]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
mm, page_alloc: remove boot pageset initialization from memory hotplug
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4
LT
75#include "internal.h"
76
c8e251fa
CS
77/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 79#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 80
72812019
LS
81#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82DEFINE_PER_CPU(int, numa_node);
83EXPORT_PER_CPU_SYMBOL(numa_node);
84#endif
85
7aac7898
LS
86#ifdef CONFIG_HAVE_MEMORYLESS_NODES
87/*
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
92 */
93DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 95int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
96#endif
97
bd233f53
MG
98/* work_structs for global per-cpu drains */
99DEFINE_MUTEX(pcpu_drain_mutex);
100DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101
38addce8 102#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 103volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
104EXPORT_SYMBOL(latent_entropy);
105#endif
106
1da177e4 107/*
13808910 108 * Array of node states.
1da177e4 109 */
13808910
CL
110nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113#ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115#ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 117#endif
20b2f52b 118 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
119 [N_CPU] = { { [0] = 1UL } },
120#endif /* NUMA */
121};
122EXPORT_SYMBOL(node_states);
123
c3d5f5f0
JL
124/* Protect totalram_pages and zone->managed_pages */
125static DEFINE_SPINLOCK(managed_page_count_lock);
126
6c231b7b 127unsigned long totalram_pages __read_mostly;
cb45b0e9 128unsigned long totalreserve_pages __read_mostly;
e48322ab 129unsigned long totalcma_pages __read_mostly;
ab8fabd4 130
1b76b02f 131int percpu_pagelist_fraction;
dcce284a 132gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 133
bb14c2c7
VB
134/*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142static inline int get_pcppage_migratetype(struct page *page)
143{
144 return page->index;
145}
146
147static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148{
149 page->index = migratetype;
150}
151
452aa699
RW
152#ifdef CONFIG_PM_SLEEP
153/*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
160 */
c9e664f1
RW
161
162static gfp_t saved_gfp_mask;
163
164void pm_restore_gfp_mask(void)
452aa699
RW
165{
166 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
169 saved_gfp_mask = 0;
170 }
452aa699
RW
171}
172
c9e664f1 173void pm_restrict_gfp_mask(void)
452aa699 174{
452aa699 175 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
d0164adc 178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 179}
f90ac398
MG
180
181bool pm_suspended_storage(void)
182{
d0164adc 183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
184 return false;
185 return true;
186}
452aa699
RW
187#endif /* CONFIG_PM_SLEEP */
188
d9c23400 189#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 190unsigned int pageblock_order __read_mostly;
d9c23400
MG
191#endif
192
d98c7a09 193static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 194
1da177e4
LT
195/*
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
202 *
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
1da177e4 205 */
2f1b6248 206int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 207#ifdef CONFIG_ZONE_DMA
2f1b6248 208 256,
4b51d669 209#endif
fb0e7942 210#ifdef CONFIG_ZONE_DMA32
2f1b6248 211 256,
fb0e7942 212#endif
e53ef38d 213#ifdef CONFIG_HIGHMEM
2a1e274a 214 32,
e53ef38d 215#endif
2a1e274a 216 32,
2f1b6248 217};
1da177e4
LT
218
219EXPORT_SYMBOL(totalram_pages);
1da177e4 220
15ad7cdc 221static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 222#ifdef CONFIG_ZONE_DMA
2f1b6248 223 "DMA",
4b51d669 224#endif
fb0e7942 225#ifdef CONFIG_ZONE_DMA32
2f1b6248 226 "DMA32",
fb0e7942 227#endif
2f1b6248 228 "Normal",
e53ef38d 229#ifdef CONFIG_HIGHMEM
2a1e274a 230 "HighMem",
e53ef38d 231#endif
2a1e274a 232 "Movable",
033fbae9
DW
233#ifdef CONFIG_ZONE_DEVICE
234 "Device",
235#endif
2f1b6248
CL
236};
237
60f30350
VB
238char * const migratetype_names[MIGRATE_TYPES] = {
239 "Unmovable",
240 "Movable",
241 "Reclaimable",
242 "HighAtomic",
243#ifdef CONFIG_CMA
244 "CMA",
245#endif
246#ifdef CONFIG_MEMORY_ISOLATION
247 "Isolate",
248#endif
249};
250
f1e61557
KS
251compound_page_dtor * const compound_page_dtors[] = {
252 NULL,
253 free_compound_page,
254#ifdef CONFIG_HUGETLB_PAGE
255 free_huge_page,
256#endif
9a982250
KS
257#ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 free_transhuge_page,
259#endif
f1e61557
KS
260};
261
1da177e4 262int min_free_kbytes = 1024;
42aa83cb 263int user_min_free_kbytes = -1;
795ae7a0 264int watermark_scale_factor = 10;
1da177e4 265
2c85f51d
JB
266static unsigned long __meminitdata nr_kernel_pages;
267static unsigned long __meminitdata nr_all_pages;
a3142c8e 268static unsigned long __meminitdata dma_reserve;
1da177e4 269
0ee332c1
TH
270#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273static unsigned long __initdata required_kernelcore;
274static unsigned long __initdata required_movablecore;
275static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 276static bool mirrored_kernelcore;
0ee332c1
TH
277
278/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279int movable_zone;
280EXPORT_SYMBOL(movable_zone);
281#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 282
418508c1
MS
283#if MAX_NUMNODES > 1
284int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 285int nr_online_nodes __read_mostly = 1;
418508c1 286EXPORT_SYMBOL(nr_node_ids);
62bc62a8 287EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
288#endif
289
9ef9acb0
MG
290int page_group_by_mobility_disabled __read_mostly;
291
3a80a7fa
MG
292#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293static inline void reset_deferred_meminit(pg_data_t *pgdat)
294{
864b9a39
MH
295 unsigned long max_initialise;
296 unsigned long reserved_lowmem;
297
298 /*
299 * Initialise at least 2G of a node but also take into account that
300 * two large system hashes that can take up 1GB for 0.25TB/node.
301 */
302 max_initialise = max(2UL << (30 - PAGE_SHIFT),
303 (pgdat->node_spanned_pages >> 8));
304
305 /*
306 * Compensate the all the memblock reservations (e.g. crash kernel)
307 * from the initial estimation to make sure we will initialize enough
308 * memory to boot.
309 */
310 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
311 pgdat->node_start_pfn + max_initialise);
312 max_initialise += reserved_lowmem;
313
314 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
3a80a7fa
MG
315 pgdat->first_deferred_pfn = ULONG_MAX;
316}
317
318/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 319static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 320{
ef70b6f4
MG
321 int nid = early_pfn_to_nid(pfn);
322
323 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
324 return true;
325
326 return false;
327}
328
329/*
330 * Returns false when the remaining initialisation should be deferred until
331 * later in the boot cycle when it can be parallelised.
332 */
333static inline bool update_defer_init(pg_data_t *pgdat,
334 unsigned long pfn, unsigned long zone_end,
335 unsigned long *nr_initialised)
336{
337 /* Always populate low zones for address-contrained allocations */
338 if (zone_end < pgdat_end_pfn(pgdat))
339 return true;
3a80a7fa 340 (*nr_initialised)++;
864b9a39 341 if ((*nr_initialised > pgdat->static_init_size) &&
3a80a7fa
MG
342 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
343 pgdat->first_deferred_pfn = pfn;
344 return false;
345 }
346
347 return true;
348}
349#else
350static inline void reset_deferred_meminit(pg_data_t *pgdat)
351{
352}
353
354static inline bool early_page_uninitialised(unsigned long pfn)
355{
356 return false;
357}
358
359static inline bool update_defer_init(pg_data_t *pgdat,
360 unsigned long pfn, unsigned long zone_end,
361 unsigned long *nr_initialised)
362{
363 return true;
364}
365#endif
366
0b423ca2
MG
367/* Return a pointer to the bitmap storing bits affecting a block of pages */
368static inline unsigned long *get_pageblock_bitmap(struct page *page,
369 unsigned long pfn)
370{
371#ifdef CONFIG_SPARSEMEM
372 return __pfn_to_section(pfn)->pageblock_flags;
373#else
374 return page_zone(page)->pageblock_flags;
375#endif /* CONFIG_SPARSEMEM */
376}
377
378static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
379{
380#ifdef CONFIG_SPARSEMEM
381 pfn &= (PAGES_PER_SECTION-1);
382 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
383#else
384 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
386#endif /* CONFIG_SPARSEMEM */
387}
388
389/**
390 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
391 * @page: The page within the block of interest
392 * @pfn: The target page frame number
393 * @end_bitidx: The last bit of interest to retrieve
394 * @mask: mask of bits that the caller is interested in
395 *
396 * Return: pageblock_bits flags
397 */
398static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
399 unsigned long pfn,
400 unsigned long end_bitidx,
401 unsigned long mask)
402{
403 unsigned long *bitmap;
404 unsigned long bitidx, word_bitidx;
405 unsigned long word;
406
407 bitmap = get_pageblock_bitmap(page, pfn);
408 bitidx = pfn_to_bitidx(page, pfn);
409 word_bitidx = bitidx / BITS_PER_LONG;
410 bitidx &= (BITS_PER_LONG-1);
411
412 word = bitmap[word_bitidx];
413 bitidx += end_bitidx;
414 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
415}
416
417unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
418 unsigned long end_bitidx,
419 unsigned long mask)
420{
421 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
422}
423
424static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
425{
426 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
427}
428
429/**
430 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
431 * @page: The page within the block of interest
432 * @flags: The flags to set
433 * @pfn: The target page frame number
434 * @end_bitidx: The last bit of interest
435 * @mask: mask of bits that the caller is interested in
436 */
437void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
438 unsigned long pfn,
439 unsigned long end_bitidx,
440 unsigned long mask)
441{
442 unsigned long *bitmap;
443 unsigned long bitidx, word_bitidx;
444 unsigned long old_word, word;
445
446 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
447
448 bitmap = get_pageblock_bitmap(page, pfn);
449 bitidx = pfn_to_bitidx(page, pfn);
450 word_bitidx = bitidx / BITS_PER_LONG;
451 bitidx &= (BITS_PER_LONG-1);
452
453 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
454
455 bitidx += end_bitidx;
456 mask <<= (BITS_PER_LONG - bitidx - 1);
457 flags <<= (BITS_PER_LONG - bitidx - 1);
458
459 word = READ_ONCE(bitmap[word_bitidx]);
460 for (;;) {
461 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
462 if (word == old_word)
463 break;
464 word = old_word;
465 }
466}
3a80a7fa 467
ee6f509c 468void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 469{
5d0f3f72
KM
470 if (unlikely(page_group_by_mobility_disabled &&
471 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
472 migratetype = MIGRATE_UNMOVABLE;
473
b2a0ac88
MG
474 set_pageblock_flags_group(page, (unsigned long)migratetype,
475 PB_migrate, PB_migrate_end);
476}
477
13e7444b 478#ifdef CONFIG_DEBUG_VM
c6a57e19 479static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 480{
bdc8cb98
DH
481 int ret = 0;
482 unsigned seq;
483 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 484 unsigned long sp, start_pfn;
c6a57e19 485
bdc8cb98
DH
486 do {
487 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
488 start_pfn = zone->zone_start_pfn;
489 sp = zone->spanned_pages;
108bcc96 490 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
491 ret = 1;
492 } while (zone_span_seqretry(zone, seq));
493
b5e6a5a2 494 if (ret)
613813e8
DH
495 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
496 pfn, zone_to_nid(zone), zone->name,
497 start_pfn, start_pfn + sp);
b5e6a5a2 498
bdc8cb98 499 return ret;
c6a57e19
DH
500}
501
502static int page_is_consistent(struct zone *zone, struct page *page)
503{
14e07298 504 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 505 return 0;
1da177e4 506 if (zone != page_zone(page))
c6a57e19
DH
507 return 0;
508
509 return 1;
510}
511/*
512 * Temporary debugging check for pages not lying within a given zone.
513 */
d73d3c9f 514static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
515{
516 if (page_outside_zone_boundaries(zone, page))
1da177e4 517 return 1;
c6a57e19
DH
518 if (!page_is_consistent(zone, page))
519 return 1;
520
1da177e4
LT
521 return 0;
522}
13e7444b 523#else
d73d3c9f 524static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
525{
526 return 0;
527}
528#endif
529
d230dec1
KS
530static void bad_page(struct page *page, const char *reason,
531 unsigned long bad_flags)
1da177e4 532{
d936cf9b
HD
533 static unsigned long resume;
534 static unsigned long nr_shown;
535 static unsigned long nr_unshown;
536
537 /*
538 * Allow a burst of 60 reports, then keep quiet for that minute;
539 * or allow a steady drip of one report per second.
540 */
541 if (nr_shown == 60) {
542 if (time_before(jiffies, resume)) {
543 nr_unshown++;
544 goto out;
545 }
546 if (nr_unshown) {
ff8e8116 547 pr_alert(
1e9e6365 548 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
549 nr_unshown);
550 nr_unshown = 0;
551 }
552 nr_shown = 0;
553 }
554 if (nr_shown++ == 0)
555 resume = jiffies + 60 * HZ;
556
ff8e8116 557 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 558 current->comm, page_to_pfn(page));
ff8e8116
VB
559 __dump_page(page, reason);
560 bad_flags &= page->flags;
561 if (bad_flags)
562 pr_alert("bad because of flags: %#lx(%pGp)\n",
563 bad_flags, &bad_flags);
4e462112 564 dump_page_owner(page);
3dc14741 565
4f31888c 566 print_modules();
1da177e4 567 dump_stack();
d936cf9b 568out:
8cc3b392 569 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 570 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 571 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
572}
573
1da177e4
LT
574/*
575 * Higher-order pages are called "compound pages". They are structured thusly:
576 *
1d798ca3 577 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 578 *
1d798ca3
KS
579 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
580 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 581 *
1d798ca3
KS
582 * The first tail page's ->compound_dtor holds the offset in array of compound
583 * page destructors. See compound_page_dtors.
1da177e4 584 *
1d798ca3 585 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 586 * This usage means that zero-order pages may not be compound.
1da177e4 587 */
d98c7a09 588
9a982250 589void free_compound_page(struct page *page)
d98c7a09 590{
d85f3385 591 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
592}
593
d00181b9 594void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
595{
596 int i;
597 int nr_pages = 1 << order;
598
f1e61557 599 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
600 set_compound_order(page, order);
601 __SetPageHead(page);
602 for (i = 1; i < nr_pages; i++) {
603 struct page *p = page + i;
58a84aa9 604 set_page_count(p, 0);
1c290f64 605 p->mapping = TAIL_MAPPING;
1d798ca3 606 set_compound_head(p, page);
18229df5 607 }
53f9263b 608 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
609}
610
c0a32fc5
SG
611#ifdef CONFIG_DEBUG_PAGEALLOC
612unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
613bool _debug_pagealloc_enabled __read_mostly
614 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 615EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
616bool _debug_guardpage_enabled __read_mostly;
617
031bc574
JK
618static int __init early_debug_pagealloc(char *buf)
619{
620 if (!buf)
621 return -EINVAL;
2a138dc7 622 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
623}
624early_param("debug_pagealloc", early_debug_pagealloc);
625
e30825f1
JK
626static bool need_debug_guardpage(void)
627{
031bc574
JK
628 /* If we don't use debug_pagealloc, we don't need guard page */
629 if (!debug_pagealloc_enabled())
630 return false;
631
f1c1e9f7
JK
632 if (!debug_guardpage_minorder())
633 return false;
634
e30825f1
JK
635 return true;
636}
637
638static void init_debug_guardpage(void)
639{
031bc574
JK
640 if (!debug_pagealloc_enabled())
641 return;
642
f1c1e9f7
JK
643 if (!debug_guardpage_minorder())
644 return;
645
e30825f1
JK
646 _debug_guardpage_enabled = true;
647}
648
649struct page_ext_operations debug_guardpage_ops = {
650 .need = need_debug_guardpage,
651 .init = init_debug_guardpage,
652};
c0a32fc5
SG
653
654static int __init debug_guardpage_minorder_setup(char *buf)
655{
656 unsigned long res;
657
658 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 659 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
660 return 0;
661 }
662 _debug_guardpage_minorder = res;
1170532b 663 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
664 return 0;
665}
f1c1e9f7 666early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 667
acbc15a4 668static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 669 unsigned int order, int migratetype)
c0a32fc5 670{
e30825f1
JK
671 struct page_ext *page_ext;
672
673 if (!debug_guardpage_enabled())
acbc15a4
JK
674 return false;
675
676 if (order >= debug_guardpage_minorder())
677 return false;
e30825f1
JK
678
679 page_ext = lookup_page_ext(page);
f86e4271 680 if (unlikely(!page_ext))
acbc15a4 681 return false;
f86e4271 682
e30825f1
JK
683 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684
2847cf95
JK
685 INIT_LIST_HEAD(&page->lru);
686 set_page_private(page, order);
687 /* Guard pages are not available for any usage */
688 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
689
690 return true;
c0a32fc5
SG
691}
692
2847cf95
JK
693static inline void clear_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype)
c0a32fc5 695{
e30825f1
JK
696 struct page_ext *page_ext;
697
698 if (!debug_guardpage_enabled())
699 return;
700
701 page_ext = lookup_page_ext(page);
f86e4271
YS
702 if (unlikely(!page_ext))
703 return;
704
e30825f1
JK
705 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
706
2847cf95
JK
707 set_page_private(page, 0);
708 if (!is_migrate_isolate(migratetype))
709 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
710}
711#else
980ac167 712struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
713static inline bool set_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype) { return false; }
2847cf95
JK
715static inline void clear_page_guard(struct zone *zone, struct page *page,
716 unsigned int order, int migratetype) {}
c0a32fc5
SG
717#endif
718
7aeb09f9 719static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 720{
4c21e2f2 721 set_page_private(page, order);
676165a8 722 __SetPageBuddy(page);
1da177e4
LT
723}
724
725static inline void rmv_page_order(struct page *page)
726{
676165a8 727 __ClearPageBuddy(page);
4c21e2f2 728 set_page_private(page, 0);
1da177e4
LT
729}
730
1da177e4
LT
731/*
732 * This function checks whether a page is free && is the buddy
733 * we can do coalesce a page and its buddy if
13ad59df 734 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 735 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
736 * (c) a page and its buddy have the same order &&
737 * (d) a page and its buddy are in the same zone.
676165a8 738 *
cf6fe945
WSH
739 * For recording whether a page is in the buddy system, we set ->_mapcount
740 * PAGE_BUDDY_MAPCOUNT_VALUE.
741 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
742 * serialized by zone->lock.
1da177e4 743 *
676165a8 744 * For recording page's order, we use page_private(page).
1da177e4 745 */
cb2b95e1 746static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 747 unsigned int order)
1da177e4 748{
c0a32fc5 749 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
4c5018ce
WY
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
c0a32fc5
SG
755 return 1;
756 }
757
cb2b95e1 758 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
759 /*
760 * zone check is done late to avoid uselessly
761 * calculating zone/node ids for pages that could
762 * never merge.
763 */
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
4c5018ce
WY
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
6aa3001b 769 return 1;
676165a8 770 }
6aa3001b 771 return 0;
1da177e4
LT
772}
773
774/*
775 * Freeing function for a buddy system allocator.
776 *
777 * The concept of a buddy system is to maintain direct-mapped table
778 * (containing bit values) for memory blocks of various "orders".
779 * The bottom level table contains the map for the smallest allocatable
780 * units of memory (here, pages), and each level above it describes
781 * pairs of units from the levels below, hence, "buddies".
782 * At a high level, all that happens here is marking the table entry
783 * at the bottom level available, and propagating the changes upward
784 * as necessary, plus some accounting needed to play nicely with other
785 * parts of the VM system.
786 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
787 * free pages of length of (1 << order) and marked with _mapcount
788 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
789 * field.
1da177e4 790 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
791 * other. That is, if we allocate a small block, and both were
792 * free, the remainder of the region must be split into blocks.
1da177e4 793 * If a block is freed, and its buddy is also free, then this
5f63b720 794 * triggers coalescing into a block of larger size.
1da177e4 795 *
6d49e352 796 * -- nyc
1da177e4
LT
797 */
798
48db57f8 799static inline void __free_one_page(struct page *page,
dc4b0caf 800 unsigned long pfn,
ed0ae21d
MG
801 struct zone *zone, unsigned int order,
802 int migratetype)
1da177e4 803{
76741e77
VB
804 unsigned long combined_pfn;
805 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 806 struct page *buddy;
d9dddbf5
VB
807 unsigned int max_order;
808
809 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 810
d29bb978 811 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 812 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 813
ed0ae21d 814 VM_BUG_ON(migratetype == -1);
d9dddbf5 815 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 816 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 817
76741e77 818 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 819 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 820
d9dddbf5 821continue_merging:
3c605096 822 while (order < max_order - 1) {
76741e77
VB
823 buddy_pfn = __find_buddy_pfn(pfn, order);
824 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
825
826 if (!pfn_valid_within(buddy_pfn))
827 goto done_merging;
cb2b95e1 828 if (!page_is_buddy(page, buddy, order))
d9dddbf5 829 goto done_merging;
c0a32fc5
SG
830 /*
831 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
832 * merge with it and move up one order.
833 */
834 if (page_is_guard(buddy)) {
2847cf95 835 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
836 } else {
837 list_del(&buddy->lru);
838 zone->free_area[order].nr_free--;
839 rmv_page_order(buddy);
840 }
76741e77
VB
841 combined_pfn = buddy_pfn & pfn;
842 page = page + (combined_pfn - pfn);
843 pfn = combined_pfn;
1da177e4
LT
844 order++;
845 }
d9dddbf5
VB
846 if (max_order < MAX_ORDER) {
847 /* If we are here, it means order is >= pageblock_order.
848 * We want to prevent merge between freepages on isolate
849 * pageblock and normal pageblock. Without this, pageblock
850 * isolation could cause incorrect freepage or CMA accounting.
851 *
852 * We don't want to hit this code for the more frequent
853 * low-order merging.
854 */
855 if (unlikely(has_isolate_pageblock(zone))) {
856 int buddy_mt;
857
76741e77
VB
858 buddy_pfn = __find_buddy_pfn(pfn, order);
859 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
860 buddy_mt = get_pageblock_migratetype(buddy);
861
862 if (migratetype != buddy_mt
863 && (is_migrate_isolate(migratetype) ||
864 is_migrate_isolate(buddy_mt)))
865 goto done_merging;
866 }
867 max_order++;
868 goto continue_merging;
869 }
870
871done_merging:
1da177e4 872 set_page_order(page, order);
6dda9d55
CZ
873
874 /*
875 * If this is not the largest possible page, check if the buddy
876 * of the next-highest order is free. If it is, it's possible
877 * that pages are being freed that will coalesce soon. In case,
878 * that is happening, add the free page to the tail of the list
879 * so it's less likely to be used soon and more likely to be merged
880 * as a higher order page
881 */
13ad59df 882 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 883 struct page *higher_page, *higher_buddy;
76741e77
VB
884 combined_pfn = buddy_pfn & pfn;
885 higher_page = page + (combined_pfn - pfn);
886 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
887 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
888 if (pfn_valid_within(buddy_pfn) &&
889 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
890 list_add_tail(&page->lru,
891 &zone->free_area[order].free_list[migratetype]);
892 goto out;
893 }
894 }
895
896 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
897out:
1da177e4
LT
898 zone->free_area[order].nr_free++;
899}
900
7bfec6f4
MG
901/*
902 * A bad page could be due to a number of fields. Instead of multiple branches,
903 * try and check multiple fields with one check. The caller must do a detailed
904 * check if necessary.
905 */
906static inline bool page_expected_state(struct page *page,
907 unsigned long check_flags)
908{
909 if (unlikely(atomic_read(&page->_mapcount) != -1))
910 return false;
911
912 if (unlikely((unsigned long)page->mapping |
913 page_ref_count(page) |
914#ifdef CONFIG_MEMCG
915 (unsigned long)page->mem_cgroup |
916#endif
917 (page->flags & check_flags)))
918 return false;
919
920 return true;
921}
922
bb552ac6 923static void free_pages_check_bad(struct page *page)
1da177e4 924{
7bfec6f4
MG
925 const char *bad_reason;
926 unsigned long bad_flags;
927
7bfec6f4
MG
928 bad_reason = NULL;
929 bad_flags = 0;
f0b791a3 930
53f9263b 931 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
932 bad_reason = "nonzero mapcount";
933 if (unlikely(page->mapping != NULL))
934 bad_reason = "non-NULL mapping";
fe896d18 935 if (unlikely(page_ref_count(page) != 0))
0139aa7b 936 bad_reason = "nonzero _refcount";
f0b791a3
DH
937 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
938 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
940 }
9edad6ea
JW
941#ifdef CONFIG_MEMCG
942 if (unlikely(page->mem_cgroup))
943 bad_reason = "page still charged to cgroup";
944#endif
7bfec6f4 945 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
946}
947
948static inline int free_pages_check(struct page *page)
949{
da838d4f 950 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 951 return 0;
bb552ac6
MG
952
953 /* Something has gone sideways, find it */
954 free_pages_check_bad(page);
7bfec6f4 955 return 1;
1da177e4
LT
956}
957
4db7548c
MG
958static int free_tail_pages_check(struct page *head_page, struct page *page)
959{
960 int ret = 1;
961
962 /*
963 * We rely page->lru.next never has bit 0 set, unless the page
964 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
965 */
966 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
967
968 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
969 ret = 0;
970 goto out;
971 }
972 switch (page - head_page) {
973 case 1:
974 /* the first tail page: ->mapping is compound_mapcount() */
975 if (unlikely(compound_mapcount(page))) {
976 bad_page(page, "nonzero compound_mapcount", 0);
977 goto out;
978 }
979 break;
980 case 2:
981 /*
982 * the second tail page: ->mapping is
983 * page_deferred_list().next -- ignore value.
984 */
985 break;
986 default:
987 if (page->mapping != TAIL_MAPPING) {
988 bad_page(page, "corrupted mapping in tail page", 0);
989 goto out;
990 }
991 break;
992 }
993 if (unlikely(!PageTail(page))) {
994 bad_page(page, "PageTail not set", 0);
995 goto out;
996 }
997 if (unlikely(compound_head(page) != head_page)) {
998 bad_page(page, "compound_head not consistent", 0);
999 goto out;
1000 }
1001 ret = 0;
1002out:
1003 page->mapping = NULL;
1004 clear_compound_head(page);
1005 return ret;
1006}
1007
e2769dbd
MG
1008static __always_inline bool free_pages_prepare(struct page *page,
1009 unsigned int order, bool check_free)
4db7548c 1010{
e2769dbd 1011 int bad = 0;
4db7548c 1012
4db7548c
MG
1013 VM_BUG_ON_PAGE(PageTail(page), page);
1014
e2769dbd
MG
1015 trace_mm_page_free(page, order);
1016 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1017
1018 /*
1019 * Check tail pages before head page information is cleared to
1020 * avoid checking PageCompound for order-0 pages.
1021 */
1022 if (unlikely(order)) {
1023 bool compound = PageCompound(page);
1024 int i;
1025
1026 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1027
9a73f61b
KS
1028 if (compound)
1029 ClearPageDoubleMap(page);
e2769dbd
MG
1030 for (i = 1; i < (1 << order); i++) {
1031 if (compound)
1032 bad += free_tail_pages_check(page, page + i);
1033 if (unlikely(free_pages_check(page + i))) {
1034 bad++;
1035 continue;
1036 }
1037 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1038 }
1039 }
bda807d4 1040 if (PageMappingFlags(page))
4db7548c 1041 page->mapping = NULL;
c4159a75 1042 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1043 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1044 if (check_free)
1045 bad += free_pages_check(page);
1046 if (bad)
1047 return false;
4db7548c 1048
e2769dbd
MG
1049 page_cpupid_reset_last(page);
1050 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 reset_page_owner(page, order);
4db7548c
MG
1052
1053 if (!PageHighMem(page)) {
1054 debug_check_no_locks_freed(page_address(page),
e2769dbd 1055 PAGE_SIZE << order);
4db7548c 1056 debug_check_no_obj_freed(page_address(page),
e2769dbd 1057 PAGE_SIZE << order);
4db7548c 1058 }
e2769dbd
MG
1059 arch_free_page(page, order);
1060 kernel_poison_pages(page, 1 << order, 0);
1061 kernel_map_pages(page, 1 << order, 0);
29b52de1 1062 kasan_free_pages(page, order);
4db7548c 1063
4db7548c
MG
1064 return true;
1065}
1066
e2769dbd
MG
1067#ifdef CONFIG_DEBUG_VM
1068static inline bool free_pcp_prepare(struct page *page)
1069{
1070 return free_pages_prepare(page, 0, true);
1071}
1072
1073static inline bool bulkfree_pcp_prepare(struct page *page)
1074{
1075 return false;
1076}
1077#else
1078static bool free_pcp_prepare(struct page *page)
1079{
1080 return free_pages_prepare(page, 0, false);
1081}
1082
4db7548c
MG
1083static bool bulkfree_pcp_prepare(struct page *page)
1084{
1085 return free_pages_check(page);
1086}
1087#endif /* CONFIG_DEBUG_VM */
1088
1da177e4 1089/*
5f8dcc21 1090 * Frees a number of pages from the PCP lists
1da177e4 1091 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1092 * count is the number of pages to free.
1da177e4
LT
1093 *
1094 * If the zone was previously in an "all pages pinned" state then look to
1095 * see if this freeing clears that state.
1096 *
1097 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1098 * pinned" detection logic.
