]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
mm: filter out swapin error entry in shmem mapping
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/swap.h>
bf181c58 22#include <linux/swapops.h>
1da177e4
LT
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
10ed273f 25#include <linux/jiffies.h>
edbe7d23 26#include <linux/memblock.h>
1da177e4 27#include <linux/compiler.h>
9f158333 28#include <linux/kernel.h>
b8c73fc2 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/suspend.h>
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/slab.h>
a238ab5b 35#include <linux/ratelimit.h>
5a3135c2 36#include <linux/oom.h>
1da177e4
LT
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
97500a4a 48#include <linux/random.h>
c713216d
MG
49#include <linux/sort.h>
50#include <linux/pfn.h>
3fcfab16 51#include <linux/backing-dev.h>
933e312e 52#include <linux/fault-inject.h>
a5d76b54 53#include <linux/page-isolation.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
f920e413 61#include <linux/mmu_notifier.h>
041d3a8c 62#include <linux/migrate.h>
949f7ec5 63#include <linux/hugetlb.h>
8bd75c77 64#include <linux/sched/rt.h>
5b3cc15a 65#include <linux/sched/mm.h>
48c96a36 66#include <linux/page_owner.h>
df4e817b 67#include <linux/page_table_check.h>
0e1cc95b 68#include <linux/kthread.h>
4949148a 69#include <linux/memcontrol.h>
42c269c8 70#include <linux/ftrace.h>
d92a8cfc 71#include <linux/lockdep.h>
556b969a 72#include <linux/nmi.h>
eb414681 73#include <linux/psi.h>
e4443149 74#include <linux/padata.h>
4aab2be0 75#include <linux/khugepaged.h>
ba8f3587 76#include <linux/buffer_head.h>
5bf18281 77#include <linux/delayacct.h>
7ee3d4e8 78#include <asm/sections.h>
1da177e4 79#include <asm/tlbflush.h>
ac924c60 80#include <asm/div64.h>
1da177e4 81#include "internal.h"
e900a918 82#include "shuffle.h"
36e66c55 83#include "page_reporting.h"
014bb1de 84#include "swap.h"
1da177e4 85
f04a5d5d
DH
86/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87typedef int __bitwise fpi_t;
88
89/* No special request */
90#define FPI_NONE ((__force fpi_t)0)
91
92/*
93 * Skip free page reporting notification for the (possibly merged) page.
94 * This does not hinder free page reporting from grabbing the page,
95 * reporting it and marking it "reported" - it only skips notifying
96 * the free page reporting infrastructure about a newly freed page. For
97 * example, used when temporarily pulling a page from a freelist and
98 * putting it back unmodified.
99 */
100#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
101
47b6a24a
DH
102/*
103 * Place the (possibly merged) page to the tail of the freelist. Will ignore
104 * page shuffling (relevant code - e.g., memory onlining - is expected to
105 * shuffle the whole zone).
106 *
107 * Note: No code should rely on this flag for correctness - it's purely
108 * to allow for optimizations when handing back either fresh pages
109 * (memory onlining) or untouched pages (page isolation, free page
110 * reporting).
111 */
112#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
113
2c335680
AK
114/*
115 * Don't poison memory with KASAN (only for the tag-based modes).
116 * During boot, all non-reserved memblock memory is exposed to page_alloc.
117 * Poisoning all that memory lengthens boot time, especially on systems with
118 * large amount of RAM. This flag is used to skip that poisoning.
119 * This is only done for the tag-based KASAN modes, as those are able to
120 * detect memory corruptions with the memory tags assigned by default.
121 * All memory allocated normally after boot gets poisoned as usual.
122 */
123#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
124
c8e251fa
CS
125/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 127#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 128
dbbee9d5
MG
129struct pagesets {
130 local_lock_t lock;
dbbee9d5 131};
273ba85b 132static DEFINE_PER_CPU(struct pagesets, pagesets) = {
dbbee9d5
MG
133 .lock = INIT_LOCAL_LOCK(lock),
134};
c8e251fa 135
72812019
LS
136#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
137DEFINE_PER_CPU(int, numa_node);
138EXPORT_PER_CPU_SYMBOL(numa_node);
139#endif
140
4518085e
KW
141DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
142
7aac7898
LS
143#ifdef CONFIG_HAVE_MEMORYLESS_NODES
144/*
145 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
146 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
147 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
148 * defined in <linux/topology.h>.
149 */
150DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
151EXPORT_PER_CPU_SYMBOL(_numa_mem_);
152#endif
153
bd233f53 154/* work_structs for global per-cpu drains */
d9367bd0
WY
155struct pcpu_drain {
156 struct zone *zone;
157 struct work_struct work;
158};
8b885f53
JY
159static DEFINE_MUTEX(pcpu_drain_mutex);
160static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 161
38addce8 162#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 163volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
164EXPORT_SYMBOL(latent_entropy);
165#endif
166
1da177e4 167/*
13808910 168 * Array of node states.
1da177e4 169 */
13808910
CL
170nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
171 [N_POSSIBLE] = NODE_MASK_ALL,
172 [N_ONLINE] = { { [0] = 1UL } },
173#ifndef CONFIG_NUMA
174 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
175#ifdef CONFIG_HIGHMEM
176 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 177#endif
20b2f52b 178 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
179 [N_CPU] = { { [0] = 1UL } },
180#endif /* NUMA */
181};
182EXPORT_SYMBOL(node_states);
183
ca79b0c2
AK
184atomic_long_t _totalram_pages __read_mostly;
185EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 186unsigned long totalreserve_pages __read_mostly;
e48322ab 187unsigned long totalcma_pages __read_mostly;
ab8fabd4 188
74f44822 189int percpu_pagelist_high_fraction;
dcce284a 190gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 191DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
192EXPORT_SYMBOL(init_on_alloc);
193
51cba1eb 194DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
195EXPORT_SYMBOL(init_on_free);
196
04013513
VB
197static bool _init_on_alloc_enabled_early __read_mostly
198 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
199static int __init early_init_on_alloc(char *buf)
200{
6471384a 201
04013513 202 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
203}
204early_param("init_on_alloc", early_init_on_alloc);
205
04013513
VB
206static bool _init_on_free_enabled_early __read_mostly
207 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
208static int __init early_init_on_free(char *buf)
209{
04013513 210 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
211}
212early_param("init_on_free", early_init_on_free);
1da177e4 213
bb14c2c7
VB
214/*
215 * A cached value of the page's pageblock's migratetype, used when the page is
216 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
217 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
218 * Also the migratetype set in the page does not necessarily match the pcplist
219 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
220 * other index - this ensures that it will be put on the correct CMA freelist.
221 */
222static inline int get_pcppage_migratetype(struct page *page)
223{
224 return page->index;
225}
226
227static inline void set_pcppage_migratetype(struct page *page, int migratetype)
228{
229 page->index = migratetype;
230}
231
452aa699
RW
232#ifdef CONFIG_PM_SLEEP
233/*
234 * The following functions are used by the suspend/hibernate code to temporarily
235 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
236 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
237 * they should always be called with system_transition_mutex held
238 * (gfp_allowed_mask also should only be modified with system_transition_mutex
239 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
240 * with that modification).
452aa699 241 */
c9e664f1
RW
242
243static gfp_t saved_gfp_mask;
244
245void pm_restore_gfp_mask(void)
452aa699 246{
55f2503c 247 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
248 if (saved_gfp_mask) {
249 gfp_allowed_mask = saved_gfp_mask;
250 saved_gfp_mask = 0;
251 }
452aa699
RW
252}
253
c9e664f1 254void pm_restrict_gfp_mask(void)
452aa699 255{
55f2503c 256 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
257 WARN_ON(saved_gfp_mask);
258 saved_gfp_mask = gfp_allowed_mask;
d0164adc 259 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 260}
f90ac398
MG
261
262bool pm_suspended_storage(void)
263{
d0164adc 264 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
265 return false;
266 return true;
267}
452aa699
RW
268#endif /* CONFIG_PM_SLEEP */
269
d9c23400 270#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 271unsigned int pageblock_order __read_mostly;
d9c23400
MG
272#endif
273
7fef431b
DH
274static void __free_pages_ok(struct page *page, unsigned int order,
275 fpi_t fpi_flags);
a226f6c8 276
1da177e4
LT
277/*
278 * results with 256, 32 in the lowmem_reserve sysctl:
279 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
280 * 1G machine -> (16M dma, 784M normal, 224M high)
281 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
282 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 283 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
284 *
285 * TBD: should special case ZONE_DMA32 machines here - in those we normally
286 * don't need any ZONE_NORMAL reservation
1da177e4 287 */
d3cda233 288int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 289#ifdef CONFIG_ZONE_DMA
d3cda233 290 [ZONE_DMA] = 256,
4b51d669 291#endif
fb0e7942 292#ifdef CONFIG_ZONE_DMA32
d3cda233 293 [ZONE_DMA32] = 256,
fb0e7942 294#endif
d3cda233 295 [ZONE_NORMAL] = 32,
e53ef38d 296#ifdef CONFIG_HIGHMEM
d3cda233 297 [ZONE_HIGHMEM] = 0,
e53ef38d 298#endif
d3cda233 299 [ZONE_MOVABLE] = 0,
2f1b6248 300};
1da177e4 301
15ad7cdc 302static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 303#ifdef CONFIG_ZONE_DMA
2f1b6248 304 "DMA",
4b51d669 305#endif
fb0e7942 306#ifdef CONFIG_ZONE_DMA32
2f1b6248 307 "DMA32",
fb0e7942 308#endif
2f1b6248 309 "Normal",
e53ef38d 310#ifdef CONFIG_HIGHMEM
2a1e274a 311 "HighMem",
e53ef38d 312#endif
2a1e274a 313 "Movable",
033fbae9
DW
314#ifdef CONFIG_ZONE_DEVICE
315 "Device",
316#endif
2f1b6248
CL
317};
318
c999fbd3 319const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
320 "Unmovable",
321 "Movable",
322 "Reclaimable",
323 "HighAtomic",
324#ifdef CONFIG_CMA
325 "CMA",
326#endif
327#ifdef CONFIG_MEMORY_ISOLATION
328 "Isolate",
329#endif
330};
331
ae70eddd
AK
332compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
333 [NULL_COMPOUND_DTOR] = NULL,
334 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 335#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 336 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 337#endif
9a982250 338#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 339 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 340#endif
f1e61557
KS
341};
342
1da177e4 343int min_free_kbytes = 1024;
42aa83cb 344int user_min_free_kbytes = -1;
1c30844d 345int watermark_boost_factor __read_mostly = 15000;
795ae7a0 346int watermark_scale_factor = 10;
1da177e4 347
bbe5d993
OS
348static unsigned long nr_kernel_pages __initdata;
349static unsigned long nr_all_pages __initdata;
350static unsigned long dma_reserve __initdata;
1da177e4 351
bbe5d993
OS
352static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
353static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 354static unsigned long required_kernelcore __initdata;
a5c6d650 355static unsigned long required_kernelcore_percent __initdata;
7f16f91f 356static unsigned long required_movablecore __initdata;
a5c6d650 357static unsigned long required_movablecore_percent __initdata;
bbe5d993 358static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 359static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
360
361/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
362int movable_zone;
363EXPORT_SYMBOL(movable_zone);
c713216d 364
418508c1 365#if MAX_NUMNODES > 1
b9726c26 366unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 367unsigned int nr_online_nodes __read_mostly = 1;
418508c1 368EXPORT_SYMBOL(nr_node_ids);
62bc62a8 369EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
370#endif
371
9ef9acb0
MG
372int page_group_by_mobility_disabled __read_mostly;
373
3a80a7fa 374#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
375/*
376 * During boot we initialize deferred pages on-demand, as needed, but once
377 * page_alloc_init_late() has finished, the deferred pages are all initialized,
378 * and we can permanently disable that path.
379 */
380static DEFINE_STATIC_KEY_TRUE(deferred_pages);
381
94ae8b83 382static inline bool deferred_pages_enabled(void)
3c0c12cc 383{
94ae8b83 384 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
385}
386
3a80a7fa 387/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 388static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 389{
ef70b6f4
MG
390 int nid = early_pfn_to_nid(pfn);
391
392 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
393 return true;
394
395 return false;
396}
397
398/*
d3035be4 399 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
400 * later in the boot cycle when it can be parallelised.
401 */
d3035be4
PT
402static bool __meminit
403defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 404{
d3035be4
PT
405 static unsigned long prev_end_pfn, nr_initialised;
406
407 /*
408 * prev_end_pfn static that contains the end of previous zone
409 * No need to protect because called very early in boot before smp_init.
410 */
411 if (prev_end_pfn != end_pfn) {
412 prev_end_pfn = end_pfn;
413 nr_initialised = 0;
414 }
415
3c2c6488 416 /* Always populate low zones for address-constrained allocations */
d3035be4 417 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 418 return false;
23b68cfa 419
dc2da7b4
BH
420 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
421 return true;
23b68cfa
WY
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
94ae8b83 435static inline bool deferred_pages_enabled(void)
2c335680 436{
94ae8b83 437 return false;
2c335680 438}
3c0c12cc 439
3a80a7fa
MG
440static inline bool early_page_uninitialised(unsigned long pfn)
441{
442 return false;
443}
444
d3035be4 445static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 446{
d3035be4 447 return false;
3a80a7fa
MG
448}
449#endif
450
0b423ca2 451/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 452static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
453 unsigned long pfn)
454{
455#ifdef CONFIG_SPARSEMEM
f1eca35a 456 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
457#else
458 return page_zone(page)->pageblock_flags;
459#endif /* CONFIG_SPARSEMEM */
460}
461
ca891f41 462static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
463{
464#ifdef CONFIG_SPARSEMEM
465 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
466#else
467 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 468#endif /* CONFIG_SPARSEMEM */
399b795b 469 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
470}
471
535b81e2 472static __always_inline
ca891f41 473unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 474 unsigned long pfn,
0b423ca2
MG
475 unsigned long mask)
476{
477 unsigned long *bitmap;
478 unsigned long bitidx, word_bitidx;
479 unsigned long word;
480
481 bitmap = get_pageblock_bitmap(page, pfn);
482 bitidx = pfn_to_bitidx(page, pfn);
483 word_bitidx = bitidx / BITS_PER_LONG;
484 bitidx &= (BITS_PER_LONG-1);
485
486 word = bitmap[word_bitidx];
d93d5ab9 487 return (word >> bitidx) & mask;
0b423ca2
MG
488}
489
a00cda3f
MCC
490/**
491 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
492 * @page: The page within the block of interest
493 * @pfn: The target page frame number
494 * @mask: mask of bits that the caller is interested in
495 *
496 * Return: pageblock_bits flags
497 */
ca891f41
MWO
498unsigned long get_pfnblock_flags_mask(const struct page *page,
499 unsigned long pfn, unsigned long mask)
0b423ca2 500{
535b81e2 501 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
502}
503
ca891f41
MWO
504static __always_inline int get_pfnblock_migratetype(const struct page *page,
505 unsigned long pfn)
0b423ca2 506{
535b81e2 507 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
0b423ca2
MG
515 * @mask: mask of bits that the caller is interested in
516 */
517void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
518 unsigned long pfn,
0b423ca2
MG
519 unsigned long mask)
520{
521 unsigned long *bitmap;
522 unsigned long bitidx, word_bitidx;
523 unsigned long old_word, word;
524
525 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 526 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
527
528 bitmap = get_pageblock_bitmap(page, pfn);
529 bitidx = pfn_to_bitidx(page, pfn);
530 word_bitidx = bitidx / BITS_PER_LONG;
531 bitidx &= (BITS_PER_LONG-1);
532
533 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
534
d93d5ab9
WY
535 mask <<= bitidx;
536 flags <<= bitidx;
0b423ca2
MG
537
538 word = READ_ONCE(bitmap[word_bitidx]);
539 for (;;) {
540 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
541 if (word == old_word)
542 break;
543 word = old_word;
544 }
545}
3a80a7fa 546
ee6f509c 547void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 548{
5d0f3f72
KM
549 if (unlikely(page_group_by_mobility_disabled &&
550 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
551 migratetype = MIGRATE_UNMOVABLE;
552
d93d5ab9 553 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 554 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
555}
556
13e7444b 557#ifdef CONFIG_DEBUG_VM
c6a57e19 558static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 559{
bdc8cb98
DH
560 int ret = 0;
561 unsigned seq;
562 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 563 unsigned long sp, start_pfn;
c6a57e19 564
bdc8cb98
DH
565 do {
566 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
567 start_pfn = zone->zone_start_pfn;
568 sp = zone->spanned_pages;
108bcc96 569 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
570 ret = 1;
571 } while (zone_span_seqretry(zone, seq));
572
b5e6a5a2 573 if (ret)
613813e8
DH
574 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
575 pfn, zone_to_nid(zone), zone->name,
576 start_pfn, start_pfn + sp);
b5e6a5a2 577
bdc8cb98 578 return ret;
c6a57e19
DH
579}
580
581static int page_is_consistent(struct zone *zone, struct page *page)
582{
1da177e4 583 if (zone != page_zone(page))
c6a57e19
DH
584 return 0;
585
586 return 1;
587}
588/*
589 * Temporary debugging check for pages not lying within a given zone.
590 */
d73d3c9f 591static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
592{
593 if (page_outside_zone_boundaries(zone, page))
1da177e4 594 return 1;
c6a57e19
DH
595 if (!page_is_consistent(zone, page))
596 return 1;
597
1da177e4
LT
598 return 0;
599}
13e7444b 600#else
d73d3c9f 601static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
602{
603 return 0;
604}
605#endif
606
82a3241a 607static void bad_page(struct page *page, const char *reason)
1da177e4 608{
d936cf9b
HD
609 static unsigned long resume;
610 static unsigned long nr_shown;
611 static unsigned long nr_unshown;
612
613 /*
614 * Allow a burst of 60 reports, then keep quiet for that minute;
615 * or allow a steady drip of one report per second.
616 */
617 if (nr_shown == 60) {
618 if (time_before(jiffies, resume)) {
619 nr_unshown++;
620 goto out;
621 }
622 if (nr_unshown) {
ff8e8116 623 pr_alert(
1e9e6365 624 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
625 nr_unshown);
626 nr_unshown = 0;
627 }
628 nr_shown = 0;
629 }
630 if (nr_shown++ == 0)
631 resume = jiffies + 60 * HZ;
632
ff8e8116 633 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 634 current->comm, page_to_pfn(page));
d2f07ec0 635 dump_page(page, reason);
3dc14741 636
4f31888c 637 print_modules();
1da177e4 638 dump_stack();
d936cf9b 639out:
8cc3b392 640 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 641 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 642 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
643}
644
44042b44
MG
645static inline unsigned int order_to_pindex(int migratetype, int order)
646{
647 int base = order;
648
649#ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 if (order > PAGE_ALLOC_COSTLY_ORDER) {
651 VM_BUG_ON(order != pageblock_order);
652 base = PAGE_ALLOC_COSTLY_ORDER + 1;
653 }
654#else
655 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
656#endif
657
658 return (MIGRATE_PCPTYPES * base) + migratetype;
659}
660
661static inline int pindex_to_order(unsigned int pindex)
662{
663 int order = pindex / MIGRATE_PCPTYPES;
664
665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ea808b4e 666 if (order > PAGE_ALLOC_COSTLY_ORDER)
44042b44 667 order = pageblock_order;
44042b44
MG
668#else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670#endif
671
672 return order;
673}
674
675static inline bool pcp_allowed_order(unsigned int order)
676{
677 if (order <= PAGE_ALLOC_COSTLY_ORDER)
678 return true;
679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 if (order == pageblock_order)
681 return true;
682#endif
683 return false;
684}
685
21d02f8f
MG
686static inline void free_the_page(struct page *page, unsigned int order)
687{
44042b44
MG
688 if (pcp_allowed_order(order)) /* Via pcp? */
689 free_unref_page(page, order);
21d02f8f
MG
690 else
691 __free_pages_ok(page, order, FPI_NONE);
692}
693
1da177e4
LT
694/*
695 * Higher-order pages are called "compound pages". They are structured thusly:
696 *
1d798ca3 697 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 698 *
1d798ca3
KS
699 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
700 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 701 *
1d798ca3
KS
702 * The first tail page's ->compound_dtor holds the offset in array of compound
703 * page destructors. See compound_page_dtors.
1da177e4 704 *
1d798ca3 705 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 706 * This usage means that zero-order pages may not be compound.
1da177e4 707 */
d98c7a09 708
9a982250 709void free_compound_page(struct page *page)
d98c7a09 710{
bbc6b703 711 mem_cgroup_uncharge(page_folio(page));
44042b44 712 free_the_page(page, compound_order(page));
d98c7a09
HD
713}
714
5b24eeef
JM
715static void prep_compound_head(struct page *page, unsigned int order)
716{
717 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
718 set_compound_order(page, order);
719 atomic_set(compound_mapcount_ptr(page), -1);
5232c63f 720 atomic_set(compound_pincount_ptr(page), 0);
5b24eeef
JM
721}
722
723static void prep_compound_tail(struct page *head, int tail_idx)
724{
725 struct page *p = head + tail_idx;
726
727 p->mapping = TAIL_MAPPING;
728 set_compound_head(p, head);
729}
730
d00181b9 731void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
732{
733 int i;
734 int nr_pages = 1 << order;
735
18229df5 736 __SetPageHead(page);
5b24eeef
JM
737 for (i = 1; i < nr_pages; i++)
738 prep_compound_tail(page, i);
1378a5ee 739
5b24eeef 740 prep_compound_head(page, order);
18229df5
AW
741}
742
c0a32fc5
SG
743#ifdef CONFIG_DEBUG_PAGEALLOC
744unsigned int _debug_guardpage_minorder;
96a2b03f 745
8e57f8ac
VB
746bool _debug_pagealloc_enabled_early __read_mostly
747 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
748EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 749DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 750EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
751
752DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 753
031bc574
JK
754static int __init early_debug_pagealloc(char *buf)
755{
8e57f8ac 756 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
757}
758early_param("debug_pagealloc", early_debug_pagealloc);
759
c0a32fc5
SG
760static int __init debug_guardpage_minorder_setup(char *buf)
761{
762 unsigned long res;
763
764 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 765 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
766 return 0;
767 }
768 _debug_guardpage_minorder = res;
1170532b 769 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
770 return 0;
771}
f1c1e9f7 772early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 773
acbc15a4 774static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 775 unsigned int order, int migratetype)
c0a32fc5 776{
e30825f1 777 if (!debug_guardpage_enabled())
acbc15a4
JK
778 return false;
779
780 if (order >= debug_guardpage_minorder())
781 return false;
e30825f1 782
3972f6bb 783 __SetPageGuard(page);
2847cf95
JK
784 INIT_LIST_HEAD(&page->lru);
785 set_page_private(page, order);
786 /* Guard pages are not available for any usage */
787 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
788
789 return true;
c0a32fc5
SG
790}
791
2847cf95
JK
792static inline void clear_page_guard(struct zone *zone, struct page *page,
793 unsigned int order, int migratetype)
c0a32fc5 794{
e30825f1
JK
795 if (!debug_guardpage_enabled())
796 return;
797
3972f6bb 798 __ClearPageGuard(page);
e30825f1 799
2847cf95
JK
800 set_page_private(page, 0);
801 if (!is_migrate_isolate(migratetype))
802 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
803}
804#else
acbc15a4
JK
805static inline bool set_page_guard(struct zone *zone, struct page *page,
806 unsigned int order, int migratetype) { return false; }
2847cf95
JK
807static inline void clear_page_guard(struct zone *zone, struct page *page,
808 unsigned int order, int migratetype) {}
c0a32fc5
SG
809#endif
810
04013513
VB
811/*
812 * Enable static keys related to various memory debugging and hardening options.
813 * Some override others, and depend on early params that are evaluated in the
814 * order of appearance. So we need to first gather the full picture of what was
815 * enabled, and then make decisions.
816 */
817void init_mem_debugging_and_hardening(void)
818{
9df65f52
ST
819 bool page_poisoning_requested = false;
820
821#ifdef CONFIG_PAGE_POISONING
822 /*
823 * Page poisoning is debug page alloc for some arches. If
824 * either of those options are enabled, enable poisoning.
825 */
826 if (page_poisoning_enabled() ||
827 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
828 debug_pagealloc_enabled())) {
829 static_branch_enable(&_page_poisoning_enabled);
830 page_poisoning_requested = true;
831 }
832#endif
833
69e5d322
ST
834 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
835 page_poisoning_requested) {
836 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
837 "will take precedence over init_on_alloc and init_on_free\n");
838 _init_on_alloc_enabled_early = false;
839 _init_on_free_enabled_early = false;
04013513
VB
840 }
841
69e5d322
ST
842 if (_init_on_alloc_enabled_early)
843 static_branch_enable(&init_on_alloc);
844 else
845 static_branch_disable(&init_on_alloc);
846
847 if (_init_on_free_enabled_early)
848 static_branch_enable(&init_on_free);
849 else
850 static_branch_disable(&init_on_free);
851
04013513
VB
852#ifdef CONFIG_DEBUG_PAGEALLOC
853 if (!debug_pagealloc_enabled())
854 return;
855
856 static_branch_enable(&_debug_pagealloc_enabled);
857
858 if (!debug_guardpage_minorder())
859 return;
860
861 static_branch_enable(&_debug_guardpage_enabled);
862#endif
863}
864
ab130f91 865static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 866{
4c21e2f2 867 set_page_private(page, order);
676165a8 868 __SetPageBuddy(page);
1da177e4
LT
869}
870
5e1f0f09
MG
871#ifdef CONFIG_COMPACTION
872static inline struct capture_control *task_capc(struct zone *zone)
873{
874 struct capture_control *capc = current->capture_control;
875
deba0487 876 return unlikely(capc) &&
5e1f0f09
MG
877 !(current->flags & PF_KTHREAD) &&
878 !capc->page &&
deba0487 879 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
880}
881
882static inline bool
883compaction_capture(struct capture_control *capc, struct page *page,
884 int order, int migratetype)
885{
886 if (!capc || order != capc->cc->order)
887 return false;
888
889 /* Do not accidentally pollute CMA or isolated regions*/
890 if (is_migrate_cma(migratetype) ||
891 is_migrate_isolate(migratetype))
892 return false;
893
894 /*
f0953a1b 895 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
896 * This might let an unmovable request use a reclaimable pageblock
897 * and vice-versa but no more than normal fallback logic which can
898 * have trouble finding a high-order free page.
899 */
900 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
901 return false;
902
903 capc->page = page;
904 return true;
905}
906
907#else
908static inline struct capture_control *task_capc(struct zone *zone)
909{
910 return NULL;
911}
912
913static inline bool
914compaction_capture(struct capture_control *capc, struct page *page,
915 int order, int migratetype)
916{
917 return false;
918}
919#endif /* CONFIG_COMPACTION */
920
6ab01363
AD
921/* Used for pages not on another list */
922static inline void add_to_free_list(struct page *page, struct zone *zone,
923 unsigned int order, int migratetype)
924{
925 struct free_area *area = &zone->free_area[order];
926
927 list_add(&page->lru, &area->free_list[migratetype]);
928 area->nr_free++;
929}
930
931/* Used for pages not on another list */
932static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
933 unsigned int order, int migratetype)
934{
935 struct free_area *area = &zone->free_area[order];
936
937 list_add_tail(&page->lru, &area->free_list[migratetype]);
938 area->nr_free++;
939}
940
293ffa5e
DH
941/*
942 * Used for pages which are on another list. Move the pages to the tail
943 * of the list - so the moved pages won't immediately be considered for
944 * allocation again (e.g., optimization for memory onlining).
945 */
6ab01363
AD
946static inline void move_to_free_list(struct page *page, struct zone *zone,
947 unsigned int order, int migratetype)
948{
949 struct free_area *area = &zone->free_area[order];
950
293ffa5e 951 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
952}
953
954static inline void del_page_from_free_list(struct page *page, struct zone *zone,
955 unsigned int order)
956{
36e66c55
AD
957 /* clear reported state and update reported page count */
958 if (page_reported(page))
959 __ClearPageReported(page);
960
6ab01363
AD
961 list_del(&page->lru);
962 __ClearPageBuddy(page);
963 set_page_private(page, 0);
964 zone->free_area[order].nr_free--;
965}
966
a2129f24
AD
967/*
968 * If this is not the largest possible page, check if the buddy
969 * of the next-highest order is free. If it is, it's possible
970 * that pages are being freed that will coalesce soon. In case,
971 * that is happening, add the free page to the tail of the list
972 * so it's less likely to be used soon and more likely to be merged
973 * as a higher order page
974 */
975static inline bool
976buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
977 struct page *page, unsigned int order)
978{
8170ac47
ZY
979 unsigned long higher_page_pfn;
980 struct page *higher_page;
a2129f24
AD
981
982 if (order >= MAX_ORDER - 2)
983 return false;
984
8170ac47
ZY
985 higher_page_pfn = buddy_pfn & pfn;
986 higher_page = page + (higher_page_pfn - pfn);
a2129f24 987
8170ac47
ZY
988 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
989 NULL) != NULL;
a2129f24
AD
990}
991
1da177e4
LT
992/*
993 * Freeing function for a buddy system allocator.
994 *
995 * The concept of a buddy system is to maintain direct-mapped table
996 * (containing bit values) for memory blocks of various "orders".
