 p->mapping = TAIL_MAPPING;
1d798ca3 605 set_compound_head(p, page);
18229df5 606 }
53f9263b 607 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
608}
609
c0a32fc5
SG
610#ifdef CONFIG_DEBUG_PAGEALLOC
611unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
612bool _debug_pagealloc_enabled __read_mostly
613 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 614EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
615bool _debug_guardpage_enabled __read_mostly;
616
031bc574
JK
617static int __init early_debug_pagealloc(char *buf)
618{
619 if (!buf)
620 return -EINVAL;
2a138dc7 621 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
622}
623early_param("debug_pagealloc", early_debug_pagealloc);
624
e30825f1
JK
625static bool need_debug_guardpage(void)
626{
031bc574
JK
627 /* If we don't use debug_pagealloc, we don't need guard page */
628 if (!debug_pagealloc_enabled())
629 return false;
630
f1c1e9f7
JK
631 if (!debug_guardpage_minorder())
632 return false;
633
e30825f1
JK
634 return true;
635}
636
637static void init_debug_guardpage(void)
638{
031bc574
JK
639 if (!debug_pagealloc_enabled())
640 return;
641
f1c1e9f7
JK
642 if (!debug_guardpage_minorder())
643 return;
644
e30825f1
JK
645 _debug_guardpage_enabled = true;
646}
647
648struct page_ext_operations debug_guardpage_ops = {
649 .need = need_debug_guardpage,
650 .init = init_debug_guardpage,
651};
c0a32fc5
SG
652
653static int __init debug_guardpage_minorder_setup(char *buf)
654{
655 unsigned long res;
656
657 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 658 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
659 return 0;
660 }
661 _debug_guardpage_minorder = res;
1170532b 662 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
663 return 0;
664}
f1c1e9f7 665early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 666
acbc15a4 667static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 668 unsigned int order, int migratetype)
c0a32fc5 669{
e30825f1
JK
670 struct page_ext *page_ext;
671
672 if (!debug_guardpage_enabled())
acbc15a4
JK
673 return false;
674
675 if (order >= debug_guardpage_minorder())
676 return false;
e30825f1
JK
677
678 page_ext = lookup_page_ext(page);
f86e4271 679 if (unlikely(!page_ext))
acbc15a4 680 return false;
f86e4271 681
e30825f1
JK
682 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
683
2847cf95
JK
684 INIT_LIST_HEAD(&page->lru);
685 set_page_private(page, order);
686 /* Guard pages are not available for any usage */
687 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
688
689 return true;
c0a32fc5
SG
690}
691
2847cf95
JK
692static inline void clear_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype)
c0a32fc5 694{
e30825f1
JK
695 struct page_ext *page_ext;
696
697 if (!debug_guardpage_enabled())
698 return;
699
700 page_ext = lookup_page_ext(page);
f86e4271
YS
701 if (unlikely(!page_ext))
702 return;
703
e30825f1
JK
704 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
705
2847cf95
JK
706 set_page_private(page, 0);
707 if (!is_migrate_isolate(migratetype))
708 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
709}
710#else
980ac167 711struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
712static inline bool set_page_guard(struct zone *zone, struct page *page,
713 unsigned int order, int migratetype) { return false; }
2847cf95
JK
714static inline void clear_page_guard(struct zone *zone, struct page *page,
715 unsigned int order, int migratetype) {}
c0a32fc5
SG
716#endif
717
7aeb09f9 718static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 719{
4c21e2f2 720 set_page_private(page, order);
676165a8 721 __SetPageBuddy(page);
1da177e4
LT
722}
723
724static inline void rmv_page_order(struct page *page)
725{
676165a8 726 __ClearPageBuddy(page);
4c21e2f2 727 set_page_private(page, 0);
1da177e4
LT
728}
729
1da177e4
LT
730/*
731 * This function checks whether a page is free && is the buddy
732 * we can do coalesce a page and its buddy if
13ad59df 733 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 734 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
735 * (c) a page and its buddy have the same order &&
736 * (d) a page and its buddy are in the same zone.
676165a8 737 *
cf6fe945
WSH
738 * For recording whether a page is in the buddy system, we set ->_mapcount
739 * PAGE_BUDDY_MAPCOUNT_VALUE.
740 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
741 * serialized by zone->lock.
1da177e4 742 *
676165a8 743 * For recording page's order, we use page_private(page).
1da177e4 744 */
cb2b95e1 745static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 746 unsigned int order)
1da177e4 747{
c0a32fc5 748 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
749 if (page_zone_id(page) != page_zone_id(buddy))
750 return 0;
751
4c5018ce
WY
752 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
753
c0a32fc5
SG
754 return 1;
755 }
756
cb2b95e1 757 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
758 /*
759 * zone check is done late to avoid uselessly
760 * calculating zone/node ids for pages that could
761 * never merge.
762 */
763 if (page_zone_id(page) != page_zone_id(buddy))
764 return 0;
765
4c5018ce
WY
766 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
767
6aa3001b 768 return 1;
676165a8 769 }
6aa3001b 770 return 0;
1da177e4
LT
771}
772
773/*
774 * Freeing function for a buddy system allocator.
775 *
776 * The concept of a buddy system is to maintain direct-mapped table
777 * (containing bit values) for memory blocks of various "orders".
778 * The bottom level table contains the map for the smallest allocatable
779 * units of memory (here, pages), and each level above it describes
780 * pairs of units from the levels below, hence, "buddies".
781 * At a high level, all that happens here is marking the table entry
782 * at the bottom level available, and propagating the changes upward
783 * as necessary, plus some accounting needed to play nicely with other
784 * parts of the VM system.
785 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
786 * free pages of length of (1 << order) and marked with _mapcount
787 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
788 * field.
1da177e4 789 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
790 * other. That is, if we allocate a small block, and both were
791 * free, the remainder of the region must be split into blocks.
1da177e4 792 * If a block is freed, and its buddy is also free, then this
5f63b720 793 * triggers coalescing into a block of larger size.
1da177e4 794 *
6d49e352 795 * -- nyc
1da177e4
LT
796 */
797
48db57f8 798static inline void __free_one_page(struct page *page,
dc4b0caf 799 unsigned long pfn,
ed0ae21d
MG
800 struct zone *zone, unsigned int order,
801 int migratetype)
1da177e4 802{
76741e77
VB
803 unsigned long combined_pfn;
804 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 805 struct page *buddy;
d9dddbf5
VB
806 unsigned int max_order;
807
808 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 809
d29bb978 810 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 811 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 812
ed0ae21d 813 VM_BUG_ON(migratetype == -1);
d9dddbf5 814 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 815 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 816
76741e77 817 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 818 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 819
d9dddbf5 820continue_merging:
3c605096 821 while (order < max_order - 1) {
76741e77
VB
822 buddy_pfn = __find_buddy_pfn(pfn, order);
823 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
824
825 if (!pfn_valid_within(buddy_pfn))
826 goto done_merging;
cb2b95e1 827 if (!page_is_buddy(page, buddy, order))
d9dddbf5 828 goto done_merging;
c0a32fc5
SG
829 /*
830 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
831 * merge with it and move up one order.
832 */
833 if (page_is_guard(buddy)) {
2847cf95 834 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
835 } else {
836 list_del(&buddy->lru);
837 zone->free_area[order].nr_free--;
838 rmv_page_order(buddy);
839 }
76741e77
VB
840 combined_pfn = buddy_pfn & pfn;
841 page = page + (combined_pfn - pfn);
842 pfn = combined_pfn;
1da177e4
LT
843 order++;
844 }
d9dddbf5
VB
845 if (max_order < MAX_ORDER) {
846 /* If we are here, it means order is >= pageblock_order.
847 * We want to prevent merge between freepages on isolate
848 * pageblock and normal pageblock. Without this, pageblock
849 * isolation could cause incorrect freepage or CMA accounting.
850 *
851 * We don't want to hit this code for the more frequent
852 * low-order merging.
853 */
854 if (unlikely(has_isolate_pageblock(zone))) {
855 int buddy_mt;
856
76741e77
VB
857 buddy_pfn = __find_buddy_pfn(pfn, order);
858 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
859 buddy_mt = get_pageblock_migratetype(buddy);
860
861 if (migratetype != buddy_mt
862 && (is_migrate_isolate(migratetype) ||
863 is_migrate_isolate(buddy_mt)))
864 goto done_merging;
865 }
866 max_order++;
867 goto continue_merging;
868 }
869
870done_merging:
1da177e4 871 set_page_order(page, order);
6dda9d55
CZ
872
873 /*
874 * If this is not the largest possible page, check if the buddy
875 * of the next-highest order is free. If it is, it's possible
876 * that pages are being freed that will coalesce soon. In case,
877 * that is happening, add the free page to the tail of the list
878 * so it's less likely to be used soon and more likely to be merged
879 * as a higher order page
880 */
13ad59df 881 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 882 struct page *higher_page, *higher_buddy;
76741e77
VB
883 combined_pfn = buddy_pfn & pfn;
884 higher_page = page + (combined_pfn - pfn);
885 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
886 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
887 if (pfn_valid_within(buddy_pfn) &&
888 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
889 list_add_tail(&page->lru,
890 &zone->free_area[order].free_list[migratetype]);
891 goto out;
892 }
893 }
894
895 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
896out:
1da177e4
LT
897 zone->free_area[order].nr_free++;
898}
899
7bfec6f4
MG
900/*
901 * A bad page could be due to a number of fields. Instead of multiple branches,
902 * try and check multiple fields with one check. The caller must do a detailed
903 * check if necessary.
904 */
905static inline bool page_expected_state(struct page *page,
906 unsigned long check_flags)
907{
908 if (unlikely(atomic_read(&page->_mapcount) != -1))
909 return false;
910
911 if (unlikely((unsigned long)page->mapping |
912 page_ref_count(page) |
913#ifdef CONFIG_MEMCG
914 (unsigned long)page->mem_cgroup |
915#endif
916 (page->flags & check_flags)))
917 return false;
918
919 return true;
920}
921
bb552ac6 922static void free_pages_check_bad(struct page *page)
1da177e4 923{
7bfec6f4
MG
924 const char *bad_reason;
925 unsigned long bad_flags;
926
7bfec6f4
MG
927 bad_reason = NULL;
928 bad_flags = 0;
f0b791a3 929
53f9263b 930 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
931 bad_reason = "nonzero mapcount";
932 if (unlikely(page->mapping != NULL))
933 bad_reason = "non-NULL mapping";
fe896d18 934 if (unlikely(page_ref_count(page) != 0))
0139aa7b 935 bad_reason = "nonzero _refcount";
f0b791a3
DH
936 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
937 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
938 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
939 }
9edad6ea
JW
940#ifdef CONFIG_MEMCG
941 if (unlikely(page->mem_cgroup))
942 bad_reason = "page still charged to cgroup";
943#endif
7bfec6f4 944 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
945}
946
947static inline int free_pages_check(struct page *page)
948{
da838d4f 949 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 950 return 0;
bb552ac6
MG
951
952 /* Something has gone sideways, find it */
953 free_pages_check_bad(page);
7bfec6f4 954 return 1;
1da177e4
LT
955}
956
4db7548c
MG
957static int free_tail_pages_check(struct page *head_page, struct page *page)
958{
959 int ret = 1;
960
961 /*
962 * We rely page->lru.next never has bit 0 set, unless the page
963 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
964 */
965 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
966
967 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
968 ret = 0;
969 goto out;
970 }
971 switch (page - head_page) {
972 case 1:
973 /* the first tail page: ->mapping is compound_mapcount() */
974 if (unlikely(compound_mapcount(page))) {
975 bad_page(page, "nonzero compound_mapcount", 0);
976 goto out;
977 }
978 break;
979 case 2:
980 /*
981 * the second tail page: ->mapping is
982 * page_deferred_list().next -- ignore value.
983 */
984 break;
985 default:
986 if (page->mapping != TAIL_MAPPING) {
987 bad_page(page, "corrupted mapping in tail page", 0);
988 goto out;
989 }
990 break;
991 }
992 if (unlikely(!PageTail(page))) {
993 bad_page(page, "PageTail not set", 0);
994 goto out;
995 }
996 if (unlikely(compound_head(page) != head_page)) {
997 bad_page(page, "compound_head not consistent", 0);
998 goto out;
999 }
1000 ret = 0;
1001out:
1002 page->mapping = NULL;
1003 clear_compound_head(page);
1004 return ret;
1005}
1006
e2769dbd
MG
1007static __always_inline bool free_pages_prepare(struct page *page,
1008 unsigned int order, bool check_free)
4db7548c 1009{
e2769dbd 1010 int bad = 0;
4db7548c 1011
4db7548c
MG
1012 VM_BUG_ON_PAGE(PageTail(page), page);
1013
e2769dbd 1014 trace_mm_page_free(page, order);
e2769dbd
MG
1015
1016 /*
1017 * Check tail pages before head page information is cleared to
1018 * avoid checking PageCompound for order-0 pages.
1019 */
1020 if (unlikely(order)) {
1021 bool compound = PageCompound(page);
1022 int i;
1023
1024 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1025
9a73f61b
KS
1026 if (compound)
1027 ClearPageDoubleMap(page);
e2769dbd
MG
1028 for (i = 1; i < (1 << order); i++) {
1029 if (compound)
1030 bad += free_tail_pages_check(page, page + i);
1031 if (unlikely(free_pages_check(page + i))) {
1032 bad++;
1033 continue;
1034 }
1035 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 }
1037 }
bda807d4 1038 if (PageMappingFlags(page))
4db7548c 1039 page->mapping = NULL;
c4159a75 1040 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1041 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1042 if (check_free)
1043 bad += free_pages_check(page);
1044 if (bad)
1045 return false;
4db7548c 1046
e2769dbd
MG
1047 page_cpupid_reset_last(page);
1048 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1049 reset_page_owner(page, order);
4db7548c
MG
1050
1051 if (!PageHighMem(page)) {
1052 debug_check_no_locks_freed(page_address(page),
e2769dbd 1053 PAGE_SIZE << order);
4db7548c 1054 debug_check_no_obj_freed(page_address(page),
e2769dbd 1055 PAGE_SIZE << order);
4db7548c 1056 }
e2769dbd
MG
1057 arch_free_page(page, order);
1058 kernel_poison_pages(page, 1 << order, 0);
1059 kernel_map_pages(page, 1 << order, 0);
29b52de1 1060 kasan_free_pages(page, order);
4db7548c 1061
4db7548c
MG
1062 return true;
1063}
1064
e2769dbd
MG
1065#ifdef CONFIG_DEBUG_VM
1066static inline bool free_pcp_prepare(struct page *page)
1067{
1068 return free_pages_prepare(page, 0, true);
1069}
1070
1071static inline bool bulkfree_pcp_prepare(struct page *page)
1072{
1073 return false;
1074}
1075#else
1076static bool free_pcp_prepare(struct page *page)
1077{
1078 return free_pages_prepare(page, 0, false);
1079}
1080
4db7548c
MG
1081static bool bulkfree_pcp_prepare(struct page *page)
1082{
1083 return free_pages_check(page);
1084}
1085#endif /* CONFIG_DEBUG_VM */
1086
1da177e4 1087/*
5f8dcc21 1088 * Frees a number of pages from the PCP lists
1da177e4 1089 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1090 * count is the number of pages to free.
1da177e4
LT
1091 *
1092 * If the zone was previously in an "all pages pinned" state then look to
1093 * see if this freeing clears that state.
1094 *
1095 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1096 * pinned" detection logic.
1097 */
5f8dcc21
MG
1098static void free_pcppages_bulk(struct zone *zone, int count,
1099 struct per_cpu_pages *pcp)
1da177e4 1100{
5f8dcc21 1101 int migratetype = 0;
a6f9edd6 1102 int batch_free = 0;
3777999d 1103 bool isolated_pageblocks;
5f8dcc21 1104
d34b0733 1105 spin_lock(&zone->lock);
3777999d 1106 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1107
e5b31ac2 1108 while (count) {
48db57f8 1109 struct page *page;
5f8dcc21
MG
1110 struct list_head *list;
1111
1112 /*
a6f9edd6
MG
1113 * Remove pages from lists in a round-robin fashion. A
1114 * batch_free count is maintained that is incremented when an
1115 * empty list is encountered. This is so more pages are freed
1116 * off fuller lists instead of spinning excessively around empty
1117 * lists
5f8dcc21
MG
1118 */
1119 do {
a6f9edd6 1120 batch_free++;
5f8dcc21
MG
1121 if (++migratetype == MIGRATE_PCPTYPES)
1122 migratetype = 0;
1123 list = &pcp->lists[migratetype];
1124 } while (list_empty(list));
48db57f8 1125
1d16871d
NK
1126 /* This is the only non-empty list. Free them all. */
1127 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1128 batch_free = count;
1d16871d 1129
a6f9edd6 1130 do {
770c8aaa
BZ
1131 int mt; /* migratetype of the to-be-freed page */
1132
a16601c5 1133 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1134 /* must delete as __free_one_page list manipulates */
1135 list_del(&page->lru);
aa016d14 1136
bb14c2c7 1137 mt = get_pcppage_migratetype(page);
aa016d14
VB
1138 /* MIGRATE_ISOLATE page should not go to pcplists */
1139 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1140 /* Pageblock could have been isolated meanwhile */
3777999d 1141 if (unlikely(isolated_pageblocks))
51bb1a40 1142 mt = get_pageblock_migratetype(page);
51bb1a40 1143
4db7548c
MG
1144 if (bulkfree_pcp_prepare(page))
1145 continue;
1146
dc4b0caf 1147 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1148 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1149 } while (--count && --batch_free && !list_empty(list));
1da177e4 1150 }
d34b0733 1151 spin_unlock(&zone->lock);
1da177e4
LT
1152}
1153
dc4b0caf
MG
1154static void free_one_page(struct zone *zone,
1155 struct page *page, unsigned long pfn,
7aeb09f9 1156 unsigned int order,
ed0ae21d 1157 int migratetype)
1da177e4 1158{
d34b0733 1159 spin_lock(&zone->lock);
ad53f92e
JK
1160 if (unlikely(has_isolate_pageblock(zone) ||
1161 is_migrate_isolate(migratetype))) {
1162 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1163 }
dc4b0caf 1164 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1165 spin_unlock(&zone->lock);
48db57f8
NP
1166}
1167
1e8ce83c
RH
1168static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 unsigned long zone, int nid)
1170{
f7f99100 1171 mm_zero_struct_page(page);
1e8ce83c 1172 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1173 init_page_count(page);
1174 page_mapcount_reset(page);
1175 page_cpupid_reset_last(page);
1e8ce83c 1176
1e8ce83c
RH
1177 INIT_LIST_HEAD(&page->lru);
1178#ifdef WANT_PAGE_VIRTUAL
1179 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1180 if (!is_highmem_idx(zone))
1181 set_page_address(page, __va(pfn << PAGE_SHIFT));
1182#endif
1183}
1184
1185static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1186 int nid)
1187{
1188 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1189}
1190
7e18adb4 1191#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1192static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1193{
1194 pg_data_t *pgdat;
1195 int nid, zid;
1196
1197 if (!early_page_uninitialised(pfn))
1198 return;
1199
1200 nid = early_pfn_to_nid(pfn);
1201 pgdat = NODE_DATA(nid);
1202
1203 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204 struct zone *zone = &pgdat->node_zones[zid];
1205
1206 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207 break;
1208 }
1209 __init_single_pfn(pfn, zid, nid);
1210}
1211#else
1212static inline void init_reserved_page(unsigned long pfn)
1213{
1214}
1215#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216
92923ca3
NZ
1217/*
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1222 */
4b50bcc7 1223void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1224{
1225 unsigned long start_pfn = PFN_DOWN(start);
1226 unsigned long end_pfn = PFN_UP(end);
1227
7e18adb4
MG
1228 for (; start_pfn < end_pfn; start_pfn++) {
1229 if (pfn_valid(start_pfn)) {
1230 struct page *page = pfn_to_page(start_pfn);
1231
1232 init_reserved_page(start_pfn);
1d798ca3
KS
1233
1234 /* Avoid false-positive PageTail() */
1235 INIT_LIST_HEAD(&page->lru);
1236
7e18adb4
MG
1237 SetPageReserved(page);
1238 }
1239 }
92923ca3
NZ
1240}
1241
ec95f53a
KM
1242static void __free_pages_ok(struct page *page, unsigned int order)
1243{
d34b0733 1244 unsigned long flags;
95e34412 1245 int migratetype;
dc4b0caf 1246 unsigned long pfn = page_to_pfn(page);
ec95f53a 1247
e2769dbd 1248 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1249 return;
1250
cfc47a28 1251 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1252 local_irq_save(flags);
1253 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1254 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1255 local_irq_restore(flags);
1da177e4
LT
1256}
1257
949698a3 1258static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1259{
c3993076 1260 unsigned int nr_pages = 1 << order;
e2d0bd2b 1261 struct page *p = page;
c3993076 1262 unsigned int loop;
a226f6c8 1263
e2d0bd2b
YL
1264 prefetchw(p);
1265 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266 prefetchw(p + 1);
c3993076
JW
1267 __ClearPageReserved(p);
1268 set_page_count(p, 0);
a226f6c8 1269 }
e2d0bd2b
YL
1270 __ClearPageReserved(p);
1271 set_page_count(p, 0);
c3993076 1272
e2d0bd2b 1273 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1274 set_page_refcounted(page);
1275 __free_pages(page, order);
a226f6c8
DH
1276}
1277
75a592a4
MG
1278#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1280
75a592a4
MG
1281static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282
1283int __meminit early_pfn_to_nid(unsigned long pfn)
1284{
7ace9917 1285 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1286 int nid;
1287
7ace9917 1288 spin_lock(&early_pfn_lock);
75a592a4 1289 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1290 if (nid < 0)
e4568d38 1291 nid = first_online_node;
7ace9917
MG
1292 spin_unlock(&early_pfn_lock);
1293
1294 return nid;
75a592a4
MG
1295}
1296#endif
1297
1298#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1299static inline bool __meminit __maybe_unused
1300meminit_pfn_in_nid(unsigned long pfn, int node,
1301 struct mminit_pfnnid_cache *state)
75a592a4
MG
1302{
1303 int nid;
1304
1305 nid = __early_pfn_to_nid(pfn, state);
1306 if (nid >= 0 && nid != node)
1307 return false;
1308 return true;
1309}
1310
1311/* Only safe to use early in boot when initialisation is single-threaded */
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315}
1316
1317#else
1318
1319static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320{
1321 return true;
1322}
d73d3c9f
MK
1323static inline bool __meminit __maybe_unused
1324meminit_pfn_in_nid(unsigned long pfn, int node,
1325 struct mminit_pfnnid_cache *state)
75a592a4
MG
1326{
1327 return true;
1328}
1329#endif
1330
1331
0e1cc95b 1332void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1333 unsigned int order)
1334{
1335 if (early_page_uninitialised(pfn))
1336 return;
949698a3 1337 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1338}
1339
7cf91a98
JK
1340/*
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1345 * pageblocks.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1356 */
1357struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358 unsigned long end_pfn, struct zone *zone)
1359{
1360 struct page *start_page;
1361 struct page *end_page;
1362
1363 /* end_pfn is one past the range we are checking */
1364 end_pfn--;
1365
1366 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367 return NULL;
1368
2d070eab
MH
1369 start_page = pfn_to_online_page(start_pfn);
1370 if (!start_page)
1371 return NULL;
7cf91a98
JK
1372
1373 if (page_zone(start_page) != zone)
1374 return NULL;
1375
1376 end_page = pfn_to_page(end_pfn);
1377
1378 /* This gives a shorter code than deriving page_zone(end_page) */
1379 if (page_zone_id(start_page) != page_zone_id(end_page))
1380 return NULL;
1381
1382 return start_page;
1383}
1384
1385void set_zone_contiguous(struct zone *zone)
1386{
1387 unsigned long block_start_pfn = zone->zone_start_pfn;
1388 unsigned long block_end_pfn;
1389
1390 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391 for (; block_start_pfn < zone_end_pfn(zone);
1392 block_start_pfn = block_end_pfn,
1393 block_end_pfn += pageblock_nr_pages) {
1394
1395 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396
1397 if (!__pageblock_pfn_to_page(block_start_pfn,
1398 block_end_pfn, zone))
1399 return;
1400 }
1401
1402 /* We confirm that there is no hole */
1403 zone->contiguous = true;
1404}
1405
1406void clear_zone_contiguous(struct zone *zone)
1407{
1408 zone->contiguous = false;
1409}
1410
7e18adb4 1411#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1412static void __init deferred_free_range(unsigned long pfn,
1413 unsigned long nr_pages)
a4de83dd 1414{
2f47a91f
PT
1415 struct page *page;
1416 unsigned long i;
a4de83dd 1417
2f47a91f 1418 if (!nr_pages)
a4de83dd
MG
1419 return;
1420
2f47a91f
PT
1421 page = pfn_to_page(pfn);
1422
a4de83dd 1423 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1424 if (nr_pages == pageblock_nr_pages &&
1425 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1426 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1427 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1428 return;
1429 }
1430
e780149b
XQ
1431 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1434 __free_pages_boot_core(page, 0);
e780149b 1435 }
a4de83dd
MG
1436}
1437
d3cd131d
NS
1438/* Completion tracking for deferred_init_memmap() threads */
1439static atomic_t pgdat_init_n_undone __initdata;
1440static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441
1442static inline void __init pgdat_init_report_one_done(void)
1443{
1444 if (atomic_dec_and_test(&pgdat_init_n_undone))
1445 complete(&pgdat_init_all_done_comp);
1446}
0e1cc95b 1447
2f47a91f
PT
1448/*
1449 * Helper for deferred_init_range, free the given range, reset the counters, and
1450 * return number of pages freed.
1451 */
1452static inline unsigned long __init __def_free(unsigned long *nr_free,
1453 unsigned long *free_base_pfn,
1454 struct page **page)
1455{
1456 unsigned long nr = *nr_free;
1457
1458 deferred_free_range(*free_base_pfn, nr);
1459 *free_base_pfn = 0;
1460 *nr_free = 0;
1461 *page = NULL;
1462
1463 return nr;
1464}
1465
1466static unsigned long __init deferred_init_range(int nid, int zid,
1467 unsigned long start_pfn,
1468 unsigned long end_pfn)
1469{
1470 struct mminit_pfnnid_cache nid_init_state = { };
1471 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1472 unsigned long free_base_pfn = 0;
1473 unsigned long nr_pages = 0;
1474 unsigned long nr_free = 0;
1475 struct page *page = NULL;
1476 unsigned long pfn;
1477
1478 /*
1479 * First we check if pfn is valid on architectures where it is possible
1480 * to have holes within pageblock_nr_pages. On systems where it is not
1481 * possible, this function is optimized out.
1482 *
1483 * Then, we check if a current large page is valid by only checking the
1484 * validity of the head pfn.
1485 *
1486 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1487 * within a node: a pfn is between start and end of a node, but does not
1488 * belong to this memory node.
1489 *
1490 * Finally, we minimize pfn page lookups and scheduler checks by
1491 * performing it only once every pageblock_nr_pages.
1492 *
1493 * We do it in two loops: first we initialize struct page, than free to
1494 * buddy allocator, becuse while we are freeing pages we can access
1495 * pages that are ahead (computing buddy page in __free_one_page()).