1099 */
5f8dcc21
MG
1100static void free_pcppages_bulk(struct zone *zone, int count,
1101 struct per_cpu_pages *pcp)
1da177e4 1102{
5f8dcc21 1103 int migratetype = 0;
a6f9edd6 1104 int batch_free = 0;
3777999d 1105 bool isolated_pageblocks;
5f8dcc21 1106
d34b0733 1107 spin_lock(&zone->lock);
3777999d 1108 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1109
e5b31ac2 1110 while (count) {
48db57f8 1111 struct page *page;
5f8dcc21
MG
1112 struct list_head *list;
1113
1114 /*
a6f9edd6
MG
1115 * Remove pages from lists in a round-robin fashion. A
1116 * batch_free count is maintained that is incremented when an
1117 * empty list is encountered. This is so more pages are freed
1118 * off fuller lists instead of spinning excessively around empty
1119 * lists
5f8dcc21
MG
1120 */
1121 do {
a6f9edd6 1122 batch_free++;
5f8dcc21
MG
1123 if (++migratetype == MIGRATE_PCPTYPES)
1124 migratetype = 0;
1125 list = &pcp->lists[migratetype];
1126 } while (list_empty(list));
48db57f8 1127
1d16871d
NK
1128 /* This is the only non-empty list. Free them all. */
1129 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1130 batch_free = count;
1d16871d 1131
a6f9edd6 1132 do {
770c8aaa
BZ
1133 int mt; /* migratetype of the to-be-freed page */
1134
a16601c5 1135 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1136 /* must delete as __free_one_page list manipulates */
1137 list_del(&page->lru);
aa016d14 1138
bb14c2c7 1139 mt = get_pcppage_migratetype(page);
aa016d14
VB
1140 /* MIGRATE_ISOLATE page should not go to pcplists */
1141 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1142 /* Pageblock could have been isolated meanwhile */
3777999d 1143 if (unlikely(isolated_pageblocks))
51bb1a40 1144 mt = get_pageblock_migratetype(page);
51bb1a40 1145
4db7548c
MG
1146 if (bulkfree_pcp_prepare(page))
1147 continue;
1148
dc4b0caf 1149 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1150 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1151 } while (--count && --batch_free && !list_empty(list));
1da177e4 1152 }
d34b0733 1153 spin_unlock(&zone->lock);
1da177e4
LT
1154}
1155
dc4b0caf
MG
1156static void free_one_page(struct zone *zone,
1157 struct page *page, unsigned long pfn,
7aeb09f9 1158 unsigned int order,
ed0ae21d 1159 int migratetype)
1da177e4 1160{
d34b0733 1161 spin_lock(&zone->lock);
ad53f92e
JK
1162 if (unlikely(has_isolate_pageblock(zone) ||
1163 is_migrate_isolate(migratetype))) {
1164 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1165 }
dc4b0caf 1166 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1167 spin_unlock(&zone->lock);
48db57f8
NP
1168}
1169
1e8ce83c
RH
1170static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1171 unsigned long zone, int nid)
1172{
1e8ce83c 1173 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1174 init_page_count(page);
1175 page_mapcount_reset(page);
1176 page_cpupid_reset_last(page);
1e8ce83c 1177
1e8ce83c
RH
1178 INIT_LIST_HEAD(&page->lru);
1179#ifdef WANT_PAGE_VIRTUAL
1180 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1181 if (!is_highmem_idx(zone))
1182 set_page_address(page, __va(pfn << PAGE_SHIFT));
1183#endif
1184}
1185
1186static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1187 int nid)
1188{
1189 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1190}
1191
7e18adb4
MG
1192#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1193static void init_reserved_page(unsigned long pfn)
1194{
1195 pg_data_t *pgdat;
1196 int nid, zid;
1197
1198 if (!early_page_uninitialised(pfn))
1199 return;
1200
1201 nid = early_pfn_to_nid(pfn);
1202 pgdat = NODE_DATA(nid);
1203
1204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1205 struct zone *zone = &pgdat->node_zones[zid];
1206
1207 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1208 break;
1209 }
1210 __init_single_pfn(pfn, zid, nid);
1211}
1212#else
1213static inline void init_reserved_page(unsigned long pfn)
1214{
1215}
1216#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1217
92923ca3
NZ
1218/*
1219 * Initialised pages do not have PageReserved set. This function is
1220 * called for each range allocated by the bootmem allocator and
1221 * marks the pages PageReserved. The remaining valid pages are later
1222 * sent to the buddy page allocator.
1223 */
4b50bcc7 1224void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1225{
1226 unsigned long start_pfn = PFN_DOWN(start);
1227 unsigned long end_pfn = PFN_UP(end);
1228
7e18adb4
MG
1229 for (; start_pfn < end_pfn; start_pfn++) {
1230 if (pfn_valid(start_pfn)) {
1231 struct page *page = pfn_to_page(start_pfn);
1232
1233 init_reserved_page(start_pfn);
1d798ca3
KS
1234
1235 /* Avoid false-positive PageTail() */
1236 INIT_LIST_HEAD(&page->lru);
1237
7e18adb4
MG
1238 SetPageReserved(page);
1239 }
1240 }
92923ca3
NZ
1241}
1242
ec95f53a
KM
1243static void __free_pages_ok(struct page *page, unsigned int order)
1244{
d34b0733 1245 unsigned long flags;
95e34412 1246 int migratetype;
dc4b0caf 1247 unsigned long pfn = page_to_pfn(page);
ec95f53a 1248
e2769dbd 1249 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1250 return;
1251
cfc47a28 1252 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1253 local_irq_save(flags);
1254 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1255 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1256 local_irq_restore(flags);
1da177e4
LT
1257}
1258
949698a3 1259static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1260{
c3993076 1261 unsigned int nr_pages = 1 << order;
e2d0bd2b 1262 struct page *p = page;
c3993076 1263 unsigned int loop;
a226f6c8 1264
e2d0bd2b
YL
1265 prefetchw(p);
1266 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1267 prefetchw(p + 1);
c3993076
JW
1268 __ClearPageReserved(p);
1269 set_page_count(p, 0);
a226f6c8 1270 }
e2d0bd2b
YL
1271 __ClearPageReserved(p);
1272 set_page_count(p, 0);
c3993076 1273
e2d0bd2b 1274 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1275 set_page_refcounted(page);
1276 __free_pages(page, order);
a226f6c8
DH
1277}
1278
75a592a4
MG
1279#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1280 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1281
75a592a4
MG
1282static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1283
1284int __meminit early_pfn_to_nid(unsigned long pfn)
1285{
7ace9917 1286 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1287 int nid;
1288
7ace9917 1289 spin_lock(&early_pfn_lock);
75a592a4 1290 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1291 if (nid < 0)
e4568d38 1292 nid = first_online_node;
7ace9917
MG
1293 spin_unlock(&early_pfn_lock);
1294
1295 return nid;
75a592a4
MG
1296}
1297#endif
1298
1299#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1300static inline bool __meminit __maybe_unused
1301meminit_pfn_in_nid(unsigned long pfn, int node,
1302 struct mminit_pfnnid_cache *state)
75a592a4
MG
1303{
1304 int nid;
1305
1306 nid = __early_pfn_to_nid(pfn, state);
1307 if (nid >= 0 && nid != node)
1308 return false;
1309 return true;
1310}
1311
1312/* Only safe to use early in boot when initialisation is single-threaded */
1313static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314{
1315 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1316}
1317
1318#else
1319
1320static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1321{
1322 return true;
1323}
d73d3c9f
MK
1324static inline bool __meminit __maybe_unused
1325meminit_pfn_in_nid(unsigned long pfn, int node,
1326 struct mminit_pfnnid_cache *state)
75a592a4
MG
1327{
1328 return true;
1329}
1330#endif
1331
1332
0e1cc95b 1333void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1334 unsigned int order)
1335{
1336 if (early_page_uninitialised(pfn))
1337 return;
949698a3 1338 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1339}
1340
7cf91a98
JK
1341/*
1342 * Check that the whole (or subset of) a pageblock given by the interval of
1343 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1344 * with the migration of free compaction scanner. The scanners then need to
1345 * use only pfn_valid_within() check for arches that allow holes within
1346 * pageblocks.
1347 *
1348 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1349 *
1350 * It's possible on some configurations to have a setup like node0 node1 node0
1351 * i.e. it's possible that all pages within a zones range of pages do not
1352 * belong to a single zone. We assume that a border between node0 and node1
1353 * can occur within a single pageblock, but not a node0 node1 node0
1354 * interleaving within a single pageblock. It is therefore sufficient to check
1355 * the first and last page of a pageblock and avoid checking each individual
1356 * page in a pageblock.
1357 */
1358struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1359 unsigned long end_pfn, struct zone *zone)
1360{
1361 struct page *start_page;
1362 struct page *end_page;
1363
1364 /* end_pfn is one past the range we are checking */
1365 end_pfn--;
1366
1367 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1368 return NULL;
1369
2d070eab
MH
1370 start_page = pfn_to_online_page(start_pfn);
1371 if (!start_page)
1372 return NULL;
7cf91a98
JK
1373
1374 if (page_zone(start_page) != zone)
1375 return NULL;
1376
1377 end_page = pfn_to_page(end_pfn);
1378
1379 /* This gives a shorter code than deriving page_zone(end_page) */
1380 if (page_zone_id(start_page) != page_zone_id(end_page))
1381 return NULL;
1382
1383 return start_page;
1384}
1385
1386void set_zone_contiguous(struct zone *zone)
1387{
1388 unsigned long block_start_pfn = zone->zone_start_pfn;
1389 unsigned long block_end_pfn;
1390
1391 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1392 for (; block_start_pfn < zone_end_pfn(zone);
1393 block_start_pfn = block_end_pfn,
1394 block_end_pfn += pageblock_nr_pages) {
1395
1396 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1397
1398 if (!__pageblock_pfn_to_page(block_start_pfn,
1399 block_end_pfn, zone))
1400 return;
1401 }
1402
1403 /* We confirm that there is no hole */
1404 zone->contiguous = true;
1405}
1406
1407void clear_zone_contiguous(struct zone *zone)
1408{
1409 zone->contiguous = false;
1410}
1411
7e18adb4 1412#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1413static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1414 unsigned long pfn, int nr_pages)
1415{
1416 int i;
1417
1418 if (!page)
1419 return;
1420
1421 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1422 if (nr_pages == pageblock_nr_pages &&
1423 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1424 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1425 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1426 return;
1427 }
1428
e780149b
XQ
1429 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1430 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1431 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1432 __free_pages_boot_core(page, 0);
e780149b 1433 }
a4de83dd
MG
1434}
1435
d3cd131d
NS
1436/* Completion tracking for deferred_init_memmap() threads */
1437static atomic_t pgdat_init_n_undone __initdata;
1438static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1439
1440static inline void __init pgdat_init_report_one_done(void)
1441{
1442 if (atomic_dec_and_test(&pgdat_init_n_undone))
1443 complete(&pgdat_init_all_done_comp);
1444}
0e1cc95b 1445
7e18adb4 1446/* Initialise remaining memory on a node */
0e1cc95b 1447static int __init deferred_init_memmap(void *data)
7e18adb4 1448{
0e1cc95b
MG
1449 pg_data_t *pgdat = data;
1450 int nid = pgdat->node_id;
7e18adb4
MG
1451 struct mminit_pfnnid_cache nid_init_state = { };
1452 unsigned long start = jiffies;
1453 unsigned long nr_pages = 0;
1454 unsigned long walk_start, walk_end;
1455 int i, zid;
1456 struct zone *zone;
7e18adb4 1457 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1458 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1459
0e1cc95b 1460 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1461 pgdat_init_report_one_done();
0e1cc95b
MG
1462 return 0;
1463 }
1464
1465 /* Bind memory initialisation thread to a local node if possible */
1466 if (!cpumask_empty(cpumask))
1467 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1468
1469 /* Sanity check boundaries */
1470 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1471 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1472 pgdat->first_deferred_pfn = ULONG_MAX;
1473
1474 /* Only the highest zone is deferred so find it */
1475 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1476 zone = pgdat->node_zones + zid;
1477 if (first_init_pfn < zone_end_pfn(zone))
1478 break;
1479 }
1480
1481 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1482 unsigned long pfn, end_pfn;
54608c3f 1483 struct page *page = NULL;
a4de83dd
MG
1484 struct page *free_base_page = NULL;
1485 unsigned long free_base_pfn = 0;
1486 int nr_to_free = 0;
7e18adb4
MG
1487
1488 end_pfn = min(walk_end, zone_end_pfn(zone));
1489 pfn = first_init_pfn;
1490 if (pfn < walk_start)
1491 pfn = walk_start;
1492 if (pfn < zone->zone_start_pfn)
1493 pfn = zone->zone_start_pfn;
1494
1495 for (; pfn < end_pfn; pfn++) {
54608c3f 1496 if (!pfn_valid_within(pfn))
a4de83dd 1497 goto free_range;
7e18adb4 1498
54608c3f
MG
1499 /*
1500 * Ensure pfn_valid is checked every
e780149b 1501 * pageblock_nr_pages for memory holes
54608c3f 1502 */
e780149b 1503 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1504 if (!pfn_valid(pfn)) {
1505 page = NULL;
a4de83dd 1506 goto free_range;
54608c3f
MG
1507 }
1508 }
1509
1510 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1511 page = NULL;
a4de83dd 1512 goto free_range;
54608c3f
MG
1513 }
1514
1515 /* Minimise pfn page lookups and scheduler checks */
e780149b 1516 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1517 page++;
1518 } else {
a4de83dd
MG
1519 nr_pages += nr_to_free;
1520 deferred_free_range(free_base_page,
1521 free_base_pfn, nr_to_free);
1522 free_base_page = NULL;
1523 free_base_pfn = nr_to_free = 0;
1524
54608c3f
MG
1525 page = pfn_to_page(pfn);
1526 cond_resched();
1527 }
7e18adb4
MG
1528
1529 if (page->flags) {
1530 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1531 goto free_range;
7e18adb4
MG
1532 }
1533
1534 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1535 if (!free_base_page) {
1536 free_base_page = page;
1537 free_base_pfn = pfn;
1538 nr_to_free = 0;
1539 }
1540 nr_to_free++;
1541
1542 /* Where possible, batch up pages for a single free */
1543 continue;
1544free_range:
1545 /* Free the current block of pages to allocator */
1546 nr_pages += nr_to_free;
1547 deferred_free_range(free_base_page, free_base_pfn,
1548 nr_to_free);
1549 free_base_page = NULL;
1550 free_base_pfn = nr_to_free = 0;
7e18adb4 1551 }
e780149b
XQ
1552 /* Free the last block of pages to allocator */
1553 nr_pages += nr_to_free;
1554 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1555
7e18adb4
MG
1556 first_init_pfn = max(end_pfn, first_init_pfn);
1557 }
1558
1559 /* Sanity check that the next zone really is unpopulated */
1560 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1561
0e1cc95b 1562 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1563 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1564
1565 pgdat_init_report_one_done();
0e1cc95b
MG
1566 return 0;
1567}
7cf91a98 1568#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1569
1570void __init page_alloc_init_late(void)
1571{
7cf91a98
JK
1572 struct zone *zone;
1573
1574#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1575 int nid;
1576
d3cd131d
NS
1577 /* There will be num_node_state(N_MEMORY) threads */
1578 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1579 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1580 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1581 }
1582
1583 /* Block until all are initialised */
d3cd131d 1584 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1585
1586 /* Reinit limits that are based on free pages after the kernel is up */
1587 files_maxfiles_init();
7cf91a98 1588#endif
3010f876
PT
1589#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1590 /* Discard memblock private memory */
1591 memblock_discard();
1592#endif
7cf91a98
JK
1593
1594 for_each_populated_zone(zone)
1595 set_zone_contiguous(zone);
7e18adb4 1596}
7e18adb4 1597
47118af0 1598#ifdef CONFIG_CMA
9cf510a5 1599/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1600void __init init_cma_reserved_pageblock(struct page *page)
1601{
1602 unsigned i = pageblock_nr_pages;
1603 struct page *p = page;
1604
1605 do {
1606 __ClearPageReserved(p);
1607 set_page_count(p, 0);
1608 } while (++p, --i);
1609
47118af0 1610 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1611
1612 if (pageblock_order >= MAX_ORDER) {
1613 i = pageblock_nr_pages;
1614 p = page;
1615 do {
1616 set_page_refcounted(p);
1617 __free_pages(p, MAX_ORDER - 1);
1618 p += MAX_ORDER_NR_PAGES;
1619 } while (i -= MAX_ORDER_NR_PAGES);
1620 } else {
1621 set_page_refcounted(page);
1622 __free_pages(page, pageblock_order);
1623 }
1624
3dcc0571 1625 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1626}
1627#endif
1da177e4
LT
1628
1629/*
1630 * The order of subdivision here is critical for the IO subsystem.
1631 * Please do not alter this order without good reasons and regression
1632 * testing. Specifically, as large blocks of memory are subdivided,
1633 * the order in which smaller blocks are delivered depends on the order
1634 * they're subdivided in this function. This is the primary factor
1635 * influencing the order in which pages are delivered to the IO
1636 * subsystem according to empirical testing, and this is also justified
1637 * by considering the behavior of a buddy system containing a single
1638 * large block of memory acted on by a series of small allocations.
1639 * This behavior is a critical factor in sglist merging's success.
1640 *
6d49e352 1641 * -- nyc
1da177e4 1642 */
085cc7d5 1643static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1644 int low, int high, struct free_area *area,
1645 int migratetype)
1da177e4
LT
1646{
1647 unsigned long size = 1 << high;
1648
1649 while (high > low) {
1650 area--;
1651 high--;
1652 size >>= 1;
309381fe 1653 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1654
acbc15a4
JK
1655 /*
1656 * Mark as guard pages (or page), that will allow to
1657 * merge back to allocator when buddy will be freed.
1658 * Corresponding page table entries will not be touched,
1659 * pages will stay not present in virtual address space
1660 */
1661 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1662 continue;
acbc15a4 1663
b2a0ac88 1664 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1665 area->nr_free++;
1666 set_page_order(&page[size], high);
1667 }
1da177e4
LT
1668}
1669
4e611801 1670static void check_new_page_bad(struct page *page)
1da177e4 1671{
4e611801
VB
1672 const char *bad_reason = NULL;
1673 unsigned long bad_flags = 0;
7bfec6f4 1674
53f9263b 1675 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1676 bad_reason = "nonzero mapcount";
1677 if (unlikely(page->mapping != NULL))
1678 bad_reason = "non-NULL mapping";
fe896d18 1679 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1680 bad_reason = "nonzero _count";
f4c18e6f
NH
1681 if (unlikely(page->flags & __PG_HWPOISON)) {
1682 bad_reason = "HWPoisoned (hardware-corrupted)";
1683 bad_flags = __PG_HWPOISON;
e570f56c
NH
1684 /* Don't complain about hwpoisoned pages */
1685 page_mapcount_reset(page); /* remove PageBuddy */
1686 return;
f4c18e6f 1687 }
f0b791a3
DH
1688 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1689 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1690 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1691 }
9edad6ea
JW
1692#ifdef CONFIG_MEMCG
1693 if (unlikely(page->mem_cgroup))
1694 bad_reason = "page still charged to cgroup";
1695#endif
4e611801
VB
1696 bad_page(page, bad_reason, bad_flags);
1697}
1698
1699/*
1700 * This page is about to be returned from the page allocator
1701 */
1702static inline int check_new_page(struct page *page)
1703{
1704 if (likely(page_expected_state(page,
1705 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1706 return 0;
1707
1708 check_new_page_bad(page);
1709 return 1;
2a7684a2
WF
1710}
1711
bd33ef36 1712static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1713{
1714 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1715 page_poisoning_enabled();
1414c7f4
LA
1716}
1717
479f854a
MG
1718#ifdef CONFIG_DEBUG_VM
1719static bool check_pcp_refill(struct page *page)
1720{
1721 return false;
1722}
1723
1724static bool check_new_pcp(struct page *page)
1725{
1726 return check_new_page(page);
1727}
1728#else
1729static bool check_pcp_refill(struct page *page)
1730{
1731 return check_new_page(page);
1732}
1733static bool check_new_pcp(struct page *page)
1734{
1735 return false;
1736}
1737#endif /* CONFIG_DEBUG_VM */
1738
1739static bool check_new_pages(struct page *page, unsigned int order)
1740{
1741 int i;
1742 for (i = 0; i < (1 << order); i++) {
1743 struct page *p = page + i;
1744
1745 if (unlikely(check_new_page(p)))
1746 return true;
1747 }
1748
1749 return false;
1750}
1751
46f24fd8
JK
1752inline void post_alloc_hook(struct page *page, unsigned int order,
1753 gfp_t gfp_flags)
1754{
1755 set_page_private(page, 0);
1756 set_page_refcounted(page);
1757
1758 arch_alloc_page(page, order);
1759 kernel_map_pages(page, 1 << order, 1);
1760 kernel_poison_pages(page, 1 << order, 1);
1761 kasan_alloc_pages(page, order);
1762 set_page_owner(page, order, gfp_flags);
1763}
1764
479f854a 1765static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1766 unsigned int alloc_flags)
2a7684a2
WF
1767{
1768 int i;
689bcebf 1769
46f24fd8 1770 post_alloc_hook(page, order, gfp_flags);
17cf4406 1771
bd33ef36 1772 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1773 for (i = 0; i < (1 << order); i++)
1774 clear_highpage(page + i);
17cf4406
NP
1775
1776 if (order && (gfp_flags & __GFP_COMP))
1777 prep_compound_page(page, order);
1778
75379191 1779 /*
2f064f34 1780 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1781 * allocate the page. The expectation is that the caller is taking
1782 * steps that will free more memory. The caller should avoid the page
1783 * being used for !PFMEMALLOC purposes.
1784 */
2f064f34
MH
1785 if (alloc_flags & ALLOC_NO_WATERMARKS)
1786 set_page_pfmemalloc(page);
1787 else
1788 clear_page_pfmemalloc(page);
1da177e4
LT
1789}
1790
56fd56b8
MG
1791/*
1792 * Go through the free lists for the given migratetype and remove
1793 * the smallest available page from the freelists
1794 */
728ec980
MG
1795static inline
1796struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1797 int migratetype)
1798{
1799 unsigned int current_order;
b8af2941 1800 struct free_area *area;
56fd56b8
MG
1801 struct page *page;
1802
1803 /* Find a page of the appropriate size in the preferred list */
1804 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1805 area = &(zone->free_area[current_order]);
a16601c5 1806 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1807 struct page, lru);
a16601c5
GT
1808 if (!page)
1809 continue;
56fd56b8
MG
1810 list_del(&page->lru);
1811 rmv_page_order(page);
1812 area->nr_free--;
56fd56b8 1813 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1814 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1815 return page;
1816 }
1817
1818 return NULL;
1819}
1820
1821
b2a0ac88
MG
1822/*
1823 * This array describes the order lists are fallen back to when
1824 * the free lists for the desirable migrate type are depleted
1825 */
47118af0 1826static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1827 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1828 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1829 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1830#ifdef CONFIG_CMA
974a786e 1831 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1832#endif
194159fb 1833#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1834 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1835#endif
b2a0ac88
MG
1836};
1837
dc67647b
JK
1838#ifdef CONFIG_CMA
1839static struct page *__rmqueue_cma_fallback(struct zone *zone,
1840 unsigned int order)
1841{
1842 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1843}
1844#else
1845static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1846 unsigned int order) { return NULL; }
1847#endif
1848
c361be55
MG
1849/*
1850 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1851 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1852 * boundary. If alignment is required, use move_freepages_block()
1853 */
02aa0cdd 1854static int move_freepages(struct zone *zone,
b69a7288 1855 struct page *start_page, struct page *end_page,
02aa0cdd 1856 int migratetype, int *num_movable)
c361be55
MG
1857{
1858 struct page *page;
d00181b9 1859 unsigned int order;
d100313f 1860 int pages_moved = 0;
c361be55
MG
1861
1862#ifndef CONFIG_HOLES_IN_ZONE
1863 /*
1864 * page_zone is not safe to call in this context when
1865 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1866 * anyway as we check zone boundaries in move_freepages_block().
1867 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1868 * grouping pages by mobility
c361be55 1869 */
97ee4ba7 1870 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1871#endif
1872
02aa0cdd
VB
1873 if (num_movable)
1874 *num_movable = 0;
1875
c361be55
MG
1876 for (page = start_page; page <= end_page;) {
1877 if (!pfn_valid_within(page_to_pfn(page))) {
1878 page++;
1879 continue;
1880 }
1881
f073bdc5
AB
1882 /* Make sure we are not inadvertently changing nodes */
1883 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1884
c361be55 1885 if (!PageBuddy(page)) {
02aa0cdd
VB
1886 /*
1887 * We assume that pages that could be isolated for
1888 * migration are movable. But we don't actually try
1889 * isolating, as that would be expensive.
1890 */
1891 if (num_movable &&
1892 (PageLRU(page) || __PageMovable(page)))
1893 (*num_movable)++;
1894
c361be55
MG
1895 page++;
1896 continue;
1897 }
1898
1899 order = page_order(page);
84be48d8
KS
1900 list_move(&page->lru,
1901 &zone->free_area[order].free_list[migratetype]);
c361be55 1902 page += 1 << order;
d100313f 1903 pages_moved += 1 << order;
c361be55
MG
1904 }
1905
d100313f 1906 return pages_moved;
c361be55
MG
1907}
1908
ee6f509c 1909int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1910 int migratetype, int *num_movable)
c361be55
MG
1911{
1912 unsigned long start_pfn, end_pfn;
1913 struct page *start_page, *end_page;
1914
1915 start_pfn = page_to_pfn(page);
d9c23400 1916 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1917 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1918 end_page = start_page + pageblock_nr_pages - 1;
1919 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1920
1921 /* Do not cross zone boundaries */
108bcc96 1922 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1923 start_page = page;
108bcc96 1924 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1925 return 0;
1926
02aa0cdd
VB
1927 return move_freepages(zone, start_page, end_page, migratetype,
1928 num_movable);
c361be55
MG
1929}
1930
2f66a68f
MG
1931static void change_pageblock_range(struct page *pageblock_page,
1932 int start_order, int migratetype)
1933{
1934 int nr_pageblocks = 1 << (start_order - pageblock_order);
1935
1936 while (nr_pageblocks--) {
1937 set_pageblock_migratetype(pageblock_page, migratetype);
1938 pageblock_page += pageblock_nr_pages;
1939 }
1940}
1941
fef903ef 1942/*
9c0415eb
VB
1943 * When we are falling back to another migratetype during allocation, try to
1944 * steal extra free pages from the same pageblocks to satisfy further
1945 * allocations, instead of polluting multiple pageblocks.
1946 *
1947 * If we are stealing a relatively large buddy page, it is likely there will
1948 * be more free pages in the pageblock, so try to steal them all. For
1949 * reclaimable and unmovable allocations, we steal regardless of page size,
1950 * as fragmentation caused by those allocations polluting movable pageblocks
1951 * is worse than movable allocations stealing from unmovable and reclaimable
1952 * pageblocks.
fef903ef 1953 */
4eb7dce6
JK
1954static bool can_steal_fallback(unsigned int order, int start_mt)
1955{
1956 /*
1957 * Leaving this order check is intended, although there is
1958 * relaxed order check in next check. The reason is that
1959 * we can actually steal whole pageblock if this condition met,
1960 * but, below check doesn't guarantee it and that is just heuristic
1961 * so could be changed anytime.
1962 */
1963 if (order >= pageblock_order)
1964 return true;
1965
1966 if (order >= pageblock_order / 2 ||
1967 start_mt == MIGRATE_RECLAIMABLE ||
1968 start_mt == MIGRATE_UNMOVABLE ||
1969 page_group_by_mobility_disabled)
1970 return true;
1971
1972 return false;
1973}
1974
1975/*
1976 * This function implements actual steal behaviour. If order is large enough,
1977 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1978 * pageblock to our migratetype and determine how many already-allocated pages
1979 * are there in the pageblock with a compatible migratetype. If at least half
1980 * of pages are free or compatible, we can change migratetype of the pageblock
1981 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
1982 */
1983static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 1984 int start_type, bool whole_block)
fef903ef 1985{
d00181b9 1986 unsigned int current_order = page_order(page);
3bc48f96 1987 struct free_area *area;
02aa0cdd
VB
1988 int free_pages, movable_pages, alike_pages;
1989 int old_block_type;
1990
1991 old_block_type = get_pageblock_migratetype(page);
fef903ef 1992
3bc48f96
VB
1993 /*
1994 * This can happen due to races and we want to prevent broken
1995 * highatomic accounting.
1996 */
02aa0cdd 1997 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
1998 goto single_page;
1999
fef903ef
SB
2000 /* Take ownership for orders >= pageblock_order */
2001 if (current_order >= pageblock_order) {
2002 change_pageblock_range(page, current_order, start_type);
3bc48f96 2003 goto single_page;
fef903ef
SB
2004 }
2005
3bc48f96
VB
2006 /* We are not allowed to try stealing from the whole block */
2007 if (!whole_block)
2008 goto single_page;
2009
02aa0cdd
VB
2010 free_pages = move_freepages_block(zone, page, start_type,
2011 &movable_pages);
2012 /*
2013 * Determine how many pages are compatible with our allocation.
2014 * For movable allocation, it's the number of movable pages which
2015 * we just obtained. For other types it's a bit more tricky.
2016 */
2017 if (start_type == MIGRATE_MOVABLE) {
2018 alike_pages = movable_pages;
2019 } else {
2020 /*
2021 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2022 * to MOVABLE pageblock, consider all non-movable pages as
2023 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2024 * vice versa, be conservative since we can't distinguish the
2025 * exact migratetype of non-movable pages.
2026 */
2027 if (old_block_type == MIGRATE_MOVABLE)
2028 alike_pages = pageblock_nr_pages
2029 - (free_pages + movable_pages);
2030 else
2031 alike_pages = 0;
2032 }
2033
3bc48f96 2034 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2035 if (!free_pages)
3bc48f96 2036 goto single_page;
fef903ef 2037
02aa0cdd
VB
2038 /*
2039 * If a sufficient number of pages in the block are either free or of
2040 * comparable migratability as our allocation, claim the whole block.
2041 */
2042 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2043 page_group_by_mobility_disabled)
2044 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2045
2046 return;
2047
2048single_page:
2049 area = &zone->free_area[current_order];
2050 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2051}
2052
2149cdae
JK
2053/*
2054 * Check whether there is a suitable fallback freepage with requested order.
2055 * If only_stealable is true, this function returns fallback_mt only if
2056 * we can steal other freepages all together. This would help to reduce
2057 * fragmentation due to mixed migratetype pages in one pageblock.
2058 */
2059int find_suitable_fallback(struct free_area *area, unsigned int order,
2060 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2061{
2062 int i;
2063 int fallback_mt;
2064
2065 if (area->nr_free == 0)
2066 return -1;
2067
2068 *can_steal = false;
2069 for (i = 0;; i++) {
2070 fallback_mt = fallbacks[migratetype][i];
974a786e 2071 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2072 break;
2073
2074 if (list_empty(&area->free_list[fallback_mt]))
2075 continue;
fef903ef 2076
4eb7dce6
JK
2077 if (can_steal_fallback(order, migratetype))
2078 *can_steal = true;
2079
2149cdae
JK
2080 if (!only_stealable)
2081 return fallback_mt;
2082
2083 if (*can_steal)
2084 return fallback_mt;
fef903ef 2085 }
4eb7dce6
JK
2086
2087 return -1;
fef903ef
SB
2088}
2089
0aaa29a5
MG
2090/*
2091 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2092 * there are no empty page blocks that contain a page with a suitable order
2093 */
2094static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2095 unsigned int alloc_order)
2096{
2097 int mt;
2098 unsigned long max_managed, flags;
2099
2100 /*
2101 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2102 * Check is race-prone but harmless.