997 * The bottom level table contains the map for the smallest allocatable
998 * units of memory (here, pages), and each level above it describes
999 * pairs of units from the levels below, hence, "buddies".
1000 * At a high level, all that happens here is marking the table entry
1001 * at the bottom level available, and propagating the changes upward
1002 * as necessary, plus some accounting needed to play nicely with other
1003 * parts of the VM system.
1004 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1005 * free pages of length of (1 << order) and marked with PageBuddy.
1006 * Page's order is recorded in page_private(page) field.
1da177e4 1007 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1008 * other. That is, if we allocate a small block, and both were
1009 * free, the remainder of the region must be split into blocks.
1da177e4 1010 * If a block is freed, and its buddy is also free, then this
5f63b720 1011 * triggers coalescing into a block of larger size.
1da177e4 1012 *
6d49e352 1013 * -- nyc
1da177e4
LT
1014 */
1015
48db57f8 1016static inline void __free_one_page(struct page *page,
dc4b0caf 1017 unsigned long pfn,
ed0ae21d 1018 struct zone *zone, unsigned int order,
f04a5d5d 1019 int migratetype, fpi_t fpi_flags)
1da177e4 1020{
a2129f24 1021 struct capture_control *capc = task_capc(zone);
3f649ab7 1022 unsigned long buddy_pfn;
a2129f24 1023 unsigned long combined_pfn;
a2129f24
AD
1024 struct page *buddy;
1025 bool to_tail;
d9dddbf5 1026
d29bb978 1027 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1028 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1029
ed0ae21d 1030 VM_BUG_ON(migratetype == -1);
d9dddbf5 1031 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1032 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1033
76741e77 1034 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1035 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1036
bb0e28eb 1037 while (order < MAX_ORDER - 1) {
5e1f0f09
MG
1038 if (compaction_capture(capc, page, order, migratetype)) {
1039 __mod_zone_freepage_state(zone, -(1 << order),
1040 migratetype);
1041 return;
1042 }
13ad59df 1043
8170ac47
ZY
1044 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1045 if (!buddy)
d9dddbf5 1046 goto done_merging;
bb0e28eb
ZY
1047
1048 if (unlikely(order >= pageblock_order)) {
1049 /*
1050 * We want to prevent merge between freepages on pageblock
1051 * without fallbacks and normal pageblock. Without this,
1052 * pageblock isolation could cause incorrect freepage or CMA
1053 * accounting or HIGHATOMIC accounting.
1054 */
1055 int buddy_mt = get_pageblock_migratetype(buddy);
1056
1057 if (migratetype != buddy_mt
1058 && (!migratetype_is_mergeable(migratetype) ||
1059 !migratetype_is_mergeable(buddy_mt)))
1060 goto done_merging;
1061 }
1062
c0a32fc5
SG
1063 /*
1064 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1065 * merge with it and move up one order.
1066 */
b03641af 1067 if (page_is_guard(buddy))
2847cf95 1068 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1069 else
6ab01363 1070 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1071 combined_pfn = buddy_pfn & pfn;
1072 page = page + (combined_pfn - pfn);
1073 pfn = combined_pfn;
1da177e4
LT
1074 order++;
1075 }
d9dddbf5
VB
1076
1077done_merging:
ab130f91 1078 set_buddy_order(page, order);
6dda9d55 1079
47b6a24a
DH
1080 if (fpi_flags & FPI_TO_TAIL)
1081 to_tail = true;
1082 else if (is_shuffle_order(order))
a2129f24 1083 to_tail = shuffle_pick_tail();
97500a4a 1084 else
a2129f24 1085 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1086
a2129f24 1087 if (to_tail)
6ab01363 1088 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1089 else
6ab01363 1090 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1091
1092 /* Notify page reporting subsystem of freed page */
f04a5d5d 1093 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1094 page_reporting_notify_free(order);
1da177e4
LT
1095}
1096
b2c9e2fb
ZY
1097/**
1098 * split_free_page() -- split a free page at split_pfn_offset
1099 * @free_page: the original free page
1100 * @order: the order of the page
1101 * @split_pfn_offset: split offset within the page
1102 *
86d28b07
ZY
1103 * Return -ENOENT if the free page is changed, otherwise 0
1104 *
b2c9e2fb
ZY
1105 * It is used when the free page crosses two pageblocks with different migratetypes
1106 * at split_pfn_offset within the page. The split free page will be put into
1107 * separate migratetype lists afterwards. Otherwise, the function achieves
1108 * nothing.
1109 */
86d28b07
ZY
1110int split_free_page(struct page *free_page,
1111 unsigned int order, unsigned long split_pfn_offset)
b2c9e2fb
ZY
1112{
1113 struct zone *zone = page_zone(free_page);
1114 unsigned long free_page_pfn = page_to_pfn(free_page);
1115 unsigned long pfn;
1116 unsigned long flags;
1117 int free_page_order;
86d28b07
ZY
1118 int mt;
1119 int ret = 0;
b2c9e2fb 1120
88ee1343 1121 if (split_pfn_offset == 0)
86d28b07 1122 return ret;
88ee1343 1123
b2c9e2fb 1124 spin_lock_irqsave(&zone->lock, flags);
86d28b07
ZY
1125
1126 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1127 ret = -ENOENT;
1128 goto out;
1129 }
1130
1131 mt = get_pageblock_migratetype(free_page);
1132 if (likely(!is_migrate_isolate(mt)))
1133 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1134
b2c9e2fb
ZY
1135 del_page_from_free_list(free_page, zone, order);
1136 for (pfn = free_page_pfn;
1137 pfn < free_page_pfn + (1UL << order);) {
1138 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1139
86d28b07 1140 free_page_order = min_t(unsigned int,
88ee1343
ZY
1141 pfn ? __ffs(pfn) : order,
1142 __fls(split_pfn_offset));
b2c9e2fb
ZY
1143 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1144 mt, FPI_NONE);
1145 pfn += 1UL << free_page_order;
1146 split_pfn_offset -= (1UL << free_page_order);
1147 /* we have done the first part, now switch to second part */
1148 if (split_pfn_offset == 0)
1149 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1150 }
86d28b07 1151out:
b2c9e2fb 1152 spin_unlock_irqrestore(&zone->lock, flags);
86d28b07 1153 return ret;
b2c9e2fb 1154}
7bfec6f4
MG
1155/*
1156 * A bad page could be due to a number of fields. Instead of multiple branches,
1157 * try and check multiple fields with one check. The caller must do a detailed
1158 * check if necessary.
1159 */
1160static inline bool page_expected_state(struct page *page,
1161 unsigned long check_flags)
1162{
1163 if (unlikely(atomic_read(&page->_mapcount) != -1))
1164 return false;
1165
1166 if (unlikely((unsigned long)page->mapping |
1167 page_ref_count(page) |
1168#ifdef CONFIG_MEMCG
48060834 1169 page->memcg_data |
7bfec6f4
MG
1170#endif
1171 (page->flags & check_flags)))
1172 return false;
1173
1174 return true;
1175}
1176
58b7f119 1177static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1178{
82a3241a 1179 const char *bad_reason = NULL;
f0b791a3 1180
53f9263b 1181 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1182 bad_reason = "nonzero mapcount";
1183 if (unlikely(page->mapping != NULL))
1184 bad_reason = "non-NULL mapping";
fe896d18 1185 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1186 bad_reason = "nonzero _refcount";
58b7f119
WY
1187 if (unlikely(page->flags & flags)) {
1188 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1189 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1190 else
1191 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1192 }
9edad6ea 1193#ifdef CONFIG_MEMCG
48060834 1194 if (unlikely(page->memcg_data))
9edad6ea
JW
1195 bad_reason = "page still charged to cgroup";
1196#endif
58b7f119
WY
1197 return bad_reason;
1198}
1199
1200static void check_free_page_bad(struct page *page)
1201{
1202 bad_page(page,
1203 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1204}
1205
534fe5e3 1206static inline int check_free_page(struct page *page)
bb552ac6 1207{
da838d4f 1208 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1209 return 0;
bb552ac6
MG
1210
1211 /* Something has gone sideways, find it */
0d0c48a2 1212 check_free_page_bad(page);
7bfec6f4 1213 return 1;
1da177e4
LT
1214}
1215
4db7548c
MG
1216static int free_tail_pages_check(struct page *head_page, struct page *page)
1217{
1218 int ret = 1;
1219
1220 /*
1221 * We rely page->lru.next never has bit 0 set, unless the page
1222 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1223 */
1224 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1225
1226 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1227 ret = 0;
1228 goto out;
1229 }
1230 switch (page - head_page) {
1231 case 1:
4da1984e 1232 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1233 if (unlikely(compound_mapcount(page))) {
82a3241a 1234 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1235 goto out;
1236 }
1237 break;
1238 case 2:
1239 /*
1240 * the second tail page: ->mapping is
fa3015b7 1241 * deferred_list.next -- ignore value.
4db7548c
MG
1242 */
1243 break;
1244 default:
1245 if (page->mapping != TAIL_MAPPING) {
82a3241a 1246 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1247 goto out;
1248 }
1249 break;
1250 }
1251 if (unlikely(!PageTail(page))) {
82a3241a 1252 bad_page(page, "PageTail not set");
4db7548c
MG
1253 goto out;
1254 }
1255 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1256 bad_page(page, "compound_head not consistent");
4db7548c
MG
1257 goto out;
1258 }
1259 ret = 0;
1260out:
1261 page->mapping = NULL;
1262 clear_compound_head(page);
1263 return ret;
1264}
1265
94ae8b83
AK
1266/*
1267 * Skip KASAN memory poisoning when either:
1268 *
1269 * 1. Deferred memory initialization has not yet completed,
1270 * see the explanation below.
1271 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1272 * see the comment next to it.
1273 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1274 * see the comment next to it.
1275 *
1276 * Poisoning pages during deferred memory init will greatly lengthen the
1277 * process and cause problem in large memory systems as the deferred pages
1278 * initialization is done with interrupt disabled.
1279 *
1280 * Assuming that there will be no reference to those newly initialized
1281 * pages before they are ever allocated, this should have no effect on
1282 * KASAN memory tracking as the poison will be properly inserted at page
1283 * allocation time. The only corner case is when pages are allocated by
1284 * on-demand allocation and then freed again before the deferred pages
1285 * initialization is done, but this is not likely to happen.
1286 */
1287static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1288{
1289 return deferred_pages_enabled() ||
1290 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1291 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1292 PageSkipKASanPoison(page);
1293}
1294
5b2c0713 1295static void kernel_init_free_pages(struct page *page, int numpages)
6471384a
AP
1296{
1297 int i;
1298
9e15afa5
QC
1299 /* s390's use of memset() could override KASAN redzones. */
1300 kasan_disable_current();
aa1ef4d7 1301 for (i = 0; i < numpages; i++) {
acb35b17 1302 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1303 page_kasan_tag_reset(page + i);
6471384a 1304 clear_highpage(page + i);
acb35b17 1305 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1306 }
9e15afa5 1307 kasan_enable_current();
6471384a
AP
1308}
1309
e2769dbd 1310static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1311 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1312{
e2769dbd 1313 int bad = 0;
c3525330 1314 bool init = want_init_on_free();
4db7548c 1315
4db7548c
MG
1316 VM_BUG_ON_PAGE(PageTail(page), page);
1317
e2769dbd 1318 trace_mm_page_free(page, order);
e2769dbd 1319
79f5f8fa
OS
1320 if (unlikely(PageHWPoison(page)) && !order) {
1321 /*
1322 * Do not let hwpoison pages hit pcplists/buddy
1323 * Untie memcg state and reset page's owner
1324 */
18b2db3b 1325 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1326 __memcg_kmem_uncharge_page(page, order);
1327 reset_page_owner(page, order);
df4e817b 1328 page_table_check_free(page, order);
79f5f8fa
OS
1329 return false;
1330 }
1331
e2769dbd
MG
1332 /*
1333 * Check tail pages before head page information is cleared to
1334 * avoid checking PageCompound for order-0 pages.
1335 */
1336 if (unlikely(order)) {
1337 bool compound = PageCompound(page);
1338 int i;
1339
1340 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1341
eac96c3e 1342 if (compound) {
9a73f61b 1343 ClearPageDoubleMap(page);
eac96c3e
YS
1344 ClearPageHasHWPoisoned(page);
1345 }
e2769dbd
MG
1346 for (i = 1; i < (1 << order); i++) {
1347 if (compound)
1348 bad += free_tail_pages_check(page, page + i);
534fe5e3 1349 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1350 bad++;
1351 continue;
1352 }
1353 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1354 }
1355 }
bda807d4 1356 if (PageMappingFlags(page))
4db7548c 1357 page->mapping = NULL;
18b2db3b 1358 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1359 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1360 if (check_free)
534fe5e3 1361 bad += check_free_page(page);
e2769dbd
MG
1362 if (bad)
1363 return false;
4db7548c 1364
e2769dbd
MG
1365 page_cpupid_reset_last(page);
1366 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1367 reset_page_owner(page, order);
df4e817b 1368 page_table_check_free(page, order);
4db7548c
MG
1369
1370 if (!PageHighMem(page)) {
1371 debug_check_no_locks_freed(page_address(page),
e2769dbd 1372 PAGE_SIZE << order);
4db7548c 1373 debug_check_no_obj_freed(page_address(page),
e2769dbd 1374 PAGE_SIZE << order);
4db7548c 1375 }
6471384a 1376
8db26a3d
VB
1377 kernel_poison_pages(page, 1 << order);
1378
f9d79e8d 1379 /*
1bb5eab3 1380 * As memory initialization might be integrated into KASAN,
7c13c163 1381 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1382 * kept together to avoid discrepancies in behavior.
1383 *
f9d79e8d
AK
1384 * With hardware tag-based KASAN, memory tags must be set before the
1385 * page becomes unavailable via debug_pagealloc or arch_free_page.
1386 */
487a32ec 1387 if (!should_skip_kasan_poison(page, fpi_flags)) {
c3525330 1388 kasan_poison_pages(page, order, init);
f9d79e8d 1389
db8a0477
AK
1390 /* Memory is already initialized if KASAN did it internally. */
1391 if (kasan_has_integrated_init())
1392 init = false;
1393 }
1394 if (init)
1395 kernel_init_free_pages(page, 1 << order);
1396
234fdce8
QC
1397 /*
1398 * arch_free_page() can make the page's contents inaccessible. s390
1399 * does this. So nothing which can access the page's contents should
1400 * happen after this.
1401 */
1402 arch_free_page(page, order);
1403
77bc7fd6 1404 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1405
4db7548c
MG
1406 return true;
1407}
1408
e2769dbd 1409#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1410/*
1411 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1412 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1413 * moved from pcp lists to free lists.
1414 */
44042b44 1415static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1416{
44042b44 1417 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1418}
1419
4462b32c 1420static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1421{
8e57f8ac 1422 if (debug_pagealloc_enabled_static())
534fe5e3 1423 return check_free_page(page);
4462b32c
VB
1424 else
1425 return false;
e2769dbd
MG
1426}
1427#else
4462b32c
VB
1428/*
1429 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1430 * moving from pcp lists to free list in order to reduce overhead. With
1431 * debug_pagealloc enabled, they are checked also immediately when being freed
1432 * to the pcp lists.
1433 */
44042b44 1434static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1435{
8e57f8ac 1436 if (debug_pagealloc_enabled_static())
44042b44 1437 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1438 else
44042b44 1439 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1440}
1441
4db7548c
MG
1442static bool bulkfree_pcp_prepare(struct page *page)
1443{
534fe5e3 1444 return check_free_page(page);
4db7548c
MG
1445}
1446#endif /* CONFIG_DEBUG_VM */
1447
1da177e4 1448/*
5f8dcc21 1449 * Frees a number of pages from the PCP lists
7cba630b 1450 * Assumes all pages on list are in same zone.
207f36ee 1451 * count is the number of pages to free.
1da177e4 1452 */
5f8dcc21 1453static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1454 struct per_cpu_pages *pcp,
1455 int pindex)
1da177e4 1456{
35b6d770
MG
1457 int min_pindex = 0;
1458 int max_pindex = NR_PCP_LISTS - 1;
44042b44 1459 unsigned int order;
3777999d 1460 bool isolated_pageblocks;
8b10b465 1461 struct page *page;
f2260e6b 1462
88e8ac11
CTR
1463 /*
1464 * Ensure proper count is passed which otherwise would stuck in the
1465 * below while (list_empty(list)) loop.
1466 */
1467 count = min(pcp->count, count);
d61372bc
MG
1468
1469 /* Ensure requested pindex is drained first. */
1470 pindex = pindex - 1;
1471
8b10b465
MG
1472 /*
1473 * local_lock_irq held so equivalent to spin_lock_irqsave for
1474 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1475 */
1476 spin_lock(&zone->lock);
1477 isolated_pageblocks = has_isolate_pageblock(zone);
1478
44042b44 1479 while (count > 0) {
5f8dcc21 1480 struct list_head *list;
fd56eef2 1481 int nr_pages;
5f8dcc21 1482
fd56eef2 1483 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1484 do {
35b6d770
MG
1485 if (++pindex > max_pindex)
1486 pindex = min_pindex;
44042b44 1487 list = &pcp->lists[pindex];
35b6d770
MG
1488 if (!list_empty(list))
1489 break;
1490
1491 if (pindex == max_pindex)
1492 max_pindex--;
1493 if (pindex == min_pindex)
1494 min_pindex++;
1495 } while (1);
48db57f8 1496
44042b44 1497 order = pindex_to_order(pindex);
fd56eef2 1498 nr_pages = 1 << order;
44042b44 1499 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
a6f9edd6 1500 do {
8b10b465
MG
1501 int mt;
1502
a16601c5 1503 page = list_last_entry(list, struct page, lru);
8b10b465
MG
1504 mt = get_pcppage_migratetype(page);
1505
0a5f4e5b 1506 /* must delete to avoid corrupting pcp list */
a6f9edd6 1507 list_del(&page->lru);
fd56eef2
MG
1508 count -= nr_pages;
1509 pcp->count -= nr_pages;
aa016d14 1510
4db7548c
MG
1511 if (bulkfree_pcp_prepare(page))
1512 continue;
1513
8b10b465
MG
1514 /* MIGRATE_ISOLATE page should not go to pcplists */
1515 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1516 /* Pageblock could have been isolated meanwhile */
1517 if (unlikely(isolated_pageblocks))
1518 mt = get_pageblock_migratetype(page);
0a5f4e5b 1519
8b10b465
MG
1520 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1521 trace_mm_page_pcpu_drain(page, order, mt);
1522 } while (count > 0 && !list_empty(list));
0a5f4e5b 1523 }
8b10b465 1524
d34b0733 1525 spin_unlock(&zone->lock);
1da177e4
LT
1526}
1527
dc4b0caf
MG
1528static void free_one_page(struct zone *zone,
1529 struct page *page, unsigned long pfn,
7aeb09f9 1530 unsigned int order,
7fef431b 1531 int migratetype, fpi_t fpi_flags)
1da177e4 1532{
df1acc85
MG
1533 unsigned long flags;
1534
1535 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1536 if (unlikely(has_isolate_pageblock(zone) ||
1537 is_migrate_isolate(migratetype))) {
1538 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1539 }
7fef431b 1540 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1541 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1542}
1543
1e8ce83c 1544static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1545 unsigned long zone, int nid)
1e8ce83c 1546{
d0dc12e8 1547 mm_zero_struct_page(page);
1e8ce83c 1548 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1549 init_page_count(page);
1550 page_mapcount_reset(page);
1551 page_cpupid_reset_last(page);
2813b9c0 1552 page_kasan_tag_reset(page);
1e8ce83c 1553
1e8ce83c
RH
1554 INIT_LIST_HEAD(&page->lru);
1555#ifdef WANT_PAGE_VIRTUAL
1556 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1557 if (!is_highmem_idx(zone))
1558 set_page_address(page, __va(pfn << PAGE_SHIFT));
1559#endif
1560}
1561
7e18adb4 1562#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1563static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1564{
1565 pg_data_t *pgdat;
1566 int nid, zid;
1567
1568 if (!early_page_uninitialised(pfn))
1569 return;
1570
1571 nid = early_pfn_to_nid(pfn);
1572 pgdat = NODE_DATA(nid);
1573
1574 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1575 struct zone *zone = &pgdat->node_zones[zid];
1576
86fb05b9 1577 if (zone_spans_pfn(zone, pfn))
7e18adb4
MG
1578 break;
1579 }
d0dc12e8 1580 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1581}
1582#else
1583static inline void init_reserved_page(unsigned long pfn)
1584{
1585}
1586#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1587
92923ca3
NZ
1588/*
1589 * Initialised pages do not have PageReserved set. This function is
1590 * called for each range allocated by the bootmem allocator and
1591 * marks the pages PageReserved. The remaining valid pages are later
1592 * sent to the buddy page allocator.
1593 */
4b50bcc7 1594void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1595{
1596 unsigned long start_pfn = PFN_DOWN(start);
1597 unsigned long end_pfn = PFN_UP(end);
1598
7e18adb4
MG
1599 for (; start_pfn < end_pfn; start_pfn++) {
1600 if (pfn_valid(start_pfn)) {
1601 struct page *page = pfn_to_page(start_pfn);
1602
1603 init_reserved_page(start_pfn);
1d798ca3
KS
1604
1605 /* Avoid false-positive PageTail() */
1606 INIT_LIST_HEAD(&page->lru);
1607
d483da5b
AD
1608 /*
1609 * no need for atomic set_bit because the struct
1610 * page is not visible yet so nobody should
1611 * access it yet.
1612 */
1613 __SetPageReserved(page);
7e18adb4
MG
1614 }
1615 }
92923ca3
NZ
1616}
1617
7fef431b
DH
1618static void __free_pages_ok(struct page *page, unsigned int order,
1619 fpi_t fpi_flags)
ec95f53a 1620{
d34b0733 1621 unsigned long flags;
95e34412 1622 int migratetype;
dc4b0caf 1623 unsigned long pfn = page_to_pfn(page);
56f0e661 1624 struct zone *zone = page_zone(page);
ec95f53a 1625
2c335680 1626 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1627 return;
1628
cfc47a28 1629 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1630
56f0e661 1631 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1632 if (unlikely(has_isolate_pageblock(zone) ||
1633 is_migrate_isolate(migratetype))) {
1634 migratetype = get_pfnblock_migratetype(page, pfn);
1635 }
1636 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1637 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1638
d34b0733 1639 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1640}
1641
a9cd410a 1642void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1643{
c3993076 1644 unsigned int nr_pages = 1 << order;
e2d0bd2b 1645 struct page *p = page;
c3993076 1646 unsigned int loop;
a226f6c8 1647
7fef431b
DH
1648 /*
1649 * When initializing the memmap, __init_single_page() sets the refcount
1650 * of all pages to 1 ("allocated"/"not free"). We have to set the
1651 * refcount of all involved pages to 0.
1652 */
e2d0bd2b
YL
1653 prefetchw(p);
1654 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1655 prefetchw(p + 1);
c3993076
JW
1656 __ClearPageReserved(p);
1657 set_page_count(p, 0);
a226f6c8 1658 }
e2d0bd2b
YL
1659 __ClearPageReserved(p);
1660 set_page_count(p, 0);
c3993076 1661
9705bea5 1662 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1663
1664 /*
1665 * Bypass PCP and place fresh pages right to the tail, primarily
1666 * relevant for memory onlining.
1667 */
2c335680 1668 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1669}
1670
a9ee6cf5 1671#ifdef CONFIG_NUMA
7ace9917 1672
03e92a5e
MR
1673/*
1674 * During memory init memblocks map pfns to nids. The search is expensive and
1675 * this caches recent lookups. The implementation of __early_pfn_to_nid
1676 * treats start/end as pfns.
1677 */
1678struct mminit_pfnnid_cache {
1679 unsigned long last_start;
1680 unsigned long last_end;
1681 int last_nid;
1682};
75a592a4 1683
03e92a5e 1684static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1685
1686/*
1687 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1688 */
03e92a5e 1689static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1690 struct mminit_pfnnid_cache *state)
75a592a4 1691{
6f24fbd3 1692 unsigned long start_pfn, end_pfn;
75a592a4
MG
1693 int nid;
1694
6f24fbd3
MR
1695 if (state->last_start <= pfn && pfn < state->last_end)
1696 return state->last_nid;
1697
1698 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1699 if (nid != NUMA_NO_NODE) {
1700 state->last_start = start_pfn;
1701 state->last_end = end_pfn;
1702 state->last_nid = nid;
1703 }
7ace9917
MG
1704
1705 return nid;
75a592a4 1706}
75a592a4 1707
75a592a4 1708int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1709{
7ace9917 1710 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1711 int nid;
1712
7ace9917 1713 spin_lock(&early_pfn_lock);
56ec43d8 1714 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1715 if (nid < 0)
e4568d38 1716 nid = first_online_node;
7ace9917 1717 spin_unlock(&early_pfn_lock);
75a592a4 1718
7ace9917 1719 return nid;
75a592a4 1720}
a9ee6cf5 1721#endif /* CONFIG_NUMA */
75a592a4 1722
7c2ee349 1723void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1724 unsigned int order)
1725{
1726 if (early_page_uninitialised(pfn))
1727 return;
a9cd410a 1728 __free_pages_core(page, order);
3a80a7fa
MG
1729}
1730
7cf91a98
JK
1731/*
1732 * Check that the whole (or subset of) a pageblock given by the interval of
1733 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1734 * with the migration of free compaction scanner.
7cf91a98
JK
1735 *
1736 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1737 *
1738 * It's possible on some configurations to have a setup like node0 node1 node0
1739 * i.e. it's possible that all pages within a zones range of pages do not
1740 * belong to a single zone. We assume that a border between node0 and node1
1741 * can occur within a single pageblock, but not a node0 node1 node0
1742 * interleaving within a single pageblock. It is therefore sufficient to check
1743 * the first and last page of a pageblock and avoid checking each individual
1744 * page in a pageblock.
1745 */
1746struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1747 unsigned long end_pfn, struct zone *zone)
1748{
1749 struct page *start_page;
1750 struct page *end_page;
1751
1752 /* end_pfn is one past the range we are checking */
1753 end_pfn--;
1754
1755 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1756 return NULL;
1757
2d070eab
MH
1758 start_page = pfn_to_online_page(start_pfn);
1759 if (!start_page)
1760 return NULL;
7cf91a98
JK
1761
1762 if (page_zone(start_page) != zone)
1763 return NULL;
1764
1765 end_page = pfn_to_page(end_pfn);
1766
1767 /* This gives a shorter code than deriving page_zone(end_page) */
1768 if (page_zone_id(start_page) != page_zone_id(end_page))
1769 return NULL;
1770
1771 return start_page;
1772}
1773
1774void set_zone_contiguous(struct zone *zone)
1775{
1776 unsigned long block_start_pfn = zone->zone_start_pfn;
1777 unsigned long block_end_pfn;
1778
1779 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1780 for (; block_start_pfn < zone_end_pfn(zone);
1781 block_start_pfn = block_end_pfn,
1782 block_end_pfn += pageblock_nr_pages) {
1783
1784 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1785
1786 if (!__pageblock_pfn_to_page(block_start_pfn,
1787 block_end_pfn, zone))
1788 return;
e84fe99b 1789 cond_resched();
7cf91a98
JK
1790 }
1791
1792 /* We confirm that there is no hole */
1793 zone->contiguous = true;
1794}
1795
1796void clear_zone_contiguous(struct zone *zone)
1797{
1798 zone->contiguous = false;
1799}
1800
7e18adb4 1801#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1802static void __init deferred_free_range(unsigned long pfn,
1803 unsigned long nr_pages)
a4de83dd 1804{
2f47a91f
PT
1805 struct page *page;
1806 unsigned long i;
a4de83dd 1807
2f47a91f 1808 if (!nr_pages)
a4de83dd
MG
1809 return;
1810
2f47a91f
PT
1811 page = pfn_to_page(pfn);
1812
a4de83dd 1813 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1814 if (nr_pages == pageblock_nr_pages &&
1815 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1816 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1817 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1818 return;
1819 }
1820
e780149b
XQ
1821 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1822 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1823 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1824 __free_pages_core(page, 0);
e780149b 1825 }
a4de83dd
MG
1826}
1827
d3cd131d
NS
1828/* Completion tracking for deferred_init_memmap() threads */
1829static atomic_t pgdat_init_n_undone __initdata;
1830static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1831
1832static inline void __init pgdat_init_report_one_done(void)
1833{
1834 if (atomic_dec_and_test(&pgdat_init_n_undone))
1835 complete(&pgdat_init_all_done_comp);
1836}
0e1cc95b 1837
2f47a91f 1838/*
80b1f41c
PT
1839 * Returns true if page needs to be initialized or freed to buddy allocator.
1840 *
1841 * First we check if pfn is valid on architectures where it is possible to have
1842 * holes within pageblock_nr_pages. On systems where it is not possible, this
1843 * function is optimized out.
1844 *
1845 * Then, we check if a current large page is valid by only checking the validity
1846 * of the head pfn.
2f47a91f 1847 */
56ec43d8 1848static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1849{
80b1f41c
PT
1850 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1851 return false;
80b1f41c
PT
1852 return true;
1853}
2f47a91f 1854
80b1f41c
PT
1855/*
1856 * Free pages to buddy allocator. Try to free aligned pages in
1857 * pageblock_nr_pages sizes.