1496 */
1497 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1498 if (!pfn_valid_within(pfn))
1499 continue;
1500 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1501 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1502 if (page && (pfn & nr_pgmask))
1503 page++;
1504 else
1505 page = pfn_to_page(pfn);
1506 __init_single_page(page, pfn, zid, nid);
1507 cond_resched();
1508 }
1509 }
1510 }
1511
1512 page = NULL;
1513 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1514 if (!pfn_valid_within(pfn)) {
1515 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1516 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1517 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1518 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1519 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1520 } else if (page && (pfn & nr_pgmask)) {
1521 page++;
1522 nr_free++;
1523 } else {
1524 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1525 page = pfn_to_page(pfn);
1526 free_base_pfn = pfn;
1527 nr_free = 1;
1528 cond_resched();
1529 }
1530 }
1531 /* Free the last block of pages to allocator */
1532 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1533
1534 return nr_pages;
1535}
1536
7e18adb4 1537/* Initialise remaining memory on a node */
0e1cc95b 1538static int __init deferred_init_memmap(void *data)
7e18adb4 1539{
0e1cc95b
MG
1540 pg_data_t *pgdat = data;
1541 int nid = pgdat->node_id;
7e18adb4
MG
1542 unsigned long start = jiffies;
1543 unsigned long nr_pages = 0;
2f47a91f
PT
1544 unsigned long spfn, epfn;
1545 phys_addr_t spa, epa;
1546 int zid;
7e18adb4 1547 struct zone *zone;
7e18adb4 1548 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1549 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1550 u64 i;
7e18adb4 1551
0e1cc95b 1552 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1553 pgdat_init_report_one_done();
0e1cc95b
MG
1554 return 0;
1555 }
1556
1557 /* Bind memory initialisation thread to a local node if possible */
1558 if (!cpumask_empty(cpumask))
1559 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1560
1561 /* Sanity check boundaries */
1562 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1563 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1564 pgdat->first_deferred_pfn = ULONG_MAX;
1565
1566 /* Only the highest zone is deferred so find it */
1567 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1568 zone = pgdat->node_zones + zid;
1569 if (first_init_pfn < zone_end_pfn(zone))
1570 break;
1571 }
2f47a91f 1572 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1573
2f47a91f
PT
1574 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1575 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1576 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1577 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
7e18adb4
MG
1578 }
1579
1580 /* Sanity check that the next zone really is unpopulated */
1581 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1582
0e1cc95b 1583 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1584 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1585
1586 pgdat_init_report_one_done();
0e1cc95b
MG
1587 return 0;
1588}
7cf91a98 1589#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1590
1591void __init page_alloc_init_late(void)
1592{
7cf91a98
JK
1593 struct zone *zone;
1594
1595#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1596 int nid;
1597
d3cd131d
NS
1598 /* There will be num_node_state(N_MEMORY) threads */
1599 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1600 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1601 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1602 }
1603
1604 /* Block until all are initialised */
d3cd131d 1605 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1606
1607 /* Reinit limits that are based on free pages after the kernel is up */
1608 files_maxfiles_init();
7cf91a98 1609#endif
3010f876
PT
1610#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1611 /* Discard memblock private memory */
1612 memblock_discard();
1613#endif
7cf91a98
JK
1614
1615 for_each_populated_zone(zone)
1616 set_zone_contiguous(zone);
7e18adb4 1617}
7e18adb4 1618
47118af0 1619#ifdef CONFIG_CMA
9cf510a5 1620/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1621void __init init_cma_reserved_pageblock(struct page *page)
1622{
1623 unsigned i = pageblock_nr_pages;
1624 struct page *p = page;
1625
1626 do {
1627 __ClearPageReserved(p);
1628 set_page_count(p, 0);
1629 } while (++p, --i);
1630
47118af0 1631 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1632
1633 if (pageblock_order >= MAX_ORDER) {
1634 i = pageblock_nr_pages;
1635 p = page;
1636 do {
1637 set_page_refcounted(p);
1638 __free_pages(p, MAX_ORDER - 1);
1639 p += MAX_ORDER_NR_PAGES;
1640 } while (i -= MAX_ORDER_NR_PAGES);
1641 } else {
1642 set_page_refcounted(page);
1643 __free_pages(page, pageblock_order);
1644 }
1645
3dcc0571 1646 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1647}
1648#endif
1da177e4
LT
1649
1650/*
1651 * The order of subdivision here is critical for the IO subsystem.
1652 * Please do not alter this order without good reasons and regression
1653 * testing. Specifically, as large blocks of memory are subdivided,
1654 * the order in which smaller blocks are delivered depends on the order
1655 * they're subdivided in this function. This is the primary factor
1656 * influencing the order in which pages are delivered to the IO
1657 * subsystem according to empirical testing, and this is also justified
1658 * by considering the behavior of a buddy system containing a single
1659 * large block of memory acted on by a series of small allocations.
1660 * This behavior is a critical factor in sglist merging's success.
1661 *
6d49e352 1662 * -- nyc
1da177e4 1663 */
085cc7d5 1664static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1665 int low, int high, struct free_area *area,
1666 int migratetype)
1da177e4
LT
1667{
1668 unsigned long size = 1 << high;
1669
1670 while (high > low) {
1671 area--;
1672 high--;
1673 size >>= 1;
309381fe 1674 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1675
acbc15a4
JK
1676 /*
1677 * Mark as guard pages (or page), that will allow to
1678 * merge back to allocator when buddy will be freed.
1679 * Corresponding page table entries will not be touched,
1680 * pages will stay not present in virtual address space
1681 */
1682 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1683 continue;
acbc15a4 1684
b2a0ac88 1685 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1686 area->nr_free++;
1687 set_page_order(&page[size], high);
1688 }
1da177e4
LT
1689}
1690
4e611801 1691static void check_new_page_bad(struct page *page)
1da177e4 1692{
4e611801
VB
1693 const char *bad_reason = NULL;
1694 unsigned long bad_flags = 0;
7bfec6f4 1695
53f9263b 1696 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1697 bad_reason = "nonzero mapcount";
1698 if (unlikely(page->mapping != NULL))
1699 bad_reason = "non-NULL mapping";
fe896d18 1700 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1701 bad_reason = "nonzero _count";
f4c18e6f
NH
1702 if (unlikely(page->flags & __PG_HWPOISON)) {
1703 bad_reason = "HWPoisoned (hardware-corrupted)";
1704 bad_flags = __PG_HWPOISON;
e570f56c
NH
1705 /* Don't complain about hwpoisoned pages */
1706 page_mapcount_reset(page); /* remove PageBuddy */
1707 return;
f4c18e6f 1708 }
f0b791a3
DH
1709 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1710 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1711 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1712 }
9edad6ea
JW
1713#ifdef CONFIG_MEMCG
1714 if (unlikely(page->mem_cgroup))
1715 bad_reason = "page still charged to cgroup";
1716#endif
4e611801
VB
1717 bad_page(page, bad_reason, bad_flags);
1718}
1719
1720/*
1721 * This page is about to be returned from the page allocator
1722 */
1723static inline int check_new_page(struct page *page)
1724{
1725 if (likely(page_expected_state(page,
1726 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1727 return 0;
1728
1729 check_new_page_bad(page);
1730 return 1;
2a7684a2
WF
1731}
1732
bd33ef36 1733static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1734{
1735 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1736 page_poisoning_enabled();
1414c7f4
LA
1737}
1738
479f854a
MG
1739#ifdef CONFIG_DEBUG_VM
1740static bool check_pcp_refill(struct page *page)
1741{
1742 return false;
1743}
1744
1745static bool check_new_pcp(struct page *page)
1746{
1747 return check_new_page(page);
1748}
1749#else
1750static bool check_pcp_refill(struct page *page)
1751{
1752 return check_new_page(page);
1753}
1754static bool check_new_pcp(struct page *page)
1755{
1756 return false;
1757}
1758#endif /* CONFIG_DEBUG_VM */
1759
1760static bool check_new_pages(struct page *page, unsigned int order)
1761{
1762 int i;
1763 for (i = 0; i < (1 << order); i++) {
1764 struct page *p = page + i;
1765
1766 if (unlikely(check_new_page(p)))
1767 return true;
1768 }
1769
1770 return false;
1771}
1772
46f24fd8
JK
1773inline void post_alloc_hook(struct page *page, unsigned int order,
1774 gfp_t gfp_flags)
1775{
1776 set_page_private(page, 0);
1777 set_page_refcounted(page);
1778
1779 arch_alloc_page(page, order);
1780 kernel_map_pages(page, 1 << order, 1);
1781 kernel_poison_pages(page, 1 << order, 1);
1782 kasan_alloc_pages(page, order);
1783 set_page_owner(page, order, gfp_flags);
1784}
1785
479f854a 1786static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1787 unsigned int alloc_flags)
2a7684a2
WF
1788{
1789 int i;
689bcebf 1790
46f24fd8 1791 post_alloc_hook(page, order, gfp_flags);
17cf4406 1792
bd33ef36 1793 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1794 for (i = 0; i < (1 << order); i++)
1795 clear_highpage(page + i);
17cf4406
NP
1796
1797 if (order && (gfp_flags & __GFP_COMP))
1798 prep_compound_page(page, order);
1799
75379191 1800 /*
2f064f34 1801 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1802 * allocate the page. The expectation is that the caller is taking
1803 * steps that will free more memory. The caller should avoid the page
1804 * being used for !PFMEMALLOC purposes.
1805 */
2f064f34
MH
1806 if (alloc_flags & ALLOC_NO_WATERMARKS)
1807 set_page_pfmemalloc(page);
1808 else
1809 clear_page_pfmemalloc(page);
1da177e4
LT
1810}
1811
56fd56b8
MG
1812/*
1813 * Go through the free lists for the given migratetype and remove
1814 * the smallest available page from the freelists
1815 */
85ccc8fa 1816static __always_inline
728ec980 1817struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1818 int migratetype)
1819{
1820 unsigned int current_order;
b8af2941 1821 struct free_area *area;
56fd56b8
MG
1822 struct page *page;
1823
1824 /* Find a page of the appropriate size in the preferred list */
1825 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1826 area = &(zone->free_area[current_order]);
a16601c5 1827 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1828 struct page, lru);
a16601c5
GT
1829 if (!page)
1830 continue;
56fd56b8
MG
1831 list_del(&page->lru);
1832 rmv_page_order(page);
1833 area->nr_free--;
56fd56b8 1834 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1835 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1836 return page;
1837 }
1838
1839 return NULL;
1840}
1841
1842
b2a0ac88
MG
1843/*
1844 * This array describes the order lists are fallen back to when
1845 * the free lists for the desirable migrate type are depleted
1846 */
47118af0 1847static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1848 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1849 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1850 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1851#ifdef CONFIG_CMA
974a786e 1852 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1853#endif
194159fb 1854#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1855 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1856#endif
b2a0ac88
MG
1857};
1858
dc67647b 1859#ifdef CONFIG_CMA
85ccc8fa 1860static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1861 unsigned int order)
1862{
1863 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1864}
1865#else
1866static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1867 unsigned int order) { return NULL; }
1868#endif
1869
c361be55
MG
1870/*
1871 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1872 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1873 * boundary. If alignment is required, use move_freepages_block()
1874 */
02aa0cdd 1875static int move_freepages(struct zone *zone,
b69a7288 1876 struct page *start_page, struct page *end_page,
02aa0cdd 1877 int migratetype, int *num_movable)
c361be55
MG
1878{
1879 struct page *page;
d00181b9 1880 unsigned int order;
d100313f 1881 int pages_moved = 0;
c361be55
MG
1882
1883#ifndef CONFIG_HOLES_IN_ZONE
1884 /*
1885 * page_zone is not safe to call in this context when
1886 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1887 * anyway as we check zone boundaries in move_freepages_block().
1888 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1889 * grouping pages by mobility
c361be55 1890 */
97ee4ba7 1891 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1892#endif
1893
02aa0cdd
VB
1894 if (num_movable)
1895 *num_movable = 0;
1896
c361be55
MG
1897 for (page = start_page; page <= end_page;) {
1898 if (!pfn_valid_within(page_to_pfn(page))) {
1899 page++;
1900 continue;
1901 }
1902
f073bdc5
AB
1903 /* Make sure we are not inadvertently changing nodes */
1904 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1905
c361be55 1906 if (!PageBuddy(page)) {
02aa0cdd
VB
1907 /*
1908 * We assume that pages that could be isolated for
1909 * migration are movable. But we don't actually try
1910 * isolating, as that would be expensive.
1911 */
1912 if (num_movable &&
1913 (PageLRU(page) || __PageMovable(page)))
1914 (*num_movable)++;
1915
c361be55
MG
1916 page++;
1917 continue;
1918 }
1919
1920 order = page_order(page);
84be48d8
KS
1921 list_move(&page->lru,
1922 &zone->free_area[order].free_list[migratetype]);
c361be55 1923 page += 1 << order;
d100313f 1924 pages_moved += 1 << order;
c361be55
MG
1925 }
1926
d100313f 1927 return pages_moved;
c361be55
MG
1928}
1929
ee6f509c 1930int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1931 int migratetype, int *num_movable)
c361be55
MG
1932{
1933 unsigned long start_pfn, end_pfn;
1934 struct page *start_page, *end_page;
1935
1936 start_pfn = page_to_pfn(page);
d9c23400 1937 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1938 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1939 end_page = start_page + pageblock_nr_pages - 1;
1940 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1941
1942 /* Do not cross zone boundaries */
108bcc96 1943 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1944 start_page = page;
108bcc96 1945 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1946 return 0;
1947
02aa0cdd
VB
1948 return move_freepages(zone, start_page, end_page, migratetype,
1949 num_movable);
c361be55
MG
1950}
1951
2f66a68f
MG
1952static void change_pageblock_range(struct page *pageblock_page,
1953 int start_order, int migratetype)
1954{
1955 int nr_pageblocks = 1 << (start_order - pageblock_order);
1956
1957 while (nr_pageblocks--) {
1958 set_pageblock_migratetype(pageblock_page, migratetype);
1959 pageblock_page += pageblock_nr_pages;
1960 }
1961}
1962
fef903ef 1963/*
9c0415eb
VB
1964 * When we are falling back to another migratetype during allocation, try to
1965 * steal extra free pages from the same pageblocks to satisfy further
1966 * allocations, instead of polluting multiple pageblocks.
1967 *
1968 * If we are stealing a relatively large buddy page, it is likely there will
1969 * be more free pages in the pageblock, so try to steal them all. For
1970 * reclaimable and unmovable allocations, we steal regardless of page size,
1971 * as fragmentation caused by those allocations polluting movable pageblocks
1972 * is worse than movable allocations stealing from unmovable and reclaimable
1973 * pageblocks.
fef903ef 1974 */
4eb7dce6
JK
1975static bool can_steal_fallback(unsigned int order, int start_mt)
1976{
1977 /*
1978 * Leaving this order check is intended, although there is
1979 * relaxed order check in next check. The reason is that
1980 * we can actually steal whole pageblock if this condition met,
1981 * but, below check doesn't guarantee it and that is just heuristic
1982 * so could be changed anytime.
1983 */
1984 if (order >= pageblock_order)
1985 return true;
1986
1987 if (order >= pageblock_order / 2 ||
1988 start_mt == MIGRATE_RECLAIMABLE ||
1989 start_mt == MIGRATE_UNMOVABLE ||
1990 page_group_by_mobility_disabled)
1991 return true;
1992
1993 return false;
1994}
1995
1996/*
1997 * This function implements actual steal behaviour. If order is large enough,
1998 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1999 * pageblock to our migratetype and determine how many already-allocated pages
2000 * are there in the pageblock with a compatible migratetype. If at least half
2001 * of pages are free or compatible, we can change migratetype of the pageblock
2002 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2003 */
2004static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2005 int start_type, bool whole_block)
fef903ef 2006{
d00181b9 2007 unsigned int current_order = page_order(page);
3bc48f96 2008 struct free_area *area;
02aa0cdd
VB
2009 int free_pages, movable_pages, alike_pages;
2010 int old_block_type;
2011
2012 old_block_type = get_pageblock_migratetype(page);
fef903ef 2013
3bc48f96
VB
2014 /*
2015 * This can happen due to races and we want to prevent broken
2016 * highatomic accounting.
2017 */
02aa0cdd 2018 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2019 goto single_page;
2020
fef903ef
SB
2021 /* Take ownership for orders >= pageblock_order */
2022 if (current_order >= pageblock_order) {
2023 change_pageblock_range(page, current_order, start_type);
3bc48f96 2024 goto single_page;
fef903ef
SB
2025 }
2026
3bc48f96
VB
2027 /* We are not allowed to try stealing from the whole block */
2028 if (!whole_block)
2029 goto single_page;
2030
02aa0cdd
VB
2031 free_pages = move_freepages_block(zone, page, start_type,
2032 &movable_pages);
2033 /*
2034 * Determine how many pages are compatible with our allocation.
2035 * For movable allocation, it's the number of movable pages which
2036 * we just obtained. For other types it's a bit more tricky.
2037 */
2038 if (start_type == MIGRATE_MOVABLE) {
2039 alike_pages = movable_pages;
2040 } else {
2041 /*
2042 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2043 * to MOVABLE pageblock, consider all non-movable pages as
2044 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2045 * vice versa, be conservative since we can't distinguish the
2046 * exact migratetype of non-movable pages.
2047 */
2048 if (old_block_type == MIGRATE_MOVABLE)
2049 alike_pages = pageblock_nr_pages
2050 - (free_pages + movable_pages);
2051 else
2052 alike_pages = 0;
2053 }
2054
3bc48f96 2055 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2056 if (!free_pages)
3bc48f96 2057 goto single_page;
fef903ef 2058
02aa0cdd
VB
2059 /*
2060 * If a sufficient number of pages in the block are either free or of
2061 * comparable migratability as our allocation, claim the whole block.
2062 */
2063 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2064 page_group_by_mobility_disabled)
2065 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2066
2067 return;
2068
2069single_page:
2070 area = &zone->free_area[current_order];
2071 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2072}
2073
2149cdae
JK
2074/*
2075 * Check whether there is a suitable fallback freepage with requested order.
2076 * If only_stealable is true, this function returns fallback_mt only if
2077 * we can steal other freepages all together. This would help to reduce
2078 * fragmentation due to mixed migratetype pages in one pageblock.
2079 */
2080int find_suitable_fallback(struct free_area *area, unsigned int order,
2081 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2082{
2083 int i;
2084 int fallback_mt;
2085
2086 if (area->nr_free == 0)
2087 return -1;
2088
2089 *can_steal = false;
2090 for (i = 0;; i++) {
2091 fallback_mt = fallbacks[migratetype][i];
974a786e 2092 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2093 break;
2094
2095 if (list_empty(&area->free_list[fallback_mt]))
2096 continue;
fef903ef 2097
4eb7dce6
JK
2098 if (can_steal_fallback(order, migratetype))
2099 *can_steal = true;
2100
2149cdae
JK
2101 if (!only_stealable)
2102 return fallback_mt;
2103
2104 if (*can_steal)
2105 return fallback_mt;
fef903ef 2106 }
4eb7dce6
JK
2107
2108 return -1;
fef903ef
SB
2109}
2110
0aaa29a5
MG
2111/*
2112 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2113 * there are no empty page blocks that contain a page with a suitable order
2114 */
2115static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2116 unsigned int alloc_order)
2117{
2118 int mt;
2119 unsigned long max_managed, flags;
2120
2121 /*
2122 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2123 * Check is race-prone but harmless.
2124 */
2125 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2126 if (zone->nr_reserved_highatomic >= max_managed)
2127 return;
2128
2129 spin_lock_irqsave(&zone->lock, flags);
2130
2131 /* Recheck the nr_reserved_highatomic limit under the lock */
2132 if (zone->nr_reserved_highatomic >= max_managed)
2133 goto out_unlock;
2134
2135 /* Yoink! */
2136 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2137 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2138 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2139 zone->nr_reserved_highatomic += pageblock_nr_pages;
2140 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2141 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2142 }
2143
2144out_unlock:
2145 spin_unlock_irqrestore(&zone->lock, flags);
2146}
2147
2148/*
2149 * Used when an allocation is about to fail under memory pressure. This
2150 * potentially hurts the reliability of high-order allocations when under
2151 * intense memory pressure but failed atomic allocations should be easier
2152 * to recover from than an OOM.
29fac03b
MK
2153 *
2154 * If @force is true, try to unreserve a pageblock even though highatomic
2155 * pageblock is exhausted.
0aaa29a5 2156 */
29fac03b
MK
2157static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2158 bool force)
0aaa29a5
MG
2159{
2160 struct zonelist *zonelist = ac->zonelist;
2161 unsigned long flags;
2162 struct zoneref *z;
2163 struct zone *zone;
2164 struct page *page;
2165 int order;
04c8716f 2166 bool ret;
0aaa29a5
MG
2167
2168 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2169 ac->nodemask) {
29fac03b
MK
2170 /*
2171 * Preserve at least one pageblock unless memory pressure
2172 * is really high.
2173 */
2174 if (!force && zone->nr_reserved_highatomic <=
2175 pageblock_nr_pages)
0aaa29a5
MG
2176 continue;
2177
2178 spin_lock_irqsave(&zone->lock, flags);
2179 for (order = 0; order < MAX_ORDER; order++) {
2180 struct free_area *area = &(zone->free_area[order]);
2181
a16601c5
GT
2182 page = list_first_entry_or_null(
2183 &area->free_list[MIGRATE_HIGHATOMIC],
2184 struct page, lru);
2185 if (!page)
0aaa29a5
MG
2186 continue;
2187
0aaa29a5 2188 /*
4855e4a7
MK
2189 * In page freeing path, migratetype change is racy so
2190 * we can counter several free pages in a pageblock
2191 * in this loop althoug we changed the pageblock type
2192 * from highatomic to ac->migratetype. So we should
2193 * adjust the count once.
0aaa29a5 2194 */
a6ffdc07 2195 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2196 /*
2197 * It should never happen but changes to
2198 * locking could inadvertently allow a per-cpu
2199 * drain to add pages to MIGRATE_HIGHATOMIC
2200 * while unreserving so be safe and watch for
2201 * underflows.
2202 */
2203 zone->nr_reserved_highatomic -= min(
2204 pageblock_nr_pages,
2205 zone->nr_reserved_highatomic);
2206 }
0aaa29a5
MG
2207
2208 /*
2209 * Convert to ac->migratetype and avoid the normal
2210 * pageblock stealing heuristics. Minimally, the caller
2211 * is doing the work and needs the pages. More
2212 * importantly, if the block was always converted to
2213 * MIGRATE_UNMOVABLE or another type then the number
2214 * of pageblocks that cannot be completely freed
2215 * may increase.
2216 */
2217 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2218 ret = move_freepages_block(zone, page, ac->migratetype,
2219 NULL);
29fac03b
MK
2220 if (ret) {
2221 spin_unlock_irqrestore(&zone->lock, flags);
2222 return ret;
2223 }
0aaa29a5
MG
2224 }
2225 spin_unlock_irqrestore(&zone->lock, flags);
2226 }
04c8716f
MK
2227
2228 return false;
0aaa29a5
MG
2229}
2230
3bc48f96
VB
2231/*
2232 * Try finding a free buddy page on the fallback list and put it on the free
2233 * list of requested migratetype, possibly along with other pages from the same
2234 * block, depending on fragmentation avoidance heuristics. Returns true if
2235 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2236 *
2237 * The use of signed ints for order and current_order is a deliberate
2238 * deviation from the rest of this file, to make the for loop
2239 * condition simpler.
3bc48f96 2240 */
85ccc8fa 2241static __always_inline bool
b002529d 2242__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2243{
b8af2941 2244 struct free_area *area;
b002529d 2245 int current_order;
b2a0ac88 2246 struct page *page;
4eb7dce6
JK
2247 int fallback_mt;
2248 bool can_steal;
b2a0ac88 2249
7a8f58f3
VB
2250 /*
2251 * Find the largest available free page in the other list. This roughly
2252 * approximates finding the pageblock with the most free pages, which
2253 * would be too costly to do exactly.
2254 */
b002529d 2255 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2256 --current_order) {
4eb7dce6
JK
2257 area = &(zone->free_area[current_order]);
2258 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2259 start_migratetype, false, &can_steal);
4eb7dce6
JK
2260 if (fallback_mt == -1)
2261 continue;
b2a0ac88 2262
7a8f58f3
VB
2263 /*
2264 * We cannot steal all free pages from the pageblock and the
2265 * requested migratetype is movable. In that case it's better to
2266 * steal and split the smallest available page instead of the
2267 * largest available page, because even if the next movable
2268 * allocation falls back into a different pageblock than this
2269 * one, it won't cause permanent fragmentation.
2270 */
2271 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2272 && current_order > order)
2273 goto find_smallest;
b2a0ac88 2274
7a8f58f3
VB
2275 goto do_steal;
2276 }
e0fff1bd 2277
7a8f58f3 2278 return false;
e0fff1bd 2279
7a8f58f3
VB
2280find_smallest:
2281 for (current_order = order; current_order < MAX_ORDER;
2282 current_order++) {
2283 area = &(zone->free_area[current_order]);
2284 fallback_mt = find_suitable_fallback(area, current_order,
2285 start_migratetype, false, &can_steal);
2286 if (fallback_mt != -1)
2287 break;
b2a0ac88
MG
2288 }
2289
7a8f58f3
VB
2290 /*
2291 * This should not happen - we already found a suitable fallback
2292 * when looking for the largest page.
2293 */
2294 VM_BUG_ON(current_order == MAX_ORDER);
2295
2296do_steal:
2297 page = list_first_entry(&area->free_list[fallback_mt],
2298 struct page, lru);
2299
2300 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2301
2302 trace_mm_page_alloc_extfrag(page, order, current_order,
2303 start_migratetype, fallback_mt);
2304
2305 return true;
2306
b2a0ac88
MG
2307}
2308
56fd56b8 2309/*
1da177e4
LT
2310 * Do the hard work of removing an element from the buddy allocator.
2311 * Call me with the zone->lock already held.
2312 */
85ccc8fa
AL
2313static __always_inline struct page *
2314__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2315{
1da177e4
LT
2316 struct page *page;
2317
3bc48f96 2318retry:
56fd56b8 2319 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2320 if (unlikely(!page)) {
dc67647b
JK
2321 if (migratetype == MIGRATE_MOVABLE)
2322 page = __rmqueue_cma_fallback(zone, order);
2323
3bc48f96
VB
2324 if (!page && __rmqueue_fallback(zone, order, migratetype))
2325 goto retry;
728ec980
MG
2326 }
2327
0d3d062a 2328 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2329 return page;
1da177e4
LT
2330}
2331
5f63b720 2332/*
1da177e4
LT
2333 * Obtain a specified number of elements from the buddy allocator, all under
2334 * a single hold of the lock, for efficiency. Add them to the supplied list.
2335 * Returns the number of new pages which were placed at *list.
2336 */
5f63b720 2337static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2338 unsigned long count, struct list_head *list,
453f85d4 2339 int migratetype)
1da177e4 2340{
a6de734b 2341 int i, alloced = 0;
5f63b720 2342
d34b0733 2343 spin_lock(&zone->lock);
1da177e4 2344 for (i = 0; i < count; ++i) {
6ac0206b 2345 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2346 if (unlikely(page == NULL))
1da177e4 2347 break;
81eabcbe 2348
479f854a
MG
2349 if (unlikely(check_pcp_refill(page)))
2350 continue;
2351
81eabcbe 2352 /*
0fac3ba5
VB
2353 * Split buddy pages returned by expand() are received here in
2354 * physical page order. The page is added to the tail of
2355 * caller's list. From the callers perspective, the linked list
2356 * is ordered by page number under some conditions. This is
2357 * useful for IO devices that can forward direction from the
2358 * head, thus also in the physical page order. This is useful
2359 * for IO devices that can merge IO requests if the physical
2360 * pages are ordered properly.
81eabcbe 2361 */
0fac3ba5 2362 list_add_tail(&page->lru, list);
a6de734b 2363 alloced++;
bb14c2c7 2364 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2365 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2366 -(1 << order));
1da177e4 2367 }
a6de734b
MG
2368
2369 /*
2370 * i pages were removed from the buddy list even if some leak due
2371 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2372 * on i. Do not confuse with 'alloced' which is the number of
2373 * pages added to the pcp list.
2374 */
f2260e6b 2375 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2376 spin_unlock(&zone->lock);
a6de734b 2377 return alloced;
1da177e4
LT
2378}
2379
4ae7c039 2380#ifdef CONFIG_NUMA
8fce4d8e 2381/*
4037d452
CL
2382 * Called from the vmstat counter updater to drain pagesets of this
2383 * currently executing processor on remote nodes after they have
2384 * expired.
2385 *
879336c3
CL
2386 * Note that this function must be called with the thread pinned to
2387 * a single processor.
8fce4d8e 2388 */
4037d452 2389void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2390{
4ae7c039 2391 unsigned long flags;
7be12fc9 2392 int to_drain, batch;
4ae7c039 2393
4037d452 2394 local_irq_save(flags);
4db0c3c2 2395 batch = READ_ONCE(pcp->batch);
7be12fc9 2396 to_drain = min(pcp->count, batch);
2a13515c
KM
2397 if (to_drain > 0) {
2398 free_pcppages_bulk(zone, to_drain, pcp);
2399 pcp->count -= to_drain;
2400 }
4037d452 2401 local_irq_restore(flags);
4ae7c039
CL
2402}
2403#endif
2404
9f8f2172 2405/*
93481ff0 2406 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2407 *
2408 * The processor must either be the current processor and the
2409 * thread pinned to the current processor or a processor that
2410 * is not online.
2411 */
93481ff0 2412static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2413{
c54ad30c 2414 unsigned long flags;
93481ff0
VB
2415 struct per_cpu_pageset *pset;
2416 struct per_cpu_pages *pcp;
1da177e4 2417
93481ff0
VB
2418 local_irq_save(flags);
2419 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2420
93481ff0
VB
2421 pcp = &pset->pcp;
2422 if (pcp->count) {
2423 free_pcppages_bulk(zone, pcp->count, pcp);
2424 pcp->count = 0;
2425 }
2426 local_irq_restore(flags);
2427}
3dfa5721 2428
93481ff0
VB
2429/*
2430 * Drain pcplists of all zones on the indicated processor.
2431 *
2432 * The processor must either be the current processor and the
2433 * thread pinned to the current processor or a processor that
2434 * is not online.
2435 */
2436static void drain_pages(unsigned int cpu)
2437{
2438 struct zone *zone;
2439
2440 for_each_populated_zone(zone) {
2441 drain_pages_zone(cpu, zone);
1da177e4
LT
2442 }
2443}
1da177e4 2444
9f8f2172
CL
2445/*
2446 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2447 *
2448 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2449 * the single zone's pages.