2103 */
2104 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2105 if (zone->nr_reserved_highatomic >= max_managed)
2106 return;
2107
2108 spin_lock_irqsave(&zone->lock, flags);
2109
2110 /* Recheck the nr_reserved_highatomic limit under the lock */
2111 if (zone->nr_reserved_highatomic >= max_managed)
2112 goto out_unlock;
2113
2114 /* Yoink! */
2115 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2116 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2117 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2118 zone->nr_reserved_highatomic += pageblock_nr_pages;
2119 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2120 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2121 }
2122
2123out_unlock:
2124 spin_unlock_irqrestore(&zone->lock, flags);
2125}
2126
2127/*
2128 * Used when an allocation is about to fail under memory pressure. This
2129 * potentially hurts the reliability of high-order allocations when under
2130 * intense memory pressure but failed atomic allocations should be easier
2131 * to recover from than an OOM.
29fac03b
MK
2132 *
2133 * If @force is true, try to unreserve a pageblock even though highatomic
2134 * pageblock is exhausted.
0aaa29a5 2135 */
29fac03b
MK
2136static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2137 bool force)
0aaa29a5
MG
2138{
2139 struct zonelist *zonelist = ac->zonelist;
2140 unsigned long flags;
2141 struct zoneref *z;
2142 struct zone *zone;
2143 struct page *page;
2144 int order;
04c8716f 2145 bool ret;
0aaa29a5
MG
2146
2147 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2148 ac->nodemask) {
29fac03b
MK
2149 /*
2150 * Preserve at least one pageblock unless memory pressure
2151 * is really high.
2152 */
2153 if (!force && zone->nr_reserved_highatomic <=
2154 pageblock_nr_pages)
0aaa29a5
MG
2155 continue;
2156
2157 spin_lock_irqsave(&zone->lock, flags);
2158 for (order = 0; order < MAX_ORDER; order++) {
2159 struct free_area *area = &(zone->free_area[order]);
2160
a16601c5
GT
2161 page = list_first_entry_or_null(
2162 &area->free_list[MIGRATE_HIGHATOMIC],
2163 struct page, lru);
2164 if (!page)
0aaa29a5
MG
2165 continue;
2166
0aaa29a5 2167 /*
4855e4a7
MK
2168 * In page freeing path, migratetype change is racy so
2169 * we can counter several free pages in a pageblock
2170 * in this loop althoug we changed the pageblock type
2171 * from highatomic to ac->migratetype. So we should
2172 * adjust the count once.
0aaa29a5 2173 */
a6ffdc07 2174 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2175 /*
2176 * It should never happen but changes to
2177 * locking could inadvertently allow a per-cpu
2178 * drain to add pages to MIGRATE_HIGHATOMIC
2179 * while unreserving so be safe and watch for
2180 * underflows.
2181 */
2182 zone->nr_reserved_highatomic -= min(
2183 pageblock_nr_pages,
2184 zone->nr_reserved_highatomic);
2185 }
0aaa29a5
MG
2186
2187 /*
2188 * Convert to ac->migratetype and avoid the normal
2189 * pageblock stealing heuristics. Minimally, the caller
2190 * is doing the work and needs the pages. More
2191 * importantly, if the block was always converted to
2192 * MIGRATE_UNMOVABLE or another type then the number
2193 * of pageblocks that cannot be completely freed
2194 * may increase.
2195 */
2196 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2197 ret = move_freepages_block(zone, page, ac->migratetype,
2198 NULL);
29fac03b
MK
2199 if (ret) {
2200 spin_unlock_irqrestore(&zone->lock, flags);
2201 return ret;
2202 }
0aaa29a5
MG
2203 }
2204 spin_unlock_irqrestore(&zone->lock, flags);
2205 }
04c8716f
MK
2206
2207 return false;
0aaa29a5
MG
2208}
2209
3bc48f96
VB
2210/*
2211 * Try finding a free buddy page on the fallback list and put it on the free
2212 * list of requested migratetype, possibly along with other pages from the same
2213 * block, depending on fragmentation avoidance heuristics. Returns true if
2214 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2215 *
2216 * The use of signed ints for order and current_order is a deliberate
2217 * deviation from the rest of this file, to make the for loop
2218 * condition simpler.
3bc48f96
VB
2219 */
2220static inline bool
b002529d 2221__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2222{
b8af2941 2223 struct free_area *area;
b002529d 2224 int current_order;
b2a0ac88 2225 struct page *page;
4eb7dce6
JK
2226 int fallback_mt;
2227 bool can_steal;
b2a0ac88 2228
7a8f58f3
VB
2229 /*
2230 * Find the largest available free page in the other list. This roughly
2231 * approximates finding the pageblock with the most free pages, which
2232 * would be too costly to do exactly.
2233 */
b002529d 2234 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2235 --current_order) {
4eb7dce6
JK
2236 area = &(zone->free_area[current_order]);
2237 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2238 start_migratetype, false, &can_steal);
4eb7dce6
JK
2239 if (fallback_mt == -1)
2240 continue;
b2a0ac88 2241
7a8f58f3
VB
2242 /*
2243 * We cannot steal all free pages from the pageblock and the
2244 * requested migratetype is movable. In that case it's better to
2245 * steal and split the smallest available page instead of the
2246 * largest available page, because even if the next movable
2247 * allocation falls back into a different pageblock than this
2248 * one, it won't cause permanent fragmentation.
2249 */
2250 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2251 && current_order > order)
2252 goto find_smallest;
b2a0ac88 2253
7a8f58f3
VB
2254 goto do_steal;
2255 }
e0fff1bd 2256
7a8f58f3 2257 return false;
e0fff1bd 2258
7a8f58f3
VB
2259find_smallest:
2260 for (current_order = order; current_order < MAX_ORDER;
2261 current_order++) {
2262 area = &(zone->free_area[current_order]);
2263 fallback_mt = find_suitable_fallback(area, current_order,
2264 start_migratetype, false, &can_steal);
2265 if (fallback_mt != -1)
2266 break;
b2a0ac88
MG
2267 }
2268
7a8f58f3
VB
2269 /*
2270 * This should not happen - we already found a suitable fallback
2271 * when looking for the largest page.
2272 */
2273 VM_BUG_ON(current_order == MAX_ORDER);
2274
2275do_steal:
2276 page = list_first_entry(&area->free_list[fallback_mt],
2277 struct page, lru);
2278
2279 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2280
2281 trace_mm_page_alloc_extfrag(page, order, current_order,
2282 start_migratetype, fallback_mt);
2283
2284 return true;
2285
b2a0ac88
MG
2286}
2287
56fd56b8 2288/*
1da177e4
LT
2289 * Do the hard work of removing an element from the buddy allocator.
2290 * Call me with the zone->lock already held.
2291 */
b2a0ac88 2292static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2293 int migratetype)
1da177e4 2294{
1da177e4
LT
2295 struct page *page;
2296
3bc48f96 2297retry:
56fd56b8 2298 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2299 if (unlikely(!page)) {
dc67647b
JK
2300 if (migratetype == MIGRATE_MOVABLE)
2301 page = __rmqueue_cma_fallback(zone, order);
2302
3bc48f96
VB
2303 if (!page && __rmqueue_fallback(zone, order, migratetype))
2304 goto retry;
728ec980
MG
2305 }
2306
0d3d062a 2307 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2308 return page;
1da177e4
LT
2309}
2310
5f63b720 2311/*
1da177e4
LT
2312 * Obtain a specified number of elements from the buddy allocator, all under
2313 * a single hold of the lock, for efficiency. Add them to the supplied list.
2314 * Returns the number of new pages which were placed at *list.
2315 */
5f63b720 2316static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2317 unsigned long count, struct list_head *list,
b745bc85 2318 int migratetype, bool cold)
1da177e4 2319{
a6de734b 2320 int i, alloced = 0;
5f63b720 2321
d34b0733 2322 spin_lock(&zone->lock);
1da177e4 2323 for (i = 0; i < count; ++i) {
6ac0206b 2324 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2325 if (unlikely(page == NULL))
1da177e4 2326 break;
81eabcbe 2327
479f854a
MG
2328 if (unlikely(check_pcp_refill(page)))
2329 continue;
2330
81eabcbe
MG
2331 /*
2332 * Split buddy pages returned by expand() are received here
2333 * in physical page order. The page is added to the callers and
2334 * list and the list head then moves forward. From the callers
2335 * perspective, the linked list is ordered by page number in
2336 * some conditions. This is useful for IO devices that can
2337 * merge IO requests if the physical pages are ordered
2338 * properly.
2339 */
b745bc85 2340 if (likely(!cold))
e084b2d9
MG
2341 list_add(&page->lru, list);
2342 else
2343 list_add_tail(&page->lru, list);
81eabcbe 2344 list = &page->lru;
a6de734b 2345 alloced++;
bb14c2c7 2346 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2347 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2348 -(1 << order));
1da177e4 2349 }
a6de734b
MG
2350
2351 /*
2352 * i pages were removed from the buddy list even if some leak due
2353 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2354 * on i. Do not confuse with 'alloced' which is the number of
2355 * pages added to the pcp list.
2356 */
f2260e6b 2357 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2358 spin_unlock(&zone->lock);
a6de734b 2359 return alloced;
1da177e4
LT
2360}
2361
4ae7c039 2362#ifdef CONFIG_NUMA
8fce4d8e 2363/*
4037d452
CL
2364 * Called from the vmstat counter updater to drain pagesets of this
2365 * currently executing processor on remote nodes after they have
2366 * expired.
2367 *
879336c3
CL
2368 * Note that this function must be called with the thread pinned to
2369 * a single processor.
8fce4d8e 2370 */
4037d452 2371void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2372{
4ae7c039 2373 unsigned long flags;
7be12fc9 2374 int to_drain, batch;
4ae7c039 2375
4037d452 2376 local_irq_save(flags);
4db0c3c2 2377 batch = READ_ONCE(pcp->batch);
7be12fc9 2378 to_drain = min(pcp->count, batch);
2a13515c
KM
2379 if (to_drain > 0) {
2380 free_pcppages_bulk(zone, to_drain, pcp);
2381 pcp->count -= to_drain;
2382 }
4037d452 2383 local_irq_restore(flags);
4ae7c039
CL
2384}
2385#endif
2386
9f8f2172 2387/*
93481ff0 2388 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2389 *
2390 * The processor must either be the current processor and the
2391 * thread pinned to the current processor or a processor that
2392 * is not online.
2393 */
93481ff0 2394static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2395{
c54ad30c 2396 unsigned long flags;
93481ff0
VB
2397 struct per_cpu_pageset *pset;
2398 struct per_cpu_pages *pcp;
1da177e4 2399
93481ff0
VB
2400 local_irq_save(flags);
2401 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2402
93481ff0
VB
2403 pcp = &pset->pcp;
2404 if (pcp->count) {
2405 free_pcppages_bulk(zone, pcp->count, pcp);
2406 pcp->count = 0;
2407 }
2408 local_irq_restore(flags);
2409}
3dfa5721 2410
93481ff0
VB
2411/*
2412 * Drain pcplists of all zones on the indicated processor.
2413 *
2414 * The processor must either be the current processor and the
2415 * thread pinned to the current processor or a processor that
2416 * is not online.
2417 */
2418static void drain_pages(unsigned int cpu)
2419{
2420 struct zone *zone;
2421
2422 for_each_populated_zone(zone) {
2423 drain_pages_zone(cpu, zone);
1da177e4
LT
2424 }
2425}
1da177e4 2426
9f8f2172
CL
2427/*
2428 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2429 *
2430 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2431 * the single zone's pages.
9f8f2172 2432 */
93481ff0 2433void drain_local_pages(struct zone *zone)
9f8f2172 2434{
93481ff0
VB
2435 int cpu = smp_processor_id();
2436
2437 if (zone)
2438 drain_pages_zone(cpu, zone);
2439 else
2440 drain_pages(cpu);
9f8f2172
CL
2441}
2442
0ccce3b9
MG
2443static void drain_local_pages_wq(struct work_struct *work)
2444{
a459eeb7
MH
2445 /*
2446 * drain_all_pages doesn't use proper cpu hotplug protection so
2447 * we can race with cpu offline when the WQ can move this from
2448 * a cpu pinned worker to an unbound one. We can operate on a different
2449 * cpu which is allright but we also have to make sure to not move to
2450 * a different one.
2451 */
2452 preempt_disable();
0ccce3b9 2453 drain_local_pages(NULL);
a459eeb7 2454 preempt_enable();
0ccce3b9
MG
2455}
2456
9f8f2172 2457/*
74046494
GBY
2458 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2459 *
93481ff0
VB
2460 * When zone parameter is non-NULL, spill just the single zone's pages.
2461 *
0ccce3b9 2462 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2463 */
93481ff0 2464void drain_all_pages(struct zone *zone)
9f8f2172 2465{
74046494 2466 int cpu;
74046494
GBY
2467
2468 /*
2469 * Allocate in the BSS so we wont require allocation in
2470 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2471 */
2472 static cpumask_t cpus_with_pcps;
2473
ce612879
MH
2474 /*
2475 * Make sure nobody triggers this path before mm_percpu_wq is fully
2476 * initialized.
2477 */
2478 if (WARN_ON_ONCE(!mm_percpu_wq))
2479 return;
2480
0ccce3b9
MG
2481 /* Workqueues cannot recurse */
2482 if (current->flags & PF_WQ_WORKER)
2483 return;
2484
bd233f53
MG
2485 /*
2486 * Do not drain if one is already in progress unless it's specific to
2487 * a zone. Such callers are primarily CMA and memory hotplug and need
2488 * the drain to be complete when the call returns.
2489 */
2490 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2491 if (!zone)
2492 return;
2493 mutex_lock(&pcpu_drain_mutex);
2494 }
0ccce3b9 2495
74046494
GBY
2496 /*
2497 * We don't care about racing with CPU hotplug event
2498 * as offline notification will cause the notified
2499 * cpu to drain that CPU pcps and on_each_cpu_mask
2500 * disables preemption as part of its processing
2501 */
2502 for_each_online_cpu(cpu) {
93481ff0
VB
2503 struct per_cpu_pageset *pcp;
2504 struct zone *z;
74046494 2505 bool has_pcps = false;
93481ff0
VB
2506
2507 if (zone) {
74046494 2508 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2509 if (pcp->pcp.count)
74046494 2510 has_pcps = true;
93481ff0
VB
2511 } else {
2512 for_each_populated_zone(z) {
2513 pcp = per_cpu_ptr(z->pageset, cpu);
2514 if (pcp->pcp.count) {
2515 has_pcps = true;
2516 break;
2517 }
74046494
GBY
2518 }
2519 }
93481ff0 2520
74046494
GBY
2521 if (has_pcps)
2522 cpumask_set_cpu(cpu, &cpus_with_pcps);
2523 else
2524 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2525 }
0ccce3b9 2526
bd233f53
MG
2527 for_each_cpu(cpu, &cpus_with_pcps) {
2528 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2529 INIT_WORK(work, drain_local_pages_wq);
ce612879 2530 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2531 }
bd233f53
MG
2532 for_each_cpu(cpu, &cpus_with_pcps)
2533 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2534
2535 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2536}
2537
296699de 2538#ifdef CONFIG_HIBERNATION
1da177e4 2539
556b969a
CY
2540/*
2541 * Touch the watchdog for every WD_PAGE_COUNT pages.
2542 */
2543#define WD_PAGE_COUNT (128*1024)
2544
1da177e4
LT
2545void mark_free_pages(struct zone *zone)
2546{
556b969a 2547 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2548 unsigned long flags;
7aeb09f9 2549 unsigned int order, t;
86760a2c 2550 struct page *page;
1da177e4 2551
8080fc03 2552 if (zone_is_empty(zone))
1da177e4
LT
2553 return;
2554
2555 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2556
108bcc96 2557 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2558 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2559 if (pfn_valid(pfn)) {
86760a2c 2560 page = pfn_to_page(pfn);
ba6b0979 2561
556b969a
CY
2562 if (!--page_count) {
2563 touch_nmi_watchdog();
2564 page_count = WD_PAGE_COUNT;
2565 }
2566
ba6b0979
JK
2567 if (page_zone(page) != zone)
2568 continue;
2569
7be98234
RW
2570 if (!swsusp_page_is_forbidden(page))
2571 swsusp_unset_page_free(page);
f623f0db 2572 }
1da177e4 2573
b2a0ac88 2574 for_each_migratetype_order(order, t) {
86760a2c
GT
2575 list_for_each_entry(page,
2576 &zone->free_area[order].free_list[t], lru) {
f623f0db 2577 unsigned long i;
1da177e4 2578
86760a2c 2579 pfn = page_to_pfn(page);
556b969a
CY
2580 for (i = 0; i < (1UL << order); i++) {
2581 if (!--page_count) {
2582 touch_nmi_watchdog();
2583 page_count = WD_PAGE_COUNT;
2584 }
7be98234 2585 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2586 }
f623f0db 2587 }
b2a0ac88 2588 }
1da177e4
LT
2589 spin_unlock_irqrestore(&zone->lock, flags);
2590}
e2c55dc8 2591#endif /* CONFIG_PM */
1da177e4 2592
1da177e4
LT
2593/*
2594 * Free a 0-order page
b745bc85 2595 * cold == true ? free a cold page : free a hot page
1da177e4 2596 */
b745bc85 2597void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2598{
2599 struct zone *zone = page_zone(page);
2600 struct per_cpu_pages *pcp;
d34b0733 2601 unsigned long flags;
dc4b0caf 2602 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2603 int migratetype;
1da177e4 2604
4db7548c 2605 if (!free_pcp_prepare(page))
689bcebf
HD
2606 return;
2607
dc4b0caf 2608 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2609 set_pcppage_migratetype(page, migratetype);
d34b0733
MG
2610 local_irq_save(flags);
2611 __count_vm_event(PGFREE);
da456f14 2612
5f8dcc21
MG
2613 /*
2614 * We only track unmovable, reclaimable and movable on pcp lists.
2615 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2616 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2617 * areas back if necessary. Otherwise, we may have to free
2618 * excessively into the page allocator
2619 */
2620 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2621 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2622 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2623 goto out;
2624 }
2625 migratetype = MIGRATE_MOVABLE;
2626 }
2627
99dcc3e5 2628 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2629 if (!cold)
5f8dcc21 2630 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2631 else
2632 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2633 pcp->count++;
48db57f8 2634 if (pcp->count >= pcp->high) {
4db0c3c2 2635 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2636 free_pcppages_bulk(zone, batch, pcp);
2637 pcp->count -= batch;
48db57f8 2638 }
5f8dcc21
MG
2639
2640out:
d34b0733 2641 local_irq_restore(flags);
1da177e4
LT
2642}
2643
cc59850e
KK
2644/*
2645 * Free a list of 0-order pages
2646 */
b745bc85 2647void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2648{
2649 struct page *page, *next;
2650
2651 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2652 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2653 free_hot_cold_page(page, cold);
2654 }
2655}
2656
8dfcc9ba
NP
2657/*
2658 * split_page takes a non-compound higher-order page, and splits it into
2659 * n (1<<order) sub-pages: page[0..n]
2660 * Each sub-page must be freed individually.
2661 *
2662 * Note: this is probably too low level an operation for use in drivers.
2663 * Please consult with lkml before using this in your driver.
2664 */
2665void split_page(struct page *page, unsigned int order)
2666{
2667 int i;
2668
309381fe
SL
2669 VM_BUG_ON_PAGE(PageCompound(page), page);
2670 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2671
2672#ifdef CONFIG_KMEMCHECK
2673 /*
2674 * Split shadow pages too, because free(page[0]) would
2675 * otherwise free the whole shadow.
2676 */
2677 if (kmemcheck_page_is_tracked(page))
2678 split_page(virt_to_page(page[0].shadow), order);
2679#endif
2680
a9627bc5 2681 for (i = 1; i < (1 << order); i++)
7835e98b 2682 set_page_refcounted(page + i);
a9627bc5 2683 split_page_owner(page, order);
8dfcc9ba 2684}
5853ff23 2685EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2686
3c605096 2687int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2688{
748446bb
MG
2689 unsigned long watermark;
2690 struct zone *zone;
2139cbe6 2691 int mt;
748446bb
MG
2692
2693 BUG_ON(!PageBuddy(page));
2694
2695 zone = page_zone(page);
2e30abd1 2696 mt = get_pageblock_migratetype(page);
748446bb 2697
194159fb 2698 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2699 /*
2700 * Obey watermarks as if the page was being allocated. We can
2701 * emulate a high-order watermark check with a raised order-0
2702 * watermark, because we already know our high-order page
2703 * exists.
2704 */
2705 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2706 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2707 return 0;
2708
8fb74b9f 2709 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2710 }
748446bb
MG
2711
2712 /* Remove page from free list */
2713 list_del(&page->lru);
2714 zone->free_area[order].nr_free--;
2715 rmv_page_order(page);
2139cbe6 2716
400bc7fd 2717 /*
2718 * Set the pageblock if the isolated page is at least half of a
2719 * pageblock
2720 */
748446bb
MG
2721 if (order >= pageblock_order - 1) {
2722 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2723 for (; page < endpage; page += pageblock_nr_pages) {
2724 int mt = get_pageblock_migratetype(page);
88ed365e 2725 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2726 && !is_migrate_highatomic(mt))
47118af0
MN
2727 set_pageblock_migratetype(page,
2728 MIGRATE_MOVABLE);
2729 }
748446bb
MG
2730 }
2731
f3a14ced 2732
8fb74b9f 2733 return 1UL << order;
1fb3f8ca
MG
2734}
2735
060e7417
MG
2736/*
2737 * Update NUMA hit/miss statistics
2738 *
2739 * Must be called with interrupts disabled.
060e7417 2740 */
41b6167e 2741static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2742{
2743#ifdef CONFIG_NUMA
060e7417
MG
2744 enum zone_stat_item local_stat = NUMA_LOCAL;
2745
2df26639 2746 if (z->node != numa_node_id())
060e7417 2747 local_stat = NUMA_OTHER;
060e7417 2748
2df26639 2749 if (z->node == preferred_zone->node)
060e7417 2750 __inc_zone_state(z, NUMA_HIT);
2df26639 2751 else {
060e7417
MG
2752 __inc_zone_state(z, NUMA_MISS);
2753 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2754 }
2df26639 2755 __inc_zone_state(z, local_stat);
060e7417
MG
2756#endif
2757}
2758
066b2393
MG
2759/* Remove page from the per-cpu list, caller must protect the list */
2760static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2761 bool cold, struct per_cpu_pages *pcp,
2762 struct list_head *list)
2763{
2764 struct page *page;
2765
2766 do {
2767 if (list_empty(list)) {
2768 pcp->count += rmqueue_bulk(zone, 0,
2769 pcp->batch, list,
2770 migratetype, cold);
2771 if (unlikely(list_empty(list)))
2772 return NULL;
2773 }
2774
2775 if (cold)
2776 page = list_last_entry(list, struct page, lru);
2777 else
2778 page = list_first_entry(list, struct page, lru);
2779
2780 list_del(&page->lru);
2781 pcp->count--;
2782 } while (check_new_pcp(page));
2783
2784 return page;
2785}
2786
2787/* Lock and remove page from the per-cpu list */
2788static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2789 struct zone *zone, unsigned int order,
2790 gfp_t gfp_flags, int migratetype)
2791{
2792 struct per_cpu_pages *pcp;
2793 struct list_head *list;
2794 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2795 struct page *page;
d34b0733 2796 unsigned long flags;
066b2393 2797
d34b0733 2798 local_irq_save(flags);
066b2393
MG
2799 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2800 list = &pcp->lists[migratetype];
2801 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2802 if (page) {
2803 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2804 zone_statistics(preferred_zone, zone);
2805 }
d34b0733 2806 local_irq_restore(flags);
066b2393
MG
2807 return page;
2808}
2809
1da177e4 2810/*
75379191 2811 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2812 */
0a15c3e9 2813static inline
066b2393 2814struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2815 struct zone *zone, unsigned int order,
c603844b
MG
2816 gfp_t gfp_flags, unsigned int alloc_flags,
2817 int migratetype)
1da177e4
LT
2818{
2819 unsigned long flags;
689bcebf 2820 struct page *page;
1da177e4 2821
d34b0733 2822 if (likely(order == 0)) {
066b2393
MG
2823 page = rmqueue_pcplist(preferred_zone, zone, order,
2824 gfp_flags, migratetype);
2825 goto out;
2826 }
83b9355b 2827
066b2393
MG
2828 /*
2829 * We most definitely don't want callers attempting to
2830 * allocate greater than order-1 page units with __GFP_NOFAIL.
2831 */
2832 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2833 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2834
066b2393
MG
2835 do {
2836 page = NULL;
2837 if (alloc_flags & ALLOC_HARDER) {
2838 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2839 if (page)
2840 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2841 }
a74609fa 2842 if (!page)
066b2393
MG
2843 page = __rmqueue(zone, order, migratetype);
2844 } while (page && check_new_pages(page, order));
2845 spin_unlock(&zone->lock);
2846 if (!page)
2847 goto failed;
2848 __mod_zone_freepage_state(zone, -(1 << order),
2849 get_pcppage_migratetype(page));
1da177e4 2850
16709d1d 2851 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2852 zone_statistics(preferred_zone, zone);
a74609fa 2853 local_irq_restore(flags);
1da177e4 2854
066b2393
MG
2855out:
2856 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2857 return page;
a74609fa
NP
2858
2859failed:
2860 local_irq_restore(flags);
a74609fa 2861 return NULL;
1da177e4
LT
2862}
2863
933e312e
AM
2864#ifdef CONFIG_FAIL_PAGE_ALLOC
2865
b2588c4b 2866static struct {
933e312e
AM
2867 struct fault_attr attr;
2868
621a5f7a 2869 bool ignore_gfp_highmem;
71baba4b 2870 bool ignore_gfp_reclaim;
54114994 2871 u32 min_order;
933e312e
AM
2872} fail_page_alloc = {
2873 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2874 .ignore_gfp_reclaim = true,
621a5f7a 2875 .ignore_gfp_highmem = true,
54114994 2876 .min_order = 1,
933e312e
AM
2877};
2878
2879static int __init setup_fail_page_alloc(char *str)
2880{
2881 return setup_fault_attr(&fail_page_alloc.attr, str);
2882}
2883__setup("fail_page_alloc=", setup_fail_page_alloc);
2884
deaf386e 2885static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2886{
54114994 2887 if (order < fail_page_alloc.min_order)
deaf386e 2888 return false;
933e312e 2889 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2890 return false;
933e312e 2891 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2892 return false;
71baba4b
MG
2893 if (fail_page_alloc.ignore_gfp_reclaim &&
2894 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2895 return false;
933e312e
AM
2896
2897 return should_fail(&fail_page_alloc.attr, 1 << order);
2898}
2899
2900#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2901
2902static int __init fail_page_alloc_debugfs(void)
2903{
f4ae40a6 2904 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2905 struct dentry *dir;
933e312e 2906
dd48c085
AM
2907 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2908 &fail_page_alloc.attr);
2909 if (IS_ERR(dir))
2910 return PTR_ERR(dir);
933e312e 2911
b2588c4b 2912 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2913 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2914 goto fail;
2915 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2916 &fail_page_alloc.ignore_gfp_highmem))
2917 goto fail;
2918 if (!debugfs_create_u32("min-order", mode, dir,
2919 &fail_page_alloc.min_order))
2920 goto fail;
2921
2922 return 0;
2923fail:
dd48c085 2924 debugfs_remove_recursive(dir);
933e312e 2925
b2588c4b 2926 return -ENOMEM;
933e312e
AM
2927}
2928
2929late_initcall(fail_page_alloc_debugfs);
2930
2931#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2932
2933#else /* CONFIG_FAIL_PAGE_ALLOC */
2934
deaf386e 2935static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2936{
deaf386e 2937 return false;
933e312e
AM
2938}
2939
2940#endif /* CONFIG_FAIL_PAGE_ALLOC */
2941
1da177e4 2942/*
97a16fc8
MG
2943 * Return true if free base pages are above 'mark'. For high-order checks it
2944 * will return true of the order-0 watermark is reached and there is at least
2945 * one free page of a suitable size. Checking now avoids taking the zone lock
2946 * to check in the allocation paths if no pages are free.
1da177e4 2947 */
86a294a8
MH
2948bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2949 int classzone_idx, unsigned int alloc_flags,
2950 long free_pages)
1da177e4 2951{
d23ad423 2952 long min = mark;
1da177e4 2953 int o;
c603844b 2954 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2955
0aaa29a5 2956 /* free_pages may go negative - that's OK */
df0a6daa 2957 free_pages -= (1 << order) - 1;
0aaa29a5 2958
7fb1d9fc 2959 if (alloc_flags & ALLOC_HIGH)
1da177e4 2960 min -= min / 2;
0aaa29a5
MG
2961
2962 /*
2963 * If the caller does not have rights to ALLOC_HARDER then subtract
2964 * the high-atomic reserves. This will over-estimate the size of the
2965 * atomic reserve but it avoids a search.
2966 */
97a16fc8 2967 if (likely(!alloc_harder))
0aaa29a5
MG
2968 free_pages -= z->nr_reserved_highatomic;
2969 else
1da177e4 2970 min -= min / 4;
e2b19197 2971
d95ea5d1
BZ
2972#ifdef CONFIG_CMA
2973 /* If allocation can't use CMA areas don't use free CMA pages */
2974 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2975 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2976#endif
026b0814 2977
97a16fc8
MG
2978 /*
2979 * Check watermarks for an order-0 allocation request. If these
2980 * are not met, then a high-order request also cannot go ahead
2981 * even if a suitable page happened to be free.
