]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
mm/mempolicy: use a standard migration target allocation callback
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
e4443149 71#include <linux/padata.h>
1da177e4 72
7ee3d4e8 73#include <asm/sections.h>
1da177e4 74#include <asm/tlbflush.h>
ac924c60 75#include <asm/div64.h>
1da177e4 76#include "internal.h"
e900a918 77#include "shuffle.h"
36e66c55 78#include "page_reporting.h"
1da177e4 79
c8e251fa
CS
80/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 82#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 83
72812019
LS
84#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85DEFINE_PER_CPU(int, numa_node);
86EXPORT_PER_CPU_SYMBOL(numa_node);
87#endif
88
4518085e
KW
89DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
90
7aac7898
LS
91#ifdef CONFIG_HAVE_MEMORYLESS_NODES
92/*
93 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96 * defined in <linux/topology.h>.
97 */
98DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
99EXPORT_PER_CPU_SYMBOL(_numa_mem_);
100#endif
101
bd233f53 102/* work_structs for global per-cpu drains */
d9367bd0
WY
103struct pcpu_drain {
104 struct zone *zone;
105 struct work_struct work;
106};
8b885f53
JY
107static DEFINE_MUTEX(pcpu_drain_mutex);
108static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 109
38addce8 110#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 111volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
112EXPORT_SYMBOL(latent_entropy);
113#endif
114
1da177e4 115/*
13808910 116 * Array of node states.
1da177e4 117 */
13808910
CL
118nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
121#ifndef CONFIG_NUMA
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123#ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 125#endif
20b2f52b 126 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
127 [N_CPU] = { { [0] = 1UL } },
128#endif /* NUMA */
129};
130EXPORT_SYMBOL(node_states);
131
ca79b0c2
AK
132atomic_long_t _totalram_pages __read_mostly;
133EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 134unsigned long totalreserve_pages __read_mostly;
e48322ab 135unsigned long totalcma_pages __read_mostly;
ab8fabd4 136
1b76b02f 137int percpu_pagelist_fraction;
dcce284a 138gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
139#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141#else
142DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143#endif
144EXPORT_SYMBOL(init_on_alloc);
145
146#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147DEFINE_STATIC_KEY_TRUE(init_on_free);
148#else
149DEFINE_STATIC_KEY_FALSE(init_on_free);
150#endif
151EXPORT_SYMBOL(init_on_free);
152
153static int __init early_init_on_alloc(char *buf)
154{
155 int ret;
156 bool bool_result;
157
158 if (!buf)
159 return -EINVAL;
160 ret = kstrtobool(buf, &bool_result);
161 if (bool_result && page_poisoning_enabled())
162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 if (bool_result)
164 static_branch_enable(&init_on_alloc);
165 else
166 static_branch_disable(&init_on_alloc);
167 return ret;
168}
169early_param("init_on_alloc", early_init_on_alloc);
170
171static int __init early_init_on_free(char *buf)
172{
173 int ret;
174 bool bool_result;
175
176 if (!buf)
177 return -EINVAL;
178 ret = kstrtobool(buf, &bool_result);
179 if (bool_result && page_poisoning_enabled())
180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 if (bool_result)
182 static_branch_enable(&init_on_free);
183 else
184 static_branch_disable(&init_on_free);
185 return ret;
186}
187early_param("init_on_free", early_init_on_free);
1da177e4 188
bb14c2c7
VB
189/*
190 * A cached value of the page's pageblock's migratetype, used when the page is
191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193 * Also the migratetype set in the page does not necessarily match the pcplist
194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195 * other index - this ensures that it will be put on the correct CMA freelist.
196 */
197static inline int get_pcppage_migratetype(struct page *page)
198{
199 return page->index;
200}
201
202static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203{
204 page->index = migratetype;
205}
206
452aa699
RW
207#ifdef CONFIG_PM_SLEEP
208/*
209 * The following functions are used by the suspend/hibernate code to temporarily
210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
212 * they should always be called with system_transition_mutex held
213 * (gfp_allowed_mask also should only be modified with system_transition_mutex
214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215 * with that modification).
452aa699 216 */
c9e664f1
RW
217
218static gfp_t saved_gfp_mask;
219
220void pm_restore_gfp_mask(void)
452aa699 221{
55f2503c 222 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
223 if (saved_gfp_mask) {
224 gfp_allowed_mask = saved_gfp_mask;
225 saved_gfp_mask = 0;
226 }
452aa699
RW
227}
228
c9e664f1 229void pm_restrict_gfp_mask(void)
452aa699 230{
55f2503c 231 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
232 WARN_ON(saved_gfp_mask);
233 saved_gfp_mask = gfp_allowed_mask;
d0164adc 234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 235}
f90ac398
MG
236
237bool pm_suspended_storage(void)
238{
d0164adc 239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
240 return false;
241 return true;
242}
452aa699
RW
243#endif /* CONFIG_PM_SLEEP */
244
d9c23400 245#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 246unsigned int pageblock_order __read_mostly;
d9c23400
MG
247#endif
248
d98c7a09 249static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 250
1da177e4
LT
251/*
252 * results with 256, 32 in the lowmem_reserve sysctl:
253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254 * 1G machine -> (16M dma, 784M normal, 224M high)
255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
258 *
259 * TBD: should special case ZONE_DMA32 machines here - in those we normally
260 * don't need any ZONE_NORMAL reservation
1da177e4 261 */
d3cda233 262int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 263#ifdef CONFIG_ZONE_DMA
d3cda233 264 [ZONE_DMA] = 256,
4b51d669 265#endif
fb0e7942 266#ifdef CONFIG_ZONE_DMA32
d3cda233 267 [ZONE_DMA32] = 256,
fb0e7942 268#endif
d3cda233 269 [ZONE_NORMAL] = 32,
e53ef38d 270#ifdef CONFIG_HIGHMEM
d3cda233 271 [ZONE_HIGHMEM] = 0,
e53ef38d 272#endif
d3cda233 273 [ZONE_MOVABLE] = 0,
2f1b6248 274};
1da177e4 275
15ad7cdc 276static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 277#ifdef CONFIG_ZONE_DMA
2f1b6248 278 "DMA",
4b51d669 279#endif
fb0e7942 280#ifdef CONFIG_ZONE_DMA32
2f1b6248 281 "DMA32",
fb0e7942 282#endif
2f1b6248 283 "Normal",
e53ef38d 284#ifdef CONFIG_HIGHMEM
2a1e274a 285 "HighMem",
e53ef38d 286#endif
2a1e274a 287 "Movable",
033fbae9
DW
288#ifdef CONFIG_ZONE_DEVICE
289 "Device",
290#endif
2f1b6248
CL
291};
292
c999fbd3 293const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
294 "Unmovable",
295 "Movable",
296 "Reclaimable",
297 "HighAtomic",
298#ifdef CONFIG_CMA
299 "CMA",
300#endif
301#ifdef CONFIG_MEMORY_ISOLATION
302 "Isolate",
303#endif
304};
305
ae70eddd
AK
306compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
307 [NULL_COMPOUND_DTOR] = NULL,
308 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 309#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 310 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 311#endif
9a982250 312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 313 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 314#endif
f1e61557
KS
315};
316
1da177e4 317int min_free_kbytes = 1024;
42aa83cb 318int user_min_free_kbytes = -1;
24512228
MG
319#ifdef CONFIG_DISCONTIGMEM
320/*
321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322 * are not on separate NUMA nodes. Functionally this works but with
323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324 * quite small. By default, do not boost watermarks on discontigmem as in
325 * many cases very high-order allocations like THP are likely to be
326 * unsupported and the premature reclaim offsets the advantage of long-term
327 * fragmentation avoidance.
328 */
329int watermark_boost_factor __read_mostly;
330#else
1c30844d 331int watermark_boost_factor __read_mostly = 15000;
24512228 332#endif
795ae7a0 333int watermark_scale_factor = 10;
1da177e4 334
bbe5d993
OS
335static unsigned long nr_kernel_pages __initdata;
336static unsigned long nr_all_pages __initdata;
337static unsigned long dma_reserve __initdata;
1da177e4 338
bbe5d993
OS
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 341static unsigned long required_kernelcore __initdata;
a5c6d650 342static unsigned long required_kernelcore_percent __initdata;
7f16f91f 343static unsigned long required_movablecore __initdata;
a5c6d650 344static unsigned long required_movablecore_percent __initdata;
bbe5d993 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 346static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
c713216d 351
418508c1 352#if MAX_NUMNODES > 1
b9726c26 353unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 354unsigned int nr_online_nodes __read_mostly = 1;
418508c1 355EXPORT_SYMBOL(nr_node_ids);
62bc62a8 356EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
357#endif
358
9ef9acb0
MG
359int page_group_by_mobility_disabled __read_mostly;
360
3a80a7fa 361#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
362/*
363 * During boot we initialize deferred pages on-demand, as needed, but once
364 * page_alloc_init_late() has finished, the deferred pages are all initialized,
365 * and we can permanently disable that path.
366 */
367static DEFINE_STATIC_KEY_TRUE(deferred_pages);
368
369/*
370 * Calling kasan_free_pages() only after deferred memory initialization
371 * has completed. Poisoning pages during deferred memory init will greatly
372 * lengthen the process and cause problem in large memory systems as the
373 * deferred pages initialization is done with interrupt disabled.
374 *
375 * Assuming that there will be no reference to those newly initialized
376 * pages before they are ever allocated, this should have no effect on
377 * KASAN memory tracking as the poison will be properly inserted at page
378 * allocation time. The only corner case is when pages are allocated by
379 * on-demand allocation and then freed again before the deferred pages
380 * initialization is done, but this is not likely to happen.
381 */
382static inline void kasan_free_nondeferred_pages(struct page *page, int order)
383{
384 if (!static_branch_unlikely(&deferred_pages))
385 kasan_free_pages(page, order);
386}
387
3a80a7fa 388/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 389static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 390{
ef70b6f4
MG
391 int nid = early_pfn_to_nid(pfn);
392
393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
394 return true;
395
396 return false;
397}
398
399/*
d3035be4 400 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
401 * later in the boot cycle when it can be parallelised.
402 */
d3035be4
PT
403static bool __meminit
404defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 405{
d3035be4
PT
406 static unsigned long prev_end_pfn, nr_initialised;
407
408 /*
409 * prev_end_pfn static that contains the end of previous zone
410 * No need to protect because called very early in boot before smp_init.
411 */
412 if (prev_end_pfn != end_pfn) {
413 prev_end_pfn = end_pfn;
414 nr_initialised = 0;
415 }
416
3c2c6488 417 /* Always populate low zones for address-constrained allocations */
d3035be4 418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 419 return false;
23b68cfa
WY
420
421 /*
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
424 */
d3035be4 425 nr_initialised++;
23b68cfa 426 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
427 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 NODE_DATA(nid)->first_deferred_pfn = pfn;
429 return true;
3a80a7fa 430 }
d3035be4 431 return false;
3a80a7fa
MG
432}
433#else
3c0c12cc
WL
434#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
435
3a80a7fa
MG
436static inline bool early_page_uninitialised(unsigned long pfn)
437{
438 return false;
439}
440
d3035be4 441static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 442{
d3035be4 443 return false;
3a80a7fa
MG
444}
445#endif
446
0b423ca2
MG
447/* Return a pointer to the bitmap storing bits affecting a block of pages */
448static inline unsigned long *get_pageblock_bitmap(struct page *page,
449 unsigned long pfn)
450{
451#ifdef CONFIG_SPARSEMEM
f1eca35a 452 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
453#else
454 return page_zone(page)->pageblock_flags;
455#endif /* CONFIG_SPARSEMEM */
456}
457
458static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
459{
460#ifdef CONFIG_SPARSEMEM
461 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
462#else
463 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 464#endif /* CONFIG_SPARSEMEM */
399b795b 465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
466}
467
468/**
469 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470 * @page: The page within the block of interest
471 * @pfn: The target page frame number
0b423ca2
MG
472 * @mask: mask of bits that the caller is interested in
473 *
474 * Return: pageblock_bits flags
475 */
535b81e2
WY
476static __always_inline
477unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 478 unsigned long pfn,
0b423ca2
MG
479 unsigned long mask)
480{
481 unsigned long *bitmap;
482 unsigned long bitidx, word_bitidx;
483 unsigned long word;
484
485 bitmap = get_pageblock_bitmap(page, pfn);
486 bitidx = pfn_to_bitidx(page, pfn);
487 word_bitidx = bitidx / BITS_PER_LONG;
488 bitidx &= (BITS_PER_LONG-1);
489
490 word = bitmap[word_bitidx];
d93d5ab9 491 return (word >> bitidx) & mask;
0b423ca2
MG
492}
493
494unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
495 unsigned long mask)
496{
535b81e2 497 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
498}
499
500static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
501{
535b81e2 502 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
503}
504
505/**
506 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
507 * @page: The page within the block of interest
508 * @flags: The flags to set
509 * @pfn: The target page frame number
0b423ca2
MG
510 * @mask: mask of bits that the caller is interested in
511 */
512void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
513 unsigned long pfn,
0b423ca2
MG
514 unsigned long mask)
515{
516 unsigned long *bitmap;
517 unsigned long bitidx, word_bitidx;
518 unsigned long old_word, word;
519
520 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 521 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
522
523 bitmap = get_pageblock_bitmap(page, pfn);
524 bitidx = pfn_to_bitidx(page, pfn);
525 word_bitidx = bitidx / BITS_PER_LONG;
526 bitidx &= (BITS_PER_LONG-1);
527
528 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
529
d93d5ab9
WY
530 mask <<= bitidx;
531 flags <<= bitidx;
0b423ca2
MG
532
533 word = READ_ONCE(bitmap[word_bitidx]);
534 for (;;) {
535 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
536 if (word == old_word)
537 break;
538 word = old_word;
539 }
540}
3a80a7fa 541
ee6f509c 542void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 543{
5d0f3f72
KM
544 if (unlikely(page_group_by_mobility_disabled &&
545 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
546 migratetype = MIGRATE_UNMOVABLE;
547
d93d5ab9 548 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 549 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
550}
551
13e7444b 552#ifdef CONFIG_DEBUG_VM
c6a57e19 553static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 554{
bdc8cb98
DH
555 int ret = 0;
556 unsigned seq;
557 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 558 unsigned long sp, start_pfn;
c6a57e19 559
bdc8cb98
DH
560 do {
561 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
562 start_pfn = zone->zone_start_pfn;
563 sp = zone->spanned_pages;
108bcc96 564 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
565 ret = 1;
566 } while (zone_span_seqretry(zone, seq));
567
b5e6a5a2 568 if (ret)
613813e8
DH
569 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
570 pfn, zone_to_nid(zone), zone->name,
571 start_pfn, start_pfn + sp);
b5e6a5a2 572
bdc8cb98 573 return ret;
c6a57e19
DH
574}
575
576static int page_is_consistent(struct zone *zone, struct page *page)
577{
14e07298 578 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 579 return 0;
1da177e4 580 if (zone != page_zone(page))
c6a57e19
DH
581 return 0;
582
583 return 1;
584}
585/*
586 * Temporary debugging check for pages not lying within a given zone.
587 */
d73d3c9f 588static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
589{
590 if (page_outside_zone_boundaries(zone, page))
1da177e4 591 return 1;
c6a57e19
DH
592 if (!page_is_consistent(zone, page))
593 return 1;
594
1da177e4
LT
595 return 0;
596}
13e7444b 597#else
d73d3c9f 598static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
599{
600 return 0;
601}
602#endif
603
82a3241a 604static void bad_page(struct page *page, const char *reason)
1da177e4 605{
d936cf9b
HD
606 static unsigned long resume;
607 static unsigned long nr_shown;
608 static unsigned long nr_unshown;
609
610 /*
611 * Allow a burst of 60 reports, then keep quiet for that minute;
612 * or allow a steady drip of one report per second.
613 */
614 if (nr_shown == 60) {
615 if (time_before(jiffies, resume)) {
616 nr_unshown++;
617 goto out;
618 }
619 if (nr_unshown) {
ff8e8116 620 pr_alert(
1e9e6365 621 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
622 nr_unshown);
623 nr_unshown = 0;
624 }
625 nr_shown = 0;
626 }
627 if (nr_shown++ == 0)
628 resume = jiffies + 60 * HZ;
629
ff8e8116 630 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 631 current->comm, page_to_pfn(page));
ff8e8116 632 __dump_page(page, reason);
4e462112 633 dump_page_owner(page);
3dc14741 634
4f31888c 635 print_modules();
1da177e4 636 dump_stack();
d936cf9b 637out:
8cc3b392 638 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 639 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 640 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
641}
642
1da177e4
LT
643/*
644 * Higher-order pages are called "compound pages". They are structured thusly:
645 *
1d798ca3 646 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 647 *
1d798ca3
KS
648 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
649 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 650 *
1d798ca3
KS
651 * The first tail page's ->compound_dtor holds the offset in array of compound
652 * page destructors. See compound_page_dtors.
1da177e4 653 *
1d798ca3 654 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 655 * This usage means that zero-order pages may not be compound.
1da177e4 656 */
d98c7a09 657
9a982250 658void free_compound_page(struct page *page)
d98c7a09 659{
7ae88534 660 mem_cgroup_uncharge(page);
d85f3385 661 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
662}
663
d00181b9 664void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
665{
666 int i;
667 int nr_pages = 1 << order;
668
f1e61557 669 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
670 set_compound_order(page, order);
671 __SetPageHead(page);
672 for (i = 1; i < nr_pages; i++) {
673 struct page *p = page + i;
58a84aa9 674 set_page_count(p, 0);
1c290f64 675 p->mapping = TAIL_MAPPING;
1d798ca3 676 set_compound_head(p, page);
18229df5 677 }
53f9263b 678 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
679 if (hpage_pincount_available(page))
680 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
681}
682
c0a32fc5
SG
683#ifdef CONFIG_DEBUG_PAGEALLOC
684unsigned int _debug_guardpage_minorder;
96a2b03f 685
8e57f8ac
VB
686bool _debug_pagealloc_enabled_early __read_mostly
687 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
688EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 689DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 690EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
691
692DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 693
031bc574
JK
694static int __init early_debug_pagealloc(char *buf)
695{
8e57f8ac 696 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
697}
698early_param("debug_pagealloc", early_debug_pagealloc);
699
8e57f8ac 700void init_debug_pagealloc(void)
e30825f1 701{
031bc574
JK
702 if (!debug_pagealloc_enabled())
703 return;
704
8e57f8ac
VB
705 static_branch_enable(&_debug_pagealloc_enabled);
706
f1c1e9f7
JK
707 if (!debug_guardpage_minorder())
708 return;
709
96a2b03f 710 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
711}
712
c0a32fc5
SG
713static int __init debug_guardpage_minorder_setup(char *buf)
714{
715 unsigned long res;
716
717 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 718 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
719 return 0;
720 }
721 _debug_guardpage_minorder = res;
1170532b 722 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
723 return 0;
724}
f1c1e9f7 725early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 726
acbc15a4 727static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 728 unsigned int order, int migratetype)
c0a32fc5 729{
e30825f1 730 if (!debug_guardpage_enabled())
acbc15a4
JK
731 return false;
732
733 if (order >= debug_guardpage_minorder())
734 return false;
e30825f1 735
3972f6bb 736 __SetPageGuard(page);
2847cf95
JK
737 INIT_LIST_HEAD(&page->lru);
738 set_page_private(page, order);
739 /* Guard pages are not available for any usage */
740 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
741
742 return true;
c0a32fc5
SG
743}
744
2847cf95
JK
745static inline void clear_page_guard(struct zone *zone, struct page *page,
746 unsigned int order, int migratetype)
c0a32fc5 747{
e30825f1
JK
748 if (!debug_guardpage_enabled())
749 return;
750
3972f6bb 751 __ClearPageGuard(page);
e30825f1 752
2847cf95
JK
753 set_page_private(page, 0);
754 if (!is_migrate_isolate(migratetype))
755 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
756}
757#else
acbc15a4
JK
758static inline bool set_page_guard(struct zone *zone, struct page *page,
759 unsigned int order, int migratetype) { return false; }
2847cf95
JK
760static inline void clear_page_guard(struct zone *zone, struct page *page,
761 unsigned int order, int migratetype) {}
c0a32fc5
SG
762#endif
763
7aeb09f9 764static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 765{
4c21e2f2 766 set_page_private(page, order);
676165a8 767 __SetPageBuddy(page);
1da177e4
LT
768}
769
1da177e4
LT
770/*
771 * This function checks whether a page is free && is the buddy
6e292b9b 772 * we can coalesce a page and its buddy if
13ad59df 773 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 774 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
775 * (c) a page and its buddy have the same order &&
776 * (d) a page and its buddy are in the same zone.
676165a8 777 *
6e292b9b
MW
778 * For recording whether a page is in the buddy system, we set PageBuddy.
779 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 780 *
676165a8 781 * For recording page's order, we use page_private(page).
1da177e4 782 */
fe925c0c 783static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 784 unsigned int order)
1da177e4 785{
fe925c0c 786 if (!page_is_guard(buddy) && !PageBuddy(buddy))
787 return false;
4c5018ce 788
fe925c0c 789 if (page_order(buddy) != order)
790 return false;
c0a32fc5 791
fe925c0c 792 /*
793 * zone check is done late to avoid uselessly calculating
794 * zone/node ids for pages that could never merge.
795 */
796 if (page_zone_id(page) != page_zone_id(buddy))
797 return false;
d34c5fa0 798
fe925c0c 799 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 800
fe925c0c 801 return true;
1da177e4
LT
802}
803
5e1f0f09
MG
804#ifdef CONFIG_COMPACTION
805static inline struct capture_control *task_capc(struct zone *zone)
806{
807 struct capture_control *capc = current->capture_control;
808
deba0487 809 return unlikely(capc) &&
5e1f0f09
MG
810 !(current->flags & PF_KTHREAD) &&
811 !capc->page &&
deba0487 812 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
813}
814
815static inline bool
816compaction_capture(struct capture_control *capc, struct page *page,
817 int order, int migratetype)
818{
819 if (!capc || order != capc->cc->order)
820 return false;
821
822 /* Do not accidentally pollute CMA or isolated regions*/
823 if (is_migrate_cma(migratetype) ||
824 is_migrate_isolate(migratetype))
825 return false;
826
827 /*
828 * Do not let lower order allocations polluate a movable pageblock.
829 * This might let an unmovable request use a reclaimable pageblock
830 * and vice-versa but no more than normal fallback logic which can
831 * have trouble finding a high-order free page.
832 */
833 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
834 return false;
835
836 capc->page = page;
837 return true;
838}
839
840#else
841static inline struct capture_control *task_capc(struct zone *zone)
842{
843 return NULL;
844}
845
846static inline bool
847compaction_capture(struct capture_control *capc, struct page *page,
848 int order, int migratetype)
849{
850 return false;
851}
852#endif /* CONFIG_COMPACTION */
853
6ab01363
AD
854/* Used for pages not on another list */
855static inline void add_to_free_list(struct page *page, struct zone *zone,
856 unsigned int order, int migratetype)
857{
858 struct free_area *area = &zone->free_area[order];
859
860 list_add(&page->lru, &area->free_list[migratetype]);
861 area->nr_free++;
862}
863
864/* Used for pages not on another list */
865static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
866 unsigned int order, int migratetype)
867{
868 struct free_area *area = &zone->free_area[order];
869
870 list_add_tail(&page->lru, &area->free_list[migratetype]);
871 area->nr_free++;
872}
873
874/* Used for pages which are on another list */
875static inline void move_to_free_list(struct page *page, struct zone *zone,
876 unsigned int order, int migratetype)
877{
878 struct free_area *area = &zone->free_area[order];
879
880 list_move(&page->lru, &area->free_list[migratetype]);
881}
882
883static inline void del_page_from_free_list(struct page *page, struct zone *zone,
884 unsigned int order)
885{
36e66c55
AD
886 /* clear reported state and update reported page count */
887 if (page_reported(page))
888 __ClearPageReported(page);
889
6ab01363
AD
890 list_del(&page->lru);
891 __ClearPageBuddy(page);
892 set_page_private(page, 0);
893 zone->free_area[order].nr_free--;
894}
895
a2129f24
AD
896/*
897 * If this is not the largest possible page, check if the buddy
898 * of the next-highest order is free. If it is, it's possible
899 * that pages are being freed that will coalesce soon. In case,
900 * that is happening, add the free page to the tail of the list
901 * so it's less likely to be used soon and more likely to be merged
902 * as a higher order page
903 */
904static inline bool
905buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
906 struct page *page, unsigned int order)
907{
908 struct page *higher_page, *higher_buddy;
909 unsigned long combined_pfn;
910
911 if (order >= MAX_ORDER - 2)
912 return false;
913
914 if (!pfn_valid_within(buddy_pfn))
915 return false;
916
917 combined_pfn = buddy_pfn & pfn;
918 higher_page = page + (combined_pfn - pfn);
919 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
920 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
921
922 return pfn_valid_within(buddy_pfn) &&
923 page_is_buddy(higher_page, higher_buddy, order + 1);
924}
925
1da177e4
LT
926/*
927 * Freeing function for a buddy system allocator.
928 *
929 * The concept of a buddy system is to maintain direct-mapped table
930 * (containing bit values) for memory blocks of various "orders".
931 * The bottom level table contains the map for the smallest allocatable
932 * units of memory (here, pages), and each level above it describes
933 * pairs of units from the levels below, hence, "buddies".
934 * At a high level, all that happens here is marking the table entry
935 * at the bottom level available, and propagating the changes upward
936 * as necessary, plus some accounting needed to play nicely with other
937 * parts of the VM system.
938 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
939 * free pages of length of (1 << order) and marked with PageBuddy.
940 * Page's order is recorded in page_private(page) field.
1da177e4 941 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
942 * other. That is, if we allocate a small block, and both were
943 * free, the remainder of the region must be split into blocks.
1da177e4 944 * If a block is freed, and its buddy is also free, then this
5f63b720 945 * triggers coalescing into a block of larger size.
1da177e4 946 *
6d49e352 947 * -- nyc
1da177e4
LT
948 */
949
48db57f8 950static inline void __free_one_page(struct page *page,
dc4b0caf 951 unsigned long pfn,
ed0ae21d 952 struct zone *zone, unsigned int order,
36e66c55 953 int migratetype, bool report)
1da177e4 954{
a2129f24 955 struct capture_control *capc = task_capc(zone);
3f649ab7 956 unsigned long buddy_pfn;
a2129f24 957 unsigned long combined_pfn;
d9dddbf5 958 unsigned int max_order;
a2129f24
AD
959 struct page *buddy;
960 bool to_tail;
d9dddbf5
VB
961
962 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 963
d29bb978 964 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 965 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 966
ed0ae21d 967 VM_BUG_ON(migratetype == -1);
d9dddbf5 968 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 969 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 970
76741e77 971 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 972 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 973
d9dddbf5 974continue_merging:
3c605096 975 while (order < max_order - 1) {
5e1f0f09
MG
976 if (compaction_capture(capc, page, order, migratetype)) {
977 __mod_zone_freepage_state(zone, -(1 << order),
978 migratetype);
979 return;
980 }
76741e77
VB
981 buddy_pfn = __find_buddy_pfn(pfn, order);
982 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
983
984 if (!pfn_valid_within(buddy_pfn))
985 goto done_merging;
cb2b95e1 986 if (!page_is_buddy(page, buddy, order))
d9dddbf5 987 goto done_merging;
c0a32fc5
SG
988 /*
989 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
990 * merge with it and move up one order.
991 */
b03641af 992 if (page_is_guard(buddy))
2847cf95 993 clear_page_guard(zone, buddy, order, migratetype);
b03641af 994 else
6ab01363 995 del_page_from_free_list(buddy, zone, order);
76741e77
VB
996 combined_pfn = buddy_pfn & pfn;
997 page = page + (combined_pfn - pfn);
998 pfn = combined_pfn;
1da177e4
LT
999 order++;
1000 }
d9dddbf5
VB
1001 if (max_order < MAX_ORDER) {
1002 /* If we are here, it means order is >= pageblock_order.
1003 * We want to prevent merge between freepages on isolate
1004 * pageblock and normal pageblock. Without this, pageblock
1005 * isolation could cause incorrect freepage or CMA accounting.
1006 *
1007 * We don't want to hit this code for the more frequent
1008 * low-order merging.
1009 */
1010 if (unlikely(has_isolate_pageblock(zone))) {
1011 int buddy_mt;
1012
76741e77
VB
1013 buddy_pfn = __find_buddy_pfn(pfn, order);
1014 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1015 buddy_mt = get_pageblock_migratetype(buddy);
1016
1017 if (migratetype != buddy_mt
1018 && (is_migrate_isolate(migratetype) ||
1019 is_migrate_isolate(buddy_mt)))
1020 goto done_merging;
1021 }
1022 max_order++;
1023 goto continue_merging;
1024 }
1025
1026done_merging:
1da177e4 1027 set_page_order(page, order);
6dda9d55 1028
97500a4a 1029 if (is_shuffle_order(order))
a2129f24 1030 to_tail = shuffle_pick_tail();
97500a4a 1031 else
a2129f24 1032 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1033
a2129f24 1034 if (to_tail)
6ab01363 1035 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1036 else
6ab01363 1037 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1038
1039 /* Notify page reporting subsystem of freed page */
1040 if (report)
1041 page_reporting_notify_free(order);
1da177e4
LT
1042}
1043
7bfec6f4
MG
1044/*
1045 * A bad page could be due to a number of fields. Instead of multiple branches,
1046 * try and check multiple fields with one check. The caller must do a detailed
1047 * check if necessary.
1048 */
1049static inline bool page_expected_state(struct page *page,
1050 unsigned long check_flags)
1051{
1052 if (unlikely(atomic_read(&page->_mapcount) != -1))
1053 return false;
1054
1055 if (unlikely((unsigned long)page->mapping |
1056 page_ref_count(page) |
1057#ifdef CONFIG_MEMCG
1058 (unsigned long)page->mem_cgroup |
1059#endif
1060 (page->flags & check_flags)))
1061 return false;
1062
1063 return true;
1064}
1065
58b7f119 1066static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1067{
82a3241a 1068 const char *bad_reason = NULL;
f0b791a3 1069
53f9263b 1070 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1071 bad_reason = "nonzero mapcount";
1072 if (unlikely(page->mapping != NULL))
1073 bad_reason = "non-NULL mapping";
fe896d18 1074 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1075 bad_reason = "nonzero _refcount";
58b7f119
WY
1076 if (unlikely(page->flags & flags)) {
1077 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1078 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1079 else
1080 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1081 }
9edad6ea
JW
1082#ifdef CONFIG_MEMCG
1083 if (unlikely(page->mem_cgroup))
1084 bad_reason = "page still charged to cgroup";
1085#endif
58b7f119
WY
1086 return bad_reason;
1087}
1088
1089static void check_free_page_bad(struct page *page)
1090{
1091 bad_page(page,
1092 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1093}
1094
534fe5e3 1095static inline int check_free_page(struct page *page)
bb552ac6 1096{
da838d4f 1097 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1098 return 0;
bb552ac6
MG
1099
1100 /* Something has gone sideways, find it */
0d0c48a2 1101 check_free_page_bad(page);
7bfec6f4 1102 return 1;
1da177e4
LT
1103}
1104
4db7548c
MG
1105static int free_tail_pages_check(struct page *head_page, struct page *page)
1106{
1107 int ret = 1;
1108
1109 /*
1110 * We rely page->lru.next never has bit 0 set, unless the page
1111 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1112 */
1113 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1114
1115 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1116 ret = 0;
1117 goto out;
1118 }
1119 switch (page - head_page) {
1120 case 1:
4da1984e 1121 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1122 if (unlikely(compound_mapcount(page))) {
82a3241a 1123 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1124 goto out;
1125 }
1126 break;
1127 case 2:
1128 /*
1129 * the second tail page: ->mapping is
fa3015b7 1130 * deferred_list.next -- ignore value.
4db7548c
MG
1131 */
1132 break;
1133 default:
1134 if (page->mapping != TAIL_MAPPING) {
82a3241a 1135 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1136 goto out;
1137 }
1138 break;
1139 }
1140 if (unlikely(!PageTail(page))) {
82a3241a 1141 bad_page(page, "PageTail not set");
4db7548c
MG
1142 goto out;
1143 }
1144 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1145 bad_page(page, "compound_head not consistent");
4db7548c
MG
1146 goto out;
1147 }
1148 ret = 0;
1149out:
1150 page->mapping = NULL;
1151 clear_compound_head(page);
1152 return ret;
1153}
1154
6471384a
AP
1155static void kernel_init_free_pages(struct page *page, int numpages)
1156{
1157 int i;
1158
9e15afa5
QC
1159 /* s390's use of memset() could override KASAN redzones. */
1160 kasan_disable_current();
6471384a
AP
1161 for (i = 0; i < numpages; i++)
1162 clear_highpage(page + i);
9e15afa5 1163 kasan_enable_current();
6471384a
AP
1164}
1165
e2769dbd
MG
1166static __always_inline bool free_pages_prepare(struct page *page,
1167 unsigned int order, bool check_free)
4db7548c 1168{
e2769dbd 1169 int bad = 0;
4db7548c 1170
4db7548c
MG
1171 VM_BUG_ON_PAGE(PageTail(page), page);
1172
e2769dbd 1173 trace_mm_page_free(page, order);
e2769dbd
MG
1174
1175 /*
1176 * Check tail pages before head page information is cleared to
1177 * avoid checking PageCompound for order-0 pages.
1178 */
1179 if (unlikely(order)) {
1180 bool compound = PageCompound(page);
1181 int i;
1182
1183 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1184
9a73f61b
KS
1185 if (compound)
1186 ClearPageDoubleMap(page);
e2769dbd
MG
1187 for (i = 1; i < (1 << order); i++) {
1188 if (compound)
1189 bad += free_tail_pages_check(page, page + i);
534fe5e3 1190 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1191 bad++;
1192 continue;
1193 }
1194 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1195 }
1196 }
bda807d4 1197 if (PageMappingFlags(page))
4db7548c 1198 page->mapping = NULL;
c4159a75 1199 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1200 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1201 if (check_free)
534fe5e3 1202 bad += check_free_page(page);
e2769dbd
MG
1203 if (bad)
1204 return false;
4db7548c 1205
e2769dbd
MG
1206 page_cpupid_reset_last(page);
1207 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1208 reset_page_owner(page, order);
4db7548c
MG
1209
1210 if (!PageHighMem(page)) {
1211 debug_check_no_locks_freed(page_address(page),
e2769dbd 1212 PAGE_SIZE << order);
4db7548c 1213 debug_check_no_obj_freed(page_address(page),
e2769dbd 1214 PAGE_SIZE << order);
4db7548c 1215 }
6471384a
AP
1216 if (want_init_on_free())
1217 kernel_init_free_pages(page, 1 << order);
1218
e2769dbd 1219 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1220 /*
1221 * arch_free_page() can make the page's contents inaccessible. s390
1222 * does this. So nothing which can access the page's contents should
1223 * happen after this.