1858 */
56ec43d8 1859static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1860 unsigned long end_pfn)
1861{
80b1f41c
PT
1862 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1863 unsigned long nr_free = 0;
2f47a91f 1864
80b1f41c 1865 for (; pfn < end_pfn; pfn++) {
56ec43d8 1866 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1867 deferred_free_range(pfn - nr_free, nr_free);
1868 nr_free = 0;
1869 } else if (!(pfn & nr_pgmask)) {
1870 deferred_free_range(pfn - nr_free, nr_free);
1871 nr_free = 1;
80b1f41c
PT
1872 } else {
1873 nr_free++;
1874 }
1875 }
1876 /* Free the last block of pages to allocator */
1877 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1878}
1879
80b1f41c
PT
1880/*
1881 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1882 * by performing it only once every pageblock_nr_pages.
1883 * Return number of pages initialized.
1884 */
56ec43d8 1885static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1886 unsigned long pfn,
1887 unsigned long end_pfn)
2f47a91f 1888{
2f47a91f 1889 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1890 int nid = zone_to_nid(zone);
2f47a91f 1891 unsigned long nr_pages = 0;
56ec43d8 1892 int zid = zone_idx(zone);
2f47a91f 1893 struct page *page = NULL;
2f47a91f 1894
80b1f41c 1895 for (; pfn < end_pfn; pfn++) {
56ec43d8 1896 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1897 page = NULL;
2f47a91f 1898 continue;
80b1f41c 1899 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1900 page = pfn_to_page(pfn);
80b1f41c
PT
1901 } else {
1902 page++;
2f47a91f 1903 }
d0dc12e8 1904 __init_single_page(page, pfn, zid, nid);
80b1f41c 1905 nr_pages++;
2f47a91f 1906 }
80b1f41c 1907 return (nr_pages);
2f47a91f
PT
1908}
1909
0e56acae
AD
1910/*
1911 * This function is meant to pre-load the iterator for the zone init.
1912 * Specifically it walks through the ranges until we are caught up to the
1913 * first_init_pfn value and exits there. If we never encounter the value we
1914 * return false indicating there are no valid ranges left.
1915 */
1916static bool __init
1917deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1918 unsigned long *spfn, unsigned long *epfn,
1919 unsigned long first_init_pfn)
1920{
1921 u64 j;
1922
1923 /*
1924 * Start out by walking through the ranges in this zone that have
1925 * already been initialized. We don't need to do anything with them
1926 * so we just need to flush them out of the system.
1927 */
1928 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1929 if (*epfn <= first_init_pfn)
1930 continue;
1931 if (*spfn < first_init_pfn)
1932 *spfn = first_init_pfn;
1933 *i = j;
1934 return true;
1935 }
1936
1937 return false;
1938}
1939
1940/*
1941 * Initialize and free pages. We do it in two loops: first we initialize
1942 * struct page, then free to buddy allocator, because while we are
1943 * freeing pages we can access pages that are ahead (computing buddy
1944 * page in __free_one_page()).
1945 *
1946 * In order to try and keep some memory in the cache we have the loop
1947 * broken along max page order boundaries. This way we will not cause
1948 * any issues with the buddy page computation.
1949 */
1950static unsigned long __init
1951deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1952 unsigned long *end_pfn)
1953{
1954 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1955 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1956 unsigned long nr_pages = 0;
1957 u64 j = *i;
1958
1959 /* First we loop through and initialize the page values */
1960 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1961 unsigned long t;
1962
1963 if (mo_pfn <= *start_pfn)
1964 break;
1965
1966 t = min(mo_pfn, *end_pfn);
1967 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1968
1969 if (mo_pfn < *end_pfn) {
1970 *start_pfn = mo_pfn;
1971 break;
1972 }
1973 }
1974
1975 /* Reset values and now loop through freeing pages as needed */
1976 swap(j, *i);
1977
1978 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1979 unsigned long t;
1980
1981 if (mo_pfn <= spfn)
1982 break;
1983
1984 t = min(mo_pfn, epfn);
1985 deferred_free_pages(spfn, t);
1986
1987 if (mo_pfn <= epfn)
1988 break;
1989 }
1990
1991 return nr_pages;
1992}
1993
e4443149
DJ
1994static void __init
1995deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1996 void *arg)
1997{
1998 unsigned long spfn, epfn;
1999 struct zone *zone = arg;
2000 u64 i;
2001
2002 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2003
2004 /*
2005 * Initialize and free pages in MAX_ORDER sized increments so that we
2006 * can avoid introducing any issues with the buddy allocator.
2007 */
2008 while (spfn < end_pfn) {
2009 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2010 cond_resched();
2011 }
2012}
2013
ecd09650
DJ
2014/* An arch may override for more concurrency. */
2015__weak int __init
2016deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2017{
2018 return 1;
2019}
2020
7e18adb4 2021/* Initialise remaining memory on a node */
0e1cc95b 2022static int __init deferred_init_memmap(void *data)
7e18adb4 2023{
0e1cc95b 2024 pg_data_t *pgdat = data;
0e56acae 2025 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 2026 unsigned long spfn = 0, epfn = 0;
0e56acae 2027 unsigned long first_init_pfn, flags;
7e18adb4 2028 unsigned long start = jiffies;
7e18adb4 2029 struct zone *zone;
e4443149 2030 int zid, max_threads;
2f47a91f 2031 u64 i;
7e18adb4 2032
3a2d7fa8
PT
2033 /* Bind memory initialisation thread to a local node if possible */
2034 if (!cpumask_empty(cpumask))
2035 set_cpus_allowed_ptr(current, cpumask);
2036
2037 pgdat_resize_lock(pgdat, &flags);
2038 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2039 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2040 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2041 pgdat_init_report_one_done();
0e1cc95b
MG
2042 return 0;
2043 }
2044
7e18adb4
MG
2045 /* Sanity check boundaries */
2046 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2047 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2048 pgdat->first_deferred_pfn = ULONG_MAX;
2049
3d060856
PT
2050 /*
2051 * Once we unlock here, the zone cannot be grown anymore, thus if an
2052 * interrupt thread must allocate this early in boot, zone must be
2053 * pre-grown prior to start of deferred page initialization.
2054 */
2055 pgdat_resize_unlock(pgdat, &flags);
2056
7e18adb4
MG
2057 /* Only the highest zone is deferred so find it */
2058 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2059 zone = pgdat->node_zones + zid;
2060 if (first_init_pfn < zone_end_pfn(zone))
2061 break;
2062 }
0e56acae
AD
2063
2064 /* If the zone is empty somebody else may have cleared out the zone */
2065 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2066 first_init_pfn))
2067 goto zone_empty;
7e18adb4 2068
ecd09650 2069 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2070
117003c3 2071 while (spfn < epfn) {
e4443149
DJ
2072 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2073 struct padata_mt_job job = {
2074 .thread_fn = deferred_init_memmap_chunk,
2075 .fn_arg = zone,
2076 .start = spfn,
2077 .size = epfn_align - spfn,
2078 .align = PAGES_PER_SECTION,
2079 .min_chunk = PAGES_PER_SECTION,
2080 .max_threads = max_threads,
2081 };
2082
2083 padata_do_multithreaded(&job);
2084 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2085 epfn_align);
117003c3 2086 }
0e56acae 2087zone_empty:
7e18adb4
MG
2088 /* Sanity check that the next zone really is unpopulated */
2089 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2090
89c7c402
DJ
2091 pr_info("node %d deferred pages initialised in %ums\n",
2092 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2093
2094 pgdat_init_report_one_done();
0e1cc95b
MG
2095 return 0;
2096}
c9e97a19 2097
c9e97a19
PT
2098/*
2099 * If this zone has deferred pages, try to grow it by initializing enough
2100 * deferred pages to satisfy the allocation specified by order, rounded up to
2101 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2102 * of SECTION_SIZE bytes by initializing struct pages in increments of
2103 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2104 *
2105 * Return true when zone was grown, otherwise return false. We return true even
2106 * when we grow less than requested, to let the caller decide if there are
2107 * enough pages to satisfy the allocation.
2108 *
2109 * Note: We use noinline because this function is needed only during boot, and
2110 * it is called from a __ref function _deferred_grow_zone. This way we are
2111 * making sure that it is not inlined into permanent text section.
2112 */
2113static noinline bool __init
2114deferred_grow_zone(struct zone *zone, unsigned int order)
2115{
c9e97a19 2116 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2117 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2118 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2119 unsigned long spfn, epfn, flags;
2120 unsigned long nr_pages = 0;
c9e97a19
PT
2121 u64 i;
2122
2123 /* Only the last zone may have deferred pages */
2124 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2125 return false;
2126
2127 pgdat_resize_lock(pgdat, &flags);
2128
c9e97a19
PT
2129 /*
2130 * If someone grew this zone while we were waiting for spinlock, return
2131 * true, as there might be enough pages already.
2132 */
2133 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2134 pgdat_resize_unlock(pgdat, &flags);
2135 return true;
2136 }
2137
0e56acae
AD
2138 /* If the zone is empty somebody else may have cleared out the zone */
2139 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2140 first_deferred_pfn)) {
2141 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2142 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2143 /* Retry only once. */
2144 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2145 }
2146
0e56acae
AD
2147 /*
2148 * Initialize and free pages in MAX_ORDER sized increments so
2149 * that we can avoid introducing any issues with the buddy
2150 * allocator.
2151 */
2152 while (spfn < epfn) {
2153 /* update our first deferred PFN for this section */
2154 first_deferred_pfn = spfn;
2155
2156 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2157 touch_nmi_watchdog();
c9e97a19 2158
0e56acae
AD
2159 /* We should only stop along section boundaries */
2160 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2161 continue;
c9e97a19 2162
0e56acae 2163 /* If our quota has been met we can stop here */
c9e97a19
PT
2164 if (nr_pages >= nr_pages_needed)
2165 break;
2166 }
2167
0e56acae 2168 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2169 pgdat_resize_unlock(pgdat, &flags);
2170
2171 return nr_pages > 0;
2172}
2173
2174/*
2175 * deferred_grow_zone() is __init, but it is called from
2176 * get_page_from_freelist() during early boot until deferred_pages permanently
2177 * disables this call. This is why we have refdata wrapper to avoid warning,
2178 * and to ensure that the function body gets unloaded.
2179 */
2180static bool __ref
2181_deferred_grow_zone(struct zone *zone, unsigned int order)
2182{
2183 return deferred_grow_zone(zone, order);
2184}
2185
7cf91a98 2186#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2187
2188void __init page_alloc_init_late(void)
2189{
7cf91a98 2190 struct zone *zone;
e900a918 2191 int nid;
7cf91a98
JK
2192
2193#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2194
d3cd131d
NS
2195 /* There will be num_node_state(N_MEMORY) threads */
2196 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2197 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2198 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2199 }
2200
2201 /* Block until all are initialised */
d3cd131d 2202 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2203
c9e97a19
PT
2204 /*
2205 * We initialized the rest of the deferred pages. Permanently disable
2206 * on-demand struct page initialization.
2207 */
2208 static_branch_disable(&deferred_pages);
2209
4248b0da
MG
2210 /* Reinit limits that are based on free pages after the kernel is up */
2211 files_maxfiles_init();
7cf91a98 2212#endif
350e88ba 2213
ba8f3587
LF
2214 buffer_init();
2215
3010f876
PT
2216 /* Discard memblock private memory */
2217 memblock_discard();
7cf91a98 2218
e900a918
DW
2219 for_each_node_state(nid, N_MEMORY)
2220 shuffle_free_memory(NODE_DATA(nid));
2221
7cf91a98
JK
2222 for_each_populated_zone(zone)
2223 set_zone_contiguous(zone);
7e18adb4 2224}
7e18adb4 2225
47118af0 2226#ifdef CONFIG_CMA
9cf510a5 2227/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2228void __init init_cma_reserved_pageblock(struct page *page)
2229{
2230 unsigned i = pageblock_nr_pages;
2231 struct page *p = page;
2232
2233 do {
2234 __ClearPageReserved(p);
2235 set_page_count(p, 0);
d883c6cf 2236 } while (++p, --i);
47118af0 2237
47118af0 2238 set_pageblock_migratetype(page, MIGRATE_CMA);
b3d40a2b
DH
2239 set_page_refcounted(page);
2240 __free_pages(page, pageblock_order);
dc78327c 2241
3dcc0571 2242 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2243 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2244}
2245#endif
1da177e4
LT
2246
2247/*
2248 * The order of subdivision here is critical for the IO subsystem.
2249 * Please do not alter this order without good reasons and regression
2250 * testing. Specifically, as large blocks of memory are subdivided,
2251 * the order in which smaller blocks are delivered depends on the order
2252 * they're subdivided in this function. This is the primary factor
2253 * influencing the order in which pages are delivered to the IO
2254 * subsystem according to empirical testing, and this is also justified
2255 * by considering the behavior of a buddy system containing a single
2256 * large block of memory acted on by a series of small allocations.
2257 * This behavior is a critical factor in sglist merging's success.
2258 *
6d49e352 2259 * -- nyc
1da177e4 2260 */
085cc7d5 2261static inline void expand(struct zone *zone, struct page *page,
6ab01363 2262 int low, int high, int migratetype)
1da177e4
LT
2263{
2264 unsigned long size = 1 << high;
2265
2266 while (high > low) {
1da177e4
LT
2267 high--;
2268 size >>= 1;
309381fe 2269 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2270
acbc15a4
JK
2271 /*
2272 * Mark as guard pages (or page), that will allow to
2273 * merge back to allocator when buddy will be freed.
2274 * Corresponding page table entries will not be touched,
2275 * pages will stay not present in virtual address space
2276 */
2277 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2278 continue;
acbc15a4 2279
6ab01363 2280 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2281 set_buddy_order(&page[size], high);
1da177e4 2282 }
1da177e4
LT
2283}
2284
4e611801 2285static void check_new_page_bad(struct page *page)
1da177e4 2286{
f4c18e6f 2287 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2288 /* Don't complain about hwpoisoned pages */
2289 page_mapcount_reset(page); /* remove PageBuddy */
2290 return;
f4c18e6f 2291 }
58b7f119
WY
2292
2293 bad_page(page,
2294 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2295}
2296
2297/*
2298 * This page is about to be returned from the page allocator
2299 */
2300static inline int check_new_page(struct page *page)
2301{
2302 if (likely(page_expected_state(page,
2303 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2304 return 0;
2305
2306 check_new_page_bad(page);
2307 return 1;
2a7684a2
WF
2308}
2309
77fe7f13
MG
2310static bool check_new_pages(struct page *page, unsigned int order)
2311{
2312 int i;
2313 for (i = 0; i < (1 << order); i++) {
2314 struct page *p = page + i;
2315
2316 if (unlikely(check_new_page(p)))
2317 return true;
2318 }
2319
2320 return false;
2321}
2322
479f854a 2323#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2324/*
2325 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2326 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2327 * also checked when pcp lists are refilled from the free lists.
2328 */
77fe7f13 2329static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2330{
8e57f8ac 2331 if (debug_pagealloc_enabled_static())
77fe7f13 2332 return check_new_pages(page, order);
4462b32c
VB
2333 else
2334 return false;
479f854a
MG
2335}
2336
77fe7f13 2337static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2338{
77fe7f13 2339 return check_new_pages(page, order);
479f854a
MG
2340}
2341#else
4462b32c
VB
2342/*
2343 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2344 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2345 * enabled, they are also checked when being allocated from the pcp lists.
2346 */
77fe7f13 2347static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2348{
77fe7f13 2349 return check_new_pages(page, order);
479f854a 2350}
77fe7f13 2351static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2352{
8e57f8ac 2353 if (debug_pagealloc_enabled_static())
77fe7f13 2354 return check_new_pages(page, order);
4462b32c
VB
2355 else
2356 return false;
479f854a
MG
2357}
2358#endif /* CONFIG_DEBUG_VM */
2359
53ae233c
AK
2360static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2361{
2362 /* Don't skip if a software KASAN mode is enabled. */
2363 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2364 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2365 return false;
2366
2367 /* Skip, if hardware tag-based KASAN is not enabled. */
2368 if (!kasan_hw_tags_enabled())
2369 return true;
2370
2371 /*
2372 * With hardware tag-based KASAN enabled, skip if either:
2373 *
2374 * 1. Memory tags have already been cleared via tag_clear_highpage().
2375 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2376 */
2377 return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2378}
2379
9353ffa6
AK
2380static inline bool should_skip_init(gfp_t flags)
2381{
2382 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2383 if (!kasan_hw_tags_enabled())
2384 return false;
2385
2386 /* For hardware tag-based KASAN, skip if requested. */
2387 return (flags & __GFP_SKIP_ZERO);
2388}
2389
46f24fd8
JK
2390inline void post_alloc_hook(struct page *page, unsigned int order,
2391 gfp_t gfp_flags)
2392{
9353ffa6
AK
2393 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2394 !should_skip_init(gfp_flags);
b42090ae
AK
2395 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2396
46f24fd8
JK
2397 set_page_private(page, 0);
2398 set_page_refcounted(page);
2399
2400 arch_alloc_page(page, order);
77bc7fd6 2401 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2402
2403 /*
2404 * Page unpoisoning must happen before memory initialization.
2405 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2406 * allocations and the page unpoisoning code will complain.
2407 */
8db26a3d 2408 kernel_unpoison_pages(page, 1 << order);
862b6dee 2409
1bb5eab3
AK
2410 /*
2411 * As memory initialization might be integrated into KASAN,
b42090ae 2412 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
2413 * kept together to avoid discrepancies in behavior.
2414 */
9294b128
AK
2415
2416 /*
2417 * If memory tags should be zeroed (which happens only when memory
2418 * should be initialized as well).
2419 */
2420 if (init_tags) {
2421 int i;
2422
2423 /* Initialize both memory and tags. */
2424 for (i = 0; i != 1 << order; ++i)
2425 tag_clear_highpage(page + i);
2426
2427 /* Note that memory is already initialized by the loop above. */
2428 init = false;
2429 }
53ae233c
AK
2430 if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2431 /* Unpoison shadow memory or set memory tags. */
e9d0ca92 2432 kasan_unpoison_pages(page, order, init);
7e3cbba6 2433
e9d0ca92
AK
2434 /* Note that memory is already initialized by KASAN. */
2435 if (kasan_has_integrated_init())
7e3cbba6 2436 init = false;
7a3b8353 2437 }
7e3cbba6
AK
2438 /* If memory is still not initialized, do it now. */
2439 if (init)
2440 kernel_init_free_pages(page, 1 << order);
89b27116
AK
2441 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2442 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2443 SetPageSkipKASanPoison(page);
1bb5eab3
AK
2444
2445 set_page_owner(page, order, gfp_flags);
df4e817b 2446 page_table_check_alloc(page, order);
46f24fd8
JK
2447}
2448
479f854a 2449static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2450 unsigned int alloc_flags)
2a7684a2 2451{
46f24fd8 2452 post_alloc_hook(page, order, gfp_flags);
17cf4406 2453
17cf4406
NP
2454 if (order && (gfp_flags & __GFP_COMP))
2455 prep_compound_page(page, order);
2456
75379191 2457 /*
2f064f34 2458 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2459 * allocate the page. The expectation is that the caller is taking
2460 * steps that will free more memory. The caller should avoid the page
2461 * being used for !PFMEMALLOC purposes.
2462 */
2f064f34
MH
2463 if (alloc_flags & ALLOC_NO_WATERMARKS)
2464 set_page_pfmemalloc(page);
2465 else
2466 clear_page_pfmemalloc(page);
1da177e4
LT
2467}
2468
56fd56b8
MG
2469/*
2470 * Go through the free lists for the given migratetype and remove
2471 * the smallest available page from the freelists
2472 */
85ccc8fa 2473static __always_inline
728ec980 2474struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2475 int migratetype)
2476{
2477 unsigned int current_order;
b8af2941 2478 struct free_area *area;
56fd56b8
MG
2479 struct page *page;
2480
2481 /* Find a page of the appropriate size in the preferred list */
2482 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2483 area = &(zone->free_area[current_order]);
b03641af 2484 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2485 if (!page)
2486 continue;
6ab01363
AD
2487 del_page_from_free_list(page, zone, current_order);
2488 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2489 set_pcppage_migratetype(page, migratetype);
10e0f753
WY
2490 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2491 pcp_allowed_order(order) &&
2492 migratetype < MIGRATE_PCPTYPES);
56fd56b8
MG
2493 return page;
2494 }
2495
2496 return NULL;
2497}
2498
2499
b2a0ac88
MG
2500/*
2501 * This array describes the order lists are fallen back to when
2502 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
2503 *
2504 * The other migratetypes do not have fallbacks.
b2a0ac88 2505 */
da415663 2506static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2507 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2508 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2509 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
b2a0ac88
MG
2510};
2511
dc67647b 2512#ifdef CONFIG_CMA
85ccc8fa 2513static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2514 unsigned int order)
2515{
2516 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2517}
2518#else
2519static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2520 unsigned int order) { return NULL; }
2521#endif
2522
c361be55 2523/*
293ffa5e 2524 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2525 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2526 * boundary. If alignment is required, use move_freepages_block()
2527 */
02aa0cdd 2528static int move_freepages(struct zone *zone,
39ddb991 2529 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2530 int migratetype, int *num_movable)
c361be55
MG
2531{
2532 struct page *page;
39ddb991 2533 unsigned long pfn;
d00181b9 2534 unsigned int order;
d100313f 2535 int pages_moved = 0;
c361be55 2536
39ddb991 2537 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2538 page = pfn_to_page(pfn);
c361be55 2539 if (!PageBuddy(page)) {
02aa0cdd
VB
2540 /*
2541 * We assume that pages that could be isolated for
2542 * migration are movable. But we don't actually try
2543 * isolating, as that would be expensive.
2544 */
2545 if (num_movable &&
2546 (PageLRU(page) || __PageMovable(page)))
2547 (*num_movable)++;
39ddb991 2548 pfn++;
c361be55
MG
2549 continue;
2550 }
2551
cd961038
DR
2552 /* Make sure we are not inadvertently changing nodes */
2553 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2554 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2555
ab130f91 2556 order = buddy_order(page);
6ab01363 2557 move_to_free_list(page, zone, order, migratetype);
39ddb991 2558 pfn += 1 << order;
d100313f 2559 pages_moved += 1 << order;
c361be55
MG
2560 }
2561
d100313f 2562 return pages_moved;
c361be55
MG
2563}
2564
ee6f509c 2565int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2566 int migratetype, int *num_movable)
c361be55 2567{
39ddb991 2568 unsigned long start_pfn, end_pfn, pfn;
c361be55 2569
4a222127
DR
2570 if (num_movable)
2571 *num_movable = 0;
2572
39ddb991
KW
2573 pfn = page_to_pfn(page);
2574 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2575 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2576
2577 /* Do not cross zone boundaries */
108bcc96 2578 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2579 start_pfn = pfn;
108bcc96 2580 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2581 return 0;
2582
39ddb991 2583 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2584 num_movable);
c361be55
MG
2585}
2586
2f66a68f
MG
2587static void change_pageblock_range(struct page *pageblock_page,
2588 int start_order, int migratetype)
2589{
2590 int nr_pageblocks = 1 << (start_order - pageblock_order);
2591
2592 while (nr_pageblocks--) {
2593 set_pageblock_migratetype(pageblock_page, migratetype);
2594 pageblock_page += pageblock_nr_pages;
2595 }
2596}
2597
fef903ef 2598/*
9c0415eb
VB
2599 * When we are falling back to another migratetype during allocation, try to
2600 * steal extra free pages from the same pageblocks to satisfy further
2601 * allocations, instead of polluting multiple pageblocks.
2602 *
2603 * If we are stealing a relatively large buddy page, it is likely there will
2604 * be more free pages in the pageblock, so try to steal them all. For
2605 * reclaimable and unmovable allocations, we steal regardless of page size,
2606 * as fragmentation caused by those allocations polluting movable pageblocks
2607 * is worse than movable allocations stealing from unmovable and reclaimable
2608 * pageblocks.
fef903ef 2609 */
4eb7dce6
JK
2610static bool can_steal_fallback(unsigned int order, int start_mt)
2611{
2612 /*
2613 * Leaving this order check is intended, although there is
2614 * relaxed order check in next check. The reason is that
2615 * we can actually steal whole pageblock if this condition met,
2616 * but, below check doesn't guarantee it and that is just heuristic
2617 * so could be changed anytime.
2618 */
2619 if (order >= pageblock_order)
2620 return true;
2621
2622 if (order >= pageblock_order / 2 ||
2623 start_mt == MIGRATE_RECLAIMABLE ||
2624 start_mt == MIGRATE_UNMOVABLE ||
2625 page_group_by_mobility_disabled)
2626 return true;
2627
2628 return false;
2629}
2630
597c8920 2631static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2632{
2633 unsigned long max_boost;
2634
2635 if (!watermark_boost_factor)
597c8920 2636 return false;
14f69140
HW
2637 /*
2638 * Don't bother in zones that are unlikely to produce results.
2639 * On small machines, including kdump capture kernels running
2640 * in a small area, boosting the watermark can cause an out of
2641 * memory situation immediately.
2642 */
2643 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2644 return false;
1c30844d
MG
2645
2646 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2647 watermark_boost_factor, 10000);
94b3334c
MG
2648
2649 /*
2650 * high watermark may be uninitialised if fragmentation occurs
2651 * very early in boot so do not boost. We do not fall
2652 * through and boost by pageblock_nr_pages as failing
2653 * allocations that early means that reclaim is not going
2654 * to help and it may even be impossible to reclaim the
2655 * boosted watermark resulting in a hang.
2656 */
2657 if (!max_boost)
597c8920 2658 return false;
94b3334c 2659
1c30844d
MG
2660 max_boost = max(pageblock_nr_pages, max_boost);
2661
2662 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2663 max_boost);
597c8920
JW
2664
2665 return true;
1c30844d
MG
2666}
2667
4eb7dce6
JK
2668/*
2669 * This function implements actual steal behaviour. If order is large enough,
2670 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2671 * pageblock to our migratetype and determine how many already-allocated pages
2672 * are there in the pageblock with a compatible migratetype. If at least half
2673 * of pages are free or compatible, we can change migratetype of the pageblock
2674 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2675 */
2676static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2677 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2678{
ab130f91 2679 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2680 int free_pages, movable_pages, alike_pages;
2681 int old_block_type;
2682
2683 old_block_type = get_pageblock_migratetype(page);
fef903ef 2684
3bc48f96
VB
2685 /*
2686 * This can happen due to races and we want to prevent broken
2687 * highatomic accounting.
2688 */
02aa0cdd 2689 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2690 goto single_page;
2691
fef903ef
SB
2692 /* Take ownership for orders >= pageblock_order */
2693 if (current_order >= pageblock_order) {
2694 change_pageblock_range(page, current_order, start_type);
3bc48f96 2695 goto single_page;
fef903ef
SB
2696 }
2697
1c30844d
MG
2698 /*
2699 * Boost watermarks to increase reclaim pressure to reduce the
2700 * likelihood of future fallbacks. Wake kswapd now as the node
2701 * may be balanced overall and kswapd will not wake naturally.
2702 */
597c8920 2703 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2704 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2705
3bc48f96
VB
2706 /* We are not allowed to try stealing from the whole block */
2707 if (!whole_block)
2708 goto single_page;
2709
02aa0cdd
VB
2710 free_pages = move_freepages_block(zone, page, start_type,
2711 &movable_pages);
2712 /*
2713 * Determine how many pages are compatible with our allocation.
2714 * For movable allocation, it's the number of movable pages which
2715 * we just obtained. For other types it's a bit more tricky.
2716 */
2717 if (start_type == MIGRATE_MOVABLE) {
2718 alike_pages = movable_pages;
2719 } else {
2720 /*
2721 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2722 * to MOVABLE pageblock, consider all non-movable pages as
2723 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2724 * vice versa, be conservative since we can't distinguish the
2725 * exact migratetype of non-movable pages.
2726 */
2727 if (old_block_type == MIGRATE_MOVABLE)
2728 alike_pages = pageblock_nr_pages
2729 - (free_pages + movable_pages);
2730 else
2731 alike_pages = 0;
2732 }
2733
3bc48f96 2734 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2735 if (!free_pages)
3bc48f96 2736 goto single_page;
fef903ef 2737
02aa0cdd
VB
2738 /*
2739 * If a sufficient number of pages in the block are either free or of
2740 * comparable migratability as our allocation, claim the whole block.
2741 */
2742 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2743 page_group_by_mobility_disabled)
2744 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2745
2746 return;
2747
2748single_page:
6ab01363 2749 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2750}
2751
2149cdae
JK
2752/*
2753 * Check whether there is a suitable fallback freepage with requested order.
2754 * If only_stealable is true, this function returns fallback_mt only if
2755 * we can steal other freepages all together. This would help to reduce
2756 * fragmentation due to mixed migratetype pages in one pageblock.