2982 */
2983 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2984 return false;
1da177e4 2985
97a16fc8
MG
2986 /* If this is an order-0 request then the watermark is fine */
2987 if (!order)
2988 return true;
2989
2990 /* For a high-order request, check at least one suitable page is free */
2991 for (o = order; o < MAX_ORDER; o++) {
2992 struct free_area *area = &z->free_area[o];
2993 int mt;
2994
2995 if (!area->nr_free)
2996 continue;
2997
2998 if (alloc_harder)
2999 return true;
1da177e4 3000
97a16fc8
MG
3001 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3002 if (!list_empty(&area->free_list[mt]))
3003 return true;
3004 }
3005
3006#ifdef CONFIG_CMA
3007 if ((alloc_flags & ALLOC_CMA) &&
3008 !list_empty(&area->free_list[MIGRATE_CMA])) {
3009 return true;
3010 }
3011#endif
1da177e4 3012 }
97a16fc8 3013 return false;
88f5acf8
MG
3014}
3015
7aeb09f9 3016bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3017 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3018{
3019 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3020 zone_page_state(z, NR_FREE_PAGES));
3021}
3022
48ee5f36
MG
3023static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3024 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3025{
3026 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3027 long cma_pages = 0;
3028
3029#ifdef CONFIG_CMA
3030 /* If allocation can't use CMA areas don't use free CMA pages */
3031 if (!(alloc_flags & ALLOC_CMA))
3032 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3033#endif
3034
3035 /*
3036 * Fast check for order-0 only. If this fails then the reserves
3037 * need to be calculated. There is a corner case where the check
3038 * passes but only the high-order atomic reserve are free. If
3039 * the caller is !atomic then it'll uselessly search the free
3040 * list. That corner case is then slower but it is harmless.
3041 */
3042 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3043 return true;
3044
3045 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3046 free_pages);
3047}
3048
7aeb09f9 3049bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3050 unsigned long mark, int classzone_idx)
88f5acf8
MG
3051{
3052 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3053
3054 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3055 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3056
e2b19197 3057 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3058 free_pages);
1da177e4
LT
3059}
3060
9276b1bc 3061#ifdef CONFIG_NUMA
957f822a
DR
3062static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3063{
e02dc017 3064 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3065 RECLAIM_DISTANCE;
957f822a 3066}
9276b1bc 3067#else /* CONFIG_NUMA */
957f822a
DR
3068static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3069{
3070 return true;
3071}
9276b1bc
PJ
3072#endif /* CONFIG_NUMA */
3073
7fb1d9fc 3074/*
0798e519 3075 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3076 * a page.
3077 */
3078static struct page *
a9263751
VB
3079get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3080 const struct alloc_context *ac)
753ee728 3081{
c33d6c06 3082 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3083 struct zone *zone;
3b8c0be4
MG
3084 struct pglist_data *last_pgdat_dirty_limit = NULL;
3085
7fb1d9fc 3086 /*
9276b1bc 3087 * Scan zonelist, looking for a zone with enough free.
344736f2 3088 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3089 */
c33d6c06 3090 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3091 ac->nodemask) {
be06af00 3092 struct page *page;
e085dbc5
JW
3093 unsigned long mark;
3094
664eedde
MG
3095 if (cpusets_enabled() &&
3096 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3097 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3098 continue;
a756cf59
JW
3099 /*
3100 * When allocating a page cache page for writing, we
281e3726
MG
3101 * want to get it from a node that is within its dirty
3102 * limit, such that no single node holds more than its
a756cf59 3103 * proportional share of globally allowed dirty pages.
281e3726 3104 * The dirty limits take into account the node's
a756cf59
JW
3105 * lowmem reserves and high watermark so that kswapd
3106 * should be able to balance it without having to
3107 * write pages from its LRU list.
3108 *
a756cf59 3109 * XXX: For now, allow allocations to potentially
281e3726 3110 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3111 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3112 * which is important when on a NUMA setup the allowed
281e3726 3113 * nodes are together not big enough to reach the
a756cf59 3114 * global limit. The proper fix for these situations
281e3726 3115 * will require awareness of nodes in the
a756cf59
JW
3116 * dirty-throttling and the flusher threads.
3117 */
3b8c0be4
MG
3118 if (ac->spread_dirty_pages) {
3119 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3120 continue;
3121
3122 if (!node_dirty_ok(zone->zone_pgdat)) {
3123 last_pgdat_dirty_limit = zone->zone_pgdat;
3124 continue;
3125 }
3126 }
7fb1d9fc 3127
e085dbc5 3128 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3129 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3130 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3131 int ret;
3132
5dab2911
MG
3133 /* Checked here to keep the fast path fast */
3134 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3135 if (alloc_flags & ALLOC_NO_WATERMARKS)
3136 goto try_this_zone;
3137
a5f5f91d 3138 if (node_reclaim_mode == 0 ||
c33d6c06 3139 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3140 continue;
3141
a5f5f91d 3142 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3143 switch (ret) {
a5f5f91d 3144 case NODE_RECLAIM_NOSCAN:
fa5e084e 3145 /* did not scan */
cd38b115 3146 continue;
a5f5f91d 3147 case NODE_RECLAIM_FULL:
fa5e084e 3148 /* scanned but unreclaimable */
cd38b115 3149 continue;
fa5e084e
MG
3150 default:
3151 /* did we reclaim enough */
fed2719e 3152 if (zone_watermark_ok(zone, order, mark,
93ea9964 3153 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3154 goto try_this_zone;
3155
fed2719e 3156 continue;
0798e519 3157 }
7fb1d9fc
RS
3158 }
3159
fa5e084e 3160try_this_zone:
066b2393 3161 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3162 gfp_mask, alloc_flags, ac->migratetype);
75379191 3163 if (page) {
479f854a 3164 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3165
3166 /*
3167 * If this is a high-order atomic allocation then check
3168 * if the pageblock should be reserved for the future
3169 */
3170 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3171 reserve_highatomic_pageblock(page, zone, order);
3172
75379191
VB
3173 return page;
3174 }
54a6eb5c 3175 }
9276b1bc 3176
4ffeaf35 3177 return NULL;
753ee728
MH
3178}
3179
29423e77
DR
3180/*
3181 * Large machines with many possible nodes should not always dump per-node
3182 * meminfo in irq context.
3183 */
3184static inline bool should_suppress_show_mem(void)
3185{
3186 bool ret = false;
3187
3188#if NODES_SHIFT > 8
3189 ret = in_interrupt();
3190#endif
3191 return ret;
3192}
3193
9af744d7 3194static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3195{
a238ab5b 3196 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3197 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3198
aa187507 3199 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3200 return;
3201
3202 /*
3203 * This documents exceptions given to allocations in certain
3204 * contexts that are allowed to allocate outside current's set
3205 * of allowed nodes.
3206 */
3207 if (!(gfp_mask & __GFP_NOMEMALLOC))
3208 if (test_thread_flag(TIF_MEMDIE) ||
3209 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3210 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3211 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3212 filter &= ~SHOW_MEM_FILTER_NODES;
3213
9af744d7 3214 show_mem(filter, nodemask);
aa187507
MH
3215}
3216
a8e99259 3217void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3218{
3219 struct va_format vaf;
3220 va_list args;
3221 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3222 DEFAULT_RATELIMIT_BURST);
3223
0f7896f1 3224 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3225 return;
3226
7877cdcc 3227 pr_warn("%s: ", current->comm);
3ee9a4f0 3228
7877cdcc
MH
3229 va_start(args, fmt);
3230 vaf.fmt = fmt;
3231 vaf.va = &args;
3232 pr_cont("%pV", &vaf);
3233 va_end(args);
3ee9a4f0 3234
685dbf6f
DR
3235 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3236 if (nodemask)
3237 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3238 else
3239 pr_cont("(null)\n");
3240
a8e99259 3241 cpuset_print_current_mems_allowed();
3ee9a4f0 3242
a238ab5b 3243 dump_stack();
685dbf6f 3244 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3245}
3246
6c18ba7a
MH
3247static inline struct page *
3248__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3249 unsigned int alloc_flags,
3250 const struct alloc_context *ac)
3251{
3252 struct page *page;
3253
3254 page = get_page_from_freelist(gfp_mask, order,
3255 alloc_flags|ALLOC_CPUSET, ac);
3256 /*
3257 * fallback to ignore cpuset restriction if our nodes
3258 * are depleted
3259 */
3260 if (!page)
3261 page = get_page_from_freelist(gfp_mask, order,
3262 alloc_flags, ac);
3263
3264 return page;
3265}
3266
11e33f6a
MG
3267static inline struct page *
3268__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3269 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3270{
6e0fc46d
DR
3271 struct oom_control oc = {
3272 .zonelist = ac->zonelist,
3273 .nodemask = ac->nodemask,
2a966b77 3274 .memcg = NULL,
6e0fc46d
DR
3275 .gfp_mask = gfp_mask,
3276 .order = order,
6e0fc46d 3277 };
11e33f6a
MG
3278 struct page *page;
3279
9879de73
JW
3280 *did_some_progress = 0;
3281
9879de73 3282 /*
dc56401f
JW
3283 * Acquire the oom lock. If that fails, somebody else is
3284 * making progress for us.
9879de73 3285 */
dc56401f 3286 if (!mutex_trylock(&oom_lock)) {
9879de73 3287 *did_some_progress = 1;
11e33f6a 3288 schedule_timeout_uninterruptible(1);
1da177e4
LT
3289 return NULL;
3290 }
6b1de916 3291
11e33f6a
MG
3292 /*
3293 * Go through the zonelist yet one more time, keep very high watermark
3294 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3295 * we're still under heavy pressure. But make sure that this reclaim
3296 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3297 * allocation which will never fail due to oom_lock already held.
11e33f6a 3298 */
e746bf73
TH
3299 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3300 ~__GFP_DIRECT_RECLAIM, order,
3301 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3302 if (page)
11e33f6a
MG
3303 goto out;
3304
06ad276a
MH
3305 /* Coredumps can quickly deplete all memory reserves */
3306 if (current->flags & PF_DUMPCORE)
3307 goto out;
3308 /* The OOM killer will not help higher order allocs */
3309 if (order > PAGE_ALLOC_COSTLY_ORDER)
3310 goto out;
dcda9b04
MH
3311 /*
3312 * We have already exhausted all our reclaim opportunities without any
3313 * success so it is time to admit defeat. We will skip the OOM killer
3314 * because it is very likely that the caller has a more reasonable
3315 * fallback than shooting a random task.
3316 */
3317 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3318 goto out;
06ad276a
MH
3319 /* The OOM killer does not needlessly kill tasks for lowmem */
3320 if (ac->high_zoneidx < ZONE_NORMAL)
3321 goto out;
3322 if (pm_suspended_storage())
3323 goto out;
3324 /*
3325 * XXX: GFP_NOFS allocations should rather fail than rely on
3326 * other request to make a forward progress.
3327 * We are in an unfortunate situation where out_of_memory cannot
3328 * do much for this context but let's try it to at least get
3329 * access to memory reserved if the current task is killed (see
3330 * out_of_memory). Once filesystems are ready to handle allocation
3331 * failures more gracefully we should just bail out here.
3332 */
3333
3334 /* The OOM killer may not free memory on a specific node */
3335 if (gfp_mask & __GFP_THISNODE)
3336 goto out;
3da88fb3 3337
11e33f6a 3338 /* Exhausted what can be done so it's blamo time */
5020e285 3339 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3340 *did_some_progress = 1;
5020e285 3341
6c18ba7a
MH
3342 /*
3343 * Help non-failing allocations by giving them access to memory
3344 * reserves
3345 */
3346 if (gfp_mask & __GFP_NOFAIL)
3347 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3348 ALLOC_NO_WATERMARKS, ac);
5020e285 3349 }
11e33f6a 3350out:
dc56401f 3351 mutex_unlock(&oom_lock);
11e33f6a
MG
3352 return page;
3353}
3354
33c2d214
MH
3355/*
3356 * Maximum number of compaction retries wit a progress before OOM
3357 * killer is consider as the only way to move forward.
3358 */
3359#define MAX_COMPACT_RETRIES 16
3360
56de7263
MG
3361#ifdef CONFIG_COMPACTION
3362/* Try memory compaction for high-order allocations before reclaim */
3363static struct page *
3364__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3365 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3366 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3367{
98dd3b48 3368 struct page *page;
499118e9 3369 unsigned int noreclaim_flag;
53853e2d
VB
3370
3371 if (!order)
66199712 3372 return NULL;
66199712 3373
499118e9 3374 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3375 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3376 prio);
499118e9 3377 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3378
c5d01d0d 3379 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3380 return NULL;
53853e2d 3381
98dd3b48
VB
3382 /*
3383 * At least in one zone compaction wasn't deferred or skipped, so let's
3384 * count a compaction stall
3385 */
3386 count_vm_event(COMPACTSTALL);
8fb74b9f 3387
31a6c190 3388 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3389
98dd3b48
VB
3390 if (page) {
3391 struct zone *zone = page_zone(page);
53853e2d 3392
98dd3b48
VB
3393 zone->compact_blockskip_flush = false;
3394 compaction_defer_reset(zone, order, true);
3395 count_vm_event(COMPACTSUCCESS);
3396 return page;
3397 }
56de7263 3398
98dd3b48
VB
3399 /*
3400 * It's bad if compaction run occurs and fails. The most likely reason
3401 * is that pages exist, but not enough to satisfy watermarks.
3402 */
3403 count_vm_event(COMPACTFAIL);
66199712 3404
98dd3b48 3405 cond_resched();
56de7263
MG
3406
3407 return NULL;
3408}
33c2d214 3409
3250845d
VB
3410static inline bool
3411should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3412 enum compact_result compact_result,
3413 enum compact_priority *compact_priority,
d9436498 3414 int *compaction_retries)
3250845d
VB
3415{
3416 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3417 int min_priority;
65190cff
MH
3418 bool ret = false;
3419 int retries = *compaction_retries;
3420 enum compact_priority priority = *compact_priority;
3250845d
VB
3421
3422 if (!order)
3423 return false;
3424
d9436498
VB
3425 if (compaction_made_progress(compact_result))
3426 (*compaction_retries)++;
3427
3250845d
VB
3428 /*
3429 * compaction considers all the zone as desperately out of memory
3430 * so it doesn't really make much sense to retry except when the
3431 * failure could be caused by insufficient priority
3432 */
d9436498
VB
3433 if (compaction_failed(compact_result))
3434 goto check_priority;
3250845d
VB
3435
3436 /*
3437 * make sure the compaction wasn't deferred or didn't bail out early
3438 * due to locks contention before we declare that we should give up.
3439 * But do not retry if the given zonelist is not suitable for
3440 * compaction.
3441 */
65190cff
MH
3442 if (compaction_withdrawn(compact_result)) {
3443 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3444 goto out;
3445 }
3250845d
VB
3446
3447 /*
dcda9b04 3448 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3449 * costly ones because they are de facto nofail and invoke OOM
3450 * killer to move on while costly can fail and users are ready
3451 * to cope with that. 1/4 retries is rather arbitrary but we
3452 * would need much more detailed feedback from compaction to
3453 * make a better decision.
3454 */
3455 if (order > PAGE_ALLOC_COSTLY_ORDER)
3456 max_retries /= 4;
65190cff
MH
3457 if (*compaction_retries <= max_retries) {
3458 ret = true;
3459 goto out;
3460 }
3250845d 3461
d9436498
VB
3462 /*
3463 * Make sure there are attempts at the highest priority if we exhausted
3464 * all retries or failed at the lower priorities.
3465 */
3466check_priority:
c2033b00
VB
3467 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3468 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3469
c2033b00 3470 if (*compact_priority > min_priority) {
d9436498
VB
3471 (*compact_priority)--;
3472 *compaction_retries = 0;
65190cff 3473 ret = true;
d9436498 3474 }
65190cff
MH
3475out:
3476 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3477 return ret;
3250845d 3478}
56de7263
MG
3479#else
3480static inline struct page *
3481__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3482 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3483 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3484{
33c2d214 3485 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3486 return NULL;
3487}
33c2d214
MH
3488
3489static inline bool
86a294a8
MH
3490should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3491 enum compact_result compact_result,
a5508cd8 3492 enum compact_priority *compact_priority,
d9436498 3493 int *compaction_retries)
33c2d214 3494{
31e49bfd
MH
3495 struct zone *zone;
3496 struct zoneref *z;
3497
3498 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3499 return false;
3500
3501 /*
3502 * There are setups with compaction disabled which would prefer to loop
3503 * inside the allocator rather than hit the oom killer prematurely.
3504 * Let's give them a good hope and keep retrying while the order-0
3505 * watermarks are OK.
3506 */
3507 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3508 ac->nodemask) {
3509 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3510 ac_classzone_idx(ac), alloc_flags))
3511 return true;
3512 }
33c2d214
MH
3513 return false;
3514}
3250845d 3515#endif /* CONFIG_COMPACTION */
56de7263 3516
d92a8cfc
PZ
3517#ifdef CONFIG_LOCKDEP
3518struct lockdep_map __fs_reclaim_map =
3519 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3520
3521static bool __need_fs_reclaim(gfp_t gfp_mask)
3522{
3523 gfp_mask = current_gfp_context(gfp_mask);
3524
3525 /* no reclaim without waiting on it */
3526 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3527 return false;
3528
3529 /* this guy won't enter reclaim */
3530 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3531 return false;
3532
3533 /* We're only interested __GFP_FS allocations for now */
3534 if (!(gfp_mask & __GFP_FS))
3535 return false;
3536
3537 if (gfp_mask & __GFP_NOLOCKDEP)
3538 return false;
3539
3540 return true;
3541}
3542
3543void fs_reclaim_acquire(gfp_t gfp_mask)
3544{
3545 if (__need_fs_reclaim(gfp_mask))
3546 lock_map_acquire(&__fs_reclaim_map);
3547}
3548EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3549
3550void fs_reclaim_release(gfp_t gfp_mask)
3551{
3552 if (__need_fs_reclaim(gfp_mask))
3553 lock_map_release(&__fs_reclaim_map);
3554}
3555EXPORT_SYMBOL_GPL(fs_reclaim_release);
3556#endif
3557
bba90710
MS
3558/* Perform direct synchronous page reclaim */
3559static int
a9263751
VB
3560__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3561 const struct alloc_context *ac)
11e33f6a 3562{
11e33f6a 3563 struct reclaim_state reclaim_state;
bba90710 3564 int progress;
499118e9 3565 unsigned int noreclaim_flag;
11e33f6a
MG
3566
3567 cond_resched();
3568
3569 /* We now go into synchronous reclaim */
3570 cpuset_memory_pressure_bump();
499118e9 3571 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3572 fs_reclaim_acquire(gfp_mask);
11e33f6a 3573 reclaim_state.reclaimed_slab = 0;
c06b1fca 3574 current->reclaim_state = &reclaim_state;
11e33f6a 3575
a9263751
VB
3576 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3577 ac->nodemask);
11e33f6a 3578
c06b1fca 3579 current->reclaim_state = NULL;
d92a8cfc 3580 fs_reclaim_release(gfp_mask);
499118e9 3581 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3582
3583 cond_resched();
3584
bba90710
MS
3585 return progress;
3586}
3587
3588/* The really slow allocator path where we enter direct reclaim */
3589static inline struct page *
3590__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3591 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3592 unsigned long *did_some_progress)
bba90710
MS
3593{
3594 struct page *page = NULL;
3595 bool drained = false;
3596
a9263751 3597 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3598 if (unlikely(!(*did_some_progress)))
3599 return NULL;
11e33f6a 3600
9ee493ce 3601retry:
31a6c190 3602 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3603
3604 /*
3605 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3606 * pages are pinned on the per-cpu lists or in high alloc reserves.
3607 * Shrink them them and try again
9ee493ce
MG
3608 */
3609 if (!page && !drained) {
29fac03b 3610 unreserve_highatomic_pageblock(ac, false);
93481ff0 3611 drain_all_pages(NULL);
9ee493ce
MG
3612 drained = true;
3613 goto retry;
3614 }
3615
11e33f6a
MG
3616 return page;
3617}
3618
a9263751 3619static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3620{
3621 struct zoneref *z;
3622 struct zone *zone;
e1a55637 3623 pg_data_t *last_pgdat = NULL;
3a025760 3624
a9263751 3625 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3626 ac->high_zoneidx, ac->nodemask) {
3627 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3628 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3629 last_pgdat = zone->zone_pgdat;
3630 }
3a025760
JW
3631}
3632
c603844b 3633static inline unsigned int
341ce06f
PZ
3634gfp_to_alloc_flags(gfp_t gfp_mask)
3635{
c603844b 3636 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3637
a56f57ff 3638 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3639 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3640
341ce06f
PZ
3641 /*
3642 * The caller may dip into page reserves a bit more if the caller
3643 * cannot run direct reclaim, or if the caller has realtime scheduling
3644 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3645 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3646 */
e6223a3b 3647 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3648
d0164adc 3649 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3650 /*
b104a35d
DR
3651 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3652 * if it can't schedule.
5c3240d9 3653 */
b104a35d 3654 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3655 alloc_flags |= ALLOC_HARDER;
523b9458 3656 /*
b104a35d 3657 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3658 * comment for __cpuset_node_allowed().
523b9458 3659 */
341ce06f 3660 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3661 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3662 alloc_flags |= ALLOC_HARDER;
3663
d95ea5d1 3664#ifdef CONFIG_CMA
43e7a34d 3665 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3666 alloc_flags |= ALLOC_CMA;
3667#endif
341ce06f
PZ
3668 return alloc_flags;
3669}
3670
072bb0aa
MG
3671bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3672{
31a6c190
VB
3673 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3674 return false;
3675
3676 if (gfp_mask & __GFP_MEMALLOC)
3677 return true;
3678 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3679 return true;
3680 if (!in_interrupt() &&
3681 ((current->flags & PF_MEMALLOC) ||
3682 unlikely(test_thread_flag(TIF_MEMDIE))))
3683 return true;
3684
3685 return false;
072bb0aa
MG
3686}
3687
0a0337e0
MH
3688/*
3689 * Checks whether it makes sense to retry the reclaim to make a forward progress
3690 * for the given allocation request.
491d79ae
JW
3691 *
3692 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3693 * without success, or when we couldn't even meet the watermark if we
3694 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3695 *
3696 * Returns true if a retry is viable or false to enter the oom path.
3697 */
3698static inline bool
3699should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3700 struct alloc_context *ac, int alloc_flags,
423b452e 3701 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3702{
3703 struct zone *zone;
3704 struct zoneref *z;
3705
423b452e
VB
3706 /*
3707 * Costly allocations might have made a progress but this doesn't mean
3708 * their order will become available due to high fragmentation so
3709 * always increment the no progress counter for them
3710 */
3711 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3712 *no_progress_loops = 0;
3713 else
3714 (*no_progress_loops)++;
3715
0a0337e0
MH
3716 /*
3717 * Make sure we converge to OOM if we cannot make any progress
3718 * several times in the row.
3719 */
04c8716f
MK
3720 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3721 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3722 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3723 }
0a0337e0 3724
bca67592
MG
3725 /*
3726 * Keep reclaiming pages while there is a chance this will lead
3727 * somewhere. If none of the target zones can satisfy our allocation
3728 * request even if all reclaimable pages are considered then we are
3729 * screwed and have to go OOM.
0a0337e0
MH
3730 */
3731 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3732 ac->nodemask) {
3733 unsigned long available;
ede37713 3734 unsigned long reclaimable;
d379f01d
MH
3735 unsigned long min_wmark = min_wmark_pages(zone);
3736 bool wmark;
0a0337e0 3737
5a1c84b4 3738 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3739 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3740
3741 /*
491d79ae
JW
3742 * Would the allocation succeed if we reclaimed all
3743 * reclaimable pages?
0a0337e0 3744 */
d379f01d
MH
3745 wmark = __zone_watermark_ok(zone, order, min_wmark,
3746 ac_classzone_idx(ac), alloc_flags, available);
3747 trace_reclaim_retry_zone(z, order, reclaimable,
3748 available, min_wmark, *no_progress_loops, wmark);
3749 if (wmark) {
ede37713
MH
3750 /*
3751 * If we didn't make any progress and have a lot of
3752 * dirty + writeback pages then we should wait for
3753 * an IO to complete to slow down the reclaim and
3754 * prevent from pre mature OOM
3755 */
3756 if (!did_some_progress) {
11fb9989 3757 unsigned long write_pending;
ede37713 3758
5a1c84b4
MG
3759 write_pending = zone_page_state_snapshot(zone,
3760 NR_ZONE_WRITE_PENDING);
ede37713 3761
11fb9989 3762 if (2 * write_pending > reclaimable) {
ede37713
MH
3763 congestion_wait(BLK_RW_ASYNC, HZ/10);
3764 return true;
3765 }
3766 }
5a1c84b4 3767
ede37713
MH
3768 /*
3769 * Memory allocation/reclaim might be called from a WQ
3770 * context and the current implementation of the WQ
3771 * concurrency control doesn't recognize that
3772 * a particular WQ is congested if the worker thread is
3773 * looping without ever sleeping. Therefore we have to
3774 * do a short sleep here rather than calling
3775 * cond_resched().
3776 */
3777 if (current->flags & PF_WQ_WORKER)
3778 schedule_timeout_uninterruptible(1);
3779 else
3780 cond_resched();
3781
0a0337e0
MH
3782 return true;
3783 }
3784 }
3785
3786 return false;
3787}
3788
902b6281
VB
3789static inline bool
3790check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3791{
3792 /*
3793 * It's possible that cpuset's mems_allowed and the nodemask from
3794 * mempolicy don't intersect. This should be normally dealt with by
3795 * policy_nodemask(), but it's possible to race with cpuset update in
3796 * such a way the check therein was true, and then it became false
3797 * before we got our cpuset_mems_cookie here.
3798 * This assumes that for all allocations, ac->nodemask can come only
3799 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3800 * when it does not intersect with the cpuset restrictions) or the
3801 * caller can deal with a violated nodemask.
3802 */
3803 if (cpusets_enabled() && ac->nodemask &&
3804 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3805 ac->nodemask = NULL;
3806 return true;
3807 }
3808
3809 /*
3810 * When updating a task's mems_allowed or mempolicy nodemask, it is
3811 * possible to race with parallel threads in such a way that our
3812 * allocation can fail while the mask is being updated. If we are about
3813 * to fail, check if the cpuset changed during allocation and if so,
3814 * retry.
3815 */
3816 if (read_mems_allowed_retry(cpuset_mems_cookie))
3817 return true;
3818
3819 return false;
3820}
3821
11e33f6a
MG
3822static inline struct page *
3823__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3824 struct alloc_context *ac)
11e33f6a 3825{
d0164adc 3826 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3827 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3828 struct page *page = NULL;
c603844b 3829 unsigned int alloc_flags;
11e33f6a 3830 unsigned long did_some_progress;
5ce9bfef 3831 enum compact_priority compact_priority;
c5d01d0d 3832 enum compact_result compact_result;
5ce9bfef
VB
3833 int compaction_retries;
3834 int no_progress_loops;
63f53dea
MH
3835 unsigned long alloc_start = jiffies;
3836 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3837 unsigned int cpuset_mems_cookie;
1da177e4 3838
72807a74
MG
3839 /*
3840 * In the slowpath, we sanity check order to avoid ever trying to
3841 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3842 * be using allocators in order of preference for an area that is
3843 * too large.
3844 */
1fc28b70
MG
3845 if (order >= MAX_ORDER) {
3846 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3847 return NULL;
1fc28b70 3848 }
1da177e4 3849
d0164adc
MG
3850 /*
3851 * We also sanity check to catch abuse of atomic reserves being used by
3852 * callers that are not in atomic context.
3853 */
3854 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3855 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3856 gfp_mask &= ~__GFP_ATOMIC;
3857
5ce9bfef
VB
3858retry_cpuset:
3859 compaction_retries = 0;
3860 no_progress_loops = 0;
3861 compact_priority = DEF_COMPACT_PRIORITY;
3862 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3863
3864 /*
3865 * The fast path uses conservative alloc_flags to succeed only until
3866 * kswapd needs to be woken up, and to avoid the cost of setting up
3867 * alloc_flags precisely. So we do that now.
3868 */
3869 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3870
e47483bc
VB
3871 /*
3872 * We need to recalculate the starting point for the zonelist iterator
3873 * because we might have used different nodemask in the fast path, or
3874 * there was a cpuset modification and we are retrying - otherwise we
3875 * could end up iterating over non-eligible zones endlessly.
3876 */
3877 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3878 ac->high_zoneidx, ac->nodemask);
3879 if (!ac->preferred_zoneref->zone)
3880 goto nopage;
3881
23771235
VB
3882 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3883 wake_all_kswapds(order, ac);
3884
3885 /*
3886 * The adjusted alloc_flags might result in immediate success, so try
3887 * that first
3888 */
3889 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3890 if (page)
3891 goto got_pg;
3892
a8161d1e
VB
3893 /*
3894 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3895 * that we have enough base pages and don't need to reclaim. For non-
3896 * movable high-order allocations, do that as well, as compaction will
3897 * try prevent permanent fragmentation by migrating from blocks of the
3898 * same migratetype.
3899 * Don't try this for allocations that are allowed to ignore
3900 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3901 */
282722b0
VB
3902 if (can_direct_reclaim &&
3903 (costly_order ||
3904 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3905 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3906 page = __alloc_pages_direct_compact(gfp_mask, order,
3907 alloc_flags, ac,
a5508cd8 3908 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3909 &compact_result);
3910 if (page)
3911 goto got_pg;
3912
3eb2771b
VB
3913 /*
3914 * Checks for costly allocations with __GFP_NORETRY, which
3915 * includes THP page fault allocations
3916 */
282722b0 3917 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3918 /*
3919 * If compaction is deferred for high-order allocations,
3920 * it is because sync compaction recently failed. If
3921 * this is the case and the caller requested a THP
3922 * allocation, we do not want to heavily disrupt the
3923 * system, so we fail the allocation instead of entering
3924 * direct reclaim.
3925 */
3926 if (compact_result == COMPACT_DEFERRED)
3927 goto nopage;
3928
a8161d1e 3929 /*
3eb2771b
VB
3930 * Looks like reclaim/compaction is worth trying, but
3931 * sync compaction could be very expensive, so keep
25160354 3932 * using async compaction.
a8161d1e 3933 */
a5508cd8 3934 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3935 }
3936 }
23771235 3937
31a6c190 3938retry:
23771235 3939 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3940 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3941 wake_all_kswapds(order, ac);
3942
23771235
VB
3943 if (gfp_pfmemalloc_allowed(gfp_mask))
3944 alloc_flags = ALLOC_NO_WATERMARKS;
3945
e46e7b77
MG
3946 /*
3947 * Reset the zonelist iterators if memory policies can be ignored.
3948 * These allocations are high priority and system rather than user
3949 * orientated.