9f8f2172 2450 */
93481ff0 2451void drain_local_pages(struct zone *zone)
9f8f2172 2452{
93481ff0
VB
2453 int cpu = smp_processor_id();
2454
2455 if (zone)
2456 drain_pages_zone(cpu, zone);
2457 else
2458 drain_pages(cpu);
9f8f2172
CL
2459}
2460
0ccce3b9
MG
2461static void drain_local_pages_wq(struct work_struct *work)
2462{
a459eeb7
MH
2463 /*
2464 * drain_all_pages doesn't use proper cpu hotplug protection so
2465 * we can race with cpu offline when the WQ can move this from
2466 * a cpu pinned worker to an unbound one. We can operate on a different
2467 * cpu which is allright but we also have to make sure to not move to
2468 * a different one.
2469 */
2470 preempt_disable();
0ccce3b9 2471 drain_local_pages(NULL);
a459eeb7 2472 preempt_enable();
0ccce3b9
MG
2473}
2474
9f8f2172 2475/*
74046494
GBY
2476 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2477 *
93481ff0
VB
2478 * When zone parameter is non-NULL, spill just the single zone's pages.
2479 *
0ccce3b9 2480 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2481 */
93481ff0 2482void drain_all_pages(struct zone *zone)
9f8f2172 2483{
74046494 2484 int cpu;
74046494
GBY
2485
2486 /*
2487 * Allocate in the BSS so we wont require allocation in
2488 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2489 */
2490 static cpumask_t cpus_with_pcps;
2491
ce612879
MH
2492 /*
2493 * Make sure nobody triggers this path before mm_percpu_wq is fully
2494 * initialized.
2495 */
2496 if (WARN_ON_ONCE(!mm_percpu_wq))
2497 return;
2498
0ccce3b9
MG
2499 /* Workqueues cannot recurse */
2500 if (current->flags & PF_WQ_WORKER)
2501 return;
2502
bd233f53
MG
2503 /*
2504 * Do not drain if one is already in progress unless it's specific to
2505 * a zone. Such callers are primarily CMA and memory hotplug and need
2506 * the drain to be complete when the call returns.
2507 */
2508 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2509 if (!zone)
2510 return;
2511 mutex_lock(&pcpu_drain_mutex);
2512 }
0ccce3b9 2513
74046494
GBY
2514 /*
2515 * We don't care about racing with CPU hotplug event
2516 * as offline notification will cause the notified
2517 * cpu to drain that CPU pcps and on_each_cpu_mask
2518 * disables preemption as part of its processing
2519 */
2520 for_each_online_cpu(cpu) {
93481ff0
VB
2521 struct per_cpu_pageset *pcp;
2522 struct zone *z;
74046494 2523 bool has_pcps = false;
93481ff0
VB
2524
2525 if (zone) {
74046494 2526 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2527 if (pcp->pcp.count)
74046494 2528 has_pcps = true;
93481ff0
VB
2529 } else {
2530 for_each_populated_zone(z) {
2531 pcp = per_cpu_ptr(z->pageset, cpu);
2532 if (pcp->pcp.count) {
2533 has_pcps = true;
2534 break;
2535 }
74046494
GBY
2536 }
2537 }
93481ff0 2538
74046494
GBY
2539 if (has_pcps)
2540 cpumask_set_cpu(cpu, &cpus_with_pcps);
2541 else
2542 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2543 }
0ccce3b9 2544
bd233f53
MG
2545 for_each_cpu(cpu, &cpus_with_pcps) {
2546 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2547 INIT_WORK(work, drain_local_pages_wq);
ce612879 2548 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2549 }
bd233f53
MG
2550 for_each_cpu(cpu, &cpus_with_pcps)
2551 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2552
2553 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2554}
2555
296699de 2556#ifdef CONFIG_HIBERNATION
1da177e4 2557
556b969a
CY
2558/*
2559 * Touch the watchdog for every WD_PAGE_COUNT pages.
2560 */
2561#define WD_PAGE_COUNT (128*1024)
2562
1da177e4
LT
2563void mark_free_pages(struct zone *zone)
2564{
556b969a 2565 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2566 unsigned long flags;
7aeb09f9 2567 unsigned int order, t;
86760a2c 2568 struct page *page;
1da177e4 2569
8080fc03 2570 if (zone_is_empty(zone))
1da177e4
LT
2571 return;
2572
2573 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2574
108bcc96 2575 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2576 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2577 if (pfn_valid(pfn)) {
86760a2c 2578 page = pfn_to_page(pfn);
ba6b0979 2579
556b969a
CY
2580 if (!--page_count) {
2581 touch_nmi_watchdog();
2582 page_count = WD_PAGE_COUNT;
2583 }
2584
ba6b0979
JK
2585 if (page_zone(page) != zone)
2586 continue;
2587
7be98234
RW
2588 if (!swsusp_page_is_forbidden(page))
2589 swsusp_unset_page_free(page);
f623f0db 2590 }
1da177e4 2591
b2a0ac88 2592 for_each_migratetype_order(order, t) {
86760a2c
GT
2593 list_for_each_entry(page,
2594 &zone->free_area[order].free_list[t], lru) {
f623f0db 2595 unsigned long i;
1da177e4 2596
86760a2c 2597 pfn = page_to_pfn(page);
556b969a
CY
2598 for (i = 0; i < (1UL << order); i++) {
2599 if (!--page_count) {
2600 touch_nmi_watchdog();
2601 page_count = WD_PAGE_COUNT;
2602 }
7be98234 2603 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2604 }
f623f0db 2605 }
b2a0ac88 2606 }
1da177e4
LT
2607 spin_unlock_irqrestore(&zone->lock, flags);
2608}
e2c55dc8 2609#endif /* CONFIG_PM */
1da177e4 2610
2d4894b5 2611static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2612{
5f8dcc21 2613 int migratetype;
1da177e4 2614
4db7548c 2615 if (!free_pcp_prepare(page))
9cca35d4 2616 return false;
689bcebf 2617
dc4b0caf 2618 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2619 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2620 return true;
2621}
2622
2d4894b5 2623static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2624{
2625 struct zone *zone = page_zone(page);
2626 struct per_cpu_pages *pcp;
2627 int migratetype;
2628
2629 migratetype = get_pcppage_migratetype(page);
d34b0733 2630 __count_vm_event(PGFREE);
da456f14 2631
5f8dcc21
MG
2632 /*
2633 * We only track unmovable, reclaimable and movable on pcp lists.
2634 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2635 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2636 * areas back if necessary. Otherwise, we may have to free
2637 * excessively into the page allocator
2638 */
2639 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2640 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2641 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2642 return;
5f8dcc21
MG
2643 }
2644 migratetype = MIGRATE_MOVABLE;
2645 }
2646
99dcc3e5 2647 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2648 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2649 pcp->count++;
48db57f8 2650 if (pcp->count >= pcp->high) {
4db0c3c2 2651 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2652 free_pcppages_bulk(zone, batch, pcp);
2653 pcp->count -= batch;
48db57f8 2654 }
9cca35d4 2655}
5f8dcc21 2656
9cca35d4
MG
2657/*
2658 * Free a 0-order page
9cca35d4 2659 */
2d4894b5 2660void free_unref_page(struct page *page)
9cca35d4
MG
2661{
2662 unsigned long flags;
2663 unsigned long pfn = page_to_pfn(page);
2664
2d4894b5 2665 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2666 return;
2667
2668 local_irq_save(flags);
2d4894b5 2669 free_unref_page_commit(page, pfn);
d34b0733 2670 local_irq_restore(flags);
1da177e4
LT
2671}
2672
cc59850e
KK
2673/*
2674 * Free a list of 0-order pages
2675 */
2d4894b5 2676void free_unref_page_list(struct list_head *list)
cc59850e
KK
2677{
2678 struct page *page, *next;
9cca35d4
MG
2679 unsigned long flags, pfn;
2680
2681 /* Prepare pages for freeing */
2682 list_for_each_entry_safe(page, next, list, lru) {
2683 pfn = page_to_pfn(page);
2d4894b5 2684 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2685 list_del(&page->lru);
2686 set_page_private(page, pfn);
2687 }
cc59850e 2688
9cca35d4 2689 local_irq_save(flags);
cc59850e 2690 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2691 unsigned long pfn = page_private(page);
2692
2693 set_page_private(page, 0);
2d4894b5
MG
2694 trace_mm_page_free_batched(page);
2695 free_unref_page_commit(page, pfn);
cc59850e 2696 }
9cca35d4 2697 local_irq_restore(flags);
cc59850e
KK
2698}
2699
8dfcc9ba
NP
2700/*
2701 * split_page takes a non-compound higher-order page, and splits it into
2702 * n (1<<order) sub-pages: page[0..n]
2703 * Each sub-page must be freed individually.
2704 *
2705 * Note: this is probably too low level an operation for use in drivers.
2706 * Please consult with lkml before using this in your driver.
2707 */
2708void split_page(struct page *page, unsigned int order)
2709{
2710 int i;
2711
309381fe
SL
2712 VM_BUG_ON_PAGE(PageCompound(page), page);
2713 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2714
a9627bc5 2715 for (i = 1; i < (1 << order); i++)
7835e98b 2716 set_page_refcounted(page + i);
a9627bc5 2717 split_page_owner(page, order);
8dfcc9ba 2718}
5853ff23 2719EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2720
3c605096 2721int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2722{
748446bb
MG
2723 unsigned long watermark;
2724 struct zone *zone;
2139cbe6 2725 int mt;
748446bb
MG
2726
2727 BUG_ON(!PageBuddy(page));
2728
2729 zone = page_zone(page);
2e30abd1 2730 mt = get_pageblock_migratetype(page);
748446bb 2731
194159fb 2732 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2733 /*
2734 * Obey watermarks as if the page was being allocated. We can
2735 * emulate a high-order watermark check with a raised order-0
2736 * watermark, because we already know our high-order page
2737 * exists.
2738 */
2739 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2740 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2741 return 0;
2742
8fb74b9f 2743 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2744 }
748446bb
MG
2745
2746 /* Remove page from free list */
2747 list_del(&page->lru);
2748 zone->free_area[order].nr_free--;
2749 rmv_page_order(page);
2139cbe6 2750
400bc7fd 2751 /*
2752 * Set the pageblock if the isolated page is at least half of a
2753 * pageblock
2754 */
748446bb
MG
2755 if (order >= pageblock_order - 1) {
2756 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2757 for (; page < endpage; page += pageblock_nr_pages) {
2758 int mt = get_pageblock_migratetype(page);
88ed365e 2759 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2760 && !is_migrate_highatomic(mt))
47118af0
MN
2761 set_pageblock_migratetype(page,
2762 MIGRATE_MOVABLE);
2763 }
748446bb
MG
2764 }
2765
f3a14ced 2766
8fb74b9f 2767 return 1UL << order;
1fb3f8ca
MG
2768}
2769
060e7417
MG
2770/*
2771 * Update NUMA hit/miss statistics
2772 *
2773 * Must be called with interrupts disabled.
060e7417 2774 */
41b6167e 2775static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2776{
2777#ifdef CONFIG_NUMA
3a321d2a 2778 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2779
2df26639 2780 if (z->node != numa_node_id())
060e7417 2781 local_stat = NUMA_OTHER;
060e7417 2782
2df26639 2783 if (z->node == preferred_zone->node)
3a321d2a 2784 __inc_numa_state(z, NUMA_HIT);
2df26639 2785 else {
3a321d2a
KW
2786 __inc_numa_state(z, NUMA_MISS);
2787 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2788 }
3a321d2a 2789 __inc_numa_state(z, local_stat);
060e7417
MG
2790#endif
2791}
2792
066b2393
MG
2793/* Remove page from the per-cpu list, caller must protect the list */
2794static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2795 struct per_cpu_pages *pcp,
066b2393
MG
2796 struct list_head *list)
2797{
2798 struct page *page;
2799
2800 do {
2801 if (list_empty(list)) {
2802 pcp->count += rmqueue_bulk(zone, 0,
2803 pcp->batch, list,
453f85d4 2804 migratetype);
066b2393
MG
2805 if (unlikely(list_empty(list)))
2806 return NULL;
2807 }
2808
453f85d4 2809 page = list_first_entry(list, struct page, lru);
066b2393
MG
2810 list_del(&page->lru);
2811 pcp->count--;
2812 } while (check_new_pcp(page));
2813
2814 return page;
2815}
2816
2817/* Lock and remove page from the per-cpu list */
2818static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2819 struct zone *zone, unsigned int order,
2820 gfp_t gfp_flags, int migratetype)
2821{
2822 struct per_cpu_pages *pcp;
2823 struct list_head *list;
066b2393 2824 struct page *page;
d34b0733 2825 unsigned long flags;
066b2393 2826
d34b0733 2827 local_irq_save(flags);
066b2393
MG
2828 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2829 list = &pcp->lists[migratetype];
453f85d4 2830 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2831 if (page) {
2832 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2833 zone_statistics(preferred_zone, zone);
2834 }
d34b0733 2835 local_irq_restore(flags);
066b2393
MG
2836 return page;
2837}
2838
1da177e4 2839/*
75379191 2840 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2841 */
0a15c3e9 2842static inline
066b2393 2843struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2844 struct zone *zone, unsigned int order,
c603844b
MG
2845 gfp_t gfp_flags, unsigned int alloc_flags,
2846 int migratetype)
1da177e4
LT
2847{
2848 unsigned long flags;
689bcebf 2849 struct page *page;
1da177e4 2850
d34b0733 2851 if (likely(order == 0)) {
066b2393
MG
2852 page = rmqueue_pcplist(preferred_zone, zone, order,
2853 gfp_flags, migratetype);
2854 goto out;
2855 }
83b9355b 2856
066b2393
MG
2857 /*
2858 * We most definitely don't want callers attempting to
2859 * allocate greater than order-1 page units with __GFP_NOFAIL.
2860 */
2861 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2862 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2863
066b2393
MG
2864 do {
2865 page = NULL;
2866 if (alloc_flags & ALLOC_HARDER) {
2867 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2868 if (page)
2869 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2870 }
a74609fa 2871 if (!page)
066b2393
MG
2872 page = __rmqueue(zone, order, migratetype);
2873 } while (page && check_new_pages(page, order));
2874 spin_unlock(&zone->lock);
2875 if (!page)
2876 goto failed;
2877 __mod_zone_freepage_state(zone, -(1 << order),
2878 get_pcppage_migratetype(page));
1da177e4 2879
16709d1d 2880 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2881 zone_statistics(preferred_zone, zone);
a74609fa 2882 local_irq_restore(flags);
1da177e4 2883
066b2393
MG
2884out:
2885 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2886 return page;
a74609fa
NP
2887
2888failed:
2889 local_irq_restore(flags);
a74609fa 2890 return NULL;
1da177e4
LT
2891}
2892
933e312e
AM
2893#ifdef CONFIG_FAIL_PAGE_ALLOC
2894
b2588c4b 2895static struct {
933e312e
AM
2896 struct fault_attr attr;
2897
621a5f7a 2898 bool ignore_gfp_highmem;
71baba4b 2899 bool ignore_gfp_reclaim;
54114994 2900 u32 min_order;
933e312e
AM
2901} fail_page_alloc = {
2902 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2903 .ignore_gfp_reclaim = true,
621a5f7a 2904 .ignore_gfp_highmem = true,
54114994 2905 .min_order = 1,
933e312e
AM
2906};
2907
2908static int __init setup_fail_page_alloc(char *str)
2909{
2910 return setup_fault_attr(&fail_page_alloc.attr, str);
2911}
2912__setup("fail_page_alloc=", setup_fail_page_alloc);
2913
deaf386e 2914static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2915{
54114994 2916 if (order < fail_page_alloc.min_order)
deaf386e 2917 return false;
933e312e 2918 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2919 return false;
933e312e 2920 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2921 return false;
71baba4b
MG
2922 if (fail_page_alloc.ignore_gfp_reclaim &&
2923 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2924 return false;
933e312e
AM
2925
2926 return should_fail(&fail_page_alloc.attr, 1 << order);
2927}
2928
2929#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2930
2931static int __init fail_page_alloc_debugfs(void)
2932{
f4ae40a6 2933 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2934 struct dentry *dir;
933e312e 2935
dd48c085
AM
2936 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2937 &fail_page_alloc.attr);
2938 if (IS_ERR(dir))
2939 return PTR_ERR(dir);
933e312e 2940
b2588c4b 2941 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2942 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2943 goto fail;
2944 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2945 &fail_page_alloc.ignore_gfp_highmem))
2946 goto fail;
2947 if (!debugfs_create_u32("min-order", mode, dir,
2948 &fail_page_alloc.min_order))
2949 goto fail;
2950
2951 return 0;
2952fail:
dd48c085 2953 debugfs_remove_recursive(dir);
933e312e 2954
b2588c4b 2955 return -ENOMEM;
933e312e
AM
2956}
2957
2958late_initcall(fail_page_alloc_debugfs);
2959
2960#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2961
2962#else /* CONFIG_FAIL_PAGE_ALLOC */
2963
deaf386e 2964static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2965{
deaf386e 2966 return false;
933e312e
AM
2967}
2968
2969#endif /* CONFIG_FAIL_PAGE_ALLOC */
2970
1da177e4 2971/*
97a16fc8
MG
2972 * Return true if free base pages are above 'mark'. For high-order checks it
2973 * will return true of the order-0 watermark is reached and there is at least
2974 * one free page of a suitable size. Checking now avoids taking the zone lock
2975 * to check in the allocation paths if no pages are free.
1da177e4 2976 */
86a294a8
MH
2977bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2978 int classzone_idx, unsigned int alloc_flags,
2979 long free_pages)
1da177e4 2980{
d23ad423 2981 long min = mark;
1da177e4 2982 int o;
cd04ae1e 2983 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 2984
0aaa29a5 2985 /* free_pages may go negative - that's OK */
df0a6daa 2986 free_pages -= (1 << order) - 1;
0aaa29a5 2987
7fb1d9fc 2988 if (alloc_flags & ALLOC_HIGH)
1da177e4 2989 min -= min / 2;
0aaa29a5
MG
2990
2991 /*
2992 * If the caller does not have rights to ALLOC_HARDER then subtract
2993 * the high-atomic reserves. This will over-estimate the size of the
2994 * atomic reserve but it avoids a search.
2995 */
cd04ae1e 2996 if (likely(!alloc_harder)) {
0aaa29a5 2997 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
2998 } else {
2999 /*
3000 * OOM victims can try even harder than normal ALLOC_HARDER
3001 * users on the grounds that it's definitely going to be in
3002 * the exit path shortly and free memory. Any allocation it
3003 * makes during the free path will be small and short-lived.
3004 */
3005 if (alloc_flags & ALLOC_OOM)
3006 min -= min / 2;
3007 else
3008 min -= min / 4;
3009 }
3010
e2b19197 3011
d95ea5d1
BZ
3012#ifdef CONFIG_CMA
3013 /* If allocation can't use CMA areas don't use free CMA pages */
3014 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 3015 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 3016#endif
026b0814 3017
97a16fc8
MG
3018 /*
3019 * Check watermarks for an order-0 allocation request. If these
3020 * are not met, then a high-order request also cannot go ahead
3021 * even if a suitable page happened to be free.
3022 */
3023 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3024 return false;
1da177e4 3025
97a16fc8
MG
3026 /* If this is an order-0 request then the watermark is fine */
3027 if (!order)
3028 return true;
3029
3030 /* For a high-order request, check at least one suitable page is free */
3031 for (o = order; o < MAX_ORDER; o++) {
3032 struct free_area *area = &z->free_area[o];
3033 int mt;
3034
3035 if (!area->nr_free)
3036 continue;
3037
3038 if (alloc_harder)
3039 return true;
1da177e4 3040
97a16fc8
MG
3041 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3042 if (!list_empty(&area->free_list[mt]))
3043 return true;
3044 }
3045
3046#ifdef CONFIG_CMA
3047 if ((alloc_flags & ALLOC_CMA) &&
3048 !list_empty(&area->free_list[MIGRATE_CMA])) {
3049 return true;
3050 }
3051#endif
1da177e4 3052 }
97a16fc8 3053 return false;
88f5acf8
MG
3054}
3055
7aeb09f9 3056bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3057 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3058{
3059 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3060 zone_page_state(z, NR_FREE_PAGES));
3061}
3062
48ee5f36
MG
3063static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3064 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3065{
3066 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3067 long cma_pages = 0;
3068
3069#ifdef CONFIG_CMA
3070 /* If allocation can't use CMA areas don't use free CMA pages */
3071 if (!(alloc_flags & ALLOC_CMA))
3072 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3073#endif
3074
3075 /*
3076 * Fast check for order-0 only. If this fails then the reserves
3077 * need to be calculated. There is a corner case where the check
3078 * passes but only the high-order atomic reserve are free. If
3079 * the caller is !atomic then it'll uselessly search the free
3080 * list. That corner case is then slower but it is harmless.
3081 */
3082 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3083 return true;
3084
3085 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3086 free_pages);
3087}
3088
7aeb09f9 3089bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3090 unsigned long mark, int classzone_idx)
88f5acf8
MG
3091{
3092 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3093
3094 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3095 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3096
e2b19197 3097 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3098 free_pages);
1da177e4
LT
3099}
3100
9276b1bc 3101#ifdef CONFIG_NUMA
957f822a
DR
3102static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3103{
e02dc017 3104 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3105 RECLAIM_DISTANCE;
957f822a 3106}
9276b1bc 3107#else /* CONFIG_NUMA */
957f822a
DR
3108static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3109{
3110 return true;
3111}
9276b1bc
PJ
3112#endif /* CONFIG_NUMA */
3113
7fb1d9fc 3114/*
0798e519 3115 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3116 * a page.
3117 */
3118static struct page *
a9263751
VB
3119get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3120 const struct alloc_context *ac)
753ee728 3121{
c33d6c06 3122 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3123 struct zone *zone;
3b8c0be4
MG
3124 struct pglist_data *last_pgdat_dirty_limit = NULL;
3125
7fb1d9fc 3126 /*
9276b1bc 3127 * Scan zonelist, looking for a zone with enough free.
344736f2 3128 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3129 */
c33d6c06 3130 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3131 ac->nodemask) {
be06af00 3132 struct page *page;
e085dbc5
JW
3133 unsigned long mark;
3134
664eedde
MG
3135 if (cpusets_enabled() &&
3136 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3137 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3138 continue;
a756cf59
JW
3139 /*
3140 * When allocating a page cache page for writing, we
281e3726
MG
3141 * want to get it from a node that is within its dirty
3142 * limit, such that no single node holds more than its
a756cf59 3143 * proportional share of globally allowed dirty pages.
281e3726 3144 * The dirty limits take into account the node's
a756cf59
JW
3145 * lowmem reserves and high watermark so that kswapd
3146 * should be able to balance it without having to
3147 * write pages from its LRU list.
3148 *
a756cf59 3149 * XXX: For now, allow allocations to potentially
281e3726 3150 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3151 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3152 * which is important when on a NUMA setup the allowed
281e3726 3153 * nodes are together not big enough to reach the
a756cf59 3154 * global limit. The proper fix for these situations
281e3726 3155 * will require awareness of nodes in the
a756cf59
JW
3156 * dirty-throttling and the flusher threads.
3157 */
3b8c0be4
MG
3158 if (ac->spread_dirty_pages) {
3159 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3160 continue;
3161
3162 if (!node_dirty_ok(zone->zone_pgdat)) {
3163 last_pgdat_dirty_limit = zone->zone_pgdat;
3164 continue;
3165 }
3166 }
7fb1d9fc 3167
e085dbc5 3168 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3169 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3170 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3171 int ret;
3172
5dab2911
MG
3173 /* Checked here to keep the fast path fast */
3174 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3175 if (alloc_flags & ALLOC_NO_WATERMARKS)
3176 goto try_this_zone;
3177
a5f5f91d 3178 if (node_reclaim_mode == 0 ||
c33d6c06 3179 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3180 continue;
3181
a5f5f91d 3182 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3183 switch (ret) {
a5f5f91d 3184 case NODE_RECLAIM_NOSCAN:
fa5e084e 3185 /* did not scan */
cd38b115 3186 continue;
a5f5f91d 3187 case NODE_RECLAIM_FULL:
fa5e084e 3188 /* scanned but unreclaimable */
cd38b115 3189 continue;
fa5e084e
MG
3190 default:
3191 /* did we reclaim enough */
fed2719e 3192 if (zone_watermark_ok(zone, order, mark,
93ea9964 3193 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3194 goto try_this_zone;
3195
fed2719e 3196 continue;
0798e519 3197 }
7fb1d9fc
RS
3198 }
3199
fa5e084e 3200try_this_zone:
066b2393 3201 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3202 gfp_mask, alloc_flags, ac->migratetype);
75379191 3203 if (page) {
479f854a 3204 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3205
3206 /*
3207 * If this is a high-order atomic allocation then check
3208 * if the pageblock should be reserved for the future
3209 */
3210 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3211 reserve_highatomic_pageblock(page, zone, order);
3212
75379191
VB
3213 return page;
3214 }
54a6eb5c 3215 }
9276b1bc 3216
4ffeaf35 3217 return NULL;
753ee728
MH
3218}
3219
29423e77
DR
3220/*
3221 * Large machines with many possible nodes should not always dump per-node
3222 * meminfo in irq context.
3223 */
3224static inline bool should_suppress_show_mem(void)
3225{
3226 bool ret = false;
3227
3228#if NODES_SHIFT > 8
3229 ret = in_interrupt();
3230#endif
3231 return ret;
3232}
3233
9af744d7 3234static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3235{
a238ab5b 3236 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3237 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3238
aa187507 3239 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3240 return;
3241
3242 /*
3243 * This documents exceptions given to allocations in certain
3244 * contexts that are allowed to allocate outside current's set
3245 * of allowed nodes.
3246 */
3247 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3248 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3249 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3250 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3251 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3252 filter &= ~SHOW_MEM_FILTER_NODES;
3253
9af744d7 3254 show_mem(filter, nodemask);
aa187507
MH
3255}
3256
a8e99259 3257void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3258{
3259 struct va_format vaf;
3260 va_list args;
3261 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3262 DEFAULT_RATELIMIT_BURST);
3263
0f7896f1 3264 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3265 return;
3266
7877cdcc 3267 pr_warn("%s: ", current->comm);
3ee9a4f0 3268
7877cdcc
MH
3269 va_start(args, fmt);
3270 vaf.fmt = fmt;
3271 vaf.va = &args;
3272 pr_cont("%pV", &vaf);
3273 va_end(args);
3ee9a4f0 3274
685dbf6f
DR
3275 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3276 if (nodemask)
3277 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3278 else
3279 pr_cont("(null)\n");
3280
a8e99259 3281 cpuset_print_current_mems_allowed();
3ee9a4f0 3282
a238ab5b 3283 dump_stack();
685dbf6f 3284 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3285}
3286
6c18ba7a
MH
3287static inline struct page *
3288__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3289 unsigned int alloc_flags,
3290 const struct alloc_context *ac)
3291{
3292 struct page *page;
3293
3294 page = get_page_from_freelist(gfp_mask, order,
3295 alloc_flags|ALLOC_CPUSET, ac);
3296 /*
3297 * fallback to ignore cpuset restriction if our nodes
3298 * are depleted
3299 */
3300 if (!page)
3301 page = get_page_from_freelist(gfp_mask, order,
3302 alloc_flags, ac);
3303
3304 return page;
3305}
3306
11e33f6a
MG
3307static inline struct page *
3308__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3309 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3310{
6e0fc46d
DR
3311 struct oom_control oc = {
3312 .zonelist = ac->zonelist,
3313 .nodemask = ac->nodemask,
2a966b77 3314 .memcg = NULL,
6e0fc46d
DR
3315 .gfp_mask = gfp_mask,
3316 .order = order,
6e0fc46d 3317 };
11e33f6a
MG
3318 struct page *page;
3319
9879de73
JW
3320 *did_some_progress = 0;
3321
9879de73 3322 /*
dc56401f
JW
3323 * Acquire the oom lock. If that fails, somebody else is
3324 * making progress for us.
9879de73 3325 */
dc56401f 3326 if (!mutex_trylock(&oom_lock)) {
9879de73 3327 *did_some_progress = 1;
11e33f6a 3328 schedule_timeout_uninterruptible(1);
1da177e4
LT
3329 return NULL;
3330 }
6b1de916 3331
11e33f6a
MG
3332 /*
3333 * Go through the zonelist yet one more time, keep very high watermark
3334 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3335 * we're still under heavy pressure. But make sure that this reclaim
3336 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3337 * allocation which will never fail due to oom_lock already held.
11e33f6a 3338 */
e746bf73
TH
3339 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3340 ~__GFP_DIRECT_RECLAIM, order,
3341 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3342 if (page)
11e33f6a
MG
3343 goto out;
3344
06ad276a
MH
3345 /* Coredumps can quickly deplete all memory reserves */
3346 if (current->flags & PF_DUMPCORE)
3347 goto out;
3348 /* The OOM killer will not help higher order allocs */
3349 if (order > PAGE_ALLOC_COSTLY_ORDER)
3350 goto out;
dcda9b04
MH
3351 /*
3352 * We have already exhausted all our reclaim opportunities without any
3353 * success so it is time to admit defeat. We will skip the OOM killer
3354 * because it is very likely that the caller has a more reasonable
3355 * fallback than shooting a random task.