2757 */
2758int find_suitable_fallback(struct free_area *area, unsigned int order,
2759 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2760{
2761 int i;
2762 int fallback_mt;
2763
2764 if (area->nr_free == 0)
2765 return -1;
2766
2767 *can_steal = false;
2768 for (i = 0;; i++) {
2769 fallback_mt = fallbacks[migratetype][i];
974a786e 2770 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2771 break;
2772
b03641af 2773 if (free_area_empty(area, fallback_mt))
4eb7dce6 2774 continue;
fef903ef 2775
4eb7dce6
JK
2776 if (can_steal_fallback(order, migratetype))
2777 *can_steal = true;
2778
2149cdae
JK
2779 if (!only_stealable)
2780 return fallback_mt;
2781
2782 if (*can_steal)
2783 return fallback_mt;
fef903ef 2784 }
4eb7dce6
JK
2785
2786 return -1;
fef903ef
SB
2787}
2788
0aaa29a5
MG
2789/*
2790 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2791 * there are no empty page blocks that contain a page with a suitable order
2792 */
2793static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2794 unsigned int alloc_order)
2795{
2796 int mt;
2797 unsigned long max_managed, flags;
2798
2799 /*
2800 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2801 * Check is race-prone but harmless.
2802 */
9705bea5 2803 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2804 if (zone->nr_reserved_highatomic >= max_managed)
2805 return;
2806
2807 spin_lock_irqsave(&zone->lock, flags);
2808
2809 /* Recheck the nr_reserved_highatomic limit under the lock */
2810 if (zone->nr_reserved_highatomic >= max_managed)
2811 goto out_unlock;
2812
2813 /* Yoink! */
2814 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2815 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2816 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
2817 zone->nr_reserved_highatomic += pageblock_nr_pages;
2818 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2819 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2820 }
2821
2822out_unlock:
2823 spin_unlock_irqrestore(&zone->lock, flags);
2824}
2825
2826/*
2827 * Used when an allocation is about to fail under memory pressure. This
2828 * potentially hurts the reliability of high-order allocations when under
2829 * intense memory pressure but failed atomic allocations should be easier
2830 * to recover from than an OOM.
29fac03b
MK
2831 *
2832 * If @force is true, try to unreserve a pageblock even though highatomic
2833 * pageblock is exhausted.
0aaa29a5 2834 */
29fac03b
MK
2835static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2836 bool force)
0aaa29a5
MG
2837{
2838 struct zonelist *zonelist = ac->zonelist;
2839 unsigned long flags;
2840 struct zoneref *z;
2841 struct zone *zone;
2842 struct page *page;
2843 int order;
04c8716f 2844 bool ret;
0aaa29a5 2845
97a225e6 2846 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2847 ac->nodemask) {
29fac03b
MK
2848 /*
2849 * Preserve at least one pageblock unless memory pressure
2850 * is really high.
2851 */
2852 if (!force && zone->nr_reserved_highatomic <=
2853 pageblock_nr_pages)
0aaa29a5
MG
2854 continue;
2855
2856 spin_lock_irqsave(&zone->lock, flags);
2857 for (order = 0; order < MAX_ORDER; order++) {
2858 struct free_area *area = &(zone->free_area[order]);
2859
b03641af 2860 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2861 if (!page)
0aaa29a5
MG
2862 continue;
2863
0aaa29a5 2864 /*
4855e4a7
MK
2865 * In page freeing path, migratetype change is racy so
2866 * we can counter several free pages in a pageblock
f0953a1b 2867 * in this loop although we changed the pageblock type
4855e4a7
MK
2868 * from highatomic to ac->migratetype. So we should
2869 * adjust the count once.
0aaa29a5 2870 */
a6ffdc07 2871 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2872 /*
2873 * It should never happen but changes to
2874 * locking could inadvertently allow a per-cpu
2875 * drain to add pages to MIGRATE_HIGHATOMIC
2876 * while unreserving so be safe and watch for
2877 * underflows.
2878 */
2879 zone->nr_reserved_highatomic -= min(
2880 pageblock_nr_pages,
2881 zone->nr_reserved_highatomic);
2882 }
0aaa29a5
MG
2883
2884 /*
2885 * Convert to ac->migratetype and avoid the normal
2886 * pageblock stealing heuristics. Minimally, the caller
2887 * is doing the work and needs the pages. More
2888 * importantly, if the block was always converted to
2889 * MIGRATE_UNMOVABLE or another type then the number
2890 * of pageblocks that cannot be completely freed
2891 * may increase.
2892 */
2893 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2894 ret = move_freepages_block(zone, page, ac->migratetype,
2895 NULL);
29fac03b
MK
2896 if (ret) {
2897 spin_unlock_irqrestore(&zone->lock, flags);
2898 return ret;
2899 }
0aaa29a5
MG
2900 }
2901 spin_unlock_irqrestore(&zone->lock, flags);
2902 }
04c8716f
MK
2903
2904 return false;
0aaa29a5
MG
2905}
2906
3bc48f96
VB
2907/*
2908 * Try finding a free buddy page on the fallback list and put it on the free
2909 * list of requested migratetype, possibly along with other pages from the same
2910 * block, depending on fragmentation avoidance heuristics. Returns true if
2911 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2912 *
2913 * The use of signed ints for order and current_order is a deliberate
2914 * deviation from the rest of this file, to make the for loop
2915 * condition simpler.
3bc48f96 2916 */
85ccc8fa 2917static __always_inline bool
6bb15450
MG
2918__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2919 unsigned int alloc_flags)
b2a0ac88 2920{
b8af2941 2921 struct free_area *area;
b002529d 2922 int current_order;
6bb15450 2923 int min_order = order;
b2a0ac88 2924 struct page *page;
4eb7dce6
JK
2925 int fallback_mt;
2926 bool can_steal;
b2a0ac88 2927
6bb15450
MG
2928 /*
2929 * Do not steal pages from freelists belonging to other pageblocks
2930 * i.e. orders < pageblock_order. If there are no local zones free,
2931 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2932 */
2933 if (alloc_flags & ALLOC_NOFRAGMENT)
2934 min_order = pageblock_order;
2935
7a8f58f3
VB
2936 /*
2937 * Find the largest available free page in the other list. This roughly
2938 * approximates finding the pageblock with the most free pages, which
2939 * would be too costly to do exactly.
2940 */
6bb15450 2941 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2942 --current_order) {
4eb7dce6
JK
2943 area = &(zone->free_area[current_order]);
2944 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2945 start_migratetype, false, &can_steal);
4eb7dce6
JK
2946 if (fallback_mt == -1)
2947 continue;
b2a0ac88 2948
7a8f58f3
VB
2949 /*
2950 * We cannot steal all free pages from the pageblock and the
2951 * requested migratetype is movable. In that case it's better to
2952 * steal and split the smallest available page instead of the
2953 * largest available page, because even if the next movable
2954 * allocation falls back into a different pageblock than this
2955 * one, it won't cause permanent fragmentation.
2956 */
2957 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2958 && current_order > order)
2959 goto find_smallest;
b2a0ac88 2960
7a8f58f3
VB
2961 goto do_steal;
2962 }
e0fff1bd 2963
7a8f58f3 2964 return false;
e0fff1bd 2965
7a8f58f3
VB
2966find_smallest:
2967 for (current_order = order; current_order < MAX_ORDER;
2968 current_order++) {
2969 area = &(zone->free_area[current_order]);
2970 fallback_mt = find_suitable_fallback(area, current_order,
2971 start_migratetype, false, &can_steal);
2972 if (fallback_mt != -1)
2973 break;
b2a0ac88
MG
2974 }
2975
7a8f58f3
VB
2976 /*
2977 * This should not happen - we already found a suitable fallback
2978 * when looking for the largest page.
2979 */
2980 VM_BUG_ON(current_order == MAX_ORDER);
2981
2982do_steal:
b03641af 2983 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2984
1c30844d
MG
2985 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2986 can_steal);
7a8f58f3
VB
2987
2988 trace_mm_page_alloc_extfrag(page, order, current_order,
2989 start_migratetype, fallback_mt);
2990
2991 return true;
2992
b2a0ac88
MG
2993}
2994
56fd56b8 2995/*
1da177e4
LT
2996 * Do the hard work of removing an element from the buddy allocator.
2997 * Call me with the zone->lock already held.
2998 */
85ccc8fa 2999static __always_inline struct page *
6bb15450
MG
3000__rmqueue(struct zone *zone, unsigned int order, int migratetype,
3001 unsigned int alloc_flags)
1da177e4 3002{
1da177e4
LT
3003 struct page *page;
3004
ce8f86ee
H
3005 if (IS_ENABLED(CONFIG_CMA)) {
3006 /*
3007 * Balance movable allocations between regular and CMA areas by
3008 * allocating from CMA when over half of the zone's free memory
3009 * is in the CMA area.
3010 */
3011 if (alloc_flags & ALLOC_CMA &&
3012 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3013 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3014 page = __rmqueue_cma_fallback(zone, order);
3015 if (page)
10e0f753 3016 return page;
ce8f86ee 3017 }
16867664 3018 }
3bc48f96 3019retry:
56fd56b8 3020 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 3021 if (unlikely(!page)) {
8510e69c 3022 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
3023 page = __rmqueue_cma_fallback(zone, order);
3024
6bb15450
MG
3025 if (!page && __rmqueue_fallback(zone, order, migratetype,
3026 alloc_flags))
3bc48f96 3027 goto retry;
728ec980 3028 }
b2a0ac88 3029 return page;
1da177e4
LT
3030}
3031
5f63b720 3032/*
1da177e4
LT
3033 * Obtain a specified number of elements from the buddy allocator, all under
3034 * a single hold of the lock, for efficiency. Add them to the supplied list.
3035 * Returns the number of new pages which were placed at *list.
3036 */
5f63b720 3037static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 3038 unsigned long count, struct list_head *list,
6bb15450 3039 int migratetype, unsigned int alloc_flags)
1da177e4 3040{
cb66bede 3041 int i, allocated = 0;
5f63b720 3042
dbbee9d5
MG
3043 /*
3044 * local_lock_irq held so equivalent to spin_lock_irqsave for
3045 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3046 */
d34b0733 3047 spin_lock(&zone->lock);
1da177e4 3048 for (i = 0; i < count; ++i) {
6bb15450
MG
3049 struct page *page = __rmqueue(zone, order, migratetype,
3050 alloc_flags);
085cc7d5 3051 if (unlikely(page == NULL))
1da177e4 3052 break;
81eabcbe 3053
77fe7f13 3054 if (unlikely(check_pcp_refill(page, order)))
479f854a
MG
3055 continue;
3056
81eabcbe 3057 /*
0fac3ba5
VB
3058 * Split buddy pages returned by expand() are received here in
3059 * physical page order. The page is added to the tail of
3060 * caller's list. From the callers perspective, the linked list
3061 * is ordered by page number under some conditions. This is
3062 * useful for IO devices that can forward direction from the
3063 * head, thus also in the physical page order. This is useful
3064 * for IO devices that can merge IO requests if the physical
3065 * pages are ordered properly.
81eabcbe 3066 */
0fac3ba5 3067 list_add_tail(&page->lru, list);
cb66bede 3068 allocated++;
bb14c2c7 3069 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3070 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3071 -(1 << order));
1da177e4 3072 }
a6de734b
MG
3073
3074 /*
3075 * i pages were removed from the buddy list even if some leak due
3076 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3077 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3078 * pages added to the pcp list.
3079 */
f2260e6b 3080 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 3081 spin_unlock(&zone->lock);
cb66bede 3082 return allocated;
1da177e4
LT
3083}
3084
4ae7c039 3085#ifdef CONFIG_NUMA
8fce4d8e 3086/*
4037d452
CL
3087 * Called from the vmstat counter updater to drain pagesets of this
3088 * currently executing processor on remote nodes after they have
3089 * expired.
3090 *
879336c3
CL
3091 * Note that this function must be called with the thread pinned to
3092 * a single processor.
8fce4d8e 3093 */
4037d452 3094void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3095{
4ae7c039 3096 unsigned long flags;
7be12fc9 3097 int to_drain, batch;
4ae7c039 3098
dbbee9d5 3099 local_lock_irqsave(&pagesets.lock, flags);
4db0c3c2 3100 batch = READ_ONCE(pcp->batch);
7be12fc9 3101 to_drain = min(pcp->count, batch);
77ba9062 3102 if (to_drain > 0)
fd56eef2 3103 free_pcppages_bulk(zone, to_drain, pcp, 0);
dbbee9d5 3104 local_unlock_irqrestore(&pagesets.lock, flags);
4ae7c039
CL
3105}
3106#endif
3107
9f8f2172 3108/*
93481ff0 3109 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3110 *
3111 * The processor must either be the current processor and the
3112 * thread pinned to the current processor or a processor that
3113 * is not online.
3114 */
93481ff0 3115static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3116{
c54ad30c 3117 unsigned long flags;
93481ff0 3118 struct per_cpu_pages *pcp;
1da177e4 3119
dbbee9d5 3120 local_lock_irqsave(&pagesets.lock, flags);
1da177e4 3121
28f836b6 3122 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
77ba9062 3123 if (pcp->count)
fd56eef2 3124 free_pcppages_bulk(zone, pcp->count, pcp, 0);
28f836b6 3125
dbbee9d5 3126 local_unlock_irqrestore(&pagesets.lock, flags);
93481ff0 3127}
3dfa5721 3128
93481ff0
VB
3129/*
3130 * Drain pcplists of all zones on the indicated processor.
3131 *
3132 * The processor must either be the current processor and the
3133 * thread pinned to the current processor or a processor that
3134 * is not online.
3135 */
3136static void drain_pages(unsigned int cpu)
3137{
3138 struct zone *zone;
3139
3140 for_each_populated_zone(zone) {
3141 drain_pages_zone(cpu, zone);
1da177e4
LT
3142 }
3143}
1da177e4 3144
9f8f2172
CL
3145/*
3146 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3147 *
3148 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3149 * the single zone's pages.
9f8f2172 3150 */
93481ff0 3151void drain_local_pages(struct zone *zone)
9f8f2172 3152{
93481ff0
VB
3153 int cpu = smp_processor_id();
3154
3155 if (zone)
3156 drain_pages_zone(cpu, zone);
3157 else
3158 drain_pages(cpu);
9f8f2172
CL
3159}
3160
0ccce3b9
MG
3161static void drain_local_pages_wq(struct work_struct *work)
3162{
d9367bd0
WY
3163 struct pcpu_drain *drain;
3164
3165 drain = container_of(work, struct pcpu_drain, work);
3166
a459eeb7
MH
3167 /*
3168 * drain_all_pages doesn't use proper cpu hotplug protection so
3169 * we can race with cpu offline when the WQ can move this from
3170 * a cpu pinned worker to an unbound one. We can operate on a different
f0953a1b 3171 * cpu which is alright but we also have to make sure to not move to
a459eeb7
MH
3172 * a different one.
3173 */
9c25cbfc 3174 migrate_disable();
d9367bd0 3175 drain_local_pages(drain->zone);
9c25cbfc 3176 migrate_enable();
0ccce3b9
MG
3177}
3178
9f8f2172 3179/*
ec6e8c7e
VB
3180 * The implementation of drain_all_pages(), exposing an extra parameter to
3181 * drain on all cpus.
93481ff0 3182 *
ec6e8c7e
VB
3183 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3184 * not empty. The check for non-emptiness can however race with a free to
3185 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3186 * that need the guarantee that every CPU has drained can disable the
3187 * optimizing racy check.
9f8f2172 3188 */
3b1f3658 3189static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3190{
74046494 3191 int cpu;
74046494
GBY
3192
3193 /*
041711ce 3194 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3195 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3196 */
3197 static cpumask_t cpus_with_pcps;
3198
ce612879
MH
3199 /*
3200 * Make sure nobody triggers this path before mm_percpu_wq is fully
3201 * initialized.
3202 */
3203 if (WARN_ON_ONCE(!mm_percpu_wq))
3204 return;
3205
bd233f53
MG
3206 /*
3207 * Do not drain if one is already in progress unless it's specific to
3208 * a zone. Such callers are primarily CMA and memory hotplug and need
3209 * the drain to be complete when the call returns.
3210 */
3211 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3212 if (!zone)
3213 return;
3214 mutex_lock(&pcpu_drain_mutex);
3215 }
0ccce3b9 3216
74046494
GBY
3217 /*
3218 * We don't care about racing with CPU hotplug event
3219 * as offline notification will cause the notified
3220 * cpu to drain that CPU pcps and on_each_cpu_mask
3221 * disables preemption as part of its processing
3222 */
3223 for_each_online_cpu(cpu) {
28f836b6 3224 struct per_cpu_pages *pcp;
93481ff0 3225 struct zone *z;
74046494 3226 bool has_pcps = false;
93481ff0 3227
ec6e8c7e
VB
3228 if (force_all_cpus) {
3229 /*
3230 * The pcp.count check is racy, some callers need a
3231 * guarantee that no cpu is missed.
3232 */
3233 has_pcps = true;
3234 } else if (zone) {
28f836b6
MG
3235 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3236 if (pcp->count)
74046494 3237 has_pcps = true;
93481ff0
VB
3238 } else {
3239 for_each_populated_zone(z) {
28f836b6
MG
3240 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3241 if (pcp->count) {
93481ff0
VB
3242 has_pcps = true;
3243 break;
3244 }
74046494
GBY
3245 }
3246 }
93481ff0 3247
74046494
GBY
3248 if (has_pcps)
3249 cpumask_set_cpu(cpu, &cpus_with_pcps);
3250 else
3251 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3252 }
0ccce3b9 3253
bd233f53 3254 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3255 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3256
3257 drain->zone = zone;
3258 INIT_WORK(&drain->work, drain_local_pages_wq);
3259 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3260 }
bd233f53 3261 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3262 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3263
3264 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3265}
3266
ec6e8c7e
VB
3267/*
3268 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3269 *
3270 * When zone parameter is non-NULL, spill just the single zone's pages.
3271 *
3272 * Note that this can be extremely slow as the draining happens in a workqueue.
3273 */
3274void drain_all_pages(struct zone *zone)
3275{
3276 __drain_all_pages(zone, false);
3277}
3278
296699de 3279#ifdef CONFIG_HIBERNATION
1da177e4 3280
556b969a
CY
3281/*
3282 * Touch the watchdog for every WD_PAGE_COUNT pages.
3283 */
3284#define WD_PAGE_COUNT (128*1024)
3285
1da177e4
LT
3286void mark_free_pages(struct zone *zone)
3287{
556b969a 3288 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3289 unsigned long flags;
7aeb09f9 3290 unsigned int order, t;
86760a2c 3291 struct page *page;
1da177e4 3292
8080fc03 3293 if (zone_is_empty(zone))
1da177e4
LT
3294 return;
3295
3296 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3297
108bcc96 3298 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3299 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3300 if (pfn_valid(pfn)) {
86760a2c 3301 page = pfn_to_page(pfn);
ba6b0979 3302
556b969a
CY
3303 if (!--page_count) {
3304 touch_nmi_watchdog();
3305 page_count = WD_PAGE_COUNT;
3306 }
3307
ba6b0979
JK
3308 if (page_zone(page) != zone)
3309 continue;
3310
7be98234
RW
3311 if (!swsusp_page_is_forbidden(page))
3312 swsusp_unset_page_free(page);
f623f0db 3313 }
1da177e4 3314
b2a0ac88 3315 for_each_migratetype_order(order, t) {
86760a2c
GT
3316 list_for_each_entry(page,
3317 &zone->free_area[order].free_list[t], lru) {
f623f0db 3318 unsigned long i;
1da177e4 3319
86760a2c 3320 pfn = page_to_pfn(page);
556b969a
CY
3321 for (i = 0; i < (1UL << order); i++) {
3322 if (!--page_count) {
3323 touch_nmi_watchdog();
3324 page_count = WD_PAGE_COUNT;
3325 }
7be98234 3326 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3327 }
f623f0db 3328 }
b2a0ac88 3329 }
1da177e4
LT
3330 spin_unlock_irqrestore(&zone->lock, flags);
3331}
e2c55dc8 3332#endif /* CONFIG_PM */
1da177e4 3333
44042b44
MG
3334static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3335 unsigned int order)
1da177e4 3336{
5f8dcc21 3337 int migratetype;
1da177e4 3338
44042b44 3339 if (!free_pcp_prepare(page, order))
9cca35d4 3340 return false;
689bcebf 3341
dc4b0caf 3342 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3343 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3344 return true;
3345}
3346
f26b3fa0
MG
3347static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3348 bool free_high)
3b12e7e9
MG
3349{
3350 int min_nr_free, max_nr_free;
3351
f26b3fa0
MG
3352 /* Free everything if batch freeing high-order pages. */
3353 if (unlikely(free_high))
3354 return pcp->count;
3355
3b12e7e9
MG
3356 /* Check for PCP disabled or boot pageset */
3357 if (unlikely(high < batch))
3358 return 1;
3359
3360 /* Leave at least pcp->batch pages on the list */
3361 min_nr_free = batch;
3362 max_nr_free = high - batch;
3363
3364 /*
3365 * Double the number of pages freed each time there is subsequent
3366 * freeing of pages without any allocation.
3367 */
3368 batch <<= pcp->free_factor;
3369 if (batch < max_nr_free)
3370 pcp->free_factor++;
3371 batch = clamp(batch, min_nr_free, max_nr_free);
3372
3373 return batch;
3374}
3375
f26b3fa0
MG
3376static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3377 bool free_high)
c49c2c47
MG
3378{
3379 int high = READ_ONCE(pcp->high);
3380
f26b3fa0 3381 if (unlikely(!high || free_high))
c49c2c47
MG
3382 return 0;
3383
3384 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3385 return high;
3386
3387 /*
3388 * If reclaim is active, limit the number of pages that can be
3389 * stored on pcp lists
3390 */
3391 return min(READ_ONCE(pcp->batch) << 2, high);
3392}
3393
56651377
NSJ
3394static void free_unref_page_commit(struct page *page, int migratetype,
3395 unsigned int order)
9cca35d4
MG
3396{
3397 struct zone *zone = page_zone(page);
3398 struct per_cpu_pages *pcp;
3b12e7e9 3399 int high;
44042b44 3400 int pindex;
f26b3fa0 3401 bool free_high;
9cca35d4 3402
d34b0733 3403 __count_vm_event(PGFREE);
28f836b6 3404 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44
MG
3405 pindex = order_to_pindex(migratetype, order);
3406 list_add(&page->lru, &pcp->lists[pindex]);
3407 pcp->count += 1 << order;
f26b3fa0
MG
3408
3409 /*
3410 * As high-order pages other than THP's stored on PCP can contribute
3411 * to fragmentation, limit the number stored when PCP is heavily
3412 * freeing without allocation. The remainder after bulk freeing
3413 * stops will be drained from vmstat refresh context.
3414 */
3415 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3416
3417 high = nr_pcp_high(pcp, zone, free_high);
3b12e7e9
MG
3418 if (pcp->count >= high) {
3419 int batch = READ_ONCE(pcp->batch);
3420
f26b3fa0 3421 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3b12e7e9 3422 }
9cca35d4 3423}
5f8dcc21 3424
9cca35d4 3425/*
44042b44 3426 * Free a pcp page
9cca35d4 3427 */
44042b44 3428void free_unref_page(struct page *page, unsigned int order)
9cca35d4
MG
3429{
3430 unsigned long flags;
3431 unsigned long pfn = page_to_pfn(page);
df1acc85 3432 int migratetype;
9cca35d4 3433
44042b44 3434 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3435 return;
da456f14 3436
5f8dcc21
MG
3437 /*
3438 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3439 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3440 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3441 * areas back if necessary. Otherwise, we may have to free
3442 * excessively into the page allocator
3443 */
df1acc85
MG
3444 migratetype = get_pcppage_migratetype(page);
3445 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3446 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3447 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3448 return;
5f8dcc21
MG
3449 }
3450 migratetype = MIGRATE_MOVABLE;
3451 }
3452
dbbee9d5 3453 local_lock_irqsave(&pagesets.lock, flags);
56651377 3454 free_unref_page_commit(page, migratetype, order);
dbbee9d5 3455 local_unlock_irqrestore(&pagesets.lock, flags);
1da177e4
LT
3456}
3457
cc59850e
KK
3458/*
3459 * Free a list of 0-order pages
3460 */
2d4894b5 3461void free_unref_page_list(struct list_head *list)
cc59850e
KK
3462{
3463 struct page *page, *next;
56651377 3464 unsigned long flags;
c24ad77d 3465 int batch_count = 0;
df1acc85 3466 int migratetype;
9cca35d4
MG
3467
3468 /* Prepare pages for freeing */
3469 list_for_each_entry_safe(page, next, list, lru) {
56651377 3470 unsigned long pfn = page_to_pfn(page);
053cfda1 3471 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 3472 list_del(&page->lru);
053cfda1
ML
3473 continue;
3474 }
df1acc85
MG
3475
3476 /*
3477 * Free isolated pages directly to the allocator, see
3478 * comment in free_unref_page.
3479 */
3480 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3481 if (unlikely(is_migrate_isolate(migratetype))) {
3482 list_del(&page->lru);
3483 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3484 continue;
df1acc85 3485 }
9cca35d4 3486 }
cc59850e 3487
dbbee9d5 3488 local_lock_irqsave(&pagesets.lock, flags);
cc59850e 3489 list_for_each_entry_safe(page, next, list, lru) {
47aef601
DB
3490 /*
3491 * Non-isolated types over MIGRATE_PCPTYPES get added
3492 * to the MIGRATE_MOVABLE pcp list.
3493 */
df1acc85 3494 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3495 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3496 migratetype = MIGRATE_MOVABLE;
3497
2d4894b5 3498 trace_mm_page_free_batched(page);
56651377 3499 free_unref_page_commit(page, migratetype, 0);
c24ad77d
LS
3500
3501 /*
3502 * Guard against excessive IRQ disabled times when we get
3503 * a large list of pages to free.
3504 */
3505 if (++batch_count == SWAP_CLUSTER_MAX) {
dbbee9d5 3506 local_unlock_irqrestore(&pagesets.lock, flags);
c24ad77d 3507 batch_count = 0;
dbbee9d5 3508 local_lock_irqsave(&pagesets.lock, flags);
c24ad77d 3509 }
cc59850e 3510 }
dbbee9d5 3511 local_unlock_irqrestore(&pagesets.lock, flags);
cc59850e
KK
3512}
3513
8dfcc9ba
NP
3514/*
3515 * split_page takes a non-compound higher-order page, and splits it into
3516 * n (1<<order) sub-pages: page[0..n]
3517 * Each sub-page must be freed individually.
3518 *
3519 * Note: this is probably too low level an operation for use in drivers.
3520 * Please consult with lkml before using this in your driver.
3521 */
3522void split_page(struct page *page, unsigned int order)
3523{
3524 int i;
3525
309381fe
SL
3526 VM_BUG_ON_PAGE(PageCompound(page), page);
3527 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3528
a9627bc5 3529 for (i = 1; i < (1 << order); i++)
7835e98b 3530 set_page_refcounted(page + i);
8fb156c9 3531 split_page_owner(page, 1 << order);
e1baddf8 3532 split_page_memcg(page, 1 << order);
8dfcc9ba 3533}
5853ff23 3534EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3535
3c605096 3536int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3537{
748446bb
MG
3538 unsigned long watermark;
3539 struct zone *zone;
2139cbe6 3540 int mt;
748446bb
MG
3541
3542 BUG_ON(!PageBuddy(page));
3543
3544 zone = page_zone(page);
2e30abd1 3545 mt = get_pageblock_migratetype(page);
748446bb 3546
194159fb 3547 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3548 /*
3549 * Obey watermarks as if the page was being allocated. We can
3550 * emulate a high-order watermark check with a raised order-0
3551 * watermark, because we already know our high-order page
3552 * exists.
3553 */
fd1444b2 3554 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3555 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3556 return 0;
3557
8fb74b9f 3558 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3559 }
748446bb
MG
3560
3561 /* Remove page from free list */
b03641af 3562
6ab01363 3563 del_page_from_free_list(page, zone, order);
2139cbe6 3564
400bc7fd 3565 /*
3566 * Set the pageblock if the isolated page is at least half of a
3567 * pageblock
3568 */
748446bb
MG
3569 if (order >= pageblock_order - 1) {
3570 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3571 for (; page < endpage; page += pageblock_nr_pages) {
3572 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
3573 /*
3574 * Only change normal pageblocks (i.e., they can merge
3575 * with others)
3576 */
3577 if (migratetype_is_mergeable(mt))
47118af0
MN
3578 set_pageblock_migratetype(page,
3579 MIGRATE_MOVABLE);
3580 }
748446bb
MG
3581 }
3582
f3a14ced 3583
8fb74b9f 3584 return 1UL << order;
1fb3f8ca
MG
3585}
3586
624f58d8
AD
3587/**
3588 * __putback_isolated_page - Return a now-isolated page back where we got it
3589 * @page: Page that was isolated
3590 * @order: Order of the isolated page
e6a0a7ad 3591 * @mt: The page's pageblock's migratetype
624f58d8
AD
3592 *
3593 * This function is meant to return a page pulled from the free lists via
3594 * __isolate_free_page back to the free lists they were pulled from.
3595 */
3596void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3597{
3598 struct zone *zone = page_zone(page);
3599
3600 /* zone lock should be held when this function is called */
3601 lockdep_assert_held(&zone->lock);
3602
3603 /* Return isolated page to tail of freelist. */
f04a5d5d 3604 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3605 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3606}
3607
060e7417
MG
3608/*
3609 * Update NUMA hit/miss statistics
3610 *
3611 * Must be called with interrupts disabled.