3950 */
23771235 3951 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3952 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3953 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3954 ac->high_zoneidx, ac->nodemask);
3955 }
3956
23771235 3957 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3958 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3959 if (page)
3960 goto got_pg;
1da177e4 3961
d0164adc 3962 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 3963 if (!can_direct_reclaim)
1da177e4
LT
3964 goto nopage;
3965
9a67f648
MH
3966 /* Make sure we know about allocations which stall for too long */
3967 if (time_after(jiffies, alloc_start + stall_timeout)) {
82251963 3968 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
9a67f648
MH
3969 "page allocation stalls for %ums, order:%u",
3970 jiffies_to_msecs(jiffies-alloc_start), order);
3971 stall_timeout += 10 * HZ;
33d53103 3972 }
341ce06f 3973
9a67f648
MH
3974 /* Avoid recursion of direct reclaim */
3975 if (current->flags & PF_MEMALLOC)
6583bb64
DR
3976 goto nopage;
3977
a8161d1e
VB
3978 /* Try direct reclaim and then allocating */
3979 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3980 &did_some_progress);
3981 if (page)
3982 goto got_pg;
3983
3984 /* Try direct compaction and then allocating */
a9263751 3985 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3986 compact_priority, &compact_result);
56de7263
MG
3987 if (page)
3988 goto got_pg;
75f30861 3989
9083905a
JW
3990 /* Do not loop if specifically requested */
3991 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3992 goto nopage;
9083905a 3993
0a0337e0
MH
3994 /*
3995 * Do not retry costly high order allocations unless they are
dcda9b04 3996 * __GFP_RETRY_MAYFAIL
0a0337e0 3997 */
dcda9b04 3998 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 3999 goto nopage;
0a0337e0 4000
0a0337e0 4001 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4002 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4003 goto retry;
4004
33c2d214
MH
4005 /*
4006 * It doesn't make any sense to retry for the compaction if the order-0
4007 * reclaim is not able to make any progress because the current
4008 * implementation of the compaction depends on the sufficient amount
4009 * of free memory (see __compaction_suitable)
4010 */
4011 if (did_some_progress > 0 &&
86a294a8 4012 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4013 compact_result, &compact_priority,
d9436498 4014 &compaction_retries))
33c2d214
MH
4015 goto retry;
4016
902b6281
VB
4017
4018 /* Deal with possible cpuset update races before we start OOM killing */
4019 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4020 goto retry_cpuset;
4021
9083905a
JW
4022 /* Reclaim has failed us, start killing things */
4023 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4024 if (page)
4025 goto got_pg;
4026
9a67f648 4027 /* Avoid allocations with no watermarks from looping endlessly */
c288983d
TH
4028 if (test_thread_flag(TIF_MEMDIE) &&
4029 (alloc_flags == ALLOC_NO_WATERMARKS ||
4030 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4031 goto nopage;
4032
9083905a 4033 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4034 if (did_some_progress) {
4035 no_progress_loops = 0;
9083905a 4036 goto retry;
0a0337e0 4037 }
9083905a 4038
1da177e4 4039nopage:
902b6281
VB
4040 /* Deal with possible cpuset update races before we fail */
4041 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4042 goto retry_cpuset;
4043
9a67f648
MH
4044 /*
4045 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4046 * we always retry
4047 */
4048 if (gfp_mask & __GFP_NOFAIL) {
4049 /*
4050 * All existing users of the __GFP_NOFAIL are blockable, so warn
4051 * of any new users that actually require GFP_NOWAIT
4052 */
4053 if (WARN_ON_ONCE(!can_direct_reclaim))
4054 goto fail;
4055
4056 /*
4057 * PF_MEMALLOC request from this context is rather bizarre
4058 * because we cannot reclaim anything and only can loop waiting
4059 * for somebody to do a work for us
4060 */
4061 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4062
4063 /*
4064 * non failing costly orders are a hard requirement which we
4065 * are not prepared for much so let's warn about these users
4066 * so that we can identify them and convert them to something
4067 * else.
4068 */
4069 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4070
6c18ba7a
MH
4071 /*
4072 * Help non-failing allocations by giving them access to memory
4073 * reserves but do not use ALLOC_NO_WATERMARKS because this
4074 * could deplete whole memory reserves which would just make
4075 * the situation worse
4076 */
4077 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4078 if (page)
4079 goto got_pg;
4080
9a67f648
MH
4081 cond_resched();
4082 goto retry;
4083 }
4084fail:
a8e99259 4085 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4086 "page allocation failure: order:%u", order);
1da177e4 4087got_pg:
072bb0aa 4088 return page;
1da177e4 4089}
11e33f6a 4090
9cd75558 4091static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4092 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4093 struct alloc_context *ac, gfp_t *alloc_mask,
4094 unsigned int *alloc_flags)
11e33f6a 4095{
9cd75558 4096 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4097 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4098 ac->nodemask = nodemask;
4099 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4100
682a3385 4101 if (cpusets_enabled()) {
9cd75558 4102 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4103 if (!ac->nodemask)
4104 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4105 else
4106 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4107 }
4108
d92a8cfc
PZ
4109 fs_reclaim_acquire(gfp_mask);
4110 fs_reclaim_release(gfp_mask);
11e33f6a 4111
d0164adc 4112 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4113
4114 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4115 return false;
11e33f6a 4116
9cd75558
MG
4117 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4118 *alloc_flags |= ALLOC_CMA;
4119
4120 return true;
4121}
21bb9bd1 4122
9cd75558
MG
4123/* Determine whether to spread dirty pages and what the first usable zone */
4124static inline void finalise_ac(gfp_t gfp_mask,
4125 unsigned int order, struct alloc_context *ac)
4126{
c9ab0c4f 4127 /* Dirty zone balancing only done in the fast path */
9cd75558 4128 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4129
e46e7b77
MG
4130 /*
4131 * The preferred zone is used for statistics but crucially it is
4132 * also used as the starting point for the zonelist iterator. It
4133 * may get reset for allocations that ignore memory policies.
4134 */
9cd75558
MG
4135 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4136 ac->high_zoneidx, ac->nodemask);
4137}
4138
4139/*
4140 * This is the 'heart' of the zoned buddy allocator.
4141 */
4142struct page *
04ec6264
VB
4143__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4144 nodemask_t *nodemask)
9cd75558
MG
4145{
4146 struct page *page;
4147 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4148 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
4149 struct alloc_context ac = { };
4150
4151 gfp_mask &= gfp_allowed_mask;
04ec6264 4152 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4153 return NULL;
4154
4155 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4156
5117f45d 4157 /* First allocation attempt */
a9263751 4158 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4159 if (likely(page))
4160 goto out;
11e33f6a 4161
4fcb0971 4162 /*
7dea19f9
MH
4163 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4164 * resp. GFP_NOIO which has to be inherited for all allocation requests
4165 * from a particular context which has been marked by
4166 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4167 */
7dea19f9 4168 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4169 ac.spread_dirty_pages = false;
23f086f9 4170
4741526b
MG
4171 /*
4172 * Restore the original nodemask if it was potentially replaced with
4173 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4174 */
e47483bc 4175 if (unlikely(ac.nodemask != nodemask))
4741526b 4176 ac.nodemask = nodemask;
16096c25 4177
4fcb0971 4178 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4179
4fcb0971 4180out:
c4159a75
VD
4181 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4182 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4183 __free_pages(page, order);
4184 page = NULL;
4949148a
VD
4185 }
4186
4fcb0971
MG
4187 if (kmemcheck_enabled && page)
4188 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4189
4190 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4191
11e33f6a 4192 return page;
1da177e4 4193}
d239171e 4194EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4195
4196/*
4197 * Common helper functions.
4198 */
920c7a5d 4199unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4200{
945a1113
AM
4201 struct page *page;
4202
4203 /*
4204 * __get_free_pages() returns a 32-bit address, which cannot represent
4205 * a highmem page
4206 */
4207 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4208
1da177e4
LT
4209 page = alloc_pages(gfp_mask, order);
4210 if (!page)
4211 return 0;
4212 return (unsigned long) page_address(page);
4213}
1da177e4
LT
4214EXPORT_SYMBOL(__get_free_pages);
4215
920c7a5d 4216unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4217{
945a1113 4218 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4219}
1da177e4
LT
4220EXPORT_SYMBOL(get_zeroed_page);
4221
920c7a5d 4222void __free_pages(struct page *page, unsigned int order)
1da177e4 4223{
b5810039 4224 if (put_page_testzero(page)) {
1da177e4 4225 if (order == 0)
b745bc85 4226 free_hot_cold_page(page, false);
1da177e4
LT
4227 else
4228 __free_pages_ok(page, order);
4229 }
4230}
4231
4232EXPORT_SYMBOL(__free_pages);
4233
920c7a5d 4234void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4235{
4236 if (addr != 0) {
725d704e 4237 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4238 __free_pages(virt_to_page((void *)addr), order);
4239 }
4240}
4241
4242EXPORT_SYMBOL(free_pages);
4243
b63ae8ca
AD
4244/*
4245 * Page Fragment:
4246 * An arbitrary-length arbitrary-offset area of memory which resides
4247 * within a 0 or higher order page. Multiple fragments within that page
4248 * are individually refcounted, in the page's reference counter.
4249 *
4250 * The page_frag functions below provide a simple allocation framework for
4251 * page fragments. This is used by the network stack and network device
4252 * drivers to provide a backing region of memory for use as either an
4253 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4254 */
2976db80
AD
4255static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4256 gfp_t gfp_mask)
b63ae8ca
AD
4257{
4258 struct page *page = NULL;
4259 gfp_t gfp = gfp_mask;
4260
4261#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4262 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4263 __GFP_NOMEMALLOC;
4264 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4265 PAGE_FRAG_CACHE_MAX_ORDER);
4266 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4267#endif
4268 if (unlikely(!page))
4269 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4270
4271 nc->va = page ? page_address(page) : NULL;
4272
4273 return page;
4274}
4275
2976db80 4276void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4277{
4278 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4279
4280 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4281 unsigned int order = compound_order(page);
4282
44fdffd7
AD
4283 if (order == 0)
4284 free_hot_cold_page(page, false);
4285 else
4286 __free_pages_ok(page, order);
4287 }
4288}
2976db80 4289EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4290
8c2dd3e4
AD
4291void *page_frag_alloc(struct page_frag_cache *nc,
4292 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4293{
4294 unsigned int size = PAGE_SIZE;
4295 struct page *page;
4296 int offset;
4297
4298 if (unlikely(!nc->va)) {
4299refill:
2976db80 4300 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4301 if (!page)
4302 return NULL;
4303
4304#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4305 /* if size can vary use size else just use PAGE_SIZE */
4306 size = nc->size;
4307#endif
4308 /* Even if we own the page, we do not use atomic_set().
4309 * This would break get_page_unless_zero() users.
4310 */
fe896d18 4311 page_ref_add(page, size - 1);
b63ae8ca
AD
4312
4313 /* reset page count bias and offset to start of new frag */
2f064f34 4314 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4315 nc->pagecnt_bias = size;
4316 nc->offset = size;
4317 }
4318
4319 offset = nc->offset - fragsz;
4320 if (unlikely(offset < 0)) {
4321 page = virt_to_page(nc->va);
4322
fe896d18 4323 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4324 goto refill;
4325
4326#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4327 /* if size can vary use size else just use PAGE_SIZE */
4328 size = nc->size;
4329#endif
4330 /* OK, page count is 0, we can safely set it */
fe896d18 4331 set_page_count(page, size);
b63ae8ca
AD
4332
4333 /* reset page count bias and offset to start of new frag */
4334 nc->pagecnt_bias = size;
4335 offset = size - fragsz;
4336 }
4337
4338 nc->pagecnt_bias--;
4339 nc->offset = offset;
4340
4341 return nc->va + offset;
4342}
8c2dd3e4 4343EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4344
4345/*
4346 * Frees a page fragment allocated out of either a compound or order 0 page.
4347 */
8c2dd3e4 4348void page_frag_free(void *addr)
b63ae8ca
AD
4349{
4350 struct page *page = virt_to_head_page(addr);
4351
4352 if (unlikely(put_page_testzero(page)))
4353 __free_pages_ok(page, compound_order(page));
4354}
8c2dd3e4 4355EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4356
d00181b9
KS
4357static void *make_alloc_exact(unsigned long addr, unsigned int order,
4358 size_t size)
ee85c2e1
AK
4359{
4360 if (addr) {
4361 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4362 unsigned long used = addr + PAGE_ALIGN(size);
4363
4364 split_page(virt_to_page((void *)addr), order);
4365 while (used < alloc_end) {
4366 free_page(used);
4367 used += PAGE_SIZE;
4368 }
4369 }
4370 return (void *)addr;
4371}
4372
2be0ffe2
TT
4373/**
4374 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4375 * @size: the number of bytes to allocate
4376 * @gfp_mask: GFP flags for the allocation
4377 *
4378 * This function is similar to alloc_pages(), except that it allocates the
4379 * minimum number of pages to satisfy the request. alloc_pages() can only
4380 * allocate memory in power-of-two pages.
4381 *
4382 * This function is also limited by MAX_ORDER.
4383 *
4384 * Memory allocated by this function must be released by free_pages_exact().
4385 */
4386void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4387{
4388 unsigned int order = get_order(size);
4389 unsigned long addr;
4390
4391 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4392 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4393}
4394EXPORT_SYMBOL(alloc_pages_exact);
4395
ee85c2e1
AK
4396/**
4397 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4398 * pages on a node.
b5e6ab58 4399 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4400 * @size: the number of bytes to allocate
4401 * @gfp_mask: GFP flags for the allocation
4402 *
4403 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4404 * back.
ee85c2e1 4405 */
e1931811 4406void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4407{
d00181b9 4408 unsigned int order = get_order(size);
ee85c2e1
AK
4409 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4410 if (!p)
4411 return NULL;
4412 return make_alloc_exact((unsigned long)page_address(p), order, size);
4413}
ee85c2e1 4414
2be0ffe2
TT
4415/**
4416 * free_pages_exact - release memory allocated via alloc_pages_exact()
4417 * @virt: the value returned by alloc_pages_exact.
4418 * @size: size of allocation, same value as passed to alloc_pages_exact().
4419 *
4420 * Release the memory allocated by a previous call to alloc_pages_exact.
4421 */
4422void free_pages_exact(void *virt, size_t size)
4423{
4424 unsigned long addr = (unsigned long)virt;
4425 unsigned long end = addr + PAGE_ALIGN(size);
4426
4427 while (addr < end) {
4428 free_page(addr);
4429 addr += PAGE_SIZE;
4430 }
4431}
4432EXPORT_SYMBOL(free_pages_exact);
4433
e0fb5815
ZY
4434/**
4435 * nr_free_zone_pages - count number of pages beyond high watermark
4436 * @offset: The zone index of the highest zone
4437 *
4438 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4439 * high watermark within all zones at or below a given zone index. For each
4440 * zone, the number of pages is calculated as:
0e056eb5
MCC
4441 *
4442 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4443 */
ebec3862 4444static unsigned long nr_free_zone_pages(int offset)
1da177e4 4445{
dd1a239f 4446 struct zoneref *z;
54a6eb5c
MG
4447 struct zone *zone;
4448
e310fd43 4449 /* Just pick one node, since fallback list is circular */
ebec3862 4450 unsigned long sum = 0;
1da177e4 4451
0e88460d 4452 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4453
54a6eb5c 4454 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4455 unsigned long size = zone->managed_pages;
41858966 4456 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4457 if (size > high)
4458 sum += size - high;
1da177e4
LT
4459 }
4460
4461 return sum;
4462}
4463
e0fb5815
ZY
4464/**
4465 * nr_free_buffer_pages - count number of pages beyond high watermark
4466 *
4467 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4468 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4469 */
ebec3862 4470unsigned long nr_free_buffer_pages(void)
1da177e4 4471{
af4ca457 4472 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4473}
c2f1a551 4474EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4475
e0fb5815
ZY
4476/**
4477 * nr_free_pagecache_pages - count number of pages beyond high watermark
4478 *
4479 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4480 * high watermark within all zones.
1da177e4 4481 */
ebec3862 4482unsigned long nr_free_pagecache_pages(void)
1da177e4 4483{
2a1e274a 4484 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4485}
08e0f6a9
CL
4486
4487static inline void show_node(struct zone *zone)
1da177e4 4488{
e5adfffc 4489 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4490 printk("Node %d ", zone_to_nid(zone));
1da177e4 4491}
1da177e4 4492
d02bd27b
IR
4493long si_mem_available(void)
4494{
4495 long available;
4496 unsigned long pagecache;
4497 unsigned long wmark_low = 0;
4498 unsigned long pages[NR_LRU_LISTS];
4499 struct zone *zone;
4500 int lru;
4501
4502 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4503 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4504
4505 for_each_zone(zone)
4506 wmark_low += zone->watermark[WMARK_LOW];
4507
4508 /*
4509 * Estimate the amount of memory available for userspace allocations,
4510 * without causing swapping.
4511 */
4512 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4513
4514 /*
4515 * Not all the page cache can be freed, otherwise the system will
4516 * start swapping. Assume at least half of the page cache, or the
4517 * low watermark worth of cache, needs to stay.
4518 */
4519 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4520 pagecache -= min(pagecache / 2, wmark_low);
4521 available += pagecache;
4522
4523 /*
4524 * Part of the reclaimable slab consists of items that are in use,
4525 * and cannot be freed. Cap this estimate at the low watermark.
4526 */
d507e2eb
JW
4527 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4528 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4529 wmark_low);
d02bd27b
IR
4530
4531 if (available < 0)
4532 available = 0;
4533 return available;
4534}
4535EXPORT_SYMBOL_GPL(si_mem_available);
4536
1da177e4
LT
4537void si_meminfo(struct sysinfo *val)
4538{
4539 val->totalram = totalram_pages;
11fb9989 4540 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4541 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4542 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4543 val->totalhigh = totalhigh_pages;
4544 val->freehigh = nr_free_highpages();
1da177e4
LT
4545 val->mem_unit = PAGE_SIZE;
4546}
4547
4548EXPORT_SYMBOL(si_meminfo);
4549
4550#ifdef CONFIG_NUMA
4551void si_meminfo_node(struct sysinfo *val, int nid)
4552{
cdd91a77
JL
4553 int zone_type; /* needs to be signed */
4554 unsigned long managed_pages = 0;
fc2bd799
JK
4555 unsigned long managed_highpages = 0;
4556 unsigned long free_highpages = 0;
1da177e4
LT
4557 pg_data_t *pgdat = NODE_DATA(nid);
4558
cdd91a77
JL
4559 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4560 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4561 val->totalram = managed_pages;
11fb9989 4562 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4563 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4564#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4565 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4566 struct zone *zone = &pgdat->node_zones[zone_type];
4567
4568 if (is_highmem(zone)) {
4569 managed_highpages += zone->managed_pages;
4570 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4571 }
4572 }
4573 val->totalhigh = managed_highpages;
4574 val->freehigh = free_highpages;
98d2b0eb 4575#else
fc2bd799
JK
4576 val->totalhigh = managed_highpages;
4577 val->freehigh = free_highpages;
98d2b0eb 4578#endif
1da177e4
LT
4579 val->mem_unit = PAGE_SIZE;
4580}
4581#endif
4582
ddd588b5 4583/*
7bf02ea2
DR
4584 * Determine whether the node should be displayed or not, depending on whether
4585 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4586 */
9af744d7 4587static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4588{
ddd588b5 4589 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4590 return false;
ddd588b5 4591
9af744d7
MH
4592 /*
4593 * no node mask - aka implicit memory numa policy. Do not bother with
4594 * the synchronization - read_mems_allowed_begin - because we do not
4595 * have to be precise here.
4596 */
4597 if (!nodemask)
4598 nodemask = &cpuset_current_mems_allowed;
4599
4600 return !node_isset(nid, *nodemask);
ddd588b5
DR
4601}
4602
1da177e4
LT
4603#define K(x) ((x) << (PAGE_SHIFT-10))
4604
377e4f16
RV
4605static void show_migration_types(unsigned char type)
4606{
4607 static const char types[MIGRATE_TYPES] = {
4608 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4609 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4610 [MIGRATE_RECLAIMABLE] = 'E',
4611 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4612#ifdef CONFIG_CMA
4613 [MIGRATE_CMA] = 'C',
4614#endif
194159fb 4615#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4616 [MIGRATE_ISOLATE] = 'I',
194159fb 4617#endif
377e4f16
RV
4618 };
4619 char tmp[MIGRATE_TYPES + 1];
4620 char *p = tmp;
4621 int i;
4622
4623 for (i = 0; i < MIGRATE_TYPES; i++) {
4624 if (type & (1 << i))
4625 *p++ = types[i];
4626 }
4627
4628 *p = '\0';
1f84a18f 4629 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4630}
4631
1da177e4
LT
4632/*
4633 * Show free area list (used inside shift_scroll-lock stuff)
4634 * We also calculate the percentage fragmentation. We do this by counting the
4635 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4636 *
4637 * Bits in @filter:
4638 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4639 * cpuset.
1da177e4 4640 */
9af744d7 4641void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4642{
d1bfcdb8 4643 unsigned long free_pcp = 0;
c7241913 4644 int cpu;
1da177e4 4645 struct zone *zone;
599d0c95 4646 pg_data_t *pgdat;
1da177e4 4647
ee99c71c 4648 for_each_populated_zone(zone) {
9af744d7 4649 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4650 continue;
d1bfcdb8 4651
761b0677
KK
4652 for_each_online_cpu(cpu)
4653 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4654 }
4655
a731286d
KM
4656 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4657 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4658 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4659 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4660 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4661 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4662 global_node_page_state(NR_ACTIVE_ANON),
4663 global_node_page_state(NR_INACTIVE_ANON),
4664 global_node_page_state(NR_ISOLATED_ANON),
4665 global_node_page_state(NR_ACTIVE_FILE),
4666 global_node_page_state(NR_INACTIVE_FILE),
4667 global_node_page_state(NR_ISOLATED_FILE),
4668 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4669 global_node_page_state(NR_FILE_DIRTY),
4670 global_node_page_state(NR_WRITEBACK),
4671 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4672 global_node_page_state(NR_SLAB_RECLAIMABLE),
4673 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4674 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4675 global_node_page_state(NR_SHMEM),
a25700a5 4676 global_page_state(NR_PAGETABLE),
d1ce749a 4677 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4678 global_page_state(NR_FREE_PAGES),
4679 free_pcp,
d1ce749a 4680 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4681
599d0c95 4682 for_each_online_pgdat(pgdat) {
9af744d7 4683 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4684 continue;
4685
599d0c95
MG
4686 printk("Node %d"
4687 " active_anon:%lukB"
4688 " inactive_anon:%lukB"
4689 " active_file:%lukB"
4690 " inactive_file:%lukB"
4691 " unevictable:%lukB"
4692 " isolated(anon):%lukB"
4693 " isolated(file):%lukB"
50658e2e 4694 " mapped:%lukB"
11fb9989
MG
4695 " dirty:%lukB"
4696 " writeback:%lukB"
4697 " shmem:%lukB"
4698#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4699 " shmem_thp: %lukB"
4700 " shmem_pmdmapped: %lukB"
4701 " anon_thp: %lukB"
4702#endif
4703 " writeback_tmp:%lukB"
4704 " unstable:%lukB"
599d0c95
MG
4705 " all_unreclaimable? %s"
4706 "\n",
4707 pgdat->node_id,
4708 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4709 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4710 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4711 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4712 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4713 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4714 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4715 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4716 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4717 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4718 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4719#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4720 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4721 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4722 * HPAGE_PMD_NR),
4723 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4724#endif
11fb9989
MG
4725 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4726 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4727 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4728 "yes" : "no");
599d0c95
MG
4729 }
4730
ee99c71c 4731 for_each_populated_zone(zone) {
1da177e4
LT
4732 int i;
4733
9af744d7 4734 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4735 continue;
d1bfcdb8
KK
4736
4737 free_pcp = 0;
4738 for_each_online_cpu(cpu)
4739 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4740
1da177e4 4741 show_node(zone);
1f84a18f
JP
4742 printk(KERN_CONT
4743 "%s"
1da177e4
LT
4744 " free:%lukB"
4745 " min:%lukB"
4746 " low:%lukB"
4747 " high:%lukB"
71c799f4
MK
4748 " active_anon:%lukB"
4749 " inactive_anon:%lukB"
4750 " active_file:%lukB"
4751 " inactive_file:%lukB"
4752 " unevictable:%lukB"
5a1c84b4 4753 " writepending:%lukB"
1da177e4 4754 " present:%lukB"
9feedc9d 4755 " managed:%lukB"
4a0aa73f 4756 " mlocked:%lukB"
c6a7f572 4757 " kernel_stack:%lukB"
4a0aa73f 4758 " pagetables:%lukB"
4a0aa73f 4759 " bounce:%lukB"
d1bfcdb8
KK
4760 " free_pcp:%lukB"
4761 " local_pcp:%ukB"
d1ce749a 4762 " free_cma:%lukB"
1da177e4
LT
4763 "\n",
4764 zone->name,
88f5acf8 4765 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4766 K(min_wmark_pages(zone)),
4767 K(low_wmark_pages(zone)),
4768 K(high_wmark_pages(zone)),
71c799f4
MK
4769 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4770 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4771 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4772 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4773 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4774 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4775 K(zone->present_pages),
9feedc9d 4776 K(zone->managed_pages),
4a0aa73f 4777 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4778 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4779 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4780 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4781 K(free_pcp),
4782 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4783 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4784 printk("lowmem_reserve[]:");
4785 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4786 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4787 printk(KERN_CONT "\n");
1da177e4
LT
4788 }
4789
ee99c71c 4790 for_each_populated_zone(zone) {
d00181b9
KS
4791 unsigned int order;
4792 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4793 unsigned char types[MAX_ORDER];
1da177e4 4794
9af744d7 4795 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4796 continue;
1da177e4 4797 show_node(zone);
1f84a18f 4798 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4799
4800 spin_lock_irqsave(&zone->lock, flags);
4801 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4802 struct free_area *area = &zone->free_area[order];
4803 int type;
4804
4805 nr[order] = area->nr_free;
8f9de51a 4806 total += nr[order] << order;
377e4f16
RV
4807
4808 types[order] = 0;
4809 for (type = 0; type < MIGRATE_TYPES; type++) {
4810 if (!list_empty(&area->free_list[type]))
4811 types[order] |= 1 << type;
4812 }
1da177e4
LT
4813 }
4814 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4815 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4816 printk(KERN_CONT "%lu*%lukB ",
4817 nr[order], K(1UL) << order);
377e4f16
RV
4818 if (nr[order])
4819 show_migration_types(types[order]);
4820 }
1f84a18f 4821 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4822 }
4823
949f7ec5
DR
4824 hugetlb_show_meminfo();
4825
11fb9989 4826 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4827
1da177e4
LT
4828 show_swap_cache_info();
4829}
4830
19770b32
MG
4831static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4832{
4833 zoneref->zone = zone;
4834 zoneref->zone_idx = zone_idx(zone);
4835}
4836
1da177e4
LT
4837/*
4838 * Builds allocation fallback zone lists.
1a93205b
CL
4839 *
4840 * Add all populated zones of a node to the zonelist.
1da177e4 4841 */
f0c0b2b8 4842static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4843 int nr_zones)
1da177e4 4844{
1a93205b 4845 struct zone *zone;
bc732f1d 4846 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4847
4848 do {
2f6726e5 4849 zone_type--;
070f8032 4850 zone = pgdat->node_zones + zone_type;
6aa303de 4851 if (managed_zone(zone)) {
dd1a239f
MG
4852 zoneref_set_zone(zone,
4853 &zonelist->_zonerefs[nr_zones++]);
070f8032 4854 check_highest_zone(zone_type);
1da177e4 4855 }
2f6726e5 4856 } while (zone_type);
bc732f1d 4857
070f8032 4858 return nr_zones;
1da177e4
LT
4859}
4860
4861#ifdef CONFIG_NUMA
f0c0b2b8
KH
4862
4863static int __parse_numa_zonelist_order(char *s)
4864{
c9bff3ee
MH
4865 /*
4866 * We used to support different zonlists modes but they turned
4867 * out to be just not useful. Let's keep the warning in place
4868 * if somebody still use the cmd line parameter so that we do
4869 * not fail it silently
4870 */
4871 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4872 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4873 return -EINVAL;
4874 }
4875 return 0;
4876}
4877
4878static __init int setup_numa_zonelist_order(char *s)
4879{
ecb256f8
VL
4880 if (!s)
4881 return 0;
4882
c9bff3ee 4883 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4884}
4885early_param("numa_zonelist_order", setup_numa_zonelist_order);
4886
c9bff3ee
MH
4887char numa_zonelist_order[] = "Node";
4888
f0c0b2b8
KH
4889/*
4890 * sysctl handler for numa_zonelist_order
4891 */
cccad5b9 4892int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4893 void __user *buffer, size_t *length,
f0c0b2b8
KH
4894 loff_t *ppos)
4895{
c9bff3ee 4896 char *str;
f0c0b2b8
KH
4897 int ret;
4898
c9bff3ee
MH
4899 if (!write)
4900 return proc_dostring(table, write, buffer, length, ppos);
4901 str = memdup_user_nul(buffer, 16);
4902 if (IS_ERR(str))
4903 return PTR_ERR(str);
dacbde09 4904
c9bff3ee
MH
4905 ret = __parse_numa_zonelist_order(str);
4906 kfree(str);
443c6f14 4907 return ret;
f0c0b2b8
KH
4908}
4909
4910
62bc62a8 4911#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4912static int node_load[MAX_NUMNODES];
4913
1da177e4 4914/**
4dc3b16b 4915 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4916 * @node: node whose fallback list we're appending
4917 * @used_node_mask: nodemask_t of already used nodes
4918 *
4919 * We use a number of factors to determine which is the next node that should
4920 * appear on a given node's fallback list. The node should not have appeared
4921 * already in @node's fallback list, and it should be the next closest node
4922 * according to the distance array (which contains arbitrary distance values
4923 * from each node to each node in the system), and should also prefer nodes
4924 * with no CPUs, since presumably they'll have very little allocation pressure
4925 * on them otherwise.
4926 * It returns -1 if no node is found.