3356 */
3357 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3358 goto out;
06ad276a
MH
3359 /* The OOM killer does not needlessly kill tasks for lowmem */
3360 if (ac->high_zoneidx < ZONE_NORMAL)
3361 goto out;
3362 if (pm_suspended_storage())
3363 goto out;
3364 /*
3365 * XXX: GFP_NOFS allocations should rather fail than rely on
3366 * other request to make a forward progress.
3367 * We are in an unfortunate situation where out_of_memory cannot
3368 * do much for this context but let's try it to at least get
3369 * access to memory reserved if the current task is killed (see
3370 * out_of_memory). Once filesystems are ready to handle allocation
3371 * failures more gracefully we should just bail out here.
3372 */
3373
3374 /* The OOM killer may not free memory on a specific node */
3375 if (gfp_mask & __GFP_THISNODE)
3376 goto out;
3da88fb3 3377
11e33f6a 3378 /* Exhausted what can be done so it's blamo time */
5020e285 3379 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3380 *did_some_progress = 1;
5020e285 3381
6c18ba7a
MH
3382 /*
3383 * Help non-failing allocations by giving them access to memory
3384 * reserves
3385 */
3386 if (gfp_mask & __GFP_NOFAIL)
3387 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3388 ALLOC_NO_WATERMARKS, ac);
5020e285 3389 }
11e33f6a 3390out:
dc56401f 3391 mutex_unlock(&oom_lock);
11e33f6a
MG
3392 return page;
3393}
3394
33c2d214
MH
3395/*
3396 * Maximum number of compaction retries wit a progress before OOM
3397 * killer is consider as the only way to move forward.
3398 */
3399#define MAX_COMPACT_RETRIES 16
3400
56de7263
MG
3401#ifdef CONFIG_COMPACTION
3402/* Try memory compaction for high-order allocations before reclaim */
3403static struct page *
3404__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3405 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3406 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3407{
98dd3b48 3408 struct page *page;
499118e9 3409 unsigned int noreclaim_flag;
53853e2d
VB
3410
3411 if (!order)
66199712 3412 return NULL;
66199712 3413
499118e9 3414 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3415 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3416 prio);
499118e9 3417 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3418
c5d01d0d 3419 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3420 return NULL;
53853e2d 3421
98dd3b48
VB
3422 /*
3423 * At least in one zone compaction wasn't deferred or skipped, so let's
3424 * count a compaction stall
3425 */
3426 count_vm_event(COMPACTSTALL);
8fb74b9f 3427
31a6c190 3428 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3429
98dd3b48
VB
3430 if (page) {
3431 struct zone *zone = page_zone(page);
53853e2d 3432
98dd3b48
VB
3433 zone->compact_blockskip_flush = false;
3434 compaction_defer_reset(zone, order, true);
3435 count_vm_event(COMPACTSUCCESS);
3436 return page;
3437 }
56de7263 3438
98dd3b48
VB
3439 /*
3440 * It's bad if compaction run occurs and fails. The most likely reason
3441 * is that pages exist, but not enough to satisfy watermarks.
3442 */
3443 count_vm_event(COMPACTFAIL);
66199712 3444
98dd3b48 3445 cond_resched();
56de7263
MG
3446
3447 return NULL;
3448}
33c2d214 3449
3250845d
VB
3450static inline bool
3451should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3452 enum compact_result compact_result,
3453 enum compact_priority *compact_priority,
d9436498 3454 int *compaction_retries)
3250845d
VB
3455{
3456 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3457 int min_priority;
65190cff
MH
3458 bool ret = false;
3459 int retries = *compaction_retries;
3460 enum compact_priority priority = *compact_priority;
3250845d
VB
3461
3462 if (!order)
3463 return false;
3464
d9436498
VB
3465 if (compaction_made_progress(compact_result))
3466 (*compaction_retries)++;
3467
3250845d
VB
3468 /*
3469 * compaction considers all the zone as desperately out of memory
3470 * so it doesn't really make much sense to retry except when the
3471 * failure could be caused by insufficient priority
3472 */
d9436498
VB
3473 if (compaction_failed(compact_result))
3474 goto check_priority;
3250845d
VB
3475
3476 /*
3477 * make sure the compaction wasn't deferred or didn't bail out early
3478 * due to locks contention before we declare that we should give up.
3479 * But do not retry if the given zonelist is not suitable for
3480 * compaction.
3481 */
65190cff
MH
3482 if (compaction_withdrawn(compact_result)) {
3483 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3484 goto out;
3485 }
3250845d
VB
3486
3487 /*
dcda9b04 3488 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3489 * costly ones because they are de facto nofail and invoke OOM
3490 * killer to move on while costly can fail and users are ready
3491 * to cope with that. 1/4 retries is rather arbitrary but we
3492 * would need much more detailed feedback from compaction to
3493 * make a better decision.
3494 */
3495 if (order > PAGE_ALLOC_COSTLY_ORDER)
3496 max_retries /= 4;
65190cff
MH
3497 if (*compaction_retries <= max_retries) {
3498 ret = true;
3499 goto out;
3500 }
3250845d 3501
d9436498
VB
3502 /*
3503 * Make sure there are attempts at the highest priority if we exhausted
3504 * all retries or failed at the lower priorities.
3505 */
3506check_priority:
c2033b00
VB
3507 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3508 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3509
c2033b00 3510 if (*compact_priority > min_priority) {
d9436498
VB
3511 (*compact_priority)--;
3512 *compaction_retries = 0;
65190cff 3513 ret = true;
d9436498 3514 }
65190cff
MH
3515out:
3516 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3517 return ret;
3250845d 3518}
56de7263
MG
3519#else
3520static inline struct page *
3521__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3522 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3523 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3524{
33c2d214 3525 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3526 return NULL;
3527}
33c2d214
MH
3528
3529static inline bool
86a294a8
MH
3530should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3531 enum compact_result compact_result,
a5508cd8 3532 enum compact_priority *compact_priority,
d9436498 3533 int *compaction_retries)
33c2d214 3534{
31e49bfd
MH
3535 struct zone *zone;
3536 struct zoneref *z;
3537
3538 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3539 return false;
3540
3541 /*
3542 * There are setups with compaction disabled which would prefer to loop
3543 * inside the allocator rather than hit the oom killer prematurely.
3544 * Let's give them a good hope and keep retrying while the order-0
3545 * watermarks are OK.
3546 */
3547 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3548 ac->nodemask) {
3549 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3550 ac_classzone_idx(ac), alloc_flags))
3551 return true;
3552 }
33c2d214
MH
3553 return false;
3554}
3250845d 3555#endif /* CONFIG_COMPACTION */
56de7263 3556
d92a8cfc
PZ
3557#ifdef CONFIG_LOCKDEP
3558struct lockdep_map __fs_reclaim_map =
3559 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3560
3561static bool __need_fs_reclaim(gfp_t gfp_mask)
3562{
3563 gfp_mask = current_gfp_context(gfp_mask);
3564
3565 /* no reclaim without waiting on it */
3566 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3567 return false;
3568
3569 /* this guy won't enter reclaim */
3570 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3571 return false;
3572
3573 /* We're only interested __GFP_FS allocations for now */
3574 if (!(gfp_mask & __GFP_FS))
3575 return false;
3576
3577 if (gfp_mask & __GFP_NOLOCKDEP)
3578 return false;
3579
3580 return true;
3581}
3582
3583void fs_reclaim_acquire(gfp_t gfp_mask)
3584{
3585 if (__need_fs_reclaim(gfp_mask))
3586 lock_map_acquire(&__fs_reclaim_map);
3587}
3588EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3589
3590void fs_reclaim_release(gfp_t gfp_mask)
3591{
3592 if (__need_fs_reclaim(gfp_mask))
3593 lock_map_release(&__fs_reclaim_map);
3594}
3595EXPORT_SYMBOL_GPL(fs_reclaim_release);
3596#endif
3597
bba90710
MS
3598/* Perform direct synchronous page reclaim */
3599static int
a9263751
VB
3600__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3601 const struct alloc_context *ac)
11e33f6a 3602{
11e33f6a 3603 struct reclaim_state reclaim_state;
bba90710 3604 int progress;
499118e9 3605 unsigned int noreclaim_flag;
11e33f6a
MG
3606
3607 cond_resched();
3608
3609 /* We now go into synchronous reclaim */
3610 cpuset_memory_pressure_bump();
499118e9 3611 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3612 fs_reclaim_acquire(gfp_mask);
11e33f6a 3613 reclaim_state.reclaimed_slab = 0;
c06b1fca 3614 current->reclaim_state = &reclaim_state;
11e33f6a 3615
a9263751
VB
3616 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3617 ac->nodemask);
11e33f6a 3618
c06b1fca 3619 current->reclaim_state = NULL;
d92a8cfc 3620 fs_reclaim_release(gfp_mask);
499118e9 3621 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3622
3623 cond_resched();
3624
bba90710
MS
3625 return progress;
3626}
3627
3628/* The really slow allocator path where we enter direct reclaim */
3629static inline struct page *
3630__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3631 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3632 unsigned long *did_some_progress)
bba90710
MS
3633{
3634 struct page *page = NULL;
3635 bool drained = false;
3636
a9263751 3637 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3638 if (unlikely(!(*did_some_progress)))
3639 return NULL;
11e33f6a 3640
9ee493ce 3641retry:
31a6c190 3642 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3643
3644 /*
3645 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3646 * pages are pinned on the per-cpu lists or in high alloc reserves.
3647 * Shrink them them and try again
9ee493ce
MG
3648 */
3649 if (!page && !drained) {
29fac03b 3650 unreserve_highatomic_pageblock(ac, false);
93481ff0 3651 drain_all_pages(NULL);
9ee493ce
MG
3652 drained = true;
3653 goto retry;
3654 }
3655
11e33f6a
MG
3656 return page;
3657}
3658
a9263751 3659static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3660{
3661 struct zoneref *z;
3662 struct zone *zone;
e1a55637 3663 pg_data_t *last_pgdat = NULL;
3a025760 3664
a9263751 3665 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3666 ac->high_zoneidx, ac->nodemask) {
3667 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3668 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3669 last_pgdat = zone->zone_pgdat;
3670 }
3a025760
JW
3671}
3672
c603844b 3673static inline unsigned int
341ce06f
PZ
3674gfp_to_alloc_flags(gfp_t gfp_mask)
3675{
c603844b 3676 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3677
a56f57ff 3678 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3679 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3680
341ce06f
PZ
3681 /*
3682 * The caller may dip into page reserves a bit more if the caller
3683 * cannot run direct reclaim, or if the caller has realtime scheduling
3684 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3685 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3686 */
e6223a3b 3687 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3688
d0164adc 3689 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3690 /*
b104a35d
DR
3691 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3692 * if it can't schedule.
5c3240d9 3693 */
b104a35d 3694 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3695 alloc_flags |= ALLOC_HARDER;
523b9458 3696 /*
b104a35d 3697 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3698 * comment for __cpuset_node_allowed().
523b9458 3699 */
341ce06f 3700 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3701 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3702 alloc_flags |= ALLOC_HARDER;
3703
d95ea5d1 3704#ifdef CONFIG_CMA
43e7a34d 3705 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3706 alloc_flags |= ALLOC_CMA;
3707#endif
341ce06f
PZ
3708 return alloc_flags;
3709}
3710
cd04ae1e 3711static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3712{
cd04ae1e
MH
3713 if (!tsk_is_oom_victim(tsk))
3714 return false;
3715
3716 /*
3717 * !MMU doesn't have oom reaper so give access to memory reserves
3718 * only to the thread with TIF_MEMDIE set
3719 */
3720 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3721 return false;
3722
cd04ae1e
MH
3723 return true;
3724}
3725
3726/*
3727 * Distinguish requests which really need access to full memory
3728 * reserves from oom victims which can live with a portion of it
3729 */
3730static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3731{
3732 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3733 return 0;
31a6c190 3734 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3735 return ALLOC_NO_WATERMARKS;
31a6c190 3736 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3737 return ALLOC_NO_WATERMARKS;
3738 if (!in_interrupt()) {
3739 if (current->flags & PF_MEMALLOC)
3740 return ALLOC_NO_WATERMARKS;
3741 else if (oom_reserves_allowed(current))
3742 return ALLOC_OOM;
3743 }
31a6c190 3744
cd04ae1e
MH
3745 return 0;
3746}
3747
3748bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3749{
3750 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3751}
3752
0a0337e0
MH
3753/*
3754 * Checks whether it makes sense to retry the reclaim to make a forward progress
3755 * for the given allocation request.
491d79ae
JW
3756 *
3757 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3758 * without success, or when we couldn't even meet the watermark if we
3759 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3760 *
3761 * Returns true if a retry is viable or false to enter the oom path.
3762 */
3763static inline bool
3764should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3765 struct alloc_context *ac, int alloc_flags,
423b452e 3766 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3767{
3768 struct zone *zone;
3769 struct zoneref *z;
3770
423b452e
VB
3771 /*
3772 * Costly allocations might have made a progress but this doesn't mean
3773 * their order will become available due to high fragmentation so
3774 * always increment the no progress counter for them
3775 */
3776 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3777 *no_progress_loops = 0;
3778 else
3779 (*no_progress_loops)++;
3780
0a0337e0
MH
3781 /*
3782 * Make sure we converge to OOM if we cannot make any progress
3783 * several times in the row.
3784 */
04c8716f
MK
3785 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3786 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3787 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3788 }
0a0337e0 3789
bca67592
MG
3790 /*
3791 * Keep reclaiming pages while there is a chance this will lead
3792 * somewhere. If none of the target zones can satisfy our allocation
3793 * request even if all reclaimable pages are considered then we are
3794 * screwed and have to go OOM.
0a0337e0
MH
3795 */
3796 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3797 ac->nodemask) {
3798 unsigned long available;
ede37713 3799 unsigned long reclaimable;
d379f01d
MH
3800 unsigned long min_wmark = min_wmark_pages(zone);
3801 bool wmark;
0a0337e0 3802
5a1c84b4 3803 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3804 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3805
3806 /*
491d79ae
JW
3807 * Would the allocation succeed if we reclaimed all
3808 * reclaimable pages?
0a0337e0 3809 */
d379f01d
MH
3810 wmark = __zone_watermark_ok(zone, order, min_wmark,
3811 ac_classzone_idx(ac), alloc_flags, available);
3812 trace_reclaim_retry_zone(z, order, reclaimable,
3813 available, min_wmark, *no_progress_loops, wmark);
3814 if (wmark) {
ede37713
MH
3815 /*
3816 * If we didn't make any progress and have a lot of
3817 * dirty + writeback pages then we should wait for
3818 * an IO to complete to slow down the reclaim and
3819 * prevent from pre mature OOM
3820 */
3821 if (!did_some_progress) {
11fb9989 3822 unsigned long write_pending;
ede37713 3823
5a1c84b4
MG
3824 write_pending = zone_page_state_snapshot(zone,
3825 NR_ZONE_WRITE_PENDING);
ede37713 3826
11fb9989 3827 if (2 * write_pending > reclaimable) {
ede37713
MH
3828 congestion_wait(BLK_RW_ASYNC, HZ/10);
3829 return true;
3830 }
3831 }
5a1c84b4 3832
ede37713
MH
3833 /*
3834 * Memory allocation/reclaim might be called from a WQ
3835 * context and the current implementation of the WQ
3836 * concurrency control doesn't recognize that
3837 * a particular WQ is congested if the worker thread is
3838 * looping without ever sleeping. Therefore we have to
3839 * do a short sleep here rather than calling
3840 * cond_resched().
3841 */
3842 if (current->flags & PF_WQ_WORKER)
3843 schedule_timeout_uninterruptible(1);
3844 else
3845 cond_resched();
3846
0a0337e0
MH
3847 return true;
3848 }
3849 }
3850
3851 return false;
3852}
3853
902b6281
VB
3854static inline bool
3855check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3856{
3857 /*
3858 * It's possible that cpuset's mems_allowed and the nodemask from
3859 * mempolicy don't intersect. This should be normally dealt with by
3860 * policy_nodemask(), but it's possible to race with cpuset update in
3861 * such a way the check therein was true, and then it became false
3862 * before we got our cpuset_mems_cookie here.
3863 * This assumes that for all allocations, ac->nodemask can come only
3864 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3865 * when it does not intersect with the cpuset restrictions) or the
3866 * caller can deal with a violated nodemask.
3867 */
3868 if (cpusets_enabled() && ac->nodemask &&
3869 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3870 ac->nodemask = NULL;
3871 return true;
3872 }
3873
3874 /*
3875 * When updating a task's mems_allowed or mempolicy nodemask, it is
3876 * possible to race with parallel threads in such a way that our
3877 * allocation can fail while the mask is being updated. If we are about
3878 * to fail, check if the cpuset changed during allocation and if so,
3879 * retry.
3880 */
3881 if (read_mems_allowed_retry(cpuset_mems_cookie))
3882 return true;
3883
3884 return false;
3885}
3886
11e33f6a
MG
3887static inline struct page *
3888__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3889 struct alloc_context *ac)
11e33f6a 3890{
d0164adc 3891 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3892 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3893 struct page *page = NULL;
c603844b 3894 unsigned int alloc_flags;
11e33f6a 3895 unsigned long did_some_progress;
5ce9bfef 3896 enum compact_priority compact_priority;
c5d01d0d 3897 enum compact_result compact_result;
5ce9bfef
VB
3898 int compaction_retries;
3899 int no_progress_loops;
63f53dea
MH
3900 unsigned long alloc_start = jiffies;
3901 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3902 unsigned int cpuset_mems_cookie;
cd04ae1e 3903 int reserve_flags;
1da177e4 3904
72807a74
MG
3905 /*
3906 * In the slowpath, we sanity check order to avoid ever trying to
3907 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3908 * be using allocators in order of preference for an area that is
3909 * too large.
3910 */
1fc28b70
MG
3911 if (order >= MAX_ORDER) {
3912 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3913 return NULL;
1fc28b70 3914 }
1da177e4 3915
d0164adc
MG
3916 /*
3917 * We also sanity check to catch abuse of atomic reserves being used by
3918 * callers that are not in atomic context.
3919 */
3920 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3921 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3922 gfp_mask &= ~__GFP_ATOMIC;
3923
5ce9bfef
VB
3924retry_cpuset:
3925 compaction_retries = 0;
3926 no_progress_loops = 0;
3927 compact_priority = DEF_COMPACT_PRIORITY;
3928 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3929
3930 /*
3931 * The fast path uses conservative alloc_flags to succeed only until
3932 * kswapd needs to be woken up, and to avoid the cost of setting up
3933 * alloc_flags precisely. So we do that now.
3934 */
3935 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3936
e47483bc
VB
3937 /*
3938 * We need to recalculate the starting point for the zonelist iterator
3939 * because we might have used different nodemask in the fast path, or
3940 * there was a cpuset modification and we are retrying - otherwise we
3941 * could end up iterating over non-eligible zones endlessly.
3942 */
3943 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3944 ac->high_zoneidx, ac->nodemask);
3945 if (!ac->preferred_zoneref->zone)
3946 goto nopage;
3947
23771235
VB
3948 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3949 wake_all_kswapds(order, ac);
3950
3951 /*
3952 * The adjusted alloc_flags might result in immediate success, so try
3953 * that first
3954 */
3955 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3956 if (page)
3957 goto got_pg;
3958
a8161d1e
VB
3959 /*
3960 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3961 * that we have enough base pages and don't need to reclaim. For non-
3962 * movable high-order allocations, do that as well, as compaction will
3963 * try prevent permanent fragmentation by migrating from blocks of the
3964 * same migratetype.
3965 * Don't try this for allocations that are allowed to ignore
3966 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3967 */
282722b0
VB
3968 if (can_direct_reclaim &&
3969 (costly_order ||
3970 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3971 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3972 page = __alloc_pages_direct_compact(gfp_mask, order,
3973 alloc_flags, ac,
a5508cd8 3974 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3975 &compact_result);
3976 if (page)
3977 goto got_pg;
3978
3eb2771b
VB
3979 /*
3980 * Checks for costly allocations with __GFP_NORETRY, which
3981 * includes THP page fault allocations
3982 */
282722b0 3983 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3984 /*
3985 * If compaction is deferred for high-order allocations,
3986 * it is because sync compaction recently failed. If
3987 * this is the case and the caller requested a THP
3988 * allocation, we do not want to heavily disrupt the
3989 * system, so we fail the allocation instead of entering
3990 * direct reclaim.
3991 */
3992 if (compact_result == COMPACT_DEFERRED)
3993 goto nopage;
3994
a8161d1e 3995 /*
3eb2771b
VB
3996 * Looks like reclaim/compaction is worth trying, but
3997 * sync compaction could be very expensive, so keep
25160354 3998 * using async compaction.
a8161d1e 3999 */
a5508cd8 4000 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4001 }
4002 }
23771235 4003
31a6c190 4004retry:
23771235 4005 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
4006 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4007 wake_all_kswapds(order, ac);
4008
cd04ae1e
MH
4009 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4010 if (reserve_flags)
4011 alloc_flags = reserve_flags;
23771235 4012
e46e7b77
MG
4013 /*
4014 * Reset the zonelist iterators if memory policies can be ignored.
4015 * These allocations are high priority and system rather than user
4016 * orientated.
4017 */
cd04ae1e 4018 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
4019 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4020 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4021 ac->high_zoneidx, ac->nodemask);
4022 }
4023
23771235 4024 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4025 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4026 if (page)
4027 goto got_pg;
1da177e4 4028
d0164adc 4029 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4030 if (!can_direct_reclaim)
1da177e4
LT
4031 goto nopage;
4032
9a67f648
MH
4033 /* Make sure we know about allocations which stall for too long */
4034 if (time_after(jiffies, alloc_start + stall_timeout)) {
82251963 4035 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
9a67f648
MH
4036 "page allocation stalls for %ums, order:%u",
4037 jiffies_to_msecs(jiffies-alloc_start), order);
4038 stall_timeout += 10 * HZ;
33d53103 4039 }
341ce06f 4040
9a67f648
MH
4041 /* Avoid recursion of direct reclaim */
4042 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4043 goto nopage;
4044
a8161d1e
VB
4045 /* Try direct reclaim and then allocating */
4046 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4047 &did_some_progress);
4048 if (page)
4049 goto got_pg;
4050
4051 /* Try direct compaction and then allocating */
a9263751 4052 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4053 compact_priority, &compact_result);
56de7263
MG
4054 if (page)
4055 goto got_pg;
75f30861 4056
9083905a
JW
4057 /* Do not loop if specifically requested */
4058 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4059 goto nopage;
9083905a 4060
0a0337e0
MH
4061 /*
4062 * Do not retry costly high order allocations unless they are
dcda9b04 4063 * __GFP_RETRY_MAYFAIL
0a0337e0 4064 */
dcda9b04 4065 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4066 goto nopage;
0a0337e0 4067
0a0337e0 4068 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4069 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4070 goto retry;
4071
33c2d214
MH
4072 /*
4073 * It doesn't make any sense to retry for the compaction if the order-0
4074 * reclaim is not able to make any progress because the current
4075 * implementation of the compaction depends on the sufficient amount
4076 * of free memory (see __compaction_suitable)
4077 */
4078 if (did_some_progress > 0 &&
86a294a8 4079 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4080 compact_result, &compact_priority,
d9436498 4081 &compaction_retries))
33c2d214
MH
4082 goto retry;
4083
902b6281
VB
4084
4085 /* Deal with possible cpuset update races before we start OOM killing */
4086 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4087 goto retry_cpuset;
4088
9083905a
JW
4089 /* Reclaim has failed us, start killing things */
4090 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4091 if (page)
4092 goto got_pg;
4093
9a67f648 4094 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4095 if (tsk_is_oom_victim(current) &&
4096 (alloc_flags == ALLOC_OOM ||
c288983d 4097 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4098 goto nopage;
4099
9083905a 4100 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4101 if (did_some_progress) {
4102 no_progress_loops = 0;
9083905a 4103 goto retry;
0a0337e0 4104 }
9083905a 4105
1da177e4 4106nopage:
902b6281
VB
4107 /* Deal with possible cpuset update races before we fail */
4108 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4109 goto retry_cpuset;
4110
9a67f648
MH
4111 /*
4112 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4113 * we always retry
4114 */
4115 if (gfp_mask & __GFP_NOFAIL) {
4116 /*
4117 * All existing users of the __GFP_NOFAIL are blockable, so warn
4118 * of any new users that actually require GFP_NOWAIT
4119 */
4120 if (WARN_ON_ONCE(!can_direct_reclaim))
4121 goto fail;
4122
4123 /*
4124 * PF_MEMALLOC request from this context is rather bizarre
4125 * because we cannot reclaim anything and only can loop waiting
4126 * for somebody to do a work for us
4127 */
4128 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4129
4130 /*
4131 * non failing costly orders are a hard requirement which we
4132 * are not prepared for much so let's warn about these users
4133 * so that we can identify them and convert them to something
4134 * else.
4135 */
4136 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4137
6c18ba7a
MH
4138 /*
4139 * Help non-failing allocations by giving them access to memory
4140 * reserves but do not use ALLOC_NO_WATERMARKS because this
4141 * could deplete whole memory reserves which would just make
4142 * the situation worse
4143 */
4144 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4145 if (page)
4146 goto got_pg;
4147
9a67f648
MH
4148 cond_resched();
4149 goto retry;
4150 }
4151fail:
a8e99259 4152 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4153 "page allocation failure: order:%u", order);
1da177e4 4154got_pg:
072bb0aa 4155 return page;
1da177e4 4156}
11e33f6a 4157
9cd75558 4158static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4159 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4160 struct alloc_context *ac, gfp_t *alloc_mask,
4161 unsigned int *alloc_flags)
11e33f6a 4162{
9cd75558 4163 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4164 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4165 ac->nodemask = nodemask;
4166 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4167
682a3385 4168 if (cpusets_enabled()) {
9cd75558 4169 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4170 if (!ac->nodemask)
4171 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4172 else
4173 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4174 }
4175
d92a8cfc
PZ
4176 fs_reclaim_acquire(gfp_mask);
4177 fs_reclaim_release(gfp_mask);
11e33f6a 4178
d0164adc 4179 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4180
4181 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4182 return false;
11e33f6a 4183
9cd75558
MG
4184 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4185 *alloc_flags |= ALLOC_CMA;
4186
4187 return true;
4188}
21bb9bd1 4189
9cd75558
MG
4190/* Determine whether to spread dirty pages and what the first usable zone */
4191static inline void finalise_ac(gfp_t gfp_mask,
4192 unsigned int order, struct alloc_context *ac)
4193{
c9ab0c4f 4194 /* Dirty zone balancing only done in the fast path */
9cd75558 4195 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4196
e46e7b77
MG
4197 /*
4198 * The preferred zone is used for statistics but crucially it is
4199 * also used as the starting point for the zonelist iterator. It
4200 * may get reset for allocations that ignore memory policies.
4201 */
9cd75558
MG
4202 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4203 ac->high_zoneidx, ac->nodemask);
4204}
4205
4206/*
4207 * This is the 'heart' of the zoned buddy allocator.
4208 */
4209struct page *
04ec6264
VB
4210__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4211 nodemask_t *nodemask)
9cd75558
MG
4212{
4213 struct page *page;
4214 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4215 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4216 struct alloc_context ac = { };
4217
4218 gfp_mask &= gfp_allowed_mask;
f19360f0 4219 alloc_mask = gfp_mask;
04ec6264 4220 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4221 return NULL;
4222
4223 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4224
5117f45d 4225 /* First allocation attempt */
a9263751 4226 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4227 if (likely(page))
4228 goto out;
11e33f6a 4229
4fcb0971 4230 /*
7dea19f9
MH
4231 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4232 * resp. GFP_NOIO which has to be inherited for all allocation requests
4233 * from a particular context which has been marked by
4234 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4235 */
7dea19f9 4236 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4237 ac.spread_dirty_pages = false;
23f086f9 4238
4741526b
MG
4239 /*
4240 * Restore the original nodemask if it was potentially replaced with
4241 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4242 */
e47483bc 4243 if (unlikely(ac.nodemask != nodemask))
4741526b 4244 ac.nodemask = nodemask;
16096c25 4245
4fcb0971 4246 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4247
4fcb0971 4248out:
c4159a75
VD
4249 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4250 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4251 __free_pages(page, order);
4252 page = NULL;
4949148a
VD
4253 }
4254
4fcb0971
MG
4255 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4256
11e33f6a 4257 return page;
1da177e4 4258}
d239171e 4259EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4260
4261/*
4262 * Common helper functions.