060e7417 3612 */
3e23060b
MG
3613static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3614 long nr_account)
060e7417
MG
3615{
3616#ifdef CONFIG_NUMA
3a321d2a 3617 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3618
4518085e
KW
3619 /* skip numa counters update if numa stats is disabled */
3620 if (!static_branch_likely(&vm_numa_stat_key))
3621 return;
3622
c1093b74 3623 if (zone_to_nid(z) != numa_node_id())
060e7417 3624 local_stat = NUMA_OTHER;
060e7417 3625
c1093b74 3626 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3627 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3628 else {
3e23060b
MG
3629 __count_numa_events(z, NUMA_MISS, nr_account);
3630 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3631 }
3e23060b 3632 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3633#endif
3634}
3635
066b2393 3636/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3637static inline
44042b44
MG
3638struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3639 int migratetype,
6bb15450 3640 unsigned int alloc_flags,
453f85d4 3641 struct per_cpu_pages *pcp,
066b2393
MG
3642 struct list_head *list)
3643{
3644 struct page *page;
3645
3646 do {
3647 if (list_empty(list)) {
44042b44
MG
3648 int batch = READ_ONCE(pcp->batch);
3649 int alloced;
3650
3651 /*
3652 * Scale batch relative to order if batch implies
3653 * free pages can be stored on the PCP. Batch can
3654 * be 1 for small zones or for boot pagesets which
3655 * should never store free pages as the pages may
3656 * belong to arbitrary zones.
3657 */
3658 if (batch > 1)
3659 batch = max(batch >> order, 2);
3660 alloced = rmqueue_bulk(zone, order,
3661 batch, list,
6bb15450 3662 migratetype, alloc_flags);
44042b44
MG
3663
3664 pcp->count += alloced << order;
066b2393
MG
3665 if (unlikely(list_empty(list)))
3666 return NULL;
3667 }
3668
453f85d4 3669 page = list_first_entry(list, struct page, lru);
066b2393 3670 list_del(&page->lru);
44042b44 3671 pcp->count -= 1 << order;
77fe7f13 3672 } while (check_new_pcp(page, order));
066b2393
MG
3673
3674 return page;
3675}
3676
3677/* Lock and remove page from the per-cpu list */
3678static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44
MG
3679 struct zone *zone, unsigned int order,
3680 gfp_t gfp_flags, int migratetype,
3681 unsigned int alloc_flags)
066b2393
MG
3682{
3683 struct per_cpu_pages *pcp;
3684 struct list_head *list;
066b2393 3685 struct page *page;
d34b0733 3686 unsigned long flags;
066b2393 3687
dbbee9d5 3688 local_lock_irqsave(&pagesets.lock, flags);
3b12e7e9
MG
3689
3690 /*
3691 * On allocation, reduce the number of pages that are batch freed.
3692 * See nr_pcp_free() where free_factor is increased for subsequent
3693 * frees.
3694 */
28f836b6 3695 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3b12e7e9 3696 pcp->free_factor >>= 1;
44042b44
MG
3697 list = &pcp->lists[order_to_pindex(migratetype, order)];
3698 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
43c95bcc 3699 local_unlock_irqrestore(&pagesets.lock, flags);
066b2393 3700 if (page) {
1c52e6d0 3701 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3e23060b 3702 zone_statistics(preferred_zone, zone, 1);
066b2393 3703 }
066b2393
MG
3704 return page;
3705}
3706
1da177e4 3707/*
75379191 3708 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3709 */
0a15c3e9 3710static inline
066b2393 3711struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3712 struct zone *zone, unsigned int order,
c603844b
MG
3713 gfp_t gfp_flags, unsigned int alloc_flags,
3714 int migratetype)
1da177e4
LT
3715{
3716 unsigned long flags;
689bcebf 3717 struct page *page;
1da177e4 3718
44042b44 3719 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3720 /*
3721 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3722 * we need to skip it when CMA area isn't allowed.
3723 */
3724 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3725 migratetype != MIGRATE_MOVABLE) {
44042b44
MG
3726 page = rmqueue_pcplist(preferred_zone, zone, order,
3727 gfp_flags, migratetype, alloc_flags);
1d91df85
JK
3728 goto out;
3729 }
066b2393 3730 }
83b9355b 3731
066b2393
MG
3732 /*
3733 * We most definitely don't want callers attempting to
3734 * allocate greater than order-1 page units with __GFP_NOFAIL.
3735 */
3736 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
0aaa29a5 3737
066b2393
MG
3738 do {
3739 page = NULL;
3313204c 3740 spin_lock_irqsave(&zone->lock, flags);
1d91df85
JK
3741 /*
3742 * order-0 request can reach here when the pcplist is skipped
3743 * due to non-CMA allocation context. HIGHATOMIC area is
3744 * reserved for high-order atomic allocation, so order-0
3745 * request should skip it.
3746 */
10e0f753 3747 if (order > 0 && alloc_flags & ALLOC_HARDER)
066b2393 3748 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3313204c 3749 if (!page) {
6bb15450 3750 page = __rmqueue(zone, order, migratetype, alloc_flags);
3313204c
ED
3751 if (!page)
3752 goto failed;
3753 }
3754 __mod_zone_freepage_state(zone, -(1 << order),
3755 get_pcppage_migratetype(page));
3756 spin_unlock_irqrestore(&zone->lock, flags);
3757 } while (check_new_pages(page, order));
1da177e4 3758
16709d1d 3759 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3760 zone_statistics(preferred_zone, zone, 1);
1da177e4 3761
066b2393 3762out:
73444bc4
MG
3763 /* Separate test+clear to avoid unnecessary atomics */
3764 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3765 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3766 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3767 }
3768
066b2393 3769 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3770 return page;
a74609fa
NP
3771
3772failed:
43c95bcc 3773 spin_unlock_irqrestore(&zone->lock, flags);
a74609fa 3774 return NULL;
1da177e4
LT
3775}
3776
933e312e
AM
3777#ifdef CONFIG_FAIL_PAGE_ALLOC
3778
b2588c4b 3779static struct {
933e312e
AM
3780 struct fault_attr attr;
3781
621a5f7a 3782 bool ignore_gfp_highmem;
71baba4b 3783 bool ignore_gfp_reclaim;
54114994 3784 u32 min_order;
933e312e
AM
3785} fail_page_alloc = {
3786 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3787 .ignore_gfp_reclaim = true,
621a5f7a 3788 .ignore_gfp_highmem = true,
54114994 3789 .min_order = 1,
933e312e
AM
3790};
3791
3792static int __init setup_fail_page_alloc(char *str)
3793{
3794 return setup_fault_attr(&fail_page_alloc.attr, str);
3795}
3796__setup("fail_page_alloc=", setup_fail_page_alloc);
3797
af3b8544 3798static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3799{
54114994 3800 if (order < fail_page_alloc.min_order)
deaf386e 3801 return false;
933e312e 3802 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3803 return false;
933e312e 3804 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3805 return false;
71baba4b
MG
3806 if (fail_page_alloc.ignore_gfp_reclaim &&
3807 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3808 return false;
933e312e 3809
3f913fc5
QZ
3810 if (gfp_mask & __GFP_NOWARN)
3811 fail_page_alloc.attr.no_warn = true;
3812
933e312e
AM
3813 return should_fail(&fail_page_alloc.attr, 1 << order);
3814}
3815
3816#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3817
3818static int __init fail_page_alloc_debugfs(void)
3819{
0825a6f9 3820 umode_t mode = S_IFREG | 0600;
933e312e 3821 struct dentry *dir;
933e312e 3822
dd48c085
AM
3823 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3824 &fail_page_alloc.attr);
b2588c4b 3825
d9f7979c
GKH
3826 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3827 &fail_page_alloc.ignore_gfp_reclaim);
3828 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3829 &fail_page_alloc.ignore_gfp_highmem);
3830 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3831
d9f7979c 3832 return 0;
933e312e
AM
3833}
3834
3835late_initcall(fail_page_alloc_debugfs);
3836
3837#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3838
3839#else /* CONFIG_FAIL_PAGE_ALLOC */
3840
af3b8544 3841static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3842{
deaf386e 3843 return false;
933e312e
AM
3844}
3845
3846#endif /* CONFIG_FAIL_PAGE_ALLOC */
3847
54aa3866 3848noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3849{
3850 return __should_fail_alloc_page(gfp_mask, order);
3851}
3852ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3853
f27ce0e1
JK
3854static inline long __zone_watermark_unusable_free(struct zone *z,
3855 unsigned int order, unsigned int alloc_flags)
3856{
3857 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3858 long unusable_free = (1 << order) - 1;
3859
3860 /*
3861 * If the caller does not have rights to ALLOC_HARDER then subtract
3862 * the high-atomic reserves. This will over-estimate the size of the
3863 * atomic reserve but it avoids a search.
3864 */
3865 if (likely(!alloc_harder))
3866 unusable_free += z->nr_reserved_highatomic;
3867
3868#ifdef CONFIG_CMA
3869 /* If allocation can't use CMA areas don't use free CMA pages */
3870 if (!(alloc_flags & ALLOC_CMA))
3871 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3872#endif
3873
3874 return unusable_free;
3875}
3876
1da177e4 3877/*
97a16fc8
MG
3878 * Return true if free base pages are above 'mark'. For high-order checks it
3879 * will return true of the order-0 watermark is reached and there is at least
3880 * one free page of a suitable size. Checking now avoids taking the zone lock
3881 * to check in the allocation paths if no pages are free.
1da177e4 3882 */
86a294a8 3883bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3884 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3885 long free_pages)
1da177e4 3886{
d23ad423 3887 long min = mark;
1da177e4 3888 int o;
cd04ae1e 3889 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3890
0aaa29a5 3891 /* free_pages may go negative - that's OK */
f27ce0e1 3892 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3893
7fb1d9fc 3894 if (alloc_flags & ALLOC_HIGH)
1da177e4 3895 min -= min / 2;
0aaa29a5 3896
f27ce0e1 3897 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3898 /*
3899 * OOM victims can try even harder than normal ALLOC_HARDER
3900 * users on the grounds that it's definitely going to be in
3901 * the exit path shortly and free memory. Any allocation it
3902 * makes during the free path will be small and short-lived.
3903 */
3904 if (alloc_flags & ALLOC_OOM)
3905 min -= min / 2;
3906 else
3907 min -= min / 4;
3908 }
3909
97a16fc8
MG
3910 /*
3911 * Check watermarks for an order-0 allocation request. If these
3912 * are not met, then a high-order request also cannot go ahead
3913 * even if a suitable page happened to be free.
3914 */
97a225e6 3915 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3916 return false;
1da177e4 3917
97a16fc8
MG
3918 /* If this is an order-0 request then the watermark is fine */
3919 if (!order)
3920 return true;
3921
3922 /* For a high-order request, check at least one suitable page is free */
3923 for (o = order; o < MAX_ORDER; o++) {
3924 struct free_area *area = &z->free_area[o];
3925 int mt;
3926
3927 if (!area->nr_free)
3928 continue;
3929
97a16fc8 3930 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3931 if (!free_area_empty(area, mt))
97a16fc8
MG
3932 return true;
3933 }
3934
3935#ifdef CONFIG_CMA
d883c6cf 3936 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3937 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3938 return true;
d883c6cf 3939 }
97a16fc8 3940#endif
76089d00 3941 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3942 return true;
1da177e4 3943 }
97a16fc8 3944 return false;
88f5acf8
MG
3945}
3946
7aeb09f9 3947bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3948 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3949{
97a225e6 3950 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3951 zone_page_state(z, NR_FREE_PAGES));
3952}
3953
48ee5f36 3954static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3955 unsigned long mark, int highest_zoneidx,
f80b08fc 3956 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3957{
f27ce0e1 3958 long free_pages;
d883c6cf 3959
f27ce0e1 3960 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3961
3962 /*
3963 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3964 * need to be calculated.
48ee5f36 3965 */
f27ce0e1
JK
3966 if (!order) {
3967 long fast_free;
3968
3969 fast_free = free_pages;
3970 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3971 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3972 return true;
3973 }
48ee5f36 3974
f80b08fc
CTR
3975 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3976 free_pages))
3977 return true;
3978 /*
3979 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3980 * when checking the min watermark. The min watermark is the
3981 * point where boosting is ignored so that kswapd is woken up
3982 * when below the low watermark.
3983 */
3984 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3985 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3986 mark = z->_watermark[WMARK_MIN];
3987 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3988 alloc_flags, free_pages);
3989 }
3990
3991 return false;
48ee5f36
MG
3992}
3993
7aeb09f9 3994bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3995 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3996{
3997 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3998
3999 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4000 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4001
97a225e6 4002 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 4003 free_pages);
1da177e4
LT
4004}
4005
9276b1bc 4006#ifdef CONFIG_NUMA
61bb6cd2
GU
4007int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4008
957f822a
DR
4009static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4010{
e02dc017 4011 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 4012 node_reclaim_distance;
957f822a 4013}
9276b1bc 4014#else /* CONFIG_NUMA */
957f822a
DR
4015static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4016{
4017 return true;
4018}
9276b1bc
PJ
4019#endif /* CONFIG_NUMA */
4020
6bb15450
MG
4021/*
4022 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4023 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4024 * premature use of a lower zone may cause lowmem pressure problems that
4025 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4026 * probably too small. It only makes sense to spread allocations to avoid
4027 * fragmentation between the Normal and DMA32 zones.
4028 */
4029static inline unsigned int
0a79cdad 4030alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 4031{
736838e9 4032 unsigned int alloc_flags;
0a79cdad 4033
736838e9
MN
4034 /*
4035 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4036 * to save a branch.
4037 */
4038 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
4039
4040#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
4041 if (!zone)
4042 return alloc_flags;
4043
6bb15450 4044 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 4045 return alloc_flags;
6bb15450
MG
4046
4047 /*
4048 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4049 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4050 * on UMA that if Normal is populated then so is DMA32.
4051 */
4052 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4053 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 4054 return alloc_flags;
6bb15450 4055
8118b82e 4056 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
4057#endif /* CONFIG_ZONE_DMA32 */
4058 return alloc_flags;
6bb15450 4059}
6bb15450 4060
8e3560d9
PT
4061/* Must be called after current_gfp_context() which can change gfp_mask */
4062static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4063 unsigned int alloc_flags)
8510e69c
JK
4064{
4065#ifdef CONFIG_CMA
8e3560d9 4066 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 4067 alloc_flags |= ALLOC_CMA;
8510e69c
JK
4068#endif
4069 return alloc_flags;
4070}
4071
7fb1d9fc 4072/*
0798e519 4073 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4074 * a page.
4075 */
4076static struct page *
a9263751
VB
4077get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4078 const struct alloc_context *ac)
753ee728 4079{
6bb15450 4080 struct zoneref *z;
5117f45d 4081 struct zone *zone;
8a87d695
WY
4082 struct pglist_data *last_pgdat = NULL;
4083 bool last_pgdat_dirty_ok = false;
6bb15450 4084 bool no_fallback;
3b8c0be4 4085
6bb15450 4086retry:
7fb1d9fc 4087 /*
9276b1bc 4088 * Scan zonelist, looking for a zone with enough free.
344736f2 4089 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 4090 */
6bb15450
MG
4091 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4092 z = ac->preferred_zoneref;
30d8ec73
MN
4093 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4094 ac->nodemask) {
be06af00 4095 struct page *page;
e085dbc5
JW
4096 unsigned long mark;
4097
664eedde
MG
4098 if (cpusets_enabled() &&
4099 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4100 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4101 continue;
a756cf59
JW
4102 /*
4103 * When allocating a page cache page for writing, we
281e3726
MG
4104 * want to get it from a node that is within its dirty
4105 * limit, such that no single node holds more than its
a756cf59 4106 * proportional share of globally allowed dirty pages.
281e3726 4107 * The dirty limits take into account the node's
a756cf59
JW
4108 * lowmem reserves and high watermark so that kswapd
4109 * should be able to balance it without having to
4110 * write pages from its LRU list.
4111 *
a756cf59 4112 * XXX: For now, allow allocations to potentially
281e3726 4113 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4114 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4115 * which is important when on a NUMA setup the allowed
281e3726 4116 * nodes are together not big enough to reach the
a756cf59 4117 * global limit. The proper fix for these situations
281e3726 4118 * will require awareness of nodes in the
a756cf59
JW
4119 * dirty-throttling and the flusher threads.
4120 */
3b8c0be4 4121 if (ac->spread_dirty_pages) {
8a87d695
WY
4122 if (last_pgdat != zone->zone_pgdat) {
4123 last_pgdat = zone->zone_pgdat;
4124 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4125 }
3b8c0be4 4126
8a87d695 4127 if (!last_pgdat_dirty_ok)
3b8c0be4 4128 continue;
3b8c0be4 4129 }
7fb1d9fc 4130
6bb15450
MG
4131 if (no_fallback && nr_online_nodes > 1 &&
4132 zone != ac->preferred_zoneref->zone) {
4133 int local_nid;
4134
4135 /*
4136 * If moving to a remote node, retry but allow
4137 * fragmenting fallbacks. Locality is more important
4138 * than fragmentation avoidance.
4139 */
4140 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4141 if (zone_to_nid(zone) != local_nid) {
4142 alloc_flags &= ~ALLOC_NOFRAGMENT;
4143 goto retry;
4144 }
4145 }
4146
a9214443 4147 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4148 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4149 ac->highest_zoneidx, alloc_flags,
4150 gfp_mask)) {
fa5e084e
MG
4151 int ret;
4152
c9e97a19
PT
4153#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4154 /*
4155 * Watermark failed for this zone, but see if we can
4156 * grow this zone if it contains deferred pages.
4157 */
4158 if (static_branch_unlikely(&deferred_pages)) {
4159 if (_deferred_grow_zone(zone, order))
4160 goto try_this_zone;
4161 }
4162#endif
5dab2911
MG
4163 /* Checked here to keep the fast path fast */
4164 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4165 if (alloc_flags & ALLOC_NO_WATERMARKS)
4166 goto try_this_zone;
4167
202e35db 4168 if (!node_reclaim_enabled() ||
c33d6c06 4169 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4170 continue;
4171
a5f5f91d 4172 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4173 switch (ret) {
a5f5f91d 4174 case NODE_RECLAIM_NOSCAN:
fa5e084e 4175 /* did not scan */
cd38b115 4176 continue;
a5f5f91d 4177 case NODE_RECLAIM_FULL:
fa5e084e 4178 /* scanned but unreclaimable */
cd38b115 4179 continue;
fa5e084e
MG
4180 default:
4181 /* did we reclaim enough */
fed2719e 4182 if (zone_watermark_ok(zone, order, mark,
97a225e6 4183 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4184 goto try_this_zone;
4185
fed2719e 4186 continue;
0798e519 4187 }
7fb1d9fc
RS
4188 }
4189
fa5e084e 4190try_this_zone:
066b2393 4191 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4192 gfp_mask, alloc_flags, ac->migratetype);
75379191 4193 if (page) {
479f854a 4194 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4195
4196 /*
4197 * If this is a high-order atomic allocation then check
4198 * if the pageblock should be reserved for the future
4199 */
4200 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4201 reserve_highatomic_pageblock(page, zone, order);
4202
75379191 4203 return page;
c9e97a19
PT
4204 } else {
4205#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4206 /* Try again if zone has deferred pages */
4207 if (static_branch_unlikely(&deferred_pages)) {
4208 if (_deferred_grow_zone(zone, order))
4209 goto try_this_zone;
4210 }
4211#endif
75379191 4212 }
54a6eb5c 4213 }
9276b1bc 4214
6bb15450
MG
4215 /*
4216 * It's possible on a UMA machine to get through all zones that are
4217 * fragmented. If avoiding fragmentation, reset and try again.
4218 */
4219 if (no_fallback) {
4220 alloc_flags &= ~ALLOC_NOFRAGMENT;
4221 goto retry;
4222 }
4223
4ffeaf35 4224 return NULL;
753ee728
MH
4225}
4226
9af744d7 4227static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4228{
a238ab5b 4229 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4230
4231 /*
4232 * This documents exceptions given to allocations in certain
4233 * contexts that are allowed to allocate outside current's set
4234 * of allowed nodes.
4235 */
4236 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4237 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4238 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4239 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4240 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4241 filter &= ~SHOW_MEM_FILTER_NODES;
4242
9af744d7 4243 show_mem(filter, nodemask);
aa187507
MH
4244}
4245
a8e99259 4246void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4247{
4248 struct va_format vaf;
4249 va_list args;
1be334e5 4250 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4251
c4dc63f0
BH
4252 if ((gfp_mask & __GFP_NOWARN) ||
4253 !__ratelimit(&nopage_rs) ||
4254 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
4255 return;
4256
7877cdcc
MH
4257 va_start(args, fmt);
4258 vaf.fmt = fmt;
4259 vaf.va = &args;
ef8444ea 4260 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4261 current->comm, &vaf, gfp_mask, &gfp_mask,
4262 nodemask_pr_args(nodemask));
7877cdcc 4263 va_end(args);
3ee9a4f0 4264
a8e99259 4265 cpuset_print_current_mems_allowed();
ef8444ea 4266 pr_cont("\n");
a238ab5b 4267 dump_stack();
685dbf6f 4268 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4269}
4270
6c18ba7a
MH
4271static inline struct page *
4272__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4273 unsigned int alloc_flags,
4274 const struct alloc_context *ac)
4275{
4276 struct page *page;
4277
4278 page = get_page_from_freelist(gfp_mask, order,
4279 alloc_flags|ALLOC_CPUSET, ac);
4280 /*
4281 * fallback to ignore cpuset restriction if our nodes
4282 * are depleted
4283 */
4284 if (!page)
4285 page = get_page_from_freelist(gfp_mask, order,
4286 alloc_flags, ac);
4287
4288 return page;
4289}
4290
11e33f6a
MG
4291static inline struct page *
4292__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4293 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4294{
6e0fc46d
DR
4295 struct oom_control oc = {
4296 .zonelist = ac->zonelist,
4297 .nodemask = ac->nodemask,
2a966b77 4298 .memcg = NULL,
6e0fc46d
DR
4299 .gfp_mask = gfp_mask,
4300 .order = order,
6e0fc46d 4301 };
11e33f6a
MG
4302 struct page *page;
4303
9879de73
JW
4304 *did_some_progress = 0;
4305
9879de73 4306 /*
dc56401f
JW
4307 * Acquire the oom lock. If that fails, somebody else is
4308 * making progress for us.
9879de73 4309 */
dc56401f 4310 if (!mutex_trylock(&oom_lock)) {
9879de73 4311 *did_some_progress = 1;
11e33f6a 4312 schedule_timeout_uninterruptible(1);
1da177e4
LT
4313 return NULL;
4314 }
6b1de916 4315
11e33f6a
MG
4316 /*
4317 * Go through the zonelist yet one more time, keep very high watermark
4318 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4319 * we're still under heavy pressure. But make sure that this reclaim
4320 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4321 * allocation which will never fail due to oom_lock already held.
11e33f6a 4322 */
e746bf73
TH
4323 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4324 ~__GFP_DIRECT_RECLAIM, order,
4325 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4326 if (page)
11e33f6a
MG
4327 goto out;
4328
06ad276a
MH
4329 /* Coredumps can quickly deplete all memory reserves */
4330 if (current->flags & PF_DUMPCORE)
4331 goto out;
4332 /* The OOM killer will not help higher order allocs */
4333 if (order > PAGE_ALLOC_COSTLY_ORDER)
4334 goto out;
dcda9b04
MH
4335 /*
4336 * We have already exhausted all our reclaim opportunities without any
4337 * success so it is time to admit defeat. We will skip the OOM killer
4338 * because it is very likely that the caller has a more reasonable
4339 * fallback than shooting a random task.
cfb4a541
MN
4340 *
4341 * The OOM killer may not free memory on a specific node.
dcda9b04 4342 */
cfb4a541 4343 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4344 goto out;
06ad276a 4345 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4346 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4347 goto out;
4348 if (pm_suspended_storage())
4349 goto out;
4350 /*
4351 * XXX: GFP_NOFS allocations should rather fail than rely on
4352 * other request to make a forward progress.
4353 * We are in an unfortunate situation where out_of_memory cannot
4354 * do much for this context but let's try it to at least get
4355 * access to memory reserved if the current task is killed (see
4356 * out_of_memory). Once filesystems are ready to handle allocation
4357 * failures more gracefully we should just bail out here.
4358 */
4359
3c2c6488 4360 /* Exhausted what can be done so it's blame time */
3f913fc5
QZ
4361 if (out_of_memory(&oc) ||
4362 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
c32b3cbe 4363 *did_some_progress = 1;
5020e285 4364
6c18ba7a
MH
4365 /*
4366 * Help non-failing allocations by giving them access to memory
4367 * reserves
4368 */
4369 if (gfp_mask & __GFP_NOFAIL)
4370 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4371 ALLOC_NO_WATERMARKS, ac);
5020e285 4372 }
11e33f6a 4373out:
dc56401f 4374 mutex_unlock(&oom_lock);
11e33f6a
MG
4375 return page;
4376}
4377
33c2d214 4378/*
baf2f90b 4379 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4380 * killer is consider as the only way to move forward.
4381 */
4382#define MAX_COMPACT_RETRIES 16
4383
56de7263
MG
4384#ifdef CONFIG_COMPACTION
4385/* Try memory compaction for high-order allocations before reclaim */
4386static struct page *
4387__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4388 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4389 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4390{
5e1f0f09 4391 struct page *page = NULL;
eb414681 4392 unsigned long pflags;
499118e9 4393 unsigned int noreclaim_flag;
53853e2d
VB
4394
4395 if (!order)
66199712 4396 return NULL;
66199712 4397
eb414681 4398 psi_memstall_enter(&pflags);
5bf18281 4399 delayacct_compact_start();
499118e9 4400 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4401
c5d01d0d 4402 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4403 prio, &page);
eb414681 4404
499118e9 4405 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4406 psi_memstall_leave(&pflags);
5bf18281 4407 delayacct_compact_end();
56de7263 4408
06dac2f4
CTR
4409 if (*compact_result == COMPACT_SKIPPED)
4410 return NULL;
98dd3b48
VB
4411 /*
4412 * At least in one zone compaction wasn't deferred or skipped, so let's
4413 * count a compaction stall
4414 */
4415 count_vm_event(COMPACTSTALL);
8fb74b9f 4416
5e1f0f09
MG
4417 /* Prep a captured page if available */
4418 if (page)
4419 prep_new_page(page, order, gfp_mask, alloc_flags);
4420
4421 /* Try get a page from the freelist if available */
4422 if (!page)
4423 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4424
98dd3b48
VB
4425 if (page) {
4426 struct zone *zone = page_zone(page);
53853e2d 4427
98dd3b48
VB
4428 zone->compact_blockskip_flush = false;
4429 compaction_defer_reset(zone, order, true);
4430 count_vm_event(COMPACTSUCCESS);
4431 return page;
4432 }
56de7263 4433
98dd3b48
VB
4434 /*
4435 * It's bad if compaction run occurs and fails. The most likely reason
4436 * is that pages exist, but not enough to satisfy watermarks.
4437 */
4438 count_vm_event(COMPACTFAIL);
66199712 4439
98dd3b48 4440 cond_resched();
56de7263
MG
4441
4442 return NULL;
4443}
33c2d214 4444
3250845d
VB
4445static inline bool
4446should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4447 enum compact_result compact_result,
4448 enum compact_priority *compact_priority,
d9436498 4449 int *compaction_retries)
3250845d
VB
4450{
4451 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4452 int min_priority;
65190cff
MH
4453 bool ret = false;
4454 int retries = *compaction_retries;
4455 enum compact_priority priority = *compact_priority;
3250845d
VB
4456
4457 if (!order)
4458 return false;
4459
691d9497
AT
4460 if (fatal_signal_pending(current))
4461 return false;
4462
d9436498
VB
4463 if (compaction_made_progress(compact_result))
4464 (*compaction_retries)++;
4465
3250845d
VB
4466 /*
4467 * compaction considers all the zone as desperately out of memory
4468 * so it doesn't really make much sense to retry except when the
4469 * failure could be caused by insufficient priority
4470 */
d9436498
VB
4471 if (compaction_failed(compact_result))
4472 goto check_priority;
3250845d 4473
49433085
VB
4474 /*
4475 * compaction was skipped because there are not enough order-0 pages
4476 * to work with, so we retry only if it looks like reclaim can help.
4477 */
4478 if (compaction_needs_reclaim(compact_result)) {
4479 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4480 goto out;
4481 }
4482
3250845d
VB
4483 /*
4484 * make sure the compaction wasn't deferred or didn't bail out early
4485 * due to locks contention before we declare that we should give up.
49433085
VB
4486 * But the next retry should use a higher priority if allowed, so
4487 * we don't just keep bailing out endlessly.
3250845d 4488 */
65190cff 4489 if (compaction_withdrawn(compact_result)) {
49433085 4490 goto check_priority;
65190cff 4491 }
3250845d
VB
4492
4493 /*
dcda9b04 4494 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4495 * costly ones because they are de facto nofail and invoke OOM
4496 * killer to move on while costly can fail and users are ready
4497 * to cope with that. 1/4 retries is rather arbitrary but we
4498 * would need much more detailed feedback from compaction to
4499 * make a better decision.
4500 */
4501 if (order > PAGE_ALLOC_COSTLY_ORDER)
4502 max_retries /= 4;
65190cff
MH
4503 if (*compaction_retries <= max_retries) {
4504 ret = true;
4505 goto out;
4506 }
3250845d 4507
d9436498
VB
4508 /*
4509 * Make sure there are attempts at the highest priority if we exhausted
4510 * all retries or failed at the lower priorities.