1224 */
1225 arch_free_page(page, order);
1226
8e57f8ac 1227 if (debug_pagealloc_enabled_static())
d6332692
RE
1228 kernel_map_pages(page, 1 << order, 0);
1229
3c0c12cc 1230 kasan_free_nondeferred_pages(page, order);
4db7548c 1231
4db7548c
MG
1232 return true;
1233}
1234
e2769dbd 1235#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1236/*
1237 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1238 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1239 * moved from pcp lists to free lists.
1240 */
1241static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1242{
1243 return free_pages_prepare(page, 0, true);
1244}
1245
4462b32c 1246static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1247{
8e57f8ac 1248 if (debug_pagealloc_enabled_static())
534fe5e3 1249 return check_free_page(page);
4462b32c
VB
1250 else
1251 return false;
e2769dbd
MG
1252}
1253#else
4462b32c
VB
1254/*
1255 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1256 * moving from pcp lists to free list in order to reduce overhead. With
1257 * debug_pagealloc enabled, they are checked also immediately when being freed
1258 * to the pcp lists.
1259 */
e2769dbd
MG
1260static bool free_pcp_prepare(struct page *page)
1261{
8e57f8ac 1262 if (debug_pagealloc_enabled_static())
4462b32c
VB
1263 return free_pages_prepare(page, 0, true);
1264 else
1265 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1266}
1267
4db7548c
MG
1268static bool bulkfree_pcp_prepare(struct page *page)
1269{
534fe5e3 1270 return check_free_page(page);
4db7548c
MG
1271}
1272#endif /* CONFIG_DEBUG_VM */
1273
97334162
AL
1274static inline void prefetch_buddy(struct page *page)
1275{
1276 unsigned long pfn = page_to_pfn(page);
1277 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1278 struct page *buddy = page + (buddy_pfn - pfn);
1279
1280 prefetch(buddy);
1281}
1282
1da177e4 1283/*
5f8dcc21 1284 * Frees a number of pages from the PCP lists
1da177e4 1285 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1286 * count is the number of pages to free.
1da177e4
LT
1287 *
1288 * If the zone was previously in an "all pages pinned" state then look to
1289 * see if this freeing clears that state.
1290 *
1291 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1292 * pinned" detection logic.
1293 */
5f8dcc21
MG
1294static void free_pcppages_bulk(struct zone *zone, int count,
1295 struct per_cpu_pages *pcp)
1da177e4 1296{
5f8dcc21 1297 int migratetype = 0;
a6f9edd6 1298 int batch_free = 0;
97334162 1299 int prefetch_nr = 0;
3777999d 1300 bool isolated_pageblocks;
0a5f4e5b
AL
1301 struct page *page, *tmp;
1302 LIST_HEAD(head);
f2260e6b 1303
e5b31ac2 1304 while (count) {
5f8dcc21
MG
1305 struct list_head *list;
1306
1307 /*
a6f9edd6
MG
1308 * Remove pages from lists in a round-robin fashion. A
1309 * batch_free count is maintained that is incremented when an
1310 * empty list is encountered. This is so more pages are freed
1311 * off fuller lists instead of spinning excessively around empty
1312 * lists
5f8dcc21
MG
1313 */
1314 do {
a6f9edd6 1315 batch_free++;
5f8dcc21
MG
1316 if (++migratetype == MIGRATE_PCPTYPES)
1317 migratetype = 0;
1318 list = &pcp->lists[migratetype];
1319 } while (list_empty(list));
48db57f8 1320
1d16871d
NK
1321 /* This is the only non-empty list. Free them all. */
1322 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1323 batch_free = count;
1d16871d 1324
a6f9edd6 1325 do {
a16601c5 1326 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1327 /* must delete to avoid corrupting pcp list */
a6f9edd6 1328 list_del(&page->lru);
77ba9062 1329 pcp->count--;
aa016d14 1330
4db7548c
MG
1331 if (bulkfree_pcp_prepare(page))
1332 continue;
1333
0a5f4e5b 1334 list_add_tail(&page->lru, &head);
97334162
AL
1335
1336 /*
1337 * We are going to put the page back to the global
1338 * pool, prefetch its buddy to speed up later access
1339 * under zone->lock. It is believed the overhead of
1340 * an additional test and calculating buddy_pfn here
1341 * can be offset by reduced memory latency later. To
1342 * avoid excessive prefetching due to large count, only
1343 * prefetch buddy for the first pcp->batch nr of pages.
1344 */
1345 if (prefetch_nr++ < pcp->batch)
1346 prefetch_buddy(page);
e5b31ac2 1347 } while (--count && --batch_free && !list_empty(list));
1da177e4 1348 }
0a5f4e5b
AL
1349
1350 spin_lock(&zone->lock);
1351 isolated_pageblocks = has_isolate_pageblock(zone);
1352
1353 /*
1354 * Use safe version since after __free_one_page(),
1355 * page->lru.next will not point to original list.
1356 */
1357 list_for_each_entry_safe(page, tmp, &head, lru) {
1358 int mt = get_pcppage_migratetype(page);
1359 /* MIGRATE_ISOLATE page should not go to pcplists */
1360 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1361 /* Pageblock could have been isolated meanwhile */
1362 if (unlikely(isolated_pageblocks))
1363 mt = get_pageblock_migratetype(page);
1364
36e66c55 1365 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
0a5f4e5b
AL
1366 trace_mm_page_pcpu_drain(page, 0, mt);
1367 }
d34b0733 1368 spin_unlock(&zone->lock);
1da177e4
LT
1369}
1370
dc4b0caf
MG
1371static void free_one_page(struct zone *zone,
1372 struct page *page, unsigned long pfn,
7aeb09f9 1373 unsigned int order,
ed0ae21d 1374 int migratetype)
1da177e4 1375{
d34b0733 1376 spin_lock(&zone->lock);
ad53f92e
JK
1377 if (unlikely(has_isolate_pageblock(zone) ||
1378 is_migrate_isolate(migratetype))) {
1379 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1380 }
36e66c55 1381 __free_one_page(page, pfn, zone, order, migratetype, true);
d34b0733 1382 spin_unlock(&zone->lock);
48db57f8
NP
1383}
1384
1e8ce83c 1385static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1386 unsigned long zone, int nid)
1e8ce83c 1387{
d0dc12e8 1388 mm_zero_struct_page(page);
1e8ce83c 1389 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1390 init_page_count(page);
1391 page_mapcount_reset(page);
1392 page_cpupid_reset_last(page);
2813b9c0 1393 page_kasan_tag_reset(page);
1e8ce83c 1394
1e8ce83c
RH
1395 INIT_LIST_HEAD(&page->lru);
1396#ifdef WANT_PAGE_VIRTUAL
1397 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1398 if (!is_highmem_idx(zone))
1399 set_page_address(page, __va(pfn << PAGE_SHIFT));
1400#endif
1401}
1402
7e18adb4 1403#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1404static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1405{
1406 pg_data_t *pgdat;
1407 int nid, zid;
1408
1409 if (!early_page_uninitialised(pfn))
1410 return;
1411
1412 nid = early_pfn_to_nid(pfn);
1413 pgdat = NODE_DATA(nid);
1414
1415 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1416 struct zone *zone = &pgdat->node_zones[zid];
1417
1418 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1419 break;
1420 }
d0dc12e8 1421 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1422}
1423#else
1424static inline void init_reserved_page(unsigned long pfn)
1425{
1426}
1427#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1428
92923ca3
NZ
1429/*
1430 * Initialised pages do not have PageReserved set. This function is
1431 * called for each range allocated by the bootmem allocator and
1432 * marks the pages PageReserved. The remaining valid pages are later
1433 * sent to the buddy page allocator.
1434 */
4b50bcc7 1435void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1436{
1437 unsigned long start_pfn = PFN_DOWN(start);
1438 unsigned long end_pfn = PFN_UP(end);
1439
7e18adb4
MG
1440 for (; start_pfn < end_pfn; start_pfn++) {
1441 if (pfn_valid(start_pfn)) {
1442 struct page *page = pfn_to_page(start_pfn);
1443
1444 init_reserved_page(start_pfn);
1d798ca3
KS
1445
1446 /* Avoid false-positive PageTail() */
1447 INIT_LIST_HEAD(&page->lru);
1448
d483da5b
AD
1449 /*
1450 * no need for atomic set_bit because the struct
1451 * page is not visible yet so nobody should
1452 * access it yet.
1453 */
1454 __SetPageReserved(page);
7e18adb4
MG
1455 }
1456 }
92923ca3
NZ
1457}
1458
ec95f53a
KM
1459static void __free_pages_ok(struct page *page, unsigned int order)
1460{
d34b0733 1461 unsigned long flags;
95e34412 1462 int migratetype;
dc4b0caf 1463 unsigned long pfn = page_to_pfn(page);
ec95f53a 1464
e2769dbd 1465 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1466 return;
1467
cfc47a28 1468 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1469 local_irq_save(flags);
1470 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1471 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1472 local_irq_restore(flags);
1da177e4
LT
1473}
1474
a9cd410a 1475void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1476{
c3993076 1477 unsigned int nr_pages = 1 << order;
e2d0bd2b 1478 struct page *p = page;
c3993076 1479 unsigned int loop;
a226f6c8 1480
e2d0bd2b
YL
1481 prefetchw(p);
1482 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1483 prefetchw(p + 1);
c3993076
JW
1484 __ClearPageReserved(p);
1485 set_page_count(p, 0);
a226f6c8 1486 }
e2d0bd2b
YL
1487 __ClearPageReserved(p);
1488 set_page_count(p, 0);
c3993076 1489
9705bea5 1490 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1491 set_page_refcounted(page);
1492 __free_pages(page, order);
a226f6c8
DH
1493}
1494
3f08a302 1495#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1496
75a592a4
MG
1497static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1498
6f24fbd3
MR
1499#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1500
1501/*
1502 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1503 */
1504int __meminit __early_pfn_to_nid(unsigned long pfn,
1505 struct mminit_pfnnid_cache *state)
75a592a4 1506{
6f24fbd3 1507 unsigned long start_pfn, end_pfn;
75a592a4
MG
1508 int nid;
1509
6f24fbd3
MR
1510 if (state->last_start <= pfn && pfn < state->last_end)
1511 return state->last_nid;
1512
1513 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1514 if (nid != NUMA_NO_NODE) {
1515 state->last_start = start_pfn;
1516 state->last_end = end_pfn;
1517 state->last_nid = nid;
1518 }
7ace9917
MG
1519
1520 return nid;
75a592a4 1521}
6f24fbd3 1522#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
75a592a4 1523
75a592a4 1524int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1525{
7ace9917 1526 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1527 int nid;
1528
7ace9917 1529 spin_lock(&early_pfn_lock);
56ec43d8 1530 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1531 if (nid < 0)
e4568d38 1532 nid = first_online_node;
7ace9917 1533 spin_unlock(&early_pfn_lock);
75a592a4 1534
7ace9917 1535 return nid;
75a592a4 1536}
3f08a302 1537#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1538
7c2ee349 1539void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1540 unsigned int order)
1541{
1542 if (early_page_uninitialised(pfn))
1543 return;
a9cd410a 1544 __free_pages_core(page, order);
3a80a7fa
MG
1545}
1546
7cf91a98
JK
1547/*
1548 * Check that the whole (or subset of) a pageblock given by the interval of
1549 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1550 * with the migration of free compaction scanner. The scanners then need to
1551 * use only pfn_valid_within() check for arches that allow holes within
1552 * pageblocks.
1553 *
1554 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1555 *
1556 * It's possible on some configurations to have a setup like node0 node1 node0
1557 * i.e. it's possible that all pages within a zones range of pages do not
1558 * belong to a single zone. We assume that a border between node0 and node1
1559 * can occur within a single pageblock, but not a node0 node1 node0
1560 * interleaving within a single pageblock. It is therefore sufficient to check
1561 * the first and last page of a pageblock and avoid checking each individual
1562 * page in a pageblock.
1563 */
1564struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1565 unsigned long end_pfn, struct zone *zone)
1566{
1567 struct page *start_page;
1568 struct page *end_page;
1569
1570 /* end_pfn is one past the range we are checking */
1571 end_pfn--;
1572
1573 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1574 return NULL;
1575
2d070eab
MH
1576 start_page = pfn_to_online_page(start_pfn);
1577 if (!start_page)
1578 return NULL;
7cf91a98
JK
1579
1580 if (page_zone(start_page) != zone)
1581 return NULL;
1582
1583 end_page = pfn_to_page(end_pfn);
1584
1585 /* This gives a shorter code than deriving page_zone(end_page) */
1586 if (page_zone_id(start_page) != page_zone_id(end_page))
1587 return NULL;
1588
1589 return start_page;
1590}
1591
1592void set_zone_contiguous(struct zone *zone)
1593{
1594 unsigned long block_start_pfn = zone->zone_start_pfn;
1595 unsigned long block_end_pfn;
1596
1597 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1598 for (; block_start_pfn < zone_end_pfn(zone);
1599 block_start_pfn = block_end_pfn,
1600 block_end_pfn += pageblock_nr_pages) {
1601
1602 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1603
1604 if (!__pageblock_pfn_to_page(block_start_pfn,
1605 block_end_pfn, zone))
1606 return;
e84fe99b 1607 cond_resched();
7cf91a98
JK
1608 }
1609
1610 /* We confirm that there is no hole */
1611 zone->contiguous = true;
1612}
1613
1614void clear_zone_contiguous(struct zone *zone)
1615{
1616 zone->contiguous = false;
1617}
1618
7e18adb4 1619#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1620static void __init deferred_free_range(unsigned long pfn,
1621 unsigned long nr_pages)
a4de83dd 1622{
2f47a91f
PT
1623 struct page *page;
1624 unsigned long i;
a4de83dd 1625
2f47a91f 1626 if (!nr_pages)
a4de83dd
MG
1627 return;
1628
2f47a91f
PT
1629 page = pfn_to_page(pfn);
1630
a4de83dd 1631 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1632 if (nr_pages == pageblock_nr_pages &&
1633 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1634 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1635 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1636 return;
1637 }
1638
e780149b
XQ
1639 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1640 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1641 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1642 __free_pages_core(page, 0);
e780149b 1643 }
a4de83dd
MG
1644}
1645
d3cd131d
NS
1646/* Completion tracking for deferred_init_memmap() threads */
1647static atomic_t pgdat_init_n_undone __initdata;
1648static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1649
1650static inline void __init pgdat_init_report_one_done(void)
1651{
1652 if (atomic_dec_and_test(&pgdat_init_n_undone))
1653 complete(&pgdat_init_all_done_comp);
1654}
0e1cc95b 1655
2f47a91f 1656/*
80b1f41c
PT
1657 * Returns true if page needs to be initialized or freed to buddy allocator.
1658 *
1659 * First we check if pfn is valid on architectures where it is possible to have
1660 * holes within pageblock_nr_pages. On systems where it is not possible, this
1661 * function is optimized out.
1662 *
1663 * Then, we check if a current large page is valid by only checking the validity
1664 * of the head pfn.
2f47a91f 1665 */
56ec43d8 1666static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1667{
80b1f41c
PT
1668 if (!pfn_valid_within(pfn))
1669 return false;
1670 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1671 return false;
80b1f41c
PT
1672 return true;
1673}
2f47a91f 1674
80b1f41c
PT
1675/*
1676 * Free pages to buddy allocator. Try to free aligned pages in
1677 * pageblock_nr_pages sizes.
1678 */
56ec43d8 1679static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1680 unsigned long end_pfn)
1681{
80b1f41c
PT
1682 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1683 unsigned long nr_free = 0;
2f47a91f 1684
80b1f41c 1685 for (; pfn < end_pfn; pfn++) {
56ec43d8 1686 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1687 deferred_free_range(pfn - nr_free, nr_free);
1688 nr_free = 0;
1689 } else if (!(pfn & nr_pgmask)) {
1690 deferred_free_range(pfn - nr_free, nr_free);
1691 nr_free = 1;
80b1f41c
PT
1692 } else {
1693 nr_free++;
1694 }
1695 }
1696 /* Free the last block of pages to allocator */
1697 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1698}
1699
80b1f41c
PT
1700/*
1701 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1702 * by performing it only once every pageblock_nr_pages.
1703 * Return number of pages initialized.
1704 */
56ec43d8 1705static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1706 unsigned long pfn,
1707 unsigned long end_pfn)
2f47a91f 1708{
2f47a91f 1709 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1710 int nid = zone_to_nid(zone);
2f47a91f 1711 unsigned long nr_pages = 0;
56ec43d8 1712 int zid = zone_idx(zone);
2f47a91f 1713 struct page *page = NULL;
2f47a91f 1714
80b1f41c 1715 for (; pfn < end_pfn; pfn++) {
56ec43d8 1716 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1717 page = NULL;
2f47a91f 1718 continue;
80b1f41c 1719 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1720 page = pfn_to_page(pfn);
80b1f41c
PT
1721 } else {
1722 page++;
2f47a91f 1723 }
d0dc12e8 1724 __init_single_page(page, pfn, zid, nid);
80b1f41c 1725 nr_pages++;
2f47a91f 1726 }
80b1f41c 1727 return (nr_pages);
2f47a91f
PT
1728}
1729
0e56acae
AD
1730/*
1731 * This function is meant to pre-load the iterator for the zone init.
1732 * Specifically it walks through the ranges until we are caught up to the
1733 * first_init_pfn value and exits there. If we never encounter the value we
1734 * return false indicating there are no valid ranges left.
1735 */
1736static bool __init
1737deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1738 unsigned long *spfn, unsigned long *epfn,
1739 unsigned long first_init_pfn)
1740{
1741 u64 j;
1742
1743 /*
1744 * Start out by walking through the ranges in this zone that have
1745 * already been initialized. We don't need to do anything with them
1746 * so we just need to flush them out of the system.
1747 */
1748 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1749 if (*epfn <= first_init_pfn)
1750 continue;
1751 if (*spfn < first_init_pfn)
1752 *spfn = first_init_pfn;
1753 *i = j;
1754 return true;
1755 }
1756
1757 return false;
1758}
1759
1760/*
1761 * Initialize and free pages. We do it in two loops: first we initialize
1762 * struct page, then free to buddy allocator, because while we are
1763 * freeing pages we can access pages that are ahead (computing buddy
1764 * page in __free_one_page()).
1765 *
1766 * In order to try and keep some memory in the cache we have the loop
1767 * broken along max page order boundaries. This way we will not cause
1768 * any issues with the buddy page computation.
1769 */
1770static unsigned long __init
1771deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1772 unsigned long *end_pfn)
1773{
1774 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1775 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1776 unsigned long nr_pages = 0;
1777 u64 j = *i;
1778
1779 /* First we loop through and initialize the page values */
1780 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1781 unsigned long t;
1782
1783 if (mo_pfn <= *start_pfn)
1784 break;
1785
1786 t = min(mo_pfn, *end_pfn);
1787 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1788
1789 if (mo_pfn < *end_pfn) {
1790 *start_pfn = mo_pfn;
1791 break;
1792 }
1793 }
1794
1795 /* Reset values and now loop through freeing pages as needed */
1796 swap(j, *i);
1797
1798 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1799 unsigned long t;
1800
1801 if (mo_pfn <= spfn)
1802 break;
1803
1804 t = min(mo_pfn, epfn);
1805 deferred_free_pages(spfn, t);
1806
1807 if (mo_pfn <= epfn)
1808 break;
1809 }
1810
1811 return nr_pages;
1812}
1813
e4443149
DJ
1814static void __init
1815deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1816 void *arg)
1817{
1818 unsigned long spfn, epfn;
1819 struct zone *zone = arg;
1820 u64 i;
1821
1822 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1823
1824 /*
1825 * Initialize and free pages in MAX_ORDER sized increments so that we
1826 * can avoid introducing any issues with the buddy allocator.
1827 */
1828 while (spfn < end_pfn) {
1829 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1830 cond_resched();
1831 }
1832}
1833
ecd09650
DJ
1834/* An arch may override for more concurrency. */
1835__weak int __init
1836deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1837{
1838 return 1;
1839}
1840
7e18adb4 1841/* Initialise remaining memory on a node */
0e1cc95b 1842static int __init deferred_init_memmap(void *data)
7e18adb4 1843{
0e1cc95b 1844 pg_data_t *pgdat = data;
0e56acae 1845 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1846 unsigned long spfn = 0, epfn = 0;
0e56acae 1847 unsigned long first_init_pfn, flags;
7e18adb4 1848 unsigned long start = jiffies;
7e18adb4 1849 struct zone *zone;
e4443149 1850 int zid, max_threads;
2f47a91f 1851 u64 i;
7e18adb4 1852
3a2d7fa8
PT
1853 /* Bind memory initialisation thread to a local node if possible */
1854 if (!cpumask_empty(cpumask))
1855 set_cpus_allowed_ptr(current, cpumask);
1856
1857 pgdat_resize_lock(pgdat, &flags);
1858 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1859 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1860 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1861 pgdat_init_report_one_done();
0e1cc95b
MG
1862 return 0;
1863 }
1864
7e18adb4
MG
1865 /* Sanity check boundaries */
1866 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1867 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1868 pgdat->first_deferred_pfn = ULONG_MAX;
1869
3d060856
PT
1870 /*
1871 * Once we unlock here, the zone cannot be grown anymore, thus if an
1872 * interrupt thread must allocate this early in boot, zone must be
1873 * pre-grown prior to start of deferred page initialization.
1874 */
1875 pgdat_resize_unlock(pgdat, &flags);
1876
7e18adb4
MG
1877 /* Only the highest zone is deferred so find it */
1878 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1879 zone = pgdat->node_zones + zid;
1880 if (first_init_pfn < zone_end_pfn(zone))
1881 break;
1882 }
0e56acae
AD
1883
1884 /* If the zone is empty somebody else may have cleared out the zone */
1885 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1886 first_init_pfn))
1887 goto zone_empty;
7e18adb4 1888
ecd09650 1889 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1890
117003c3 1891 while (spfn < epfn) {
e4443149
DJ
1892 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1893 struct padata_mt_job job = {
1894 .thread_fn = deferred_init_memmap_chunk,
1895 .fn_arg = zone,
1896 .start = spfn,
1897 .size = epfn_align - spfn,
1898 .align = PAGES_PER_SECTION,
1899 .min_chunk = PAGES_PER_SECTION,
1900 .max_threads = max_threads,
1901 };
1902
1903 padata_do_multithreaded(&job);
1904 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1905 epfn_align);
117003c3 1906 }
0e56acae 1907zone_empty:
7e18adb4
MG
1908 /* Sanity check that the next zone really is unpopulated */
1909 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1910
89c7c402
DJ
1911 pr_info("node %d deferred pages initialised in %ums\n",
1912 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1913
1914 pgdat_init_report_one_done();
0e1cc95b
MG
1915 return 0;
1916}
c9e97a19 1917
c9e97a19
PT
1918/*
1919 * If this zone has deferred pages, try to grow it by initializing enough
1920 * deferred pages to satisfy the allocation specified by order, rounded up to
1921 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1922 * of SECTION_SIZE bytes by initializing struct pages in increments of
1923 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1924 *
1925 * Return true when zone was grown, otherwise return false. We return true even
1926 * when we grow less than requested, to let the caller decide if there are
1927 * enough pages to satisfy the allocation.
1928 *
1929 * Note: We use noinline because this function is needed only during boot, and
1930 * it is called from a __ref function _deferred_grow_zone. This way we are
1931 * making sure that it is not inlined into permanent text section.
1932 */
1933static noinline bool __init
1934deferred_grow_zone(struct zone *zone, unsigned int order)
1935{
c9e97a19 1936 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1937 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1938 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1939 unsigned long spfn, epfn, flags;
1940 unsigned long nr_pages = 0;
c9e97a19
PT
1941 u64 i;
1942
1943 /* Only the last zone may have deferred pages */
1944 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1945 return false;
1946
1947 pgdat_resize_lock(pgdat, &flags);
1948
c9e97a19
PT
1949 /*
1950 * If someone grew this zone while we were waiting for spinlock, return
1951 * true, as there might be enough pages already.
1952 */
1953 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1954 pgdat_resize_unlock(pgdat, &flags);
1955 return true;
1956 }
1957
0e56acae
AD
1958 /* If the zone is empty somebody else may have cleared out the zone */
1959 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1960 first_deferred_pfn)) {
1961 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1962 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1963 /* Retry only once. */
1964 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1965 }
1966
0e56acae
AD
1967 /*
1968 * Initialize and free pages in MAX_ORDER sized increments so
1969 * that we can avoid introducing any issues with the buddy
1970 * allocator.
1971 */
1972 while (spfn < epfn) {
1973 /* update our first deferred PFN for this section */
1974 first_deferred_pfn = spfn;
1975
1976 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 1977 touch_nmi_watchdog();
c9e97a19 1978
0e56acae
AD
1979 /* We should only stop along section boundaries */
1980 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1981 continue;
c9e97a19 1982
0e56acae 1983 /* If our quota has been met we can stop here */
c9e97a19
PT
1984 if (nr_pages >= nr_pages_needed)
1985 break;
1986 }
1987
0e56acae 1988 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1989 pgdat_resize_unlock(pgdat, &flags);
1990
1991 return nr_pages > 0;
1992}
1993
1994/*
1995 * deferred_grow_zone() is __init, but it is called from
1996 * get_page_from_freelist() during early boot until deferred_pages permanently
1997 * disables this call. This is why we have refdata wrapper to avoid warning,
1998 * and to ensure that the function body gets unloaded.
1999 */
2000static bool __ref
2001_deferred_grow_zone(struct zone *zone, unsigned int order)
2002{
2003 return deferred_grow_zone(zone, order);
2004}
2005
7cf91a98 2006#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2007
2008void __init page_alloc_init_late(void)
2009{
7cf91a98 2010 struct zone *zone;
e900a918 2011 int nid;
7cf91a98
JK
2012
2013#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2014
d3cd131d
NS
2015 /* There will be num_node_state(N_MEMORY) threads */
2016 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2017 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2018 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2019 }
2020
2021 /* Block until all are initialised */
d3cd131d 2022 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2023
3e8fc007
MG
2024 /*
2025 * The number of managed pages has changed due to the initialisation
2026 * so the pcpu batch and high limits needs to be updated or the limits
2027 * will be artificially small.
2028 */
2029 for_each_populated_zone(zone)
2030 zone_pcp_update(zone);
2031
c9e97a19
PT
2032 /*
2033 * We initialized the rest of the deferred pages. Permanently disable
2034 * on-demand struct page initialization.
2035 */
2036 static_branch_disable(&deferred_pages);
2037
4248b0da
MG
2038 /* Reinit limits that are based on free pages after the kernel is up */
2039 files_maxfiles_init();
7cf91a98 2040#endif
350e88ba 2041
3010f876
PT
2042 /* Discard memblock private memory */
2043 memblock_discard();
7cf91a98 2044
e900a918
DW
2045 for_each_node_state(nid, N_MEMORY)
2046 shuffle_free_memory(NODE_DATA(nid));
2047
7cf91a98
JK
2048 for_each_populated_zone(zone)
2049 set_zone_contiguous(zone);
7e18adb4 2050}
7e18adb4 2051
47118af0 2052#ifdef CONFIG_CMA
9cf510a5 2053/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2054void __init init_cma_reserved_pageblock(struct page *page)
2055{
2056 unsigned i = pageblock_nr_pages;
2057 struct page *p = page;
2058
2059 do {
2060 __ClearPageReserved(p);
2061 set_page_count(p, 0);
d883c6cf 2062 } while (++p, --i);
47118af0 2063
47118af0 2064 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2065
2066 if (pageblock_order >= MAX_ORDER) {
2067 i = pageblock_nr_pages;
2068 p = page;
2069 do {
2070 set_page_refcounted(p);
2071 __free_pages(p, MAX_ORDER - 1);
2072 p += MAX_ORDER_NR_PAGES;
2073 } while (i -= MAX_ORDER_NR_PAGES);
2074 } else {
2075 set_page_refcounted(page);
2076 __free_pages(page, pageblock_order);
2077 }
2078
3dcc0571 2079 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2080}
2081#endif
1da177e4
LT
2082
2083/*
2084 * The order of subdivision here is critical for the IO subsystem.
2085 * Please do not alter this order without good reasons and regression
2086 * testing. Specifically, as large blocks of memory are subdivided,
2087 * the order in which smaller blocks are delivered depends on the order
2088 * they're subdivided in this function. This is the primary factor
2089 * influencing the order in which pages are delivered to the IO
2090 * subsystem according to empirical testing, and this is also justified
2091 * by considering the behavior of a buddy system containing a single
2092 * large block of memory acted on by a series of small allocations.
2093 * This behavior is a critical factor in sglist merging's success.
2094 *
6d49e352 2095 * -- nyc
1da177e4 2096 */
085cc7d5 2097static inline void expand(struct zone *zone, struct page *page,
6ab01363 2098 int low, int high, int migratetype)
1da177e4
LT
2099{
2100 unsigned long size = 1 << high;
2101
2102 while (high > low) {
1da177e4
LT
2103 high--;
2104 size >>= 1;
309381fe 2105 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2106
acbc15a4
JK
2107 /*
2108 * Mark as guard pages (or page), that will allow to
2109 * merge back to allocator when buddy will be freed.
2110 * Corresponding page table entries will not be touched,
2111 * pages will stay not present in virtual address space
2112 */
2113 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2114 continue;
acbc15a4 2115
6ab01363 2116 add_to_free_list(&page[size], zone, high, migratetype);
1da177e4
LT
2117 set_page_order(&page[size], high);
2118 }
1da177e4
LT
2119}
2120
4e611801 2121static void check_new_page_bad(struct page *page)
1da177e4 2122{
f4c18e6f 2123 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2124 /* Don't complain about hwpoisoned pages */
2125 page_mapcount_reset(page); /* remove PageBuddy */
2126 return;
f4c18e6f 2127 }
58b7f119
WY
2128
2129 bad_page(page,
2130 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2131}
2132
2133/*
2134 * This page is about to be returned from the page allocator
2135 */
2136static inline int check_new_page(struct page *page)
2137{
2138 if (likely(page_expected_state(page,
2139 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2140 return 0;
2141
2142 check_new_page_bad(page);
2143 return 1;
2a7684a2
WF
2144}
2145
bd33ef36 2146static inline bool free_pages_prezeroed(void)
1414c7f4 2147{
6471384a
AP
2148 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2149 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2150}
2151
479f854a 2152#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2153/*
2154 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2155 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2156 * also checked when pcp lists are refilled from the free lists.
2157 */
2158static inline bool check_pcp_refill(struct page *page)
479f854a 2159{
8e57f8ac 2160 if (debug_pagealloc_enabled_static())
4462b32c
VB
2161 return check_new_page(page);
2162 else
2163 return false;
479f854a
MG
2164}
2165
4462b32c 2166static inline bool check_new_pcp(struct page *page)
479f854a
MG
2167{
2168 return check_new_page(page);
2169}
2170#else
4462b32c
VB
2171/*
2172 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2173 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2174 * enabled, they are also checked when being allocated from the pcp lists.
2175 */
2176static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2177{
2178 return check_new_page(page);
2179}
4462b32c 2180static inline bool check_new_pcp(struct page *page)
479f854a 2181{
8e57f8ac 2182 if (debug_pagealloc_enabled_static())
4462b32c
VB
2183 return check_new_page(page);
2184 else
2185 return false;
479f854a
MG
2186}
2187#endif /* CONFIG_DEBUG_VM */
2188
2189static bool check_new_pages(struct page *page, unsigned int order)
2190{
2191 int i;
2192 for (i = 0; i < (1 << order); i++) {
2193 struct page *p = page + i;
2194
2195 if (unlikely(check_new_page(p)))
2196 return true;
2197 }
2198
2199 return false;
2200}
2201
46f24fd8
JK
2202inline void post_alloc_hook(struct page *page, unsigned int order,
2203 gfp_t gfp_flags)
2204{
2205 set_page_private(page, 0);
2206 set_page_refcounted(page);
2207
2208 arch_alloc_page(page, order);
8e57f8ac 2209 if (debug_pagealloc_enabled_static())
d6332692 2210 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2211 kasan_alloc_pages(page, order);
4117992d 2212 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2213 set_page_owner(page, order, gfp_flags);
2214}
2215
479f854a 2216static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2217 unsigned int alloc_flags)
2a7684a2 2218{
46f24fd8 2219 post_alloc_hook(page, order, gfp_flags);
17cf4406 2220
6471384a
AP
2221 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2222 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2223
2224 if (order && (gfp_flags & __GFP_COMP))
2225 prep_compound_page(page, order);
2226
75379191 2227 /*
2f064f34 2228 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2229 * allocate the page. The expectation is that the caller is taking
2230 * steps that will free more memory. The caller should avoid the page
2231 * being used for !PFMEMALLOC purposes.
2232 */
2f064f34
MH
2233 if (alloc_flags & ALLOC_NO_WATERMARKS)
2234 set_page_pfmemalloc(page);
2235 else
2236 clear_page_pfmemalloc(page);
1da177e4
LT
2237}
2238
56fd56b8
MG
2239/*
2240 * Go through the free lists for the given migratetype and remove
2241 * the smallest available page from the freelists
2242 */
85ccc8fa 2243static __always_inline
728ec980 2244struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2245 int migratetype)
2246{
2247 unsigned int current_order;
b8af2941 2248 struct free_area *area;
56fd56b8
MG
2249 struct page *page;
2250
2251 /* Find a page of the appropriate size in the preferred list */
2252 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2253 area = &(zone->free_area[current_order]);
b03641af 2254 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2255 if (!page)
2256 continue;
6ab01363
AD
2257 del_page_from_free_list(page, zone, current_order);
2258 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2259 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2260 return page;
2261 }
2262
2263 return NULL;
2264}
2265
2266
b2a0ac88
MG
2267/*
2268 * This array describes the order lists are fallen back to when
2269 * the free lists for the desirable migrate type are depleted
2270 */
da415663 2271static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2272 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2273 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2274 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2275#ifdef CONFIG_CMA
974a786e 2276 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2277#endif
194159fb 2278#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2279 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2280#endif
b2a0ac88
MG
2281};
2282
dc67647b 2283#ifdef CONFIG_CMA
85ccc8fa 2284static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2285 unsigned int order)
2286{
2287 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2288}
2289#else
2290static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2291 unsigned int order) { return NULL; }
2292#endif
2293
c361be55
MG
2294/*
2295 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2296 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2297 * boundary. If alignment is required, use move_freepages_block()
2298 */
02aa0cdd 2299static int move_freepages(struct zone *zone,
b69a7288 2300 struct page *start_page, struct page *end_page,
02aa0cdd 2301 int migratetype, int *num_movable)
c361be55
MG
2302{
2303 struct page *page;
d00181b9 2304 unsigned int order;
d100313f 2305 int pages_moved = 0;
c361be55 2306
c361be55
MG
2307 for (page = start_page; page <= end_page;) {
2308 if (!pfn_valid_within(page_to_pfn(page))) {
2309 page++;
2310 continue;
2311 }
2312
2313 if (!PageBuddy(page)) {
02aa0cdd
VB
2314 /*
2315 * We assume that pages that could be isolated for
2316 * migration are movable. But we don't actually try
2317 * isolating, as that would be expensive.