4927 */
f0c0b2b8 4928static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4929{
4cf808eb 4930 int n, val;
1da177e4 4931 int min_val = INT_MAX;
00ef2d2f 4932 int best_node = NUMA_NO_NODE;
a70f7302 4933 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4934
4cf808eb
LT
4935 /* Use the local node if we haven't already */
4936 if (!node_isset(node, *used_node_mask)) {
4937 node_set(node, *used_node_mask);
4938 return node;
4939 }
1da177e4 4940
4b0ef1fe 4941 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4942
4943 /* Don't want a node to appear more than once */
4944 if (node_isset(n, *used_node_mask))
4945 continue;
4946
1da177e4
LT
4947 /* Use the distance array to find the distance */
4948 val = node_distance(node, n);
4949
4cf808eb
LT
4950 /* Penalize nodes under us ("prefer the next node") */
4951 val += (n < node);
4952
1da177e4 4953 /* Give preference to headless and unused nodes */
a70f7302
RR
4954 tmp = cpumask_of_node(n);
4955 if (!cpumask_empty(tmp))
1da177e4
LT
4956 val += PENALTY_FOR_NODE_WITH_CPUS;
4957
4958 /* Slight preference for less loaded node */
4959 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4960 val += node_load[n];
4961
4962 if (val < min_val) {
4963 min_val = val;
4964 best_node = n;
4965 }
4966 }
4967
4968 if (best_node >= 0)
4969 node_set(best_node, *used_node_mask);
4970
4971 return best_node;
4972}
4973
f0c0b2b8
KH
4974
4975/*
4976 * Build zonelists ordered by node and zones within node.
4977 * This results in maximum locality--normal zone overflows into local
4978 * DMA zone, if any--but risks exhausting DMA zone.
4979 */
4980static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4981{
f0c0b2b8 4982 int j;
1da177e4 4983 struct zonelist *zonelist;
f0c0b2b8 4984
c9634cf0 4985 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4986 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4987 ;
bc732f1d 4988 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4989 zonelist->_zonerefs[j].zone = NULL;
4990 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4991}
4992
523b9458
CL
4993/*
4994 * Build gfp_thisnode zonelists
4995 */
4996static void build_thisnode_zonelists(pg_data_t *pgdat)
4997{
523b9458
CL
4998 int j;
4999 struct zonelist *zonelist;
5000
c9634cf0 5001 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 5002 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
5003 zonelist->_zonerefs[j].zone = NULL;
5004 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
5005}
5006
f0c0b2b8
KH
5007/*
5008 * Build zonelists ordered by zone and nodes within zones.
5009 * This results in conserving DMA zone[s] until all Normal memory is
5010 * exhausted, but results in overflowing to remote node while memory
5011 * may still exist in local DMA zone.
5012 */
5013static int node_order[MAX_NUMNODES];
5014
f0c0b2b8
KH
5015static void build_zonelists(pg_data_t *pgdat)
5016{
c00eb15a 5017 int i, node, load;
1da177e4 5018 nodemask_t used_mask;
f0c0b2b8
KH
5019 int local_node, prev_node;
5020 struct zonelist *zonelist;
1da177e4
LT
5021
5022 /* initialize zonelists */
523b9458 5023 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 5024 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
5025 zonelist->_zonerefs[0].zone = NULL;
5026 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
5027 }
5028
5029 /* NUMA-aware ordering of nodes */
5030 local_node = pgdat->node_id;
62bc62a8 5031 load = nr_online_nodes;
1da177e4
LT
5032 prev_node = local_node;
5033 nodes_clear(used_mask);
f0c0b2b8 5034
f0c0b2b8 5035 memset(node_order, 0, sizeof(node_order));
c00eb15a 5036 i = 0;
f0c0b2b8 5037
1da177e4
LT
5038 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5039 /*
5040 * We don't want to pressure a particular node.
5041 * So adding penalty to the first node in same
5042 * distance group to make it round-robin.
5043 */
957f822a
DR
5044 if (node_distance(local_node, node) !=
5045 node_distance(local_node, prev_node))
f0c0b2b8
KH
5046 node_load[node] = load;
5047
1da177e4
LT
5048 prev_node = node;
5049 load--;
c9bff3ee 5050 build_zonelists_in_node_order(pgdat, node);
1da177e4 5051 }
523b9458
CL
5052
5053 build_thisnode_zonelists(pgdat);
1da177e4
LT
5054}
5055
7aac7898
LS
5056#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5057/*
5058 * Return node id of node used for "local" allocations.
5059 * I.e., first node id of first zone in arg node's generic zonelist.
5060 * Used for initializing percpu 'numa_mem', which is used primarily
5061 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5062 */
5063int local_memory_node(int node)
5064{
c33d6c06 5065 struct zoneref *z;
7aac7898 5066
c33d6c06 5067 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5068 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5069 NULL);
5070 return z->zone->node;
7aac7898
LS
5071}
5072#endif
f0c0b2b8 5073
6423aa81
JK
5074static void setup_min_unmapped_ratio(void);
5075static void setup_min_slab_ratio(void);
1da177e4
LT
5076#else /* CONFIG_NUMA */
5077
f0c0b2b8 5078static void build_zonelists(pg_data_t *pgdat)
1da177e4 5079{
19655d34 5080 int node, local_node;
54a6eb5c
MG
5081 enum zone_type j;
5082 struct zonelist *zonelist;
1da177e4
LT
5083
5084 local_node = pgdat->node_id;
1da177e4 5085
c9634cf0 5086 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 5087 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 5088
54a6eb5c
MG
5089 /*
5090 * Now we build the zonelist so that it contains the zones
5091 * of all the other nodes.
5092 * We don't want to pressure a particular node, so when
5093 * building the zones for node N, we make sure that the
5094 * zones coming right after the local ones are those from
5095 * node N+1 (modulo N)
5096 */
5097 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5098 if (!node_online(node))
5099 continue;
bc732f1d 5100 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 5101 }
54a6eb5c
MG
5102 for (node = 0; node < local_node; node++) {
5103 if (!node_online(node))
5104 continue;
bc732f1d 5105 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
5106 }
5107
dd1a239f
MG
5108 zonelist->_zonerefs[j].zone = NULL;
5109 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
5110}
5111
5112#endif /* CONFIG_NUMA */
5113
99dcc3e5
CL
5114/*
5115 * Boot pageset table. One per cpu which is going to be used for all
5116 * zones and all nodes. The parameters will be set in such a way
5117 * that an item put on a list will immediately be handed over to
5118 * the buddy list. This is safe since pageset manipulation is done
5119 * with interrupts disabled.
5120 *
5121 * The boot_pagesets must be kept even after bootup is complete for
5122 * unused processors and/or zones. They do play a role for bootstrapping
5123 * hotplugged processors.
5124 *
5125 * zoneinfo_show() and maybe other functions do
5126 * not check if the processor is online before following the pageset pointer.
5127 * Other parts of the kernel may not check if the zone is available.
5128 */
5129static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5130static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5131static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
1f522509 5132static void setup_zone_pageset(struct zone *zone);
99dcc3e5 5133
4eaf3f64
HL
5134/*
5135 * Global mutex to protect against size modification of zonelists
5136 * as well as to serialize pageset setup for the new populated zone.
5137 */
5138DEFINE_MUTEX(zonelists_mutex);
5139
9b1a4d38 5140/* return values int ....just for stop_machine() */
4ed7e022 5141static int __build_all_zonelists(void *data)
1da177e4 5142{
6811378e 5143 int nid;
afb6ebb3 5144 int __maybe_unused cpu;
9adb62a5 5145 pg_data_t *self = data;
9276b1bc 5146
7f9cfb31
BL
5147#ifdef CONFIG_NUMA
5148 memset(node_load, 0, sizeof(node_load));
5149#endif
9adb62a5 5150
c1152583
WY
5151 /*
5152 * This node is hotadded and no memory is yet present. So just
5153 * building zonelists is fine - no need to touch other nodes.
5154 */
9adb62a5
JL
5155 if (self && !node_online(self->node_id)) {
5156 build_zonelists(self);
c1152583
WY
5157 } else {
5158 for_each_online_node(nid) {
5159 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5160
c1152583
WY
5161 build_zonelists(pgdat);
5162 }
9276b1bc 5163 }
99dcc3e5 5164
7aac7898 5165#ifdef CONFIG_HAVE_MEMORYLESS_NODES
afb6ebb3 5166 for_each_possible_cpu(cpu) {
7aac7898
LS
5167 /*
5168 * We now know the "local memory node" for each node--
5169 * i.e., the node of the first zone in the generic zonelist.
5170 * Set up numa_mem percpu variable for on-line cpus. During
5171 * boot, only the boot cpu should be on-line; we'll init the
5172 * secondary cpus' numa_mem as they come on-line. During
5173 * node/memory hotplug, we'll fixup all on-line cpus.
5174 */
5175 if (cpu_online(cpu))
5176 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
7aac7898 5177 }
afb6ebb3 5178#endif
7aac7898 5179
6811378e
YG
5180 return 0;
5181}
5182
061f67bc
RV
5183static noinline void __init
5184build_all_zonelists_init(void)
5185{
afb6ebb3
MH
5186 int cpu;
5187
061f67bc 5188 __build_all_zonelists(NULL);
afb6ebb3
MH
5189
5190 /*
5191 * Initialize the boot_pagesets that are going to be used
5192 * for bootstrapping processors. The real pagesets for
5193 * each zone will be allocated later when the per cpu
5194 * allocator is available.
5195 *
5196 * boot_pagesets are used also for bootstrapping offline
5197 * cpus if the system is already booted because the pagesets
5198 * are needed to initialize allocators on a specific cpu too.
5199 * F.e. the percpu allocator needs the page allocator which
5200 * needs the percpu allocator in order to allocate its pagesets
5201 * (a chicken-egg dilemma).
5202 */
5203 for_each_possible_cpu(cpu)
5204 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5205
061f67bc
RV
5206 mminit_verify_zonelist();
5207 cpuset_init_current_mems_allowed();
5208}
5209
4eaf3f64
HL
5210/*
5211 * Called with zonelists_mutex held always
5212 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5213 *
5214 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5215 * [we're only called with non-NULL zone through __meminit paths] and
5216 * (2) call of __init annotated helper build_all_zonelists_init
5217 * [protected by SYSTEM_BOOTING].
4eaf3f64 5218 */
9adb62a5 5219void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e
YG
5220{
5221 if (system_state == SYSTEM_BOOTING) {
061f67bc 5222 build_all_zonelists_init();
6811378e 5223 } else {
e9959f0f 5224#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5225 if (zone)
5226 setup_zone_pageset(zone);
e9959f0f 5227#endif
dd1895e2
CS
5228 /* we have to stop all cpus to guarantee there is no user
5229 of zonelist */
3f906ba2 5230 stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5231 /* cpuset refresh routine should be here */
5232 }
bd1e22b8 5233 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5234 /*
5235 * Disable grouping by mobility if the number of pages in the
5236 * system is too low to allow the mechanism to work. It would be
5237 * more accurate, but expensive to check per-zone. This check is
5238 * made on memory-hotadd so a system can start with mobility
5239 * disabled and enable it later
5240 */
d9c23400 5241 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5242 page_group_by_mobility_disabled = 1;
5243 else
5244 page_group_by_mobility_disabled = 0;
5245
c9bff3ee 5246 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5247 nr_online_nodes,
756a025f
JP
5248 page_group_by_mobility_disabled ? "off" : "on",
5249 vm_total_pages);
f0c0b2b8 5250#ifdef CONFIG_NUMA
f88dfff5 5251 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5252#endif
1da177e4
LT
5253}
5254
1da177e4
LT
5255/*
5256 * Initially all pages are reserved - free ones are freed
5257 * up by free_all_bootmem() once the early boot process is
5258 * done. Non-atomic initialization, single-pass.
5259 */
c09b4240 5260void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5261 unsigned long start_pfn, enum memmap_context context)
1da177e4 5262{
4b94ffdc 5263 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5264 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5265 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5266 unsigned long pfn;
3a80a7fa 5267 unsigned long nr_initialised = 0;
342332e6
TI
5268#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5269 struct memblock_region *r = NULL, *tmp;
5270#endif
1da177e4 5271
22b31eec
HD
5272 if (highest_memmap_pfn < end_pfn - 1)
5273 highest_memmap_pfn = end_pfn - 1;
5274
4b94ffdc
DW
5275 /*
5276 * Honor reservation requested by the driver for this ZONE_DEVICE
5277 * memory
5278 */
5279 if (altmap && start_pfn == altmap->base_pfn)
5280 start_pfn += altmap->reserve;
5281
cbe8dd4a 5282 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5283 /*
b72d0ffb
AM
5284 * There can be holes in boot-time mem_map[]s handed to this
5285 * function. They do not exist on hotplugged memory.
a2f3aa02 5286 */
b72d0ffb
AM
5287 if (context != MEMMAP_EARLY)
5288 goto not_early;
5289
b92df1de
PB
5290 if (!early_pfn_valid(pfn)) {
5291#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5292 /*
5293 * Skip to the pfn preceding the next valid one (or
5294 * end_pfn), such that we hit a valid pfn (or end_pfn)
5295 * on our next iteration of the loop.
5296 */
5297 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5298#endif
b72d0ffb 5299 continue;
b92df1de 5300 }
b72d0ffb
AM
5301 if (!early_pfn_in_nid(pfn, nid))
5302 continue;
5303 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5304 break;
342332e6
TI
5305
5306#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5307 /*
5308 * Check given memblock attribute by firmware which can affect
5309 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5310 * mirrored, it's an overlapped memmap init. skip it.
5311 */
5312 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5313 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5314 for_each_memblock(memory, tmp)
5315 if (pfn < memblock_region_memory_end_pfn(tmp))
5316 break;
5317 r = tmp;
5318 }
5319 if (pfn >= memblock_region_memory_base_pfn(r) &&
5320 memblock_is_mirror(r)) {
5321 /* already initialized as NORMAL */
5322 pfn = memblock_region_memory_end_pfn(r);
5323 continue;
342332e6 5324 }
a2f3aa02 5325 }
b72d0ffb 5326#endif
ac5d2539 5327
b72d0ffb 5328not_early:
ac5d2539
MG
5329 /*
5330 * Mark the block movable so that blocks are reserved for
5331 * movable at startup. This will force kernel allocations
5332 * to reserve their blocks rather than leaking throughout
5333 * the address space during boot when many long-lived
974a786e 5334 * kernel allocations are made.
ac5d2539
MG
5335 *
5336 * bitmap is created for zone's valid pfn range. but memmap
5337 * can be created for invalid pages (for alignment)
5338 * check here not to call set_pageblock_migratetype() against
5339 * pfn out of zone.
5340 */
5341 if (!(pfn & (pageblock_nr_pages - 1))) {
5342 struct page *page = pfn_to_page(pfn);
5343
5344 __init_single_page(page, pfn, zone, nid);
5345 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5346 } else {
5347 __init_single_pfn(pfn, zone, nid);
5348 }
1da177e4
LT
5349 }
5350}
5351
1e548deb 5352static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5353{
7aeb09f9 5354 unsigned int order, t;
b2a0ac88
MG
5355 for_each_migratetype_order(order, t) {
5356 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5357 zone->free_area[order].nr_free = 0;
5358 }
5359}
5360
5361#ifndef __HAVE_ARCH_MEMMAP_INIT
5362#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5363 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5364#endif
5365
7cd2b0a3 5366static int zone_batchsize(struct zone *zone)
e7c8d5c9 5367{
3a6be87f 5368#ifdef CONFIG_MMU
e7c8d5c9
CL
5369 int batch;
5370
5371 /*
5372 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5373 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5374 *
5375 * OK, so we don't know how big the cache is. So guess.
5376 */
b40da049 5377 batch = zone->managed_pages / 1024;
ba56e91c
SR
5378 if (batch * PAGE_SIZE > 512 * 1024)
5379 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5380 batch /= 4; /* We effectively *= 4 below */
5381 if (batch < 1)
5382 batch = 1;
5383
5384 /*
0ceaacc9
NP
5385 * Clamp the batch to a 2^n - 1 value. Having a power
5386 * of 2 value was found to be more likely to have
5387 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5388 *
0ceaacc9
NP
5389 * For example if 2 tasks are alternately allocating
5390 * batches of pages, one task can end up with a lot
5391 * of pages of one half of the possible page colors
5392 * and the other with pages of the other colors.
e7c8d5c9 5393 */
9155203a 5394 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5395
e7c8d5c9 5396 return batch;
3a6be87f
DH
5397
5398#else
5399 /* The deferral and batching of frees should be suppressed under NOMMU
5400 * conditions.
5401 *
5402 * The problem is that NOMMU needs to be able to allocate large chunks
5403 * of contiguous memory as there's no hardware page translation to
5404 * assemble apparent contiguous memory from discontiguous pages.
5405 *
5406 * Queueing large contiguous runs of pages for batching, however,
5407 * causes the pages to actually be freed in smaller chunks. As there
5408 * can be a significant delay between the individual batches being
5409 * recycled, this leads to the once large chunks of space being
5410 * fragmented and becoming unavailable for high-order allocations.
5411 */
5412 return 0;
5413#endif
e7c8d5c9
CL
5414}
5415
8d7a8fa9
CS
5416/*
5417 * pcp->high and pcp->batch values are related and dependent on one another:
5418 * ->batch must never be higher then ->high.
5419 * The following function updates them in a safe manner without read side
5420 * locking.
5421 *
5422 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5423 * those fields changing asynchronously (acording the the above rule).
5424 *
5425 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5426 * outside of boot time (or some other assurance that no concurrent updaters
5427 * exist).
5428 */
5429static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5430 unsigned long batch)
5431{
5432 /* start with a fail safe value for batch */
5433 pcp->batch = 1;
5434 smp_wmb();
5435
5436 /* Update high, then batch, in order */
5437 pcp->high = high;
5438 smp_wmb();
5439
5440 pcp->batch = batch;
5441}
5442
3664033c 5443/* a companion to pageset_set_high() */
4008bab7
CS
5444static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5445{
8d7a8fa9 5446 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5447}
5448
88c90dbc 5449static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5450{
5451 struct per_cpu_pages *pcp;
5f8dcc21 5452 int migratetype;
2caaad41 5453
1c6fe946
MD
5454 memset(p, 0, sizeof(*p));
5455
3dfa5721 5456 pcp = &p->pcp;
2caaad41 5457 pcp->count = 0;
5f8dcc21
MG
5458 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5459 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5460}
5461
88c90dbc
CS
5462static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5463{
5464 pageset_init(p);
5465 pageset_set_batch(p, batch);
5466}
5467
8ad4b1fb 5468/*
3664033c 5469 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5470 * to the value high for the pageset p.
5471 */
3664033c 5472static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5473 unsigned long high)
5474{
8d7a8fa9
CS
5475 unsigned long batch = max(1UL, high / 4);
5476 if ((high / 4) > (PAGE_SHIFT * 8))
5477 batch = PAGE_SHIFT * 8;
8ad4b1fb 5478
8d7a8fa9 5479 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5480}
5481
7cd2b0a3
DR
5482static void pageset_set_high_and_batch(struct zone *zone,
5483 struct per_cpu_pageset *pcp)
56cef2b8 5484{
56cef2b8 5485 if (percpu_pagelist_fraction)
3664033c 5486 pageset_set_high(pcp,
56cef2b8
CS
5487 (zone->managed_pages /
5488 percpu_pagelist_fraction));
5489 else
5490 pageset_set_batch(pcp, zone_batchsize(zone));
5491}
5492
169f6c19
CS
5493static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5494{
5495 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5496
5497 pageset_init(pcp);
5498 pageset_set_high_and_batch(zone, pcp);
5499}
5500
4ed7e022 5501static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5502{
5503 int cpu;
319774e2 5504 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5505 for_each_possible_cpu(cpu)
5506 zone_pageset_init(zone, cpu);
319774e2
WF
5507}
5508
2caaad41 5509/*
99dcc3e5
CL
5510 * Allocate per cpu pagesets and initialize them.
5511 * Before this call only boot pagesets were available.
e7c8d5c9 5512 */
99dcc3e5 5513void __init setup_per_cpu_pageset(void)
e7c8d5c9 5514{
b4911ea2 5515 struct pglist_data *pgdat;
99dcc3e5 5516 struct zone *zone;
e7c8d5c9 5517
319774e2
WF
5518 for_each_populated_zone(zone)
5519 setup_zone_pageset(zone);
b4911ea2
MG
5520
5521 for_each_online_pgdat(pgdat)
5522 pgdat->per_cpu_nodestats =
5523 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5524}
5525
c09b4240 5526static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5527{
99dcc3e5
CL
5528 /*
5529 * per cpu subsystem is not up at this point. The following code
5530 * relies on the ability of the linker to provide the
5531 * offset of a (static) per cpu variable into the per cpu area.
5532 */
5533 zone->pageset = &boot_pageset;
ed8ece2e 5534
b38a8725 5535 if (populated_zone(zone))
99dcc3e5
CL
5536 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5537 zone->name, zone->present_pages,
5538 zone_batchsize(zone));
ed8ece2e
DH
5539}
5540
dc0bbf3b 5541void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5542 unsigned long zone_start_pfn,
b171e409 5543 unsigned long size)
ed8ece2e
DH
5544{
5545 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5546
ed8ece2e
DH
5547 pgdat->nr_zones = zone_idx(zone) + 1;
5548
ed8ece2e
DH
5549 zone->zone_start_pfn = zone_start_pfn;
5550
708614e6
MG
5551 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5552 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5553 pgdat->node_id,
5554 (unsigned long)zone_idx(zone),
5555 zone_start_pfn, (zone_start_pfn + size));
5556
1e548deb 5557 zone_init_free_lists(zone);
9dcb8b68 5558 zone->initialized = 1;
ed8ece2e
DH
5559}
5560
0ee332c1 5561#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5562#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5563
c713216d
MG
5564/*
5565 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5566 */
8a942fde
MG
5567int __meminit __early_pfn_to_nid(unsigned long pfn,
5568 struct mminit_pfnnid_cache *state)
c713216d 5569{
c13291a5 5570 unsigned long start_pfn, end_pfn;
e76b63f8 5571 int nid;
7c243c71 5572
8a942fde
MG
5573 if (state->last_start <= pfn && pfn < state->last_end)
5574 return state->last_nid;
c713216d 5575
e76b63f8
YL
5576 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5577 if (nid != -1) {
8a942fde
MG
5578 state->last_start = start_pfn;
5579 state->last_end = end_pfn;
5580 state->last_nid = nid;
e76b63f8
YL
5581 }
5582
5583 return nid;
c713216d
MG
5584}
5585#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5586
c713216d 5587/**
6782832e 5588 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5589 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5590 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5591 *
7d018176
ZZ
5592 * If an architecture guarantees that all ranges registered contain no holes
5593 * and may be freed, this this function may be used instead of calling
5594 * memblock_free_early_nid() manually.
c713216d 5595 */
c13291a5 5596void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5597{
c13291a5
TH
5598 unsigned long start_pfn, end_pfn;
5599 int i, this_nid;
edbe7d23 5600
c13291a5
TH
5601 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5602 start_pfn = min(start_pfn, max_low_pfn);
5603 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5604
c13291a5 5605 if (start_pfn < end_pfn)
6782832e
SS
5606 memblock_free_early_nid(PFN_PHYS(start_pfn),
5607 (end_pfn - start_pfn) << PAGE_SHIFT,
5608 this_nid);
edbe7d23 5609 }
edbe7d23 5610}
edbe7d23 5611
c713216d
MG
5612/**
5613 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5614 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5615 *
7d018176
ZZ
5616 * If an architecture guarantees that all ranges registered contain no holes and may
5617 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5618 */
5619void __init sparse_memory_present_with_active_regions(int nid)
5620{
c13291a5
TH
5621 unsigned long start_pfn, end_pfn;
5622 int i, this_nid;
c713216d 5623
c13291a5
TH
5624 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5625 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5626}
5627
5628/**
5629 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5630 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5631 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5632 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5633 *
5634 * It returns the start and end page frame of a node based on information
7d018176 5635 * provided by memblock_set_node(). If called for a node
c713216d 5636 * with no available memory, a warning is printed and the start and end
88ca3b94 5637 * PFNs will be 0.
c713216d 5638 */
a3142c8e 5639void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5640 unsigned long *start_pfn, unsigned long *end_pfn)
5641{
c13291a5 5642 unsigned long this_start_pfn, this_end_pfn;
c713216d 5643 int i;
c13291a5 5644
c713216d
MG
5645 *start_pfn = -1UL;
5646 *end_pfn = 0;
5647
c13291a5
TH
5648 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5649 *start_pfn = min(*start_pfn, this_start_pfn);
5650 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5651 }
5652
633c0666 5653 if (*start_pfn == -1UL)
c713216d 5654 *start_pfn = 0;
c713216d
MG
5655}
5656
2a1e274a
MG
5657/*
5658 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5659 * assumption is made that zones within a node are ordered in monotonic
5660 * increasing memory addresses so that the "highest" populated zone is used
5661 */
b69a7288 5662static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5663{
5664 int zone_index;
5665 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5666 if (zone_index == ZONE_MOVABLE)
5667 continue;
5668
5669 if (arch_zone_highest_possible_pfn[zone_index] >
5670 arch_zone_lowest_possible_pfn[zone_index])
5671 break;
5672 }
5673
5674 VM_BUG_ON(zone_index == -1);
5675 movable_zone = zone_index;
5676}
5677
5678/*
5679 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5680 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5681 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5682 * in each node depending on the size of each node and how evenly kernelcore
5683 * is distributed. This helper function adjusts the zone ranges
5684 * provided by the architecture for a given node by using the end of the
5685 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5686 * zones within a node are in order of monotonic increases memory addresses
5687 */
b69a7288 5688static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5689 unsigned long zone_type,
5690 unsigned long node_start_pfn,
5691 unsigned long node_end_pfn,
5692 unsigned long *zone_start_pfn,
5693 unsigned long *zone_end_pfn)
5694{
5695 /* Only adjust if ZONE_MOVABLE is on this node */
5696 if (zone_movable_pfn[nid]) {
5697 /* Size ZONE_MOVABLE */
5698 if (zone_type == ZONE_MOVABLE) {
5699 *zone_start_pfn = zone_movable_pfn[nid];
5700 *zone_end_pfn = min(node_end_pfn,
5701 arch_zone_highest_possible_pfn[movable_zone]);
5702
e506b996
XQ
5703 /* Adjust for ZONE_MOVABLE starting within this range */
5704 } else if (!mirrored_kernelcore &&
5705 *zone_start_pfn < zone_movable_pfn[nid] &&
5706 *zone_end_pfn > zone_movable_pfn[nid]) {
5707 *zone_end_pfn = zone_movable_pfn[nid];
5708
2a1e274a
MG
5709 /* Check if this whole range is within ZONE_MOVABLE */
5710 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5711 *zone_start_pfn = *zone_end_pfn;
5712 }
5713}
5714
c713216d
MG
5715/*
5716 * Return the number of pages a zone spans in a node, including holes
5717 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5718 */
6ea6e688 5719static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5720 unsigned long zone_type,
7960aedd
ZY
5721 unsigned long node_start_pfn,
5722 unsigned long node_end_pfn,
d91749c1
TI
5723 unsigned long *zone_start_pfn,
5724 unsigned long *zone_end_pfn,
c713216d
MG
5725 unsigned long *ignored)
5726{
b5685e92 5727 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5728 if (!node_start_pfn && !node_end_pfn)
5729 return 0;
5730
7960aedd 5731 /* Get the start and end of the zone */
d91749c1
TI
5732 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5733 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5734 adjust_zone_range_for_zone_movable(nid, zone_type,
5735 node_start_pfn, node_end_pfn,
d91749c1 5736 zone_start_pfn, zone_end_pfn);
c713216d
MG
5737
5738 /* Check that this node has pages within the zone's required range */
d91749c1 5739 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5740 return 0;
5741
5742 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5743 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5744 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5745
5746 /* Return the spanned pages */
d91749c1 5747 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5748}
5749
5750/*
5751 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5752 * then all holes in the requested range will be accounted for.
c713216d 5753 */
32996250 5754unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5755 unsigned long range_start_pfn,
5756 unsigned long range_end_pfn)
5757{
96e907d1
TH
5758 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5759 unsigned long start_pfn, end_pfn;
5760 int i;
c713216d 5761
96e907d1
TH
5762 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5763 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5764 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5765 nr_absent -= end_pfn - start_pfn;
c713216d 5766 }
96e907d1 5767 return nr_absent;
c713216d
MG
5768}
5769
5770/**
5771 * absent_pages_in_range - Return number of page frames in holes within a range
5772 * @start_pfn: The start PFN to start searching for holes
5773 * @end_pfn: The end PFN to stop searching for holes
5774 *
88ca3b94 5775 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5776 */
5777unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5778 unsigned long end_pfn)
5779{
5780 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5781}
5782
5783/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5784static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5785 unsigned long zone_type,
7960aedd
ZY
5786 unsigned long node_start_pfn,
5787 unsigned long node_end_pfn,
c713216d
MG
5788 unsigned long *ignored)
5789{
96e907d1
TH
5790 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5791 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5792 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5793 unsigned long nr_absent;
9c7cd687 5794
b5685e92 5795 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5796 if (!node_start_pfn && !node_end_pfn)
5797 return 0;
5798
96e907d1
TH
5799 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5800 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5801
2a1e274a
MG
5802 adjust_zone_range_for_zone_movable(nid, zone_type,
5803 node_start_pfn, node_end_pfn,
5804 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5805 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5806
5807 /*
5808 * ZONE_MOVABLE handling.
5809 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5810 * and vice versa.