4511 */
4512check_priority:
c2033b00
VB
4513 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4514 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4515
c2033b00 4516 if (*compact_priority > min_priority) {
d9436498
VB
4517 (*compact_priority)--;
4518 *compaction_retries = 0;
65190cff 4519 ret = true;
d9436498 4520 }
65190cff
MH
4521out:
4522 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4523 return ret;
3250845d 4524}
56de7263
MG
4525#else
4526static inline struct page *
4527__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4528 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4529 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4530{
33c2d214 4531 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4532 return NULL;
4533}
33c2d214
MH
4534
4535static inline bool
86a294a8
MH
4536should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4537 enum compact_result compact_result,
a5508cd8 4538 enum compact_priority *compact_priority,
d9436498 4539 int *compaction_retries)
33c2d214 4540{
31e49bfd
MH
4541 struct zone *zone;
4542 struct zoneref *z;
4543
4544 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4545 return false;
4546
4547 /*
4548 * There are setups with compaction disabled which would prefer to loop
4549 * inside the allocator rather than hit the oom killer prematurely.
4550 * Let's give them a good hope and keep retrying while the order-0
4551 * watermarks are OK.
4552 */
97a225e6
JK
4553 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4554 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4555 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4556 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4557 return true;
4558 }
33c2d214
MH
4559 return false;
4560}
3250845d 4561#endif /* CONFIG_COMPACTION */
56de7263 4562
d92a8cfc 4563#ifdef CONFIG_LOCKDEP
93781325 4564static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4565 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4566
f920e413 4567static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4568{
d92a8cfc
PZ
4569 /* no reclaim without waiting on it */
4570 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4571 return false;
4572
4573 /* this guy won't enter reclaim */
2e517d68 4574 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4575 return false;
4576
d92a8cfc
PZ
4577 if (gfp_mask & __GFP_NOLOCKDEP)
4578 return false;
4579
4580 return true;
4581}
4582
4f3eaf45 4583void __fs_reclaim_acquire(unsigned long ip)
93781325 4584{
4f3eaf45 4585 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4586}
4587
4f3eaf45 4588void __fs_reclaim_release(unsigned long ip)
93781325 4589{
4f3eaf45 4590 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4591}
4592
d92a8cfc
PZ
4593void fs_reclaim_acquire(gfp_t gfp_mask)
4594{
f920e413
SV
4595 gfp_mask = current_gfp_context(gfp_mask);
4596
4597 if (__need_reclaim(gfp_mask)) {
4598 if (gfp_mask & __GFP_FS)
4f3eaf45 4599 __fs_reclaim_acquire(_RET_IP_);
f920e413
SV
4600
4601#ifdef CONFIG_MMU_NOTIFIER
4602 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4603 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4604#endif
4605
4606 }
d92a8cfc
PZ
4607}
4608EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4609
4610void fs_reclaim_release(gfp_t gfp_mask)
4611{
f920e413
SV
4612 gfp_mask = current_gfp_context(gfp_mask);
4613
4614 if (__need_reclaim(gfp_mask)) {
4615 if (gfp_mask & __GFP_FS)
4f3eaf45 4616 __fs_reclaim_release(_RET_IP_);
f920e413 4617 }
d92a8cfc
PZ
4618}
4619EXPORT_SYMBOL_GPL(fs_reclaim_release);
4620#endif
4621
bba90710 4622/* Perform direct synchronous page reclaim */
2187e17b 4623static unsigned long
a9263751
VB
4624__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4625 const struct alloc_context *ac)
11e33f6a 4626{
499118e9 4627 unsigned int noreclaim_flag;
fa7fc75f 4628 unsigned long progress;
11e33f6a
MG
4629
4630 cond_resched();
4631
4632 /* We now go into synchronous reclaim */
4633 cpuset_memory_pressure_bump();
d92a8cfc 4634 fs_reclaim_acquire(gfp_mask);
93781325 4635 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4636
a9263751
VB
4637 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4638 ac->nodemask);
11e33f6a 4639
499118e9 4640 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4641 fs_reclaim_release(gfp_mask);
11e33f6a
MG
4642
4643 cond_resched();
4644
bba90710
MS
4645 return progress;
4646}
4647
4648/* The really slow allocator path where we enter direct reclaim */
4649static inline struct page *
4650__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4651 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4652 unsigned long *did_some_progress)
bba90710
MS
4653{
4654 struct page *page = NULL;
fa7fc75f 4655 unsigned long pflags;
bba90710
MS
4656 bool drained = false;
4657
fa7fc75f 4658 psi_memstall_enter(&pflags);
a9263751 4659 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 4660 if (unlikely(!(*did_some_progress)))
fa7fc75f 4661 goto out;
11e33f6a 4662
9ee493ce 4663retry:
31a6c190 4664 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4665
4666 /*
4667 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4668 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4669 * Shrink them and try again
9ee493ce
MG
4670 */
4671 if (!page && !drained) {
29fac03b 4672 unreserve_highatomic_pageblock(ac, false);
93481ff0 4673 drain_all_pages(NULL);
9ee493ce
MG
4674 drained = true;
4675 goto retry;
4676 }
fa7fc75f
SB
4677out:
4678 psi_memstall_leave(&pflags);
9ee493ce 4679
11e33f6a
MG
4680 return page;
4681}
4682
5ecd9d40
DR
4683static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4684 const struct alloc_context *ac)
3a025760
JW
4685{
4686 struct zoneref *z;
4687 struct zone *zone;
e1a55637 4688 pg_data_t *last_pgdat = NULL;
97a225e6 4689 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4690
97a225e6 4691 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4692 ac->nodemask) {
bc53008e
WY
4693 if (!managed_zone(zone))
4694 continue;
d137a7cb 4695 if (last_pgdat != zone->zone_pgdat) {
97a225e6 4696 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
d137a7cb
CW
4697 last_pgdat = zone->zone_pgdat;
4698 }
e1a55637 4699 }
3a025760
JW
4700}
4701
c603844b 4702static inline unsigned int
341ce06f
PZ
4703gfp_to_alloc_flags(gfp_t gfp_mask)
4704{
c603844b 4705 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4706
736838e9
MN
4707 /*
4708 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4709 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4710 * to save two branches.
4711 */
e6223a3b 4712 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4713 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4714
341ce06f
PZ
4715 /*
4716 * The caller may dip into page reserves a bit more if the caller
4717 * cannot run direct reclaim, or if the caller has realtime scheduling
4718 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4719 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4720 */
736838e9
MN
4721 alloc_flags |= (__force int)
4722 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4723
d0164adc 4724 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4725 /*
b104a35d
DR
4726 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4727 * if it can't schedule.
5c3240d9 4728 */
b104a35d 4729 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4730 alloc_flags |= ALLOC_HARDER;
523b9458 4731 /*
b104a35d 4732 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4733 * comment for __cpuset_node_allowed().
523b9458 4734 */
341ce06f 4735 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4736 } else if (unlikely(rt_task(current)) && in_task())
341ce06f
PZ
4737 alloc_flags |= ALLOC_HARDER;
4738
8e3560d9 4739 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4740
341ce06f
PZ
4741 return alloc_flags;
4742}
4743
cd04ae1e 4744static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4745{
cd04ae1e
MH
4746 if (!tsk_is_oom_victim(tsk))
4747 return false;
4748
4749 /*
4750 * !MMU doesn't have oom reaper so give access to memory reserves
4751 * only to the thread with TIF_MEMDIE set
4752 */
4753 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4754 return false;
4755
cd04ae1e
MH
4756 return true;
4757}
4758
4759/*
4760 * Distinguish requests which really need access to full memory
4761 * reserves from oom victims which can live with a portion of it
4762 */
4763static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4764{
4765 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4766 return 0;
31a6c190 4767 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4768 return ALLOC_NO_WATERMARKS;
31a6c190 4769 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4770 return ALLOC_NO_WATERMARKS;
4771 if (!in_interrupt()) {
4772 if (current->flags & PF_MEMALLOC)
4773 return ALLOC_NO_WATERMARKS;
4774 else if (oom_reserves_allowed(current))
4775 return ALLOC_OOM;
4776 }
31a6c190 4777
cd04ae1e
MH
4778 return 0;
4779}
4780
4781bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4782{
4783 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4784}
4785
0a0337e0
MH
4786/*
4787 * Checks whether it makes sense to retry the reclaim to make a forward progress
4788 * for the given allocation request.
491d79ae
JW
4789 *
4790 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4791 * without success, or when we couldn't even meet the watermark if we
4792 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4793 *
4794 * Returns true if a retry is viable or false to enter the oom path.
4795 */
4796static inline bool
4797should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4798 struct alloc_context *ac, int alloc_flags,
423b452e 4799 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4800{
4801 struct zone *zone;
4802 struct zoneref *z;
15f570bf 4803 bool ret = false;
0a0337e0 4804
423b452e
VB
4805 /*
4806 * Costly allocations might have made a progress but this doesn't mean
4807 * their order will become available due to high fragmentation so
4808 * always increment the no progress counter for them
4809 */
4810 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4811 *no_progress_loops = 0;
4812 else
4813 (*no_progress_loops)++;
4814
0a0337e0
MH
4815 /*
4816 * Make sure we converge to OOM if we cannot make any progress
4817 * several times in the row.
4818 */
04c8716f
MK
4819 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4820 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4821 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4822 }
0a0337e0 4823
bca67592
MG
4824 /*
4825 * Keep reclaiming pages while there is a chance this will lead
4826 * somewhere. If none of the target zones can satisfy our allocation
4827 * request even if all reclaimable pages are considered then we are
4828 * screwed and have to go OOM.
0a0337e0 4829 */
97a225e6
JK
4830 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4831 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4832 unsigned long available;
ede37713 4833 unsigned long reclaimable;
d379f01d
MH
4834 unsigned long min_wmark = min_wmark_pages(zone);
4835 bool wmark;
0a0337e0 4836
5a1c84b4 4837 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4838 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4839
4840 /*
491d79ae
JW
4841 * Would the allocation succeed if we reclaimed all
4842 * reclaimable pages?
0a0337e0 4843 */
d379f01d 4844 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4845 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4846 trace_reclaim_retry_zone(z, order, reclaimable,
4847 available, min_wmark, *no_progress_loops, wmark);
4848 if (wmark) {
15f570bf 4849 ret = true;
132b0d21 4850 break;
0a0337e0
MH
4851 }
4852 }
4853
15f570bf
MH
4854 /*
4855 * Memory allocation/reclaim might be called from a WQ context and the
4856 * current implementation of the WQ concurrency control doesn't
4857 * recognize that a particular WQ is congested if the worker thread is
4858 * looping without ever sleeping. Therefore we have to do a short sleep
4859 * here rather than calling cond_resched().
4860 */
4861 if (current->flags & PF_WQ_WORKER)
4862 schedule_timeout_uninterruptible(1);
4863 else
4864 cond_resched();
4865 return ret;
0a0337e0
MH
4866}
4867
902b6281
VB
4868static inline bool
4869check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4870{
4871 /*
4872 * It's possible that cpuset's mems_allowed and the nodemask from
4873 * mempolicy don't intersect. This should be normally dealt with by
4874 * policy_nodemask(), but it's possible to race with cpuset update in
4875 * such a way the check therein was true, and then it became false
4876 * before we got our cpuset_mems_cookie here.
4877 * This assumes that for all allocations, ac->nodemask can come only
4878 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4879 * when it does not intersect with the cpuset restrictions) or the
4880 * caller can deal with a violated nodemask.
4881 */
4882 if (cpusets_enabled() && ac->nodemask &&
4883 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4884 ac->nodemask = NULL;
4885 return true;
4886 }
4887
4888 /*
4889 * When updating a task's mems_allowed or mempolicy nodemask, it is
4890 * possible to race with parallel threads in such a way that our
4891 * allocation can fail while the mask is being updated. If we are about
4892 * to fail, check if the cpuset changed during allocation and if so,
4893 * retry.
4894 */
4895 if (read_mems_allowed_retry(cpuset_mems_cookie))
4896 return true;
4897
4898 return false;
4899}
4900
11e33f6a
MG
4901static inline struct page *
4902__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4903 struct alloc_context *ac)
11e33f6a 4904{
d0164adc 4905 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4906 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4907 struct page *page = NULL;
c603844b 4908 unsigned int alloc_flags;
11e33f6a 4909 unsigned long did_some_progress;
5ce9bfef 4910 enum compact_priority compact_priority;
c5d01d0d 4911 enum compact_result compact_result;
5ce9bfef
VB
4912 int compaction_retries;
4913 int no_progress_loops;
5ce9bfef 4914 unsigned int cpuset_mems_cookie;
cd04ae1e 4915 int reserve_flags;
1da177e4 4916
d0164adc
MG
4917 /*
4918 * We also sanity check to catch abuse of atomic reserves being used by
4919 * callers that are not in atomic context.
4920 */
4921 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4922 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4923 gfp_mask &= ~__GFP_ATOMIC;
4924
5ce9bfef
VB
4925retry_cpuset:
4926 compaction_retries = 0;
4927 no_progress_loops = 0;
4928 compact_priority = DEF_COMPACT_PRIORITY;
4929 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4930
4931 /*
4932 * The fast path uses conservative alloc_flags to succeed only until
4933 * kswapd needs to be woken up, and to avoid the cost of setting up
4934 * alloc_flags precisely. So we do that now.
4935 */
4936 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4937
e47483bc
VB
4938 /*
4939 * We need to recalculate the starting point for the zonelist iterator
4940 * because we might have used different nodemask in the fast path, or
4941 * there was a cpuset modification and we are retrying - otherwise we
4942 * could end up iterating over non-eligible zones endlessly.
4943 */
4944 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4945 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4946 if (!ac->preferred_zoneref->zone)
4947 goto nopage;
4948
8ca1b5a4
FT
4949 /*
4950 * Check for insane configurations where the cpuset doesn't contain
4951 * any suitable zone to satisfy the request - e.g. non-movable
4952 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4953 */
4954 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4955 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4956 ac->highest_zoneidx,
4957 &cpuset_current_mems_allowed);
4958 if (!z->zone)
4959 goto nopage;
4960 }
4961
0a79cdad 4962 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4963 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4964
4965 /*
4966 * The adjusted alloc_flags might result in immediate success, so try
4967 * that first
4968 */
4969 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4970 if (page)
4971 goto got_pg;
4972
a8161d1e
VB
4973 /*
4974 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4975 * that we have enough base pages and don't need to reclaim. For non-
4976 * movable high-order allocations, do that as well, as compaction will
4977 * try prevent permanent fragmentation by migrating from blocks of the
4978 * same migratetype.
4979 * Don't try this for allocations that are allowed to ignore
4980 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4981 */
282722b0
VB
4982 if (can_direct_reclaim &&
4983 (costly_order ||
4984 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4985 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4986 page = __alloc_pages_direct_compact(gfp_mask, order,
4987 alloc_flags, ac,
a5508cd8 4988 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4989 &compact_result);
4990 if (page)
4991 goto got_pg;
4992
cc638f32
VB
4993 /*
4994 * Checks for costly allocations with __GFP_NORETRY, which
4995 * includes some THP page fault allocations
4996 */
4997 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4998 /*
4999 * If allocating entire pageblock(s) and compaction
5000 * failed because all zones are below low watermarks
5001 * or is prohibited because it recently failed at this
3f36d866
DR
5002 * order, fail immediately unless the allocator has
5003 * requested compaction and reclaim retry.
b39d0ee2
DR
5004 *
5005 * Reclaim is
5006 * - potentially very expensive because zones are far
5007 * below their low watermarks or this is part of very
5008 * bursty high order allocations,
5009 * - not guaranteed to help because isolate_freepages()
5010 * may not iterate over freed pages as part of its
5011 * linear scan, and
5012 * - unlikely to make entire pageblocks free on its
5013 * own.
5014 */
5015 if (compact_result == COMPACT_SKIPPED ||
5016 compact_result == COMPACT_DEFERRED)
5017 goto nopage;
a8161d1e 5018
a8161d1e 5019 /*
3eb2771b
VB
5020 * Looks like reclaim/compaction is worth trying, but
5021 * sync compaction could be very expensive, so keep
25160354 5022 * using async compaction.
a8161d1e 5023 */
a5508cd8 5024 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
5025 }
5026 }
23771235 5027
31a6c190 5028retry:
23771235 5029 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 5030 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 5031 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 5032
cd04ae1e
MH
5033 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5034 if (reserve_flags)
8e3560d9 5035 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
23771235 5036
e46e7b77 5037 /*
d6a24df0
VB
5038 * Reset the nodemask and zonelist iterators if memory policies can be
5039 * ignored. These allocations are high priority and system rather than
5040 * user oriented.
e46e7b77 5041 */
cd04ae1e 5042 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 5043 ac->nodemask = NULL;
e46e7b77 5044 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5045 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
5046 }
5047
23771235 5048 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 5049 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
5050 if (page)
5051 goto got_pg;
1da177e4 5052
d0164adc 5053 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 5054 if (!can_direct_reclaim)
1da177e4
LT
5055 goto nopage;
5056
9a67f648
MH
5057 /* Avoid recursion of direct reclaim */
5058 if (current->flags & PF_MEMALLOC)
6583bb64
DR
5059 goto nopage;
5060
a8161d1e
VB
5061 /* Try direct reclaim and then allocating */
5062 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5063 &did_some_progress);
5064 if (page)
5065 goto got_pg;
5066
5067 /* Try direct compaction and then allocating */
a9263751 5068 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 5069 compact_priority, &compact_result);
56de7263
MG
5070 if (page)
5071 goto got_pg;
75f30861 5072
9083905a
JW
5073 /* Do not loop if specifically requested */
5074 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5075 goto nopage;
9083905a 5076
0a0337e0
MH
5077 /*
5078 * Do not retry costly high order allocations unless they are
dcda9b04 5079 * __GFP_RETRY_MAYFAIL
0a0337e0 5080 */
dcda9b04 5081 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5082 goto nopage;
0a0337e0 5083
0a0337e0 5084 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5085 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5086 goto retry;
5087
33c2d214
MH
5088 /*
5089 * It doesn't make any sense to retry for the compaction if the order-0
5090 * reclaim is not able to make any progress because the current
5091 * implementation of the compaction depends on the sufficient amount
5092 * of free memory (see __compaction_suitable)
5093 */
5094 if (did_some_progress > 0 &&
86a294a8 5095 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5096 compact_result, &compact_priority,
d9436498 5097 &compaction_retries))
33c2d214
MH
5098 goto retry;
5099
902b6281
VB
5100
5101 /* Deal with possible cpuset update races before we start OOM killing */
5102 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
5103 goto retry_cpuset;
5104
9083905a
JW
5105 /* Reclaim has failed us, start killing things */
5106 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5107 if (page)
5108 goto got_pg;
5109
9a67f648 5110 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5111 if (tsk_is_oom_victim(current) &&
8510e69c 5112 (alloc_flags & ALLOC_OOM ||
c288983d 5113 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5114 goto nopage;
5115
9083905a 5116 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5117 if (did_some_progress) {
5118 no_progress_loops = 0;
9083905a 5119 goto retry;
0a0337e0 5120 }
9083905a 5121
1da177e4 5122nopage:
902b6281
VB
5123 /* Deal with possible cpuset update races before we fail */
5124 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
5125 goto retry_cpuset;
5126
9a67f648
MH
5127 /*
5128 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5129 * we always retry
5130 */
5131 if (gfp_mask & __GFP_NOFAIL) {
5132 /*
5133 * All existing users of the __GFP_NOFAIL are blockable, so warn
5134 * of any new users that actually require GFP_NOWAIT
5135 */
3f913fc5 5136 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
9a67f648
MH
5137 goto fail;
5138
5139 /*
5140 * PF_MEMALLOC request from this context is rather bizarre
5141 * because we cannot reclaim anything and only can loop waiting
5142 * for somebody to do a work for us
5143 */
3f913fc5 5144 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
9a67f648
MH
5145
5146 /*
5147 * non failing costly orders are a hard requirement which we
5148 * are not prepared for much so let's warn about these users
5149 * so that we can identify them and convert them to something
5150 * else.
5151 */
3f913fc5 5152 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
9a67f648 5153
6c18ba7a
MH
5154 /*
5155 * Help non-failing allocations by giving them access to memory
5156 * reserves but do not use ALLOC_NO_WATERMARKS because this
5157 * could deplete whole memory reserves which would just make
5158 * the situation worse
5159 */
5160 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5161 if (page)
5162 goto got_pg;
5163
9a67f648
MH
5164 cond_resched();
5165 goto retry;
5166 }
5167fail:
a8e99259 5168 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5169 "page allocation failure: order:%u", order);
1da177e4 5170got_pg:
072bb0aa 5171 return page;
1da177e4 5172}
11e33f6a 5173
9cd75558 5174static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5175 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5176 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5177 unsigned int *alloc_flags)
11e33f6a 5178{
97a225e6 5179 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5180 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5181 ac->nodemask = nodemask;
01c0bfe0 5182 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5183
682a3385 5184 if (cpusets_enabled()) {
8e6a930b 5185 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5186 /*
5187 * When we are in the interrupt context, it is irrelevant
5188 * to the current task context. It means that any node ok.
5189 */
88dc6f20 5190 if (in_task() && !ac->nodemask)
9cd75558 5191 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5192 else
5193 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5194 }
5195
d92a8cfc
PZ
5196 fs_reclaim_acquire(gfp_mask);
5197 fs_reclaim_release(gfp_mask);
11e33f6a 5198
d0164adc 5199 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
5200
5201 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5202 return false;
11e33f6a 5203
8e3560d9 5204 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5205
c9ab0c4f 5206 /* Dirty zone balancing only done in the fast path */
9cd75558 5207 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5208
e46e7b77
MG
5209 /*
5210 * The preferred zone is used for statistics but crucially it is
5211 * also used as the starting point for the zonelist iterator. It
5212 * may get reset for allocations that ignore memory policies.
5213 */
9cd75558 5214 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5215 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5216
5217 return true;
9cd75558
MG
5218}
5219
387ba26f 5220/*
0f87d9d3 5221 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5222 * @gfp: GFP flags for the allocation
5223 * @preferred_nid: The preferred NUMA node ID to allocate from
5224 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5225 * @nr_pages: The number of pages desired on the list or array
5226 * @page_list: Optional list to store the allocated pages
5227 * @page_array: Optional array to store the pages
387ba26f
MG
5228 *
5229 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5230 * allocate nr_pages quickly. Pages are added to page_list if page_list
5231 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5232 *
0f87d9d3
MG
5233 * For lists, nr_pages is the number of pages that should be allocated.
5234 *
5235 * For arrays, only NULL elements are populated with pages and nr_pages
5236 * is the maximum number of pages that will be stored in the array.
5237 *
5238 * Returns the number of pages on the list or array.
387ba26f
MG
5239 */
5240unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5241 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5242 struct list_head *page_list,
5243 struct page **page_array)
387ba26f
MG
5244{
5245 struct page *page;
5246 unsigned long flags;
5247 struct zone *zone;
5248 struct zoneref *z;
5249 struct per_cpu_pages *pcp;
5250 struct list_head *pcp_list;
5251 struct alloc_context ac;
5252 gfp_t alloc_gfp;
5253 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5254 int nr_populated = 0, nr_account = 0;
387ba26f 5255
0f87d9d3
MG
5256 /*
5257 * Skip populated array elements to determine if any pages need
5258 * to be allocated before disabling IRQs.
5259 */
b08e50dd 5260 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5261 nr_populated++;
5262
06147843
CL
5263 /* No pages requested? */
5264 if (unlikely(nr_pages <= 0))
5265 goto out;
5266
b3b64ebd
MG
5267 /* Already populated array? */
5268 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5269 goto out;
b3b64ebd 5270
8dcb3060
SB
5271 /* Bulk allocator does not support memcg accounting. */
5272 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5273 goto failed;
5274
387ba26f 5275 /* Use the single page allocator for one page. */
0f87d9d3 5276 if (nr_pages - nr_populated == 1)
387ba26f
MG
5277 goto failed;
5278
187ad460
MG
5279#ifdef CONFIG_PAGE_OWNER
5280 /*
5281 * PAGE_OWNER may recurse into the allocator to allocate space to
5282 * save the stack with pagesets.lock held. Releasing/reacquiring
5283 * removes much of the performance benefit of bulk allocation so
5284 * force the caller to allocate one page at a time as it'll have
5285 * similar performance to added complexity to the bulk allocator.
5286 */
5287 if (static_branch_unlikely(&page_owner_inited))
5288 goto failed;
5289#endif
5290
387ba26f
MG
5291 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5292 gfp &= gfp_allowed_mask;
5293 alloc_gfp = gfp;
5294 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5295 goto out;
387ba26f
MG
5296 gfp = alloc_gfp;
5297
5298 /* Find an allowed local zone that meets the low watermark. */
5299 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5300 unsigned long mark;
5301
5302 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5303 !__cpuset_zone_allowed(zone, gfp)) {
5304 continue;
5305 }
5306
5307 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5308 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5309 goto failed;
5310 }
5311
5312 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5313 if (zone_watermark_fast(zone, 0, mark,
5314 zonelist_zone_idx(ac.preferred_zoneref),
5315 alloc_flags, gfp)) {
5316 break;
5317 }
5318 }
5319
5320 /*
5321 * If there are no allowed local zones that meets the watermarks then
5322 * try to allocate a single page and reclaim if necessary.
5323 */
ce76f9a1 5324 if (unlikely(!zone))
387ba26f
MG
5325 goto failed;
5326
5327 /* Attempt the batch allocation */
dbbee9d5 5328 local_lock_irqsave(&pagesets.lock, flags);
28f836b6 5329 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44 5330 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
387ba26f 5331
0f87d9d3
MG
5332 while (nr_populated < nr_pages) {
5333
5334 /* Skip existing pages */
5335 if (page_array && page_array[nr_populated]) {
5336 nr_populated++;
5337 continue;
5338 }
5339
44042b44 5340 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5341 pcp, pcp_list);
ce76f9a1 5342 if (unlikely(!page)) {
387ba26f 5343 /* Try and get at least one page */
0f87d9d3 5344 if (!nr_populated)
387ba26f
MG
5345 goto failed_irq;
5346 break;
5347 }
3e23060b 5348 nr_account++;
387ba26f
MG
5349
5350 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5351 if (page_list)
5352 list_add(&page->lru, page_list);
5353 else
5354 page_array[nr_populated] = page;
5355 nr_populated++;
387ba26f
MG
5356 }
5357
43c95bcc
MG
5358 local_unlock_irqrestore(&pagesets.lock, flags);
5359
3e23060b
MG
5360 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5361 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5362
06147843 5363out:
0f87d9d3 5364 return nr_populated;
387ba26f
MG
5365
5366failed_irq:
dbbee9d5 5367 local_unlock_irqrestore(&pagesets.lock, flags);
387ba26f
MG
5368
5369failed:
5370 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5371 if (page) {
0f87d9d3
MG
5372 if (page_list)
5373 list_add(&page->lru, page_list);
5374 else
5375 page_array[nr_populated] = page;
5376 nr_populated++;
387ba26f
MG
5377 }
5378
06147843 5379 goto out;
387ba26f
MG
5380}
5381EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5382
9cd75558
MG
5383/*
5384 * This is the 'heart' of the zoned buddy allocator.
5385 */
84172f4b 5386struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5387 nodemask_t *nodemask)
9cd75558
MG
5388{
5389 struct page *page;
5390 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5391 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5392 struct alloc_context ac = { };
5393
c63ae43b
MH
5394 /*
5395 * There are several places where we assume that the order value is sane
5396 * so bail out early if the request is out of bound.
5397 */
3f913fc5 5398 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
c63ae43b 5399 return NULL;
c63ae43b 5400
6e5e0f28 5401 gfp &= gfp_allowed_mask;
da6df1b0
PT
5402 /*
5403 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5404 * resp. GFP_NOIO which has to be inherited for all allocation requests
5405 * from a particular context which has been marked by
8e3560d9
PT
5406 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5407 * movable zones are not used during allocation.
da6df1b0
PT
5408 */
5409 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5410 alloc_gfp = gfp;
5411 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5412 &alloc_gfp, &alloc_flags))
9cd75558
MG
5413 return NULL;
5414
6bb15450
MG
5415 /*
5416 * Forbid the first pass from falling back to types that fragment
5417 * memory until all local zones are considered.
5418 */
6e5e0f28 5419 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5420
5117f45d 5421 /* First allocation attempt */
8e6a930b 5422 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5423 if (likely(page))
5424 goto out;
11e33f6a 5425
da6df1b0 5426 alloc_gfp = gfp;
4fcb0971 5427 ac.spread_dirty_pages = false;
23f086f9 5428
4741526b
MG
5429 /*
5430 * Restore the original nodemask if it was potentially replaced with
5431 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5432 */
97ce86f9 5433 ac.nodemask = nodemask;
16096c25 5434
8e6a930b 5435 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5436
4fcb0971 5437out:
6e5e0f28
MWO
5438 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5439 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5440 __free_pages(page, order);
5441 page = NULL;
4949148a
VD
5442 }
5443
8e6a930b 5444 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5445
11e33f6a 5446 return page;
1da177e4 5447}
84172f4b 5448EXPORT_SYMBOL(__alloc_pages);
1da177e4 5449
cc09cb13
MWO
5450struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5451 nodemask_t *nodemask)
5452{
5453 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5454 preferred_nid, nodemask);
5455
5456 if (page && order > 1)
5457 prep_transhuge_page(page);
5458 return (struct folio *)page;
5459}
5460EXPORT_SYMBOL(__folio_alloc);
5461
1da177e4 5462/*
9ea9a680
MH
5463 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5464 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5465 * you need to access high mem.