2318 */
2319 if (num_movable &&
2320 (PageLRU(page) || __PageMovable(page)))
2321 (*num_movable)++;
2322
c361be55
MG
2323 page++;
2324 continue;
2325 }
2326
cd961038
DR
2327 /* Make sure we are not inadvertently changing nodes */
2328 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2329 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2330
c361be55 2331 order = page_order(page);
6ab01363 2332 move_to_free_list(page, zone, order, migratetype);
c361be55 2333 page += 1 << order;
d100313f 2334 pages_moved += 1 << order;
c361be55
MG
2335 }
2336
d100313f 2337 return pages_moved;
c361be55
MG
2338}
2339
ee6f509c 2340int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2341 int migratetype, int *num_movable)
c361be55
MG
2342{
2343 unsigned long start_pfn, end_pfn;
2344 struct page *start_page, *end_page;
2345
4a222127
DR
2346 if (num_movable)
2347 *num_movable = 0;
2348
c361be55 2349 start_pfn = page_to_pfn(page);
d9c23400 2350 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2351 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2352 end_page = start_page + pageblock_nr_pages - 1;
2353 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2354
2355 /* Do not cross zone boundaries */
108bcc96 2356 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2357 start_page = page;
108bcc96 2358 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2359 return 0;
2360
02aa0cdd
VB
2361 return move_freepages(zone, start_page, end_page, migratetype,
2362 num_movable);
c361be55
MG
2363}
2364
2f66a68f
MG
2365static void change_pageblock_range(struct page *pageblock_page,
2366 int start_order, int migratetype)
2367{
2368 int nr_pageblocks = 1 << (start_order - pageblock_order);
2369
2370 while (nr_pageblocks--) {
2371 set_pageblock_migratetype(pageblock_page, migratetype);
2372 pageblock_page += pageblock_nr_pages;
2373 }
2374}
2375
fef903ef 2376/*
9c0415eb
VB
2377 * When we are falling back to another migratetype during allocation, try to
2378 * steal extra free pages from the same pageblocks to satisfy further
2379 * allocations, instead of polluting multiple pageblocks.
2380 *
2381 * If we are stealing a relatively large buddy page, it is likely there will
2382 * be more free pages in the pageblock, so try to steal them all. For
2383 * reclaimable and unmovable allocations, we steal regardless of page size,
2384 * as fragmentation caused by those allocations polluting movable pageblocks
2385 * is worse than movable allocations stealing from unmovable and reclaimable
2386 * pageblocks.
fef903ef 2387 */
4eb7dce6
JK
2388static bool can_steal_fallback(unsigned int order, int start_mt)
2389{
2390 /*
2391 * Leaving this order check is intended, although there is
2392 * relaxed order check in next check. The reason is that
2393 * we can actually steal whole pageblock if this condition met,
2394 * but, below check doesn't guarantee it and that is just heuristic
2395 * so could be changed anytime.
2396 */
2397 if (order >= pageblock_order)
2398 return true;
2399
2400 if (order >= pageblock_order / 2 ||
2401 start_mt == MIGRATE_RECLAIMABLE ||
2402 start_mt == MIGRATE_UNMOVABLE ||
2403 page_group_by_mobility_disabled)
2404 return true;
2405
2406 return false;
2407}
2408
1c30844d
MG
2409static inline void boost_watermark(struct zone *zone)
2410{
2411 unsigned long max_boost;
2412
2413 if (!watermark_boost_factor)
2414 return;
14f69140
HW
2415 /*
2416 * Don't bother in zones that are unlikely to produce results.
2417 * On small machines, including kdump capture kernels running
2418 * in a small area, boosting the watermark can cause an out of
2419 * memory situation immediately.
2420 */
2421 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2422 return;
1c30844d
MG
2423
2424 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2425 watermark_boost_factor, 10000);
94b3334c
MG
2426
2427 /*
2428 * high watermark may be uninitialised if fragmentation occurs
2429 * very early in boot so do not boost. We do not fall
2430 * through and boost by pageblock_nr_pages as failing
2431 * allocations that early means that reclaim is not going
2432 * to help and it may even be impossible to reclaim the
2433 * boosted watermark resulting in a hang.
2434 */
2435 if (!max_boost)
2436 return;
2437
1c30844d
MG
2438 max_boost = max(pageblock_nr_pages, max_boost);
2439
2440 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2441 max_boost);
2442}
2443
4eb7dce6
JK
2444/*
2445 * This function implements actual steal behaviour. If order is large enough,
2446 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2447 * pageblock to our migratetype and determine how many already-allocated pages
2448 * are there in the pageblock with a compatible migratetype. If at least half
2449 * of pages are free or compatible, we can change migratetype of the pageblock
2450 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2451 */
2452static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2453 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2454{
d00181b9 2455 unsigned int current_order = page_order(page);
02aa0cdd
VB
2456 int free_pages, movable_pages, alike_pages;
2457 int old_block_type;
2458
2459 old_block_type = get_pageblock_migratetype(page);
fef903ef 2460
3bc48f96
VB
2461 /*
2462 * This can happen due to races and we want to prevent broken
2463 * highatomic accounting.
2464 */
02aa0cdd 2465 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2466 goto single_page;
2467
fef903ef
SB
2468 /* Take ownership for orders >= pageblock_order */
2469 if (current_order >= pageblock_order) {
2470 change_pageblock_range(page, current_order, start_type);
3bc48f96 2471 goto single_page;
fef903ef
SB
2472 }
2473
1c30844d
MG
2474 /*
2475 * Boost watermarks to increase reclaim pressure to reduce the
2476 * likelihood of future fallbacks. Wake kswapd now as the node
2477 * may be balanced overall and kswapd will not wake naturally.
2478 */
2479 boost_watermark(zone);
2480 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2481 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2482
3bc48f96
VB
2483 /* We are not allowed to try stealing from the whole block */
2484 if (!whole_block)
2485 goto single_page;
2486
02aa0cdd
VB
2487 free_pages = move_freepages_block(zone, page, start_type,
2488 &movable_pages);
2489 /*
2490 * Determine how many pages are compatible with our allocation.
2491 * For movable allocation, it's the number of movable pages which
2492 * we just obtained. For other types it's a bit more tricky.
2493 */
2494 if (start_type == MIGRATE_MOVABLE) {
2495 alike_pages = movable_pages;
2496 } else {
2497 /*
2498 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2499 * to MOVABLE pageblock, consider all non-movable pages as
2500 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2501 * vice versa, be conservative since we can't distinguish the
2502 * exact migratetype of non-movable pages.
2503 */
2504 if (old_block_type == MIGRATE_MOVABLE)
2505 alike_pages = pageblock_nr_pages
2506 - (free_pages + movable_pages);
2507 else
2508 alike_pages = 0;
2509 }
2510
3bc48f96 2511 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2512 if (!free_pages)
3bc48f96 2513 goto single_page;
fef903ef 2514
02aa0cdd
VB
2515 /*
2516 * If a sufficient number of pages in the block are either free or of
2517 * comparable migratability as our allocation, claim the whole block.
2518 */
2519 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2520 page_group_by_mobility_disabled)
2521 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2522
2523 return;
2524
2525single_page:
6ab01363 2526 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2527}
2528
2149cdae
JK
2529/*
2530 * Check whether there is a suitable fallback freepage with requested order.
2531 * If only_stealable is true, this function returns fallback_mt only if
2532 * we can steal other freepages all together. This would help to reduce
2533 * fragmentation due to mixed migratetype pages in one pageblock.
2534 */
2535int find_suitable_fallback(struct free_area *area, unsigned int order,
2536 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2537{
2538 int i;
2539 int fallback_mt;
2540
2541 if (area->nr_free == 0)
2542 return -1;
2543
2544 *can_steal = false;
2545 for (i = 0;; i++) {
2546 fallback_mt = fallbacks[migratetype][i];
974a786e 2547 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2548 break;
2549
b03641af 2550 if (free_area_empty(area, fallback_mt))
4eb7dce6 2551 continue;
fef903ef 2552
4eb7dce6
JK
2553 if (can_steal_fallback(order, migratetype))
2554 *can_steal = true;
2555
2149cdae
JK
2556 if (!only_stealable)
2557 return fallback_mt;
2558
2559 if (*can_steal)
2560 return fallback_mt;
fef903ef 2561 }
4eb7dce6
JK
2562
2563 return -1;
fef903ef
SB
2564}
2565
0aaa29a5
MG
2566/*
2567 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2568 * there are no empty page blocks that contain a page with a suitable order
2569 */
2570static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2571 unsigned int alloc_order)
2572{
2573 int mt;
2574 unsigned long max_managed, flags;
2575
2576 /*
2577 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2578 * Check is race-prone but harmless.
2579 */
9705bea5 2580 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2581 if (zone->nr_reserved_highatomic >= max_managed)
2582 return;
2583
2584 spin_lock_irqsave(&zone->lock, flags);
2585
2586 /* Recheck the nr_reserved_highatomic limit under the lock */
2587 if (zone->nr_reserved_highatomic >= max_managed)
2588 goto out_unlock;
2589
2590 /* Yoink! */
2591 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2592 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2593 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2594 zone->nr_reserved_highatomic += pageblock_nr_pages;
2595 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2596 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2597 }
2598
2599out_unlock:
2600 spin_unlock_irqrestore(&zone->lock, flags);
2601}
2602
2603/*
2604 * Used when an allocation is about to fail under memory pressure. This
2605 * potentially hurts the reliability of high-order allocations when under
2606 * intense memory pressure but failed atomic allocations should be easier
2607 * to recover from than an OOM.
29fac03b
MK
2608 *
2609 * If @force is true, try to unreserve a pageblock even though highatomic
2610 * pageblock is exhausted.
0aaa29a5 2611 */
29fac03b
MK
2612static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2613 bool force)
0aaa29a5
MG
2614{
2615 struct zonelist *zonelist = ac->zonelist;
2616 unsigned long flags;
2617 struct zoneref *z;
2618 struct zone *zone;
2619 struct page *page;
2620 int order;
04c8716f 2621 bool ret;
0aaa29a5 2622
97a225e6 2623 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2624 ac->nodemask) {
29fac03b
MK
2625 /*
2626 * Preserve at least one pageblock unless memory pressure
2627 * is really high.
2628 */
2629 if (!force && zone->nr_reserved_highatomic <=
2630 pageblock_nr_pages)
0aaa29a5
MG
2631 continue;
2632
2633 spin_lock_irqsave(&zone->lock, flags);
2634 for (order = 0; order < MAX_ORDER; order++) {
2635 struct free_area *area = &(zone->free_area[order]);
2636
b03641af 2637 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2638 if (!page)
0aaa29a5
MG
2639 continue;
2640
0aaa29a5 2641 /*
4855e4a7
MK
2642 * In page freeing path, migratetype change is racy so
2643 * we can counter several free pages in a pageblock
2644 * in this loop althoug we changed the pageblock type
2645 * from highatomic to ac->migratetype. So we should
2646 * adjust the count once.
0aaa29a5 2647 */
a6ffdc07 2648 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2649 /*
2650 * It should never happen but changes to
2651 * locking could inadvertently allow a per-cpu
2652 * drain to add pages to MIGRATE_HIGHATOMIC
2653 * while unreserving so be safe and watch for
2654 * underflows.
2655 */
2656 zone->nr_reserved_highatomic -= min(
2657 pageblock_nr_pages,
2658 zone->nr_reserved_highatomic);
2659 }
0aaa29a5
MG
2660
2661 /*
2662 * Convert to ac->migratetype and avoid the normal
2663 * pageblock stealing heuristics. Minimally, the caller
2664 * is doing the work and needs the pages. More
2665 * importantly, if the block was always converted to
2666 * MIGRATE_UNMOVABLE or another type then the number
2667 * of pageblocks that cannot be completely freed
2668 * may increase.
2669 */
2670 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2671 ret = move_freepages_block(zone, page, ac->migratetype,
2672 NULL);
29fac03b
MK
2673 if (ret) {
2674 spin_unlock_irqrestore(&zone->lock, flags);
2675 return ret;
2676 }
0aaa29a5
MG
2677 }
2678 spin_unlock_irqrestore(&zone->lock, flags);
2679 }
04c8716f
MK
2680
2681 return false;
0aaa29a5
MG
2682}
2683
3bc48f96
VB
2684/*
2685 * Try finding a free buddy page on the fallback list and put it on the free
2686 * list of requested migratetype, possibly along with other pages from the same
2687 * block, depending on fragmentation avoidance heuristics. Returns true if
2688 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2689 *
2690 * The use of signed ints for order and current_order is a deliberate
2691 * deviation from the rest of this file, to make the for loop
2692 * condition simpler.
3bc48f96 2693 */
85ccc8fa 2694static __always_inline bool
6bb15450
MG
2695__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2696 unsigned int alloc_flags)
b2a0ac88 2697{
b8af2941 2698 struct free_area *area;
b002529d 2699 int current_order;
6bb15450 2700 int min_order = order;
b2a0ac88 2701 struct page *page;
4eb7dce6
JK
2702 int fallback_mt;
2703 bool can_steal;
b2a0ac88 2704
6bb15450
MG
2705 /*
2706 * Do not steal pages from freelists belonging to other pageblocks
2707 * i.e. orders < pageblock_order. If there are no local zones free,
2708 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2709 */
2710 if (alloc_flags & ALLOC_NOFRAGMENT)
2711 min_order = pageblock_order;
2712
7a8f58f3
VB
2713 /*
2714 * Find the largest available free page in the other list. This roughly
2715 * approximates finding the pageblock with the most free pages, which
2716 * would be too costly to do exactly.
2717 */
6bb15450 2718 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2719 --current_order) {
4eb7dce6
JK
2720 area = &(zone->free_area[current_order]);
2721 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2722 start_migratetype, false, &can_steal);
4eb7dce6
JK
2723 if (fallback_mt == -1)
2724 continue;
b2a0ac88 2725
7a8f58f3
VB
2726 /*
2727 * We cannot steal all free pages from the pageblock and the
2728 * requested migratetype is movable. In that case it's better to
2729 * steal and split the smallest available page instead of the
2730 * largest available page, because even if the next movable
2731 * allocation falls back into a different pageblock than this
2732 * one, it won't cause permanent fragmentation.
2733 */
2734 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2735 && current_order > order)
2736 goto find_smallest;
b2a0ac88 2737
7a8f58f3
VB
2738 goto do_steal;
2739 }
e0fff1bd 2740
7a8f58f3 2741 return false;
e0fff1bd 2742
7a8f58f3
VB
2743find_smallest:
2744 for (current_order = order; current_order < MAX_ORDER;
2745 current_order++) {
2746 area = &(zone->free_area[current_order]);
2747 fallback_mt = find_suitable_fallback(area, current_order,
2748 start_migratetype, false, &can_steal);
2749 if (fallback_mt != -1)
2750 break;
b2a0ac88
MG
2751 }
2752
7a8f58f3
VB
2753 /*
2754 * This should not happen - we already found a suitable fallback
2755 * when looking for the largest page.
2756 */
2757 VM_BUG_ON(current_order == MAX_ORDER);
2758
2759do_steal:
b03641af 2760 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2761
1c30844d
MG
2762 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2763 can_steal);
7a8f58f3
VB
2764
2765 trace_mm_page_alloc_extfrag(page, order, current_order,
2766 start_migratetype, fallback_mt);
2767
2768 return true;
2769
b2a0ac88
MG
2770}
2771
56fd56b8 2772/*
1da177e4
LT
2773 * Do the hard work of removing an element from the buddy allocator.
2774 * Call me with the zone->lock already held.
2775 */
85ccc8fa 2776static __always_inline struct page *
6bb15450
MG
2777__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2778 unsigned int alloc_flags)
1da177e4 2779{
1da177e4
LT
2780 struct page *page;
2781
16867664
RG
2782#ifdef CONFIG_CMA
2783 /*
2784 * Balance movable allocations between regular and CMA areas by
2785 * allocating from CMA when over half of the zone's free memory
2786 * is in the CMA area.
2787 */
8510e69c 2788 if (alloc_flags & ALLOC_CMA &&
16867664
RG
2789 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2790 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2791 page = __rmqueue_cma_fallback(zone, order);
2792 if (page)
2793 return page;
2794 }
2795#endif
3bc48f96 2796retry:
56fd56b8 2797 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2798 if (unlikely(!page)) {
8510e69c 2799 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2800 page = __rmqueue_cma_fallback(zone, order);
2801
6bb15450
MG
2802 if (!page && __rmqueue_fallback(zone, order, migratetype,
2803 alloc_flags))
3bc48f96 2804 goto retry;
728ec980
MG
2805 }
2806
0d3d062a 2807 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2808 return page;
1da177e4
LT
2809}
2810
5f63b720 2811/*
1da177e4
LT
2812 * Obtain a specified number of elements from the buddy allocator, all under
2813 * a single hold of the lock, for efficiency. Add them to the supplied list.
2814 * Returns the number of new pages which were placed at *list.
2815 */
5f63b720 2816static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2817 unsigned long count, struct list_head *list,
6bb15450 2818 int migratetype, unsigned int alloc_flags)
1da177e4 2819{
a6de734b 2820 int i, alloced = 0;
5f63b720 2821
d34b0733 2822 spin_lock(&zone->lock);
1da177e4 2823 for (i = 0; i < count; ++i) {
6bb15450
MG
2824 struct page *page = __rmqueue(zone, order, migratetype,
2825 alloc_flags);
085cc7d5 2826 if (unlikely(page == NULL))
1da177e4 2827 break;
81eabcbe 2828
479f854a
MG
2829 if (unlikely(check_pcp_refill(page)))
2830 continue;
2831
81eabcbe 2832 /*
0fac3ba5
VB
2833 * Split buddy pages returned by expand() are received here in
2834 * physical page order. The page is added to the tail of
2835 * caller's list. From the callers perspective, the linked list
2836 * is ordered by page number under some conditions. This is
2837 * useful for IO devices that can forward direction from the
2838 * head, thus also in the physical page order. This is useful
2839 * for IO devices that can merge IO requests if the physical
2840 * pages are ordered properly.
81eabcbe 2841 */
0fac3ba5 2842 list_add_tail(&page->lru, list);
a6de734b 2843 alloced++;
bb14c2c7 2844 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2845 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2846 -(1 << order));
1da177e4 2847 }
a6de734b
MG
2848
2849 /*
2850 * i pages were removed from the buddy list even if some leak due
2851 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2852 * on i. Do not confuse with 'alloced' which is the number of
2853 * pages added to the pcp list.
2854 */
f2260e6b 2855 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2856 spin_unlock(&zone->lock);
a6de734b 2857 return alloced;
1da177e4
LT
2858}
2859
4ae7c039 2860#ifdef CONFIG_NUMA
8fce4d8e 2861/*
4037d452
CL
2862 * Called from the vmstat counter updater to drain pagesets of this
2863 * currently executing processor on remote nodes after they have
2864 * expired.
2865 *
879336c3
CL
2866 * Note that this function must be called with the thread pinned to
2867 * a single processor.
8fce4d8e 2868 */
4037d452 2869void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2870{
4ae7c039 2871 unsigned long flags;
7be12fc9 2872 int to_drain, batch;
4ae7c039 2873
4037d452 2874 local_irq_save(flags);
4db0c3c2 2875 batch = READ_ONCE(pcp->batch);
7be12fc9 2876 to_drain = min(pcp->count, batch);
77ba9062 2877 if (to_drain > 0)
2a13515c 2878 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2879 local_irq_restore(flags);
4ae7c039
CL
2880}
2881#endif
2882
9f8f2172 2883/*
93481ff0 2884 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2885 *
2886 * The processor must either be the current processor and the
2887 * thread pinned to the current processor or a processor that
2888 * is not online.
2889 */
93481ff0 2890static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2891{
c54ad30c 2892 unsigned long flags;
93481ff0
VB
2893 struct per_cpu_pageset *pset;
2894 struct per_cpu_pages *pcp;
1da177e4 2895
93481ff0
VB
2896 local_irq_save(flags);
2897 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2898
93481ff0 2899 pcp = &pset->pcp;
77ba9062 2900 if (pcp->count)
93481ff0 2901 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2902 local_irq_restore(flags);
2903}
3dfa5721 2904
93481ff0
VB
2905/*
2906 * Drain pcplists of all zones on the indicated processor.
2907 *
2908 * The processor must either be the current processor and the
2909 * thread pinned to the current processor or a processor that
2910 * is not online.
2911 */
2912static void drain_pages(unsigned int cpu)
2913{
2914 struct zone *zone;
2915
2916 for_each_populated_zone(zone) {
2917 drain_pages_zone(cpu, zone);
1da177e4
LT
2918 }
2919}
1da177e4 2920
9f8f2172
CL
2921/*
2922 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2923 *
2924 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2925 * the single zone's pages.
9f8f2172 2926 */
93481ff0 2927void drain_local_pages(struct zone *zone)
9f8f2172 2928{
93481ff0
VB
2929 int cpu = smp_processor_id();
2930
2931 if (zone)
2932 drain_pages_zone(cpu, zone);
2933 else
2934 drain_pages(cpu);
9f8f2172
CL
2935}
2936
0ccce3b9
MG
2937static void drain_local_pages_wq(struct work_struct *work)
2938{
d9367bd0
WY
2939 struct pcpu_drain *drain;
2940
2941 drain = container_of(work, struct pcpu_drain, work);
2942
a459eeb7
MH
2943 /*
2944 * drain_all_pages doesn't use proper cpu hotplug protection so
2945 * we can race with cpu offline when the WQ can move this from
2946 * a cpu pinned worker to an unbound one. We can operate on a different
2947 * cpu which is allright but we also have to make sure to not move to
2948 * a different one.
2949 */
2950 preempt_disable();
d9367bd0 2951 drain_local_pages(drain->zone);
a459eeb7 2952 preempt_enable();
0ccce3b9
MG
2953}
2954
9f8f2172 2955/*
74046494
GBY
2956 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2957 *
93481ff0
VB
2958 * When zone parameter is non-NULL, spill just the single zone's pages.
2959 *
0ccce3b9 2960 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2961 */
93481ff0 2962void drain_all_pages(struct zone *zone)
9f8f2172 2963{
74046494 2964 int cpu;
74046494
GBY
2965
2966 /*
2967 * Allocate in the BSS so we wont require allocation in
2968 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2969 */
2970 static cpumask_t cpus_with_pcps;
2971
ce612879
MH
2972 /*
2973 * Make sure nobody triggers this path before mm_percpu_wq is fully
2974 * initialized.
2975 */
2976 if (WARN_ON_ONCE(!mm_percpu_wq))
2977 return;
2978
bd233f53
MG
2979 /*
2980 * Do not drain if one is already in progress unless it's specific to
2981 * a zone. Such callers are primarily CMA and memory hotplug and need
2982 * the drain to be complete when the call returns.
2983 */
2984 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2985 if (!zone)
2986 return;
2987 mutex_lock(&pcpu_drain_mutex);
2988 }
0ccce3b9 2989
74046494
GBY
2990 /*
2991 * We don't care about racing with CPU hotplug event
2992 * as offline notification will cause the notified
2993 * cpu to drain that CPU pcps and on_each_cpu_mask
2994 * disables preemption as part of its processing
2995 */
2996 for_each_online_cpu(cpu) {
93481ff0
VB
2997 struct per_cpu_pageset *pcp;
2998 struct zone *z;
74046494 2999 bool has_pcps = false;
93481ff0
VB
3000
3001 if (zone) {
74046494 3002 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3003 if (pcp->pcp.count)
74046494 3004 has_pcps = true;
93481ff0
VB
3005 } else {
3006 for_each_populated_zone(z) {
3007 pcp = per_cpu_ptr(z->pageset, cpu);
3008 if (pcp->pcp.count) {
3009 has_pcps = true;
3010 break;
3011 }
74046494
GBY
3012 }
3013 }
93481ff0 3014
74046494
GBY
3015 if (has_pcps)
3016 cpumask_set_cpu(cpu, &cpus_with_pcps);
3017 else
3018 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3019 }
0ccce3b9 3020
bd233f53 3021 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3022 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3023
3024 drain->zone = zone;
3025 INIT_WORK(&drain->work, drain_local_pages_wq);
3026 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3027 }
bd233f53 3028 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3029 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3030
3031 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3032}
3033
296699de 3034#ifdef CONFIG_HIBERNATION
1da177e4 3035
556b969a
CY
3036/*
3037 * Touch the watchdog for every WD_PAGE_COUNT pages.
3038 */
3039#define WD_PAGE_COUNT (128*1024)
3040
1da177e4
LT
3041void mark_free_pages(struct zone *zone)
3042{
556b969a 3043 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3044 unsigned long flags;
7aeb09f9 3045 unsigned int order, t;
86760a2c 3046 struct page *page;
1da177e4 3047
8080fc03 3048 if (zone_is_empty(zone))
1da177e4
LT
3049 return;
3050
3051 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3052
108bcc96 3053 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3054 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3055 if (pfn_valid(pfn)) {
86760a2c 3056 page = pfn_to_page(pfn);
ba6b0979 3057
556b969a
CY
3058 if (!--page_count) {
3059 touch_nmi_watchdog();
3060 page_count = WD_PAGE_COUNT;
3061 }
3062
ba6b0979
JK
3063 if (page_zone(page) != zone)
3064 continue;
3065
7be98234
RW
3066 if (!swsusp_page_is_forbidden(page))
3067 swsusp_unset_page_free(page);
f623f0db 3068 }
1da177e4 3069
b2a0ac88 3070 for_each_migratetype_order(order, t) {
86760a2c
GT
3071 list_for_each_entry(page,
3072 &zone->free_area[order].free_list[t], lru) {
f623f0db 3073 unsigned long i;
1da177e4 3074
86760a2c 3075 pfn = page_to_pfn(page);
556b969a
CY
3076 for (i = 0; i < (1UL << order); i++) {
3077 if (!--page_count) {
3078 touch_nmi_watchdog();
3079 page_count = WD_PAGE_COUNT;
3080 }
7be98234 3081 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3082 }
f623f0db 3083 }
b2a0ac88 3084 }
1da177e4
LT
3085 spin_unlock_irqrestore(&zone->lock, flags);
3086}
e2c55dc8 3087#endif /* CONFIG_PM */
1da177e4 3088
2d4894b5 3089static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3090{
5f8dcc21 3091 int migratetype;
1da177e4 3092
4db7548c 3093 if (!free_pcp_prepare(page))
9cca35d4 3094 return false;
689bcebf 3095
dc4b0caf 3096 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3097 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3098 return true;
3099}
3100
2d4894b5 3101static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3102{
3103 struct zone *zone = page_zone(page);
3104 struct per_cpu_pages *pcp;
3105 int migratetype;
3106
3107 migratetype = get_pcppage_migratetype(page);
d34b0733 3108 __count_vm_event(PGFREE);
da456f14 3109
5f8dcc21
MG
3110 /*
3111 * We only track unmovable, reclaimable and movable on pcp lists.
3112 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3113 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3114 * areas back if necessary. Otherwise, we may have to free
3115 * excessively into the page allocator
3116 */
3117 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3118 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3119 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3120 return;
5f8dcc21
MG
3121 }
3122 migratetype = MIGRATE_MOVABLE;
3123 }
3124
99dcc3e5 3125 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3126 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3127 pcp->count++;
48db57f8 3128 if (pcp->count >= pcp->high) {
4db0c3c2 3129 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3130 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3131 }
9cca35d4 3132}
5f8dcc21 3133
9cca35d4
MG
3134/*
3135 * Free a 0-order page
9cca35d4 3136 */
2d4894b5 3137void free_unref_page(struct page *page)
9cca35d4
MG
3138{
3139 unsigned long flags;
3140 unsigned long pfn = page_to_pfn(page);
3141
2d4894b5 3142 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3143 return;
3144
3145 local_irq_save(flags);
2d4894b5 3146 free_unref_page_commit(page, pfn);
d34b0733 3147 local_irq_restore(flags);
1da177e4
LT
3148}
3149
cc59850e
KK
3150/*
3151 * Free a list of 0-order pages
3152 */
2d4894b5 3153void free_unref_page_list(struct list_head *list)
cc59850e
KK
3154{
3155 struct page *page, *next;
9cca35d4 3156 unsigned long flags, pfn;
c24ad77d 3157 int batch_count = 0;
9cca35d4
MG
3158
3159 /* Prepare pages for freeing */
3160 list_for_each_entry_safe(page, next, list, lru) {
3161 pfn = page_to_pfn(page);
2d4894b5 3162 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3163 list_del(&page->lru);
3164 set_page_private(page, pfn);
3165 }
cc59850e 3166
9cca35d4 3167 local_irq_save(flags);
cc59850e 3168 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3169 unsigned long pfn = page_private(page);
3170
3171 set_page_private(page, 0);
2d4894b5
MG
3172 trace_mm_page_free_batched(page);
3173 free_unref_page_commit(page, pfn);
c24ad77d
LS
3174
3175 /*
3176 * Guard against excessive IRQ disabled times when we get
3177 * a large list of pages to free.
3178 */
3179 if (++batch_count == SWAP_CLUSTER_MAX) {
3180 local_irq_restore(flags);
3181 batch_count = 0;
3182 local_irq_save(flags);
3183 }
cc59850e 3184 }
9cca35d4 3185 local_irq_restore(flags);
cc59850e
KK
3186}
3187
8dfcc9ba
NP
3188/*
3189 * split_page takes a non-compound higher-order page, and splits it into
3190 * n (1<<order) sub-pages: page[0..n]
3191 * Each sub-page must be freed individually.
3192 *
3193 * Note: this is probably too low level an operation for use in drivers.
3194 * Please consult with lkml before using this in your driver.
3195 */
3196void split_page(struct page *page, unsigned int order)
3197{
3198 int i;
3199
309381fe
SL
3200 VM_BUG_ON_PAGE(PageCompound(page), page);
3201 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3202
a9627bc5 3203 for (i = 1; i < (1 << order); i++)
7835e98b 3204 set_page_refcounted(page + i);
a9627bc5 3205 split_page_owner(page, order);
8dfcc9ba 3206}
5853ff23 3207EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3208
3c605096 3209int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3210{
748446bb
MG
3211 unsigned long watermark;
3212 struct zone *zone;
2139cbe6 3213 int mt;
748446bb
MG
3214
3215 BUG_ON(!PageBuddy(page));
3216
3217 zone = page_zone(page);
2e30abd1 3218 mt = get_pageblock_migratetype(page);
748446bb 3219
194159fb 3220 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3221 /*
3222 * Obey watermarks as if the page was being allocated. We can
3223 * emulate a high-order watermark check with a raised order-0
3224 * watermark, because we already know our high-order page
3225 * exists.
3226 */
fd1444b2 3227 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3228 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3229 return 0;
3230
8fb74b9f 3231 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3232 }
748446bb
MG
3233
3234 /* Remove page from free list */
b03641af 3235
6ab01363 3236 del_page_from_free_list(page, zone, order);
2139cbe6 3237
400bc7fd 3238 /*
3239 * Set the pageblock if the isolated page is at least half of a
3240 * pageblock
3241 */
748446bb
MG
3242 if (order >= pageblock_order - 1) {
3243 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3244 for (; page < endpage; page += pageblock_nr_pages) {
3245 int mt = get_pageblock_migratetype(page);
88ed365e 3246 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3247 && !is_migrate_highatomic(mt))
47118af0
MN
3248 set_pageblock_migratetype(page,
3249 MIGRATE_MOVABLE);
3250 }
748446bb
MG
3251 }
3252
f3a14ced 3253
8fb74b9f 3254 return 1UL << order;
1fb3f8ca
MG
3255}
3256
624f58d8
AD
3257/**
3258 * __putback_isolated_page - Return a now-isolated page back where we got it
3259 * @page: Page that was isolated
3260 * @order: Order of the isolated page
e6a0a7ad 3261 * @mt: The page's pageblock's migratetype
624f58d8
AD
3262 *
3263 * This function is meant to return a page pulled from the free lists via
3264 * __isolate_free_page back to the free lists they were pulled from.
3265 */
3266void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3267{
3268 struct zone *zone = page_zone(page);
3269
3270 /* zone lock should be held when this function is called */
3271 lockdep_assert_held(&zone->lock);
3272
3273 /* Return isolated page to tail of freelist. */
36e66c55 3274 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
624f58d8
AD
3275}
3276
060e7417
MG
3277/*
3278 * Update NUMA hit/miss statistics
3279 *
3280 * Must be called with interrupts disabled.
060e7417 3281 */
41b6167e 3282static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3283{
3284#ifdef CONFIG_NUMA
3a321d2a 3285 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3286
4518085e
KW
3287 /* skip numa counters update if numa stats is disabled */
3288 if (!static_branch_likely(&vm_numa_stat_key))
3289 return;
3290
c1093b74 3291 if (zone_to_nid(z) != numa_node_id())
060e7417 3292 local_stat = NUMA_OTHER;
060e7417 3293
c1093b74 3294 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3295 __inc_numa_state(z, NUMA_HIT);
2df26639 3296 else {
3a321d2a
KW
3297 __inc_numa_state(z, NUMA_MISS);
3298 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3299 }
3a321d2a 3300 __inc_numa_state(z, local_stat);
060e7417
MG
3301#endif
3302}
3303
066b2393
MG
3304/* Remove page from the per-cpu list, caller must protect the list */
3305static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3306 unsigned int alloc_flags,
453f85d4 3307 struct per_cpu_pages *pcp,
066b2393
MG
3308 struct list_head *list)
3309{
3310 struct page *page;
3311
3312 do {
3313 if (list_empty(list)) {
3314 pcp->count += rmqueue_bulk(zone, 0,
3315 pcp->batch, list,
6bb15450 3316 migratetype, alloc_flags);
066b2393
MG
3317 if (unlikely(list_empty(list)))
3318 return NULL;
3319 }
3320
453f85d4 3321 page = list_first_entry(list, struct page, lru);
066b2393
MG
3322 list_del(&page->lru);
3323 pcp->count--;
3324 } while (check_new_pcp(page));
3325
3326 return page;
3327}
3328
3329/* Lock and remove page from the per-cpu list */
3330static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3331 struct zone *zone, gfp_t gfp_flags,
3332 int migratetype, unsigned int alloc_flags)
066b2393
MG
3333{
3334 struct per_cpu_pages *pcp;
3335 struct list_head *list;
066b2393 3336 struct page *page;
d34b0733 3337 unsigned long flags;
066b2393 3338
d34b0733 3339 local_irq_save(flags);
066b2393
MG
3340 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3341 list = &pcp->lists[migratetype];
6bb15450 3342 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3343 if (page) {
1c52e6d0 3344 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3345 zone_statistics(preferred_zone, zone);
3346 }
d34b0733 3347 local_irq_restore(flags);
066b2393
MG
3348 return page;
3349}
3350
1da177e4 3351/*
75379191 3352 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3353 */
0a15c3e9 3354static inline
066b2393 3355struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3356 struct zone *zone, unsigned int order,
c603844b
MG
3357 gfp_t gfp_flags, unsigned int alloc_flags,
3358 int migratetype)
1da177e4
LT
3359{
3360 unsigned long flags;
689bcebf 3361 struct page *page;
1da177e4 3362
d34b0733 3363 if (likely(order == 0)) {
1c52e6d0
YS
3364 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3365 migratetype, alloc_flags);
066b2393
MG
3366 goto out;
3367 }
83b9355b 3368
066b2393
MG
3369 /*
3370 * We most definitely don't want callers attempting to
3371 * allocate greater than order-1 page units with __GFP_NOFAIL.