4263 */
920c7a5d 4264unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4265{
945a1113
AM
4266 struct page *page;
4267
4268 /*
4269 * __get_free_pages() returns a 32-bit address, which cannot represent
4270 * a highmem page
4271 */
4272 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4273
1da177e4
LT
4274 page = alloc_pages(gfp_mask, order);
4275 if (!page)
4276 return 0;
4277 return (unsigned long) page_address(page);
4278}
1da177e4
LT
4279EXPORT_SYMBOL(__get_free_pages);
4280
920c7a5d 4281unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4282{
945a1113 4283 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4284}
1da177e4
LT
4285EXPORT_SYMBOL(get_zeroed_page);
4286
920c7a5d 4287void __free_pages(struct page *page, unsigned int order)
1da177e4 4288{
b5810039 4289 if (put_page_testzero(page)) {
1da177e4 4290 if (order == 0)
2d4894b5 4291 free_unref_page(page);
1da177e4
LT
4292 else
4293 __free_pages_ok(page, order);
4294 }
4295}
4296
4297EXPORT_SYMBOL(__free_pages);
4298
920c7a5d 4299void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4300{
4301 if (addr != 0) {
725d704e 4302 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4303 __free_pages(virt_to_page((void *)addr), order);
4304 }
4305}
4306
4307EXPORT_SYMBOL(free_pages);
4308
b63ae8ca
AD
4309/*
4310 * Page Fragment:
4311 * An arbitrary-length arbitrary-offset area of memory which resides
4312 * within a 0 or higher order page. Multiple fragments within that page
4313 * are individually refcounted, in the page's reference counter.
4314 *
4315 * The page_frag functions below provide a simple allocation framework for
4316 * page fragments. This is used by the network stack and network device
4317 * drivers to provide a backing region of memory for use as either an
4318 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4319 */
2976db80
AD
4320static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4321 gfp_t gfp_mask)
b63ae8ca
AD
4322{
4323 struct page *page = NULL;
4324 gfp_t gfp = gfp_mask;
4325
4326#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4327 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4328 __GFP_NOMEMALLOC;
4329 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4330 PAGE_FRAG_CACHE_MAX_ORDER);
4331 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4332#endif
4333 if (unlikely(!page))
4334 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4335
4336 nc->va = page ? page_address(page) : NULL;
4337
4338 return page;
4339}
4340
2976db80 4341void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4342{
4343 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4344
4345 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4346 unsigned int order = compound_order(page);
4347
44fdffd7 4348 if (order == 0)
2d4894b5 4349 free_unref_page(page);
44fdffd7
AD
4350 else
4351 __free_pages_ok(page, order);
4352 }
4353}
2976db80 4354EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4355
8c2dd3e4
AD
4356void *page_frag_alloc(struct page_frag_cache *nc,
4357 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4358{
4359 unsigned int size = PAGE_SIZE;
4360 struct page *page;
4361 int offset;
4362
4363 if (unlikely(!nc->va)) {
4364refill:
2976db80 4365 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4366 if (!page)
4367 return NULL;
4368
4369#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4370 /* if size can vary use size else just use PAGE_SIZE */
4371 size = nc->size;
4372#endif
4373 /* Even if we own the page, we do not use atomic_set().
4374 * This would break get_page_unless_zero() users.
4375 */
fe896d18 4376 page_ref_add(page, size - 1);
b63ae8ca
AD
4377
4378 /* reset page count bias and offset to start of new frag */
2f064f34 4379 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4380 nc->pagecnt_bias = size;
4381 nc->offset = size;
4382 }
4383
4384 offset = nc->offset - fragsz;
4385 if (unlikely(offset < 0)) {
4386 page = virt_to_page(nc->va);
4387
fe896d18 4388 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4389 goto refill;
4390
4391#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4392 /* if size can vary use size else just use PAGE_SIZE */
4393 size = nc->size;
4394#endif
4395 /* OK, page count is 0, we can safely set it */
fe896d18 4396 set_page_count(page, size);
b63ae8ca
AD
4397
4398 /* reset page count bias and offset to start of new frag */
4399 nc->pagecnt_bias = size;
4400 offset = size - fragsz;
4401 }
4402
4403 nc->pagecnt_bias--;
4404 nc->offset = offset;
4405
4406 return nc->va + offset;
4407}
8c2dd3e4 4408EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4409
4410/*
4411 * Frees a page fragment allocated out of either a compound or order 0 page.
4412 */
8c2dd3e4 4413void page_frag_free(void *addr)
b63ae8ca
AD
4414{
4415 struct page *page = virt_to_head_page(addr);
4416
4417 if (unlikely(put_page_testzero(page)))
4418 __free_pages_ok(page, compound_order(page));
4419}
8c2dd3e4 4420EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4421
d00181b9
KS
4422static void *make_alloc_exact(unsigned long addr, unsigned int order,
4423 size_t size)
ee85c2e1
AK
4424{
4425 if (addr) {
4426 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4427 unsigned long used = addr + PAGE_ALIGN(size);
4428
4429 split_page(virt_to_page((void *)addr), order);
4430 while (used < alloc_end) {
4431 free_page(used);
4432 used += PAGE_SIZE;
4433 }
4434 }
4435 return (void *)addr;
4436}
4437
2be0ffe2
TT
4438/**
4439 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4440 * @size: the number of bytes to allocate
4441 * @gfp_mask: GFP flags for the allocation
4442 *
4443 * This function is similar to alloc_pages(), except that it allocates the
4444 * minimum number of pages to satisfy the request. alloc_pages() can only
4445 * allocate memory in power-of-two pages.
4446 *
4447 * This function is also limited by MAX_ORDER.
4448 *
4449 * Memory allocated by this function must be released by free_pages_exact().
4450 */
4451void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4452{
4453 unsigned int order = get_order(size);
4454 unsigned long addr;
4455
4456 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4457 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4458}
4459EXPORT_SYMBOL(alloc_pages_exact);
4460
ee85c2e1
AK
4461/**
4462 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4463 * pages on a node.
b5e6ab58 4464 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4465 * @size: the number of bytes to allocate
4466 * @gfp_mask: GFP flags for the allocation
4467 *
4468 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4469 * back.
ee85c2e1 4470 */
e1931811 4471void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4472{
d00181b9 4473 unsigned int order = get_order(size);
ee85c2e1
AK
4474 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4475 if (!p)
4476 return NULL;
4477 return make_alloc_exact((unsigned long)page_address(p), order, size);
4478}
ee85c2e1 4479
2be0ffe2
TT
4480/**
4481 * free_pages_exact - release memory allocated via alloc_pages_exact()
4482 * @virt: the value returned by alloc_pages_exact.
4483 * @size: size of allocation, same value as passed to alloc_pages_exact().
4484 *
4485 * Release the memory allocated by a previous call to alloc_pages_exact.
4486 */
4487void free_pages_exact(void *virt, size_t size)
4488{
4489 unsigned long addr = (unsigned long)virt;
4490 unsigned long end = addr + PAGE_ALIGN(size);
4491
4492 while (addr < end) {
4493 free_page(addr);
4494 addr += PAGE_SIZE;
4495 }
4496}
4497EXPORT_SYMBOL(free_pages_exact);
4498
e0fb5815
ZY
4499/**
4500 * nr_free_zone_pages - count number of pages beyond high watermark
4501 * @offset: The zone index of the highest zone
4502 *
4503 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4504 * high watermark within all zones at or below a given zone index. For each
4505 * zone, the number of pages is calculated as:
0e056eb5
MCC
4506 *
4507 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4508 */
ebec3862 4509static unsigned long nr_free_zone_pages(int offset)
1da177e4 4510{
dd1a239f 4511 struct zoneref *z;
54a6eb5c
MG
4512 struct zone *zone;
4513
e310fd43 4514 /* Just pick one node, since fallback list is circular */
ebec3862 4515 unsigned long sum = 0;
1da177e4 4516
0e88460d 4517 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4518
54a6eb5c 4519 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4520 unsigned long size = zone->managed_pages;
41858966 4521 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4522 if (size > high)
4523 sum += size - high;
1da177e4
LT
4524 }
4525
4526 return sum;
4527}
4528
e0fb5815
ZY
4529/**
4530 * nr_free_buffer_pages - count number of pages beyond high watermark
4531 *
4532 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4533 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4534 */
ebec3862 4535unsigned long nr_free_buffer_pages(void)
1da177e4 4536{
af4ca457 4537 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4538}
c2f1a551 4539EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4540
e0fb5815
ZY
4541/**
4542 * nr_free_pagecache_pages - count number of pages beyond high watermark
4543 *
4544 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4545 * high watermark within all zones.
1da177e4 4546 */
ebec3862 4547unsigned long nr_free_pagecache_pages(void)
1da177e4 4548{
2a1e274a 4549 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4550}
08e0f6a9
CL
4551
4552static inline void show_node(struct zone *zone)
1da177e4 4553{
e5adfffc 4554 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4555 printk("Node %d ", zone_to_nid(zone));
1da177e4 4556}
1da177e4 4557
d02bd27b
IR
4558long si_mem_available(void)
4559{
4560 long available;
4561 unsigned long pagecache;
4562 unsigned long wmark_low = 0;
4563 unsigned long pages[NR_LRU_LISTS];
4564 struct zone *zone;
4565 int lru;
4566
4567 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4568 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4569
4570 for_each_zone(zone)
4571 wmark_low += zone->watermark[WMARK_LOW];
4572
4573 /*
4574 * Estimate the amount of memory available for userspace allocations,
4575 * without causing swapping.
4576 */
c41f012a 4577 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4578
4579 /*
4580 * Not all the page cache can be freed, otherwise the system will
4581 * start swapping. Assume at least half of the page cache, or the
4582 * low watermark worth of cache, needs to stay.
4583 */
4584 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4585 pagecache -= min(pagecache / 2, wmark_low);
4586 available += pagecache;
4587
4588 /*
4589 * Part of the reclaimable slab consists of items that are in use,
4590 * and cannot be freed. Cap this estimate at the low watermark.
4591 */
d507e2eb
JW
4592 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4593 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4594 wmark_low);
d02bd27b
IR
4595
4596 if (available < 0)
4597 available = 0;
4598 return available;
4599}
4600EXPORT_SYMBOL_GPL(si_mem_available);
4601
1da177e4
LT
4602void si_meminfo(struct sysinfo *val)
4603{
4604 val->totalram = totalram_pages;
11fb9989 4605 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4606 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4607 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4608 val->totalhigh = totalhigh_pages;
4609 val->freehigh = nr_free_highpages();
1da177e4
LT
4610 val->mem_unit = PAGE_SIZE;
4611}
4612
4613EXPORT_SYMBOL(si_meminfo);
4614
4615#ifdef CONFIG_NUMA
4616void si_meminfo_node(struct sysinfo *val, int nid)
4617{
cdd91a77
JL
4618 int zone_type; /* needs to be signed */
4619 unsigned long managed_pages = 0;
fc2bd799
JK
4620 unsigned long managed_highpages = 0;
4621 unsigned long free_highpages = 0;
1da177e4
LT
4622 pg_data_t *pgdat = NODE_DATA(nid);
4623
cdd91a77
JL
4624 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4625 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4626 val->totalram = managed_pages;
11fb9989 4627 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4628 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4629#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4630 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4631 struct zone *zone = &pgdat->node_zones[zone_type];
4632
4633 if (is_highmem(zone)) {
4634 managed_highpages += zone->managed_pages;
4635 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4636 }
4637 }
4638 val->totalhigh = managed_highpages;
4639 val->freehigh = free_highpages;
98d2b0eb 4640#else
fc2bd799
JK
4641 val->totalhigh = managed_highpages;
4642 val->freehigh = free_highpages;
98d2b0eb 4643#endif
1da177e4
LT
4644 val->mem_unit = PAGE_SIZE;
4645}
4646#endif
4647
ddd588b5 4648/*
7bf02ea2
DR
4649 * Determine whether the node should be displayed or not, depending on whether
4650 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4651 */
9af744d7 4652static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4653{
ddd588b5 4654 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4655 return false;
ddd588b5 4656
9af744d7
MH
4657 /*
4658 * no node mask - aka implicit memory numa policy. Do not bother with
4659 * the synchronization - read_mems_allowed_begin - because we do not
4660 * have to be precise here.
4661 */
4662 if (!nodemask)
4663 nodemask = &cpuset_current_mems_allowed;
4664
4665 return !node_isset(nid, *nodemask);
ddd588b5
DR
4666}
4667
1da177e4
LT
4668#define K(x) ((x) << (PAGE_SHIFT-10))
4669
377e4f16
RV
4670static void show_migration_types(unsigned char type)
4671{
4672 static const char types[MIGRATE_TYPES] = {
4673 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4674 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4675 [MIGRATE_RECLAIMABLE] = 'E',
4676 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4677#ifdef CONFIG_CMA
4678 [MIGRATE_CMA] = 'C',
4679#endif
194159fb 4680#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4681 [MIGRATE_ISOLATE] = 'I',
194159fb 4682#endif
377e4f16
RV
4683 };
4684 char tmp[MIGRATE_TYPES + 1];
4685 char *p = tmp;
4686 int i;
4687
4688 for (i = 0; i < MIGRATE_TYPES; i++) {
4689 if (type & (1 << i))
4690 *p++ = types[i];
4691 }
4692
4693 *p = '\0';
1f84a18f 4694 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4695}
4696
1da177e4
LT
4697/*
4698 * Show free area list (used inside shift_scroll-lock stuff)
4699 * We also calculate the percentage fragmentation. We do this by counting the
4700 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4701 *
4702 * Bits in @filter:
4703 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4704 * cpuset.
1da177e4 4705 */
9af744d7 4706void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4707{
d1bfcdb8 4708 unsigned long free_pcp = 0;
c7241913 4709 int cpu;
1da177e4 4710 struct zone *zone;
599d0c95 4711 pg_data_t *pgdat;
1da177e4 4712
ee99c71c 4713 for_each_populated_zone(zone) {
9af744d7 4714 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4715 continue;
d1bfcdb8 4716
761b0677
KK
4717 for_each_online_cpu(cpu)
4718 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4719 }
4720
a731286d
KM
4721 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4722 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4723 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4724 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4725 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4726 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4727 global_node_page_state(NR_ACTIVE_ANON),
4728 global_node_page_state(NR_INACTIVE_ANON),
4729 global_node_page_state(NR_ISOLATED_ANON),
4730 global_node_page_state(NR_ACTIVE_FILE),
4731 global_node_page_state(NR_INACTIVE_FILE),
4732 global_node_page_state(NR_ISOLATED_FILE),
4733 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4734 global_node_page_state(NR_FILE_DIRTY),
4735 global_node_page_state(NR_WRITEBACK),
4736 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4737 global_node_page_state(NR_SLAB_RECLAIMABLE),
4738 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4739 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4740 global_node_page_state(NR_SHMEM),
c41f012a
MH
4741 global_zone_page_state(NR_PAGETABLE),
4742 global_zone_page_state(NR_BOUNCE),
4743 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4744 free_pcp,
c41f012a 4745 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4746
599d0c95 4747 for_each_online_pgdat(pgdat) {
9af744d7 4748 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4749 continue;
4750
599d0c95
MG
4751 printk("Node %d"
4752 " active_anon:%lukB"
4753 " inactive_anon:%lukB"
4754 " active_file:%lukB"
4755 " inactive_file:%lukB"
4756 " unevictable:%lukB"
4757 " isolated(anon):%lukB"
4758 " isolated(file):%lukB"
50658e2e 4759 " mapped:%lukB"
11fb9989
MG
4760 " dirty:%lukB"
4761 " writeback:%lukB"
4762 " shmem:%lukB"
4763#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4764 " shmem_thp: %lukB"
4765 " shmem_pmdmapped: %lukB"
4766 " anon_thp: %lukB"
4767#endif
4768 " writeback_tmp:%lukB"
4769 " unstable:%lukB"
599d0c95
MG
4770 " all_unreclaimable? %s"
4771 "\n",
4772 pgdat->node_id,
4773 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4774 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4775 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4776 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4777 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4778 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4779 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4780 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4781 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4782 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4783 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4784#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4785 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4786 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4787 * HPAGE_PMD_NR),
4788 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4789#endif
11fb9989
MG
4790 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4791 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4792 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4793 "yes" : "no");
599d0c95
MG
4794 }
4795
ee99c71c 4796 for_each_populated_zone(zone) {
1da177e4
LT
4797 int i;
4798
9af744d7 4799 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4800 continue;
d1bfcdb8
KK
4801
4802 free_pcp = 0;
4803 for_each_online_cpu(cpu)
4804 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4805
1da177e4 4806 show_node(zone);
1f84a18f
JP
4807 printk(KERN_CONT
4808 "%s"
1da177e4
LT
4809 " free:%lukB"
4810 " min:%lukB"
4811 " low:%lukB"
4812 " high:%lukB"
71c799f4
MK
4813 " active_anon:%lukB"
4814 " inactive_anon:%lukB"
4815 " active_file:%lukB"
4816 " inactive_file:%lukB"
4817 " unevictable:%lukB"
5a1c84b4 4818 " writepending:%lukB"
1da177e4 4819 " present:%lukB"
9feedc9d 4820 " managed:%lukB"
4a0aa73f 4821 " mlocked:%lukB"
c6a7f572 4822 " kernel_stack:%lukB"
4a0aa73f 4823 " pagetables:%lukB"
4a0aa73f 4824 " bounce:%lukB"
d1bfcdb8
KK
4825 " free_pcp:%lukB"
4826 " local_pcp:%ukB"
d1ce749a 4827 " free_cma:%lukB"
1da177e4
LT
4828 "\n",
4829 zone->name,
88f5acf8 4830 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4831 K(min_wmark_pages(zone)),
4832 K(low_wmark_pages(zone)),
4833 K(high_wmark_pages(zone)),
71c799f4
MK
4834 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4835 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4836 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4837 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4838 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4839 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4840 K(zone->present_pages),
9feedc9d 4841 K(zone->managed_pages),
4a0aa73f 4842 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4843 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4844 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4845 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4846 K(free_pcp),
4847 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4848 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4849 printk("lowmem_reserve[]:");
4850 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4851 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4852 printk(KERN_CONT "\n");
1da177e4
LT
4853 }
4854
ee99c71c 4855 for_each_populated_zone(zone) {
d00181b9
KS
4856 unsigned int order;
4857 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4858 unsigned char types[MAX_ORDER];
1da177e4 4859
9af744d7 4860 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4861 continue;
1da177e4 4862 show_node(zone);
1f84a18f 4863 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4864
4865 spin_lock_irqsave(&zone->lock, flags);
4866 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4867 struct free_area *area = &zone->free_area[order];
4868 int type;
4869
4870 nr[order] = area->nr_free;
8f9de51a 4871 total += nr[order] << order;
377e4f16
RV
4872
4873 types[order] = 0;
4874 for (type = 0; type < MIGRATE_TYPES; type++) {
4875 if (!list_empty(&area->free_list[type]))
4876 types[order] |= 1 << type;
4877 }
1da177e4
LT
4878 }
4879 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4880 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4881 printk(KERN_CONT "%lu*%lukB ",
4882 nr[order], K(1UL) << order);
377e4f16
RV
4883 if (nr[order])
4884 show_migration_types(types[order]);
4885 }
1f84a18f 4886 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4887 }
4888
949f7ec5
DR
4889 hugetlb_show_meminfo();
4890
11fb9989 4891 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4892
1da177e4
LT
4893 show_swap_cache_info();
4894}
4895
19770b32
MG
4896static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4897{
4898 zoneref->zone = zone;
4899 zoneref->zone_idx = zone_idx(zone);
4900}
4901
1da177e4
LT
4902/*
4903 * Builds allocation fallback zone lists.
1a93205b
CL
4904 *
4905 * Add all populated zones of a node to the zonelist.
1da177e4 4906 */
9d3be21b 4907static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4908{
1a93205b 4909 struct zone *zone;
bc732f1d 4910 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4911 int nr_zones = 0;
02a68a5e
CL
4912
4913 do {
2f6726e5 4914 zone_type--;
070f8032 4915 zone = pgdat->node_zones + zone_type;
6aa303de 4916 if (managed_zone(zone)) {
9d3be21b 4917 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4918 check_highest_zone(zone_type);
1da177e4 4919 }
2f6726e5 4920 } while (zone_type);
bc732f1d 4921
070f8032 4922 return nr_zones;
1da177e4
LT
4923}
4924
4925#ifdef CONFIG_NUMA
f0c0b2b8
KH
4926
4927static int __parse_numa_zonelist_order(char *s)
4928{
c9bff3ee
MH
4929 /*
4930 * We used to support different zonlists modes but they turned
4931 * out to be just not useful. Let's keep the warning in place
4932 * if somebody still use the cmd line parameter so that we do
4933 * not fail it silently
4934 */
4935 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4936 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4937 return -EINVAL;
4938 }
4939 return 0;
4940}
4941
4942static __init int setup_numa_zonelist_order(char *s)
4943{
ecb256f8
VL
4944 if (!s)
4945 return 0;
4946
c9bff3ee 4947 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4948}
4949early_param("numa_zonelist_order", setup_numa_zonelist_order);
4950
c9bff3ee
MH
4951char numa_zonelist_order[] = "Node";
4952
f0c0b2b8
KH
4953/*
4954 * sysctl handler for numa_zonelist_order
4955 */
cccad5b9 4956int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4957 void __user *buffer, size_t *length,
f0c0b2b8
KH
4958 loff_t *ppos)
4959{
c9bff3ee 4960 char *str;
f0c0b2b8
KH
4961 int ret;
4962
c9bff3ee
MH
4963 if (!write)
4964 return proc_dostring(table, write, buffer, length, ppos);
4965 str = memdup_user_nul(buffer, 16);
4966 if (IS_ERR(str))
4967 return PTR_ERR(str);
dacbde09 4968
c9bff3ee
MH
4969 ret = __parse_numa_zonelist_order(str);
4970 kfree(str);
443c6f14 4971 return ret;
f0c0b2b8
KH
4972}
4973
4974
62bc62a8 4975#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4976static int node_load[MAX_NUMNODES];
4977
1da177e4 4978/**
4dc3b16b 4979 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4980 * @node: node whose fallback list we're appending
4981 * @used_node_mask: nodemask_t of already used nodes
4982 *
4983 * We use a number of factors to determine which is the next node that should
4984 * appear on a given node's fallback list. The node should not have appeared
4985 * already in @node's fallback list, and it should be the next closest node
4986 * according to the distance array (which contains arbitrary distance values
4987 * from each node to each node in the system), and should also prefer nodes
4988 * with no CPUs, since presumably they'll have very little allocation pressure
4989 * on them otherwise.
4990 * It returns -1 if no node is found.
4991 */
f0c0b2b8 4992static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4993{
4cf808eb 4994 int n, val;
1da177e4 4995 int min_val = INT_MAX;
00ef2d2f 4996 int best_node = NUMA_NO_NODE;
a70f7302 4997 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4998
4cf808eb
LT
4999 /* Use the local node if we haven't already */
5000 if (!node_isset(node, *used_node_mask)) {
5001 node_set(node, *used_node_mask);
5002 return node;
5003 }
1da177e4 5004
4b0ef1fe 5005 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5006
5007 /* Don't want a node to appear more than once */
5008 if (node_isset(n, *used_node_mask))
5009 continue;
5010
1da177e4
LT
5011 /* Use the distance array to find the distance */
5012 val = node_distance(node, n);
5013
4cf808eb
LT
5014 /* Penalize nodes under us ("prefer the next node") */
5015 val += (n < node);
5016
1da177e4 5017 /* Give preference to headless and unused nodes */
a70f7302
RR
5018 tmp = cpumask_of_node(n);
5019 if (!cpumask_empty(tmp))
1da177e4
LT
5020 val += PENALTY_FOR_NODE_WITH_CPUS;
5021
5022 /* Slight preference for less loaded node */
5023 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5024 val += node_load[n];
5025
5026 if (val < min_val) {
5027 min_val = val;
5028 best_node = n;
5029 }
5030 }
5031
5032 if (best_node >= 0)
5033 node_set(best_node, *used_node_mask);
5034
5035 return best_node;
5036}
5037
f0c0b2b8
KH
5038
5039/*
5040 * Build zonelists ordered by node and zones within node.
5041 * This results in maximum locality--normal zone overflows into local
5042 * DMA zone, if any--but risks exhausting DMA zone.
5043 */
9d3be21b
MH
5044static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5045 unsigned nr_nodes)
1da177e4 5046{
9d3be21b
MH
5047 struct zoneref *zonerefs;
5048 int i;
5049
5050 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5051
5052 for (i = 0; i < nr_nodes; i++) {
5053 int nr_zones;
5054
5055 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5056
9d3be21b
MH
5057 nr_zones = build_zonerefs_node(node, zonerefs);
5058 zonerefs += nr_zones;
5059 }
5060 zonerefs->zone = NULL;
5061 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5062}
5063
523b9458
CL
5064/*
5065 * Build gfp_thisnode zonelists
5066 */
5067static void build_thisnode_zonelists(pg_data_t *pgdat)
5068{
9d3be21b
MH
5069 struct zoneref *zonerefs;
5070 int nr_zones;
523b9458 5071
9d3be21b
MH
5072 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5073 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5074 zonerefs += nr_zones;
5075 zonerefs->zone = NULL;
5076 zonerefs->zone_idx = 0;
523b9458
CL
5077}
5078
f0c0b2b8
KH
5079/*
5080 * Build zonelists ordered by zone and nodes within zones.
5081 * This results in conserving DMA zone[s] until all Normal memory is
5082 * exhausted, but results in overflowing to remote node while memory
5083 * may still exist in local DMA zone.
5084 */
f0c0b2b8 5085
f0c0b2b8
KH
5086static void build_zonelists(pg_data_t *pgdat)
5087{
9d3be21b
MH
5088 static int node_order[MAX_NUMNODES];
5089 int node, load, nr_nodes = 0;
1da177e4 5090 nodemask_t used_mask;
f0c0b2b8 5091 int local_node, prev_node;
1da177e4
LT
5092
5093 /* NUMA-aware ordering of nodes */
5094 local_node = pgdat->node_id;
62bc62a8 5095 load = nr_online_nodes;
1da177e4
LT
5096 prev_node = local_node;
5097 nodes_clear(used_mask);
f0c0b2b8 5098
f0c0b2b8 5099 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5100 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5101 /*
5102 * We don't want to pressure a particular node.
5103 * So adding penalty to the first node in same
5104 * distance group to make it round-robin.
5105 */
957f822a
DR
5106 if (node_distance(local_node, node) !=
5107 node_distance(local_node, prev_node))
f0c0b2b8
KH
5108 node_load[node] = load;
5109
9d3be21b 5110 node_order[nr_nodes++] = node;
1da177e4
LT
5111 prev_node = node;
5112 load--;
1da177e4 5113 }
523b9458 5114
9d3be21b 5115 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5116 build_thisnode_zonelists(pgdat);
1da177e4
LT
5117}
5118
7aac7898
LS
5119#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5120/*
5121 * Return node id of node used for "local" allocations.
5122 * I.e., first node id of first zone in arg node's generic zonelist.
5123 * Used for initializing percpu 'numa_mem', which is used primarily
5124 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5125 */
5126int local_memory_node(int node)
5127{
c33d6c06 5128 struct zoneref *z;
7aac7898 5129
c33d6c06 5130 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5131 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5132 NULL);
5133 return z->zone->node;
7aac7898
LS
5134}
5135#endif
f0c0b2b8 5136
6423aa81
JK
5137static void setup_min_unmapped_ratio(void);
5138static void setup_min_slab_ratio(void);
1da177e4
LT
5139#else /* CONFIG_NUMA */
5140
f0c0b2b8 5141static void build_zonelists(pg_data_t *pgdat)
1da177e4 5142{
19655d34 5143 int node, local_node;
9d3be21b
MH
5144 struct zoneref *zonerefs;
5145 int nr_zones;
1da177e4
LT
5146
5147 local_node = pgdat->node_id;
1da177e4 5148
9d3be21b
MH
5149 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5150 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5151 zonerefs += nr_zones;
1da177e4 5152
54a6eb5c
MG
5153 /*
5154 * Now we build the zonelist so that it contains the zones
5155 * of all the other nodes.
5156 * We don't want to pressure a particular node, so when
5157 * building the zones for node N, we make sure that the
5158 * zones coming right after the local ones are those from
5159 * node N+1 (modulo N)
5160 */
5161 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5162 if (!node_online(node))
5163 continue;
9d3be21b
MH
5164 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5165 zonerefs += nr_zones;
1da177e4 5166 }
54a6eb5c
MG
5167 for (node = 0; node < local_node; node++) {
5168 if (!node_online(node))
5169 continue;
9d3be21b
MH
5170 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5171 zonerefs += nr_zones;
54a6eb5c
MG
5172 }
5173
9d3be21b
MH
5174 zonerefs->zone = NULL;
5175 zonerefs->zone_idx = 0;
1da177e4
LT
5176}
5177
5178#endif /* CONFIG_NUMA */
5179
99dcc3e5
CL
5180/*
5181 * Boot pageset table. One per cpu which is going to be used for all
5182 * zones and all nodes. The parameters will be set in such a way
5183 * that an item put on a list will immediately be handed over to
5184 * the buddy list. This is safe since pageset manipulation is done
5185 * with interrupts disabled.