5811 */
e506b996
XQ
5812 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5813 unsigned long start_pfn, end_pfn;
5814 struct memblock_region *r;
5815
5816 for_each_memblock(memory, r) {
5817 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5818 zone_start_pfn, zone_end_pfn);
5819 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5820 zone_start_pfn, zone_end_pfn);
5821
5822 if (zone_type == ZONE_MOVABLE &&
5823 memblock_is_mirror(r))
5824 nr_absent += end_pfn - start_pfn;
5825
5826 if (zone_type == ZONE_NORMAL &&
5827 !memblock_is_mirror(r))
5828 nr_absent += end_pfn - start_pfn;
342332e6
TI
5829 }
5830 }
5831
5832 return nr_absent;
c713216d 5833}
0e0b864e 5834
0ee332c1 5835#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5836static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5837 unsigned long zone_type,
7960aedd
ZY
5838 unsigned long node_start_pfn,
5839 unsigned long node_end_pfn,
d91749c1
TI
5840 unsigned long *zone_start_pfn,
5841 unsigned long *zone_end_pfn,
c713216d
MG
5842 unsigned long *zones_size)
5843{
d91749c1
TI
5844 unsigned int zone;
5845
5846 *zone_start_pfn = node_start_pfn;
5847 for (zone = 0; zone < zone_type; zone++)
5848 *zone_start_pfn += zones_size[zone];
5849
5850 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5851
c713216d
MG
5852 return zones_size[zone_type];
5853}
5854
6ea6e688 5855static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5856 unsigned long zone_type,
7960aedd
ZY
5857 unsigned long node_start_pfn,
5858 unsigned long node_end_pfn,
c713216d
MG
5859 unsigned long *zholes_size)
5860{
5861 if (!zholes_size)
5862 return 0;
5863
5864 return zholes_size[zone_type];
5865}
20e6926d 5866
0ee332c1 5867#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5868
a3142c8e 5869static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5870 unsigned long node_start_pfn,
5871 unsigned long node_end_pfn,
5872 unsigned long *zones_size,
5873 unsigned long *zholes_size)
c713216d 5874{
febd5949 5875 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5876 enum zone_type i;
5877
febd5949
GZ
5878 for (i = 0; i < MAX_NR_ZONES; i++) {
5879 struct zone *zone = pgdat->node_zones + i;
d91749c1 5880 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5881 unsigned long size, real_size;
c713216d 5882
febd5949
GZ
5883 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5884 node_start_pfn,
5885 node_end_pfn,
d91749c1
TI
5886 &zone_start_pfn,
5887 &zone_end_pfn,
febd5949
GZ
5888 zones_size);
5889 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5890 node_start_pfn, node_end_pfn,
5891 zholes_size);
d91749c1
TI
5892 if (size)
5893 zone->zone_start_pfn = zone_start_pfn;
5894 else
5895 zone->zone_start_pfn = 0;
febd5949
GZ
5896 zone->spanned_pages = size;
5897 zone->present_pages = real_size;
5898
5899 totalpages += size;
5900 realtotalpages += real_size;
5901 }
5902
5903 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5904 pgdat->node_present_pages = realtotalpages;
5905 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5906 realtotalpages);
5907}
5908
835c134e
MG
5909#ifndef CONFIG_SPARSEMEM
5910/*
5911 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5912 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5913 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5914 * round what is now in bits to nearest long in bits, then return it in
5915 * bytes.
5916 */
7c45512d 5917static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5918{
5919 unsigned long usemapsize;
5920
7c45512d 5921 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5922 usemapsize = roundup(zonesize, pageblock_nr_pages);
5923 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5924 usemapsize *= NR_PAGEBLOCK_BITS;
5925 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5926
5927 return usemapsize / 8;
5928}
5929
5930static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5931 struct zone *zone,
5932 unsigned long zone_start_pfn,
5933 unsigned long zonesize)
835c134e 5934{
7c45512d 5935 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5936 zone->pageblock_flags = NULL;
58a01a45 5937 if (usemapsize)
6782832e
SS
5938 zone->pageblock_flags =
5939 memblock_virt_alloc_node_nopanic(usemapsize,
5940 pgdat->node_id);
835c134e
MG
5941}
5942#else
7c45512d
LT
5943static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5944 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5945#endif /* CONFIG_SPARSEMEM */
5946
d9c23400 5947#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5948
d9c23400 5949/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5950void __paginginit set_pageblock_order(void)
d9c23400 5951{
955c1cd7
AM
5952 unsigned int order;
5953
d9c23400
MG
5954 /* Check that pageblock_nr_pages has not already been setup */
5955 if (pageblock_order)
5956 return;
5957
955c1cd7
AM
5958 if (HPAGE_SHIFT > PAGE_SHIFT)
5959 order = HUGETLB_PAGE_ORDER;
5960 else
5961 order = MAX_ORDER - 1;
5962
d9c23400
MG
5963 /*
5964 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5965 * This value may be variable depending on boot parameters on IA64 and
5966 * powerpc.
d9c23400
MG
5967 */
5968 pageblock_order = order;
5969}
5970#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5971
ba72cb8c
MG
5972/*
5973 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5974 * is unused as pageblock_order is set at compile-time. See
5975 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5976 * the kernel config
ba72cb8c 5977 */
15ca220e 5978void __paginginit set_pageblock_order(void)
ba72cb8c 5979{
ba72cb8c 5980}
d9c23400
MG
5981
5982#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5983
01cefaef
JL
5984static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5985 unsigned long present_pages)
5986{
5987 unsigned long pages = spanned_pages;
5988
5989 /*
5990 * Provide a more accurate estimation if there are holes within
5991 * the zone and SPARSEMEM is in use. If there are holes within the
5992 * zone, each populated memory region may cost us one or two extra
5993 * memmap pages due to alignment because memmap pages for each
89d790ab 5994 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
5995 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5996 */
5997 if (spanned_pages > present_pages + (present_pages >> 4) &&
5998 IS_ENABLED(CONFIG_SPARSEMEM))
5999 pages = present_pages;
6000
6001 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6002}
6003
1da177e4
LT
6004/*
6005 * Set up the zone data structures:
6006 * - mark all pages reserved
6007 * - mark all memory queues empty
6008 * - clear the memory bitmaps
6527af5d
MK
6009 *
6010 * NOTE: pgdat should get zeroed by caller.
1da177e4 6011 */
7f3eb55b 6012static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6013{
2f1b6248 6014 enum zone_type j;
ed8ece2e 6015 int nid = pgdat->node_id;
1da177e4 6016
208d54e5 6017 pgdat_resize_init(pgdat);
8177a420
AA
6018#ifdef CONFIG_NUMA_BALANCING
6019 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6020 pgdat->numabalancing_migrate_nr_pages = 0;
6021 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6022#endif
6023#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6024 spin_lock_init(&pgdat->split_queue_lock);
6025 INIT_LIST_HEAD(&pgdat->split_queue);
6026 pgdat->split_queue_len = 0;
8177a420 6027#endif
1da177e4 6028 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6029 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6030#ifdef CONFIG_COMPACTION
6031 init_waitqueue_head(&pgdat->kcompactd_wait);
6032#endif
eefa864b 6033 pgdat_page_ext_init(pgdat);
a52633d8 6034 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6035 lruvec_init(node_lruvec(pgdat));
5f63b720 6036
385386cf
JW
6037 pgdat->per_cpu_nodestats = &boot_nodestats;
6038
1da177e4
LT
6039 for (j = 0; j < MAX_NR_ZONES; j++) {
6040 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6041 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6042 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6043
febd5949
GZ
6044 size = zone->spanned_pages;
6045 realsize = freesize = zone->present_pages;
1da177e4 6046
0e0b864e 6047 /*
9feedc9d 6048 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6049 * is used by this zone for memmap. This affects the watermark
6050 * and per-cpu initialisations
6051 */
01cefaef 6052 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6053 if (!is_highmem_idx(j)) {
6054 if (freesize >= memmap_pages) {
6055 freesize -= memmap_pages;
6056 if (memmap_pages)
6057 printk(KERN_DEBUG
6058 " %s zone: %lu pages used for memmap\n",
6059 zone_names[j], memmap_pages);
6060 } else
1170532b 6061 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6062 zone_names[j], memmap_pages, freesize);
6063 }
0e0b864e 6064
6267276f 6065 /* Account for reserved pages */
9feedc9d
JL
6066 if (j == 0 && freesize > dma_reserve) {
6067 freesize -= dma_reserve;
d903ef9f 6068 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6069 zone_names[0], dma_reserve);
0e0b864e
MG
6070 }
6071
98d2b0eb 6072 if (!is_highmem_idx(j))
9feedc9d 6073 nr_kernel_pages += freesize;
01cefaef
JL
6074 /* Charge for highmem memmap if there are enough kernel pages */
6075 else if (nr_kernel_pages > memmap_pages * 2)
6076 nr_kernel_pages -= memmap_pages;
9feedc9d 6077 nr_all_pages += freesize;
1da177e4 6078
9feedc9d
JL
6079 /*
6080 * Set an approximate value for lowmem here, it will be adjusted
6081 * when the bootmem allocator frees pages into the buddy system.
6082 * And all highmem pages will be managed by the buddy system.
6083 */
6084 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6085#ifdef CONFIG_NUMA
d5f541ed 6086 zone->node = nid;
9614634f 6087#endif
1da177e4 6088 zone->name = zone_names[j];
a52633d8 6089 zone->zone_pgdat = pgdat;
1da177e4 6090 spin_lock_init(&zone->lock);
bdc8cb98 6091 zone_seqlock_init(zone);
ed8ece2e 6092 zone_pcp_init(zone);
81c0a2bb 6093
1da177e4
LT
6094 if (!size)
6095 continue;
6096
955c1cd7 6097 set_pageblock_order();
7c45512d 6098 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6099 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6100 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6101 }
6102}
6103
bd721ea7 6104static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6105{
b0aeba74 6106 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6107 unsigned long __maybe_unused offset = 0;
6108
1da177e4
LT
6109 /* Skip empty nodes */
6110 if (!pgdat->node_spanned_pages)
6111 return;
6112
d41dee36 6113#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6114 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6115 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6116 /* ia64 gets its own node_mem_map, before this, without bootmem */
6117 if (!pgdat->node_mem_map) {
b0aeba74 6118 unsigned long size, end;
d41dee36
AW
6119 struct page *map;
6120
e984bb43
BP
6121 /*
6122 * The zone's endpoints aren't required to be MAX_ORDER
6123 * aligned but the node_mem_map endpoints must be in order
6124 * for the buddy allocator to function correctly.
6125 */
108bcc96 6126 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6127 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6128 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6129 map = alloc_remap(pgdat->node_id, size);
6130 if (!map)
6782832e
SS
6131 map = memblock_virt_alloc_node_nopanic(size,
6132 pgdat->node_id);
a1c34a3b 6133 pgdat->node_mem_map = map + offset;
1da177e4 6134 }
12d810c1 6135#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6136 /*
6137 * With no DISCONTIG, the global mem_map is just set as node 0's
6138 */
c713216d 6139 if (pgdat == NODE_DATA(0)) {
1da177e4 6140 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6141#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6142 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6143 mem_map -= offset;
0ee332c1 6144#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6145 }
1da177e4 6146#endif
d41dee36 6147#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6148}
6149
9109fb7b
JW
6150void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6151 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6152{
9109fb7b 6153 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6154 unsigned long start_pfn = 0;
6155 unsigned long end_pfn = 0;
9109fb7b 6156
88fdf75d 6157 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6158 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6159
1da177e4
LT
6160 pgdat->node_id = nid;
6161 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6162 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6163#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6164 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6165 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6166 (u64)start_pfn << PAGE_SHIFT,
6167 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6168#else
6169 start_pfn = node_start_pfn;
7960aedd
ZY
6170#endif
6171 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6172 zones_size, zholes_size);
1da177e4
LT
6173
6174 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6175#ifdef CONFIG_FLAT_NODE_MEM_MAP
6176 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6177 nid, (unsigned long)pgdat,
6178 (unsigned long)pgdat->node_mem_map);
6179#endif
1da177e4 6180
864b9a39 6181 reset_deferred_meminit(pgdat);
7f3eb55b 6182 free_area_init_core(pgdat);
1da177e4
LT
6183}
6184
0ee332c1 6185#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6186
6187#if MAX_NUMNODES > 1
6188/*
6189 * Figure out the number of possible node ids.
6190 */
f9872caf 6191void __init setup_nr_node_ids(void)
418508c1 6192{
904a9553 6193 unsigned int highest;
418508c1 6194
904a9553 6195 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6196 nr_node_ids = highest + 1;
6197}
418508c1
MS
6198#endif
6199
1e01979c
TH
6200/**
6201 * node_map_pfn_alignment - determine the maximum internode alignment
6202 *
6203 * This function should be called after node map is populated and sorted.
6204 * It calculates the maximum power of two alignment which can distinguish
6205 * all the nodes.
6206 *
6207 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6208 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6209 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6210 * shifted, 1GiB is enough and this function will indicate so.
6211 *
6212 * This is used to test whether pfn -> nid mapping of the chosen memory
6213 * model has fine enough granularity to avoid incorrect mapping for the
6214 * populated node map.
6215 *
6216 * Returns the determined alignment in pfn's. 0 if there is no alignment
6217 * requirement (single node).
6218 */
6219unsigned long __init node_map_pfn_alignment(void)
6220{
6221 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6222 unsigned long start, end, mask;
1e01979c 6223 int last_nid = -1;
c13291a5 6224 int i, nid;
1e01979c 6225
c13291a5 6226 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6227 if (!start || last_nid < 0 || last_nid == nid) {
6228 last_nid = nid;
6229 last_end = end;
6230 continue;
6231 }
6232
6233 /*
6234 * Start with a mask granular enough to pin-point to the
6235 * start pfn and tick off bits one-by-one until it becomes
6236 * too coarse to separate the current node from the last.
6237 */
6238 mask = ~((1 << __ffs(start)) - 1);
6239 while (mask && last_end <= (start & (mask << 1)))
6240 mask <<= 1;
6241
6242 /* accumulate all internode masks */
6243 accl_mask |= mask;
6244 }
6245
6246 /* convert mask to number of pages */
6247 return ~accl_mask + 1;
6248}
6249
a6af2bc3 6250/* Find the lowest pfn for a node */
b69a7288 6251static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6252{
a6af2bc3 6253 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6254 unsigned long start_pfn;
6255 int i;
1abbfb41 6256
c13291a5
TH
6257 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6258 min_pfn = min(min_pfn, start_pfn);
c713216d 6259
a6af2bc3 6260 if (min_pfn == ULONG_MAX) {
1170532b 6261 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6262 return 0;
6263 }
6264
6265 return min_pfn;
c713216d
MG
6266}
6267
6268/**
6269 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6270 *
6271 * It returns the minimum PFN based on information provided via
7d018176 6272 * memblock_set_node().
c713216d
MG
6273 */
6274unsigned long __init find_min_pfn_with_active_regions(void)
6275{
6276 return find_min_pfn_for_node(MAX_NUMNODES);
6277}
6278
37b07e41
LS
6279/*
6280 * early_calculate_totalpages()
6281 * Sum pages in active regions for movable zone.
4b0ef1fe 6282 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6283 */
484f51f8 6284static unsigned long __init early_calculate_totalpages(void)
7e63efef 6285{
7e63efef 6286 unsigned long totalpages = 0;
c13291a5
TH
6287 unsigned long start_pfn, end_pfn;
6288 int i, nid;
6289
6290 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6291 unsigned long pages = end_pfn - start_pfn;
7e63efef 6292
37b07e41
LS
6293 totalpages += pages;
6294 if (pages)
4b0ef1fe 6295 node_set_state(nid, N_MEMORY);
37b07e41 6296 }
b8af2941 6297 return totalpages;
7e63efef
MG
6298}
6299
2a1e274a
MG
6300/*
6301 * Find the PFN the Movable zone begins in each node. Kernel memory
6302 * is spread evenly between nodes as long as the nodes have enough
6303 * memory. When they don't, some nodes will have more kernelcore than
6304 * others
6305 */
b224ef85 6306static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6307{
6308 int i, nid;
6309 unsigned long usable_startpfn;
6310 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6311 /* save the state before borrow the nodemask */
4b0ef1fe 6312 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6313 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6314 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6315 struct memblock_region *r;
b2f3eebe
TC
6316
6317 /* Need to find movable_zone earlier when movable_node is specified. */
6318 find_usable_zone_for_movable();
6319
6320 /*
6321 * If movable_node is specified, ignore kernelcore and movablecore
6322 * options.
6323 */
6324 if (movable_node_is_enabled()) {
136199f0
EM
6325 for_each_memblock(memory, r) {
6326 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6327 continue;
6328
136199f0 6329 nid = r->nid;
b2f3eebe 6330
136199f0 6331 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6332 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6333 min(usable_startpfn, zone_movable_pfn[nid]) :
6334 usable_startpfn;
6335 }
6336
6337 goto out2;
6338 }
2a1e274a 6339
342332e6
TI
6340 /*
6341 * If kernelcore=mirror is specified, ignore movablecore option
6342 */
6343 if (mirrored_kernelcore) {
6344 bool mem_below_4gb_not_mirrored = false;
6345
6346 for_each_memblock(memory, r) {
6347 if (memblock_is_mirror(r))
6348 continue;
6349
6350 nid = r->nid;
6351
6352 usable_startpfn = memblock_region_memory_base_pfn(r);
6353
6354 if (usable_startpfn < 0x100000) {
6355 mem_below_4gb_not_mirrored = true;
6356 continue;
6357 }
6358
6359 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6360 min(usable_startpfn, zone_movable_pfn[nid]) :
6361 usable_startpfn;
6362 }
6363
6364 if (mem_below_4gb_not_mirrored)
6365 pr_warn("This configuration results in unmirrored kernel memory.");
6366
6367 goto out2;
6368 }
6369
7e63efef 6370 /*
b2f3eebe 6371 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6372 * kernelcore that corresponds so that memory usable for
6373 * any allocation type is evenly spread. If both kernelcore
6374 * and movablecore are specified, then the value of kernelcore
6375 * will be used for required_kernelcore if it's greater than
6376 * what movablecore would have allowed.
6377 */
6378 if (required_movablecore) {
7e63efef
MG
6379 unsigned long corepages;
6380
6381 /*
6382 * Round-up so that ZONE_MOVABLE is at least as large as what
6383 * was requested by the user
6384 */
6385 required_movablecore =
6386 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6387 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6388 corepages = totalpages - required_movablecore;
6389
6390 required_kernelcore = max(required_kernelcore, corepages);
6391 }
6392
bde304bd
XQ
6393 /*
6394 * If kernelcore was not specified or kernelcore size is larger
6395 * than totalpages, there is no ZONE_MOVABLE.
6396 */
6397 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6398 goto out;
2a1e274a
MG
6399
6400 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6401 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6402
6403restart:
6404 /* Spread kernelcore memory as evenly as possible throughout nodes */
6405 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6406 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6407 unsigned long start_pfn, end_pfn;
6408
2a1e274a
MG
6409 /*
6410 * Recalculate kernelcore_node if the division per node
6411 * now exceeds what is necessary to satisfy the requested
6412 * amount of memory for the kernel
6413 */
6414 if (required_kernelcore < kernelcore_node)
6415 kernelcore_node = required_kernelcore / usable_nodes;
6416
6417 /*
6418 * As the map is walked, we track how much memory is usable
6419 * by the kernel using kernelcore_remaining. When it is
6420 * 0, the rest of the node is usable by ZONE_MOVABLE
6421 */
6422 kernelcore_remaining = kernelcore_node;
6423
6424 /* Go through each range of PFNs within this node */
c13291a5 6425 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6426 unsigned long size_pages;
6427
c13291a5 6428 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6429 if (start_pfn >= end_pfn)
6430 continue;
6431
6432 /* Account for what is only usable for kernelcore */
6433 if (start_pfn < usable_startpfn) {
6434 unsigned long kernel_pages;
6435 kernel_pages = min(end_pfn, usable_startpfn)
6436 - start_pfn;
6437
6438 kernelcore_remaining -= min(kernel_pages,
6439 kernelcore_remaining);
6440 required_kernelcore -= min(kernel_pages,
6441 required_kernelcore);
6442
6443 /* Continue if range is now fully accounted */
6444 if (end_pfn <= usable_startpfn) {
6445
6446 /*
6447 * Push zone_movable_pfn to the end so
6448 * that if we have to rebalance
6449 * kernelcore across nodes, we will
6450 * not double account here
6451 */
6452 zone_movable_pfn[nid] = end_pfn;
6453 continue;
6454 }
6455 start_pfn = usable_startpfn;
6456 }
6457
6458 /*
6459 * The usable PFN range for ZONE_MOVABLE is from
6460 * start_pfn->end_pfn. Calculate size_pages as the
6461 * number of pages used as kernelcore
6462 */
6463 size_pages = end_pfn - start_pfn;
6464 if (size_pages > kernelcore_remaining)
6465 size_pages = kernelcore_remaining;
6466 zone_movable_pfn[nid] = start_pfn + size_pages;
6467
6468 /*
6469 * Some kernelcore has been met, update counts and
6470 * break if the kernelcore for this node has been
b8af2941 6471 * satisfied
2a1e274a
MG
6472 */
6473 required_kernelcore -= min(required_kernelcore,
6474 size_pages);
6475 kernelcore_remaining -= size_pages;
6476 if (!kernelcore_remaining)
6477 break;
6478 }
6479 }
6480
6481 /*
6482 * If there is still required_kernelcore, we do another pass with one
6483 * less node in the count. This will push zone_movable_pfn[nid] further
6484 * along on the nodes that still have memory until kernelcore is
b8af2941 6485 * satisfied
2a1e274a
MG
6486 */
6487 usable_nodes--;
6488 if (usable_nodes && required_kernelcore > usable_nodes)
6489 goto restart;
6490
b2f3eebe 6491out2:
2a1e274a
MG
6492 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6493 for (nid = 0; nid < MAX_NUMNODES; nid++)
6494 zone_movable_pfn[nid] =
6495 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6496
20e6926d 6497out:
66918dcd 6498 /* restore the node_state */
4b0ef1fe 6499 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6500}
6501
4b0ef1fe
LJ
6502/* Any regular or high memory on that node ? */
6503static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6504{
37b07e41
LS
6505 enum zone_type zone_type;
6506
4b0ef1fe
LJ
6507 if (N_MEMORY == N_NORMAL_MEMORY)
6508 return;
6509
6510 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6511 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6512 if (populated_zone(zone)) {
4b0ef1fe
LJ
6513 node_set_state(nid, N_HIGH_MEMORY);
6514 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6515 zone_type <= ZONE_NORMAL)
6516 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6517 break;
6518 }
37b07e41 6519 }
37b07e41
LS
6520}
6521
c713216d
MG
6522/**
6523 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6524 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6525 *
6526 * This will call free_area_init_node() for each active node in the system.
7d018176 6527 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6528 * zone in each node and their holes is calculated. If the maximum PFN
6529 * between two adjacent zones match, it is assumed that the zone is empty.
6530 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6531 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6532 * starts where the previous one ended. For example, ZONE_DMA32 starts
6533 * at arch_max_dma_pfn.
6534 */
6535void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6536{
c13291a5
TH
6537 unsigned long start_pfn, end_pfn;
6538 int i, nid;
a6af2bc3 6539
c713216d
MG
6540 /* Record where the zone boundaries are */
6541 memset(arch_zone_lowest_possible_pfn, 0,
6542 sizeof(arch_zone_lowest_possible_pfn));
6543 memset(arch_zone_highest_possible_pfn, 0,
6544 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6545
6546 start_pfn = find_min_pfn_with_active_regions();
6547
6548 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6549 if (i == ZONE_MOVABLE)
6550 continue;
90cae1fe
OH
6551
6552 end_pfn = max(max_zone_pfn[i], start_pfn);
6553 arch_zone_lowest_possible_pfn[i] = start_pfn;
6554 arch_zone_highest_possible_pfn[i] = end_pfn;
6555
6556 start_pfn = end_pfn;
c713216d 6557 }
2a1e274a
MG
6558
6559 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6560 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6561 find_zone_movable_pfns_for_nodes();
c713216d 6562
c713216d 6563 /* Print out the zone ranges */
f88dfff5 6564 pr_info("Zone ranges:\n");
2a1e274a
MG
6565 for (i = 0; i < MAX_NR_ZONES; i++) {
6566 if (i == ZONE_MOVABLE)
6567 continue;
f88dfff5 6568 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6569 if (arch_zone_lowest_possible_pfn[i] ==
6570 arch_zone_highest_possible_pfn[i])
f88dfff5 6571 pr_cont("empty\n");
72f0ba02 6572 else
8d29e18a
JG
6573 pr_cont("[mem %#018Lx-%#018Lx]\n",
6574 (u64)arch_zone_lowest_possible_pfn[i]
6575 << PAGE_SHIFT,
6576 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6577 << PAGE_SHIFT) - 1);
2a1e274a
MG
6578 }
6579
6580 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6581 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6582 for (i = 0; i < MAX_NUMNODES; i++) {
6583 if (zone_movable_pfn[i])
8d29e18a
JG
6584 pr_info(" Node %d: %#018Lx\n", i,
6585 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6586 }
c713216d 6587
f2d52fe5 6588 /* Print out the early node map */
f88dfff5 6589 pr_info("Early memory node ranges\n");
c13291a5 6590 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6591 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6592 (u64)start_pfn << PAGE_SHIFT,
6593 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6594
6595 /* Initialise every node */
708614e6 6596 mminit_verify_pageflags_layout();
8ef82866 6597 setup_nr_node_ids();
c713216d
MG
6598 for_each_online_node(nid) {
6599 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6600 free_area_init_node(nid, NULL,
c713216d 6601 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6602
6603 /* Any memory on that node */
6604 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6605 node_set_state(nid, N_MEMORY);
6606 check_for_memory(pgdat, nid);
c713216d
MG
6607 }
6608}
2a1e274a 6609
7e63efef 6610static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6611{
6612 unsigned long long coremem;
6613 if (!p)
6614 return -EINVAL;
6615
6616 coremem = memparse(p, &p);
7e63efef 6617 *core = coremem >> PAGE_SHIFT;
2a1e274a 6618
7e63efef 6619 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6620 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6621
6622 return 0;
6623}
ed7ed365 6624
7e63efef
MG
6625/*
6626 * kernelcore=size sets the amount of memory for use for allocations that
6627 * cannot be reclaimed or migrated.
6628 */
6629static int __init cmdline_parse_kernelcore(char *p)
6630{
342332e6
TI
6631 /* parse kernelcore=mirror */
6632 if (parse_option_str(p, "mirror")) {
6633 mirrored_kernelcore = true;
6634 return 0;
6635 }
6636
7e63efef
MG
6637 return cmdline_parse_core(p, &required_kernelcore);
6638}
6639
6640/*
6641 * movablecore=size sets the amount of memory for use for allocations that
6642 * can be reclaimed or migrated.
6643 */
6644static int __init cmdline_parse_movablecore(char *p)
6645{
6646 return cmdline_parse_core(p, &required_movablecore);
6647}
6648
ed7ed365 6649early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6650early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6651
0ee332c1 6652#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6653
c3d5f5f0
JL
6654void adjust_managed_page_count(struct page *page, long count)
6655{
6656 spin_lock(&managed_page_count_lock);
6657 page_zone(page)->managed_pages += count;
6658 totalram_pages += count;
3dcc0571
JL
6659#ifdef CONFIG_HIGHMEM
6660 if (PageHighMem(page))
6661 totalhigh_pages += count;
6662#endif
c3d5f5f0
JL
6663 spin_unlock(&managed_page_count_lock);
6664}
3dcc0571 6665EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6666
11199692 6667unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6668{
11199692
JL
6669 void *pos;
6670 unsigned long pages = 0;
69afade7 6671
11199692
JL
6672 start = (void *)PAGE_ALIGN((unsigned long)start);
6673 end = (void *)((unsigned long)end & PAGE_MASK);
6674 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6675 if ((unsigned int)poison <= 0xFF)
11199692
JL
6676 memset(pos, poison, PAGE_SIZE);
6677 free_reserved_page(virt_to_page(pos));
69afade7
JL
6678 }
6679
6680 if (pages && s)
adb1fe9a
JP
6681 pr_info("Freeing %s memory: %ldK\n",
6682 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6683
6684 return pages;
6685}
11199692 6686EXPORT_SYMBOL(free_reserved_area);
69afade7 6687
cfa11e08
JL
6688#ifdef CONFIG_HIGHMEM
6689void free_highmem_page(struct page *page)
6690{
6691 __free_reserved_page(page);
6692 totalram_pages++;
7b4b2a0d 6693 page_zone(page)->managed_pages++;
cfa11e08
JL
6694 totalhigh_pages++;
6695}
6696#endif
6697
7ee3d4e8
JL
6698
6699void __init mem_init_print_info(const char *str)
6700{
6701 unsigned long physpages, codesize, datasize, rosize, bss_size;
6702 unsigned long init_code_size, init_data_size;
6703
6704 physpages = get_num_physpages();
6705 codesize = _etext - _stext;
6706 datasize = _edata - _sdata;
6707 rosize = __end_rodata - __start_rodata;
6708 bss_size = __bss_stop - __bss_start;
6709 init_data_size = __init_end - __init_begin;
6710 init_code_size = _einittext - _sinittext;
6711
6712 /*
6713 * Detect special cases and adjust section sizes accordingly:
6714 * 1) .init.* may be embedded into .data sections
6715 * 2) .init.text.* may be out of [__init_begin, __init_end],
6716 * please refer to arch/tile/kernel/vmlinux.lds.S.
6717 * 3) .rodata.* may be embedded into .text or .data sections.
6718 */
6719#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6720 do { \
6721 if (start <= pos && pos < end && size > adj) \
6722 size -= adj; \
6723 } while (0)
7ee3d4e8
JL
6724
6725 adj_init_size(__init_begin, __init_end, init_data_size,
6726 _sinittext, init_code_size);
6727 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6728 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6729 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6730 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6731
6732#undef adj_init_size
6733
756a025f 6734 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6735#ifdef CONFIG_HIGHMEM
756a025f 6736 ", %luK highmem"
7ee3d4e8 6737#endif
756a025f
JP
6738 "%s%s)\n",
6739 nr_free_pages() << (PAGE_SHIFT - 10),
6740 physpages << (PAGE_SHIFT - 10),
6741 codesize >> 10, datasize >> 10, rosize >> 10,
6742 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6743 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6744 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6745#ifdef CONFIG_HIGHMEM
756a025f 6746 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6747#endif
756a025f 6748 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6749}
6750
0e0b864e 6751/**
88ca3b94
RD
6752 * set_dma_reserve - set the specified number of pages reserved in the first zone
6753 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6754 *
013110a7 6755 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6756 * In the DMA zone, a significant percentage may be consumed by kernel image
6757 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6758 * function may optionally be used to account for unfreeable pages in the
6759 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6760 * smaller per-cpu batchsize.
0e0b864e
MG
6761 */
6762void __init set_dma_reserve(unsigned long new_dma_reserve)
6763{
6764 dma_reserve = new_dma_reserve;
6765}
6766
1da177e4
LT
6767void __init free_area_init(unsigned long *zones_size)
6768{
9109fb7b 6769 free_area_init_node(0, zones_size,
1da177e4
LT
6770 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6771}
1da177e4 6772
005fd4bb 6773static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6774{
1da177e4 6775
005fd4bb
SAS
6776 lru_add_drain_cpu(cpu);
6777 drain_pages(cpu);
9f8f2172 6778
005fd4bb
SAS
6779 /*
6780 * Spill the event counters of the dead processor
6781 * into the current processors event counters.
6782 * This artificially elevates the count of the current
6783 * processor.
6784 */
6785 vm_events_fold_cpu(cpu);
9f8f2172 6786
005fd4bb
SAS
6787 /*
6788 * Zero the differential counters of the dead processor
6789 * so that the vm statistics are consistent.
6790 *
6791 * This is only okay since the processor is dead and cannot
6792 * race with what we are doing.