3372 */
3373 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3374 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3375
066b2393
MG
3376 do {
3377 page = NULL;
3378 if (alloc_flags & ALLOC_HARDER) {
3379 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3380 if (page)
3381 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3382 }
a74609fa 3383 if (!page)
6bb15450 3384 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3385 } while (page && check_new_pages(page, order));
3386 spin_unlock(&zone->lock);
3387 if (!page)
3388 goto failed;
3389 __mod_zone_freepage_state(zone, -(1 << order),
3390 get_pcppage_migratetype(page));
1da177e4 3391
16709d1d 3392 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3393 zone_statistics(preferred_zone, zone);
a74609fa 3394 local_irq_restore(flags);
1da177e4 3395
066b2393 3396out:
73444bc4
MG
3397 /* Separate test+clear to avoid unnecessary atomics */
3398 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3399 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3400 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3401 }
3402
066b2393 3403 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3404 return page;
a74609fa
NP
3405
3406failed:
3407 local_irq_restore(flags);
a74609fa 3408 return NULL;
1da177e4
LT
3409}
3410
933e312e
AM
3411#ifdef CONFIG_FAIL_PAGE_ALLOC
3412
b2588c4b 3413static struct {
933e312e
AM
3414 struct fault_attr attr;
3415
621a5f7a 3416 bool ignore_gfp_highmem;
71baba4b 3417 bool ignore_gfp_reclaim;
54114994 3418 u32 min_order;
933e312e
AM
3419} fail_page_alloc = {
3420 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3421 .ignore_gfp_reclaim = true,
621a5f7a 3422 .ignore_gfp_highmem = true,
54114994 3423 .min_order = 1,
933e312e
AM
3424};
3425
3426static int __init setup_fail_page_alloc(char *str)
3427{
3428 return setup_fault_attr(&fail_page_alloc.attr, str);
3429}
3430__setup("fail_page_alloc=", setup_fail_page_alloc);
3431
af3b8544 3432static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3433{
54114994 3434 if (order < fail_page_alloc.min_order)
deaf386e 3435 return false;
933e312e 3436 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3437 return false;
933e312e 3438 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3439 return false;
71baba4b
MG
3440 if (fail_page_alloc.ignore_gfp_reclaim &&
3441 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3442 return false;
933e312e
AM
3443
3444 return should_fail(&fail_page_alloc.attr, 1 << order);
3445}
3446
3447#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3448
3449static int __init fail_page_alloc_debugfs(void)
3450{
0825a6f9 3451 umode_t mode = S_IFREG | 0600;
933e312e 3452 struct dentry *dir;
933e312e 3453
dd48c085
AM
3454 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3455 &fail_page_alloc.attr);
b2588c4b 3456
d9f7979c
GKH
3457 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3458 &fail_page_alloc.ignore_gfp_reclaim);
3459 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3460 &fail_page_alloc.ignore_gfp_highmem);
3461 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3462
d9f7979c 3463 return 0;
933e312e
AM
3464}
3465
3466late_initcall(fail_page_alloc_debugfs);
3467
3468#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3469
3470#else /* CONFIG_FAIL_PAGE_ALLOC */
3471
af3b8544 3472static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3473{
deaf386e 3474 return false;
933e312e
AM
3475}
3476
3477#endif /* CONFIG_FAIL_PAGE_ALLOC */
3478
af3b8544
BP
3479static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3480{
3481 return __should_fail_alloc_page(gfp_mask, order);
3482}
3483ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3484
f27ce0e1
JK
3485static inline long __zone_watermark_unusable_free(struct zone *z,
3486 unsigned int order, unsigned int alloc_flags)
3487{
3488 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3489 long unusable_free = (1 << order) - 1;
3490
3491 /*
3492 * If the caller does not have rights to ALLOC_HARDER then subtract
3493 * the high-atomic reserves. This will over-estimate the size of the
3494 * atomic reserve but it avoids a search.
3495 */
3496 if (likely(!alloc_harder))
3497 unusable_free += z->nr_reserved_highatomic;
3498
3499#ifdef CONFIG_CMA
3500 /* If allocation can't use CMA areas don't use free CMA pages */
3501 if (!(alloc_flags & ALLOC_CMA))
3502 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3503#endif
3504
3505 return unusable_free;
3506}
3507
1da177e4 3508/*
97a16fc8
MG
3509 * Return true if free base pages are above 'mark'. For high-order checks it
3510 * will return true of the order-0 watermark is reached and there is at least
3511 * one free page of a suitable size. Checking now avoids taking the zone lock
3512 * to check in the allocation paths if no pages are free.
1da177e4 3513 */
86a294a8 3514bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3515 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3516 long free_pages)
1da177e4 3517{
d23ad423 3518 long min = mark;
1da177e4 3519 int o;
cd04ae1e 3520 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3521
0aaa29a5 3522 /* free_pages may go negative - that's OK */
f27ce0e1 3523 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3524
7fb1d9fc 3525 if (alloc_flags & ALLOC_HIGH)
1da177e4 3526 min -= min / 2;
0aaa29a5 3527
f27ce0e1 3528 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3529 /*
3530 * OOM victims can try even harder than normal ALLOC_HARDER
3531 * users on the grounds that it's definitely going to be in
3532 * the exit path shortly and free memory. Any allocation it
3533 * makes during the free path will be small and short-lived.
3534 */
3535 if (alloc_flags & ALLOC_OOM)
3536 min -= min / 2;
3537 else
3538 min -= min / 4;
3539 }
3540
97a16fc8
MG
3541 /*
3542 * Check watermarks for an order-0 allocation request. If these
3543 * are not met, then a high-order request also cannot go ahead
3544 * even if a suitable page happened to be free.
3545 */
97a225e6 3546 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3547 return false;
1da177e4 3548
97a16fc8
MG
3549 /* If this is an order-0 request then the watermark is fine */
3550 if (!order)
3551 return true;
3552
3553 /* For a high-order request, check at least one suitable page is free */
3554 for (o = order; o < MAX_ORDER; o++) {
3555 struct free_area *area = &z->free_area[o];
3556 int mt;
3557
3558 if (!area->nr_free)
3559 continue;
3560
97a16fc8 3561 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3562 if (!free_area_empty(area, mt))
97a16fc8
MG
3563 return true;
3564 }
3565
3566#ifdef CONFIG_CMA
d883c6cf 3567 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3568 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3569 return true;
d883c6cf 3570 }
97a16fc8 3571#endif
76089d00 3572 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3573 return true;
1da177e4 3574 }
97a16fc8 3575 return false;
88f5acf8
MG
3576}
3577
7aeb09f9 3578bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3579 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3580{
97a225e6 3581 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3582 zone_page_state(z, NR_FREE_PAGES));
3583}
3584
48ee5f36 3585static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3586 unsigned long mark, int highest_zoneidx,
f80b08fc 3587 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3588{
f27ce0e1 3589 long free_pages;
d883c6cf 3590
f27ce0e1 3591 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3592
3593 /*
3594 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3595 * need to be calculated.
48ee5f36 3596 */
f27ce0e1
JK
3597 if (!order) {
3598 long fast_free;
3599
3600 fast_free = free_pages;
3601 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3602 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3603 return true;
3604 }
48ee5f36 3605
f80b08fc
CTR
3606 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3607 free_pages))
3608 return true;
3609 /*
3610 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3611 * when checking the min watermark. The min watermark is the
3612 * point where boosting is ignored so that kswapd is woken up
3613 * when below the low watermark.
3614 */
3615 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3616 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3617 mark = z->_watermark[WMARK_MIN];
3618 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3619 alloc_flags, free_pages);
3620 }
3621
3622 return false;
48ee5f36
MG
3623}
3624
7aeb09f9 3625bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3626 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3627{
3628 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3629
3630 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3631 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3632
97a225e6 3633 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3634 free_pages);
1da177e4
LT
3635}
3636
9276b1bc 3637#ifdef CONFIG_NUMA
957f822a
DR
3638static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3639{
e02dc017 3640 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3641 node_reclaim_distance;
957f822a 3642}
9276b1bc 3643#else /* CONFIG_NUMA */
957f822a
DR
3644static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3645{
3646 return true;
3647}
9276b1bc
PJ
3648#endif /* CONFIG_NUMA */
3649
6bb15450
MG
3650/*
3651 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3652 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3653 * premature use of a lower zone may cause lowmem pressure problems that
3654 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3655 * probably too small. It only makes sense to spread allocations to avoid
3656 * fragmentation between the Normal and DMA32 zones.
3657 */
3658static inline unsigned int
0a79cdad 3659alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3660{
736838e9 3661 unsigned int alloc_flags;
0a79cdad 3662
736838e9
MN
3663 /*
3664 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3665 * to save a branch.
3666 */
3667 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3668
3669#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3670 if (!zone)
3671 return alloc_flags;
3672
6bb15450 3673 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3674 return alloc_flags;
6bb15450
MG
3675
3676 /*
3677 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3678 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3679 * on UMA that if Normal is populated then so is DMA32.
3680 */
3681 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3682 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3683 return alloc_flags;
6bb15450 3684
8118b82e 3685 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3686#endif /* CONFIG_ZONE_DMA32 */
3687 return alloc_flags;
6bb15450 3688}
6bb15450 3689
8510e69c
JK
3690static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3691 unsigned int alloc_flags)
3692{
3693#ifdef CONFIG_CMA
3694 unsigned int pflags = current->flags;
3695
3696 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3697 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3698 alloc_flags |= ALLOC_CMA;
3699
3700#endif
3701 return alloc_flags;
3702}
3703
7fb1d9fc 3704/*
0798e519 3705 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3706 * a page.
3707 */
3708static struct page *
a9263751
VB
3709get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3710 const struct alloc_context *ac)
753ee728 3711{
6bb15450 3712 struct zoneref *z;
5117f45d 3713 struct zone *zone;
3b8c0be4 3714 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3715 bool no_fallback;
3b8c0be4 3716
6bb15450 3717retry:
7fb1d9fc 3718 /*
9276b1bc 3719 * Scan zonelist, looking for a zone with enough free.
344736f2 3720 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3721 */
6bb15450
MG
3722 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3723 z = ac->preferred_zoneref;
97a225e6
JK
3724 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3725 ac->highest_zoneidx, ac->nodemask) {
be06af00 3726 struct page *page;
e085dbc5
JW
3727 unsigned long mark;
3728
664eedde
MG
3729 if (cpusets_enabled() &&
3730 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3731 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3732 continue;
a756cf59
JW
3733 /*
3734 * When allocating a page cache page for writing, we
281e3726
MG
3735 * want to get it from a node that is within its dirty
3736 * limit, such that no single node holds more than its
a756cf59 3737 * proportional share of globally allowed dirty pages.
281e3726 3738 * The dirty limits take into account the node's
a756cf59
JW
3739 * lowmem reserves and high watermark so that kswapd
3740 * should be able to balance it without having to
3741 * write pages from its LRU list.
3742 *
a756cf59 3743 * XXX: For now, allow allocations to potentially
281e3726 3744 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3745 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3746 * which is important when on a NUMA setup the allowed
281e3726 3747 * nodes are together not big enough to reach the
a756cf59 3748 * global limit. The proper fix for these situations
281e3726 3749 * will require awareness of nodes in the
a756cf59
JW
3750 * dirty-throttling and the flusher threads.
3751 */
3b8c0be4
MG
3752 if (ac->spread_dirty_pages) {
3753 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3754 continue;
3755
3756 if (!node_dirty_ok(zone->zone_pgdat)) {
3757 last_pgdat_dirty_limit = zone->zone_pgdat;
3758 continue;
3759 }
3760 }
7fb1d9fc 3761
6bb15450
MG
3762 if (no_fallback && nr_online_nodes > 1 &&
3763 zone != ac->preferred_zoneref->zone) {
3764 int local_nid;
3765
3766 /*
3767 * If moving to a remote node, retry but allow
3768 * fragmenting fallbacks. Locality is more important
3769 * than fragmentation avoidance.
3770 */
3771 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3772 if (zone_to_nid(zone) != local_nid) {
3773 alloc_flags &= ~ALLOC_NOFRAGMENT;
3774 goto retry;
3775 }
3776 }
3777
a9214443 3778 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3779 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3780 ac->highest_zoneidx, alloc_flags,
3781 gfp_mask)) {
fa5e084e
MG
3782 int ret;
3783
c9e97a19
PT
3784#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3785 /*
3786 * Watermark failed for this zone, but see if we can
3787 * grow this zone if it contains deferred pages.
3788 */
3789 if (static_branch_unlikely(&deferred_pages)) {
3790 if (_deferred_grow_zone(zone, order))
3791 goto try_this_zone;
3792 }
3793#endif
5dab2911
MG
3794 /* Checked here to keep the fast path fast */
3795 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3796 if (alloc_flags & ALLOC_NO_WATERMARKS)
3797 goto try_this_zone;
3798
a5f5f91d 3799 if (node_reclaim_mode == 0 ||
c33d6c06 3800 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3801 continue;
3802
a5f5f91d 3803 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3804 switch (ret) {
a5f5f91d 3805 case NODE_RECLAIM_NOSCAN:
fa5e084e 3806 /* did not scan */
cd38b115 3807 continue;
a5f5f91d 3808 case NODE_RECLAIM_FULL:
fa5e084e 3809 /* scanned but unreclaimable */
cd38b115 3810 continue;
fa5e084e
MG
3811 default:
3812 /* did we reclaim enough */
fed2719e 3813 if (zone_watermark_ok(zone, order, mark,
97a225e6 3814 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3815 goto try_this_zone;
3816
fed2719e 3817 continue;
0798e519 3818 }
7fb1d9fc
RS
3819 }
3820
fa5e084e 3821try_this_zone:
066b2393 3822 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3823 gfp_mask, alloc_flags, ac->migratetype);
75379191 3824 if (page) {
479f854a 3825 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3826
3827 /*
3828 * If this is a high-order atomic allocation then check
3829 * if the pageblock should be reserved for the future
3830 */
3831 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3832 reserve_highatomic_pageblock(page, zone, order);
3833
75379191 3834 return page;
c9e97a19
PT
3835 } else {
3836#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3837 /* Try again if zone has deferred pages */
3838 if (static_branch_unlikely(&deferred_pages)) {
3839 if (_deferred_grow_zone(zone, order))
3840 goto try_this_zone;
3841 }
3842#endif
75379191 3843 }
54a6eb5c 3844 }
9276b1bc 3845
6bb15450
MG
3846 /*
3847 * It's possible on a UMA machine to get through all zones that are
3848 * fragmented. If avoiding fragmentation, reset and try again.
3849 */
3850 if (no_fallback) {
3851 alloc_flags &= ~ALLOC_NOFRAGMENT;
3852 goto retry;
3853 }
3854
4ffeaf35 3855 return NULL;
753ee728
MH
3856}
3857
9af744d7 3858static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3859{
a238ab5b 3860 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3861
3862 /*
3863 * This documents exceptions given to allocations in certain
3864 * contexts that are allowed to allocate outside current's set
3865 * of allowed nodes.
3866 */
3867 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3868 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3869 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3870 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3871 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3872 filter &= ~SHOW_MEM_FILTER_NODES;
3873
9af744d7 3874 show_mem(filter, nodemask);
aa187507
MH
3875}
3876
a8e99259 3877void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3878{
3879 struct va_format vaf;
3880 va_list args;
1be334e5 3881 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3882
0f7896f1 3883 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3884 return;
3885
7877cdcc
MH
3886 va_start(args, fmt);
3887 vaf.fmt = fmt;
3888 vaf.va = &args;
ef8444ea 3889 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3890 current->comm, &vaf, gfp_mask, &gfp_mask,
3891 nodemask_pr_args(nodemask));
7877cdcc 3892 va_end(args);
3ee9a4f0 3893
a8e99259 3894 cpuset_print_current_mems_allowed();
ef8444ea 3895 pr_cont("\n");
a238ab5b 3896 dump_stack();
685dbf6f 3897 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3898}
3899
6c18ba7a
MH
3900static inline struct page *
3901__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3902 unsigned int alloc_flags,
3903 const struct alloc_context *ac)
3904{
3905 struct page *page;
3906
3907 page = get_page_from_freelist(gfp_mask, order,
3908 alloc_flags|ALLOC_CPUSET, ac);
3909 /*
3910 * fallback to ignore cpuset restriction if our nodes
3911 * are depleted
3912 */
3913 if (!page)
3914 page = get_page_from_freelist(gfp_mask, order,
3915 alloc_flags, ac);
3916
3917 return page;
3918}
3919
11e33f6a
MG
3920static inline struct page *
3921__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3922 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3923{
6e0fc46d
DR
3924 struct oom_control oc = {
3925 .zonelist = ac->zonelist,
3926 .nodemask = ac->nodemask,
2a966b77 3927 .memcg = NULL,
6e0fc46d
DR
3928 .gfp_mask = gfp_mask,
3929 .order = order,
6e0fc46d 3930 };
11e33f6a
MG
3931 struct page *page;
3932
9879de73
JW
3933 *did_some_progress = 0;
3934
9879de73 3935 /*
dc56401f
JW
3936 * Acquire the oom lock. If that fails, somebody else is
3937 * making progress for us.
9879de73 3938 */
dc56401f 3939 if (!mutex_trylock(&oom_lock)) {
9879de73 3940 *did_some_progress = 1;
11e33f6a 3941 schedule_timeout_uninterruptible(1);
1da177e4
LT
3942 return NULL;
3943 }
6b1de916 3944
11e33f6a
MG
3945 /*
3946 * Go through the zonelist yet one more time, keep very high watermark
3947 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3948 * we're still under heavy pressure. But make sure that this reclaim
3949 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3950 * allocation which will never fail due to oom_lock already held.
11e33f6a 3951 */
e746bf73
TH
3952 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3953 ~__GFP_DIRECT_RECLAIM, order,
3954 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3955 if (page)
11e33f6a
MG
3956 goto out;
3957
06ad276a
MH
3958 /* Coredumps can quickly deplete all memory reserves */
3959 if (current->flags & PF_DUMPCORE)
3960 goto out;
3961 /* The OOM killer will not help higher order allocs */
3962 if (order > PAGE_ALLOC_COSTLY_ORDER)
3963 goto out;
dcda9b04
MH
3964 /*
3965 * We have already exhausted all our reclaim opportunities without any
3966 * success so it is time to admit defeat. We will skip the OOM killer
3967 * because it is very likely that the caller has a more reasonable
3968 * fallback than shooting a random task.
3969 */
3970 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3971 goto out;
06ad276a 3972 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 3973 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
3974 goto out;
3975 if (pm_suspended_storage())
3976 goto out;
3977 /*
3978 * XXX: GFP_NOFS allocations should rather fail than rely on
3979 * other request to make a forward progress.
3980 * We are in an unfortunate situation where out_of_memory cannot
3981 * do much for this context but let's try it to at least get
3982 * access to memory reserved if the current task is killed (see
3983 * out_of_memory). Once filesystems are ready to handle allocation
3984 * failures more gracefully we should just bail out here.
3985 */
3986
3987 /* The OOM killer may not free memory on a specific node */
3988 if (gfp_mask & __GFP_THISNODE)
3989 goto out;
3da88fb3 3990
3c2c6488 3991 /* Exhausted what can be done so it's blame time */
5020e285 3992 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3993 *did_some_progress = 1;
5020e285 3994
6c18ba7a
MH
3995 /*
3996 * Help non-failing allocations by giving them access to memory
3997 * reserves
3998 */
3999 if (gfp_mask & __GFP_NOFAIL)
4000 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4001 ALLOC_NO_WATERMARKS, ac);
5020e285 4002 }
11e33f6a 4003out:
dc56401f 4004 mutex_unlock(&oom_lock);
11e33f6a
MG
4005 return page;
4006}
4007
33c2d214
MH
4008/*
4009 * Maximum number of compaction retries wit a progress before OOM
4010 * killer is consider as the only way to move forward.
4011 */
4012#define MAX_COMPACT_RETRIES 16
4013
56de7263
MG
4014#ifdef CONFIG_COMPACTION
4015/* Try memory compaction for high-order allocations before reclaim */
4016static struct page *
4017__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4018 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4019 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4020{
5e1f0f09 4021 struct page *page = NULL;
eb414681 4022 unsigned long pflags;
499118e9 4023 unsigned int noreclaim_flag;
53853e2d
VB
4024
4025 if (!order)
66199712 4026 return NULL;
66199712 4027
eb414681 4028 psi_memstall_enter(&pflags);
499118e9 4029 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4030
c5d01d0d 4031 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4032 prio, &page);
eb414681 4033
499118e9 4034 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4035 psi_memstall_leave(&pflags);
56de7263 4036
98dd3b48
VB
4037 /*
4038 * At least in one zone compaction wasn't deferred or skipped, so let's
4039 * count a compaction stall
4040 */
4041 count_vm_event(COMPACTSTALL);
8fb74b9f 4042
5e1f0f09
MG
4043 /* Prep a captured page if available */
4044 if (page)
4045 prep_new_page(page, order, gfp_mask, alloc_flags);
4046
4047 /* Try get a page from the freelist if available */
4048 if (!page)
4049 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4050
98dd3b48
VB
4051 if (page) {
4052 struct zone *zone = page_zone(page);
53853e2d 4053
98dd3b48
VB
4054 zone->compact_blockskip_flush = false;
4055 compaction_defer_reset(zone, order, true);
4056 count_vm_event(COMPACTSUCCESS);
4057 return page;
4058 }
56de7263 4059
98dd3b48
VB
4060 /*
4061 * It's bad if compaction run occurs and fails. The most likely reason
4062 * is that pages exist, but not enough to satisfy watermarks.
4063 */
4064 count_vm_event(COMPACTFAIL);
66199712 4065
98dd3b48 4066 cond_resched();
56de7263
MG
4067
4068 return NULL;
4069}
33c2d214 4070
3250845d
VB
4071static inline bool
4072should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4073 enum compact_result compact_result,
4074 enum compact_priority *compact_priority,
d9436498 4075 int *compaction_retries)
3250845d
VB
4076{
4077 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4078 int min_priority;
65190cff
MH
4079 bool ret = false;
4080 int retries = *compaction_retries;
4081 enum compact_priority priority = *compact_priority;
3250845d
VB
4082
4083 if (!order)
4084 return false;
4085
d9436498
VB
4086 if (compaction_made_progress(compact_result))
4087 (*compaction_retries)++;
4088
3250845d
VB
4089 /*
4090 * compaction considers all the zone as desperately out of memory
4091 * so it doesn't really make much sense to retry except when the
4092 * failure could be caused by insufficient priority
4093 */
d9436498
VB
4094 if (compaction_failed(compact_result))
4095 goto check_priority;
3250845d 4096
49433085
VB
4097 /*
4098 * compaction was skipped because there are not enough order-0 pages
4099 * to work with, so we retry only if it looks like reclaim can help.
4100 */
4101 if (compaction_needs_reclaim(compact_result)) {
4102 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4103 goto out;
4104 }
4105
3250845d
VB
4106 /*
4107 * make sure the compaction wasn't deferred or didn't bail out early
4108 * due to locks contention before we declare that we should give up.
49433085
VB
4109 * But the next retry should use a higher priority if allowed, so
4110 * we don't just keep bailing out endlessly.
3250845d 4111 */
65190cff 4112 if (compaction_withdrawn(compact_result)) {
49433085 4113 goto check_priority;
65190cff 4114 }
3250845d
VB
4115
4116 /*
dcda9b04 4117 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4118 * costly ones because they are de facto nofail and invoke OOM
4119 * killer to move on while costly can fail and users are ready
4120 * to cope with that. 1/4 retries is rather arbitrary but we
4121 * would need much more detailed feedback from compaction to
4122 * make a better decision.
4123 */
4124 if (order > PAGE_ALLOC_COSTLY_ORDER)
4125 max_retries /= 4;
65190cff
MH
4126 if (*compaction_retries <= max_retries) {
4127 ret = true;
4128 goto out;
4129 }
3250845d 4130
d9436498
VB
4131 /*
4132 * Make sure there are attempts at the highest priority if we exhausted
4133 * all retries or failed at the lower priorities.
4134 */
4135check_priority:
c2033b00
VB
4136 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4137 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4138
c2033b00 4139 if (*compact_priority > min_priority) {
d9436498
VB
4140 (*compact_priority)--;
4141 *compaction_retries = 0;
65190cff 4142 ret = true;
d9436498 4143 }
65190cff
MH
4144out:
4145 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4146 return ret;
3250845d 4147}
56de7263
MG
4148#else
4149static inline struct page *
4150__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4151 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4152 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4153{
33c2d214 4154 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4155 return NULL;
4156}
33c2d214
MH
4157
4158static inline bool
86a294a8
MH
4159should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4160 enum compact_result compact_result,
a5508cd8 4161 enum compact_priority *compact_priority,
d9436498 4162 int *compaction_retries)
33c2d214 4163{
31e49bfd
MH
4164 struct zone *zone;
4165 struct zoneref *z;
4166
4167 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4168 return false;
4169
4170 /*
4171 * There are setups with compaction disabled which would prefer to loop
4172 * inside the allocator rather than hit the oom killer prematurely.
4173 * Let's give them a good hope and keep retrying while the order-0
4174 * watermarks are OK.
4175 */
97a225e6
JK
4176 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4177 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4178 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4179 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4180 return true;
4181 }
33c2d214
MH
4182 return false;
4183}
3250845d 4184#endif /* CONFIG_COMPACTION */
56de7263 4185
d92a8cfc 4186#ifdef CONFIG_LOCKDEP
93781325 4187static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4188 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4189
4190static bool __need_fs_reclaim(gfp_t gfp_mask)
4191{
4192 gfp_mask = current_gfp_context(gfp_mask);
4193
4194 /* no reclaim without waiting on it */
4195 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4196 return false;
4197
4198 /* this guy won't enter reclaim */
2e517d68 4199 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4200 return false;
4201
4202 /* We're only interested __GFP_FS allocations for now */
4203 if (!(gfp_mask & __GFP_FS))
4204 return false;
4205
4206 if (gfp_mask & __GFP_NOLOCKDEP)
4207 return false;
4208
4209 return true;
4210}
4211
93781325
OS
4212void __fs_reclaim_acquire(void)
4213{
4214 lock_map_acquire(&__fs_reclaim_map);
4215}
4216
4217void __fs_reclaim_release(void)
4218{
4219 lock_map_release(&__fs_reclaim_map);
4220}
4221
d92a8cfc
PZ
4222void fs_reclaim_acquire(gfp_t gfp_mask)
4223{
4224 if (__need_fs_reclaim(gfp_mask))
93781325 4225 __fs_reclaim_acquire();
d92a8cfc
PZ
4226}
4227EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4228
4229void fs_reclaim_release(gfp_t gfp_mask)
4230{
4231 if (__need_fs_reclaim(gfp_mask))
93781325 4232 __fs_reclaim_release();
d92a8cfc
PZ
4233}
4234EXPORT_SYMBOL_GPL(fs_reclaim_release);
4235#endif
4236
bba90710
MS
4237/* Perform direct synchronous page reclaim */
4238static int
a9263751
VB
4239__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4240 const struct alloc_context *ac)
11e33f6a 4241{
bba90710 4242 int progress;
499118e9 4243 unsigned int noreclaim_flag;
eb414681 4244 unsigned long pflags;
11e33f6a
MG
4245
4246 cond_resched();
4247
4248 /* We now go into synchronous reclaim */
4249 cpuset_memory_pressure_bump();
eb414681 4250 psi_memstall_enter(&pflags);
d92a8cfc 4251 fs_reclaim_acquire(gfp_mask);
93781325 4252 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4253
a9263751
VB
4254 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4255 ac->nodemask);
11e33f6a 4256
499118e9 4257 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4258 fs_reclaim_release(gfp_mask);
eb414681 4259 psi_memstall_leave(&pflags);
11e33f6a
MG
4260
4261 cond_resched();
4262
bba90710
MS
4263 return progress;
4264}
4265
4266/* The really slow allocator path where we enter direct reclaim */
4267static inline struct page *
4268__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4269 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4270 unsigned long *did_some_progress)
bba90710
MS
4271{
4272 struct page *page = NULL;
4273 bool drained = false;
4274
a9263751 4275 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4276 if (unlikely(!(*did_some_progress)))
4277 return NULL;
11e33f6a 4278
9ee493ce 4279retry:
31a6c190 4280 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4281
4282 /*
4283 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4284 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4285 * Shrink them and try again
9ee493ce
MG
4286 */
4287 if (!page && !drained) {
29fac03b 4288 unreserve_highatomic_pageblock(ac, false);
93481ff0 4289 drain_all_pages(NULL);
9ee493ce
MG
4290 drained = true;
4291 goto retry;
4292 }
4293
11e33f6a
MG
4294 return page;
4295}
4296
5ecd9d40
DR
4297static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4298 const struct alloc_context *ac)
3a025760
JW
4299{
4300 struct zoneref *z;
4301 struct zone *zone;
e1a55637 4302 pg_data_t *last_pgdat = NULL;
97a225e6 4303 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4304
97a225e6 4305 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4306 ac->nodemask) {
e1a55637 4307 if (last_pgdat != zone->zone_pgdat)
97a225e6 4308 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4309 last_pgdat = zone->zone_pgdat;
4310 }
3a025760
JW
4311}
4312
c603844b 4313static inline unsigned int
341ce06f
PZ
4314gfp_to_alloc_flags(gfp_t gfp_mask)
4315{
c603844b 4316 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4317
736838e9
MN
4318 /*
4319 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4320 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4321 * to save two branches.
4322 */
e6223a3b 4323 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4324 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4325
341ce06f
PZ
4326 /*
4327 * The caller may dip into page reserves a bit more if the caller
4328 * cannot run direct reclaim, or if the caller has realtime scheduling
4329 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4330 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4331 */
736838e9
MN
4332 alloc_flags |= (__force int)
4333 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4334
d0164adc 4335 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4336 /*
b104a35d
DR
4337 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4338 * if it can't schedule.
5c3240d9 4339 */
b104a35d 4340 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4341 alloc_flags |= ALLOC_HARDER;
523b9458 4342 /*
b104a35d 4343 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4344 * comment for __cpuset_node_allowed().
523b9458 4345 */
341ce06f 4346 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4347 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4348 alloc_flags |= ALLOC_HARDER;
4349
8510e69c
JK
4350 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4351
341ce06f
PZ
4352 return alloc_flags;
4353}
4354
cd04ae1e 4355static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4356{
cd04ae1e
MH
4357 if (!tsk_is_oom_victim(tsk))
4358 return false;
4359
4360 /*
4361 * !MMU doesn't have oom reaper so give access to memory reserves
4362 * only to the thread with TIF_MEMDIE set
4363 */
4364 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4365 return false;
4366
cd04ae1e
MH
4367 return true;
4368}
4369
4370/*
4371 * Distinguish requests which really need access to full memory
4372 * reserves from oom victims which can live with a portion of it
4373 */
4374static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4375{
4376 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4377 return 0;
31a6c190 4378 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4379 return ALLOC_NO_WATERMARKS;
31a6c190 4380 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4381 return ALLOC_NO_WATERMARKS;
4382 if (!in_interrupt()) {
4383 if (current->flags & PF_MEMALLOC)
4384 return ALLOC_NO_WATERMARKS;
4385 else if (oom_reserves_allowed(current))
4386 return ALLOC_OOM;
4387 }
31a6c190 4388
cd04ae1e
MH
4389 return 0;
4390}
4391
4392bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4393{
4394 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4395}
4396
0a0337e0
MH
4397/*
4398 * Checks whether it makes sense to retry the reclaim to make a forward progress
4399 * for the given allocation request.
491d79ae
JW
4400 *
4401 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4402 * without success, or when we couldn't even meet the watermark if we
4403 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4404 *
4405 * Returns true if a retry is viable or false to enter the oom path.
4406 */
4407static inline bool
4408should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4409 struct alloc_context *ac, int alloc_flags,
423b452e 4410 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4411{
4412 struct zone *zone;
4413 struct zoneref *z;
15f570bf 4414 bool ret = false;
0a0337e0 4415
423b452e
VB
4416 /*
4417 * Costly allocations might have made a progress but this doesn't mean
4418 * their order will become available due to high fragmentation so
4419 * always increment the no progress counter for them
4420 */
4421 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4422 *no_progress_loops = 0;
4423 else
4424 (*no_progress_loops)++;
4425
0a0337e0
MH
4426 /*
4427 * Make sure we converge to OOM if we cannot make any progress
4428 * several times in the row.
4429 */
04c8716f
MK
4430 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4431 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4432 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4433 }
0a0337e0 4434
bca67592
MG
4435 /*
4436 * Keep reclaiming pages while there is a chance this will lead
4437 * somewhere. If none of the target zones can satisfy our allocation
4438 * request even if all reclaimable pages are considered then we are
4439 * screwed and have to go OOM.
0a0337e0 4440 */
97a225e6
JK
4441 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4442 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4443 unsigned long available;
ede37713 4444 unsigned long reclaimable;
d379f01d
MH
4445 unsigned long min_wmark = min_wmark_pages(zone);
4446 bool wmark;
0a0337e0 4447
5a1c84b4 4448 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4449 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4450
4451 /*
491d79ae
JW
4452 * Would the allocation succeed if we reclaimed all
4453 * reclaimable pages?