5186 *
5187 * The boot_pagesets must be kept even after bootup is complete for
5188 * unused processors and/or zones. They do play a role for bootstrapping
5189 * hotplugged processors.
5190 *
5191 * zoneinfo_show() and maybe other functions do
5192 * not check if the processor is online before following the pageset pointer.
5193 * Other parts of the kernel may not check if the zone is available.
5194 */
5195static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5196static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5197static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5198
11cd8638 5199static void __build_all_zonelists(void *data)
1da177e4 5200{
6811378e 5201 int nid;
afb6ebb3 5202 int __maybe_unused cpu;
9adb62a5 5203 pg_data_t *self = data;
b93e0f32
MH
5204 static DEFINE_SPINLOCK(lock);
5205
5206 spin_lock(&lock);
9276b1bc 5207
7f9cfb31
BL
5208#ifdef CONFIG_NUMA
5209 memset(node_load, 0, sizeof(node_load));
5210#endif
9adb62a5 5211
c1152583
WY
5212 /*
5213 * This node is hotadded and no memory is yet present. So just
5214 * building zonelists is fine - no need to touch other nodes.
5215 */
9adb62a5
JL
5216 if (self && !node_online(self->node_id)) {
5217 build_zonelists(self);
c1152583
WY
5218 } else {
5219 for_each_online_node(nid) {
5220 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5221
c1152583
WY
5222 build_zonelists(pgdat);
5223 }
99dcc3e5 5224
7aac7898
LS
5225#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5226 /*
5227 * We now know the "local memory node" for each node--
5228 * i.e., the node of the first zone in the generic zonelist.
5229 * Set up numa_mem percpu variable for on-line cpus. During
5230 * boot, only the boot cpu should be on-line; we'll init the
5231 * secondary cpus' numa_mem as they come on-line. During
5232 * node/memory hotplug, we'll fixup all on-line cpus.
5233 */
d9c9a0b9 5234 for_each_online_cpu(cpu)
7aac7898 5235 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5236#endif
d9c9a0b9 5237 }
b93e0f32
MH
5238
5239 spin_unlock(&lock);
6811378e
YG
5240}
5241
061f67bc
RV
5242static noinline void __init
5243build_all_zonelists_init(void)
5244{
afb6ebb3
MH
5245 int cpu;
5246
061f67bc 5247 __build_all_zonelists(NULL);
afb6ebb3
MH
5248
5249 /*
5250 * Initialize the boot_pagesets that are going to be used
5251 * for bootstrapping processors. The real pagesets for
5252 * each zone will be allocated later when the per cpu
5253 * allocator is available.
5254 *
5255 * boot_pagesets are used also for bootstrapping offline
5256 * cpus if the system is already booted because the pagesets
5257 * are needed to initialize allocators on a specific cpu too.
5258 * F.e. the percpu allocator needs the page allocator which
5259 * needs the percpu allocator in order to allocate its pagesets
5260 * (a chicken-egg dilemma).
5261 */
5262 for_each_possible_cpu(cpu)
5263 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5264
061f67bc
RV
5265 mminit_verify_zonelist();
5266 cpuset_init_current_mems_allowed();
5267}
5268
4eaf3f64 5269/*
4eaf3f64 5270 * unless system_state == SYSTEM_BOOTING.
061f67bc 5271 *
72675e13 5272 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5273 * [protected by SYSTEM_BOOTING].
4eaf3f64 5274 */
72675e13 5275void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5276{
5277 if (system_state == SYSTEM_BOOTING) {
061f67bc 5278 build_all_zonelists_init();
6811378e 5279 } else {
11cd8638 5280 __build_all_zonelists(pgdat);
6811378e
YG
5281 /* cpuset refresh routine should be here */
5282 }
bd1e22b8 5283 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5284 /*
5285 * Disable grouping by mobility if the number of pages in the
5286 * system is too low to allow the mechanism to work. It would be
5287 * more accurate, but expensive to check per-zone. This check is
5288 * made on memory-hotadd so a system can start with mobility
5289 * disabled and enable it later
5290 */
d9c23400 5291 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5292 page_group_by_mobility_disabled = 1;
5293 else
5294 page_group_by_mobility_disabled = 0;
5295
c9bff3ee 5296 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5297 nr_online_nodes,
756a025f
JP
5298 page_group_by_mobility_disabled ? "off" : "on",
5299 vm_total_pages);
f0c0b2b8 5300#ifdef CONFIG_NUMA
f88dfff5 5301 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5302#endif
1da177e4
LT
5303}
5304
1da177e4
LT
5305/*
5306 * Initially all pages are reserved - free ones are freed
5307 * up by free_all_bootmem() once the early boot process is
5308 * done. Non-atomic initialization, single-pass.
5309 */
c09b4240 5310void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5311 unsigned long start_pfn, enum memmap_context context)
1da177e4 5312{
4b94ffdc 5313 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5314 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5315 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5316 unsigned long pfn;
3a80a7fa 5317 unsigned long nr_initialised = 0;
342332e6
TI
5318#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5319 struct memblock_region *r = NULL, *tmp;
5320#endif
1da177e4 5321
22b31eec
HD
5322 if (highest_memmap_pfn < end_pfn - 1)
5323 highest_memmap_pfn = end_pfn - 1;
5324
4b94ffdc
DW
5325 /*
5326 * Honor reservation requested by the driver for this ZONE_DEVICE
5327 * memory
5328 */
5329 if (altmap && start_pfn == altmap->base_pfn)
5330 start_pfn += altmap->reserve;
5331
cbe8dd4a 5332 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5333 /*
b72d0ffb
AM
5334 * There can be holes in boot-time mem_map[]s handed to this
5335 * function. They do not exist on hotplugged memory.
a2f3aa02 5336 */
b72d0ffb
AM
5337 if (context != MEMMAP_EARLY)
5338 goto not_early;
5339
b92df1de
PB
5340 if (!early_pfn_valid(pfn)) {
5341#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5342 /*
5343 * Skip to the pfn preceding the next valid one (or
5344 * end_pfn), such that we hit a valid pfn (or end_pfn)
5345 * on our next iteration of the loop.
5346 */
5347 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5348#endif
b72d0ffb 5349 continue;
b92df1de 5350 }
b72d0ffb
AM
5351 if (!early_pfn_in_nid(pfn, nid))
5352 continue;
5353 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5354 break;
342332e6
TI
5355
5356#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5357 /*
5358 * Check given memblock attribute by firmware which can affect
5359 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5360 * mirrored, it's an overlapped memmap init. skip it.
5361 */
5362 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5363 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5364 for_each_memblock(memory, tmp)
5365 if (pfn < memblock_region_memory_end_pfn(tmp))
5366 break;
5367 r = tmp;
5368 }
5369 if (pfn >= memblock_region_memory_base_pfn(r) &&
5370 memblock_is_mirror(r)) {
5371 /* already initialized as NORMAL */
5372 pfn = memblock_region_memory_end_pfn(r);
5373 continue;
342332e6 5374 }
a2f3aa02 5375 }
b72d0ffb 5376#endif
ac5d2539 5377
b72d0ffb 5378not_early:
ac5d2539
MG
5379 /*
5380 * Mark the block movable so that blocks are reserved for
5381 * movable at startup. This will force kernel allocations
5382 * to reserve their blocks rather than leaking throughout
5383 * the address space during boot when many long-lived
974a786e 5384 * kernel allocations are made.
ac5d2539
MG
5385 *
5386 * bitmap is created for zone's valid pfn range. but memmap
5387 * can be created for invalid pages (for alignment)
5388 * check here not to call set_pageblock_migratetype() against
5389 * pfn out of zone.
5390 */
5391 if (!(pfn & (pageblock_nr_pages - 1))) {
5392 struct page *page = pfn_to_page(pfn);
5393
5394 __init_single_page(page, pfn, zone, nid);
5395 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5396 cond_resched();
ac5d2539
MG
5397 } else {
5398 __init_single_pfn(pfn, zone, nid);
5399 }
1da177e4
LT
5400 }
5401}
5402
1e548deb 5403static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5404{
7aeb09f9 5405 unsigned int order, t;
b2a0ac88
MG
5406 for_each_migratetype_order(order, t) {
5407 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5408 zone->free_area[order].nr_free = 0;
5409 }
5410}
5411
5412#ifndef __HAVE_ARCH_MEMMAP_INIT
5413#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5414 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5415#endif
5416
7cd2b0a3 5417static int zone_batchsize(struct zone *zone)
e7c8d5c9 5418{
3a6be87f 5419#ifdef CONFIG_MMU
e7c8d5c9
CL
5420 int batch;
5421
5422 /*
5423 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5424 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5425 *
5426 * OK, so we don't know how big the cache is. So guess.
5427 */
b40da049 5428 batch = zone->managed_pages / 1024;
ba56e91c
SR
5429 if (batch * PAGE_SIZE > 512 * 1024)
5430 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5431 batch /= 4; /* We effectively *= 4 below */
5432 if (batch < 1)
5433 batch = 1;
5434
5435 /*
0ceaacc9
NP
5436 * Clamp the batch to a 2^n - 1 value. Having a power
5437 * of 2 value was found to be more likely to have
5438 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5439 *
0ceaacc9
NP
5440 * For example if 2 tasks are alternately allocating
5441 * batches of pages, one task can end up with a lot
5442 * of pages of one half of the possible page colors
5443 * and the other with pages of the other colors.
e7c8d5c9 5444 */
9155203a 5445 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5446
e7c8d5c9 5447 return batch;
3a6be87f
DH
5448
5449#else
5450 /* The deferral and batching of frees should be suppressed under NOMMU
5451 * conditions.
5452 *
5453 * The problem is that NOMMU needs to be able to allocate large chunks
5454 * of contiguous memory as there's no hardware page translation to
5455 * assemble apparent contiguous memory from discontiguous pages.
5456 *
5457 * Queueing large contiguous runs of pages for batching, however,
5458 * causes the pages to actually be freed in smaller chunks. As there
5459 * can be a significant delay between the individual batches being
5460 * recycled, this leads to the once large chunks of space being
5461 * fragmented and becoming unavailable for high-order allocations.
5462 */
5463 return 0;
5464#endif
e7c8d5c9
CL
5465}
5466
8d7a8fa9
CS
5467/*
5468 * pcp->high and pcp->batch values are related and dependent on one another:
5469 * ->batch must never be higher then ->high.
5470 * The following function updates them in a safe manner without read side
5471 * locking.
5472 *
5473 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5474 * those fields changing asynchronously (acording the the above rule).
5475 *
5476 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5477 * outside of boot time (or some other assurance that no concurrent updaters
5478 * exist).
5479 */
5480static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5481 unsigned long batch)
5482{
5483 /* start with a fail safe value for batch */
5484 pcp->batch = 1;
5485 smp_wmb();
5486
5487 /* Update high, then batch, in order */
5488 pcp->high = high;
5489 smp_wmb();
5490
5491 pcp->batch = batch;
5492}
5493
3664033c 5494/* a companion to pageset_set_high() */
4008bab7
CS
5495static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5496{
8d7a8fa9 5497 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5498}
5499
88c90dbc 5500static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5501{
5502 struct per_cpu_pages *pcp;
5f8dcc21 5503 int migratetype;
2caaad41 5504
1c6fe946
MD
5505 memset(p, 0, sizeof(*p));
5506
3dfa5721 5507 pcp = &p->pcp;
2caaad41 5508 pcp->count = 0;
5f8dcc21
MG
5509 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5510 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5511}
5512
88c90dbc
CS
5513static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5514{
5515 pageset_init(p);
5516 pageset_set_batch(p, batch);
5517}
5518
8ad4b1fb 5519/*
3664033c 5520 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5521 * to the value high for the pageset p.
5522 */
3664033c 5523static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5524 unsigned long high)
5525{
8d7a8fa9
CS
5526 unsigned long batch = max(1UL, high / 4);
5527 if ((high / 4) > (PAGE_SHIFT * 8))
5528 batch = PAGE_SHIFT * 8;
8ad4b1fb 5529
8d7a8fa9 5530 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5531}
5532
7cd2b0a3
DR
5533static void pageset_set_high_and_batch(struct zone *zone,
5534 struct per_cpu_pageset *pcp)
56cef2b8 5535{
56cef2b8 5536 if (percpu_pagelist_fraction)
3664033c 5537 pageset_set_high(pcp,
56cef2b8
CS
5538 (zone->managed_pages /
5539 percpu_pagelist_fraction));
5540 else
5541 pageset_set_batch(pcp, zone_batchsize(zone));
5542}
5543
169f6c19
CS
5544static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5545{
5546 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5547
5548 pageset_init(pcp);
5549 pageset_set_high_and_batch(zone, pcp);
5550}
5551
72675e13 5552void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5553{
5554 int cpu;
319774e2 5555 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5556 for_each_possible_cpu(cpu)
5557 zone_pageset_init(zone, cpu);
319774e2
WF
5558}
5559
2caaad41 5560/*
99dcc3e5
CL
5561 * Allocate per cpu pagesets and initialize them.
5562 * Before this call only boot pagesets were available.
e7c8d5c9 5563 */
99dcc3e5 5564void __init setup_per_cpu_pageset(void)
e7c8d5c9 5565{
b4911ea2 5566 struct pglist_data *pgdat;
99dcc3e5 5567 struct zone *zone;
e7c8d5c9 5568
319774e2
WF
5569 for_each_populated_zone(zone)
5570 setup_zone_pageset(zone);
b4911ea2
MG
5571
5572 for_each_online_pgdat(pgdat)
5573 pgdat->per_cpu_nodestats =
5574 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5575}
5576
c09b4240 5577static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5578{
99dcc3e5
CL
5579 /*
5580 * per cpu subsystem is not up at this point. The following code
5581 * relies on the ability of the linker to provide the
5582 * offset of a (static) per cpu variable into the per cpu area.
5583 */
5584 zone->pageset = &boot_pageset;
ed8ece2e 5585
b38a8725 5586 if (populated_zone(zone))
99dcc3e5
CL
5587 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5588 zone->name, zone->present_pages,
5589 zone_batchsize(zone));
ed8ece2e
DH
5590}
5591
dc0bbf3b 5592void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5593 unsigned long zone_start_pfn,
b171e409 5594 unsigned long size)
ed8ece2e
DH
5595{
5596 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5597
ed8ece2e
DH
5598 pgdat->nr_zones = zone_idx(zone) + 1;
5599
ed8ece2e
DH
5600 zone->zone_start_pfn = zone_start_pfn;
5601
708614e6
MG
5602 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5603 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5604 pgdat->node_id,
5605 (unsigned long)zone_idx(zone),
5606 zone_start_pfn, (zone_start_pfn + size));
5607
1e548deb 5608 zone_init_free_lists(zone);
9dcb8b68 5609 zone->initialized = 1;
ed8ece2e
DH
5610}
5611
0ee332c1 5612#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5613#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5614
c713216d
MG
5615/*
5616 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5617 */
8a942fde
MG
5618int __meminit __early_pfn_to_nid(unsigned long pfn,
5619 struct mminit_pfnnid_cache *state)
c713216d 5620{
c13291a5 5621 unsigned long start_pfn, end_pfn;
e76b63f8 5622 int nid;
7c243c71 5623
8a942fde
MG
5624 if (state->last_start <= pfn && pfn < state->last_end)
5625 return state->last_nid;
c713216d 5626
e76b63f8
YL
5627 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5628 if (nid != -1) {
8a942fde
MG
5629 state->last_start = start_pfn;
5630 state->last_end = end_pfn;
5631 state->last_nid = nid;
e76b63f8
YL
5632 }
5633
5634 return nid;
c713216d
MG
5635}
5636#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5637
c713216d 5638/**
6782832e 5639 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5640 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5641 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5642 *
7d018176
ZZ
5643 * If an architecture guarantees that all ranges registered contain no holes
5644 * and may be freed, this this function may be used instead of calling
5645 * memblock_free_early_nid() manually.
c713216d 5646 */
c13291a5 5647void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5648{
c13291a5
TH
5649 unsigned long start_pfn, end_pfn;
5650 int i, this_nid;
edbe7d23 5651
c13291a5
TH
5652 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5653 start_pfn = min(start_pfn, max_low_pfn);
5654 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5655
c13291a5 5656 if (start_pfn < end_pfn)
6782832e
SS
5657 memblock_free_early_nid(PFN_PHYS(start_pfn),
5658 (end_pfn - start_pfn) << PAGE_SHIFT,
5659 this_nid);
edbe7d23 5660 }
edbe7d23 5661}
edbe7d23 5662
c713216d
MG
5663/**
5664 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5665 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5666 *
7d018176
ZZ
5667 * If an architecture guarantees that all ranges registered contain no holes and may
5668 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5669 */
5670void __init sparse_memory_present_with_active_regions(int nid)
5671{
c13291a5
TH
5672 unsigned long start_pfn, end_pfn;
5673 int i, this_nid;
c713216d 5674
c13291a5
TH
5675 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5676 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5677}
5678
5679/**
5680 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5681 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5682 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5683 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5684 *
5685 * It returns the start and end page frame of a node based on information
7d018176 5686 * provided by memblock_set_node(). If called for a node
c713216d 5687 * with no available memory, a warning is printed and the start and end
88ca3b94 5688 * PFNs will be 0.
c713216d 5689 */
a3142c8e 5690void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5691 unsigned long *start_pfn, unsigned long *end_pfn)
5692{
c13291a5 5693 unsigned long this_start_pfn, this_end_pfn;
c713216d 5694 int i;
c13291a5 5695
c713216d
MG
5696 *start_pfn = -1UL;
5697 *end_pfn = 0;
5698
c13291a5
TH
5699 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5700 *start_pfn = min(*start_pfn, this_start_pfn);
5701 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5702 }
5703
633c0666 5704 if (*start_pfn == -1UL)
c713216d 5705 *start_pfn = 0;
c713216d
MG
5706}
5707
2a1e274a
MG
5708/*
5709 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5710 * assumption is made that zones within a node are ordered in monotonic
5711 * increasing memory addresses so that the "highest" populated zone is used
5712 */
b69a7288 5713static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5714{
5715 int zone_index;
5716 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5717 if (zone_index == ZONE_MOVABLE)
5718 continue;
5719
5720 if (arch_zone_highest_possible_pfn[zone_index] >
5721 arch_zone_lowest_possible_pfn[zone_index])
5722 break;
5723 }
5724
5725 VM_BUG_ON(zone_index == -1);
5726 movable_zone = zone_index;
5727}
5728
5729/*
5730 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5731 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5732 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5733 * in each node depending on the size of each node and how evenly kernelcore
5734 * is distributed. This helper function adjusts the zone ranges
5735 * provided by the architecture for a given node by using the end of the
5736 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5737 * zones within a node are in order of monotonic increases memory addresses
5738 */
b69a7288 5739static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5740 unsigned long zone_type,
5741 unsigned long node_start_pfn,
5742 unsigned long node_end_pfn,
5743 unsigned long *zone_start_pfn,
5744 unsigned long *zone_end_pfn)
5745{
5746 /* Only adjust if ZONE_MOVABLE is on this node */
5747 if (zone_movable_pfn[nid]) {
5748 /* Size ZONE_MOVABLE */
5749 if (zone_type == ZONE_MOVABLE) {
5750 *zone_start_pfn = zone_movable_pfn[nid];
5751 *zone_end_pfn = min(node_end_pfn,
5752 arch_zone_highest_possible_pfn[movable_zone]);
5753
e506b996
XQ
5754 /* Adjust for ZONE_MOVABLE starting within this range */
5755 } else if (!mirrored_kernelcore &&
5756 *zone_start_pfn < zone_movable_pfn[nid] &&
5757 *zone_end_pfn > zone_movable_pfn[nid]) {
5758 *zone_end_pfn = zone_movable_pfn[nid];
5759
2a1e274a
MG
5760 /* Check if this whole range is within ZONE_MOVABLE */
5761 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5762 *zone_start_pfn = *zone_end_pfn;
5763 }
5764}
5765
c713216d
MG
5766/*
5767 * Return the number of pages a zone spans in a node, including holes
5768 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5769 */
6ea6e688 5770static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5771 unsigned long zone_type,
7960aedd
ZY
5772 unsigned long node_start_pfn,
5773 unsigned long node_end_pfn,
d91749c1
TI
5774 unsigned long *zone_start_pfn,
5775 unsigned long *zone_end_pfn,
c713216d
MG
5776 unsigned long *ignored)
5777{
b5685e92 5778 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5779 if (!node_start_pfn && !node_end_pfn)
5780 return 0;
5781
7960aedd 5782 /* Get the start and end of the zone */
d91749c1
TI
5783 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5784 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5785 adjust_zone_range_for_zone_movable(nid, zone_type,
5786 node_start_pfn, node_end_pfn,
d91749c1 5787 zone_start_pfn, zone_end_pfn);
c713216d
MG
5788
5789 /* Check that this node has pages within the zone's required range */
d91749c1 5790 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5791 return 0;
5792
5793 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5794 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5795 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5796
5797 /* Return the spanned pages */
d91749c1 5798 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5799}
5800
5801/*
5802 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5803 * then all holes in the requested range will be accounted for.
c713216d 5804 */
32996250 5805unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5806 unsigned long range_start_pfn,
5807 unsigned long range_end_pfn)
5808{
96e907d1
TH
5809 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5810 unsigned long start_pfn, end_pfn;
5811 int i;
c713216d 5812
96e907d1
TH
5813 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5814 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5815 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5816 nr_absent -= end_pfn - start_pfn;
c713216d 5817 }
96e907d1 5818 return nr_absent;
c713216d
MG
5819}
5820
5821/**
5822 * absent_pages_in_range - Return number of page frames in holes within a range
5823 * @start_pfn: The start PFN to start searching for holes
5824 * @end_pfn: The end PFN to stop searching for holes
5825 *
88ca3b94 5826 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5827 */
5828unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5829 unsigned long end_pfn)
5830{
5831 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5832}
5833
5834/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5835static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5836 unsigned long zone_type,
7960aedd
ZY
5837 unsigned long node_start_pfn,
5838 unsigned long node_end_pfn,
c713216d
MG
5839 unsigned long *ignored)
5840{
96e907d1
TH
5841 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5842 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5843 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5844 unsigned long nr_absent;
9c7cd687 5845
b5685e92 5846 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5847 if (!node_start_pfn && !node_end_pfn)
5848 return 0;
5849
96e907d1
TH
5850 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5851 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5852
2a1e274a
MG
5853 adjust_zone_range_for_zone_movable(nid, zone_type,
5854 node_start_pfn, node_end_pfn,
5855 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5856 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5857
5858 /*
5859 * ZONE_MOVABLE handling.
5860 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5861 * and vice versa.
5862 */
e506b996
XQ
5863 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5864 unsigned long start_pfn, end_pfn;
5865 struct memblock_region *r;
5866
5867 for_each_memblock(memory, r) {
5868 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5869 zone_start_pfn, zone_end_pfn);
5870 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5871 zone_start_pfn, zone_end_pfn);
5872
5873 if (zone_type == ZONE_MOVABLE &&
5874 memblock_is_mirror(r))
5875 nr_absent += end_pfn - start_pfn;
5876
5877 if (zone_type == ZONE_NORMAL &&
5878 !memblock_is_mirror(r))
5879 nr_absent += end_pfn - start_pfn;
342332e6
TI
5880 }
5881 }
5882
5883 return nr_absent;
c713216d 5884}
0e0b864e 5885
0ee332c1 5886#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5887static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5888 unsigned long zone_type,
7960aedd
ZY
5889 unsigned long node_start_pfn,
5890 unsigned long node_end_pfn,
d91749c1
TI
5891 unsigned long *zone_start_pfn,
5892 unsigned long *zone_end_pfn,
c713216d
MG
5893 unsigned long *zones_size)
5894{
d91749c1
TI
5895 unsigned int zone;
5896
5897 *zone_start_pfn = node_start_pfn;
5898 for (zone = 0; zone < zone_type; zone++)
5899 *zone_start_pfn += zones_size[zone];
5900
5901 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5902
c713216d
MG
5903 return zones_size[zone_type];
5904}
5905
6ea6e688 5906static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5907 unsigned long zone_type,
7960aedd
ZY
5908 unsigned long node_start_pfn,
5909 unsigned long node_end_pfn,
c713216d
MG
5910 unsigned long *zholes_size)
5911{
5912 if (!zholes_size)
5913 return 0;
5914
5915 return zholes_size[zone_type];
5916}
20e6926d 5917
0ee332c1 5918#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5919
a3142c8e 5920static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5921 unsigned long node_start_pfn,
5922 unsigned long node_end_pfn,
5923 unsigned long *zones_size,
5924 unsigned long *zholes_size)
c713216d 5925{
febd5949 5926 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5927 enum zone_type i;
5928
febd5949
GZ
5929 for (i = 0; i < MAX_NR_ZONES; i++) {
5930 struct zone *zone = pgdat->node_zones + i;
d91749c1 5931 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5932 unsigned long size, real_size;
c713216d 5933
febd5949
GZ
5934 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5935 node_start_pfn,
5936 node_end_pfn,
d91749c1
TI
5937 &zone_start_pfn,
5938 &zone_end_pfn,
febd5949
GZ
5939 zones_size);
5940 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5941 node_start_pfn, node_end_pfn,
5942 zholes_size);
d91749c1
TI
5943 if (size)
5944 zone->zone_start_pfn = zone_start_pfn;
5945 else
5946 zone->zone_start_pfn = 0;
febd5949
GZ
5947 zone->spanned_pages = size;
5948 zone->present_pages = real_size;
5949
5950 totalpages += size;
5951 realtotalpages += real_size;
5952 }
5953
5954 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5955 pgdat->node_present_pages = realtotalpages;
5956 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5957 realtotalpages);
5958}
5959
835c134e
MG
5960#ifndef CONFIG_SPARSEMEM
5961/*
5962 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5963 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5964 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5965 * round what is now in bits to nearest long in bits, then return it in
5966 * bytes.
5967 */
7c45512d 5968static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5969{
5970 unsigned long usemapsize;
5971
7c45512d 5972 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5973 usemapsize = roundup(zonesize, pageblock_nr_pages);
5974 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5975 usemapsize *= NR_PAGEBLOCK_BITS;
5976 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5977
5978 return usemapsize / 8;
5979}
5980
5981static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5982 struct zone *zone,
5983 unsigned long zone_start_pfn,
5984 unsigned long zonesize)
835c134e 5985{
7c45512d 5986 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5987 zone->pageblock_flags = NULL;
58a01a45 5988 if (usemapsize)
6782832e
SS
5989 zone->pageblock_flags =
5990 memblock_virt_alloc_node_nopanic(usemapsize,
5991 pgdat->node_id);
835c134e
MG
5992}
5993#else
7c45512d
LT
5994static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5995 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5996#endif /* CONFIG_SPARSEMEM */
5997
d9c23400 5998#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5999
d9c23400 6000/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 6001void __paginginit set_pageblock_order(void)
d9c23400 6002{
955c1cd7
AM
6003 unsigned int order;
6004
d9c23400
MG
6005 /* Check that pageblock_nr_pages has not already been setup */
6006 if (pageblock_order)
6007 return;
6008
955c1cd7
AM
6009 if (HPAGE_SHIFT > PAGE_SHIFT)
6010 order = HUGETLB_PAGE_ORDER;
6011 else
6012 order = MAX_ORDER - 1;
6013
d9c23400
MG
6014 /*
6015 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6016 * This value may be variable depending on boot parameters on IA64 and
6017 * powerpc.
d9c23400
MG
6018 */
6019 pageblock_order = order;
6020}
6021#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6022
ba72cb8c
MG
6023/*
6024 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6025 * is unused as pageblock_order is set at compile-time. See
6026 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6027 * the kernel config
ba72cb8c 6028 */
15ca220e 6029void __paginginit set_pageblock_order(void)
ba72cb8c 6030{
ba72cb8c 6031}
d9c23400
MG
6032
6033#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6034
01cefaef
JL
6035static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6036 unsigned long present_pages)
6037{
6038 unsigned long pages = spanned_pages;
6039
6040 /*
6041 * Provide a more accurate estimation if there are holes within
6042 * the zone and SPARSEMEM is in use. If there are holes within the
6043 * zone, each populated memory region may cost us one or two extra
6044 * memmap pages due to alignment because memmap pages for each
89d790ab 6045 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6046 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6047 */
6048 if (spanned_pages > present_pages + (present_pages >> 4) &&
6049 IS_ENABLED(CONFIG_SPARSEMEM))
6050 pages = present_pages;
6051
6052 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6053}
6054
1da177e4
LT
6055/*
6056 * Set up the zone data structures:
6057 * - mark all pages reserved
6058 * - mark all memory queues empty
6059 * - clear the memory bitmaps
6527af5d
MK
6060 *
6061 * NOTE: pgdat should get zeroed by caller.