6793 */
6794 cpu_vm_stats_fold(cpu);
6795 return 0;
1da177e4 6796}
1da177e4
LT
6797
6798void __init page_alloc_init(void)
6799{
005fd4bb
SAS
6800 int ret;
6801
6802 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6803 "mm/page_alloc:dead", NULL,
6804 page_alloc_cpu_dead);
6805 WARN_ON(ret < 0);
1da177e4
LT
6806}
6807
cb45b0e9 6808/*
34b10060 6809 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6810 * or min_free_kbytes changes.
6811 */
6812static void calculate_totalreserve_pages(void)
6813{
6814 struct pglist_data *pgdat;
6815 unsigned long reserve_pages = 0;
2f6726e5 6816 enum zone_type i, j;
cb45b0e9
HA
6817
6818 for_each_online_pgdat(pgdat) {
281e3726
MG
6819
6820 pgdat->totalreserve_pages = 0;
6821
cb45b0e9
HA
6822 for (i = 0; i < MAX_NR_ZONES; i++) {
6823 struct zone *zone = pgdat->node_zones + i;
3484b2de 6824 long max = 0;
cb45b0e9
HA
6825
6826 /* Find valid and maximum lowmem_reserve in the zone */
6827 for (j = i; j < MAX_NR_ZONES; j++) {
6828 if (zone->lowmem_reserve[j] > max)
6829 max = zone->lowmem_reserve[j];
6830 }
6831
41858966
MG
6832 /* we treat the high watermark as reserved pages. */
6833 max += high_wmark_pages(zone);
cb45b0e9 6834
b40da049
JL
6835 if (max > zone->managed_pages)
6836 max = zone->managed_pages;
a8d01437 6837
281e3726 6838 pgdat->totalreserve_pages += max;
a8d01437 6839
cb45b0e9
HA
6840 reserve_pages += max;
6841 }
6842 }
6843 totalreserve_pages = reserve_pages;
6844}
6845
1da177e4
LT
6846/*
6847 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6848 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6849 * has a correct pages reserved value, so an adequate number of
6850 * pages are left in the zone after a successful __alloc_pages().
6851 */
6852static void setup_per_zone_lowmem_reserve(void)
6853{
6854 struct pglist_data *pgdat;
2f6726e5 6855 enum zone_type j, idx;
1da177e4 6856
ec936fc5 6857 for_each_online_pgdat(pgdat) {
1da177e4
LT
6858 for (j = 0; j < MAX_NR_ZONES; j++) {
6859 struct zone *zone = pgdat->node_zones + j;
b40da049 6860 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6861
6862 zone->lowmem_reserve[j] = 0;
6863
2f6726e5
CL
6864 idx = j;
6865 while (idx) {
1da177e4
LT
6866 struct zone *lower_zone;
6867
2f6726e5
CL
6868 idx--;
6869
1da177e4
LT
6870 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6871 sysctl_lowmem_reserve_ratio[idx] = 1;
6872
6873 lower_zone = pgdat->node_zones + idx;
b40da049 6874 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6875 sysctl_lowmem_reserve_ratio[idx];
b40da049 6876 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6877 }
6878 }
6879 }
cb45b0e9
HA
6880
6881 /* update totalreserve_pages */
6882 calculate_totalreserve_pages();
1da177e4
LT
6883}
6884
cfd3da1e 6885static void __setup_per_zone_wmarks(void)
1da177e4
LT
6886{
6887 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6888 unsigned long lowmem_pages = 0;
6889 struct zone *zone;
6890 unsigned long flags;
6891
6892 /* Calculate total number of !ZONE_HIGHMEM pages */
6893 for_each_zone(zone) {
6894 if (!is_highmem(zone))
b40da049 6895 lowmem_pages += zone->managed_pages;
1da177e4
LT
6896 }
6897
6898 for_each_zone(zone) {
ac924c60
AM
6899 u64 tmp;
6900
1125b4e3 6901 spin_lock_irqsave(&zone->lock, flags);
b40da049 6902 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6903 do_div(tmp, lowmem_pages);
1da177e4
LT
6904 if (is_highmem(zone)) {
6905 /*
669ed175
NP
6906 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6907 * need highmem pages, so cap pages_min to a small
6908 * value here.
6909 *
41858966 6910 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6911 * deltas control asynch page reclaim, and so should
669ed175 6912 * not be capped for highmem.
1da177e4 6913 */
90ae8d67 6914 unsigned long min_pages;
1da177e4 6915
b40da049 6916 min_pages = zone->managed_pages / 1024;
90ae8d67 6917 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6918 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6919 } else {
669ed175
NP
6920 /*
6921 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6922 * proportionate to the zone's size.
6923 */
41858966 6924 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6925 }
6926
795ae7a0
JW
6927 /*
6928 * Set the kswapd watermarks distance according to the
6929 * scale factor in proportion to available memory, but
6930 * ensure a minimum size on small systems.
6931 */
6932 tmp = max_t(u64, tmp >> 2,
6933 mult_frac(zone->managed_pages,
6934 watermark_scale_factor, 10000));
6935
6936 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6937 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6938
1125b4e3 6939 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6940 }
cb45b0e9
HA
6941
6942 /* update totalreserve_pages */
6943 calculate_totalreserve_pages();
1da177e4
LT
6944}
6945
cfd3da1e
MG
6946/**
6947 * setup_per_zone_wmarks - called when min_free_kbytes changes
6948 * or when memory is hot-{added|removed}
6949 *
6950 * Ensures that the watermark[min,low,high] values for each zone are set
6951 * correctly with respect to min_free_kbytes.
6952 */
6953void setup_per_zone_wmarks(void)
6954{
6955 mutex_lock(&zonelists_mutex);
6956 __setup_per_zone_wmarks();
6957 mutex_unlock(&zonelists_mutex);
6958}
6959
1da177e4
LT
6960/*
6961 * Initialise min_free_kbytes.
6962 *
6963 * For small machines we want it small (128k min). For large machines
6964 * we want it large (64MB max). But it is not linear, because network
6965 * bandwidth does not increase linearly with machine size. We use
6966 *
b8af2941 6967 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6968 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6969 *
6970 * which yields
6971 *
6972 * 16MB: 512k
6973 * 32MB: 724k
6974 * 64MB: 1024k
6975 * 128MB: 1448k
6976 * 256MB: 2048k
6977 * 512MB: 2896k
6978 * 1024MB: 4096k
6979 * 2048MB: 5792k
6980 * 4096MB: 8192k
6981 * 8192MB: 11584k
6982 * 16384MB: 16384k
6983 */
1b79acc9 6984int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6985{
6986 unsigned long lowmem_kbytes;
5f12733e 6987 int new_min_free_kbytes;
1da177e4
LT
6988
6989 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6990 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6991
6992 if (new_min_free_kbytes > user_min_free_kbytes) {
6993 min_free_kbytes = new_min_free_kbytes;
6994 if (min_free_kbytes < 128)
6995 min_free_kbytes = 128;
6996 if (min_free_kbytes > 65536)
6997 min_free_kbytes = 65536;
6998 } else {
6999 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7000 new_min_free_kbytes, user_min_free_kbytes);
7001 }
bc75d33f 7002 setup_per_zone_wmarks();
a6cccdc3 7003 refresh_zone_stat_thresholds();
1da177e4 7004 setup_per_zone_lowmem_reserve();
6423aa81
JK
7005
7006#ifdef CONFIG_NUMA
7007 setup_min_unmapped_ratio();
7008 setup_min_slab_ratio();
7009#endif
7010
1da177e4
LT
7011 return 0;
7012}
bc22af74 7013core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7014
7015/*
b8af2941 7016 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7017 * that we can call two helper functions whenever min_free_kbytes
7018 * changes.
7019 */
cccad5b9 7020int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7021 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7022{
da8c757b
HP
7023 int rc;
7024
7025 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7026 if (rc)
7027 return rc;
7028
5f12733e
MH
7029 if (write) {
7030 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7031 setup_per_zone_wmarks();
5f12733e 7032 }
1da177e4
LT
7033 return 0;
7034}
7035
795ae7a0
JW
7036int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7037 void __user *buffer, size_t *length, loff_t *ppos)
7038{
7039 int rc;
7040
7041 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7042 if (rc)
7043 return rc;
7044
7045 if (write)
7046 setup_per_zone_wmarks();
7047
7048 return 0;
7049}
7050
9614634f 7051#ifdef CONFIG_NUMA
6423aa81 7052static void setup_min_unmapped_ratio(void)
9614634f 7053{
6423aa81 7054 pg_data_t *pgdat;
9614634f 7055 struct zone *zone;
9614634f 7056
a5f5f91d 7057 for_each_online_pgdat(pgdat)
81cbcbc2 7058 pgdat->min_unmapped_pages = 0;
a5f5f91d 7059
9614634f 7060 for_each_zone(zone)
a5f5f91d 7061 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7062 sysctl_min_unmapped_ratio) / 100;
9614634f 7063}
0ff38490 7064
6423aa81
JK
7065
7066int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7067 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7068{
0ff38490
CL
7069 int rc;
7070
8d65af78 7071 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7072 if (rc)
7073 return rc;
7074
6423aa81
JK
7075 setup_min_unmapped_ratio();
7076
7077 return 0;
7078}
7079
7080static void setup_min_slab_ratio(void)
7081{
7082 pg_data_t *pgdat;
7083 struct zone *zone;
7084
a5f5f91d
MG
7085 for_each_online_pgdat(pgdat)
7086 pgdat->min_slab_pages = 0;
7087
0ff38490 7088 for_each_zone(zone)
a5f5f91d 7089 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7090 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7091}
7092
7093int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7094 void __user *buffer, size_t *length, loff_t *ppos)
7095{
7096 int rc;
7097
7098 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7099 if (rc)
7100 return rc;
7101
7102 setup_min_slab_ratio();
7103
0ff38490
CL
7104 return 0;
7105}
9614634f
CL
7106#endif
7107
1da177e4
LT
7108/*
7109 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7110 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7111 * whenever sysctl_lowmem_reserve_ratio changes.
7112 *
7113 * The reserve ratio obviously has absolutely no relation with the
41858966 7114 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7115 * if in function of the boot time zone sizes.
7116 */
cccad5b9 7117int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7118 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7119{
8d65af78 7120 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7121 setup_per_zone_lowmem_reserve();
7122 return 0;
7123}
7124
8ad4b1fb
RS
7125/*
7126 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7127 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7128 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7129 */
cccad5b9 7130int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7131 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7132{
7133 struct zone *zone;
7cd2b0a3 7134 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7135 int ret;
7136
7cd2b0a3
DR
7137 mutex_lock(&pcp_batch_high_lock);
7138 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7139
8d65af78 7140 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7141 if (!write || ret < 0)
7142 goto out;
7143
7144 /* Sanity checking to avoid pcp imbalance */
7145 if (percpu_pagelist_fraction &&
7146 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7147 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7148 ret = -EINVAL;
7149 goto out;
7150 }
7151
7152 /* No change? */
7153 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7154 goto out;
c8e251fa 7155
364df0eb 7156 for_each_populated_zone(zone) {
7cd2b0a3
DR
7157 unsigned int cpu;
7158
22a7f12b 7159 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7160 pageset_set_high_and_batch(zone,
7161 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7162 }
7cd2b0a3 7163out:
c8e251fa 7164 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7165 return ret;
8ad4b1fb
RS
7166}
7167
a9919c79 7168#ifdef CONFIG_NUMA
f034b5d4 7169int hashdist = HASHDIST_DEFAULT;
1da177e4 7170
1da177e4
LT
7171static int __init set_hashdist(char *str)
7172{
7173 if (!str)
7174 return 0;
7175 hashdist = simple_strtoul(str, &str, 0);
7176 return 1;
7177}
7178__setup("hashdist=", set_hashdist);
7179#endif
7180
f6f34b43
SD
7181#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7182/*
7183 * Returns the number of pages that arch has reserved but
7184 * is not known to alloc_large_system_hash().
7185 */
7186static unsigned long __init arch_reserved_kernel_pages(void)
7187{
7188 return 0;
7189}
7190#endif
7191
9017217b
PT
7192/*
7193 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7194 * machines. As memory size is increased the scale is also increased but at
7195 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7196 * quadruples the scale is increased by one, which means the size of hash table
7197 * only doubles, instead of quadrupling as well.
7198 * Because 32-bit systems cannot have large physical memory, where this scaling
7199 * makes sense, it is disabled on such platforms.
7200 */
7201#if __BITS_PER_LONG > 32
7202#define ADAPT_SCALE_BASE (64ul << 30)
7203#define ADAPT_SCALE_SHIFT 2
7204#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7205#endif
7206
1da177e4
LT
7207/*
7208 * allocate a large system hash table from bootmem
7209 * - it is assumed that the hash table must contain an exact power-of-2
7210 * quantity of entries
7211 * - limit is the number of hash buckets, not the total allocation size
7212 */
7213void *__init alloc_large_system_hash(const char *tablename,
7214 unsigned long bucketsize,
7215 unsigned long numentries,
7216 int scale,
7217 int flags,
7218 unsigned int *_hash_shift,
7219 unsigned int *_hash_mask,
31fe62b9
TB
7220 unsigned long low_limit,
7221 unsigned long high_limit)
1da177e4 7222{
31fe62b9 7223 unsigned long long max = high_limit;
1da177e4
LT
7224 unsigned long log2qty, size;
7225 void *table = NULL;
3749a8f0 7226 gfp_t gfp_flags;
1da177e4
LT
7227
7228 /* allow the kernel cmdline to have a say */
7229 if (!numentries) {
7230 /* round applicable memory size up to nearest megabyte */
04903664 7231 numentries = nr_kernel_pages;
f6f34b43 7232 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7233
7234 /* It isn't necessary when PAGE_SIZE >= 1MB */
7235 if (PAGE_SHIFT < 20)
7236 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7237
9017217b
PT
7238#if __BITS_PER_LONG > 32
7239 if (!high_limit) {
7240 unsigned long adapt;
7241
7242 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7243 adapt <<= ADAPT_SCALE_SHIFT)
7244 scale++;
7245 }
7246#endif
7247
1da177e4
LT
7248 /* limit to 1 bucket per 2^scale bytes of low memory */
7249 if (scale > PAGE_SHIFT)
7250 numentries >>= (scale - PAGE_SHIFT);
7251 else
7252 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7253
7254 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7255 if (unlikely(flags & HASH_SMALL)) {
7256 /* Makes no sense without HASH_EARLY */
7257 WARN_ON(!(flags & HASH_EARLY));
7258 if (!(numentries >> *_hash_shift)) {
7259 numentries = 1UL << *_hash_shift;
7260 BUG_ON(!numentries);
7261 }
7262 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7263 numentries = PAGE_SIZE / bucketsize;
1da177e4 7264 }
6e692ed3 7265 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7266
7267 /* limit allocation size to 1/16 total memory by default */
7268 if (max == 0) {
7269 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7270 do_div(max, bucketsize);
7271 }
074b8517 7272 max = min(max, 0x80000000ULL);
1da177e4 7273
31fe62b9
TB
7274 if (numentries < low_limit)
7275 numentries = low_limit;
1da177e4
LT
7276 if (numentries > max)
7277 numentries = max;
7278
f0d1b0b3 7279 log2qty = ilog2(numentries);
1da177e4 7280
3749a8f0
PT
7281 /*
7282 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7283 * currently not used when HASH_EARLY is specified.
7284 */
7285 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7286 do {
7287 size = bucketsize << log2qty;
7288 if (flags & HASH_EARLY)
6782832e 7289 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4 7290 else if (hashdist)
3749a8f0 7291 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
1da177e4 7292 else {
1037b83b
ED
7293 /*
7294 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7295 * some pages at the end of hash table which
7296 * alloc_pages_exact() automatically does
1037b83b 7297 */
264ef8a9 7298 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7299 table = alloc_pages_exact(size, gfp_flags);
7300 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7301 }
1da177e4
LT
7302 }
7303 } while (!table && size > PAGE_SIZE && --log2qty);
7304
7305 if (!table)
7306 panic("Failed to allocate %s hash table\n", tablename);
7307
1170532b
JP
7308 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7309 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7310
7311 if (_hash_shift)
7312 *_hash_shift = log2qty;
7313 if (_hash_mask)
7314 *_hash_mask = (1 << log2qty) - 1;
7315
7316 return table;
7317}
a117e66e 7318
a5d76b54 7319/*
80934513
MK
7320 * This function checks whether pageblock includes unmovable pages or not.
7321 * If @count is not zero, it is okay to include less @count unmovable pages
7322 *
b8af2941 7323 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7324 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7325 * check without lock_page also may miss some movable non-lru pages at
7326 * race condition. So you can't expect this function should be exact.
a5d76b54 7327 */
b023f468
WC
7328bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7329 bool skip_hwpoisoned_pages)
49ac8255
KH
7330{
7331 unsigned long pfn, iter, found;
47118af0
MN
7332 int mt;
7333
49ac8255
KH
7334 /*
7335 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7336 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7337 */
7338 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7339 return false;
47118af0
MN
7340 mt = get_pageblock_migratetype(page);
7341 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7342 return false;
49ac8255
KH
7343
7344 pfn = page_to_pfn(page);
7345 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7346 unsigned long check = pfn + iter;
7347
29723fcc 7348 if (!pfn_valid_within(check))
49ac8255 7349 continue;
29723fcc 7350
49ac8255 7351 page = pfn_to_page(check);
c8721bbb
NH
7352
7353 /*
7354 * Hugepages are not in LRU lists, but they're movable.
7355 * We need not scan over tail pages bacause we don't
7356 * handle each tail page individually in migration.
7357 */
7358 if (PageHuge(page)) {
7359 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7360 continue;
7361 }
7362
97d255c8
MK
7363 /*
7364 * We can't use page_count without pin a page
7365 * because another CPU can free compound page.
7366 * This check already skips compound tails of THP
0139aa7b 7367 * because their page->_refcount is zero at all time.
97d255c8 7368 */
fe896d18 7369 if (!page_ref_count(page)) {
49ac8255
KH
7370 if (PageBuddy(page))
7371 iter += (1 << page_order(page)) - 1;
7372 continue;
7373 }
97d255c8 7374
b023f468
WC
7375 /*
7376 * The HWPoisoned page may be not in buddy system, and
7377 * page_count() is not 0.
7378 */
7379 if (skip_hwpoisoned_pages && PageHWPoison(page))
7380 continue;
7381
0efadf48
YX
7382 if (__PageMovable(page))
7383 continue;
7384
49ac8255
KH
7385 if (!PageLRU(page))
7386 found++;
7387 /*
6b4f7799
JW
7388 * If there are RECLAIMABLE pages, we need to check
7389 * it. But now, memory offline itself doesn't call
7390 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7391 */
7392 /*
7393 * If the page is not RAM, page_count()should be 0.
7394 * we don't need more check. This is an _used_ not-movable page.
7395 *
7396 * The problematic thing here is PG_reserved pages. PG_reserved
7397 * is set to both of a memory hole page and a _used_ kernel
7398 * page at boot.
7399 */
7400 if (found > count)
80934513 7401 return true;
49ac8255 7402 }
80934513 7403 return false;
49ac8255
KH
7404}
7405
7406bool is_pageblock_removable_nolock(struct page *page)
7407{
656a0706
MH
7408 struct zone *zone;
7409 unsigned long pfn;
687875fb
MH
7410
7411 /*
7412 * We have to be careful here because we are iterating over memory
7413 * sections which are not zone aware so we might end up outside of
7414 * the zone but still within the section.
656a0706
MH
7415 * We have to take care about the node as well. If the node is offline
7416 * its NODE_DATA will be NULL - see page_zone.
687875fb 7417 */
656a0706
MH
7418 if (!node_online(page_to_nid(page)))
7419 return false;
7420
7421 zone = page_zone(page);
7422 pfn = page_to_pfn(page);
108bcc96 7423 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7424 return false;
7425
b023f468 7426 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7427}
0c0e6195 7428
080fe206 7429#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7430
7431static unsigned long pfn_max_align_down(unsigned long pfn)
7432{
7433 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7434 pageblock_nr_pages) - 1);
7435}
7436
7437static unsigned long pfn_max_align_up(unsigned long pfn)
7438{
7439 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7440 pageblock_nr_pages));
7441}
7442
041d3a8c 7443/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7444static int __alloc_contig_migrate_range(struct compact_control *cc,
7445 unsigned long start, unsigned long end)
041d3a8c
MN
7446{
7447 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7448 unsigned long nr_reclaimed;
041d3a8c
MN
7449 unsigned long pfn = start;
7450 unsigned int tries = 0;
7451 int ret = 0;
7452
be49a6e1 7453 migrate_prep();
041d3a8c 7454
bb13ffeb 7455 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7456 if (fatal_signal_pending(current)) {
7457 ret = -EINTR;
7458 break;
7459 }
7460
bb13ffeb
MG
7461 if (list_empty(&cc->migratepages)) {
7462 cc->nr_migratepages = 0;
edc2ca61 7463 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7464 if (!pfn) {
7465 ret = -EINTR;
7466 break;
7467 }
7468 tries = 0;
7469 } else if (++tries == 5) {
7470 ret = ret < 0 ? ret : -EBUSY;
7471 break;
7472 }
7473
beb51eaa
MK
7474 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7475 &cc->migratepages);
7476 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7477
9c620e2b 7478 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7479 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7480 }
2a6f5124
SP
7481 if (ret < 0) {
7482 putback_movable_pages(&cc->migratepages);
7483 return ret;
7484 }
7485 return 0;
041d3a8c
MN
7486}
7487
7488/**
7489 * alloc_contig_range() -- tries to allocate given range of pages
7490 * @start: start PFN to allocate
7491 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7492 * @migratetype: migratetype of the underlaying pageblocks (either
7493 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7494 * in range must have the same migratetype and it must
7495 * be either of the two.
ca96b625 7496 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7497 *
7498 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7499 * aligned, however it's the caller's responsibility to guarantee that
7500 * we are the only thread that changes migrate type of pageblocks the
7501 * pages fall in.
7502 *
7503 * The PFN range must belong to a single zone.
7504 *
7505 * Returns zero on success or negative error code. On success all
7506 * pages which PFN is in [start, end) are allocated for the caller and
7507 * need to be freed with free_contig_range().
7508 */
0815f3d8 7509int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7510 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7511{
041d3a8c 7512 unsigned long outer_start, outer_end;
d00181b9
KS
7513 unsigned int order;
7514 int ret = 0;
041d3a8c 7515
bb13ffeb
MG
7516 struct compact_control cc = {
7517 .nr_migratepages = 0,
7518 .order = -1,
7519 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7520 .mode = MIGRATE_SYNC,
bb13ffeb 7521 .ignore_skip_hint = true,
7dea19f9 7522 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7523 };
7524 INIT_LIST_HEAD(&cc.migratepages);
7525
041d3a8c
MN
7526 /*
7527 * What we do here is we mark all pageblocks in range as
7528 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7529 * have different sizes, and due to the way page allocator
7530 * work, we align the range to biggest of the two pages so
7531 * that page allocator won't try to merge buddies from
7532 * different pageblocks and change MIGRATE_ISOLATE to some
7533 * other migration type.
7534 *
7535 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7536 * migrate the pages from an unaligned range (ie. pages that
7537 * we are interested in). This will put all the pages in
7538 * range back to page allocator as MIGRATE_ISOLATE.
7539 *
7540 * When this is done, we take the pages in range from page
7541 * allocator removing them from the buddy system. This way
7542 * page allocator will never consider using them.
7543 *
7544 * This lets us mark the pageblocks back as
7545 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7546 * aligned range but not in the unaligned, original range are
7547 * put back to page allocator so that buddy can use them.
7548 */
7549
7550 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7551 pfn_max_align_up(end), migratetype,
7552 false);
041d3a8c 7553 if (ret)
86a595f9 7554 return ret;
041d3a8c 7555
8ef5849f
JK
7556 /*
7557 * In case of -EBUSY, we'd like to know which page causes problem.
7558 * So, just fall through. We will check it in test_pages_isolated().
7559 */
bb13ffeb 7560 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7561 if (ret && ret != -EBUSY)
041d3a8c
MN
7562 goto done;
7563
7564 /*
7565 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7566 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7567 * more, all pages in [start, end) are free in page allocator.
7568 * What we are going to do is to allocate all pages from
7569 * [start, end) (that is remove them from page allocator).
7570 *
7571 * The only problem is that pages at the beginning and at the
7572 * end of interesting range may be not aligned with pages that
7573 * page allocator holds, ie. they can be part of higher order
7574 * pages. Because of this, we reserve the bigger range and
7575 * once this is done free the pages we are not interested in.
7576 *
7577 * We don't have to hold zone->lock here because the pages are
7578 * isolated thus they won't get removed from buddy.
7579 */
7580
7581 lru_add_drain_all();
510f5507 7582 drain_all_pages(cc.zone);
041d3a8c
MN
7583
7584 order = 0;
7585 outer_start = start;
7586 while (!PageBuddy(pfn_to_page(outer_start))) {
7587 if (++order >= MAX_ORDER) {
8ef5849f
JK
7588 outer_start = start;
7589 break;
041d3a8c
MN
7590 }
7591 outer_start &= ~0UL << order;
7592 }
7593
8ef5849f
JK
7594 if (outer_start != start) {
7595 order = page_order(pfn_to_page(outer_start));
7596
7597 /*
7598 * outer_start page could be small order buddy page and
7599 * it doesn't include start page. Adjust outer_start
7600 * in this case to report failed page properly
7601 * on tracepoint in test_pages_isolated()
7602 */
7603 if (outer_start + (1UL << order) <= start)
7604 outer_start = start;
7605 }
7606
041d3a8c 7607 /* Make sure the range is really isolated. */
b023f468 7608 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7609 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7610 __func__, outer_start, end);
041d3a8c
MN
7611 ret = -EBUSY;
7612 goto done;
7613 }
7614
49f223a9 7615 /* Grab isolated pages from freelists. */
bb13ffeb 7616 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7617 if (!outer_end) {
7618 ret = -EBUSY;
7619 goto done;
7620 }
7621
7622 /* Free head and tail (if any) */
7623 if (start != outer_start)
7624 free_contig_range(outer_start, start - outer_start);
7625 if (end != outer_end)
7626 free_contig_range(end, outer_end - end);
7627
7628done:
7629 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7630 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7631 return ret;
7632}
7633
7634void free_contig_range(unsigned long pfn, unsigned nr_pages)
7635{
bcc2b02f
MS
7636 unsigned int count = 0;
7637
7638 for (; nr_pages--; pfn++) {
7639 struct page *page = pfn_to_page(pfn);
7640
7641 count += page_count(page) != 1;
7642 __free_page(page);
7643 }
7644 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7645}
7646#endif
7647
4ed7e022 7648#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7649/*
7650 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7651 * page high values need to be recalulated.
7652 */
4ed7e022
JL
7653void __meminit zone_pcp_update(struct zone *zone)
7654{
0a647f38 7655 unsigned cpu;
c8e251fa 7656 mutex_lock(&pcp_batch_high_lock);
0a647f38 7657 for_each_possible_cpu(cpu)
169f6c19
CS
7658 pageset_set_high_and_batch(zone,
7659 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7660 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7661}
7662#endif
7663
340175b7
JL
7664void zone_pcp_reset(struct zone *zone)
7665{
7666 unsigned long flags;
5a883813
MK
7667 int cpu;
7668 struct per_cpu_pageset *pset;
340175b7
JL
7669
7670 /* avoid races with drain_pages() */
7671 local_irq_save(flags);
7672 if (zone->pageset != &boot_pageset) {
5a883813
MK
7673 for_each_online_cpu(cpu) {
7674 pset = per_cpu_ptr(zone->pageset, cpu);
7675 drain_zonestat(zone, pset);
7676 }
340175b7
JL
7677 free_percpu(zone->pageset);
7678 zone->pageset = &boot_pageset;
7679 }
7680 local_irq_restore(flags);
7681}
7682
6dcd73d7 7683#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7684/*
b9eb6319
JK
7685 * All pages in the range must be in a single zone and isolated
7686 * before calling this.
0c0e6195
KH
7687 */
7688void
7689__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7690{
7691 struct page *page;
7692 struct zone *zone;
7aeb09f9 7693 unsigned int order, i;
0c0e6195
KH
7694 unsigned long pfn;
7695 unsigned long flags;
7696 /* find the first valid pfn */
7697 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7698 if (pfn_valid(pfn))
7699 break;
7700 if (pfn == end_pfn)
7701 return;
2d070eab 7702 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7703 zone = page_zone(pfn_to_page(pfn));
7704 spin_lock_irqsave(&zone->lock, flags);
7705 pfn = start_pfn;
7706 while (pfn < end_pfn) {
7707 if (!pfn_valid(pfn)) {
7708 pfn++;
7709 continue;
7710 }
7711 page = pfn_to_page(pfn);
b023f468
WC
7712 /*
7713 * The HWPoisoned page may be not in buddy system, and
7714 * page_count() is not 0.
7715 */
7716 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7717 pfn++;
7718 SetPageReserved(page);
7719 continue;
7720 }
7721
0c0e6195
KH
7722 BUG_ON(page_count(page));
7723 BUG_ON(!PageBuddy(page));
7724 order = page_order(page);
7725#ifdef CONFIG_DEBUG_VM
1170532b
JP
7726 pr_info("remove from free list %lx %d %lx\n",
7727 pfn, 1 << order, end_pfn);
0c0e6195
KH
7728#endif
7729 list_del(&page->lru);
7730 rmv_page_order(page);
7731 zone->free_area[order].nr_free--;
0c0e6195
KH
7732 for (i = 0; i < (1 << order); i++)
7733 SetPageReserved((page+i));
7734 pfn += (1 << order);
7735 }
7736 spin_unlock_irqrestore(&zone->lock, flags);
7737}
7738#endif
8d22ba1b 7739
8d22ba1b
WF
7740bool is_free_buddy_page(struct page *page)
7741{
7742 struct zone *zone = page_zone(page);
7743 unsigned long pfn = page_to_pfn(page);
7744 unsigned long flags;
7aeb09f9 7745 unsigned int order;
8d22ba1b
WF
7746
7747 spin_lock_irqsave(&zone->lock, flags);
7748 for (order = 0; order < MAX_ORDER; order++) {
7749 struct page *page_head = page - (pfn & ((1 << order) - 1));
7750
7751 if (PageBuddy(page_head) && page_order(page_head) >= order)
7752 break;
7753 }
7754 spin_unlock_irqrestore(&zone->lock, flags);
7755
7756 return order < MAX_ORDER;
7757}