0a0337e0 4454 */
d379f01d 4455 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4456 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4457 trace_reclaim_retry_zone(z, order, reclaimable,
4458 available, min_wmark, *no_progress_loops, wmark);
4459 if (wmark) {
ede37713
MH
4460 /*
4461 * If we didn't make any progress and have a lot of
4462 * dirty + writeback pages then we should wait for
4463 * an IO to complete to slow down the reclaim and
4464 * prevent from pre mature OOM
4465 */
4466 if (!did_some_progress) {
11fb9989 4467 unsigned long write_pending;
ede37713 4468
5a1c84b4
MG
4469 write_pending = zone_page_state_snapshot(zone,
4470 NR_ZONE_WRITE_PENDING);
ede37713 4471
11fb9989 4472 if (2 * write_pending > reclaimable) {
ede37713
MH
4473 congestion_wait(BLK_RW_ASYNC, HZ/10);
4474 return true;
4475 }
4476 }
5a1c84b4 4477
15f570bf
MH
4478 ret = true;
4479 goto out;
0a0337e0
MH
4480 }
4481 }
4482
15f570bf
MH
4483out:
4484 /*
4485 * Memory allocation/reclaim might be called from a WQ context and the
4486 * current implementation of the WQ concurrency control doesn't
4487 * recognize that a particular WQ is congested if the worker thread is
4488 * looping without ever sleeping. Therefore we have to do a short sleep
4489 * here rather than calling cond_resched().
4490 */
4491 if (current->flags & PF_WQ_WORKER)
4492 schedule_timeout_uninterruptible(1);
4493 else
4494 cond_resched();
4495 return ret;
0a0337e0
MH
4496}
4497
902b6281
VB
4498static inline bool
4499check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4500{
4501 /*
4502 * It's possible that cpuset's mems_allowed and the nodemask from
4503 * mempolicy don't intersect. This should be normally dealt with by
4504 * policy_nodemask(), but it's possible to race with cpuset update in
4505 * such a way the check therein was true, and then it became false
4506 * before we got our cpuset_mems_cookie here.
4507 * This assumes that for all allocations, ac->nodemask can come only
4508 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4509 * when it does not intersect with the cpuset restrictions) or the
4510 * caller can deal with a violated nodemask.
4511 */
4512 if (cpusets_enabled() && ac->nodemask &&
4513 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4514 ac->nodemask = NULL;
4515 return true;
4516 }
4517
4518 /*
4519 * When updating a task's mems_allowed or mempolicy nodemask, it is
4520 * possible to race with parallel threads in such a way that our
4521 * allocation can fail while the mask is being updated. If we are about
4522 * to fail, check if the cpuset changed during allocation and if so,
4523 * retry.
4524 */
4525 if (read_mems_allowed_retry(cpuset_mems_cookie))
4526 return true;
4527
4528 return false;
4529}
4530
11e33f6a
MG
4531static inline struct page *
4532__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4533 struct alloc_context *ac)
11e33f6a 4534{
d0164adc 4535 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4536 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4537 struct page *page = NULL;
c603844b 4538 unsigned int alloc_flags;
11e33f6a 4539 unsigned long did_some_progress;
5ce9bfef 4540 enum compact_priority compact_priority;
c5d01d0d 4541 enum compact_result compact_result;
5ce9bfef
VB
4542 int compaction_retries;
4543 int no_progress_loops;
5ce9bfef 4544 unsigned int cpuset_mems_cookie;
cd04ae1e 4545 int reserve_flags;
1da177e4 4546
d0164adc
MG
4547 /*
4548 * We also sanity check to catch abuse of atomic reserves being used by
4549 * callers that are not in atomic context.
4550 */
4551 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4552 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4553 gfp_mask &= ~__GFP_ATOMIC;
4554
5ce9bfef
VB
4555retry_cpuset:
4556 compaction_retries = 0;
4557 no_progress_loops = 0;
4558 compact_priority = DEF_COMPACT_PRIORITY;
4559 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4560
4561 /*
4562 * The fast path uses conservative alloc_flags to succeed only until
4563 * kswapd needs to be woken up, and to avoid the cost of setting up
4564 * alloc_flags precisely. So we do that now.
4565 */
4566 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4567
e47483bc
VB
4568 /*
4569 * We need to recalculate the starting point for the zonelist iterator
4570 * because we might have used different nodemask in the fast path, or
4571 * there was a cpuset modification and we are retrying - otherwise we
4572 * could end up iterating over non-eligible zones endlessly.
4573 */
4574 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4575 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4576 if (!ac->preferred_zoneref->zone)
4577 goto nopage;
4578
0a79cdad 4579 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4580 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4581
4582 /*
4583 * The adjusted alloc_flags might result in immediate success, so try
4584 * that first
4585 */
4586 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4587 if (page)
4588 goto got_pg;
4589
a8161d1e
VB
4590 /*
4591 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4592 * that we have enough base pages and don't need to reclaim. For non-
4593 * movable high-order allocations, do that as well, as compaction will
4594 * try prevent permanent fragmentation by migrating from blocks of the
4595 * same migratetype.
4596 * Don't try this for allocations that are allowed to ignore
4597 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4598 */
282722b0
VB
4599 if (can_direct_reclaim &&
4600 (costly_order ||
4601 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4602 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4603 page = __alloc_pages_direct_compact(gfp_mask, order,
4604 alloc_flags, ac,
a5508cd8 4605 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4606 &compact_result);
4607 if (page)
4608 goto got_pg;
4609
cc638f32
VB
4610 /*
4611 * Checks for costly allocations with __GFP_NORETRY, which
4612 * includes some THP page fault allocations
4613 */
4614 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4615 /*
4616 * If allocating entire pageblock(s) and compaction
4617 * failed because all zones are below low watermarks
4618 * or is prohibited because it recently failed at this
3f36d866
DR
4619 * order, fail immediately unless the allocator has
4620 * requested compaction and reclaim retry.
b39d0ee2
DR
4621 *
4622 * Reclaim is
4623 * - potentially very expensive because zones are far
4624 * below their low watermarks or this is part of very
4625 * bursty high order allocations,
4626 * - not guaranteed to help because isolate_freepages()
4627 * may not iterate over freed pages as part of its
4628 * linear scan, and
4629 * - unlikely to make entire pageblocks free on its
4630 * own.
4631 */
4632 if (compact_result == COMPACT_SKIPPED ||
4633 compact_result == COMPACT_DEFERRED)
4634 goto nopage;
a8161d1e 4635
a8161d1e 4636 /*
3eb2771b
VB
4637 * Looks like reclaim/compaction is worth trying, but
4638 * sync compaction could be very expensive, so keep
25160354 4639 * using async compaction.
a8161d1e 4640 */
a5508cd8 4641 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4642 }
4643 }
23771235 4644
31a6c190 4645retry:
23771235 4646 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4647 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4648 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4649
cd04ae1e
MH
4650 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4651 if (reserve_flags)
8510e69c 4652 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4653
e46e7b77 4654 /*
d6a24df0
VB
4655 * Reset the nodemask and zonelist iterators if memory policies can be
4656 * ignored. These allocations are high priority and system rather than
4657 * user oriented.
e46e7b77 4658 */
cd04ae1e 4659 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4660 ac->nodemask = NULL;
e46e7b77 4661 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4662 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4663 }
4664
23771235 4665 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4666 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4667 if (page)
4668 goto got_pg;
1da177e4 4669
d0164adc 4670 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4671 if (!can_direct_reclaim)
1da177e4
LT
4672 goto nopage;
4673
9a67f648
MH
4674 /* Avoid recursion of direct reclaim */
4675 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4676 goto nopage;
4677
a8161d1e
VB
4678 /* Try direct reclaim and then allocating */
4679 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4680 &did_some_progress);
4681 if (page)
4682 goto got_pg;
4683
4684 /* Try direct compaction and then allocating */
a9263751 4685 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4686 compact_priority, &compact_result);
56de7263
MG
4687 if (page)
4688 goto got_pg;
75f30861 4689
9083905a
JW
4690 /* Do not loop if specifically requested */
4691 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4692 goto nopage;
9083905a 4693
0a0337e0
MH
4694 /*
4695 * Do not retry costly high order allocations unless they are
dcda9b04 4696 * __GFP_RETRY_MAYFAIL
0a0337e0 4697 */
dcda9b04 4698 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4699 goto nopage;
0a0337e0 4700
0a0337e0 4701 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4702 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4703 goto retry;
4704
33c2d214
MH
4705 /*
4706 * It doesn't make any sense to retry for the compaction if the order-0
4707 * reclaim is not able to make any progress because the current
4708 * implementation of the compaction depends on the sufficient amount
4709 * of free memory (see __compaction_suitable)
4710 */
4711 if (did_some_progress > 0 &&
86a294a8 4712 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4713 compact_result, &compact_priority,
d9436498 4714 &compaction_retries))
33c2d214
MH
4715 goto retry;
4716
902b6281
VB
4717
4718 /* Deal with possible cpuset update races before we start OOM killing */
4719 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4720 goto retry_cpuset;
4721
9083905a
JW
4722 /* Reclaim has failed us, start killing things */
4723 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4724 if (page)
4725 goto got_pg;
4726
9a67f648 4727 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4728 if (tsk_is_oom_victim(current) &&
8510e69c 4729 (alloc_flags & ALLOC_OOM ||
c288983d 4730 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4731 goto nopage;
4732
9083905a 4733 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4734 if (did_some_progress) {
4735 no_progress_loops = 0;
9083905a 4736 goto retry;
0a0337e0 4737 }
9083905a 4738
1da177e4 4739nopage:
902b6281
VB
4740 /* Deal with possible cpuset update races before we fail */
4741 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4742 goto retry_cpuset;
4743
9a67f648
MH
4744 /*
4745 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4746 * we always retry
4747 */
4748 if (gfp_mask & __GFP_NOFAIL) {
4749 /*
4750 * All existing users of the __GFP_NOFAIL are blockable, so warn
4751 * of any new users that actually require GFP_NOWAIT
4752 */
4753 if (WARN_ON_ONCE(!can_direct_reclaim))
4754 goto fail;
4755
4756 /*
4757 * PF_MEMALLOC request from this context is rather bizarre
4758 * because we cannot reclaim anything and only can loop waiting
4759 * for somebody to do a work for us
4760 */
4761 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4762
4763 /*
4764 * non failing costly orders are a hard requirement which we
4765 * are not prepared for much so let's warn about these users
4766 * so that we can identify them and convert them to something
4767 * else.
4768 */
4769 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4770
6c18ba7a
MH
4771 /*
4772 * Help non-failing allocations by giving them access to memory
4773 * reserves but do not use ALLOC_NO_WATERMARKS because this
4774 * could deplete whole memory reserves which would just make
4775 * the situation worse
4776 */
4777 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4778 if (page)
4779 goto got_pg;
4780
9a67f648
MH
4781 cond_resched();
4782 goto retry;
4783 }
4784fail:
a8e99259 4785 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4786 "page allocation failure: order:%u", order);
1da177e4 4787got_pg:
072bb0aa 4788 return page;
1da177e4 4789}
11e33f6a 4790
9cd75558 4791static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4792 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4793 struct alloc_context *ac, gfp_t *alloc_mask,
4794 unsigned int *alloc_flags)
11e33f6a 4795{
97a225e6 4796 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4797 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4798 ac->nodemask = nodemask;
01c0bfe0 4799 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4800
682a3385 4801 if (cpusets_enabled()) {
9cd75558 4802 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4803 /*
4804 * When we are in the interrupt context, it is irrelevant
4805 * to the current task context. It means that any node ok.
4806 */
4807 if (!in_interrupt() && !ac->nodemask)
9cd75558 4808 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4809 else
4810 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4811 }
4812
d92a8cfc
PZ
4813 fs_reclaim_acquire(gfp_mask);
4814 fs_reclaim_release(gfp_mask);
11e33f6a 4815
d0164adc 4816 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4817
4818 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4819 return false;
11e33f6a 4820
8510e69c 4821 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4822
9cd75558
MG
4823 return true;
4824}
21bb9bd1 4825
9cd75558 4826/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4827static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4828{
c9ab0c4f 4829 /* Dirty zone balancing only done in the fast path */
9cd75558 4830 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4831
e46e7b77
MG
4832 /*
4833 * The preferred zone is used for statistics but crucially it is
4834 * also used as the starting point for the zonelist iterator. It
4835 * may get reset for allocations that ignore memory policies.
4836 */
9cd75558 4837 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4838 ac->highest_zoneidx, ac->nodemask);
9cd75558
MG
4839}
4840
4841/*
4842 * This is the 'heart' of the zoned buddy allocator.
4843 */
4844struct page *
04ec6264
VB
4845__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4846 nodemask_t *nodemask)
9cd75558
MG
4847{
4848 struct page *page;
4849 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4850 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4851 struct alloc_context ac = { };
4852
c63ae43b
MH
4853 /*
4854 * There are several places where we assume that the order value is sane
4855 * so bail out early if the request is out of bound.
4856 */
4857 if (unlikely(order >= MAX_ORDER)) {
4858 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4859 return NULL;
4860 }
4861
9cd75558 4862 gfp_mask &= gfp_allowed_mask;
f19360f0 4863 alloc_mask = gfp_mask;
04ec6264 4864 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4865 return NULL;
4866
a380b40a 4867 finalise_ac(gfp_mask, &ac);
5bb1b169 4868
6bb15450
MG
4869 /*
4870 * Forbid the first pass from falling back to types that fragment
4871 * memory until all local zones are considered.
4872 */
0a79cdad 4873 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4874
5117f45d 4875 /* First allocation attempt */
a9263751 4876 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4877 if (likely(page))
4878 goto out;
11e33f6a 4879
4fcb0971 4880 /*
7dea19f9
MH
4881 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4882 * resp. GFP_NOIO which has to be inherited for all allocation requests
4883 * from a particular context which has been marked by
4884 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4885 */
7dea19f9 4886 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4887 ac.spread_dirty_pages = false;
23f086f9 4888
4741526b
MG
4889 /*
4890 * Restore the original nodemask if it was potentially replaced with
4891 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4892 */
97ce86f9 4893 ac.nodemask = nodemask;
16096c25 4894
4fcb0971 4895 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4896
4fcb0971 4897out:
c4159a75 4898 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4899 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4900 __free_pages(page, order);
4901 page = NULL;
4949148a
VD
4902 }
4903
4fcb0971
MG
4904 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4905
11e33f6a 4906 return page;
1da177e4 4907}
d239171e 4908EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4909
4910/*
9ea9a680
MH
4911 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4912 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4913 * you need to access high mem.
1da177e4 4914 */
920c7a5d 4915unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4916{
945a1113
AM
4917 struct page *page;
4918
9ea9a680 4919 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4920 if (!page)
4921 return 0;
4922 return (unsigned long) page_address(page);
4923}
1da177e4
LT
4924EXPORT_SYMBOL(__get_free_pages);
4925
920c7a5d 4926unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4927{
945a1113 4928 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4929}
1da177e4
LT
4930EXPORT_SYMBOL(get_zeroed_page);
4931
742aa7fb 4932static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4933{
742aa7fb
AL
4934 if (order == 0) /* Via pcp? */
4935 free_unref_page(page);
4936 else
4937 __free_pages_ok(page, order);
1da177e4
LT
4938}
4939
742aa7fb
AL
4940void __free_pages(struct page *page, unsigned int order)
4941{
4942 if (put_page_testzero(page))
4943 free_the_page(page, order);
4944}
1da177e4
LT
4945EXPORT_SYMBOL(__free_pages);
4946
920c7a5d 4947void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4948{
4949 if (addr != 0) {
725d704e 4950 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4951 __free_pages(virt_to_page((void *)addr), order);
4952 }
4953}
4954
4955EXPORT_SYMBOL(free_pages);
4956
b63ae8ca
AD
4957/*
4958 * Page Fragment:
4959 * An arbitrary-length arbitrary-offset area of memory which resides
4960 * within a 0 or higher order page. Multiple fragments within that page
4961 * are individually refcounted, in the page's reference counter.
4962 *
4963 * The page_frag functions below provide a simple allocation framework for
4964 * page fragments. This is used by the network stack and network device
4965 * drivers to provide a backing region of memory for use as either an
4966 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4967 */
2976db80
AD
4968static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4969 gfp_t gfp_mask)
b63ae8ca
AD
4970{
4971 struct page *page = NULL;
4972 gfp_t gfp = gfp_mask;
4973
4974#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4975 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4976 __GFP_NOMEMALLOC;
4977 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4978 PAGE_FRAG_CACHE_MAX_ORDER);
4979 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4980#endif
4981 if (unlikely(!page))
4982 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4983
4984 nc->va = page ? page_address(page) : NULL;
4985
4986 return page;
4987}
4988
2976db80 4989void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4990{
4991 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4992
742aa7fb
AL
4993 if (page_ref_sub_and_test(page, count))
4994 free_the_page(page, compound_order(page));
44fdffd7 4995}
2976db80 4996EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4997
8c2dd3e4
AD
4998void *page_frag_alloc(struct page_frag_cache *nc,
4999 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
5000{
5001 unsigned int size = PAGE_SIZE;
5002 struct page *page;
5003 int offset;
5004
5005 if (unlikely(!nc->va)) {
5006refill:
2976db80 5007 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5008 if (!page)
5009 return NULL;
5010
5011#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5012 /* if size can vary use size else just use PAGE_SIZE */
5013 size = nc->size;
5014#endif
5015 /* Even if we own the page, we do not use atomic_set().
5016 * This would break get_page_unless_zero() users.
5017 */
86447726 5018 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5019
5020 /* reset page count bias and offset to start of new frag */
2f064f34 5021 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5022 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5023 nc->offset = size;
5024 }
5025
5026 offset = nc->offset - fragsz;
5027 if (unlikely(offset < 0)) {
5028 page = virt_to_page(nc->va);
5029
fe896d18 5030 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5031 goto refill;
5032
5033#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5034 /* if size can vary use size else just use PAGE_SIZE */
5035 size = nc->size;
5036#endif
5037 /* OK, page count is 0, we can safely set it */
86447726 5038 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5039
5040 /* reset page count bias and offset to start of new frag */
86447726 5041 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5042 offset = size - fragsz;
5043 }
5044
5045 nc->pagecnt_bias--;
5046 nc->offset = offset;
5047
5048 return nc->va + offset;
5049}
8c2dd3e4 5050EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5051
5052/*
5053 * Frees a page fragment allocated out of either a compound or order 0 page.
5054 */
8c2dd3e4 5055void page_frag_free(void *addr)
b63ae8ca
AD
5056{
5057 struct page *page = virt_to_head_page(addr);
5058
742aa7fb
AL
5059 if (unlikely(put_page_testzero(page)))
5060 free_the_page(page, compound_order(page));
b63ae8ca 5061}
8c2dd3e4 5062EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5063
d00181b9
KS
5064static void *make_alloc_exact(unsigned long addr, unsigned int order,
5065 size_t size)
ee85c2e1
AK
5066{
5067 if (addr) {
5068 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5069 unsigned long used = addr + PAGE_ALIGN(size);
5070
5071 split_page(virt_to_page((void *)addr), order);
5072 while (used < alloc_end) {
5073 free_page(used);
5074 used += PAGE_SIZE;
5075 }
5076 }
5077 return (void *)addr;
5078}
5079
2be0ffe2
TT
5080/**
5081 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5082 * @size: the number of bytes to allocate
63931eb9 5083 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5084 *
5085 * This function is similar to alloc_pages(), except that it allocates the
5086 * minimum number of pages to satisfy the request. alloc_pages() can only
5087 * allocate memory in power-of-two pages.
5088 *
5089 * This function is also limited by MAX_ORDER.
5090 *
5091 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5092 *
5093 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5094 */
5095void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5096{
5097 unsigned int order = get_order(size);
5098 unsigned long addr;
5099
63931eb9
VB
5100 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5101 gfp_mask &= ~__GFP_COMP;
5102
2be0ffe2 5103 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5104 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5105}
5106EXPORT_SYMBOL(alloc_pages_exact);
5107
ee85c2e1
AK
5108/**
5109 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5110 * pages on a node.
b5e6ab58 5111 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5112 * @size: the number of bytes to allocate
63931eb9 5113 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5114 *
5115 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5116 * back.
a862f68a
MR
5117 *
5118 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5119 */
e1931811 5120void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5121{
d00181b9 5122 unsigned int order = get_order(size);
63931eb9
VB
5123 struct page *p;
5124
5125 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5126 gfp_mask &= ~__GFP_COMP;
5127
5128 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5129 if (!p)
5130 return NULL;
5131 return make_alloc_exact((unsigned long)page_address(p), order, size);
5132}
ee85c2e1 5133
2be0ffe2
TT
5134/**
5135 * free_pages_exact - release memory allocated via alloc_pages_exact()
5136 * @virt: the value returned by alloc_pages_exact.
5137 * @size: size of allocation, same value as passed to alloc_pages_exact().
5138 *
5139 * Release the memory allocated by a previous call to alloc_pages_exact.
5140 */
5141void free_pages_exact(void *virt, size_t size)
5142{
5143 unsigned long addr = (unsigned long)virt;
5144 unsigned long end = addr + PAGE_ALIGN(size);
5145
5146 while (addr < end) {
5147 free_page(addr);
5148 addr += PAGE_SIZE;
5149 }
5150}
5151EXPORT_SYMBOL(free_pages_exact);
5152
e0fb5815
ZY
5153/**
5154 * nr_free_zone_pages - count number of pages beyond high watermark
5155 * @offset: The zone index of the highest zone
5156 *
a862f68a 5157 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5158 * high watermark within all zones at or below a given zone index. For each
5159 * zone, the number of pages is calculated as:
0e056eb5
MCC
5160 *
5161 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5162 *
5163 * Return: number of pages beyond high watermark.
e0fb5815 5164 */
ebec3862 5165static unsigned long nr_free_zone_pages(int offset)
1da177e4 5166{
dd1a239f 5167 struct zoneref *z;
54a6eb5c
MG
5168 struct zone *zone;
5169
e310fd43 5170 /* Just pick one node, since fallback list is circular */
ebec3862 5171 unsigned long sum = 0;
1da177e4 5172
0e88460d 5173 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5174
54a6eb5c 5175 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5176 unsigned long size = zone_managed_pages(zone);
41858966 5177 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5178 if (size > high)
5179 sum += size - high;
1da177e4
LT
5180 }
5181
5182 return sum;
5183}
5184
e0fb5815
ZY
5185/**
5186 * nr_free_buffer_pages - count number of pages beyond high watermark
5187 *
5188 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5189 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5190 *
5191 * Return: number of pages beyond high watermark within ZONE_DMA and
5192 * ZONE_NORMAL.
1da177e4 5193 */
ebec3862 5194unsigned long nr_free_buffer_pages(void)
1da177e4 5195{
af4ca457 5196 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5197}
c2f1a551 5198EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5199
08e0f6a9 5200static inline void show_node(struct zone *zone)
1da177e4 5201{
e5adfffc 5202 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5203 printk("Node %d ", zone_to_nid(zone));
1da177e4 5204}
1da177e4 5205
d02bd27b
IR
5206long si_mem_available(void)
5207{
5208 long available;
5209 unsigned long pagecache;
5210 unsigned long wmark_low = 0;
5211 unsigned long pages[NR_LRU_LISTS];
b29940c1 5212 unsigned long reclaimable;
d02bd27b
IR
5213 struct zone *zone;
5214 int lru;
5215
5216 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5217 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5218
5219 for_each_zone(zone)
a9214443 5220 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5221
5222 /*
5223 * Estimate the amount of memory available for userspace allocations,
5224 * without causing swapping.
5225 */
c41f012a 5226 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5227
5228 /*
5229 * Not all the page cache can be freed, otherwise the system will
5230 * start swapping. Assume at least half of the page cache, or the
5231 * low watermark worth of cache, needs to stay.
5232 */
5233 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5234 pagecache -= min(pagecache / 2, wmark_low);
5235 available += pagecache;
5236
5237 /*
b29940c1
VB
5238 * Part of the reclaimable slab and other kernel memory consists of
5239 * items that are in use, and cannot be freed. Cap this estimate at the
5240 * low watermark.
d02bd27b 5241 */
d42f3245
RG
5242 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5243 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5244 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5245
d02bd27b
IR
5246 if (available < 0)
5247 available = 0;
5248 return available;
5249}
5250EXPORT_SYMBOL_GPL(si_mem_available);
5251
1da177e4
LT
5252void si_meminfo(struct sysinfo *val)
5253{
ca79b0c2 5254 val->totalram = totalram_pages();
11fb9989 5255 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5256 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5257 val->bufferram = nr_blockdev_pages();
ca79b0c2 5258 val->totalhigh = totalhigh_pages();
1da177e4 5259 val->freehigh = nr_free_highpages();
1da177e4
LT
5260 val->mem_unit = PAGE_SIZE;
5261}
5262
5263EXPORT_SYMBOL(si_meminfo);
5264
5265#ifdef CONFIG_NUMA
5266void si_meminfo_node(struct sysinfo *val, int nid)
5267{
cdd91a77
JL
5268 int zone_type; /* needs to be signed */
5269 unsigned long managed_pages = 0;
fc2bd799
JK
5270 unsigned long managed_highpages = 0;
5271 unsigned long free_highpages = 0;
1da177e4
LT
5272 pg_data_t *pgdat = NODE_DATA(nid);
5273
cdd91a77 5274 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5275 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5276 val->totalram = managed_pages;
11fb9989 5277 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5278 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5279#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5280 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5281 struct zone *zone = &pgdat->node_zones[zone_type];
5282
5283 if (is_highmem(zone)) {
9705bea5 5284 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5285 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5286 }
5287 }
5288 val->totalhigh = managed_highpages;
5289 val->freehigh = free_highpages;
98d2b0eb 5290#else
fc2bd799
JK
5291 val->totalhigh = managed_highpages;
5292 val->freehigh = free_highpages;
98d2b0eb 5293#endif
1da177e4
LT
5294 val->mem_unit = PAGE_SIZE;
5295}
5296#endif
5297
ddd588b5 5298/*
7bf02ea2
DR
5299 * Determine whether the node should be displayed or not, depending on whether
5300 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5301 */
9af744d7 5302static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5303{
ddd588b5 5304 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5305 return false;
ddd588b5 5306
9af744d7
MH
5307 /*
5308 * no node mask - aka implicit memory numa policy. Do not bother with
5309 * the synchronization - read_mems_allowed_begin - because we do not
5310 * have to be precise here.
5311 */
5312 if (!nodemask)
5313 nodemask = &cpuset_current_mems_allowed;
5314
5315 return !node_isset(nid, *nodemask);
ddd588b5
DR
5316}
5317
1da177e4
LT
5318#define K(x) ((x) << (PAGE_SHIFT-10))
5319
377e4f16
RV
5320static void show_migration_types(unsigned char type)
5321{
5322 static const char types[MIGRATE_TYPES] = {
5323 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5324 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5325 [MIGRATE_RECLAIMABLE] = 'E',
5326 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5327#ifdef CONFIG_CMA
5328 [MIGRATE_CMA] = 'C',
5329#endif
194159fb 5330#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5331 [MIGRATE_ISOLATE] = 'I',
194159fb 5332#endif
377e4f16
RV
5333 };
5334 char tmp[MIGRATE_TYPES + 1];
5335 char *p = tmp;
5336 int i;
5337
5338 for (i = 0; i < MIGRATE_TYPES; i++) {
5339 if (type & (1 << i))
5340 *p++ = types[i];
5341 }
5342
5343 *p = '\0';
1f84a18f 5344 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5345}
5346
1da177e4
LT
5347/*
5348 * Show free area list (used inside shift_scroll-lock stuff)
5349 * We also calculate the percentage fragmentation. We do this by counting the
5350 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5351 *
5352 * Bits in @filter:
5353 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5354 * cpuset.
1da177e4 5355 */
9af744d7 5356void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5357{
d1bfcdb8 5358 unsigned long free_pcp = 0;
c7241913 5359 int cpu;
1da177e4 5360 struct zone *zone;
599d0c95 5361 pg_data_t *pgdat;
1da177e4 5362
ee99c71c 5363 for_each_populated_zone(zone) {
9af744d7 5364 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5365 continue;
d1bfcdb8 5366
761b0677
KK
5367 for_each_online_cpu(cpu)
5368 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5369 }
5370
a731286d
KM
5371 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5372 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5373 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5374 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5375 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5376 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5377 global_node_page_state(NR_ACTIVE_ANON),
5378 global_node_page_state(NR_INACTIVE_ANON),
5379 global_node_page_state(NR_ISOLATED_ANON),
5380 global_node_page_state(NR_ACTIVE_FILE),
5381 global_node_page_state(NR_INACTIVE_FILE),
5382 global_node_page_state(NR_ISOLATED_FILE),
5383 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5384 global_node_page_state(NR_FILE_DIRTY),
5385 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5386 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5387 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5388 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5389 global_node_page_state(NR_SHMEM),
c41f012a
MH
5390 global_zone_page_state(NR_PAGETABLE),
5391 global_zone_page_state(NR_BOUNCE),
5392 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5393 free_pcp,
c41f012a 5394 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5395
599d0c95 5396 for_each_online_pgdat(pgdat) {
9af744d7 5397 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5398 continue;
5399
599d0c95
MG
5400 printk("Node %d"
5401 " active_anon:%lukB"
5402 " inactive_anon:%lukB"
5403 " active_file:%lukB"
5404 " inactive_file:%lukB"
5405 " unevictable:%lukB"
5406 " isolated(anon):%lukB"
5407 " isolated(file):%lukB"
50658e2e 5408 " mapped:%lukB"
11fb9989
MG
5409 " dirty:%lukB"
5410 " writeback:%lukB"
5411 " shmem:%lukB"
5412#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5413 " shmem_thp: %lukB"
5414 " shmem_pmdmapped: %lukB"
5415 " anon_thp: %lukB"
5416#endif
5417 " writeback_tmp:%lukB"
991e7673
SB
5418 " kernel_stack:%lukB"
5419#ifdef CONFIG_SHADOW_CALL_STACK
5420 " shadow_call_stack:%lukB"
5421#endif
599d0c95
MG
5422 " all_unreclaimable? %s"
5423 "\n",
5424 pgdat->node_id,
5425 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5426 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5427 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5428 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5429 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5430 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5431 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5432 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5433 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5434 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5435 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5436#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5437 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5438 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5439 * HPAGE_PMD_NR),
5440 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5441#endif
11fb9989 5442 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5443 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5444#ifdef CONFIG_SHADOW_CALL_STACK
5445 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5446#endif
c73322d0
JW
5447 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5448 "yes" : "no");
599d0c95
MG
5449 }
5450
ee99c71c 5451 for_each_populated_zone(zone) {
1da177e4
LT
5452 int i;
5453
9af744d7 5454 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5455 continue;
d1bfcdb8
KK
5456
5457 free_pcp = 0;
5458 for_each_online_cpu(cpu)
5459 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5460
1da177e4 5461 show_node(zone);
1f84a18f
JP
5462 printk(KERN_CONT
5463 "%s"
1da177e4
LT
5464 " free:%lukB"
5465 " min:%lukB"
5466 " low:%lukB"
5467 " high:%lukB"
e47b346a 5468 " reserved_highatomic:%luKB"
71c799f4
MK
5469 " active_anon:%lukB"
5470 " inactive_anon:%lukB"
5471 " active_file:%lukB"
5472 " inactive_file:%lukB"
5473 " unevictable:%lukB"
5a1c84b4 5474 " writepending:%lukB"
1da177e4 5475 " present:%lukB"
9feedc9d 5476 " managed:%lukB"
4a0aa73f 5477 " mlocked:%lukB"
4a0aa73f 5478 " pagetables:%lukB"
4a0aa73f 5479 " bounce:%lukB"
d1bfcdb8
KK
5480 " free_pcp:%lukB"
5481 " local_pcp:%ukB"
d1ce749a 5482 " free_cma:%lukB"
1da177e4
LT
5483 "\n",
5484 zone->name,
88f5acf8 5485 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5486 K(min_wmark_pages(zone)),
5487 K(low_wmark_pages(zone)),
5488 K(high_wmark_pages(zone)),
e47b346a 5489 K(zone->nr_reserved_highatomic),
71c799f4
MK
5490 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5491 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5492 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5493 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5494 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5495 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5496 K(zone->present_pages),
9705bea5 5497 K(zone_managed_pages(zone)),
4a0aa73f 5498 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5499 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5500 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5501 K(free_pcp),
5502 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5503 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5504 printk("lowmem_reserve[]:");
5505 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5506 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5507 printk(KERN_CONT "\n");
1da177e4
LT
5508 }
5509
ee99c71c 5510 for_each_populated_zone(zone) {
d00181b9
KS
5511 unsigned int order;
5512 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5513 unsigned char types[MAX_ORDER];
1da177e4 5514
9af744d7 5515 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5516 continue;
1da177e4 5517 show_node(zone);
1f84a18f 5518 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5519
5520 spin_lock_irqsave(&zone->lock, flags);
5521 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5522 struct free_area *area = &zone->free_area[order];
5523 int type;
5524
5525 nr[order] = area->nr_free;
8f9de51a 5526 total += nr[order] << order;
377e4f16
RV
5527
5528 types[order] = 0;
5529 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5530 if (!free_area_empty(area, type))
377e4f16
RV
5531 types[order] |= 1 << type;
5532 }
1da177e4
LT
5533 }
5534 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5535 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5536 printk(KERN_CONT "%lu*%lukB ",
5537 nr[order], K(1UL) << order);
377e4f16
RV
5538 if (nr[order])
5539 show_migration_types(types[order]);
5540 }
1f84a18f 5541 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5542 }
5543
949f7ec5
DR
5544 hugetlb_show_meminfo();
5545
11fb9989 5546 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5547
1da177e4
LT
5548 show_swap_cache_info();
5549}
5550
19770b32
MG
5551static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5552{
5553 zoneref->zone = zone;
5554 zoneref->zone_idx = zone_idx(zone);
5555}
5556
1da177e4
LT
5557/*
5558 * Builds allocation fallback zone lists.
1a93205b
CL
5559 *
5560 * Add all populated zones of a node to the zonelist.