1da177e4 6062 */
7f3eb55b 6063static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6064{
2f1b6248 6065 enum zone_type j;
ed8ece2e 6066 int nid = pgdat->node_id;
1da177e4 6067
208d54e5 6068 pgdat_resize_init(pgdat);
8177a420
AA
6069#ifdef CONFIG_NUMA_BALANCING
6070 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6071 pgdat->numabalancing_migrate_nr_pages = 0;
6072 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6073#endif
6074#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6075 spin_lock_init(&pgdat->split_queue_lock);
6076 INIT_LIST_HEAD(&pgdat->split_queue);
6077 pgdat->split_queue_len = 0;
8177a420 6078#endif
1da177e4 6079 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6080 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6081#ifdef CONFIG_COMPACTION
6082 init_waitqueue_head(&pgdat->kcompactd_wait);
6083#endif
eefa864b 6084 pgdat_page_ext_init(pgdat);
a52633d8 6085 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6086 lruvec_init(node_lruvec(pgdat));
5f63b720 6087
385386cf
JW
6088 pgdat->per_cpu_nodestats = &boot_nodestats;
6089
1da177e4
LT
6090 for (j = 0; j < MAX_NR_ZONES; j++) {
6091 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6092 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6093 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6094
febd5949
GZ
6095 size = zone->spanned_pages;
6096 realsize = freesize = zone->present_pages;
1da177e4 6097
0e0b864e 6098 /*
9feedc9d 6099 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6100 * is used by this zone for memmap. This affects the watermark
6101 * and per-cpu initialisations
6102 */
01cefaef 6103 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6104 if (!is_highmem_idx(j)) {
6105 if (freesize >= memmap_pages) {
6106 freesize -= memmap_pages;
6107 if (memmap_pages)
6108 printk(KERN_DEBUG
6109 " %s zone: %lu pages used for memmap\n",
6110 zone_names[j], memmap_pages);
6111 } else
1170532b 6112 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6113 zone_names[j], memmap_pages, freesize);
6114 }
0e0b864e 6115
6267276f 6116 /* Account for reserved pages */
9feedc9d
JL
6117 if (j == 0 && freesize > dma_reserve) {
6118 freesize -= dma_reserve;
d903ef9f 6119 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6120 zone_names[0], dma_reserve);
0e0b864e
MG
6121 }
6122
98d2b0eb 6123 if (!is_highmem_idx(j))
9feedc9d 6124 nr_kernel_pages += freesize;
01cefaef
JL
6125 /* Charge for highmem memmap if there are enough kernel pages */
6126 else if (nr_kernel_pages > memmap_pages * 2)
6127 nr_kernel_pages -= memmap_pages;
9feedc9d 6128 nr_all_pages += freesize;
1da177e4 6129
9feedc9d
JL
6130 /*
6131 * Set an approximate value for lowmem here, it will be adjusted
6132 * when the bootmem allocator frees pages into the buddy system.
6133 * And all highmem pages will be managed by the buddy system.
6134 */
6135 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6136#ifdef CONFIG_NUMA
d5f541ed 6137 zone->node = nid;
9614634f 6138#endif
1da177e4 6139 zone->name = zone_names[j];
a52633d8 6140 zone->zone_pgdat = pgdat;
1da177e4 6141 spin_lock_init(&zone->lock);
bdc8cb98 6142 zone_seqlock_init(zone);
ed8ece2e 6143 zone_pcp_init(zone);
81c0a2bb 6144
1da177e4
LT
6145 if (!size)
6146 continue;
6147
955c1cd7 6148 set_pageblock_order();
7c45512d 6149 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6150 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6151 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6152 }
6153}
6154
bd721ea7 6155static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6156{
b0aeba74 6157 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6158 unsigned long __maybe_unused offset = 0;
6159
1da177e4
LT
6160 /* Skip empty nodes */
6161 if (!pgdat->node_spanned_pages)
6162 return;
6163
d41dee36 6164#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6165 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6166 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6167 /* ia64 gets its own node_mem_map, before this, without bootmem */
6168 if (!pgdat->node_mem_map) {
b0aeba74 6169 unsigned long size, end;
d41dee36
AW
6170 struct page *map;
6171
e984bb43
BP
6172 /*
6173 * The zone's endpoints aren't required to be MAX_ORDER
6174 * aligned but the node_mem_map endpoints must be in order
6175 * for the buddy allocator to function correctly.
6176 */
108bcc96 6177 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6178 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6179 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6180 map = alloc_remap(pgdat->node_id, size);
6181 if (!map)
6782832e
SS
6182 map = memblock_virt_alloc_node_nopanic(size,
6183 pgdat->node_id);
a1c34a3b 6184 pgdat->node_mem_map = map + offset;
1da177e4 6185 }
12d810c1 6186#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6187 /*
6188 * With no DISCONTIG, the global mem_map is just set as node 0's
6189 */
c713216d 6190 if (pgdat == NODE_DATA(0)) {
1da177e4 6191 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6192#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6193 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6194 mem_map -= offset;
0ee332c1 6195#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6196 }
1da177e4 6197#endif
d41dee36 6198#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6199}
6200
9109fb7b
JW
6201void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6202 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6203{
9109fb7b 6204 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6205 unsigned long start_pfn = 0;
6206 unsigned long end_pfn = 0;
9109fb7b 6207
88fdf75d 6208 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6209 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6210
1da177e4
LT
6211 pgdat->node_id = nid;
6212 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6213 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6215 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6216 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6217 (u64)start_pfn << PAGE_SHIFT,
6218 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6219#else
6220 start_pfn = node_start_pfn;
7960aedd
ZY
6221#endif
6222 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6223 zones_size, zholes_size);
1da177e4
LT
6224
6225 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6226#ifdef CONFIG_FLAT_NODE_MEM_MAP
6227 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6228 nid, (unsigned long)pgdat,
6229 (unsigned long)pgdat->node_mem_map);
6230#endif
1da177e4 6231
864b9a39 6232 reset_deferred_meminit(pgdat);
7f3eb55b 6233 free_area_init_core(pgdat);
1da177e4
LT
6234}
6235
a4a3ede2
PT
6236#ifdef CONFIG_HAVE_MEMBLOCK
6237/*
6238 * Only struct pages that are backed by physical memory are zeroed and
6239 * initialized by going through __init_single_page(). But, there are some
6240 * struct pages which are reserved in memblock allocator and their fields
6241 * may be accessed (for example page_to_pfn() on some configuration accesses
6242 * flags). We must explicitly zero those struct pages.
6243 */
6244void __paginginit zero_resv_unavail(void)
6245{
6246 phys_addr_t start, end;
6247 unsigned long pfn;
6248 u64 i, pgcnt;
6249
6250 /*
6251 * Loop through ranges that are reserved, but do not have reported
6252 * physical memory backing.
6253 */
6254 pgcnt = 0;
6255 for_each_resv_unavail_range(i, &start, &end) {
6256 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6257 mm_zero_struct_page(pfn_to_page(pfn));
6258 pgcnt++;
6259 }
6260 }
6261
6262 /*
6263 * Struct pages that do not have backing memory. This could be because
6264 * firmware is using some of this memory, or for some other reasons.
6265 * Once memblock is changed so such behaviour is not allowed: i.e.
6266 * list of "reserved" memory must be a subset of list of "memory", then
6267 * this code can be removed.
6268 */
6269 if (pgcnt)
6270 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6271}
6272#endif /* CONFIG_HAVE_MEMBLOCK */
6273
0ee332c1 6274#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6275
6276#if MAX_NUMNODES > 1
6277/*
6278 * Figure out the number of possible node ids.
6279 */
f9872caf 6280void __init setup_nr_node_ids(void)
418508c1 6281{
904a9553 6282 unsigned int highest;
418508c1 6283
904a9553 6284 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6285 nr_node_ids = highest + 1;
6286}
418508c1
MS
6287#endif
6288
1e01979c
TH
6289/**
6290 * node_map_pfn_alignment - determine the maximum internode alignment
6291 *
6292 * This function should be called after node map is populated and sorted.
6293 * It calculates the maximum power of two alignment which can distinguish
6294 * all the nodes.
6295 *
6296 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6297 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6298 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6299 * shifted, 1GiB is enough and this function will indicate so.
6300 *
6301 * This is used to test whether pfn -> nid mapping of the chosen memory
6302 * model has fine enough granularity to avoid incorrect mapping for the
6303 * populated node map.
6304 *
6305 * Returns the determined alignment in pfn's. 0 if there is no alignment
6306 * requirement (single node).
6307 */
6308unsigned long __init node_map_pfn_alignment(void)
6309{
6310 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6311 unsigned long start, end, mask;
1e01979c 6312 int last_nid = -1;
c13291a5 6313 int i, nid;
1e01979c 6314
c13291a5 6315 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6316 if (!start || last_nid < 0 || last_nid == nid) {
6317 last_nid = nid;
6318 last_end = end;
6319 continue;
6320 }
6321
6322 /*
6323 * Start with a mask granular enough to pin-point to the
6324 * start pfn and tick off bits one-by-one until it becomes
6325 * too coarse to separate the current node from the last.
6326 */
6327 mask = ~((1 << __ffs(start)) - 1);
6328 while (mask && last_end <= (start & (mask << 1)))
6329 mask <<= 1;
6330
6331 /* accumulate all internode masks */
6332 accl_mask |= mask;
6333 }
6334
6335 /* convert mask to number of pages */
6336 return ~accl_mask + 1;
6337}
6338
a6af2bc3 6339/* Find the lowest pfn for a node */
b69a7288 6340static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6341{
a6af2bc3 6342 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6343 unsigned long start_pfn;
6344 int i;
1abbfb41 6345
c13291a5
TH
6346 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6347 min_pfn = min(min_pfn, start_pfn);
c713216d 6348
a6af2bc3 6349 if (min_pfn == ULONG_MAX) {
1170532b 6350 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6351 return 0;
6352 }
6353
6354 return min_pfn;
c713216d
MG
6355}
6356
6357/**
6358 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6359 *
6360 * It returns the minimum PFN based on information provided via
7d018176 6361 * memblock_set_node().
c713216d
MG
6362 */
6363unsigned long __init find_min_pfn_with_active_regions(void)
6364{
6365 return find_min_pfn_for_node(MAX_NUMNODES);
6366}
6367
37b07e41
LS
6368/*
6369 * early_calculate_totalpages()
6370 * Sum pages in active regions for movable zone.
4b0ef1fe 6371 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6372 */
484f51f8 6373static unsigned long __init early_calculate_totalpages(void)
7e63efef 6374{
7e63efef 6375 unsigned long totalpages = 0;
c13291a5
TH
6376 unsigned long start_pfn, end_pfn;
6377 int i, nid;
6378
6379 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6380 unsigned long pages = end_pfn - start_pfn;
7e63efef 6381
37b07e41
LS
6382 totalpages += pages;
6383 if (pages)
4b0ef1fe 6384 node_set_state(nid, N_MEMORY);
37b07e41 6385 }
b8af2941 6386 return totalpages;
7e63efef
MG
6387}
6388
2a1e274a
MG
6389/*
6390 * Find the PFN the Movable zone begins in each node. Kernel memory
6391 * is spread evenly between nodes as long as the nodes have enough
6392 * memory. When they don't, some nodes will have more kernelcore than
6393 * others
6394 */
b224ef85 6395static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6396{
6397 int i, nid;
6398 unsigned long usable_startpfn;
6399 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6400 /* save the state before borrow the nodemask */
4b0ef1fe 6401 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6402 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6403 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6404 struct memblock_region *r;
b2f3eebe
TC
6405
6406 /* Need to find movable_zone earlier when movable_node is specified. */
6407 find_usable_zone_for_movable();
6408
6409 /*
6410 * If movable_node is specified, ignore kernelcore and movablecore
6411 * options.
6412 */
6413 if (movable_node_is_enabled()) {
136199f0
EM
6414 for_each_memblock(memory, r) {
6415 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6416 continue;
6417
136199f0 6418 nid = r->nid;
b2f3eebe 6419
136199f0 6420 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6421 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6422 min(usable_startpfn, zone_movable_pfn[nid]) :
6423 usable_startpfn;
6424 }
6425
6426 goto out2;
6427 }
2a1e274a 6428
342332e6
TI
6429 /*
6430 * If kernelcore=mirror is specified, ignore movablecore option
6431 */
6432 if (mirrored_kernelcore) {
6433 bool mem_below_4gb_not_mirrored = false;
6434
6435 for_each_memblock(memory, r) {
6436 if (memblock_is_mirror(r))
6437 continue;
6438
6439 nid = r->nid;
6440
6441 usable_startpfn = memblock_region_memory_base_pfn(r);
6442
6443 if (usable_startpfn < 0x100000) {
6444 mem_below_4gb_not_mirrored = true;
6445 continue;
6446 }
6447
6448 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6449 min(usable_startpfn, zone_movable_pfn[nid]) :
6450 usable_startpfn;
6451 }
6452
6453 if (mem_below_4gb_not_mirrored)
6454 pr_warn("This configuration results in unmirrored kernel memory.");
6455
6456 goto out2;
6457 }
6458
7e63efef 6459 /*
b2f3eebe 6460 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6461 * kernelcore that corresponds so that memory usable for
6462 * any allocation type is evenly spread. If both kernelcore
6463 * and movablecore are specified, then the value of kernelcore
6464 * will be used for required_kernelcore if it's greater than
6465 * what movablecore would have allowed.
6466 */
6467 if (required_movablecore) {
7e63efef
MG
6468 unsigned long corepages;
6469
6470 /*
6471 * Round-up so that ZONE_MOVABLE is at least as large as what
6472 * was requested by the user
6473 */
6474 required_movablecore =
6475 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6476 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6477 corepages = totalpages - required_movablecore;
6478
6479 required_kernelcore = max(required_kernelcore, corepages);
6480 }
6481
bde304bd
XQ
6482 /*
6483 * If kernelcore was not specified or kernelcore size is larger
6484 * than totalpages, there is no ZONE_MOVABLE.
6485 */
6486 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6487 goto out;
2a1e274a
MG
6488
6489 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6490 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6491
6492restart:
6493 /* Spread kernelcore memory as evenly as possible throughout nodes */
6494 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6495 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6496 unsigned long start_pfn, end_pfn;
6497
2a1e274a
MG
6498 /*
6499 * Recalculate kernelcore_node if the division per node
6500 * now exceeds what is necessary to satisfy the requested
6501 * amount of memory for the kernel
6502 */
6503 if (required_kernelcore < kernelcore_node)
6504 kernelcore_node = required_kernelcore / usable_nodes;
6505
6506 /*
6507 * As the map is walked, we track how much memory is usable
6508 * by the kernel using kernelcore_remaining. When it is
6509 * 0, the rest of the node is usable by ZONE_MOVABLE
6510 */
6511 kernelcore_remaining = kernelcore_node;
6512
6513 /* Go through each range of PFNs within this node */
c13291a5 6514 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6515 unsigned long size_pages;
6516
c13291a5 6517 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6518 if (start_pfn >= end_pfn)
6519 continue;
6520
6521 /* Account for what is only usable for kernelcore */
6522 if (start_pfn < usable_startpfn) {
6523 unsigned long kernel_pages;
6524 kernel_pages = min(end_pfn, usable_startpfn)
6525 - start_pfn;
6526
6527 kernelcore_remaining -= min(kernel_pages,
6528 kernelcore_remaining);
6529 required_kernelcore -= min(kernel_pages,
6530 required_kernelcore);
6531
6532 /* Continue if range is now fully accounted */
6533 if (end_pfn <= usable_startpfn) {
6534
6535 /*
6536 * Push zone_movable_pfn to the end so
6537 * that if we have to rebalance
6538 * kernelcore across nodes, we will
6539 * not double account here
6540 */
6541 zone_movable_pfn[nid] = end_pfn;
6542 continue;
6543 }
6544 start_pfn = usable_startpfn;
6545 }
6546
6547 /*
6548 * The usable PFN range for ZONE_MOVABLE is from
6549 * start_pfn->end_pfn. Calculate size_pages as the
6550 * number of pages used as kernelcore
6551 */
6552 size_pages = end_pfn - start_pfn;
6553 if (size_pages > kernelcore_remaining)
6554 size_pages = kernelcore_remaining;
6555 zone_movable_pfn[nid] = start_pfn + size_pages;
6556
6557 /*
6558 * Some kernelcore has been met, update counts and
6559 * break if the kernelcore for this node has been
b8af2941 6560 * satisfied
2a1e274a
MG
6561 */
6562 required_kernelcore -= min(required_kernelcore,
6563 size_pages);
6564 kernelcore_remaining -= size_pages;
6565 if (!kernelcore_remaining)
6566 break;
6567 }
6568 }
6569
6570 /*
6571 * If there is still required_kernelcore, we do another pass with one
6572 * less node in the count. This will push zone_movable_pfn[nid] further
6573 * along on the nodes that still have memory until kernelcore is
b8af2941 6574 * satisfied
2a1e274a
MG
6575 */
6576 usable_nodes--;
6577 if (usable_nodes && required_kernelcore > usable_nodes)
6578 goto restart;
6579
b2f3eebe 6580out2:
2a1e274a
MG
6581 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6582 for (nid = 0; nid < MAX_NUMNODES; nid++)
6583 zone_movable_pfn[nid] =
6584 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6585
20e6926d 6586out:
66918dcd 6587 /* restore the node_state */
4b0ef1fe 6588 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6589}
6590
4b0ef1fe
LJ
6591/* Any regular or high memory on that node ? */
6592static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6593{
37b07e41
LS
6594 enum zone_type zone_type;
6595
4b0ef1fe
LJ
6596 if (N_MEMORY == N_NORMAL_MEMORY)
6597 return;
6598
6599 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6600 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6601 if (populated_zone(zone)) {
4b0ef1fe
LJ
6602 node_set_state(nid, N_HIGH_MEMORY);
6603 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6604 zone_type <= ZONE_NORMAL)
6605 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6606 break;
6607 }
37b07e41 6608 }
37b07e41
LS
6609}
6610
c713216d
MG
6611/**
6612 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6613 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6614 *
6615 * This will call free_area_init_node() for each active node in the system.
7d018176 6616 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6617 * zone in each node and their holes is calculated. If the maximum PFN
6618 * between two adjacent zones match, it is assumed that the zone is empty.
6619 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6620 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6621 * starts where the previous one ended. For example, ZONE_DMA32 starts
6622 * at arch_max_dma_pfn.
6623 */
6624void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6625{
c13291a5
TH
6626 unsigned long start_pfn, end_pfn;
6627 int i, nid;
a6af2bc3 6628
c713216d
MG
6629 /* Record where the zone boundaries are */
6630 memset(arch_zone_lowest_possible_pfn, 0,
6631 sizeof(arch_zone_lowest_possible_pfn));
6632 memset(arch_zone_highest_possible_pfn, 0,
6633 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6634
6635 start_pfn = find_min_pfn_with_active_regions();
6636
6637 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6638 if (i == ZONE_MOVABLE)
6639 continue;
90cae1fe
OH
6640
6641 end_pfn = max(max_zone_pfn[i], start_pfn);
6642 arch_zone_lowest_possible_pfn[i] = start_pfn;
6643 arch_zone_highest_possible_pfn[i] = end_pfn;
6644
6645 start_pfn = end_pfn;
c713216d 6646 }
2a1e274a
MG
6647
6648 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6649 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6650 find_zone_movable_pfns_for_nodes();
c713216d 6651
c713216d 6652 /* Print out the zone ranges */
f88dfff5 6653 pr_info("Zone ranges:\n");
2a1e274a
MG
6654 for (i = 0; i < MAX_NR_ZONES; i++) {
6655 if (i == ZONE_MOVABLE)
6656 continue;
f88dfff5 6657 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6658 if (arch_zone_lowest_possible_pfn[i] ==
6659 arch_zone_highest_possible_pfn[i])
f88dfff5 6660 pr_cont("empty\n");
72f0ba02 6661 else
8d29e18a
JG
6662 pr_cont("[mem %#018Lx-%#018Lx]\n",
6663 (u64)arch_zone_lowest_possible_pfn[i]
6664 << PAGE_SHIFT,
6665 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6666 << PAGE_SHIFT) - 1);
2a1e274a
MG
6667 }
6668
6669 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6670 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6671 for (i = 0; i < MAX_NUMNODES; i++) {
6672 if (zone_movable_pfn[i])
8d29e18a
JG
6673 pr_info(" Node %d: %#018Lx\n", i,
6674 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6675 }
c713216d 6676
f2d52fe5 6677 /* Print out the early node map */
f88dfff5 6678 pr_info("Early memory node ranges\n");
c13291a5 6679 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6680 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6681 (u64)start_pfn << PAGE_SHIFT,
6682 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6683
6684 /* Initialise every node */
708614e6 6685 mminit_verify_pageflags_layout();
8ef82866 6686 setup_nr_node_ids();
c713216d
MG
6687 for_each_online_node(nid) {
6688 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6689 free_area_init_node(nid, NULL,
c713216d 6690 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6691
6692 /* Any memory on that node */
6693 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6694 node_set_state(nid, N_MEMORY);
6695 check_for_memory(pgdat, nid);
c713216d 6696 }
a4a3ede2 6697 zero_resv_unavail();
c713216d 6698}
2a1e274a 6699
7e63efef 6700static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6701{
6702 unsigned long long coremem;
6703 if (!p)
6704 return -EINVAL;
6705
6706 coremem = memparse(p, &p);
7e63efef 6707 *core = coremem >> PAGE_SHIFT;
2a1e274a 6708
7e63efef 6709 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6710 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6711
6712 return 0;
6713}
ed7ed365 6714
7e63efef
MG
6715/*
6716 * kernelcore=size sets the amount of memory for use for allocations that
6717 * cannot be reclaimed or migrated.
6718 */
6719static int __init cmdline_parse_kernelcore(char *p)
6720{
342332e6
TI
6721 /* parse kernelcore=mirror */
6722 if (parse_option_str(p, "mirror")) {
6723 mirrored_kernelcore = true;
6724 return 0;
6725 }
6726
7e63efef
MG
6727 return cmdline_parse_core(p, &required_kernelcore);
6728}
6729
6730/*
6731 * movablecore=size sets the amount of memory for use for allocations that
6732 * can be reclaimed or migrated.
6733 */
6734static int __init cmdline_parse_movablecore(char *p)
6735{
6736 return cmdline_parse_core(p, &required_movablecore);
6737}
6738
ed7ed365 6739early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6740early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6741
0ee332c1 6742#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6743
c3d5f5f0
JL
6744void adjust_managed_page_count(struct page *page, long count)
6745{
6746 spin_lock(&managed_page_count_lock);
6747 page_zone(page)->managed_pages += count;
6748 totalram_pages += count;
3dcc0571
JL
6749#ifdef CONFIG_HIGHMEM
6750 if (PageHighMem(page))
6751 totalhigh_pages += count;
6752#endif
c3d5f5f0
JL
6753 spin_unlock(&managed_page_count_lock);
6754}
3dcc0571 6755EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6756
11199692 6757unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6758{
11199692
JL
6759 void *pos;
6760 unsigned long pages = 0;
69afade7 6761
11199692
JL
6762 start = (void *)PAGE_ALIGN((unsigned long)start);
6763 end = (void *)((unsigned long)end & PAGE_MASK);
6764 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6765 if ((unsigned int)poison <= 0xFF)
11199692
JL
6766 memset(pos, poison, PAGE_SIZE);
6767 free_reserved_page(virt_to_page(pos));
69afade7
JL
6768 }
6769
6770 if (pages && s)
adb1fe9a
JP
6771 pr_info("Freeing %s memory: %ldK\n",
6772 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6773
6774 return pages;
6775}
11199692 6776EXPORT_SYMBOL(free_reserved_area);
69afade7 6777
cfa11e08
JL
6778#ifdef CONFIG_HIGHMEM
6779void free_highmem_page(struct page *page)
6780{
6781 __free_reserved_page(page);
6782 totalram_pages++;
7b4b2a0d 6783 page_zone(page)->managed_pages++;
cfa11e08
JL
6784 totalhigh_pages++;
6785}
6786#endif
6787
7ee3d4e8
JL
6788
6789void __init mem_init_print_info(const char *str)
6790{
6791 unsigned long physpages, codesize, datasize, rosize, bss_size;
6792 unsigned long init_code_size, init_data_size;
6793
6794 physpages = get_num_physpages();
6795 codesize = _etext - _stext;
6796 datasize = _edata - _sdata;
6797 rosize = __end_rodata - __start_rodata;
6798 bss_size = __bss_stop - __bss_start;
6799 init_data_size = __init_end - __init_begin;
6800 init_code_size = _einittext - _sinittext;
6801
6802 /*
6803 * Detect special cases and adjust section sizes accordingly:
6804 * 1) .init.* may be embedded into .data sections
6805 * 2) .init.text.* may be out of [__init_begin, __init_end],
6806 * please refer to arch/tile/kernel/vmlinux.lds.S.
6807 * 3) .rodata.* may be embedded into .text or .data sections.
6808 */
6809#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6810 do { \
6811 if (start <= pos && pos < end && size > adj) \
6812 size -= adj; \
6813 } while (0)
7ee3d4e8
JL
6814
6815 adj_init_size(__init_begin, __init_end, init_data_size,
6816 _sinittext, init_code_size);
6817 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6818 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6819 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6820 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6821
6822#undef adj_init_size
6823
756a025f 6824 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6825#ifdef CONFIG_HIGHMEM
756a025f 6826 ", %luK highmem"
7ee3d4e8 6827#endif
756a025f
JP
6828 "%s%s)\n",
6829 nr_free_pages() << (PAGE_SHIFT - 10),
6830 physpages << (PAGE_SHIFT - 10),
6831 codesize >> 10, datasize >> 10, rosize >> 10,
6832 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6833 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6834 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6835#ifdef CONFIG_HIGHMEM
756a025f 6836 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6837#endif
756a025f 6838 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6839}
6840
0e0b864e 6841/**
88ca3b94
RD
6842 * set_dma_reserve - set the specified number of pages reserved in the first zone
6843 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6844 *
013110a7 6845 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6846 * In the DMA zone, a significant percentage may be consumed by kernel image
6847 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6848 * function may optionally be used to account for unfreeable pages in the
6849 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6850 * smaller per-cpu batchsize.
0e0b864e
MG
6851 */
6852void __init set_dma_reserve(unsigned long new_dma_reserve)
6853{
6854 dma_reserve = new_dma_reserve;
6855}
6856
1da177e4
LT
6857void __init free_area_init(unsigned long *zones_size)
6858{
9109fb7b 6859 free_area_init_node(0, zones_size,
1da177e4 6860 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
a4a3ede2 6861 zero_resv_unavail();
1da177e4 6862}
1da177e4 6863
005fd4bb 6864static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6865{
1da177e4 6866
005fd4bb
SAS
6867 lru_add_drain_cpu(cpu);
6868 drain_pages(cpu);
9f8f2172 6869
005fd4bb
SAS
6870 /*
6871 * Spill the event counters of the dead processor
6872 * into the current processors event counters.
6873 * This artificially elevates the count of the current
6874 * processor.
6875 */
6876 vm_events_fold_cpu(cpu);
9f8f2172 6877
005fd4bb
SAS
6878 /*
6879 * Zero the differential counters of the dead processor
6880 * so that the vm statistics are consistent.
6881 *
6882 * This is only okay since the processor is dead and cannot
6883 * race with what we are doing.
6884 */
6885 cpu_vm_stats_fold(cpu);
6886 return 0;
1da177e4 6887}
1da177e4
LT
6888
6889void __init page_alloc_init(void)
6890{
005fd4bb
SAS
6891 int ret;
6892
6893 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6894 "mm/page_alloc:dead", NULL,
6895 page_alloc_cpu_dead);
6896 WARN_ON(ret < 0);
1da177e4
LT
6897}
6898
cb45b0e9 6899/*
34b10060 6900 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6901 * or min_free_kbytes changes.
6902 */
6903static void calculate_totalreserve_pages(void)
6904{
6905 struct pglist_data *pgdat;
6906 unsigned long reserve_pages = 0;
2f6726e5 6907 enum zone_type i, j;
cb45b0e9
HA
6908
6909 for_each_online_pgdat(pgdat) {
281e3726
MG
6910
6911 pgdat->totalreserve_pages = 0;
6912
cb45b0e9
HA
6913 for (i = 0; i < MAX_NR_ZONES; i++) {
6914 struct zone *zone = pgdat->node_zones + i;
3484b2de 6915 long max = 0;
cb45b0e9
HA
6916
6917 /* Find valid and maximum lowmem_reserve in the zone */
6918 for (j = i; j < MAX_NR_ZONES; j++) {
6919 if (zone->lowmem_reserve[j] > max)
6920 max = zone->lowmem_reserve[j];
6921 }
6922
41858966
MG
6923 /* we treat the high watermark as reserved pages. */
6924 max += high_wmark_pages(zone);
cb45b0e9 6925
b40da049
JL
6926 if (max > zone->managed_pages)
6927 max = zone->managed_pages;
a8d01437 6928
281e3726 6929 pgdat->totalreserve_pages += max;
a8d01437 6930
cb45b0e9
HA
6931 reserve_pages += max;
6932 }
6933 }
6934 totalreserve_pages = reserve_pages;
6935}
6936
1da177e4
LT
6937/*
6938 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6939 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6940 * has a correct pages reserved value, so an adequate number of
6941 * pages are left in the zone after a successful __alloc_pages().