1da177e4 5466 */
920c7a5d 5467unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5468{
945a1113
AM
5469 struct page *page;
5470
9ea9a680 5471 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5472 if (!page)
5473 return 0;
5474 return (unsigned long) page_address(page);
5475}
1da177e4
LT
5476EXPORT_SYMBOL(__get_free_pages);
5477
920c7a5d 5478unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5479{
945a1113 5480 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5481}
1da177e4
LT
5482EXPORT_SYMBOL(get_zeroed_page);
5483
7f194fbb
MWO
5484/**
5485 * __free_pages - Free pages allocated with alloc_pages().
5486 * @page: The page pointer returned from alloc_pages().
5487 * @order: The order of the allocation.
5488 *
5489 * This function can free multi-page allocations that are not compound
5490 * pages. It does not check that the @order passed in matches that of
5491 * the allocation, so it is easy to leak memory. Freeing more memory
5492 * than was allocated will probably emit a warning.
5493 *
5494 * If the last reference to this page is speculative, it will be released
5495 * by put_page() which only frees the first page of a non-compound
5496 * allocation. To prevent the remaining pages from being leaked, we free
5497 * the subsequent pages here. If you want to use the page's reference
5498 * count to decide when to free the allocation, you should allocate a
5499 * compound page, and use put_page() instead of __free_pages().
5500 *
5501 * Context: May be called in interrupt context or while holding a normal
5502 * spinlock, but not in NMI context or while holding a raw spinlock.
5503 */
742aa7fb
AL
5504void __free_pages(struct page *page, unsigned int order)
5505{
5506 if (put_page_testzero(page))
5507 free_the_page(page, order);
e320d301
MWO
5508 else if (!PageHead(page))
5509 while (order-- > 0)
5510 free_the_page(page + (1 << order), order);
742aa7fb 5511}
1da177e4
LT
5512EXPORT_SYMBOL(__free_pages);
5513
920c7a5d 5514void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5515{
5516 if (addr != 0) {
725d704e 5517 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5518 __free_pages(virt_to_page((void *)addr), order);
5519 }
5520}
5521
5522EXPORT_SYMBOL(free_pages);
5523
b63ae8ca
AD
5524/*
5525 * Page Fragment:
5526 * An arbitrary-length arbitrary-offset area of memory which resides
5527 * within a 0 or higher order page. Multiple fragments within that page
5528 * are individually refcounted, in the page's reference counter.
5529 *
5530 * The page_frag functions below provide a simple allocation framework for
5531 * page fragments. This is used by the network stack and network device
5532 * drivers to provide a backing region of memory for use as either an
5533 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5534 */
2976db80
AD
5535static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5536 gfp_t gfp_mask)
b63ae8ca
AD
5537{
5538 struct page *page = NULL;
5539 gfp_t gfp = gfp_mask;
5540
5541#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5542 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5543 __GFP_NOMEMALLOC;
5544 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5545 PAGE_FRAG_CACHE_MAX_ORDER);
5546 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5547#endif
5548 if (unlikely(!page))
5549 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5550
5551 nc->va = page ? page_address(page) : NULL;
5552
5553 return page;
5554}
5555
2976db80 5556void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5557{
5558 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5559
742aa7fb
AL
5560 if (page_ref_sub_and_test(page, count))
5561 free_the_page(page, compound_order(page));
44fdffd7 5562}
2976db80 5563EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5564
b358e212
KH
5565void *page_frag_alloc_align(struct page_frag_cache *nc,
5566 unsigned int fragsz, gfp_t gfp_mask,
5567 unsigned int align_mask)
b63ae8ca
AD
5568{
5569 unsigned int size = PAGE_SIZE;
5570 struct page *page;
5571 int offset;
5572
5573 if (unlikely(!nc->va)) {
5574refill:
2976db80 5575 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5576 if (!page)
5577 return NULL;
5578
5579#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5580 /* if size can vary use size else just use PAGE_SIZE */
5581 size = nc->size;
5582#endif
5583 /* Even if we own the page, we do not use atomic_set().
5584 * This would break get_page_unless_zero() users.
5585 */
86447726 5586 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5587
5588 /* reset page count bias and offset to start of new frag */
2f064f34 5589 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5590 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5591 nc->offset = size;
5592 }
5593
5594 offset = nc->offset - fragsz;
5595 if (unlikely(offset < 0)) {
5596 page = virt_to_page(nc->va);
5597
fe896d18 5598 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5599 goto refill;
5600
d8c19014
DZ
5601 if (unlikely(nc->pfmemalloc)) {
5602 free_the_page(page, compound_order(page));
5603 goto refill;
5604 }
5605
b63ae8ca
AD
5606#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5607 /* if size can vary use size else just use PAGE_SIZE */
5608 size = nc->size;
5609#endif
5610 /* OK, page count is 0, we can safely set it */
86447726 5611 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5612
5613 /* reset page count bias and offset to start of new frag */
86447726 5614 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5615 offset = size - fragsz;
5616 }
5617
5618 nc->pagecnt_bias--;
b358e212 5619 offset &= align_mask;
b63ae8ca
AD
5620 nc->offset = offset;
5621
5622 return nc->va + offset;
5623}
b358e212 5624EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5625
5626/*
5627 * Frees a page fragment allocated out of either a compound or order 0 page.
5628 */
8c2dd3e4 5629void page_frag_free(void *addr)
b63ae8ca
AD
5630{
5631 struct page *page = virt_to_head_page(addr);
5632
742aa7fb
AL
5633 if (unlikely(put_page_testzero(page)))
5634 free_the_page(page, compound_order(page));
b63ae8ca 5635}
8c2dd3e4 5636EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5637
d00181b9
KS
5638static void *make_alloc_exact(unsigned long addr, unsigned int order,
5639 size_t size)
ee85c2e1
AK
5640{
5641 if (addr) {
5642 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5643 unsigned long used = addr + PAGE_ALIGN(size);
5644
5645 split_page(virt_to_page((void *)addr), order);
5646 while (used < alloc_end) {
5647 free_page(used);
5648 used += PAGE_SIZE;
5649 }
5650 }
5651 return (void *)addr;
5652}
5653
2be0ffe2
TT
5654/**
5655 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5656 * @size: the number of bytes to allocate
63931eb9 5657 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5658 *
5659 * This function is similar to alloc_pages(), except that it allocates the
5660 * minimum number of pages to satisfy the request. alloc_pages() can only
5661 * allocate memory in power-of-two pages.
5662 *
5663 * This function is also limited by MAX_ORDER.
5664 *
5665 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5666 *
5667 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5668 */
5669void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5670{
5671 unsigned int order = get_order(size);
5672 unsigned long addr;
5673
ba7f1b9e
ML
5674 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5675 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 5676
2be0ffe2 5677 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5678 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5679}
5680EXPORT_SYMBOL(alloc_pages_exact);
5681
ee85c2e1
AK
5682/**
5683 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5684 * pages on a node.
b5e6ab58 5685 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5686 * @size: the number of bytes to allocate
63931eb9 5687 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5688 *
5689 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5690 * back.
a862f68a
MR
5691 *
5692 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5693 */
e1931811 5694void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5695{
d00181b9 5696 unsigned int order = get_order(size);
63931eb9
VB
5697 struct page *p;
5698
ba7f1b9e
ML
5699 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5700 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
5701
5702 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5703 if (!p)
5704 return NULL;
5705 return make_alloc_exact((unsigned long)page_address(p), order, size);
5706}
ee85c2e1 5707
2be0ffe2
TT
5708/**
5709 * free_pages_exact - release memory allocated via alloc_pages_exact()
5710 * @virt: the value returned by alloc_pages_exact.
5711 * @size: size of allocation, same value as passed to alloc_pages_exact().
5712 *
5713 * Release the memory allocated by a previous call to alloc_pages_exact.
5714 */
5715void free_pages_exact(void *virt, size_t size)
5716{
5717 unsigned long addr = (unsigned long)virt;
5718 unsigned long end = addr + PAGE_ALIGN(size);
5719
5720 while (addr < end) {
5721 free_page(addr);
5722 addr += PAGE_SIZE;
5723 }
5724}
5725EXPORT_SYMBOL(free_pages_exact);
5726
e0fb5815
ZY
5727/**
5728 * nr_free_zone_pages - count number of pages beyond high watermark
5729 * @offset: The zone index of the highest zone
5730 *
a862f68a 5731 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5732 * high watermark within all zones at or below a given zone index. For each
5733 * zone, the number of pages is calculated as:
0e056eb5
MCC
5734 *
5735 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5736 *
5737 * Return: number of pages beyond high watermark.
e0fb5815 5738 */
ebec3862 5739static unsigned long nr_free_zone_pages(int offset)
1da177e4 5740{
dd1a239f 5741 struct zoneref *z;
54a6eb5c
MG
5742 struct zone *zone;
5743
e310fd43 5744 /* Just pick one node, since fallback list is circular */
ebec3862 5745 unsigned long sum = 0;
1da177e4 5746
0e88460d 5747 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5748
54a6eb5c 5749 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5750 unsigned long size = zone_managed_pages(zone);
41858966 5751 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5752 if (size > high)
5753 sum += size - high;
1da177e4
LT
5754 }
5755
5756 return sum;
5757}
5758
e0fb5815
ZY
5759/**
5760 * nr_free_buffer_pages - count number of pages beyond high watermark
5761 *
5762 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5763 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5764 *
5765 * Return: number of pages beyond high watermark within ZONE_DMA and
5766 * ZONE_NORMAL.
1da177e4 5767 */
ebec3862 5768unsigned long nr_free_buffer_pages(void)
1da177e4 5769{
af4ca457 5770 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5771}
c2f1a551 5772EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5773
08e0f6a9 5774static inline void show_node(struct zone *zone)
1da177e4 5775{
e5adfffc 5776 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5777 printk("Node %d ", zone_to_nid(zone));
1da177e4 5778}
1da177e4 5779
d02bd27b
IR
5780long si_mem_available(void)
5781{
5782 long available;
5783 unsigned long pagecache;
5784 unsigned long wmark_low = 0;
5785 unsigned long pages[NR_LRU_LISTS];
b29940c1 5786 unsigned long reclaimable;
d02bd27b
IR
5787 struct zone *zone;
5788 int lru;
5789
5790 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5791 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5792
5793 for_each_zone(zone)
a9214443 5794 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5795
5796 /*
5797 * Estimate the amount of memory available for userspace allocations,
5798 * without causing swapping.
5799 */
c41f012a 5800 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5801
5802 /*
5803 * Not all the page cache can be freed, otherwise the system will
5804 * start swapping. Assume at least half of the page cache, or the
5805 * low watermark worth of cache, needs to stay.
5806 */
5807 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5808 pagecache -= min(pagecache / 2, wmark_low);
5809 available += pagecache;
5810
5811 /*
b29940c1
VB
5812 * Part of the reclaimable slab and other kernel memory consists of
5813 * items that are in use, and cannot be freed. Cap this estimate at the
5814 * low watermark.
d02bd27b 5815 */
d42f3245
RG
5816 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5817 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5818 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5819
d02bd27b
IR
5820 if (available < 0)
5821 available = 0;
5822 return available;
5823}
5824EXPORT_SYMBOL_GPL(si_mem_available);
5825
1da177e4
LT
5826void si_meminfo(struct sysinfo *val)
5827{
ca79b0c2 5828 val->totalram = totalram_pages();
11fb9989 5829 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5830 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5831 val->bufferram = nr_blockdev_pages();
ca79b0c2 5832 val->totalhigh = totalhigh_pages();
1da177e4 5833 val->freehigh = nr_free_highpages();
1da177e4
LT
5834 val->mem_unit = PAGE_SIZE;
5835}
5836
5837EXPORT_SYMBOL(si_meminfo);
5838
5839#ifdef CONFIG_NUMA
5840void si_meminfo_node(struct sysinfo *val, int nid)
5841{
cdd91a77
JL
5842 int zone_type; /* needs to be signed */
5843 unsigned long managed_pages = 0;
fc2bd799
JK
5844 unsigned long managed_highpages = 0;
5845 unsigned long free_highpages = 0;
1da177e4
LT
5846 pg_data_t *pgdat = NODE_DATA(nid);
5847
cdd91a77 5848 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5849 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5850 val->totalram = managed_pages;
11fb9989 5851 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5852 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5853#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5854 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5855 struct zone *zone = &pgdat->node_zones[zone_type];
5856
5857 if (is_highmem(zone)) {
9705bea5 5858 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5859 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5860 }
5861 }
5862 val->totalhigh = managed_highpages;
5863 val->freehigh = free_highpages;
98d2b0eb 5864#else
fc2bd799
JK
5865 val->totalhigh = managed_highpages;
5866 val->freehigh = free_highpages;
98d2b0eb 5867#endif
1da177e4
LT
5868 val->mem_unit = PAGE_SIZE;
5869}
5870#endif
5871
ddd588b5 5872/*
7bf02ea2
DR
5873 * Determine whether the node should be displayed or not, depending on whether
5874 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5875 */
9af744d7 5876static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5877{
ddd588b5 5878 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5879 return false;
ddd588b5 5880
9af744d7
MH
5881 /*
5882 * no node mask - aka implicit memory numa policy. Do not bother with
5883 * the synchronization - read_mems_allowed_begin - because we do not
5884 * have to be precise here.
5885 */
5886 if (!nodemask)
5887 nodemask = &cpuset_current_mems_allowed;
5888
5889 return !node_isset(nid, *nodemask);
ddd588b5
DR
5890}
5891
1da177e4
LT
5892#define K(x) ((x) << (PAGE_SHIFT-10))
5893
377e4f16
RV
5894static void show_migration_types(unsigned char type)
5895{
5896 static const char types[MIGRATE_TYPES] = {
5897 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5898 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5899 [MIGRATE_RECLAIMABLE] = 'E',
5900 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5901#ifdef CONFIG_CMA
5902 [MIGRATE_CMA] = 'C',
5903#endif
194159fb 5904#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5905 [MIGRATE_ISOLATE] = 'I',
194159fb 5906#endif
377e4f16
RV
5907 };
5908 char tmp[MIGRATE_TYPES + 1];
5909 char *p = tmp;
5910 int i;
5911
5912 for (i = 0; i < MIGRATE_TYPES; i++) {
5913 if (type & (1 << i))
5914 *p++ = types[i];
5915 }
5916
5917 *p = '\0';
1f84a18f 5918 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5919}
5920
1da177e4
LT
5921/*
5922 * Show free area list (used inside shift_scroll-lock stuff)
5923 * We also calculate the percentage fragmentation. We do this by counting the
5924 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5925 *
5926 * Bits in @filter:
5927 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5928 * cpuset.
1da177e4 5929 */
9af744d7 5930void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5931{
d1bfcdb8 5932 unsigned long free_pcp = 0;
c7241913 5933 int cpu;
1da177e4 5934 struct zone *zone;
599d0c95 5935 pg_data_t *pgdat;
1da177e4 5936
ee99c71c 5937 for_each_populated_zone(zone) {
9af744d7 5938 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5939 continue;
d1bfcdb8 5940
761b0677 5941 for_each_online_cpu(cpu)
28f836b6 5942 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
5943 }
5944
a731286d
KM
5945 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5946 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5947 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5948 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5949 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
eb2169ce 5950 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 5951 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5952 global_node_page_state(NR_ACTIVE_ANON),
5953 global_node_page_state(NR_INACTIVE_ANON),
5954 global_node_page_state(NR_ISOLATED_ANON),
5955 global_node_page_state(NR_ACTIVE_FILE),
5956 global_node_page_state(NR_INACTIVE_FILE),
5957 global_node_page_state(NR_ISOLATED_FILE),
5958 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5959 global_node_page_state(NR_FILE_DIRTY),
5960 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5961 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5962 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5963 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5964 global_node_page_state(NR_SHMEM),
f0c0c115 5965 global_node_page_state(NR_PAGETABLE),
c41f012a 5966 global_zone_page_state(NR_BOUNCE),
eb2169ce 5967 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 5968 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5969 free_pcp,
c41f012a 5970 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5971
599d0c95 5972 for_each_online_pgdat(pgdat) {
9af744d7 5973 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5974 continue;
5975
599d0c95
MG
5976 printk("Node %d"
5977 " active_anon:%lukB"
5978 " inactive_anon:%lukB"
5979 " active_file:%lukB"
5980 " inactive_file:%lukB"
5981 " unevictable:%lukB"
5982 " isolated(anon):%lukB"
5983 " isolated(file):%lukB"
50658e2e 5984 " mapped:%lukB"
11fb9989
MG
5985 " dirty:%lukB"
5986 " writeback:%lukB"
5987 " shmem:%lukB"
5988#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5989 " shmem_thp: %lukB"
5990 " shmem_pmdmapped: %lukB"
5991 " anon_thp: %lukB"
5992#endif
5993 " writeback_tmp:%lukB"
991e7673
SB
5994 " kernel_stack:%lukB"
5995#ifdef CONFIG_SHADOW_CALL_STACK
5996 " shadow_call_stack:%lukB"
5997#endif
f0c0c115 5998 " pagetables:%lukB"
599d0c95
MG
5999 " all_unreclaimable? %s"
6000 "\n",
6001 pgdat->node_id,
6002 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6003 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6004 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6005 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6006 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6007 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6008 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 6009 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
6010 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6011 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 6012 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 6013#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 6014 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 6015 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 6016 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 6017#endif
11fb9989 6018 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
6019 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6020#ifdef CONFIG_SHADOW_CALL_STACK
6021 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6022#endif
f0c0c115 6023 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
6024 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6025 "yes" : "no");
599d0c95
MG
6026 }
6027
ee99c71c 6028 for_each_populated_zone(zone) {
1da177e4
LT
6029 int i;
6030
9af744d7 6031 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6032 continue;
d1bfcdb8
KK
6033
6034 free_pcp = 0;
6035 for_each_online_cpu(cpu)
28f836b6 6036 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 6037
1da177e4 6038 show_node(zone);
1f84a18f
JP
6039 printk(KERN_CONT
6040 "%s"
1da177e4 6041 " free:%lukB"
a6ea8b5b 6042 " boost:%lukB"
1da177e4
LT
6043 " min:%lukB"
6044 " low:%lukB"
6045 " high:%lukB"
e47b346a 6046 " reserved_highatomic:%luKB"
71c799f4
MK
6047 " active_anon:%lukB"
6048 " inactive_anon:%lukB"
6049 " active_file:%lukB"
6050 " inactive_file:%lukB"
6051 " unevictable:%lukB"
5a1c84b4 6052 " writepending:%lukB"
1da177e4 6053 " present:%lukB"
9feedc9d 6054 " managed:%lukB"
4a0aa73f 6055 " mlocked:%lukB"
4a0aa73f 6056 " bounce:%lukB"
d1bfcdb8
KK
6057 " free_pcp:%lukB"
6058 " local_pcp:%ukB"
d1ce749a 6059 " free_cma:%lukB"
1da177e4
LT
6060 "\n",
6061 zone->name,
88f5acf8 6062 K(zone_page_state(zone, NR_FREE_PAGES)),
a6ea8b5b 6063 K(zone->watermark_boost),
41858966
MG
6064 K(min_wmark_pages(zone)),
6065 K(low_wmark_pages(zone)),
6066 K(high_wmark_pages(zone)),
e47b346a 6067 K(zone->nr_reserved_highatomic),
71c799f4
MK
6068 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6069 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6070 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6071 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6072 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6073 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6074 K(zone->present_pages),
9705bea5 6075 K(zone_managed_pages(zone)),
4a0aa73f 6076 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6077 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6078 K(free_pcp),
28f836b6 6079 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6080 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6081 printk("lowmem_reserve[]:");
6082 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6083 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6084 printk(KERN_CONT "\n");
1da177e4
LT
6085 }
6086
ee99c71c 6087 for_each_populated_zone(zone) {
d00181b9
KS
6088 unsigned int order;
6089 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6090 unsigned char types[MAX_ORDER];
1da177e4 6091
9af744d7 6092 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6093 continue;
1da177e4 6094 show_node(zone);
1f84a18f 6095 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6096
6097 spin_lock_irqsave(&zone->lock, flags);
6098 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6099 struct free_area *area = &zone->free_area[order];
6100 int type;
6101
6102 nr[order] = area->nr_free;
8f9de51a 6103 total += nr[order] << order;
377e4f16
RV
6104
6105 types[order] = 0;
6106 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6107 if (!free_area_empty(area, type))
377e4f16
RV
6108 types[order] |= 1 << type;
6109 }
1da177e4
LT
6110 }
6111 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6112 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6113 printk(KERN_CONT "%lu*%lukB ",
6114 nr[order], K(1UL) << order);
377e4f16
RV
6115 if (nr[order])
6116 show_migration_types(types[order]);
6117 }
1f84a18f 6118 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6119 }
6120
949f7ec5
DR
6121 hugetlb_show_meminfo();
6122
11fb9989 6123 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6124
1da177e4
LT
6125 show_swap_cache_info();
6126}
6127
19770b32
MG
6128static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6129{
6130 zoneref->zone = zone;
6131 zoneref->zone_idx = zone_idx(zone);
6132}
6133
1da177e4
LT
6134/*
6135 * Builds allocation fallback zone lists.
1a93205b
CL
6136 *
6137 * Add all populated zones of a node to the zonelist.
1da177e4 6138 */
9d3be21b 6139static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6140{
1a93205b 6141 struct zone *zone;
bc732f1d 6142 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6143 int nr_zones = 0;
02a68a5e
CL
6144
6145 do {
2f6726e5 6146 zone_type--;
070f8032 6147 zone = pgdat->node_zones + zone_type;
e553f62f 6148 if (populated_zone(zone)) {
9d3be21b 6149 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6150 check_highest_zone(zone_type);
1da177e4 6151 }
2f6726e5 6152 } while (zone_type);
bc732f1d 6153
070f8032 6154 return nr_zones;
1da177e4
LT
6155}
6156
6157#ifdef CONFIG_NUMA
f0c0b2b8
KH
6158
6159static int __parse_numa_zonelist_order(char *s)
6160{
c9bff3ee 6161 /*
f0953a1b 6162 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6163 * out to be just not useful. Let's keep the warning in place
6164 * if somebody still use the cmd line parameter so that we do
6165 * not fail it silently
6166 */
6167 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6168 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6169 return -EINVAL;
6170 }
6171 return 0;
6172}
6173
c9bff3ee
MH
6174char numa_zonelist_order[] = "Node";
6175
f0c0b2b8
KH
6176/*
6177 * sysctl handler for numa_zonelist_order
6178 */
cccad5b9 6179int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6180 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6181{
32927393
CH
6182 if (write)
6183 return __parse_numa_zonelist_order(buffer);
6184 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6185}
6186
6187
f0c0b2b8
KH
6188static int node_load[MAX_NUMNODES];
6189
1da177e4 6190/**
4dc3b16b 6191 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6192 * @node: node whose fallback list we're appending
6193 * @used_node_mask: nodemask_t of already used nodes
6194 *
6195 * We use a number of factors to determine which is the next node that should
6196 * appear on a given node's fallback list. The node should not have appeared
6197 * already in @node's fallback list, and it should be the next closest node
6198 * according to the distance array (which contains arbitrary distance values
6199 * from each node to each node in the system), and should also prefer nodes
6200 * with no CPUs, since presumably they'll have very little allocation pressure
6201 * on them otherwise.
a862f68a
MR
6202 *
6203 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6204 */
79c28a41 6205int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6206{
4cf808eb 6207 int n, val;
1da177e4 6208 int min_val = INT_MAX;
00ef2d2f 6209 int best_node = NUMA_NO_NODE;
1da177e4 6210
4cf808eb
LT
6211 /* Use the local node if we haven't already */
6212 if (!node_isset(node, *used_node_mask)) {
6213 node_set(node, *used_node_mask);
6214 return node;
6215 }
1da177e4 6216
4b0ef1fe 6217 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6218
6219 /* Don't want a node to appear more than once */
6220 if (node_isset(n, *used_node_mask))
6221 continue;
6222
1da177e4
LT
6223 /* Use the distance array to find the distance */
6224 val = node_distance(node, n);
6225
4cf808eb
LT
6226 /* Penalize nodes under us ("prefer the next node") */
6227 val += (n < node);
6228
1da177e4 6229 /* Give preference to headless and unused nodes */
b630749f 6230 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6231 val += PENALTY_FOR_NODE_WITH_CPUS;
6232
6233 /* Slight preference for less loaded node */
37931324 6234 val *= MAX_NUMNODES;
1da177e4
LT
6235 val += node_load[n];
6236
6237 if (val < min_val) {
6238 min_val = val;
6239 best_node = n;
6240 }
6241 }
6242
6243 if (best_node >= 0)
6244 node_set(best_node, *used_node_mask);
6245
6246 return best_node;
6247}
6248
f0c0b2b8
KH
6249
6250/*
6251 * Build zonelists ordered by node and zones within node.
6252 * This results in maximum locality--normal zone overflows into local
6253 * DMA zone, if any--but risks exhausting DMA zone.
6254 */
9d3be21b
MH
6255static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6256 unsigned nr_nodes)
1da177e4 6257{
9d3be21b
MH
6258 struct zoneref *zonerefs;
6259 int i;
6260
6261 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6262
6263 for (i = 0; i < nr_nodes; i++) {
6264 int nr_zones;
6265
6266 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6267
9d3be21b
MH
6268 nr_zones = build_zonerefs_node(node, zonerefs);
6269 zonerefs += nr_zones;
6270 }
6271 zonerefs->zone = NULL;
6272 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6273}
6274
523b9458
CL
6275/*
6276 * Build gfp_thisnode zonelists
6277 */
6278static void build_thisnode_zonelists(pg_data_t *pgdat)
6279{
9d3be21b
MH
6280 struct zoneref *zonerefs;
6281 int nr_zones;
523b9458 6282
9d3be21b
MH
6283 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6284 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6285 zonerefs += nr_zones;
6286 zonerefs->zone = NULL;
6287 zonerefs->zone_idx = 0;
523b9458
CL
6288}
6289
f0c0b2b8
KH
6290/*
6291 * Build zonelists ordered by zone and nodes within zones.
6292 * This results in conserving DMA zone[s] until all Normal memory is
6293 * exhausted, but results in overflowing to remote node while memory
6294 * may still exist in local DMA zone.
6295 */
f0c0b2b8 6296
f0c0b2b8
KH
6297static void build_zonelists(pg_data_t *pgdat)
6298{
9d3be21b 6299 static int node_order[MAX_NUMNODES];
37931324 6300 int node, nr_nodes = 0;
d0ddf49b 6301 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6302 int local_node, prev_node;
1da177e4
LT
6303
6304 /* NUMA-aware ordering of nodes */
6305 local_node = pgdat->node_id;
1da177e4 6306 prev_node = local_node;
f0c0b2b8 6307
f0c0b2b8 6308 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6309 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6310 /*
6311 * We don't want to pressure a particular node.
6312 * So adding penalty to the first node in same
6313 * distance group to make it round-robin.
6314 */
957f822a
DR
6315 if (node_distance(local_node, node) !=
6316 node_distance(local_node, prev_node))
37931324 6317 node_load[node] += 1;
f0c0b2b8 6318
9d3be21b 6319 node_order[nr_nodes++] = node;
1da177e4 6320 prev_node = node;
1da177e4 6321 }
523b9458 6322
9d3be21b 6323 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6324 build_thisnode_zonelists(pgdat);
6cf25392
BR
6325 pr_info("Fallback order for Node %d: ", local_node);
6326 for (node = 0; node < nr_nodes; node++)
6327 pr_cont("%d ", node_order[node]);
6328 pr_cont("\n");
1da177e4
LT
6329}
6330
7aac7898
LS
6331#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6332/*
6333 * Return node id of node used for "local" allocations.
6334 * I.e., first node id of first zone in arg node's generic zonelist.
6335 * Used for initializing percpu 'numa_mem', which is used primarily
6336 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6337 */
6338int local_memory_node(int node)
6339{
c33d6c06 6340 struct zoneref *z;
7aac7898 6341
c33d6c06 6342 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6343 gfp_zone(GFP_KERNEL),
c33d6c06 6344 NULL);
c1093b74 6345 return zone_to_nid(z->zone);
7aac7898
LS
6346}
6347#endif
f0c0b2b8 6348
6423aa81
JK
6349static void setup_min_unmapped_ratio(void);
6350static void setup_min_slab_ratio(void);
1da177e4
LT
6351#else /* CONFIG_NUMA */
6352
f0c0b2b8 6353static void build_zonelists(pg_data_t *pgdat)
1da177e4 6354{
19655d34 6355 int node, local_node;
9d3be21b
MH
6356 struct zoneref *zonerefs;
6357 int nr_zones;
1da177e4
LT
6358
6359 local_node = pgdat->node_id;
1da177e4 6360
9d3be21b
MH
6361 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6362 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6363 zonerefs += nr_zones;
1da177e4 6364
54a6eb5c
MG
6365 /*
6366 * Now we build the zonelist so that it contains the zones
6367 * of all the other nodes.