1da177e4 5561 */
9d3be21b 5562static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5563{
1a93205b 5564 struct zone *zone;
bc732f1d 5565 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5566 int nr_zones = 0;
02a68a5e
CL
5567
5568 do {
2f6726e5 5569 zone_type--;
070f8032 5570 zone = pgdat->node_zones + zone_type;
6aa303de 5571 if (managed_zone(zone)) {
9d3be21b 5572 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5573 check_highest_zone(zone_type);
1da177e4 5574 }
2f6726e5 5575 } while (zone_type);
bc732f1d 5576
070f8032 5577 return nr_zones;
1da177e4
LT
5578}
5579
5580#ifdef CONFIG_NUMA
f0c0b2b8
KH
5581
5582static int __parse_numa_zonelist_order(char *s)
5583{
c9bff3ee
MH
5584 /*
5585 * We used to support different zonlists modes but they turned
5586 * out to be just not useful. Let's keep the warning in place
5587 * if somebody still use the cmd line parameter so that we do
5588 * not fail it silently
5589 */
5590 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5591 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5592 return -EINVAL;
5593 }
5594 return 0;
5595}
5596
c9bff3ee
MH
5597char numa_zonelist_order[] = "Node";
5598
f0c0b2b8
KH
5599/*
5600 * sysctl handler for numa_zonelist_order
5601 */
cccad5b9 5602int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5603 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5604{
32927393
CH
5605 if (write)
5606 return __parse_numa_zonelist_order(buffer);
5607 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5608}
5609
5610
62bc62a8 5611#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5612static int node_load[MAX_NUMNODES];
5613
1da177e4 5614/**
4dc3b16b 5615 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5616 * @node: node whose fallback list we're appending
5617 * @used_node_mask: nodemask_t of already used nodes
5618 *
5619 * We use a number of factors to determine which is the next node that should
5620 * appear on a given node's fallback list. The node should not have appeared
5621 * already in @node's fallback list, and it should be the next closest node
5622 * according to the distance array (which contains arbitrary distance values
5623 * from each node to each node in the system), and should also prefer nodes
5624 * with no CPUs, since presumably they'll have very little allocation pressure
5625 * on them otherwise.
a862f68a
MR
5626 *
5627 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5628 */
f0c0b2b8 5629static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5630{
4cf808eb 5631 int n, val;
1da177e4 5632 int min_val = INT_MAX;
00ef2d2f 5633 int best_node = NUMA_NO_NODE;
a70f7302 5634 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5635
4cf808eb
LT
5636 /* Use the local node if we haven't already */
5637 if (!node_isset(node, *used_node_mask)) {
5638 node_set(node, *used_node_mask);
5639 return node;
5640 }
1da177e4 5641
4b0ef1fe 5642 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5643
5644 /* Don't want a node to appear more than once */
5645 if (node_isset(n, *used_node_mask))
5646 continue;
5647
1da177e4
LT
5648 /* Use the distance array to find the distance */
5649 val = node_distance(node, n);
5650
4cf808eb
LT
5651 /* Penalize nodes under us ("prefer the next node") */
5652 val += (n < node);
5653
1da177e4 5654 /* Give preference to headless and unused nodes */
a70f7302
RR
5655 tmp = cpumask_of_node(n);
5656 if (!cpumask_empty(tmp))
1da177e4
LT
5657 val += PENALTY_FOR_NODE_WITH_CPUS;
5658
5659 /* Slight preference for less loaded node */
5660 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5661 val += node_load[n];
5662
5663 if (val < min_val) {
5664 min_val = val;
5665 best_node = n;
5666 }
5667 }
5668
5669 if (best_node >= 0)
5670 node_set(best_node, *used_node_mask);
5671
5672 return best_node;
5673}
5674
f0c0b2b8
KH
5675
5676/*
5677 * Build zonelists ordered by node and zones within node.
5678 * This results in maximum locality--normal zone overflows into local
5679 * DMA zone, if any--but risks exhausting DMA zone.
5680 */
9d3be21b
MH
5681static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5682 unsigned nr_nodes)
1da177e4 5683{
9d3be21b
MH
5684 struct zoneref *zonerefs;
5685 int i;
5686
5687 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5688
5689 for (i = 0; i < nr_nodes; i++) {
5690 int nr_zones;
5691
5692 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5693
9d3be21b
MH
5694 nr_zones = build_zonerefs_node(node, zonerefs);
5695 zonerefs += nr_zones;
5696 }
5697 zonerefs->zone = NULL;
5698 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5699}
5700
523b9458
CL
5701/*
5702 * Build gfp_thisnode zonelists
5703 */
5704static void build_thisnode_zonelists(pg_data_t *pgdat)
5705{
9d3be21b
MH
5706 struct zoneref *zonerefs;
5707 int nr_zones;
523b9458 5708
9d3be21b
MH
5709 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5710 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5711 zonerefs += nr_zones;
5712 zonerefs->zone = NULL;
5713 zonerefs->zone_idx = 0;
523b9458
CL
5714}
5715
f0c0b2b8
KH
5716/*
5717 * Build zonelists ordered by zone and nodes within zones.
5718 * This results in conserving DMA zone[s] until all Normal memory is
5719 * exhausted, but results in overflowing to remote node while memory
5720 * may still exist in local DMA zone.
5721 */
f0c0b2b8 5722
f0c0b2b8
KH
5723static void build_zonelists(pg_data_t *pgdat)
5724{
9d3be21b
MH
5725 static int node_order[MAX_NUMNODES];
5726 int node, load, nr_nodes = 0;
d0ddf49b 5727 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5728 int local_node, prev_node;
1da177e4
LT
5729
5730 /* NUMA-aware ordering of nodes */
5731 local_node = pgdat->node_id;
62bc62a8 5732 load = nr_online_nodes;
1da177e4 5733 prev_node = local_node;
f0c0b2b8 5734
f0c0b2b8 5735 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5736 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5737 /*
5738 * We don't want to pressure a particular node.
5739 * So adding penalty to the first node in same
5740 * distance group to make it round-robin.
5741 */
957f822a
DR
5742 if (node_distance(local_node, node) !=
5743 node_distance(local_node, prev_node))
f0c0b2b8
KH
5744 node_load[node] = load;
5745
9d3be21b 5746 node_order[nr_nodes++] = node;
1da177e4
LT
5747 prev_node = node;
5748 load--;
1da177e4 5749 }
523b9458 5750
9d3be21b 5751 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5752 build_thisnode_zonelists(pgdat);
1da177e4
LT
5753}
5754
7aac7898
LS
5755#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5756/*
5757 * Return node id of node used for "local" allocations.
5758 * I.e., first node id of first zone in arg node's generic zonelist.
5759 * Used for initializing percpu 'numa_mem', which is used primarily
5760 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5761 */
5762int local_memory_node(int node)
5763{
c33d6c06 5764 struct zoneref *z;
7aac7898 5765
c33d6c06 5766 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5767 gfp_zone(GFP_KERNEL),
c33d6c06 5768 NULL);
c1093b74 5769 return zone_to_nid(z->zone);
7aac7898
LS
5770}
5771#endif
f0c0b2b8 5772
6423aa81
JK
5773static void setup_min_unmapped_ratio(void);
5774static void setup_min_slab_ratio(void);
1da177e4
LT
5775#else /* CONFIG_NUMA */
5776
f0c0b2b8 5777static void build_zonelists(pg_data_t *pgdat)
1da177e4 5778{
19655d34 5779 int node, local_node;
9d3be21b
MH
5780 struct zoneref *zonerefs;
5781 int nr_zones;
1da177e4
LT
5782
5783 local_node = pgdat->node_id;
1da177e4 5784
9d3be21b
MH
5785 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5786 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5787 zonerefs += nr_zones;
1da177e4 5788
54a6eb5c
MG
5789 /*
5790 * Now we build the zonelist so that it contains the zones
5791 * of all the other nodes.
5792 * We don't want to pressure a particular node, so when
5793 * building the zones for node N, we make sure that the
5794 * zones coming right after the local ones are those from
5795 * node N+1 (modulo N)
5796 */
5797 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5798 if (!node_online(node))
5799 continue;
9d3be21b
MH
5800 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5801 zonerefs += nr_zones;
1da177e4 5802 }
54a6eb5c
MG
5803 for (node = 0; node < local_node; node++) {
5804 if (!node_online(node))
5805 continue;
9d3be21b
MH
5806 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5807 zonerefs += nr_zones;
54a6eb5c
MG
5808 }
5809
9d3be21b
MH
5810 zonerefs->zone = NULL;
5811 zonerefs->zone_idx = 0;
1da177e4
LT
5812}
5813
5814#endif /* CONFIG_NUMA */
5815
99dcc3e5
CL
5816/*
5817 * Boot pageset table. One per cpu which is going to be used for all
5818 * zones and all nodes. The parameters will be set in such a way
5819 * that an item put on a list will immediately be handed over to
5820 * the buddy list. This is safe since pageset manipulation is done
5821 * with interrupts disabled.
5822 *
5823 * The boot_pagesets must be kept even after bootup is complete for
5824 * unused processors and/or zones. They do play a role for bootstrapping
5825 * hotplugged processors.
5826 *
5827 * zoneinfo_show() and maybe other functions do
5828 * not check if the processor is online before following the pageset pointer.
5829 * Other parts of the kernel may not check if the zone is available.
5830 */
5831static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5832static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5833static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5834
11cd8638 5835static void __build_all_zonelists(void *data)
1da177e4 5836{
6811378e 5837 int nid;
afb6ebb3 5838 int __maybe_unused cpu;
9adb62a5 5839 pg_data_t *self = data;
b93e0f32
MH
5840 static DEFINE_SPINLOCK(lock);
5841
5842 spin_lock(&lock);
9276b1bc 5843
7f9cfb31
BL
5844#ifdef CONFIG_NUMA
5845 memset(node_load, 0, sizeof(node_load));
5846#endif
9adb62a5 5847
c1152583
WY
5848 /*
5849 * This node is hotadded and no memory is yet present. So just
5850 * building zonelists is fine - no need to touch other nodes.
5851 */
9adb62a5
JL
5852 if (self && !node_online(self->node_id)) {
5853 build_zonelists(self);
c1152583
WY
5854 } else {
5855 for_each_online_node(nid) {
5856 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5857
c1152583
WY
5858 build_zonelists(pgdat);
5859 }
99dcc3e5 5860
7aac7898
LS
5861#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5862 /*
5863 * We now know the "local memory node" for each node--
5864 * i.e., the node of the first zone in the generic zonelist.
5865 * Set up numa_mem percpu variable for on-line cpus. During
5866 * boot, only the boot cpu should be on-line; we'll init the
5867 * secondary cpus' numa_mem as they come on-line. During
5868 * node/memory hotplug, we'll fixup all on-line cpus.
5869 */
d9c9a0b9 5870 for_each_online_cpu(cpu)
7aac7898 5871 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5872#endif
d9c9a0b9 5873 }
b93e0f32
MH
5874
5875 spin_unlock(&lock);
6811378e
YG
5876}
5877
061f67bc
RV
5878static noinline void __init
5879build_all_zonelists_init(void)
5880{
afb6ebb3
MH
5881 int cpu;
5882
061f67bc 5883 __build_all_zonelists(NULL);
afb6ebb3
MH
5884
5885 /*
5886 * Initialize the boot_pagesets that are going to be used
5887 * for bootstrapping processors. The real pagesets for
5888 * each zone will be allocated later when the per cpu
5889 * allocator is available.
5890 *
5891 * boot_pagesets are used also for bootstrapping offline
5892 * cpus if the system is already booted because the pagesets
5893 * are needed to initialize allocators on a specific cpu too.
5894 * F.e. the percpu allocator needs the page allocator which
5895 * needs the percpu allocator in order to allocate its pagesets
5896 * (a chicken-egg dilemma).
5897 */
5898 for_each_possible_cpu(cpu)
5899 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5900
061f67bc
RV
5901 mminit_verify_zonelist();
5902 cpuset_init_current_mems_allowed();
5903}
5904
4eaf3f64 5905/*
4eaf3f64 5906 * unless system_state == SYSTEM_BOOTING.
061f67bc 5907 *
72675e13 5908 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5909 * [protected by SYSTEM_BOOTING].
4eaf3f64 5910 */
72675e13 5911void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 5912{
0a18e607
DH
5913 unsigned long vm_total_pages;
5914
6811378e 5915 if (system_state == SYSTEM_BOOTING) {
061f67bc 5916 build_all_zonelists_init();
6811378e 5917 } else {
11cd8638 5918 __build_all_zonelists(pgdat);
6811378e
YG
5919 /* cpuset refresh routine should be here */
5920 }
56b9413b
DH
5921 /* Get the number of free pages beyond high watermark in all zones. */
5922 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
5923 /*
5924 * Disable grouping by mobility if the number of pages in the
5925 * system is too low to allow the mechanism to work. It would be
5926 * more accurate, but expensive to check per-zone. This check is
5927 * made on memory-hotadd so a system can start with mobility
5928 * disabled and enable it later
5929 */
d9c23400 5930 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5931 page_group_by_mobility_disabled = 1;
5932 else
5933 page_group_by_mobility_disabled = 0;
5934
ce0725f7 5935 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5936 nr_online_nodes,
756a025f
JP
5937 page_group_by_mobility_disabled ? "off" : "on",
5938 vm_total_pages);
f0c0b2b8 5939#ifdef CONFIG_NUMA
f88dfff5 5940 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5941#endif
1da177e4
LT
5942}
5943
a9a9e77f
PT
5944/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5945static bool __meminit
5946overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5947{
a9a9e77f
PT
5948 static struct memblock_region *r;
5949
5950 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5951 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5952 for_each_memblock(memory, r) {
5953 if (*pfn < memblock_region_memory_end_pfn(r))
5954 break;
5955 }
5956 }
5957 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5958 memblock_is_mirror(r)) {
5959 *pfn = memblock_region_memory_end_pfn(r);
5960 return true;
5961 }
5962 }
a9a9e77f
PT
5963 return false;
5964}
5965
1da177e4
LT
5966/*
5967 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5968 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5969 * done. Non-atomic initialization, single-pass.
5970 */
c09b4240 5971void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5972 unsigned long start_pfn, enum memmap_context context,
5973 struct vmem_altmap *altmap)
1da177e4 5974{
a9a9e77f 5975 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5976 struct page *page;
1da177e4 5977
22b31eec
HD
5978 if (highest_memmap_pfn < end_pfn - 1)
5979 highest_memmap_pfn = end_pfn - 1;
5980
966cf44f 5981#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5982 /*
5983 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5984 * memory. We limit the total number of pages to initialize to just
5985 * those that might contain the memory mapping. We will defer the
5986 * ZONE_DEVICE page initialization until after we have released
5987 * the hotplug lock.
4b94ffdc 5988 */
966cf44f
AD
5989 if (zone == ZONE_DEVICE) {
5990 if (!altmap)
5991 return;
5992
5993 if (start_pfn == altmap->base_pfn)
5994 start_pfn += altmap->reserve;
5995 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5996 }
5997#endif
4b94ffdc 5998
948c436e 5999 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6000 /*
b72d0ffb
AM
6001 * There can be holes in boot-time mem_map[]s handed to this
6002 * function. They do not exist on hotplugged memory.
a2f3aa02 6003 */
a9a9e77f 6004 if (context == MEMMAP_EARLY) {
a9a9e77f
PT
6005 if (overlap_memmap_init(zone, &pfn))
6006 continue;
6007 if (defer_init(nid, pfn, end_pfn))
6008 break;
a2f3aa02 6009 }
ac5d2539 6010
d0dc12e8
PT
6011 page = pfn_to_page(pfn);
6012 __init_single_page(page, pfn, zone, nid);
6013 if (context == MEMMAP_HOTPLUG)
d483da5b 6014 __SetPageReserved(page);
d0dc12e8 6015
ac5d2539
MG
6016 /*
6017 * Mark the block movable so that blocks are reserved for
6018 * movable at startup. This will force kernel allocations
6019 * to reserve their blocks rather than leaking throughout
6020 * the address space during boot when many long-lived
974a786e 6021 * kernel allocations are made.
ac5d2539
MG
6022 *
6023 * bitmap is created for zone's valid pfn range. but memmap
6024 * can be created for invalid pages (for alignment)
6025 * check here not to call set_pageblock_migratetype() against
6026 * pfn out of zone.
6027 */
6028 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 6029 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 6030 cond_resched();
ac5d2539 6031 }
948c436e 6032 pfn++;
1da177e4
LT
6033 }
6034}
6035
966cf44f
AD
6036#ifdef CONFIG_ZONE_DEVICE
6037void __ref memmap_init_zone_device(struct zone *zone,
6038 unsigned long start_pfn,
1f8d75c1 6039 unsigned long nr_pages,
966cf44f
AD
6040 struct dev_pagemap *pgmap)
6041{
1f8d75c1 6042 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6043 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6044 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6045 unsigned long zone_idx = zone_idx(zone);
6046 unsigned long start = jiffies;
6047 int nid = pgdat->node_id;
6048
46d945ae 6049 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6050 return;
6051
6052 /*
6053 * The call to memmap_init_zone should have already taken care
6054 * of the pages reserved for the memmap, so we can just jump to
6055 * the end of that region and start processing the device pages.
6056 */
514caf23 6057 if (altmap) {
966cf44f 6058 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6059 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6060 }
6061
6062 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6063 struct page *page = pfn_to_page(pfn);
6064
6065 __init_single_page(page, pfn, zone_idx, nid);
6066
6067 /*
6068 * Mark page reserved as it will need to wait for onlining
6069 * phase for it to be fully associated with a zone.
6070 *
6071 * We can use the non-atomic __set_bit operation for setting
6072 * the flag as we are still initializing the pages.
6073 */
6074 __SetPageReserved(page);
6075
6076 /*
8a164fef
CH
6077 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6078 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6079 * ever freed or placed on a driver-private list.
966cf44f
AD
6080 */
6081 page->pgmap = pgmap;
8a164fef 6082 page->zone_device_data = NULL;
966cf44f
AD
6083
6084 /*
6085 * Mark the block movable so that blocks are reserved for
6086 * movable at startup. This will force kernel allocations
6087 * to reserve their blocks rather than leaking throughout
6088 * the address space during boot when many long-lived
6089 * kernel allocations are made.
6090 *
6091 * bitmap is created for zone's valid pfn range. but memmap
6092 * can be created for invalid pages (for alignment)
6093 * check here not to call set_pageblock_migratetype() against
6094 * pfn out of zone.
6095 *
6096 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 6097 * because this is done early in section_activate()
966cf44f
AD
6098 */
6099 if (!(pfn & (pageblock_nr_pages - 1))) {
6100 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6101 cond_resched();
6102 }
6103 }
6104
fdc029b1 6105 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6106 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6107}
6108
6109#endif
1e548deb 6110static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6111{
7aeb09f9 6112 unsigned int order, t;
b2a0ac88
MG
6113 for_each_migratetype_order(order, t) {
6114 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6115 zone->free_area[order].nr_free = 0;
6116 }
6117}
6118
dfb3ccd0 6119void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6120 unsigned long zone,
6121 unsigned long range_start_pfn)
dfb3ccd0 6122{
73a6e474
BH
6123 unsigned long start_pfn, end_pfn;
6124 unsigned long range_end_pfn = range_start_pfn + size;
6125 int i;
6126
6127 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6128 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6129 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6130
6131 if (end_pfn > start_pfn) {
6132 size = end_pfn - start_pfn;
6133 memmap_init_zone(size, nid, zone, start_pfn,
6134 MEMMAP_EARLY, NULL);
6135 }
6136 }
dfb3ccd0 6137}
1da177e4 6138
7cd2b0a3 6139static int zone_batchsize(struct zone *zone)
e7c8d5c9 6140{
3a6be87f 6141#ifdef CONFIG_MMU
e7c8d5c9
CL
6142 int batch;
6143
6144 /*
6145 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6146 * size of the zone.
e7c8d5c9 6147 */
9705bea5 6148 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6149 /* But no more than a meg. */
6150 if (batch * PAGE_SIZE > 1024 * 1024)
6151 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6152 batch /= 4; /* We effectively *= 4 below */
6153 if (batch < 1)
6154 batch = 1;
6155
6156 /*
0ceaacc9
NP
6157 * Clamp the batch to a 2^n - 1 value. Having a power
6158 * of 2 value was found to be more likely to have
6159 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6160 *
0ceaacc9
NP
6161 * For example if 2 tasks are alternately allocating
6162 * batches of pages, one task can end up with a lot
6163 * of pages of one half of the possible page colors
6164 * and the other with pages of the other colors.
e7c8d5c9 6165 */
9155203a 6166 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6167
e7c8d5c9 6168 return batch;
3a6be87f
DH
6169
6170#else
6171 /* The deferral and batching of frees should be suppressed under NOMMU
6172 * conditions.
6173 *
6174 * The problem is that NOMMU needs to be able to allocate large chunks
6175 * of contiguous memory as there's no hardware page translation to
6176 * assemble apparent contiguous memory from discontiguous pages.
6177 *
6178 * Queueing large contiguous runs of pages for batching, however,
6179 * causes the pages to actually be freed in smaller chunks. As there
6180 * can be a significant delay between the individual batches being
6181 * recycled, this leads to the once large chunks of space being
6182 * fragmented and becoming unavailable for high-order allocations.
6183 */
6184 return 0;
6185#endif
e7c8d5c9
CL
6186}
6187
8d7a8fa9
CS
6188/*
6189 * pcp->high and pcp->batch values are related and dependent on one another:
6190 * ->batch must never be higher then ->high.
6191 * The following function updates them in a safe manner without read side
6192 * locking.
6193 *
6194 * Any new users of pcp->batch and pcp->high should ensure they can cope with
047b9967 6195 * those fields changing asynchronously (acording to the above rule).
8d7a8fa9
CS
6196 *
6197 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6198 * outside of boot time (or some other assurance that no concurrent updaters
6199 * exist).
6200 */
6201static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6202 unsigned long batch)
6203{
6204 /* start with a fail safe value for batch */
6205 pcp->batch = 1;
6206 smp_wmb();
6207
6208 /* Update high, then batch, in order */
6209 pcp->high = high;
6210 smp_wmb();
6211
6212 pcp->batch = batch;
6213}
6214
3664033c 6215/* a companion to pageset_set_high() */
4008bab7
CS
6216static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6217{
8d7a8fa9 6218 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6219}
6220
88c90dbc 6221static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6222{
6223 struct per_cpu_pages *pcp;
5f8dcc21 6224 int migratetype;
2caaad41 6225
1c6fe946
MD
6226 memset(p, 0, sizeof(*p));
6227
3dfa5721 6228 pcp = &p->pcp;
5f8dcc21
MG
6229 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6230 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6231}
6232
88c90dbc
CS
6233static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6234{
6235 pageset_init(p);
6236 pageset_set_batch(p, batch);
6237}
6238
8ad4b1fb 6239/*
3664033c 6240 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6241 * to the value high for the pageset p.
6242 */
3664033c 6243static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6244 unsigned long high)
6245{
8d7a8fa9
CS
6246 unsigned long batch = max(1UL, high / 4);
6247 if ((high / 4) > (PAGE_SHIFT * 8))
6248 batch = PAGE_SHIFT * 8;
8ad4b1fb 6249
8d7a8fa9 6250 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6251}
6252
7cd2b0a3
DR
6253static void pageset_set_high_and_batch(struct zone *zone,
6254 struct per_cpu_pageset *pcp)
56cef2b8 6255{
56cef2b8 6256 if (percpu_pagelist_fraction)
3664033c 6257 pageset_set_high(pcp,
9705bea5 6258 (zone_managed_pages(zone) /
56cef2b8
CS
6259 percpu_pagelist_fraction));
6260 else
6261 pageset_set_batch(pcp, zone_batchsize(zone));
6262}
6263
169f6c19
CS
6264static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6265{
6266 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6267
6268 pageset_init(pcp);
6269 pageset_set_high_and_batch(zone, pcp);
6270}
6271
72675e13 6272void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6273{
6274 int cpu;
319774e2 6275 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6276 for_each_possible_cpu(cpu)
6277 zone_pageset_init(zone, cpu);
319774e2
WF
6278}
6279
2caaad41 6280/*
99dcc3e5
CL
6281 * Allocate per cpu pagesets and initialize them.
6282 * Before this call only boot pagesets were available.
e7c8d5c9 6283 */
99dcc3e5 6284void __init setup_per_cpu_pageset(void)
e7c8d5c9 6285{
b4911ea2 6286 struct pglist_data *pgdat;
99dcc3e5 6287 struct zone *zone;
b418a0f9 6288 int __maybe_unused cpu;
e7c8d5c9 6289
319774e2
WF
6290 for_each_populated_zone(zone)
6291 setup_zone_pageset(zone);
b4911ea2 6292
b418a0f9
SD
6293#ifdef CONFIG_NUMA
6294 /*
6295 * Unpopulated zones continue using the boot pagesets.
6296 * The numa stats for these pagesets need to be reset.
6297 * Otherwise, they will end up skewing the stats of
6298 * the nodes these zones are associated with.
6299 */
6300 for_each_possible_cpu(cpu) {
6301 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6302 memset(pcp->vm_numa_stat_diff, 0,
6303 sizeof(pcp->vm_numa_stat_diff));
6304 }
6305#endif
6306
b4911ea2
MG
6307 for_each_online_pgdat(pgdat)
6308 pgdat->per_cpu_nodestats =
6309 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6310}
6311
c09b4240 6312static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6313{
99dcc3e5
CL
6314 /*
6315 * per cpu subsystem is not up at this point. The following code
6316 * relies on the ability of the linker to provide the
6317 * offset of a (static) per cpu variable into the per cpu area.
6318 */
6319 zone->pageset = &boot_pageset;
ed8ece2e 6320
b38a8725 6321 if (populated_zone(zone))
99dcc3e5
CL
6322 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6323 zone->name, zone->present_pages,
6324 zone_batchsize(zone));
ed8ece2e
DH
6325}
6326
dc0bbf3b 6327void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6328 unsigned long zone_start_pfn,
b171e409 6329 unsigned long size)
ed8ece2e
DH
6330{
6331 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6332 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6333
8f416836
WY
6334 if (zone_idx > pgdat->nr_zones)
6335 pgdat->nr_zones = zone_idx;
ed8ece2e 6336
ed8ece2e
DH
6337 zone->zone_start_pfn = zone_start_pfn;
6338
708614e6
MG
6339 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6340 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6341 pgdat->node_id,
6342 (unsigned long)zone_idx(zone),
6343 zone_start_pfn, (zone_start_pfn + size));
6344
1e548deb 6345 zone_init_free_lists(zone);
9dcb8b68 6346 zone->initialized = 1;
ed8ece2e
DH
6347}
6348
c713216d
MG
6349/**
6350 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6351 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6352 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6353 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6354 *
6355 * It returns the start and end page frame of a node based on information
7d018176 6356 * provided by memblock_set_node(). If called for a node
c713216d 6357 * with no available memory, a warning is printed and the start and end
88ca3b94 6358 * PFNs will be 0.
c713216d 6359 */
bbe5d993 6360void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6361 unsigned long *start_pfn, unsigned long *end_pfn)
6362{
c13291a5 6363 unsigned long this_start_pfn, this_end_pfn;
c713216d 6364 int i;
c13291a5 6365
c713216d
MG
6366 *start_pfn = -1UL;
6367 *end_pfn = 0;
6368
c13291a5
TH
6369 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6370 *start_pfn = min(*start_pfn, this_start_pfn);
6371 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6372 }
6373
633c0666 6374 if (*start_pfn == -1UL)
c713216d 6375 *start_pfn = 0;
c713216d
MG
6376}
6377
2a1e274a
MG
6378/*
6379 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6380 * assumption is made that zones within a node are ordered in monotonic
6381 * increasing memory addresses so that the "highest" populated zone is used
6382 */
b69a7288 6383static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6384{
6385 int zone_index;
6386 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6387 if (zone_index == ZONE_MOVABLE)
6388 continue;
6389
6390 if (arch_zone_highest_possible_pfn[zone_index] >
6391 arch_zone_lowest_possible_pfn[zone_index])
6392 break;
6393 }
6394
6395 VM_BUG_ON(zone_index == -1);
6396 movable_zone = zone_index;
6397}
6398
6399/*
6400 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6401 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6402 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6403 * in each node depending on the size of each node and how evenly kernelcore
6404 * is distributed. This helper function adjusts the zone ranges
6405 * provided by the architecture for a given node by using the end of the
6406 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6407 * zones within a node are in order of monotonic increases memory addresses
6408 */
bbe5d993 6409static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6410 unsigned long zone_type,
6411 unsigned long node_start_pfn,
6412 unsigned long node_end_pfn,
6413 unsigned long *zone_start_pfn,
6414 unsigned long *zone_end_pfn)
6415{
6416 /* Only adjust if ZONE_MOVABLE is on this node */
6417 if (zone_movable_pfn[nid]) {
6418 /* Size ZONE_MOVABLE */
6419 if (zone_type == ZONE_MOVABLE) {
6420 *zone_start_pfn = zone_movable_pfn[nid];
6421 *zone_end_pfn = min(node_end_pfn,
6422 arch_zone_highest_possible_pfn[movable_zone]);
6423
e506b996
XQ
6424 /* Adjust for ZONE_MOVABLE starting within this range */
6425 } else if (!mirrored_kernelcore &&
6426 *zone_start_pfn < zone_movable_pfn[nid] &&
6427 *zone_end_pfn > zone_movable_pfn[nid]) {
6428 *zone_end_pfn = zone_movable_pfn[nid];
6429
2a1e274a
MG
6430 /* Check if this whole range is within ZONE_MOVABLE */
6431 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6432 *zone_start_pfn = *zone_end_pfn;
6433 }
6434}
6435
c713216d
MG
6436/*
6437 * Return the number of pages a zone spans in a node, including holes
6438 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6439 */
bbe5d993 6440static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6441 unsigned long zone_type,
7960aedd
ZY
6442 unsigned long node_start_pfn,
6443 unsigned long node_end_pfn,
d91749c1 6444 unsigned long *zone_start_pfn,
854e8848 6445 unsigned long *zone_end_pfn)
c713216d 6446{
299c83dc
LF
6447 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6448 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6449 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6450 if (!node_start_pfn && !node_end_pfn)
6451 return 0;
6452
7960aedd 6453 /* Get the start and end of the zone */
299c83dc
LF
6454 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6455 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6456 adjust_zone_range_for_zone_movable(nid, zone_type,
6457 node_start_pfn, node_end_pfn,
d91749c1 6458 zone_start_pfn, zone_end_pfn);
c713216d
MG
6459
6460 /* Check that this node has pages within the zone's required range */
d91749c1 6461 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6462 return 0;
6463
6464 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6465 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6466 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6467
6468 /* Return the spanned pages */
d91749c1 6469 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6470}
6471
6472/*
6473 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6474 * then all holes in the requested range will be accounted for.
c713216d 6475 */
bbe5d993 6476unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6477 unsigned long range_start_pfn,
6478 unsigned long range_end_pfn)
6479{
96e907d1
TH
6480 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6481 unsigned long start_pfn, end_pfn;
6482 int i;
c713216d 6483
96e907d1
TH
6484 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6485 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6486 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6487 nr_absent -= end_pfn - start_pfn;
c713216d 6488 }
96e907d1 6489 return nr_absent;
c713216d
MG
6490}
6491
6492/**
6493 * absent_pages_in_range - Return number of page frames in holes within a range
6494 * @start_pfn: The start PFN to start searching for holes
6495 * @end_pfn: The end PFN to stop searching for holes
6496 *
a862f68a 6497 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6498 */
6499unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6500 unsigned long end_pfn)
6501{
6502 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6503}
6504
6505/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6506static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6507 unsigned long zone_type,
7960aedd 6508 unsigned long node_start_pfn,
854e8848 6509 unsigned long node_end_pfn)
c713216d 6510{
96e907d1
TH
6511 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6512 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6513 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6514 unsigned long nr_absent;
9c7cd687 6515
b5685e92 6516 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6517 if (!node_start_pfn && !node_end_pfn)
6518 return 0;
6519
96e907d1
TH
6520 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6521 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6522
2a1e274a
MG
6523 adjust_zone_range_for_zone_movable(nid, zone_type,
6524 node_start_pfn, node_end_pfn,
6525 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6526 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6527
6528 /*
6529 * ZONE_MOVABLE handling.
6530 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6531 * and vice versa.
6532 */
e506b996
XQ
6533 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6534 unsigned long start_pfn, end_pfn;
6535 struct memblock_region *r;
6536
6537 for_each_memblock(memory, r) {
6538 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6539 zone_start_pfn, zone_end_pfn);
6540 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6541 zone_start_pfn, zone_end_pfn);
6542
6543 if (zone_type == ZONE_MOVABLE &&
6544 memblock_is_mirror(r))
6545 nr_absent += end_pfn - start_pfn;
6546
6547 if (zone_type == ZONE_NORMAL &&
6548 !memblock_is_mirror(r))
6549 nr_absent += end_pfn - start_pfn;
342332e6
TI
6550 }
6551 }
6552
6553 return nr_absent;
c713216d 6554}
0e0b864e 6555
bbe5d993 6556static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6557 unsigned long node_start_pfn,
854e8848 6558 unsigned long node_end_pfn)
c713216d 6559{
febd5949 6560 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6561 enum zone_type i;
6562
febd5949
GZ
6563 for (i = 0; i < MAX_NR_ZONES; i++) {
6564 struct zone *zone = pgdat->node_zones + i;
d91749c1 6565 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6566 unsigned long spanned, absent;
febd5949 6567 unsigned long size, real_size;
c713216d 6568
854e8848
MR
6569 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6570 node_start_pfn,
6571 node_end_pfn,
6572 &zone_start_pfn,
6573 &zone_end_pfn);
6574 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6575 node_start_pfn,
6576 node_end_pfn);
3f08a302
MR
6577
6578 size = spanned;
6579 real_size = size - absent;
6580
d91749c1
TI
6581 if (size)
6582 zone->zone_start_pfn = zone_start_pfn;
6583 else
6584 zone->zone_start_pfn = 0;
febd5949
GZ
6585 zone->spanned_pages = size;
6586 zone->present_pages = real_size;
6587
6588 totalpages += size;
6589 realtotalpages += real_size;
6590 }
6591
6592 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6593 pgdat->node_present_pages = realtotalpages;
6594 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6595 realtotalpages);
6596}
6597
835c134e
MG
6598#ifndef CONFIG_SPARSEMEM
6599/*
6600 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6601 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6602 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6603 * round what is now in bits to nearest long in bits, then return it in
6604 * bytes.