6942 */
6943static void setup_per_zone_lowmem_reserve(void)
6944{
6945 struct pglist_data *pgdat;
2f6726e5 6946 enum zone_type j, idx;
1da177e4 6947
ec936fc5 6948 for_each_online_pgdat(pgdat) {
1da177e4
LT
6949 for (j = 0; j < MAX_NR_ZONES; j++) {
6950 struct zone *zone = pgdat->node_zones + j;
b40da049 6951 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6952
6953 zone->lowmem_reserve[j] = 0;
6954
2f6726e5
CL
6955 idx = j;
6956 while (idx) {
1da177e4
LT
6957 struct zone *lower_zone;
6958
2f6726e5
CL
6959 idx--;
6960
1da177e4
LT
6961 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6962 sysctl_lowmem_reserve_ratio[idx] = 1;
6963
6964 lower_zone = pgdat->node_zones + idx;
b40da049 6965 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6966 sysctl_lowmem_reserve_ratio[idx];
b40da049 6967 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6968 }
6969 }
6970 }
cb45b0e9
HA
6971
6972 /* update totalreserve_pages */
6973 calculate_totalreserve_pages();
1da177e4
LT
6974}
6975
cfd3da1e 6976static void __setup_per_zone_wmarks(void)
1da177e4
LT
6977{
6978 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6979 unsigned long lowmem_pages = 0;
6980 struct zone *zone;
6981 unsigned long flags;
6982
6983 /* Calculate total number of !ZONE_HIGHMEM pages */
6984 for_each_zone(zone) {
6985 if (!is_highmem(zone))
b40da049 6986 lowmem_pages += zone->managed_pages;
1da177e4
LT
6987 }
6988
6989 for_each_zone(zone) {
ac924c60
AM
6990 u64 tmp;
6991
1125b4e3 6992 spin_lock_irqsave(&zone->lock, flags);
b40da049 6993 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6994 do_div(tmp, lowmem_pages);
1da177e4
LT
6995 if (is_highmem(zone)) {
6996 /*
669ed175
NP
6997 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6998 * need highmem pages, so cap pages_min to a small
6999 * value here.
7000 *
41858966 7001 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7002 * deltas control asynch page reclaim, and so should
669ed175 7003 * not be capped for highmem.
1da177e4 7004 */
90ae8d67 7005 unsigned long min_pages;
1da177e4 7006
b40da049 7007 min_pages = zone->managed_pages / 1024;
90ae8d67 7008 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7009 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7010 } else {
669ed175
NP
7011 /*
7012 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7013 * proportionate to the zone's size.
7014 */
41858966 7015 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7016 }
7017
795ae7a0
JW
7018 /*
7019 * Set the kswapd watermarks distance according to the
7020 * scale factor in proportion to available memory, but
7021 * ensure a minimum size on small systems.
7022 */
7023 tmp = max_t(u64, tmp >> 2,
7024 mult_frac(zone->managed_pages,
7025 watermark_scale_factor, 10000));
7026
7027 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7028 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7029
1125b4e3 7030 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7031 }
cb45b0e9
HA
7032
7033 /* update totalreserve_pages */
7034 calculate_totalreserve_pages();
1da177e4
LT
7035}
7036
cfd3da1e
MG
7037/**
7038 * setup_per_zone_wmarks - called when min_free_kbytes changes
7039 * or when memory is hot-{added|removed}
7040 *
7041 * Ensures that the watermark[min,low,high] values for each zone are set
7042 * correctly with respect to min_free_kbytes.
7043 */
7044void setup_per_zone_wmarks(void)
7045{
b93e0f32
MH
7046 static DEFINE_SPINLOCK(lock);
7047
7048 spin_lock(&lock);
cfd3da1e 7049 __setup_per_zone_wmarks();
b93e0f32 7050 spin_unlock(&lock);
cfd3da1e
MG
7051}
7052
1da177e4
LT
7053/*
7054 * Initialise min_free_kbytes.
7055 *
7056 * For small machines we want it small (128k min). For large machines
7057 * we want it large (64MB max). But it is not linear, because network
7058 * bandwidth does not increase linearly with machine size. We use
7059 *
b8af2941 7060 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7061 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7062 *
7063 * which yields
7064 *
7065 * 16MB: 512k
7066 * 32MB: 724k
7067 * 64MB: 1024k
7068 * 128MB: 1448k
7069 * 256MB: 2048k
7070 * 512MB: 2896k
7071 * 1024MB: 4096k
7072 * 2048MB: 5792k
7073 * 4096MB: 8192k
7074 * 8192MB: 11584k
7075 * 16384MB: 16384k
7076 */
1b79acc9 7077int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7078{
7079 unsigned long lowmem_kbytes;
5f12733e 7080 int new_min_free_kbytes;
1da177e4
LT
7081
7082 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7083 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7084
7085 if (new_min_free_kbytes > user_min_free_kbytes) {
7086 min_free_kbytes = new_min_free_kbytes;
7087 if (min_free_kbytes < 128)
7088 min_free_kbytes = 128;
7089 if (min_free_kbytes > 65536)
7090 min_free_kbytes = 65536;
7091 } else {
7092 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7093 new_min_free_kbytes, user_min_free_kbytes);
7094 }
bc75d33f 7095 setup_per_zone_wmarks();
a6cccdc3 7096 refresh_zone_stat_thresholds();
1da177e4 7097 setup_per_zone_lowmem_reserve();
6423aa81
JK
7098
7099#ifdef CONFIG_NUMA
7100 setup_min_unmapped_ratio();
7101 setup_min_slab_ratio();
7102#endif
7103
1da177e4
LT
7104 return 0;
7105}
bc22af74 7106core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7107
7108/*
b8af2941 7109 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7110 * that we can call two helper functions whenever min_free_kbytes
7111 * changes.
7112 */
cccad5b9 7113int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7114 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7115{
da8c757b
HP
7116 int rc;
7117
7118 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7119 if (rc)
7120 return rc;
7121
5f12733e
MH
7122 if (write) {
7123 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7124 setup_per_zone_wmarks();
5f12733e 7125 }
1da177e4
LT
7126 return 0;
7127}
7128
795ae7a0
JW
7129int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7130 void __user *buffer, size_t *length, loff_t *ppos)
7131{
7132 int rc;
7133
7134 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7135 if (rc)
7136 return rc;
7137
7138 if (write)
7139 setup_per_zone_wmarks();
7140
7141 return 0;
7142}
7143
9614634f 7144#ifdef CONFIG_NUMA
6423aa81 7145static void setup_min_unmapped_ratio(void)
9614634f 7146{
6423aa81 7147 pg_data_t *pgdat;
9614634f 7148 struct zone *zone;
9614634f 7149
a5f5f91d 7150 for_each_online_pgdat(pgdat)
81cbcbc2 7151 pgdat->min_unmapped_pages = 0;
a5f5f91d 7152
9614634f 7153 for_each_zone(zone)
a5f5f91d 7154 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7155 sysctl_min_unmapped_ratio) / 100;
9614634f 7156}
0ff38490 7157
6423aa81
JK
7158
7159int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7160 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7161{
0ff38490
CL
7162 int rc;
7163
8d65af78 7164 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7165 if (rc)
7166 return rc;
7167
6423aa81
JK
7168 setup_min_unmapped_ratio();
7169
7170 return 0;
7171}
7172
7173static void setup_min_slab_ratio(void)
7174{
7175 pg_data_t *pgdat;
7176 struct zone *zone;
7177
a5f5f91d
MG
7178 for_each_online_pgdat(pgdat)
7179 pgdat->min_slab_pages = 0;
7180
0ff38490 7181 for_each_zone(zone)
a5f5f91d 7182 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7183 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7184}
7185
7186int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7187 void __user *buffer, size_t *length, loff_t *ppos)
7188{
7189 int rc;
7190
7191 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7192 if (rc)
7193 return rc;
7194
7195 setup_min_slab_ratio();
7196
0ff38490
CL
7197 return 0;
7198}
9614634f
CL
7199#endif
7200
1da177e4
LT
7201/*
7202 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7203 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7204 * whenever sysctl_lowmem_reserve_ratio changes.
7205 *
7206 * The reserve ratio obviously has absolutely no relation with the
41858966 7207 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7208 * if in function of the boot time zone sizes.
7209 */
cccad5b9 7210int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7211 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7212{
8d65af78 7213 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7214 setup_per_zone_lowmem_reserve();
7215 return 0;
7216}
7217
8ad4b1fb
RS
7218/*
7219 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7220 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7221 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7222 */
cccad5b9 7223int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7224 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7225{
7226 struct zone *zone;
7cd2b0a3 7227 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7228 int ret;
7229
7cd2b0a3
DR
7230 mutex_lock(&pcp_batch_high_lock);
7231 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7232
8d65af78 7233 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7234 if (!write || ret < 0)
7235 goto out;
7236
7237 /* Sanity checking to avoid pcp imbalance */
7238 if (percpu_pagelist_fraction &&
7239 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7240 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7241 ret = -EINVAL;
7242 goto out;
7243 }
7244
7245 /* No change? */
7246 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7247 goto out;
c8e251fa 7248
364df0eb 7249 for_each_populated_zone(zone) {
7cd2b0a3
DR
7250 unsigned int cpu;
7251
22a7f12b 7252 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7253 pageset_set_high_and_batch(zone,
7254 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7255 }
7cd2b0a3 7256out:
c8e251fa 7257 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7258 return ret;
8ad4b1fb
RS
7259}
7260
a9919c79 7261#ifdef CONFIG_NUMA
f034b5d4 7262int hashdist = HASHDIST_DEFAULT;
1da177e4 7263
1da177e4
LT
7264static int __init set_hashdist(char *str)
7265{
7266 if (!str)
7267 return 0;
7268 hashdist = simple_strtoul(str, &str, 0);
7269 return 1;
7270}
7271__setup("hashdist=", set_hashdist);
7272#endif
7273
f6f34b43
SD
7274#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7275/*
7276 * Returns the number of pages that arch has reserved but
7277 * is not known to alloc_large_system_hash().
7278 */
7279static unsigned long __init arch_reserved_kernel_pages(void)
7280{
7281 return 0;
7282}
7283#endif
7284
9017217b
PT
7285/*
7286 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7287 * machines. As memory size is increased the scale is also increased but at
7288 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7289 * quadruples the scale is increased by one, which means the size of hash table
7290 * only doubles, instead of quadrupling as well.
7291 * Because 32-bit systems cannot have large physical memory, where this scaling
7292 * makes sense, it is disabled on such platforms.
7293 */
7294#if __BITS_PER_LONG > 32
7295#define ADAPT_SCALE_BASE (64ul << 30)
7296#define ADAPT_SCALE_SHIFT 2
7297#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7298#endif
7299
1da177e4
LT
7300/*
7301 * allocate a large system hash table from bootmem
7302 * - it is assumed that the hash table must contain an exact power-of-2
7303 * quantity of entries
7304 * - limit is the number of hash buckets, not the total allocation size
7305 */
7306void *__init alloc_large_system_hash(const char *tablename,
7307 unsigned long bucketsize,
7308 unsigned long numentries,
7309 int scale,
7310 int flags,
7311 unsigned int *_hash_shift,
7312 unsigned int *_hash_mask,
31fe62b9
TB
7313 unsigned long low_limit,
7314 unsigned long high_limit)
1da177e4 7315{
31fe62b9 7316 unsigned long long max = high_limit;
1da177e4
LT
7317 unsigned long log2qty, size;
7318 void *table = NULL;
3749a8f0 7319 gfp_t gfp_flags;
1da177e4
LT
7320
7321 /* allow the kernel cmdline to have a say */
7322 if (!numentries) {
7323 /* round applicable memory size up to nearest megabyte */
04903664 7324 numentries = nr_kernel_pages;
f6f34b43 7325 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7326
7327 /* It isn't necessary when PAGE_SIZE >= 1MB */
7328 if (PAGE_SHIFT < 20)
7329 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7330
9017217b
PT
7331#if __BITS_PER_LONG > 32
7332 if (!high_limit) {
7333 unsigned long adapt;
7334
7335 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7336 adapt <<= ADAPT_SCALE_SHIFT)
7337 scale++;
7338 }
7339#endif
7340
1da177e4
LT
7341 /* limit to 1 bucket per 2^scale bytes of low memory */
7342 if (scale > PAGE_SHIFT)
7343 numentries >>= (scale - PAGE_SHIFT);
7344 else
7345 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7346
7347 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7348 if (unlikely(flags & HASH_SMALL)) {
7349 /* Makes no sense without HASH_EARLY */
7350 WARN_ON(!(flags & HASH_EARLY));
7351 if (!(numentries >> *_hash_shift)) {
7352 numentries = 1UL << *_hash_shift;
7353 BUG_ON(!numentries);
7354 }
7355 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7356 numentries = PAGE_SIZE / bucketsize;
1da177e4 7357 }
6e692ed3 7358 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7359
7360 /* limit allocation size to 1/16 total memory by default */
7361 if (max == 0) {
7362 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7363 do_div(max, bucketsize);
7364 }
074b8517 7365 max = min(max, 0x80000000ULL);
1da177e4 7366
31fe62b9
TB
7367 if (numentries < low_limit)
7368 numentries = low_limit;
1da177e4
LT
7369 if (numentries > max)
7370 numentries = max;
7371
f0d1b0b3 7372 log2qty = ilog2(numentries);
1da177e4 7373
3749a8f0 7374 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7375 do {
7376 size = bucketsize << log2qty;
ea1f5f37
PT
7377 if (flags & HASH_EARLY) {
7378 if (flags & HASH_ZERO)
7379 table = memblock_virt_alloc_nopanic(size, 0);
7380 else
7381 table = memblock_virt_alloc_raw(size, 0);
7382 } else if (hashdist) {
3749a8f0 7383 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7384 } else {
1037b83b
ED
7385 /*
7386 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7387 * some pages at the end of hash table which
7388 * alloc_pages_exact() automatically does
1037b83b 7389 */
264ef8a9 7390 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7391 table = alloc_pages_exact(size, gfp_flags);
7392 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7393 }
1da177e4
LT
7394 }
7395 } while (!table && size > PAGE_SIZE && --log2qty);
7396
7397 if (!table)
7398 panic("Failed to allocate %s hash table\n", tablename);
7399
1170532b
JP
7400 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7401 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7402
7403 if (_hash_shift)
7404 *_hash_shift = log2qty;
7405 if (_hash_mask)
7406 *_hash_mask = (1 << log2qty) - 1;
7407
7408 return table;
7409}
a117e66e 7410
a5d76b54 7411/*
80934513
MK
7412 * This function checks whether pageblock includes unmovable pages or not.
7413 * If @count is not zero, it is okay to include less @count unmovable pages
7414 *
b8af2941 7415 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7416 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7417 * check without lock_page also may miss some movable non-lru pages at
7418 * race condition. So you can't expect this function should be exact.
a5d76b54 7419 */
b023f468 7420bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7421 int migratetype,
b023f468 7422 bool skip_hwpoisoned_pages)
49ac8255
KH
7423{
7424 unsigned long pfn, iter, found;
47118af0 7425
49ac8255
KH
7426 /*
7427 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7428 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7429 */
7430 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7431 return false;
49ac8255 7432
4da2ce25
MH
7433 /*
7434 * CMA allocations (alloc_contig_range) really need to mark isolate
7435 * CMA pageblocks even when they are not movable in fact so consider
7436 * them movable here.
7437 */
7438 if (is_migrate_cma(migratetype) &&
7439 is_migrate_cma(get_pageblock_migratetype(page)))
7440 return false;
7441
49ac8255
KH
7442 pfn = page_to_pfn(page);
7443 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7444 unsigned long check = pfn + iter;
7445
29723fcc 7446 if (!pfn_valid_within(check))
49ac8255 7447 continue;
29723fcc 7448
49ac8255 7449 page = pfn_to_page(check);
c8721bbb 7450
d7ab3672
MH
7451 if (PageReserved(page))
7452 return true;
7453
c8721bbb
NH
7454 /*
7455 * Hugepages are not in LRU lists, but they're movable.
7456 * We need not scan over tail pages bacause we don't
7457 * handle each tail page individually in migration.
7458 */
7459 if (PageHuge(page)) {
7460 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7461 continue;
7462 }
7463
97d255c8
MK
7464 /*
7465 * We can't use page_count without pin a page
7466 * because another CPU can free compound page.
7467 * This check already skips compound tails of THP
0139aa7b 7468 * because their page->_refcount is zero at all time.
97d255c8 7469 */
fe896d18 7470 if (!page_ref_count(page)) {
49ac8255
KH
7471 if (PageBuddy(page))
7472 iter += (1 << page_order(page)) - 1;
7473 continue;
7474 }
97d255c8 7475
b023f468
WC
7476 /*
7477 * The HWPoisoned page may be not in buddy system, and
7478 * page_count() is not 0.
7479 */
7480 if (skip_hwpoisoned_pages && PageHWPoison(page))
7481 continue;
7482
0efadf48
YX
7483 if (__PageMovable(page))
7484 continue;
7485
49ac8255
KH
7486 if (!PageLRU(page))
7487 found++;
7488 /*
6b4f7799
JW
7489 * If there are RECLAIMABLE pages, we need to check
7490 * it. But now, memory offline itself doesn't call
7491 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7492 */
7493 /*
7494 * If the page is not RAM, page_count()should be 0.
7495 * we don't need more check. This is an _used_ not-movable page.
7496 *
7497 * The problematic thing here is PG_reserved pages. PG_reserved
7498 * is set to both of a memory hole page and a _used_ kernel
7499 * page at boot.
7500 */
7501 if (found > count)
80934513 7502 return true;
49ac8255 7503 }
80934513 7504 return false;
49ac8255
KH
7505}
7506
7507bool is_pageblock_removable_nolock(struct page *page)
7508{
656a0706
MH
7509 struct zone *zone;
7510 unsigned long pfn;
687875fb
MH
7511
7512 /*
7513 * We have to be careful here because we are iterating over memory
7514 * sections which are not zone aware so we might end up outside of
7515 * the zone but still within the section.
656a0706
MH
7516 * We have to take care about the node as well. If the node is offline
7517 * its NODE_DATA will be NULL - see page_zone.
687875fb 7518 */
656a0706
MH
7519 if (!node_online(page_to_nid(page)))
7520 return false;
7521
7522 zone = page_zone(page);
7523 pfn = page_to_pfn(page);
108bcc96 7524 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7525 return false;
7526
4da2ce25 7527 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
a5d76b54 7528}
0c0e6195 7529
080fe206 7530#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7531
7532static unsigned long pfn_max_align_down(unsigned long pfn)
7533{
7534 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7535 pageblock_nr_pages) - 1);
7536}
7537
7538static unsigned long pfn_max_align_up(unsigned long pfn)
7539{
7540 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7541 pageblock_nr_pages));
7542}
7543
041d3a8c 7544/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7545static int __alloc_contig_migrate_range(struct compact_control *cc,
7546 unsigned long start, unsigned long end)
041d3a8c
MN
7547{
7548 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7549 unsigned long nr_reclaimed;
041d3a8c
MN
7550 unsigned long pfn = start;
7551 unsigned int tries = 0;
7552 int ret = 0;
7553
be49a6e1 7554 migrate_prep();
041d3a8c 7555
bb13ffeb 7556 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7557 if (fatal_signal_pending(current)) {
7558 ret = -EINTR;
7559 break;
7560 }
7561
bb13ffeb
MG
7562 if (list_empty(&cc->migratepages)) {
7563 cc->nr_migratepages = 0;
edc2ca61 7564 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7565 if (!pfn) {
7566 ret = -EINTR;
7567 break;
7568 }
7569 tries = 0;
7570 } else if (++tries == 5) {
7571 ret = ret < 0 ? ret : -EBUSY;
7572 break;
7573 }
7574
beb51eaa
MK
7575 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7576 &cc->migratepages);
7577 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7578
9c620e2b 7579 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7580 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7581 }
2a6f5124
SP
7582 if (ret < 0) {
7583 putback_movable_pages(&cc->migratepages);
7584 return ret;
7585 }
7586 return 0;
041d3a8c
MN
7587}
7588
7589/**
7590 * alloc_contig_range() -- tries to allocate given range of pages
7591 * @start: start PFN to allocate
7592 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7593 * @migratetype: migratetype of the underlaying pageblocks (either
7594 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7595 * in range must have the same migratetype and it must
7596 * be either of the two.
ca96b625 7597 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7598 *
7599 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7600 * aligned, however it's the caller's responsibility to guarantee that
7601 * we are the only thread that changes migrate type of pageblocks the
7602 * pages fall in.
7603 *
7604 * The PFN range must belong to a single zone.
7605 *
7606 * Returns zero on success or negative error code. On success all
7607 * pages which PFN is in [start, end) are allocated for the caller and
7608 * need to be freed with free_contig_range().
7609 */
0815f3d8 7610int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7611 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7612{
041d3a8c 7613 unsigned long outer_start, outer_end;
d00181b9
KS
7614 unsigned int order;
7615 int ret = 0;
041d3a8c 7616
bb13ffeb
MG
7617 struct compact_control cc = {
7618 .nr_migratepages = 0,
7619 .order = -1,
7620 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7621 .mode = MIGRATE_SYNC,
bb13ffeb 7622 .ignore_skip_hint = true,
7dea19f9 7623 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7624 };
7625 INIT_LIST_HEAD(&cc.migratepages);
7626
041d3a8c
MN
7627 /*
7628 * What we do here is we mark all pageblocks in range as
7629 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7630 * have different sizes, and due to the way page allocator
7631 * work, we align the range to biggest of the two pages so
7632 * that page allocator won't try to merge buddies from
7633 * different pageblocks and change MIGRATE_ISOLATE to some
7634 * other migration type.
7635 *
7636 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7637 * migrate the pages from an unaligned range (ie. pages that
7638 * we are interested in). This will put all the pages in
7639 * range back to page allocator as MIGRATE_ISOLATE.
7640 *
7641 * When this is done, we take the pages in range from page
7642 * allocator removing them from the buddy system. This way
7643 * page allocator will never consider using them.
7644 *
7645 * This lets us mark the pageblocks back as
7646 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7647 * aligned range but not in the unaligned, original range are
7648 * put back to page allocator so that buddy can use them.
7649 */
7650
7651 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7652 pfn_max_align_up(end), migratetype,
7653 false);
041d3a8c 7654 if (ret)
86a595f9 7655 return ret;
041d3a8c 7656
8ef5849f
JK
7657 /*
7658 * In case of -EBUSY, we'd like to know which page causes problem.
7659 * So, just fall through. We will check it in test_pages_isolated().
7660 */
bb13ffeb 7661 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7662 if (ret && ret != -EBUSY)
041d3a8c
MN
7663 goto done;
7664
7665 /*
7666 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7667 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7668 * more, all pages in [start, end) are free in page allocator.
7669 * What we are going to do is to allocate all pages from
7670 * [start, end) (that is remove them from page allocator).
7671 *
7672 * The only problem is that pages at the beginning and at the
7673 * end of interesting range may be not aligned with pages that
7674 * page allocator holds, ie. they can be part of higher order
7675 * pages. Because of this, we reserve the bigger range and
7676 * once this is done free the pages we are not interested in.
7677 *
7678 * We don't have to hold zone->lock here because the pages are
7679 * isolated thus they won't get removed from buddy.
7680 */
7681
7682 lru_add_drain_all();
510f5507 7683 drain_all_pages(cc.zone);
041d3a8c
MN
7684
7685 order = 0;
7686 outer_start = start;
7687 while (!PageBuddy(pfn_to_page(outer_start))) {
7688 if (++order >= MAX_ORDER) {
8ef5849f
JK
7689 outer_start = start;
7690 break;
041d3a8c
MN
7691 }
7692 outer_start &= ~0UL << order;
7693 }
7694
8ef5849f
JK
7695 if (outer_start != start) {
7696 order = page_order(pfn_to_page(outer_start));
7697
7698 /*
7699 * outer_start page could be small order buddy page and
7700 * it doesn't include start page. Adjust outer_start
7701 * in this case to report failed page properly
7702 * on tracepoint in test_pages_isolated()
7703 */
7704 if (outer_start + (1UL << order) <= start)
7705 outer_start = start;
7706 }
7707
041d3a8c 7708 /* Make sure the range is really isolated. */
b023f468 7709 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7710 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7711 __func__, outer_start, end);
041d3a8c
MN
7712 ret = -EBUSY;
7713 goto done;
7714 }
7715
49f223a9 7716 /* Grab isolated pages from freelists. */
bb13ffeb 7717 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7718 if (!outer_end) {
7719 ret = -EBUSY;
7720 goto done;
7721 }
7722
7723 /* Free head and tail (if any) */
7724 if (start != outer_start)
7725 free_contig_range(outer_start, start - outer_start);
7726 if (end != outer_end)
7727 free_contig_range(end, outer_end - end);
7728
7729done:
7730 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7731 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7732 return ret;
7733}
7734
7735void free_contig_range(unsigned long pfn, unsigned nr_pages)
7736{
bcc2b02f
MS
7737 unsigned int count = 0;
7738
7739 for (; nr_pages--; pfn++) {
7740 struct page *page = pfn_to_page(pfn);
7741
7742 count += page_count(page) != 1;
7743 __free_page(page);
7744 }
7745 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7746}
7747#endif
7748
4ed7e022 7749#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7750/*
7751 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7752 * page high values need to be recalulated.
7753 */
4ed7e022
JL
7754void __meminit zone_pcp_update(struct zone *zone)
7755{
0a647f38 7756 unsigned cpu;
c8e251fa 7757 mutex_lock(&pcp_batch_high_lock);
0a647f38 7758 for_each_possible_cpu(cpu)
169f6c19
CS
7759 pageset_set_high_and_batch(zone,
7760 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7761 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7762}
7763#endif
7764
340175b7
JL
7765void zone_pcp_reset(struct zone *zone)
7766{
7767 unsigned long flags;
5a883813
MK
7768 int cpu;
7769 struct per_cpu_pageset *pset;
340175b7
JL
7770
7771 /* avoid races with drain_pages() */
7772 local_irq_save(flags);
7773 if (zone->pageset != &boot_pageset) {
5a883813
MK
7774 for_each_online_cpu(cpu) {
7775 pset = per_cpu_ptr(zone->pageset, cpu);
7776 drain_zonestat(zone, pset);
7777 }
340175b7
JL
7778 free_percpu(zone->pageset);
7779 zone->pageset = &boot_pageset;
7780 }
7781 local_irq_restore(flags);
7782}
7783
6dcd73d7 7784#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7785/*
b9eb6319
JK
7786 * All pages in the range must be in a single zone and isolated
7787 * before calling this.
0c0e6195
KH
7788 */
7789void
7790__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7791{
7792 struct page *page;
7793 struct zone *zone;
7aeb09f9 7794 unsigned int order, i;
0c0e6195
KH
7795 unsigned long pfn;
7796 unsigned long flags;
7797 /* find the first valid pfn */
7798 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7799 if (pfn_valid(pfn))
7800 break;
7801 if (pfn == end_pfn)
7802 return;
2d070eab 7803 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7804 zone = page_zone(pfn_to_page(pfn));
7805 spin_lock_irqsave(&zone->lock, flags);
7806 pfn = start_pfn;
7807 while (pfn < end_pfn) {
7808 if (!pfn_valid(pfn)) {
7809 pfn++;
7810 continue;
7811 }
7812 page = pfn_to_page(pfn);
b023f468
WC
7813 /*
7814 * The HWPoisoned page may be not in buddy system, and
7815 * page_count() is not 0.
7816 */
7817 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7818 pfn++;
7819 SetPageReserved(page);
7820 continue;
7821 }
7822
0c0e6195
KH
7823 BUG_ON(page_count(page));
7824 BUG_ON(!PageBuddy(page));
7825 order = page_order(page);
7826#ifdef CONFIG_DEBUG_VM
1170532b
JP
7827 pr_info("remove from free list %lx %d %lx\n",
7828 pfn, 1 << order, end_pfn);
0c0e6195
KH
7829#endif
7830 list_del(&page->lru);
7831 rmv_page_order(page);
7832 zone->free_area[order].nr_free--;
0c0e6195
KH
7833 for (i = 0; i < (1 << order); i++)
7834 SetPageReserved((page+i));
7835 pfn += (1 << order);
7836 }
7837 spin_unlock_irqrestore(&zone->lock, flags);
7838}
7839#endif
8d22ba1b 7840
8d22ba1b
WF
7841bool is_free_buddy_page(struct page *page)
7842{
7843 struct zone *zone = page_zone(page);
7844 unsigned long pfn = page_to_pfn(page);
7845 unsigned long flags;
7aeb09f9 7846 unsigned int order;
8d22ba1b
WF
7847
7848 spin_lock_irqsave(&zone->lock, flags);
7849 for (order = 0; order < MAX_ORDER; order++) {
7850 struct page *page_head = page - (pfn & ((1 << order) - 1));
7851
7852 if (PageBuddy(page_head) && page_order(page_head) >= order)
7853 break;
7854 }
7855 spin_unlock_irqrestore(&zone->lock, flags);
7856
7857 return order < MAX_ORDER;
7858}