6605 */
7c45512d 6606static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6607{
6608 unsigned long usemapsize;
6609
7c45512d 6610 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6611 usemapsize = roundup(zonesize, pageblock_nr_pages);
6612 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6613 usemapsize *= NR_PAGEBLOCK_BITS;
6614 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6615
6616 return usemapsize / 8;
6617}
6618
7cc2a959 6619static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6620 struct zone *zone,
6621 unsigned long zone_start_pfn,
6622 unsigned long zonesize)
835c134e 6623{
7c45512d 6624 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6625 zone->pageblock_flags = NULL;
23a7052a 6626 if (usemapsize) {
6782832e 6627 zone->pageblock_flags =
26fb3dae
MR
6628 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6629 pgdat->node_id);
23a7052a
MR
6630 if (!zone->pageblock_flags)
6631 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6632 usemapsize, zone->name, pgdat->node_id);
6633 }
835c134e
MG
6634}
6635#else
7c45512d
LT
6636static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6637 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6638#endif /* CONFIG_SPARSEMEM */
6639
d9c23400 6640#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6641
d9c23400 6642/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6643void __init set_pageblock_order(void)
d9c23400 6644{
955c1cd7
AM
6645 unsigned int order;
6646
d9c23400
MG
6647 /* Check that pageblock_nr_pages has not already been setup */
6648 if (pageblock_order)
6649 return;
6650
955c1cd7
AM
6651 if (HPAGE_SHIFT > PAGE_SHIFT)
6652 order = HUGETLB_PAGE_ORDER;
6653 else
6654 order = MAX_ORDER - 1;
6655
d9c23400
MG
6656 /*
6657 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6658 * This value may be variable depending on boot parameters on IA64 and
6659 * powerpc.
d9c23400
MG
6660 */
6661 pageblock_order = order;
6662}
6663#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6664
ba72cb8c
MG
6665/*
6666 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6667 * is unused as pageblock_order is set at compile-time. See
6668 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6669 * the kernel config
ba72cb8c 6670 */
03e85f9d 6671void __init set_pageblock_order(void)
ba72cb8c 6672{
ba72cb8c 6673}
d9c23400
MG
6674
6675#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6676
03e85f9d 6677static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6678 unsigned long present_pages)
01cefaef
JL
6679{
6680 unsigned long pages = spanned_pages;
6681
6682 /*
6683 * Provide a more accurate estimation if there are holes within
6684 * the zone and SPARSEMEM is in use. If there are holes within the
6685 * zone, each populated memory region may cost us one or two extra
6686 * memmap pages due to alignment because memmap pages for each
89d790ab 6687 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6688 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6689 */
6690 if (spanned_pages > present_pages + (present_pages >> 4) &&
6691 IS_ENABLED(CONFIG_SPARSEMEM))
6692 pages = present_pages;
6693
6694 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6695}
6696
ace1db39
OS
6697#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6698static void pgdat_init_split_queue(struct pglist_data *pgdat)
6699{
364c1eeb
YS
6700 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6701
6702 spin_lock_init(&ds_queue->split_queue_lock);
6703 INIT_LIST_HEAD(&ds_queue->split_queue);
6704 ds_queue->split_queue_len = 0;
ace1db39
OS
6705}
6706#else
6707static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6708#endif
6709
6710#ifdef CONFIG_COMPACTION
6711static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6712{
6713 init_waitqueue_head(&pgdat->kcompactd_wait);
6714}
6715#else
6716static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6717#endif
6718
03e85f9d 6719static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6720{
208d54e5 6721 pgdat_resize_init(pgdat);
ace1db39 6722
ace1db39
OS
6723 pgdat_init_split_queue(pgdat);
6724 pgdat_init_kcompactd(pgdat);
6725
1da177e4 6726 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6727 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6728
eefa864b 6729 pgdat_page_ext_init(pgdat);
a52633d8 6730 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6731 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6732}
6733
6734static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6735 unsigned long remaining_pages)
6736{
9705bea5 6737 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6738 zone_set_nid(zone, nid);
6739 zone->name = zone_names[idx];
6740 zone->zone_pgdat = NODE_DATA(nid);
6741 spin_lock_init(&zone->lock);
6742 zone_seqlock_init(zone);
6743 zone_pcp_init(zone);
6744}
6745
6746/*
6747 * Set up the zone data structures
6748 * - init pgdat internals
6749 * - init all zones belonging to this node
6750 *
6751 * NOTE: this function is only called during memory hotplug
6752 */
6753#ifdef CONFIG_MEMORY_HOTPLUG
6754void __ref free_area_init_core_hotplug(int nid)
6755{
6756 enum zone_type z;
6757 pg_data_t *pgdat = NODE_DATA(nid);
6758
6759 pgdat_init_internals(pgdat);
6760 for (z = 0; z < MAX_NR_ZONES; z++)
6761 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6762}
6763#endif
6764
6765/*
6766 * Set up the zone data structures:
6767 * - mark all pages reserved
6768 * - mark all memory queues empty
6769 * - clear the memory bitmaps
6770 *
6771 * NOTE: pgdat should get zeroed by caller.
6772 * NOTE: this function is only called during early init.
6773 */
6774static void __init free_area_init_core(struct pglist_data *pgdat)
6775{
6776 enum zone_type j;
6777 int nid = pgdat->node_id;
5f63b720 6778
03e85f9d 6779 pgdat_init_internals(pgdat);
385386cf
JW
6780 pgdat->per_cpu_nodestats = &boot_nodestats;
6781
1da177e4
LT
6782 for (j = 0; j < MAX_NR_ZONES; j++) {
6783 struct zone *zone = pgdat->node_zones + j;
e6943859 6784 unsigned long size, freesize, memmap_pages;
d91749c1 6785 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6786
febd5949 6787 size = zone->spanned_pages;
e6943859 6788 freesize = zone->present_pages;
1da177e4 6789
0e0b864e 6790 /*
9feedc9d 6791 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6792 * is used by this zone for memmap. This affects the watermark
6793 * and per-cpu initialisations
6794 */
e6943859 6795 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6796 if (!is_highmem_idx(j)) {
6797 if (freesize >= memmap_pages) {
6798 freesize -= memmap_pages;
6799 if (memmap_pages)
6800 printk(KERN_DEBUG
6801 " %s zone: %lu pages used for memmap\n",
6802 zone_names[j], memmap_pages);
6803 } else
1170532b 6804 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6805 zone_names[j], memmap_pages, freesize);
6806 }
0e0b864e 6807
6267276f 6808 /* Account for reserved pages */
9feedc9d
JL
6809 if (j == 0 && freesize > dma_reserve) {
6810 freesize -= dma_reserve;
d903ef9f 6811 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6812 zone_names[0], dma_reserve);
0e0b864e
MG
6813 }
6814
98d2b0eb 6815 if (!is_highmem_idx(j))
9feedc9d 6816 nr_kernel_pages += freesize;
01cefaef
JL
6817 /* Charge for highmem memmap if there are enough kernel pages */
6818 else if (nr_kernel_pages > memmap_pages * 2)
6819 nr_kernel_pages -= memmap_pages;
9feedc9d 6820 nr_all_pages += freesize;
1da177e4 6821
9feedc9d
JL
6822 /*
6823 * Set an approximate value for lowmem here, it will be adjusted
6824 * when the bootmem allocator frees pages into the buddy system.
6825 * And all highmem pages will be managed by the buddy system.
6826 */
03e85f9d 6827 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6828
d883c6cf 6829 if (!size)
1da177e4
LT
6830 continue;
6831
955c1cd7 6832 set_pageblock_order();
d883c6cf
JK
6833 setup_usemap(pgdat, zone, zone_start_pfn, size);
6834 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6835 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6836 }
6837}
6838
0cd842f9 6839#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6840static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6841{
b0aeba74 6842 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6843 unsigned long __maybe_unused offset = 0;
6844
1da177e4
LT
6845 /* Skip empty nodes */
6846 if (!pgdat->node_spanned_pages)
6847 return;
6848
b0aeba74
TL
6849 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6850 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6851 /* ia64 gets its own node_mem_map, before this, without bootmem */
6852 if (!pgdat->node_mem_map) {
b0aeba74 6853 unsigned long size, end;
d41dee36
AW
6854 struct page *map;
6855
e984bb43
BP
6856 /*
6857 * The zone's endpoints aren't required to be MAX_ORDER
6858 * aligned but the node_mem_map endpoints must be in order
6859 * for the buddy allocator to function correctly.
6860 */
108bcc96 6861 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6862 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6863 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6864 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6865 pgdat->node_id);
23a7052a
MR
6866 if (!map)
6867 panic("Failed to allocate %ld bytes for node %d memory map\n",
6868 size, pgdat->node_id);
a1c34a3b 6869 pgdat->node_mem_map = map + offset;
1da177e4 6870 }
0cd842f9
OS
6871 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6872 __func__, pgdat->node_id, (unsigned long)pgdat,
6873 (unsigned long)pgdat->node_mem_map);
12d810c1 6874#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6875 /*
6876 * With no DISCONTIG, the global mem_map is just set as node 0's
6877 */
c713216d 6878 if (pgdat == NODE_DATA(0)) {
1da177e4 6879 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6880 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6881 mem_map -= offset;
c713216d 6882 }
1da177e4
LT
6883#endif
6884}
0cd842f9
OS
6885#else
6886static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6887#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6888
0188dc98
OS
6889#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6890static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6891{
0188dc98
OS
6892 pgdat->first_deferred_pfn = ULONG_MAX;
6893}
6894#else
6895static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6896#endif
6897
854e8848 6898static void __init free_area_init_node(int nid)
1da177e4 6899{
9109fb7b 6900 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6901 unsigned long start_pfn = 0;
6902 unsigned long end_pfn = 0;
9109fb7b 6903
88fdf75d 6904 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 6905 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 6906
854e8848 6907 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 6908
1da177e4 6909 pgdat->node_id = nid;
854e8848 6910 pgdat->node_start_pfn = start_pfn;
75ef7184 6911 pgdat->per_cpu_nodestats = NULL;
854e8848 6912
8d29e18a 6913 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6914 (u64)start_pfn << PAGE_SHIFT,
6915 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 6916 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
6917
6918 alloc_node_mem_map(pgdat);
0188dc98 6919 pgdat_set_deferred_range(pgdat);
1da177e4 6920
7f3eb55b 6921 free_area_init_core(pgdat);
1da177e4
LT
6922}
6923
bc9331a1 6924void __init free_area_init_memoryless_node(int nid)
3f08a302 6925{
854e8848 6926 free_area_init_node(nid);
3f08a302
MR
6927}
6928
aca52c39 6929#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 6930/*
4b094b78
DH
6931 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6932 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 6933 */
4b094b78 6934static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
6935{
6936 unsigned long pfn;
6937 u64 pgcnt = 0;
6938
6939 for (pfn = spfn; pfn < epfn; pfn++) {
6940 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6941 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6942 + pageblock_nr_pages - 1;
6943 continue;
6944 }
4b094b78
DH
6945 /*
6946 * Use a fake node/zone (0) for now. Some of these pages
6947 * (in memblock.reserved but not in memblock.memory) will
6948 * get re-initialized via reserve_bootmem_region() later.
6949 */
6950 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6951 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
6952 pgcnt++;
6953 }
6954
6955 return pgcnt;
6956}
6957
a4a3ede2
PT
6958/*
6959 * Only struct pages that are backed by physical memory are zeroed and
6960 * initialized by going through __init_single_page(). But, there are some
6961 * struct pages which are reserved in memblock allocator and their fields
6962 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 6963 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
6964 *
6965 * This function also addresses a similar issue where struct pages are left
6966 * uninitialized because the physical address range is not covered by
6967 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
6968 * layout is manually configured via memmap=, or when the highest physical
6969 * address (max_pfn) does not end on a section boundary.
a4a3ede2 6970 */
4b094b78 6971static void __init init_unavailable_mem(void)
a4a3ede2
PT
6972{
6973 phys_addr_t start, end;
a4a3ede2 6974 u64 i, pgcnt;
907ec5fc 6975 phys_addr_t next = 0;
a4a3ede2
PT
6976
6977 /*
907ec5fc 6978 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6979 */
6980 pgcnt = 0;
907ec5fc
NH
6981 for_each_mem_range(i, &memblock.memory, NULL,
6982 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f 6983 if (next < start)
4b094b78
DH
6984 pgcnt += init_unavailable_range(PFN_DOWN(next),
6985 PFN_UP(start));
907ec5fc
NH
6986 next = end;
6987 }
e822969c
DH
6988
6989 /*
6990 * Early sections always have a fully populated memmap for the whole
6991 * section - see pfn_valid(). If the last section has holes at the
6992 * end and that section is marked "online", the memmap will be
6993 * considered initialized. Make sure that memmap has a well defined
6994 * state.
6995 */
4b094b78
DH
6996 pgcnt += init_unavailable_range(PFN_DOWN(next),
6997 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 6998
a4a3ede2
PT
6999 /*
7000 * Struct pages that do not have backing memory. This could be because
7001 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7002 */
7003 if (pgcnt)
907ec5fc 7004 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7005}
4b094b78
DH
7006#else
7007static inline void __init init_unavailable_mem(void)
7008{
7009}
aca52c39 7010#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7011
418508c1
MS
7012#if MAX_NUMNODES > 1
7013/*
7014 * Figure out the number of possible node ids.
7015 */
f9872caf 7016void __init setup_nr_node_ids(void)
418508c1 7017{
904a9553 7018 unsigned int highest;
418508c1 7019
904a9553 7020 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7021 nr_node_ids = highest + 1;
7022}
418508c1
MS
7023#endif
7024
1e01979c
TH
7025/**
7026 * node_map_pfn_alignment - determine the maximum internode alignment
7027 *
7028 * This function should be called after node map is populated and sorted.
7029 * It calculates the maximum power of two alignment which can distinguish
7030 * all the nodes.
7031 *
7032 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7033 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7034 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7035 * shifted, 1GiB is enough and this function will indicate so.
7036 *
7037 * This is used to test whether pfn -> nid mapping of the chosen memory
7038 * model has fine enough granularity to avoid incorrect mapping for the
7039 * populated node map.
7040 *
a862f68a 7041 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7042 * requirement (single node).
7043 */
7044unsigned long __init node_map_pfn_alignment(void)
7045{
7046 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7047 unsigned long start, end, mask;
98fa15f3 7048 int last_nid = NUMA_NO_NODE;
c13291a5 7049 int i, nid;
1e01979c 7050
c13291a5 7051 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7052 if (!start || last_nid < 0 || last_nid == nid) {
7053 last_nid = nid;
7054 last_end = end;
7055 continue;
7056 }
7057
7058 /*
7059 * Start with a mask granular enough to pin-point to the
7060 * start pfn and tick off bits one-by-one until it becomes
7061 * too coarse to separate the current node from the last.
7062 */
7063 mask = ~((1 << __ffs(start)) - 1);
7064 while (mask && last_end <= (start & (mask << 1)))
7065 mask <<= 1;
7066
7067 /* accumulate all internode masks */
7068 accl_mask |= mask;
7069 }
7070
7071 /* convert mask to number of pages */
7072 return ~accl_mask + 1;
7073}
7074
c713216d
MG
7075/**
7076 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7077 *
a862f68a 7078 * Return: the minimum PFN based on information provided via
7d018176 7079 * memblock_set_node().
c713216d
MG
7080 */
7081unsigned long __init find_min_pfn_with_active_regions(void)
7082{
8a1b25fe 7083 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7084}
7085
37b07e41
LS
7086/*
7087 * early_calculate_totalpages()
7088 * Sum pages in active regions for movable zone.
4b0ef1fe 7089 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7090 */
484f51f8 7091static unsigned long __init early_calculate_totalpages(void)
7e63efef 7092{
7e63efef 7093 unsigned long totalpages = 0;
c13291a5
TH
7094 unsigned long start_pfn, end_pfn;
7095 int i, nid;
7096
7097 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7098 unsigned long pages = end_pfn - start_pfn;
7e63efef 7099
37b07e41
LS
7100 totalpages += pages;
7101 if (pages)
4b0ef1fe 7102 node_set_state(nid, N_MEMORY);
37b07e41 7103 }
b8af2941 7104 return totalpages;
7e63efef
MG
7105}
7106
2a1e274a
MG
7107/*
7108 * Find the PFN the Movable zone begins in each node. Kernel memory
7109 * is spread evenly between nodes as long as the nodes have enough
7110 * memory. When they don't, some nodes will have more kernelcore than
7111 * others
7112 */
b224ef85 7113static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7114{
7115 int i, nid;
7116 unsigned long usable_startpfn;
7117 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7118 /* save the state before borrow the nodemask */
4b0ef1fe 7119 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7120 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7121 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7122 struct memblock_region *r;
b2f3eebe
TC
7123
7124 /* Need to find movable_zone earlier when movable_node is specified. */
7125 find_usable_zone_for_movable();
7126
7127 /*
7128 * If movable_node is specified, ignore kernelcore and movablecore
7129 * options.
7130 */
7131 if (movable_node_is_enabled()) {
136199f0
EM
7132 for_each_memblock(memory, r) {
7133 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7134 continue;
7135
d622abf7 7136 nid = memblock_get_region_node(r);
b2f3eebe 7137
136199f0 7138 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7139 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7140 min(usable_startpfn, zone_movable_pfn[nid]) :
7141 usable_startpfn;
7142 }
7143
7144 goto out2;
7145 }
2a1e274a 7146
342332e6
TI
7147 /*
7148 * If kernelcore=mirror is specified, ignore movablecore option
7149 */
7150 if (mirrored_kernelcore) {
7151 bool mem_below_4gb_not_mirrored = false;
7152
7153 for_each_memblock(memory, r) {
7154 if (memblock_is_mirror(r))
7155 continue;
7156
d622abf7 7157 nid = memblock_get_region_node(r);
342332e6
TI
7158
7159 usable_startpfn = memblock_region_memory_base_pfn(r);
7160
7161 if (usable_startpfn < 0x100000) {
7162 mem_below_4gb_not_mirrored = true;
7163 continue;
7164 }
7165
7166 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7167 min(usable_startpfn, zone_movable_pfn[nid]) :
7168 usable_startpfn;
7169 }
7170
7171 if (mem_below_4gb_not_mirrored)
633bf2fe 7172 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7173
7174 goto out2;
7175 }
7176
7e63efef 7177 /*
a5c6d650
DR
7178 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7179 * amount of necessary memory.
7180 */
7181 if (required_kernelcore_percent)
7182 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7183 10000UL;
7184 if (required_movablecore_percent)
7185 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7186 10000UL;
7187
7188 /*
7189 * If movablecore= was specified, calculate what size of
7e63efef
MG
7190 * kernelcore that corresponds so that memory usable for
7191 * any allocation type is evenly spread. If both kernelcore
7192 * and movablecore are specified, then the value of kernelcore
7193 * will be used for required_kernelcore if it's greater than
7194 * what movablecore would have allowed.
7195 */
7196 if (required_movablecore) {
7e63efef
MG
7197 unsigned long corepages;
7198
7199 /*
7200 * Round-up so that ZONE_MOVABLE is at least as large as what
7201 * was requested by the user
7202 */
7203 required_movablecore =
7204 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7205 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7206 corepages = totalpages - required_movablecore;
7207
7208 required_kernelcore = max(required_kernelcore, corepages);
7209 }
7210
bde304bd
XQ
7211 /*
7212 * If kernelcore was not specified or kernelcore size is larger
7213 * than totalpages, there is no ZONE_MOVABLE.
7214 */
7215 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7216 goto out;
2a1e274a
MG
7217
7218 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7219 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7220
7221restart:
7222 /* Spread kernelcore memory as evenly as possible throughout nodes */
7223 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7224 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7225 unsigned long start_pfn, end_pfn;
7226
2a1e274a
MG
7227 /*
7228 * Recalculate kernelcore_node if the division per node
7229 * now exceeds what is necessary to satisfy the requested
7230 * amount of memory for the kernel
7231 */
7232 if (required_kernelcore < kernelcore_node)
7233 kernelcore_node = required_kernelcore / usable_nodes;
7234
7235 /*
7236 * As the map is walked, we track how much memory is usable
7237 * by the kernel using kernelcore_remaining. When it is
7238 * 0, the rest of the node is usable by ZONE_MOVABLE
7239 */
7240 kernelcore_remaining = kernelcore_node;
7241
7242 /* Go through each range of PFNs within this node */
c13291a5 7243 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7244 unsigned long size_pages;
7245
c13291a5 7246 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7247 if (start_pfn >= end_pfn)
7248 continue;
7249
7250 /* Account for what is only usable for kernelcore */
7251 if (start_pfn < usable_startpfn) {
7252 unsigned long kernel_pages;
7253 kernel_pages = min(end_pfn, usable_startpfn)
7254 - start_pfn;
7255
7256 kernelcore_remaining -= min(kernel_pages,
7257 kernelcore_remaining);
7258 required_kernelcore -= min(kernel_pages,
7259 required_kernelcore);
7260
7261 /* Continue if range is now fully accounted */
7262 if (end_pfn <= usable_startpfn) {
7263
7264 /*
7265 * Push zone_movable_pfn to the end so
7266 * that if we have to rebalance
7267 * kernelcore across nodes, we will
7268 * not double account here
7269 */
7270 zone_movable_pfn[nid] = end_pfn;
7271 continue;
7272 }
7273 start_pfn = usable_startpfn;
7274 }
7275
7276 /*
7277 * The usable PFN range for ZONE_MOVABLE is from
7278 * start_pfn->end_pfn. Calculate size_pages as the
7279 * number of pages used as kernelcore
7280 */
7281 size_pages = end_pfn - start_pfn;
7282 if (size_pages > kernelcore_remaining)
7283 size_pages = kernelcore_remaining;
7284 zone_movable_pfn[nid] = start_pfn + size_pages;
7285
7286 /*
7287 * Some kernelcore has been met, update counts and
7288 * break if the kernelcore for this node has been
b8af2941 7289 * satisfied
2a1e274a
MG
7290 */
7291 required_kernelcore -= min(required_kernelcore,
7292 size_pages);
7293 kernelcore_remaining -= size_pages;
7294 if (!kernelcore_remaining)
7295 break;
7296 }
7297 }
7298
7299 /*
7300 * If there is still required_kernelcore, we do another pass with one
7301 * less node in the count. This will push zone_movable_pfn[nid] further
7302 * along on the nodes that still have memory until kernelcore is
b8af2941 7303 * satisfied
2a1e274a
MG
7304 */
7305 usable_nodes--;
7306 if (usable_nodes && required_kernelcore > usable_nodes)
7307 goto restart;
7308
b2f3eebe 7309out2:
2a1e274a
MG
7310 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7311 for (nid = 0; nid < MAX_NUMNODES; nid++)
7312 zone_movable_pfn[nid] =
7313 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7314
20e6926d 7315out:
66918dcd 7316 /* restore the node_state */
4b0ef1fe 7317 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7318}
7319
4b0ef1fe
LJ
7320/* Any regular or high memory on that node ? */
7321static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7322{
37b07e41
LS
7323 enum zone_type zone_type;
7324
4b0ef1fe 7325 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7326 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7327 if (populated_zone(zone)) {
7b0e0c0e
OS
7328 if (IS_ENABLED(CONFIG_HIGHMEM))
7329 node_set_state(nid, N_HIGH_MEMORY);
7330 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7331 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7332 break;
7333 }
37b07e41 7334 }
37b07e41
LS
7335}
7336
51930df5
MR
7337/*
7338 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7339 * such cases we allow max_zone_pfn sorted in the descending order
7340 */
7341bool __weak arch_has_descending_max_zone_pfns(void)
7342{
7343 return false;
7344}
7345
c713216d 7346/**
9691a071 7347 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7348 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7349 *
7350 * This will call free_area_init_node() for each active node in the system.
7d018176 7351 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7352 * zone in each node and their holes is calculated. If the maximum PFN
7353 * between two adjacent zones match, it is assumed that the zone is empty.
7354 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7355 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7356 * starts where the previous one ended. For example, ZONE_DMA32 starts
7357 * at arch_max_dma_pfn.
7358 */
9691a071 7359void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7360{
c13291a5 7361 unsigned long start_pfn, end_pfn;
51930df5
MR
7362 int i, nid, zone;
7363 bool descending;
a6af2bc3 7364
c713216d
MG
7365 /* Record where the zone boundaries are */
7366 memset(arch_zone_lowest_possible_pfn, 0,
7367 sizeof(arch_zone_lowest_possible_pfn));
7368 memset(arch_zone_highest_possible_pfn, 0,
7369 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7370
7371 start_pfn = find_min_pfn_with_active_regions();
51930df5 7372 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7373
7374 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7375 if (descending)
7376 zone = MAX_NR_ZONES - i - 1;
7377 else
7378 zone = i;
7379
7380 if (zone == ZONE_MOVABLE)
2a1e274a 7381 continue;
90cae1fe 7382
51930df5
MR
7383 end_pfn = max(max_zone_pfn[zone], start_pfn);
7384 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7385 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7386
7387 start_pfn = end_pfn;
c713216d 7388 }
2a1e274a
MG
7389
7390 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7391 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7392 find_zone_movable_pfns_for_nodes();
c713216d 7393
c713216d 7394 /* Print out the zone ranges */
f88dfff5 7395 pr_info("Zone ranges:\n");
2a1e274a
MG
7396 for (i = 0; i < MAX_NR_ZONES; i++) {
7397 if (i == ZONE_MOVABLE)
7398 continue;
f88dfff5 7399 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7400 if (arch_zone_lowest_possible_pfn[i] ==
7401 arch_zone_highest_possible_pfn[i])
f88dfff5 7402 pr_cont("empty\n");
72f0ba02 7403 else
8d29e18a
JG
7404 pr_cont("[mem %#018Lx-%#018Lx]\n",
7405 (u64)arch_zone_lowest_possible_pfn[i]
7406 << PAGE_SHIFT,
7407 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7408 << PAGE_SHIFT) - 1);
2a1e274a
MG
7409 }
7410
7411 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7412 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7413 for (i = 0; i < MAX_NUMNODES; i++) {
7414 if (zone_movable_pfn[i])
8d29e18a
JG
7415 pr_info(" Node %d: %#018Lx\n", i,
7416 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7417 }
c713216d 7418
f46edbd1
DW
7419 /*
7420 * Print out the early node map, and initialize the
7421 * subsection-map relative to active online memory ranges to
7422 * enable future "sub-section" extensions of the memory map.
7423 */
f88dfff5 7424 pr_info("Early memory node ranges\n");
f46edbd1 7425 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7426 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7427 (u64)start_pfn << PAGE_SHIFT,
7428 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7429 subsection_map_init(start_pfn, end_pfn - start_pfn);
7430 }
c713216d
MG
7431
7432 /* Initialise every node */
708614e6 7433 mminit_verify_pageflags_layout();
8ef82866 7434 setup_nr_node_ids();
4b094b78 7435 init_unavailable_mem();
c713216d
MG
7436 for_each_online_node(nid) {
7437 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7438 free_area_init_node(nid);
37b07e41
LS
7439
7440 /* Any memory on that node */
7441 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7442 node_set_state(nid, N_MEMORY);
7443 check_for_memory(pgdat, nid);
c713216d
MG
7444 }
7445}
2a1e274a 7446
a5c6d650
DR
7447static int __init cmdline_parse_core(char *p, unsigned long *core,
7448 unsigned long *percent)
2a1e274a
MG
7449{
7450 unsigned long long coremem;
a5c6d650
DR
7451 char *endptr;
7452
2a1e274a
MG
7453 if (!p)
7454 return -EINVAL;
7455
a5c6d650
DR
7456 /* Value may be a percentage of total memory, otherwise bytes */
7457 coremem = simple_strtoull(p, &endptr, 0);
7458 if (*endptr == '%') {
7459 /* Paranoid check for percent values greater than 100 */
7460 WARN_ON(coremem > 100);
2a1e274a 7461
a5c6d650
DR
7462 *percent = coremem;
7463 } else {
7464 coremem = memparse(p, &p);
7465 /* Paranoid check that UL is enough for the coremem value */
7466 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7467
a5c6d650
DR
7468 *core = coremem >> PAGE_SHIFT;
7469 *percent = 0UL;
7470 }
2a1e274a
MG
7471 return 0;
7472}
ed7ed365 7473
7e63efef
MG
7474/*
7475 * kernelcore=size sets the amount of memory for use for allocations that
7476 * cannot be reclaimed or migrated.
7477 */
7478static int __init cmdline_parse_kernelcore(char *p)
7479{
342332e6
TI
7480 /* parse kernelcore=mirror */
7481 if (parse_option_str(p, "mirror")) {
7482 mirrored_kernelcore = true;
7483 return 0;
7484 }
7485
a5c6d650
DR
7486 return cmdline_parse_core(p, &required_kernelcore,
7487 &required_kernelcore_percent);
7e63efef
MG
7488}
7489
7490/*
7491 * movablecore=size sets the amount of memory for use for allocations that
7492 * can be reclaimed or migrated.
7493 */
7494static int __init cmdline_parse_movablecore(char *p)
7495{
a5c6d650
DR
7496 return cmdline_parse_core(p, &required_movablecore,
7497 &required_movablecore_percent);
7e63efef
MG
7498}
7499
ed7ed365 7500early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7501early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7502
c3d5f5f0
JL
7503void adjust_managed_page_count(struct page *page, long count)
7504{
9705bea5 7505 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7506 totalram_pages_add(count);
3dcc0571
JL
7507#ifdef CONFIG_HIGHMEM
7508 if (PageHighMem(page))
ca79b0c2 7509 totalhigh_pages_add(count);
3dcc0571 7510#endif
c3d5f5f0 7511}
3dcc0571 7512EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7513
e5cb113f 7514unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7515{
11199692
JL
7516 void *pos;
7517 unsigned long pages = 0;
69afade7 7518
11199692
JL
7519 start = (void *)PAGE_ALIGN((unsigned long)start);
7520 end = (void *)((unsigned long)end & PAGE_MASK);
7521 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7522 struct page *page = virt_to_page(pos);
7523 void *direct_map_addr;
7524
7525 /*
7526 * 'direct_map_addr' might be different from 'pos'
7527 * because some architectures' virt_to_page()
7528 * work with aliases. Getting the direct map
7529 * address ensures that we get a _writeable_
7530 * alias for the memset().
7531 */
7532 direct_map_addr = page_address(page);
dbe67df4 7533 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7534 memset(direct_map_addr, poison, PAGE_SIZE);
7535
7536 free_reserved_page(page);
69afade7
JL
7537 }
7538
7539 if (pages && s)
adb1fe9a
JP
7540 pr_info("Freeing %s memory: %ldK\n",
7541 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7542
7543 return pages;
7544}
7545
cfa11e08
JL
7546#ifdef CONFIG_HIGHMEM
7547void free_highmem_page(struct page *page)
7548{
7549 __free_reserved_page(page);
ca79b0c2 7550 totalram_pages_inc();
9705bea5 7551 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7552 totalhigh_pages_inc();
cfa11e08
JL
7553}
7554#endif
7555
7ee3d4e8
JL
7556
7557void __init mem_init_print_info(const char *str)
7558{
7559 unsigned long physpages, codesize, datasize, rosize, bss_size;
7560 unsigned long init_code_size, init_data_size;
7561
7562 physpages = get_num_physpages();
7563 codesize = _etext - _stext;
7564 datasize = _edata - _sdata;
7565 rosize = __end_rodata - __start_rodata;
7566 bss_size = __bss_stop - __bss_start;
7567 init_data_size = __init_end - __init_begin;
7568 init_code_size = _einittext - _sinittext;
7569
7570 /*
7571 * Detect special cases and adjust section sizes accordingly:
7572 * 1) .init.* may be embedded into .data sections
7573 * 2) .init.text.* may be out of [__init_begin, __init_end],
7574 * please refer to arch/tile/kernel/vmlinux.lds.S.
7575 * 3) .rodata.* may be embedded into .text or .data sections.
7576 */
7577#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7578 do { \
7579 if (start <= pos && pos < end && size > adj) \
7580 size -= adj; \
7581 } while (0)
7ee3d4e8
JL
7582
7583 adj_init_size(__init_begin, __init_end, init_data_size,
7584 _sinittext, init_code_size);
7585 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7586 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7587 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7588 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7589
7590#undef adj_init_size
7591
756a025f 7592 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7593#ifdef CONFIG_HIGHMEM
756a025f 7594 ", %luK highmem"
7ee3d4e8 7595#endif
756a025f
JP
7596 "%s%s)\n",
7597 nr_free_pages() << (PAGE_SHIFT - 10),
7598 physpages << (PAGE_SHIFT - 10),
7599 codesize >> 10, datasize >> 10, rosize >> 10,
7600 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7601 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7602 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7603#ifdef CONFIG_HIGHMEM
ca79b0c2 7604 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7605#endif
756a025f 7606 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7607}
7608
0e0b864e 7609/**
88ca3b94
RD
7610 * set_dma_reserve - set the specified number of pages reserved in the first zone
7611 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7612 *
013110a7 7613 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7614 * In the DMA zone, a significant percentage may be consumed by kernel image
7615 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7616 * function may optionally be used to account for unfreeable pages in the
7617 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7618 * smaller per-cpu batchsize.
0e0b864e
MG
7619 */
7620void __init set_dma_reserve(unsigned long new_dma_reserve)
7621{
7622 dma_reserve = new_dma_reserve;
7623}
7624
005fd4bb 7625static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7626{
1da177e4 7627
005fd4bb
SAS
7628 lru_add_drain_cpu(cpu);
7629 drain_pages(cpu);
9f8f2172 7630
005fd4bb
SAS
7631 /*
7632 * Spill the event counters of the dead processor
7633 * into the current processors event counters.
7634 * This artificially elevates the count of the current
7635 * processor.
7636 */
7637 vm_events_fold_cpu(cpu);
9f8f2172 7638
005fd4bb
SAS
7639 /*
7640 * Zero the differential counters of the dead processor
7641 * so that the vm statistics are consistent.
7642 *
7643 * This is only okay since the processor is dead and cannot
7644 * race with what we are doing.
7645 */
7646 cpu_vm_stats_fold(cpu);
7647 return 0;
1da177e4 7648}
1da177e4 7649
e03a5125
NP
7650#ifdef CONFIG_NUMA
7651int hashdist = HASHDIST_DEFAULT;
7652
7653static int __init set_hashdist(char *str)
7654{
7655 if (!str)
7656 return 0;
7657 hashdist = simple_strtoul(str, &str, 0);
7658 return 1;
7659}
7660__setup("hashdist=", set_hashdist);
7661#endif
7662
1da177e4
LT
7663void __init page_alloc_init(void)
7664{
005fd4bb
SAS
7665 int ret;
7666
e03a5125
NP
7667#ifdef CONFIG_NUMA
7668 if (num_node_state(N_MEMORY) == 1)
7669 hashdist = 0;
7670#endif
7671
005fd4bb
SAS
7672 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7673 "mm/page_alloc:dead", NULL,
7674 page_alloc_cpu_dead);
7675 WARN_ON(ret < 0);
1da177e4
LT
7676}
7677
cb45b0e9 7678/*
34b10060 7679 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7680 * or min_free_kbytes changes.
7681 */
7682static void calculate_totalreserve_pages(void)
7683{
7684 struct pglist_data *pgdat;
7685 unsigned long reserve_pages = 0;
2f6726e5 7686 enum zone_type i, j;
cb45b0e9
HA
7687
7688 for_each_online_pgdat(pgdat) {
281e3726
MG
7689
7690 pgdat->totalreserve_pages = 0;
7691
cb45b0e9
HA
7692 for (i = 0; i < MAX_NR_ZONES; i++) {
7693 struct zone *zone = pgdat->node_zones + i;
3484b2de 7694 long max = 0;
9705bea5 7695 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7696
7697 /* Find valid and maximum lowmem_reserve in the zone */
7698 for (j = i; j < MAX_NR_ZONES; j++) {
7699 if (zone->lowmem_reserve[j] > max)
7700 max = zone->lowmem_reserve[j];
7701 }
7702
41858966
MG
7703 /* we treat the high watermark as reserved pages. */
7704 max += high_wmark_pages(zone);
cb45b0e9 7705
3d6357de
AK
7706 if (max > managed_pages)
7707 max = managed_pages;
a8d01437 7708
281e3726 7709 pgdat->totalreserve_pages += max;
a8d01437 7710
cb45b0e9
HA
7711 reserve_pages += max;
7712 }
7713 }
7714 totalreserve_pages = reserve_pages;
7715}
7716
1da177e4
LT
7717/*
7718 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7719 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7720 * has a correct pages reserved value, so an adequate number of
7721 * pages are left in the zone after a successful __alloc_pages().
7722 */
7723static void setup_per_zone_lowmem_reserve(void)
7724{
7725 struct pglist_data *pgdat;
2f6726e5 7726 enum zone_type j, idx;
1da177e4 7727
ec936fc5 7728 for_each_online_pgdat(pgdat) {
1da177e4
LT
7729 for (j = 0; j < MAX_NR_ZONES; j++) {
7730 struct zone *zone = pgdat->node_zones + j;
9705bea5 7731 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7732
7733 zone->lowmem_reserve[j] = 0;
7734
2f6726e5
CL
7735 idx = j;
7736 while (idx) {
1da177e4
LT
7737 struct zone *lower_zone;
7738
2f6726e5 7739 idx--;
1da177e4 7740 lower_zone = pgdat->node_zones + idx;
d3cda233 7741
f6366156
BH
7742 if (!sysctl_lowmem_reserve_ratio[idx] ||
7743 !zone_managed_pages(lower_zone)) {
d3cda233 7744 lower_zone->lowmem_reserve[j] = 0;
f6366156 7745 continue;
d3cda233
JK
7746 } else {
7747 lower_zone->lowmem_reserve[j] =
7748 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7749 }
9705bea5 7750 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7751 }
7752 }
7753 }
cb45b0e9
HA
7754
7755 /* update totalreserve_pages */
7756 calculate_totalreserve_pages();
1da177e4
LT
7757}
7758
cfd3da1e 7759static void __setup_per_zone_wmarks(void)
1da177e4
LT
7760{
7761 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7762 unsigned long lowmem_pages = 0;
7763 struct zone *zone;
7764 unsigned long flags;
7765
7766 /* Calculate total number of !ZONE_HIGHMEM pages */
7767 for_each_zone(zone) {
7768 if (!is_highmem(zone))
9705bea5 7769 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7770 }
7771
7772 for_each_zone(zone) {
ac924c60
AM
7773 u64 tmp;
7774
1125b4e3 7775 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7776 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7777 do_div(tmp, lowmem_pages);
1da177e4
LT
7778 if (is_highmem(zone)) {
7779 /*
669ed175
NP
7780 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7781 * need highmem pages, so cap pages_min to a small
7782 * value here.
7783 *
41858966 7784 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7785 * deltas control async page reclaim, and so should
669ed175 7786 * not be capped for highmem.
1da177e4 7787 */
90ae8d67 7788 unsigned long min_pages;
1da177e4 7789
9705bea5 7790 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7791 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7792 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7793 } else {
669ed175
NP
7794 /*
7795 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7796 * proportionate to the zone's size.
7797 */
a9214443 7798 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7799 }
7800
795ae7a0
JW
7801 /*
7802 * Set the kswapd watermarks distance according to the
7803 * scale factor in proportion to available memory, but
7804 * ensure a minimum size on small systems.
7805 */
7806 tmp = max_t(u64, tmp >> 2,
9705bea5 7807 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7808 watermark_scale_factor, 10000));
7809
aa092591 7810 zone->watermark_boost = 0;
a9214443
MG
7811 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7812 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7813
1125b4e3 7814 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7815 }
cb45b0e9
HA
7816
7817 /* update totalreserve_pages */
7818 calculate_totalreserve_pages();
1da177e4
LT
7819}
7820
cfd3da1e
MG
7821/**
7822 * setup_per_zone_wmarks - called when min_free_kbytes changes
7823 * or when memory is hot-{added|removed}
7824 *
7825 * Ensures that the watermark[min,low,high] values for each zone are set
7826 * correctly with respect to min_free_kbytes.
7827 */
7828void setup_per_zone_wmarks(void)
7829{
b93e0f32
MH
7830 static DEFINE_SPINLOCK(lock);
7831
7832 spin_lock(&lock);
cfd3da1e 7833 __setup_per_zone_wmarks();
b93e0f32 7834 spin_unlock(&lock);
cfd3da1e
MG
7835}
7836
1da177e4
LT
7837/*
7838 * Initialise min_free_kbytes.
7839 *
7840 * For small machines we want it small (128k min). For large machines
8beeae86 7841 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7842 * bandwidth does not increase linearly with machine size. We use
7843 *
b8af2941 7844 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7845 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7846 *
7847 * which yields
7848 *
7849 * 16MB: 512k
7850 * 32MB: 724k
7851 * 64MB: 1024k
7852 * 128MB: 1448k
7853 * 256MB: 2048k
7854 * 512MB: 2896k
7855 * 1024MB: 4096k
7856 * 2048MB: 5792k
7857 * 4096MB: 8192k
7858 * 8192MB: 11584k
7859 * 16384MB: 16384k
7860 */
1b79acc9 7861int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7862{
7863 unsigned long lowmem_kbytes;
5f12733e 7864 int new_min_free_kbytes;
1da177e4
LT
7865
7866 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7867 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7868
7869 if (new_min_free_kbytes > user_min_free_kbytes) {
7870 min_free_kbytes = new_min_free_kbytes;
7871 if (min_free_kbytes < 128)
7872 min_free_kbytes = 128;
ee8eb9a5
JS
7873 if (min_free_kbytes > 262144)
7874 min_free_kbytes = 262144;
5f12733e
MH
7875 } else {
7876 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7877 new_min_free_kbytes, user_min_free_kbytes);
7878 }
bc75d33f 7879 setup_per_zone_wmarks();
a6cccdc3 7880 refresh_zone_stat_thresholds();
1da177e4 7881 setup_per_zone_lowmem_reserve();
6423aa81
JK
7882
7883#ifdef CONFIG_NUMA
7884 setup_min_unmapped_ratio();
7885 setup_min_slab_ratio();
7886#endif
7887
1da177e4
LT
7888 return 0;
7889}
bc22af74 7890core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7891
7892/*
b8af2941 7893 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7894 * that we can call two helper functions whenever min_free_kbytes
7895 * changes.
7896 */
cccad5b9 7897int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 7898 void *buffer, size_t *length, loff_t *ppos)
1da177e4 7899{
da8c757b
HP
7900 int rc;
7901
7902 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7903 if (rc)
7904 return rc;
7905
5f12733e
MH
7906 if (write) {
7907 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7908 setup_per_zone_wmarks();
5f12733e 7909 }
1da177e4
LT
7910 return 0;
7911}
7912
795ae7a0 7913int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 7914 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
7915{
7916 int rc;
7917
7918 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7919 if (rc)
7920 return rc;
7921
7922 if (write)
7923 setup_per_zone_wmarks();
7924
7925 return 0;
7926}
7927
9614634f 7928#ifdef CONFIG_NUMA
6423aa81 7929static void setup_min_unmapped_ratio(void)
9614634f 7930{
6423aa81 7931 pg_data_t *pgdat;
9614634f 7932 struct zone *zone;
9614634f 7933
a5f5f91d 7934 for_each_online_pgdat(pgdat)
81cbcbc2 7935 pgdat->min_unmapped_pages = 0;
a5f5f91d 7936
9614634f 7937 for_each_zone(zone)
9705bea5
AK
7938 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7939 sysctl_min_unmapped_ratio) / 100;
9614634f 7940}
0ff38490 7941
6423aa81
JK
7942
7943int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7944 void *buffer, size_t *length, loff_t *ppos)
0ff38490 7945{
0ff38490
CL
7946 int rc;
7947
8d65af78 7948 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7949 if (rc)
7950 return rc;
7951
6423aa81
JK
7952 setup_min_unmapped_ratio();
7953
7954 return 0;
7955}
7956
7957static void setup_min_slab_ratio(void)
7958{
7959 pg_data_t *pgdat;
7960 struct zone *zone;
7961
a5f5f91d
MG
7962 for_each_online_pgdat(pgdat)
7963 pgdat->min_slab_pages = 0;
7964
0ff38490 7965 for_each_zone(zone)
9705bea5
AK
7966 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7967 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7968}
7969
7970int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7971 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
7972{
7973 int rc;
7974
7975 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7976 if (rc)
7977 return rc;
7978
7979 setup_min_slab_ratio();
7980
0ff38490
CL
7981 return 0;
7982}
9614634f
CL
7983#endif
7984
1da177e4
LT
7985/*
7986 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7987 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7988 * whenever sysctl_lowmem_reserve_ratio changes.
7989 *
7990 * The reserve ratio obviously has absolutely no relation with the
41858966 7991 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7992 * if in function of the boot time zone sizes.
7993 */
cccad5b9 7994int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7995 void *buffer, size_t *length, loff_t *ppos)
1da177e4 7996{
86aaf255
BH
7997 int i;
7998
8d65af78 7999 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8000
8001 for (i = 0; i < MAX_NR_ZONES; i++) {
8002 if (sysctl_lowmem_reserve_ratio[i] < 1)
8003 sysctl_lowmem_reserve_ratio[i] = 0;
8004 }
8005
1da177e4
LT
8006 setup_per_zone_lowmem_reserve();
8007 return 0;
8008}
8009
cb1ef534
MG
8010static void __zone_pcp_update(struct zone *zone)
8011{
8012 unsigned int cpu;
8013
8014 for_each_possible_cpu(cpu)
8015 pageset_set_high_and_batch(zone,
8016 per_cpu_ptr(zone->pageset, cpu));
8017}
8018
8ad4b1fb
RS
8019/*
8020 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8021 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8022 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8023 */
cccad5b9 8024int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8025 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8026{
8027 struct zone *zone;
7cd2b0a3 8028 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8029 int ret;
8030
7cd2b0a3
DR
8031 mutex_lock(&pcp_batch_high_lock);
8032 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8033
8d65af78 8034 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8035 if (!write || ret < 0)
8036 goto out;
8037
8038 /* Sanity checking to avoid pcp imbalance */
8039 if (percpu_pagelist_fraction &&
8040 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8041 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8042 ret = -EINVAL;
8043 goto out;
8044 }
8045
8046 /* No change? */
8047 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8048 goto out;
c8e251fa 8049
cb1ef534
MG
8050 for_each_populated_zone(zone)
8051 __zone_pcp_update(zone);
7cd2b0a3 8052out:
c8e251fa 8053 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8054 return ret;
8ad4b1fb
RS
8055}
8056
f6f34b43
SD
8057#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8058/*
8059 * Returns the number of pages that arch has reserved but
8060 * is not known to alloc_large_system_hash().
8061 */
8062static unsigned long __init arch_reserved_kernel_pages(void)
8063{
8064 return 0;
8065}
8066#endif
8067
9017217b
PT
8068/*
8069 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8070 * machines. As memory size is increased the scale is also increased but at
8071 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8072 * quadruples the scale is increased by one, which means the size of hash table
8073 * only doubles, instead of quadrupling as well.
8074 * Because 32-bit systems cannot have large physical memory, where this scaling
8075 * makes sense, it is disabled on such platforms.
8076 */
8077#if __BITS_PER_LONG > 32
8078#define ADAPT_SCALE_BASE (64ul << 30)
8079#define ADAPT_SCALE_SHIFT 2
8080#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8081#endif
8082
1da177e4
LT
8083/*
8084 * allocate a large system hash table from bootmem
8085 * - it is assumed that the hash table must contain an exact power-of-2
8086 * quantity of entries
8087 * - limit is the number of hash buckets, not the total allocation size
8088 */
8089void *__init alloc_large_system_hash(const char *tablename,
8090 unsigned long bucketsize,
8091 unsigned long numentries,
8092 int scale,
8093 int flags,
8094 unsigned int *_hash_shift,
8095 unsigned int *_hash_mask,
31fe62b9
TB
8096 unsigned long low_limit,
8097 unsigned long high_limit)
1da177e4 8098{
31fe62b9 8099 unsigned long long max = high_limit;
1da177e4
LT
8100 unsigned long log2qty, size;
8101 void *table = NULL;
3749a8f0 8102 gfp_t gfp_flags;
ec11408a 8103 bool virt;
1da177e4
LT
8104
8105 /* allow the kernel cmdline to have a say */
8106 if (!numentries) {
8107 /* round applicable memory size up to nearest megabyte */
04903664 8108 numentries = nr_kernel_pages;
f6f34b43 8109 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8110
8111 /* It isn't necessary when PAGE_SIZE >= 1MB */
8112 if (PAGE_SHIFT < 20)
8113 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8114
9017217b
PT
8115#if __BITS_PER_LONG > 32
8116 if (!high_limit) {
8117 unsigned long adapt;
8118
8119 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8120 adapt <<= ADAPT_SCALE_SHIFT)
8121 scale++;
8122 }
8123#endif
8124
1da177e4
LT
8125 /* limit to 1 bucket per 2^scale bytes of low memory */
8126 if (scale > PAGE_SHIFT)
8127 numentries >>= (scale - PAGE_SHIFT);
8128 else
8129 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8130
8131 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8132 if (unlikely(flags & HASH_SMALL)) {
8133 /* Makes no sense without HASH_EARLY */
8134 WARN_ON(!(flags & HASH_EARLY));
8135 if (!(numentries >> *_hash_shift)) {
8136 numentries = 1UL << *_hash_shift;
8137 BUG_ON(!numentries);
8138 }
8139 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8140 numentries = PAGE_SIZE / bucketsize;
1da177e4 8141 }
6e692ed3 8142 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8143
8144 /* limit allocation size to 1/16 total memory by default */
8145 if (max == 0) {
8146 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8147 do_div(max, bucketsize);
8148 }
074b8517 8149 max = min(max, 0x80000000ULL);
1da177e4 8150
31fe62b9
TB
8151 if (numentries < low_limit)
8152 numentries = low_limit;
1da177e4
LT
8153 if (numentries > max)
8154 numentries = max;
8155
f0d1b0b3 8156 log2qty = ilog2(numentries);
1da177e4 8157
3749a8f0 8158 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8159 do {
ec11408a 8160 virt = false;
1da177e4 8161 size = bucketsize << log2qty;
ea1f5f37
PT
8162 if (flags & HASH_EARLY) {
8163 if (flags & HASH_ZERO)
26fb3dae 8164 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8165 else
7e1c4e27
MR
8166 table = memblock_alloc_raw(size,
8167 SMP_CACHE_BYTES);
ec11408a 8168 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8169 table = __vmalloc(size, gfp_flags);
ec11408a 8170 virt = true;
ea1f5f37 8171 } else {
1037b83b
ED
8172 /*
8173 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8174 * some pages at the end of hash table which
8175 * alloc_pages_exact() automatically does
1037b83b 8176 */
ec11408a
NP
8177 table = alloc_pages_exact(size, gfp_flags);
8178 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8179 }
8180 } while (!table && size > PAGE_SIZE && --log2qty);
8181
8182 if (!table)
8183 panic("Failed to allocate %s hash table\n", tablename);
8184
ec11408a
NP
8185 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8186 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8187 virt ? "vmalloc" : "linear");
1da177e4
LT
8188
8189 if (_hash_shift)
8190 *_hash_shift = log2qty;
8191 if (_hash_mask)
8192 *_hash_mask = (1 << log2qty) - 1;
8193
8194 return table;
8195}
a117e66e 8196
a5d76b54 8197/*
80934513 8198 * This function checks whether pageblock includes unmovable pages or not.
80934513 8199 *
b8af2941 8200 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8201 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8202 * check without lock_page also may miss some movable non-lru pages at
8203 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8204 *
8205 * Returns a page without holding a reference. If the caller wants to
047b9967 8206 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8207 * cannot get removed (e.g., via memory unplug) concurrently.
8208 *
a5d76b54 8209 */
4a55c047
QC
8210struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8211 int migratetype, int flags)
49ac8255 8212{
1a9f2191
QC
8213 unsigned long iter = 0;
8214 unsigned long pfn = page_to_pfn(page);
47118af0 8215
49ac8255 8216 /*
15c30bc0
MH
8217 * TODO we could make this much more efficient by not checking every
8218 * page in the range if we know all of them are in MOVABLE_ZONE and
8219 * that the movable zone guarantees that pages are migratable but
8220 * the later is not the case right now unfortunatelly. E.g. movablecore
8221 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8222 */
49ac8255 8223
1a9f2191
QC
8224 if (is_migrate_cma_page(page)) {
8225 /*
8226 * CMA allocations (alloc_contig_range) really need to mark
8227 * isolate CMA pageblocks even when they are not movable in fact
8228 * so consider them movable here.
8229 */
8230 if (is_migrate_cma(migratetype))
4a55c047 8231 return NULL;
1a9f2191 8232
3d680bdf 8233 return page;
1a9f2191 8234 }
4da2ce25 8235
fe4c86c9
DH
8236 for (; iter < pageblock_nr_pages; iter++) {
8237 if (!pfn_valid_within(pfn + iter))
49ac8255 8238 continue;
29723fcc 8239
fe4c86c9 8240 page = pfn_to_page(pfn + iter);
c8721bbb 8241
d7ab3672 8242 if (PageReserved(page))
3d680bdf 8243 return page;
d7ab3672 8244
9d789999
MH
8245 /*
8246 * If the zone is movable and we have ruled out all reserved
8247 * pages then it should be reasonably safe to assume the rest
8248 * is movable.
8249 */
8250 if (zone_idx(zone) == ZONE_MOVABLE)
8251 continue;
8252
c8721bbb
NH
8253 /*
8254 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8255 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8256 * We need not scan over tail pages because we don't
c8721bbb
NH
8257 * handle each tail page individually in migration.
8258 */
1da2f328 8259 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8260 struct page *head = compound_head(page);
8261 unsigned int skip_pages;
464c7ffb 8262
1da2f328
RR
8263 if (PageHuge(page)) {
8264 if (!hugepage_migration_supported(page_hstate(head)))
8265 return page;
8266 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8267 return page;
1da2f328 8268 }
464c7ffb 8269
d8c6546b 8270 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8271 iter += skip_pages - 1;
c8721bbb
NH
8272 continue;
8273 }
8274
97d255c8
MK
8275 /*
8276 * We can't use page_count without pin a page
8277 * because another CPU can free compound page.
8278 * This check already skips compound tails of THP
0139aa7b 8279 * because their page->_refcount is zero at all time.
97d255c8 8280 */
fe896d18 8281 if (!page_ref_count(page)) {
49ac8255
KH
8282 if (PageBuddy(page))
8283 iter += (1 << page_order(page)) - 1;
8284 continue;
8285 }
97d255c8 8286
b023f468
WC
8287 /*
8288 * The HWPoisoned page may be not in buddy system, and
8289 * page_count() is not 0.
8290 */
756d25be 8291 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8292 continue;
8293
aa218795
DH
8294 /*
8295 * We treat all PageOffline() pages as movable when offlining
8296 * to give drivers a chance to decrement their reference count
8297 * in MEM_GOING_OFFLINE in order to indicate that these pages
8298 * can be offlined as there are no direct references anymore.
8299 * For actually unmovable PageOffline() where the driver does
8300 * not support this, we will fail later when trying to actually
8301 * move these pages that still have a reference count > 0.
8302 * (false negatives in this function only)
8303 */
8304 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8305 continue;
8306
fe4c86c9 8307 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8308 continue;
8309
49ac8255 8310 /*
6b4f7799
JW
8311 * If there are RECLAIMABLE pages, we need to check
8312 * it. But now, memory offline itself doesn't call
8313 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8314 */
8315 /*
8316 * If the page is not RAM, page_count()should be 0.
8317 * we don't need more check. This is an _used_ not-movable page.
8318 *
8319 * The problematic thing here is PG_reserved pages. PG_reserved
8320 * is set to both of a memory hole page and a _used_ kernel
8321 * page at boot.
8322 */
3d680bdf 8323 return page;
49ac8255 8324 }
4a55c047 8325 return NULL;
49ac8255
KH
8326}
8327
8df995f6 8328#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8329static unsigned long pfn_max_align_down(unsigned long pfn)
8330{
8331 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8332 pageblock_nr_pages) - 1);
8333}
8334
8335static unsigned long pfn_max_align_up(unsigned long pfn)
8336{
8337 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8338 pageblock_nr_pages));
8339}
8340
041d3a8c 8341/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8342static int __alloc_contig_migrate_range(struct compact_control *cc,
8343 unsigned long start, unsigned long end)
041d3a8c
MN
8344{
8345 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8346 unsigned int nr_reclaimed;
041d3a8c
MN
8347 unsigned long pfn = start;
8348 unsigned int tries = 0;
8349 int ret = 0;
8350
be49a6e1 8351 migrate_prep();
041d3a8c 8352
bb13ffeb 8353 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8354 if (fatal_signal_pending(current)) {
8355 ret = -EINTR;
8356 break;
8357 }
8358
bb13ffeb
MG
8359 if (list_empty(&cc->migratepages)) {
8360 cc->nr_migratepages = 0;
edc2ca61 8361 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8362 if (!pfn) {
8363 ret = -EINTR;
8364 break;
8365 }
8366 tries = 0;
8367 } else if (++tries == 5) {
8368 ret = ret < 0 ? ret : -EBUSY;
8369 break;
8370 }
8371
beb51eaa
MK
8372 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8373 &cc->migratepages);
8374 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8375
9c620e2b 8376 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8377 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8378 }
2a6f5124
SP
8379 if (ret < 0) {
8380 putback_movable_pages(&cc->migratepages);
8381 return ret;
8382 }
8383 return 0;
041d3a8c
MN
8384}
8385
8386/**
8387 * alloc_contig_range() -- tries to allocate given range of pages
8388 * @start: start PFN to allocate
8389 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8390 * @migratetype: migratetype of the underlaying pageblocks (either
8391 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8392 * in range must have the same migratetype and it must
8393 * be either of the two.
ca96b625 8394 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8395 *
8396 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8397 * aligned. The PFN range must belong to a single zone.
041d3a8c 8398 *
2c7452a0
MK
8399 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8400 * pageblocks in the range. Once isolated, the pageblocks should not
8401 * be modified by others.
041d3a8c 8402 *
a862f68a 8403 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8404 * pages which PFN is in [start, end) are allocated for the caller and
8405 * need to be freed with free_contig_range().
8406 */
0815f3d8 8407int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8408 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8409{
041d3a8c 8410 unsigned long outer_start, outer_end;
d00181b9
KS
8411 unsigned int order;
8412 int ret = 0;
041d3a8c 8413
bb13ffeb
MG
8414 struct compact_control cc = {
8415 .nr_migratepages = 0,
8416 .order = -1,
8417 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8418 .mode = MIGRATE_SYNC,
bb13ffeb 8419 .ignore_skip_hint = true,
2583d671 8420 .no_set_skip_hint = true,
7dea19f9 8421 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8422 .alloc_contig = true,
bb13ffeb
MG
8423 };
8424 INIT_LIST_HEAD(&cc.migratepages);
8425
041d3a8c
MN
8426 /*
8427 * What we do here is we mark all pageblocks in range as
8428 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8429 * have different sizes, and due to the way page allocator
8430 * work, we align the range to biggest of the two pages so
8431 * that page allocator won't try to merge buddies from
8432 * different pageblocks and change MIGRATE_ISOLATE to some
8433 * other migration type.
8434 *
8435 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8436 * migrate the pages from an unaligned range (ie. pages that
8437 * we are interested in). This will put all the pages in
8438 * range back to page allocator as MIGRATE_ISOLATE.
8439 *
8440 * When this is done, we take the pages in range from page
8441 * allocator removing them from the buddy system. This way
8442 * page allocator will never consider using them.
8443 *
8444 * This lets us mark the pageblocks back as
8445 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8446 * aligned range but not in the unaligned, original range are
8447 * put back to page allocator so that buddy can use them.
8448 */
8449
8450 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8451 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8452 if (ret < 0)
86a595f9 8453 return ret;
041d3a8c 8454
8ef5849f
JK
8455 /*
8456 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8457 * So, just fall through. test_pages_isolated() has a tracepoint
8458 * which will report the busy page.
8459 *
8460 * It is possible that busy pages could become available before
8461 * the call to test_pages_isolated, and the range will actually be
8462 * allocated. So, if we fall through be sure to clear ret so that
8463 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8464 */
bb13ffeb 8465 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8466 if (ret && ret != -EBUSY)
041d3a8c 8467 goto done;
63cd4489 8468 ret =0;
041d3a8c
MN
8469
8470 /*
8471 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8472 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8473 * more, all pages in [start, end) are free in page allocator.
8474 * What we are going to do is to allocate all pages from
8475 * [start, end) (that is remove them from page allocator).
8476 *
8477 * The only problem is that pages at the beginning and at the
8478 * end of interesting range may be not aligned with pages that
8479 * page allocator holds, ie. they can be part of higher order
8480 * pages. Because of this, we reserve the bigger range and
8481 * once this is done free the pages we are not interested in.
8482 *
8483 * We don't have to hold zone->lock here because the pages are
8484 * isolated thus they won't get removed from buddy.
8485 */
8486
8487 lru_add_drain_all();
041d3a8c
MN
8488
8489 order = 0;
8490 outer_start = start;
8491 while (!PageBuddy(pfn_to_page(outer_start))) {
8492 if (++order >= MAX_ORDER) {
8ef5849f
JK
8493 outer_start = start;
8494 break;
041d3a8c
MN
8495 }
8496 outer_start &= ~0UL << order;
8497 }
8498
8ef5849f
JK
8499 if (outer_start != start) {
8500 order = page_order(pfn_to_page(outer_start));
8501
8502 /*
8503 * outer_start page could be small order buddy page and
8504 * it doesn't include start page. Adjust outer_start
8505 * in this case to report failed page properly
8506 * on tracepoint in test_pages_isolated()
8507 */
8508 if (outer_start + (1UL << order) <= start)
8509 outer_start = start;
8510 }
8511
041d3a8c 8512 /* Make sure the range is really isolated. */
756d25be 8513 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8514 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8515 __func__, outer_start, end);
041d3a8c
MN
8516 ret = -EBUSY;
8517 goto done;
8518 }
8519
49f223a9 8520 /* Grab isolated pages from freelists. */
bb13ffeb 8521 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8522 if (!outer_end) {
8523 ret = -EBUSY;
8524 goto done;
8525 }
8526
8527 /* Free head and tail (if any) */
8528 if (start != outer_start)
8529 free_contig_range(outer_start, start - outer_start);
8530 if (end != outer_end)
8531 free_contig_range(end, outer_end - end);
8532
8533done:
8534 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8535 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8536 return ret;
8537}
255f5985 8538EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8539
8540static int __alloc_contig_pages(unsigned long start_pfn,
8541 unsigned long nr_pages, gfp_t gfp_mask)
8542{
8543 unsigned long end_pfn = start_pfn + nr_pages;
8544
8545 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8546 gfp_mask);
8547}
8548
8549static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8550 unsigned long nr_pages)
8551{
8552 unsigned long i, end_pfn = start_pfn + nr_pages;
8553 struct page *page;
8554
8555 for (i = start_pfn; i < end_pfn; i++) {
8556 page = pfn_to_online_page(i);
8557 if (!page)
8558 return false;
8559
8560 if (page_zone(page) != z)
8561 return false;
8562
8563 if (PageReserved(page))
8564 return false;
8565
8566 if (page_count(page) > 0)
8567 return false;
8568
8569 if (PageHuge(page))
8570 return false;
8571 }
8572 return true;
8573}
8574
8575static bool zone_spans_last_pfn(const struct zone *zone,
8576 unsigned long start_pfn, unsigned long nr_pages)
8577{
8578 unsigned long last_pfn = start_pfn + nr_pages - 1;
8579
8580 return zone_spans_pfn(zone, last_pfn);
8581}
8582
8583/**
8584 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8585 * @nr_pages: Number of contiguous pages to allocate
8586 * @gfp_mask: GFP mask to limit search and used during compaction
8587 * @nid: Target node
8588 * @nodemask: Mask for other possible nodes
8589 *
8590 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8591 * on an applicable zonelist to find a contiguous pfn range which can then be
8592 * tried for allocation with alloc_contig_range(). This routine is intended
8593 * for allocation requests which can not be fulfilled with the buddy allocator.
8594 *
8595 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8596 * power of two then the alignment is guaranteed to be to the given nr_pages
8597 * (e.g. 1GB request would be aligned to 1GB).
8598 *
8599 * Allocated pages can be freed with free_contig_range() or by manually calling
8600 * __free_page() on each allocated page.
8601 *
8602 * Return: pointer to contiguous pages on success, or NULL if not successful.
8603 */
8604struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8605 int nid, nodemask_t *nodemask)
8606{
8607 unsigned long ret, pfn, flags;
8608 struct zonelist *zonelist;
8609 struct zone *zone;
8610 struct zoneref *z;
8611
8612 zonelist = node_zonelist(nid, gfp_mask);
8613 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8614 gfp_zone(gfp_mask), nodemask) {
8615 spin_lock_irqsave(&zone->lock, flags);
8616
8617 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8618 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8619 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8620 /*
8621 * We release the zone lock here because
8622 * alloc_contig_range() will also lock the zone
8623 * at some point. If there's an allocation
8624 * spinning on this lock, it may win the race
8625 * and cause alloc_contig_range() to fail...
8626 */
8627 spin_unlock_irqrestore(&zone->lock, flags);
8628 ret = __alloc_contig_pages(pfn, nr_pages,
8629 gfp_mask);
8630 if (!ret)
8631 return pfn_to_page(pfn);
8632 spin_lock_irqsave(&zone->lock, flags);
8633 }
8634 pfn += nr_pages;
8635 }
8636 spin_unlock_irqrestore(&zone->lock, flags);
8637 }
8638 return NULL;
8639}
4eb0716e 8640#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8641
4eb0716e 8642void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8643{
bcc2b02f
MS
8644 unsigned int count = 0;
8645
8646 for (; nr_pages--; pfn++) {
8647 struct page *page = pfn_to_page(pfn);
8648
8649 count += page_count(page) != 1;
8650 __free_page(page);
8651 }
8652 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8653}
255f5985 8654EXPORT_SYMBOL(free_contig_range);
041d3a8c 8655
0a647f38
CS
8656/*
8657 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8658 * page high values need to be recalulated.
8659 */
4ed7e022
JL
8660void __meminit zone_pcp_update(struct zone *zone)
8661{
c8e251fa 8662 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8663 __zone_pcp_update(zone);
c8e251fa 8664 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8665}
4ed7e022 8666
340175b7
JL
8667void zone_pcp_reset(struct zone *zone)
8668{
8669 unsigned long flags;
5a883813
MK
8670 int cpu;
8671 struct per_cpu_pageset *pset;
340175b7
JL
8672
8673 /* avoid races with drain_pages() */
8674 local_irq_save(flags);
8675 if (zone->pageset != &boot_pageset) {
5a883813
MK
8676 for_each_online_cpu(cpu) {
8677 pset = per_cpu_ptr(zone->pageset, cpu);
8678 drain_zonestat(zone, pset);
8679 }
340175b7
JL
8680 free_percpu(zone->pageset);
8681 zone->pageset = &boot_pageset;
8682 }
8683 local_irq_restore(flags);
8684}
8685
6dcd73d7 8686#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8687/*
b9eb6319
JK
8688 * All pages in the range must be in a single zone and isolated
8689 * before calling this.
0c0e6195 8690 */
5557c766 8691unsigned long
0c0e6195
KH
8692__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8693{
8694 struct page *page;
8695 struct zone *zone;
0ee5f4f3 8696 unsigned int order;
0c0e6195
KH
8697 unsigned long pfn;
8698 unsigned long flags;
5557c766
MH
8699 unsigned long offlined_pages = 0;
8700
0c0e6195
KH
8701 /* find the first valid pfn */
8702 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8703 if (pfn_valid(pfn))
8704 break;
8705 if (pfn == end_pfn)
5557c766
MH
8706 return offlined_pages;
8707
2d070eab 8708 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8709 zone = page_zone(pfn_to_page(pfn));
8710 spin_lock_irqsave(&zone->lock, flags);
8711 pfn = start_pfn;
8712 while (pfn < end_pfn) {
8713 if (!pfn_valid(pfn)) {
8714 pfn++;
8715 continue;
8716 }
8717 page = pfn_to_page(pfn);
b023f468
WC
8718 /*
8719 * The HWPoisoned page may be not in buddy system, and
8720 * page_count() is not 0.
8721 */
8722 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8723 pfn++;
5557c766 8724 offlined_pages++;
b023f468
WC
8725 continue;
8726 }
aa218795
DH
8727 /*
8728 * At this point all remaining PageOffline() pages have a
8729 * reference count of 0 and can simply be skipped.
8730 */
8731 if (PageOffline(page)) {
8732 BUG_ON(page_count(page));
8733 BUG_ON(PageBuddy(page));
8734 pfn++;
8735 offlined_pages++;
8736 continue;
8737 }
b023f468 8738
0c0e6195
KH
8739 BUG_ON(page_count(page));
8740 BUG_ON(!PageBuddy(page));
8741 order = page_order(page);
5557c766 8742 offlined_pages += 1 << order;
6ab01363 8743 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8744 pfn += (1 << order);
8745 }
8746 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8747
8748 return offlined_pages;
0c0e6195
KH
8749}
8750#endif
8d22ba1b 8751
8d22ba1b
WF
8752bool is_free_buddy_page(struct page *page)
8753{
8754 struct zone *zone = page_zone(page);
8755 unsigned long pfn = page_to_pfn(page);
8756 unsigned long flags;
7aeb09f9 8757 unsigned int order;
8d22ba1b
WF
8758
8759 spin_lock_irqsave(&zone->lock, flags);
8760 for (order = 0; order < MAX_ORDER; order++) {
8761 struct page *page_head = page - (pfn & ((1 << order) - 1));
8762
8763 if (PageBuddy(page_head) && page_order(page_head) >= order)
8764 break;
8765 }
8766 spin_unlock_irqrestore(&zone->lock, flags);
8767
8768 return order < MAX_ORDER;
8769}
d4ae9916
NH
8770
8771#ifdef CONFIG_MEMORY_FAILURE
8772/*
8773 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8774 * test is performed under the zone lock to prevent a race against page
8775 * allocation.
8776 */
8777bool set_hwpoison_free_buddy_page(struct page *page)
8778{
8779 struct zone *zone = page_zone(page);
8780 unsigned long pfn = page_to_pfn(page);
8781 unsigned long flags;
8782 unsigned int order;
8783 bool hwpoisoned = false;
8784
8785 spin_lock_irqsave(&zone->lock, flags);
8786 for (order = 0; order < MAX_ORDER; order++) {
8787 struct page *page_head = page - (pfn & ((1 << order) - 1));
8788
8789 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8790 if (!TestSetPageHWPoison(page))
8791 hwpoisoned = true;
8792 break;
8793 }
8794 }
8795 spin_unlock_irqrestore(&zone->lock, flags);
8796
8797 return hwpoisoned;
8798}
8799#endif