6368 * We don't want to pressure a particular node, so when
6369 * building the zones for node N, we make sure that the
6370 * zones coming right after the local ones are those from
6371 * node N+1 (modulo N)
6372 */
6373 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6374 if (!node_online(node))
6375 continue;
9d3be21b
MH
6376 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6377 zonerefs += nr_zones;
1da177e4 6378 }
54a6eb5c
MG
6379 for (node = 0; node < local_node; node++) {
6380 if (!node_online(node))
6381 continue;
9d3be21b
MH
6382 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6383 zonerefs += nr_zones;
54a6eb5c
MG
6384 }
6385
9d3be21b
MH
6386 zonerefs->zone = NULL;
6387 zonerefs->zone_idx = 0;
1da177e4
LT
6388}
6389
6390#endif /* CONFIG_NUMA */
6391
99dcc3e5
CL
6392/*
6393 * Boot pageset table. One per cpu which is going to be used for all
6394 * zones and all nodes. The parameters will be set in such a way
6395 * that an item put on a list will immediately be handed over to
6396 * the buddy list. This is safe since pageset manipulation is done
6397 * with interrupts disabled.
6398 *
6399 * The boot_pagesets must be kept even after bootup is complete for
6400 * unused processors and/or zones. They do play a role for bootstrapping
6401 * hotplugged processors.
6402 *
6403 * zoneinfo_show() and maybe other functions do
6404 * not check if the processor is online before following the pageset pointer.
6405 * Other parts of the kernel may not check if the zone is available.
6406 */
28f836b6 6407static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6408/* These effectively disable the pcplists in the boot pageset completely */
6409#define BOOT_PAGESET_HIGH 0
6410#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6411static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6412static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
09f49dca 6413DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6414
11cd8638 6415static void __build_all_zonelists(void *data)
1da177e4 6416{
6811378e 6417 int nid;
afb6ebb3 6418 int __maybe_unused cpu;
9adb62a5 6419 pg_data_t *self = data;
b93e0f32
MH
6420 static DEFINE_SPINLOCK(lock);
6421
6422 spin_lock(&lock);
9276b1bc 6423
7f9cfb31
BL
6424#ifdef CONFIG_NUMA
6425 memset(node_load, 0, sizeof(node_load));
6426#endif
9adb62a5 6427
c1152583
WY
6428 /*
6429 * This node is hotadded and no memory is yet present. So just
6430 * building zonelists is fine - no need to touch other nodes.
6431 */
9adb62a5
JL
6432 if (self && !node_online(self->node_id)) {
6433 build_zonelists(self);
c1152583 6434 } else {
09f49dca
MH
6435 /*
6436 * All possible nodes have pgdat preallocated
6437 * in free_area_init
6438 */
6439 for_each_node(nid) {
c1152583 6440 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6441
c1152583
WY
6442 build_zonelists(pgdat);
6443 }
99dcc3e5 6444
7aac7898
LS
6445#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6446 /*
6447 * We now know the "local memory node" for each node--
6448 * i.e., the node of the first zone in the generic zonelist.
6449 * Set up numa_mem percpu variable for on-line cpus. During
6450 * boot, only the boot cpu should be on-line; we'll init the
6451 * secondary cpus' numa_mem as they come on-line. During
6452 * node/memory hotplug, we'll fixup all on-line cpus.
6453 */
d9c9a0b9 6454 for_each_online_cpu(cpu)
7aac7898 6455 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6456#endif
d9c9a0b9 6457 }
b93e0f32
MH
6458
6459 spin_unlock(&lock);
6811378e
YG
6460}
6461
061f67bc
RV
6462static noinline void __init
6463build_all_zonelists_init(void)
6464{
afb6ebb3
MH
6465 int cpu;
6466
061f67bc 6467 __build_all_zonelists(NULL);
afb6ebb3
MH
6468
6469 /*
6470 * Initialize the boot_pagesets that are going to be used
6471 * for bootstrapping processors. The real pagesets for
6472 * each zone will be allocated later when the per cpu
6473 * allocator is available.
6474 *
6475 * boot_pagesets are used also for bootstrapping offline
6476 * cpus if the system is already booted because the pagesets
6477 * are needed to initialize allocators on a specific cpu too.
6478 * F.e. the percpu allocator needs the page allocator which
6479 * needs the percpu allocator in order to allocate its pagesets
6480 * (a chicken-egg dilemma).
6481 */
6482 for_each_possible_cpu(cpu)
28f836b6 6483 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6484
061f67bc
RV
6485 mminit_verify_zonelist();
6486 cpuset_init_current_mems_allowed();
6487}
6488
4eaf3f64 6489/*
4eaf3f64 6490 * unless system_state == SYSTEM_BOOTING.
061f67bc 6491 *
72675e13 6492 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6493 * [protected by SYSTEM_BOOTING].
4eaf3f64 6494 */
72675e13 6495void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6496{
0a18e607
DH
6497 unsigned long vm_total_pages;
6498
6811378e 6499 if (system_state == SYSTEM_BOOTING) {
061f67bc 6500 build_all_zonelists_init();
6811378e 6501 } else {
11cd8638 6502 __build_all_zonelists(pgdat);
6811378e
YG
6503 /* cpuset refresh routine should be here */
6504 }
56b9413b
DH
6505 /* Get the number of free pages beyond high watermark in all zones. */
6506 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6507 /*
6508 * Disable grouping by mobility if the number of pages in the
6509 * system is too low to allow the mechanism to work. It would be
6510 * more accurate, but expensive to check per-zone. This check is
6511 * made on memory-hotadd so a system can start with mobility
6512 * disabled and enable it later
6513 */
d9c23400 6514 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6515 page_group_by_mobility_disabled = 1;
6516 else
6517 page_group_by_mobility_disabled = 0;
6518
ce0725f7 6519 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6520 nr_online_nodes,
756a025f
JP
6521 page_group_by_mobility_disabled ? "off" : "on",
6522 vm_total_pages);
f0c0b2b8 6523#ifdef CONFIG_NUMA
f88dfff5 6524 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6525#endif
1da177e4
LT
6526}
6527
a9a9e77f
PT
6528/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6529static bool __meminit
6530overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6531{
a9a9e77f
PT
6532 static struct memblock_region *r;
6533
6534 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6535 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6536 for_each_mem_region(r) {
a9a9e77f
PT
6537 if (*pfn < memblock_region_memory_end_pfn(r))
6538 break;
6539 }
6540 }
6541 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6542 memblock_is_mirror(r)) {
6543 *pfn = memblock_region_memory_end_pfn(r);
6544 return true;
6545 }
6546 }
a9a9e77f
PT
6547 return false;
6548}
6549
1da177e4
LT
6550/*
6551 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6552 * up by memblock_free_all() once the early boot process is
1da177e4 6553 * done. Non-atomic initialization, single-pass.
d882c006
DH
6554 *
6555 * All aligned pageblocks are initialized to the specified migratetype
6556 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6557 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6558 */
ab28cb6e 6559void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6560 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6561 enum meminit_context context,
6562 struct vmem_altmap *altmap, int migratetype)
1da177e4 6563{
a9a9e77f 6564 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6565 struct page *page;
1da177e4 6566
22b31eec
HD
6567 if (highest_memmap_pfn < end_pfn - 1)
6568 highest_memmap_pfn = end_pfn - 1;
6569
966cf44f 6570#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6571 /*
6572 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6573 * memory. We limit the total number of pages to initialize to just
6574 * those that might contain the memory mapping. We will defer the
6575 * ZONE_DEVICE page initialization until after we have released
6576 * the hotplug lock.
4b94ffdc 6577 */
966cf44f
AD
6578 if (zone == ZONE_DEVICE) {
6579 if (!altmap)
6580 return;
6581
6582 if (start_pfn == altmap->base_pfn)
6583 start_pfn += altmap->reserve;
6584 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6585 }
6586#endif
4b94ffdc 6587
948c436e 6588 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6589 /*
b72d0ffb
AM
6590 * There can be holes in boot-time mem_map[]s handed to this
6591 * function. They do not exist on hotplugged memory.
a2f3aa02 6592 */
c1d0da83 6593 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6594 if (overlap_memmap_init(zone, &pfn))
6595 continue;
dc2da7b4 6596 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6597 break;
a2f3aa02 6598 }
ac5d2539 6599
d0dc12e8
PT
6600 page = pfn_to_page(pfn);
6601 __init_single_page(page, pfn, zone, nid);
c1d0da83 6602 if (context == MEMINIT_HOTPLUG)
d483da5b 6603 __SetPageReserved(page);
d0dc12e8 6604
ac5d2539 6605 /*
d882c006
DH
6606 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6607 * such that unmovable allocations won't be scattered all
6608 * over the place during system boot.
ac5d2539 6609 */
4eb29bd9 6610 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6611 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6612 cond_resched();
ac5d2539 6613 }
948c436e 6614 pfn++;
1da177e4
LT
6615 }
6616}
6617
966cf44f 6618#ifdef CONFIG_ZONE_DEVICE
46487e00
JM
6619static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6620 unsigned long zone_idx, int nid,
6621 struct dev_pagemap *pgmap)
6622{
6623
6624 __init_single_page(page, pfn, zone_idx, nid);
6625
6626 /*
6627 * Mark page reserved as it will need to wait for onlining
6628 * phase for it to be fully associated with a zone.
6629 *
6630 * We can use the non-atomic __set_bit operation for setting
6631 * the flag as we are still initializing the pages.
6632 */
6633 __SetPageReserved(page);
6634
6635 /*
6636 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6637 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6638 * ever freed or placed on a driver-private list.
6639 */
6640 page->pgmap = pgmap;
6641 page->zone_device_data = NULL;
6642
6643 /*
6644 * Mark the block movable so that blocks are reserved for
6645 * movable at startup. This will force kernel allocations
6646 * to reserve their blocks rather than leaking throughout
6647 * the address space during boot when many long-lived
6648 * kernel allocations are made.
6649 *
6650 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6651 * because this is done early in section_activate()
6652 */
6653 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6654 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6655 cond_resched();
6656 }
6657}
6658
6fd3620b
JM
6659/*
6660 * With compound page geometry and when struct pages are stored in ram most
6661 * tail pages are reused. Consequently, the amount of unique struct pages to
6662 * initialize is a lot smaller that the total amount of struct pages being
6663 * mapped. This is a paired / mild layering violation with explicit knowledge
6664 * of how the sparse_vmemmap internals handle compound pages in the lack
6665 * of an altmap. See vmemmap_populate_compound_pages().
6666 */
6667static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6668 unsigned long nr_pages)
6669{
6670 return is_power_of_2(sizeof(struct page)) &&
6671 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6672}
6673
c4386bd8
JM
6674static void __ref memmap_init_compound(struct page *head,
6675 unsigned long head_pfn,
6676 unsigned long zone_idx, int nid,
6677 struct dev_pagemap *pgmap,
6678 unsigned long nr_pages)
6679{
6680 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6681 unsigned int order = pgmap->vmemmap_shift;
6682
6683 __SetPageHead(head);
6684 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6685 struct page *page = pfn_to_page(pfn);
6686
6687 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6688 prep_compound_tail(head, pfn - head_pfn);
6689 set_page_count(page, 0);
6690
6691 /*
6692 * The first tail page stores compound_mapcount_ptr() and
6693 * compound_order() and the second tail page stores
6694 * compound_pincount_ptr(). Call prep_compound_head() after
6695 * the first and second tail pages have been initialized to
6696 * not have the data overwritten.
6697 */
6698 if (pfn == head_pfn + 2)
6699 prep_compound_head(head, order);
6700 }
6701}
6702
966cf44f
AD
6703void __ref memmap_init_zone_device(struct zone *zone,
6704 unsigned long start_pfn,
1f8d75c1 6705 unsigned long nr_pages,
966cf44f
AD
6706 struct dev_pagemap *pgmap)
6707{
1f8d75c1 6708 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6709 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6710 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
c4386bd8 6711 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
966cf44f
AD
6712 unsigned long zone_idx = zone_idx(zone);
6713 unsigned long start = jiffies;
6714 int nid = pgdat->node_id;
6715
46d945ae 6716 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6717 return;
6718
6719 /*
122e093c 6720 * The call to memmap_init should have already taken care
966cf44f
AD
6721 * of the pages reserved for the memmap, so we can just jump to
6722 * the end of that region and start processing the device pages.
6723 */
514caf23 6724 if (altmap) {
966cf44f 6725 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6726 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6727 }
6728
c4386bd8 6729 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
966cf44f
AD
6730 struct page *page = pfn_to_page(pfn);
6731
46487e00 6732 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
c4386bd8
JM
6733
6734 if (pfns_per_compound == 1)
6735 continue;
6736
6737 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6fd3620b 6738 compound_nr_pages(altmap, pfns_per_compound));
966cf44f
AD
6739 }
6740
fdc029b1 6741 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6742 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6743}
6744
6745#endif
1e548deb 6746static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6747{
7aeb09f9 6748 unsigned int order, t;
b2a0ac88
MG
6749 for_each_migratetype_order(order, t) {
6750 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6751 zone->free_area[order].nr_free = 0;
6752 }
6753}
6754
0740a50b
MR
6755/*
6756 * Only struct pages that correspond to ranges defined by memblock.memory
6757 * are zeroed and initialized by going through __init_single_page() during
122e093c 6758 * memmap_init_zone_range().
0740a50b
MR
6759 *
6760 * But, there could be struct pages that correspond to holes in
6761 * memblock.memory. This can happen because of the following reasons:
6762 * - physical memory bank size is not necessarily the exact multiple of the
6763 * arbitrary section size
6764 * - early reserved memory may not be listed in memblock.memory
6765 * - memory layouts defined with memmap= kernel parameter may not align
6766 * nicely with memmap sections
6767 *
6768 * Explicitly initialize those struct pages so that:
6769 * - PG_Reserved is set
6770 * - zone and node links point to zone and node that span the page if the
6771 * hole is in the middle of a zone
6772 * - zone and node links point to adjacent zone/node if the hole falls on
6773 * the zone boundary; the pages in such holes will be prepended to the
6774 * zone/node above the hole except for the trailing pages in the last
6775 * section that will be appended to the zone/node below.
6776 */
122e093c
MR
6777static void __init init_unavailable_range(unsigned long spfn,
6778 unsigned long epfn,
6779 int zone, int node)
0740a50b
MR
6780{
6781 unsigned long pfn;
6782 u64 pgcnt = 0;
6783
6784 for (pfn = spfn; pfn < epfn; pfn++) {
6785 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6786 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6787 + pageblock_nr_pages - 1;
6788 continue;
6789 }
6790 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6791 __SetPageReserved(pfn_to_page(pfn));
6792 pgcnt++;
6793 }
6794
122e093c
MR
6795 if (pgcnt)
6796 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6797 node, zone_names[zone], pgcnt);
0740a50b 6798}
0740a50b 6799
122e093c
MR
6800static void __init memmap_init_zone_range(struct zone *zone,
6801 unsigned long start_pfn,
6802 unsigned long end_pfn,
6803 unsigned long *hole_pfn)
dfb3ccd0 6804{
3256ff83
BH
6805 unsigned long zone_start_pfn = zone->zone_start_pfn;
6806 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
6807 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6808
6809 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6810 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6811
6812 if (start_pfn >= end_pfn)
6813 return;
6814
6815 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6816 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6817
6818 if (*hole_pfn < start_pfn)
6819 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6820
6821 *hole_pfn = end_pfn;
6822}
6823
6824static void __init memmap_init(void)
6825{
73a6e474 6826 unsigned long start_pfn, end_pfn;
122e093c 6827 unsigned long hole_pfn = 0;
b346075f 6828 int i, j, zone_id = 0, nid;
73a6e474 6829
122e093c
MR
6830 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6831 struct pglist_data *node = NODE_DATA(nid);
73a6e474 6832
122e093c
MR
6833 for (j = 0; j < MAX_NR_ZONES; j++) {
6834 struct zone *zone = node->node_zones + j;
0740a50b 6835
122e093c
MR
6836 if (!populated_zone(zone))
6837 continue;
0740a50b 6838
122e093c
MR
6839 memmap_init_zone_range(zone, start_pfn, end_pfn,
6840 &hole_pfn);
6841 zone_id = j;
6842 }
73a6e474 6843 }
0740a50b
MR
6844
6845#ifdef CONFIG_SPARSEMEM
6846 /*
122e093c
MR
6847 * Initialize the memory map for hole in the range [memory_end,
6848 * section_end].
6849 * Append the pages in this hole to the highest zone in the last
6850 * node.
6851 * The call to init_unavailable_range() is outside the ifdef to
6852 * silence the compiler warining about zone_id set but not used;
6853 * for FLATMEM it is a nop anyway
0740a50b 6854 */
122e093c 6855 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 6856 if (hole_pfn < end_pfn)
0740a50b 6857#endif
122e093c 6858 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 6859}
1da177e4 6860
c803b3c8
MR
6861void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6862 phys_addr_t min_addr, int nid, bool exact_nid)
6863{
6864 void *ptr;
6865
6866 if (exact_nid)
6867 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6868 MEMBLOCK_ALLOC_ACCESSIBLE,
6869 nid);
6870 else
6871 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6872 MEMBLOCK_ALLOC_ACCESSIBLE,
6873 nid);
6874
6875 if (ptr && size > 0)
6876 page_init_poison(ptr, size);
6877
6878 return ptr;
6879}
6880
7cd2b0a3 6881static int zone_batchsize(struct zone *zone)
e7c8d5c9 6882{
3a6be87f 6883#ifdef CONFIG_MMU
e7c8d5c9
CL
6884 int batch;
6885
6886 /*
b92ca18e
MG
6887 * The number of pages to batch allocate is either ~0.1%
6888 * of the zone or 1MB, whichever is smaller. The batch
6889 * size is striking a balance between allocation latency
6890 * and zone lock contention.
e7c8d5c9 6891 */
b92ca18e 6892 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
e7c8d5c9
CL
6893 batch /= 4; /* We effectively *= 4 below */
6894 if (batch < 1)
6895 batch = 1;
6896
6897 /*
0ceaacc9
NP
6898 * Clamp the batch to a 2^n - 1 value. Having a power
6899 * of 2 value was found to be more likely to have
6900 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6901 *
0ceaacc9
NP
6902 * For example if 2 tasks are alternately allocating
6903 * batches of pages, one task can end up with a lot
6904 * of pages of one half of the possible page colors
6905 * and the other with pages of the other colors.
e7c8d5c9 6906 */
9155203a 6907 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6908
e7c8d5c9 6909 return batch;
3a6be87f
DH
6910
6911#else
6912 /* The deferral and batching of frees should be suppressed under NOMMU
6913 * conditions.
6914 *
6915 * The problem is that NOMMU needs to be able to allocate large chunks
6916 * of contiguous memory as there's no hardware page translation to
6917 * assemble apparent contiguous memory from discontiguous pages.
6918 *
6919 * Queueing large contiguous runs of pages for batching, however,
6920 * causes the pages to actually be freed in smaller chunks. As there
6921 * can be a significant delay between the individual batches being
6922 * recycled, this leads to the once large chunks of space being
6923 * fragmented and becoming unavailable for high-order allocations.
6924 */
6925 return 0;
6926#endif
e7c8d5c9
CL
6927}
6928
04f8cfea 6929static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
6930{
6931#ifdef CONFIG_MMU
6932 int high;
203c06ee 6933 int nr_split_cpus;
74f44822
MG
6934 unsigned long total_pages;
6935
6936 if (!percpu_pagelist_high_fraction) {
6937 /*
6938 * By default, the high value of the pcp is based on the zone
6939 * low watermark so that if they are full then background
6940 * reclaim will not be started prematurely.
6941 */
6942 total_pages = low_wmark_pages(zone);
6943 } else {
6944 /*
6945 * If percpu_pagelist_high_fraction is configured, the high
6946 * value is based on a fraction of the managed pages in the
6947 * zone.
6948 */
6949 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6950 }
b92ca18e
MG
6951
6952 /*
74f44822
MG
6953 * Split the high value across all online CPUs local to the zone. Note
6954 * that early in boot that CPUs may not be online yet and that during
6955 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
6956 * onlined. For memory nodes that have no CPUs, split pcp->high across
6957 * all online CPUs to mitigate the risk that reclaim is triggered
6958 * prematurely due to pages stored on pcp lists.
b92ca18e 6959 */
203c06ee
MG
6960 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6961 if (!nr_split_cpus)
6962 nr_split_cpus = num_online_cpus();
6963 high = total_pages / nr_split_cpus;
b92ca18e
MG
6964
6965 /*
6966 * Ensure high is at least batch*4. The multiple is based on the
6967 * historical relationship between high and batch.
6968 */
6969 high = max(high, batch << 2);
6970
6971 return high;
6972#else
6973 return 0;
6974#endif
6975}
6976
8d7a8fa9 6977/*
5c3ad2eb
VB
6978 * pcp->high and pcp->batch values are related and generally batch is lower
6979 * than high. They are also related to pcp->count such that count is lower
6980 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6981 *
5c3ad2eb
VB
6982 * However, guaranteeing these relations at all times would require e.g. write
6983 * barriers here but also careful usage of read barriers at the read side, and
6984 * thus be prone to error and bad for performance. Thus the update only prevents
6985 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6986 * can cope with those fields changing asynchronously, and fully trust only the
6987 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6988 *
6989 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6990 * outside of boot time (or some other assurance that no concurrent updaters
6991 * exist).
6992 */
6993static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6994 unsigned long batch)
6995{
5c3ad2eb
VB
6996 WRITE_ONCE(pcp->batch, batch);
6997 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6998}
6999
28f836b6 7000static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 7001{
44042b44 7002 int pindex;
2caaad41 7003
28f836b6
MG
7004 memset(pcp, 0, sizeof(*pcp));
7005 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 7006
44042b44
MG
7007 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7008 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 7009
69a8396a
VB
7010 /*
7011 * Set batch and high values safe for a boot pageset. A true percpu
7012 * pageset's initialization will update them subsequently. Here we don't
7013 * need to be as careful as pageset_update() as nobody can access the
7014 * pageset yet.
7015 */
952eaf81
VB
7016 pcp->high = BOOT_PAGESET_HIGH;
7017 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 7018 pcp->free_factor = 0;
88c90dbc
CS
7019}
7020
3b1f3658 7021static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
7022 unsigned long batch)
7023{
28f836b6 7024 struct per_cpu_pages *pcp;
ec6e8c7e
VB
7025 int cpu;
7026
7027 for_each_possible_cpu(cpu) {
28f836b6
MG
7028 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7029 pageset_update(pcp, high, batch);
ec6e8c7e
VB
7030 }
7031}
7032
8ad4b1fb 7033/*
0a8b4f1d 7034 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 7035 * zone based on the zone's size.
8ad4b1fb 7036 */
04f8cfea 7037static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 7038{
b92ca18e 7039 int new_high, new_batch;
7115ac6e 7040
b92ca18e 7041 new_batch = max(1, zone_batchsize(zone));
04f8cfea 7042 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 7043
952eaf81
VB
7044 if (zone->pageset_high == new_high &&
7045 zone->pageset_batch == new_batch)
7046 return;
7047
7048 zone->pageset_high = new_high;
7049 zone->pageset_batch = new_batch;
7050
ec6e8c7e 7051 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
7052}
7053
72675e13 7054void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
7055{
7056 int cpu;
0a8b4f1d 7057
28f836b6
MG
7058 /* Size may be 0 on !SMP && !NUMA */
7059 if (sizeof(struct per_cpu_zonestat) > 0)
7060 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7061
7062 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 7063 for_each_possible_cpu(cpu) {
28f836b6
MG
7064 struct per_cpu_pages *pcp;
7065 struct per_cpu_zonestat *pzstats;
7066
7067 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7068 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7069 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
7070 }
7071
04f8cfea 7072 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
7073}
7074
2caaad41 7075/*
99dcc3e5
CL
7076 * Allocate per cpu pagesets and initialize them.
7077 * Before this call only boot pagesets were available.
e7c8d5c9 7078 */
99dcc3e5 7079void __init setup_per_cpu_pageset(void)
e7c8d5c9 7080{
b4911ea2 7081 struct pglist_data *pgdat;
99dcc3e5 7082 struct zone *zone;
b418a0f9 7083 int __maybe_unused cpu;
e7c8d5c9 7084
319774e2
WF
7085 for_each_populated_zone(zone)
7086 setup_zone_pageset(zone);
b4911ea2 7087
b418a0f9
SD
7088#ifdef CONFIG_NUMA
7089 /*
7090 * Unpopulated zones continue using the boot pagesets.
7091 * The numa stats for these pagesets need to be reset.
7092 * Otherwise, they will end up skewing the stats of
7093 * the nodes these zones are associated with.
7094 */
7095 for_each_possible_cpu(cpu) {
28f836b6 7096 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
7097 memset(pzstats->vm_numa_event, 0,
7098 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
7099 }
7100#endif
7101
b4911ea2
MG
7102 for_each_online_pgdat(pgdat)
7103 pgdat->per_cpu_nodestats =
7104 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
7105}
7106
c09b4240 7107static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 7108{
99dcc3e5
CL
7109 /*
7110 * per cpu subsystem is not up at this point. The following code
7111 * relies on the ability of the linker to provide the
7112 * offset of a (static) per cpu variable into the per cpu area.
7113 */
28f836b6
MG
7114 zone->per_cpu_pageset = &boot_pageset;
7115 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
7116 zone->pageset_high = BOOT_PAGESET_HIGH;
7117 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 7118
b38a8725 7119 if (populated_zone(zone))
9660ecaa
HK
7120 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7121 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
7122}
7123
dc0bbf3b 7124void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 7125 unsigned long zone_start_pfn,
b171e409 7126 unsigned long size)
ed8ece2e
DH
7127{
7128 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7129 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7130
8f416836
WY
7131 if (zone_idx > pgdat->nr_zones)
7132 pgdat->nr_zones = zone_idx;
ed8ece2e 7133
ed8ece2e
DH
7134 zone->zone_start_pfn = zone_start_pfn;
7135
708614e6
MG
7136 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7137 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7138 pgdat->node_id,
7139 (unsigned long)zone_idx(zone),
7140 zone_start_pfn, (zone_start_pfn + size));
7141
1e548deb 7142 zone_init_free_lists(zone);
9dcb8b68 7143 zone->initialized = 1;
ed8ece2e
DH
7144}
7145
c713216d
MG
7146/**
7147 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7148 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7149 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7150 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7151 *
7152 * It returns the start and end page frame of a node based on information
7d018176 7153 * provided by memblock_set_node(). If called for a node
c713216d 7154 * with no available memory, a warning is printed and the start and end
88ca3b94 7155 * PFNs will be 0.
c713216d 7156 */
bbe5d993 7157void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7158 unsigned long *start_pfn, unsigned long *end_pfn)
7159{
c13291a5 7160 unsigned long this_start_pfn, this_end_pfn;
c713216d 7161 int i;
c13291a5 7162
c713216d
MG
7163 *start_pfn = -1UL;
7164 *end_pfn = 0;
7165
c13291a5
TH
7166 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7167 *start_pfn = min(*start_pfn, this_start_pfn);
7168 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7169 }
7170
633c0666 7171 if (*start_pfn == -1UL)
c713216d 7172 *start_pfn = 0;
c713216d
MG
7173}
7174
2a1e274a
MG
7175/*
7176 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7177 * assumption is made that zones within a node are ordered in monotonic
7178 * increasing memory addresses so that the "highest" populated zone is used
7179 */
b69a7288 7180static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7181{
7182 int zone_index;
7183 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7184 if (zone_index == ZONE_MOVABLE)
7185 continue;
7186
7187 if (arch_zone_highest_possible_pfn[zone_index] >
7188 arch_zone_lowest_possible_pfn[zone_index])
7189 break;
7190 }
7191
7192 VM_BUG_ON(zone_index == -1);
7193 movable_zone = zone_index;
7194}
7195
7196/*
7197 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7198 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7199 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7200 * in each node depending on the size of each node and how evenly kernelcore
7201 * is distributed. This helper function adjusts the zone ranges
7202 * provided by the architecture for a given node by using the end of the
7203 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7204 * zones within a node are in order of monotonic increases memory addresses
7205 */
bbe5d993 7206static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7207 unsigned long zone_type,
7208 unsigned long node_start_pfn,
7209 unsigned long node_end_pfn,
7210 unsigned long *zone_start_pfn,
7211 unsigned long *zone_end_pfn)
7212{
7213 /* Only adjust if ZONE_MOVABLE is on this node */
7214 if (zone_movable_pfn[nid]) {
7215 /* Size ZONE_MOVABLE */
7216 if (zone_type == ZONE_MOVABLE) {
7217 *zone_start_pfn = zone_movable_pfn[nid];
7218 *zone_end_pfn = min(node_end_pfn,
7219 arch_zone_highest_possible_pfn[movable_zone]);
7220
e506b996
XQ
7221 /* Adjust for ZONE_MOVABLE starting within this range */
7222 } else if (!mirrored_kernelcore &&
7223 *zone_start_pfn < zone_movable_pfn[nid] &&
7224 *zone_end_pfn > zone_movable_pfn[nid]) {
7225 *zone_end_pfn = zone_movable_pfn[nid];
7226
2a1e274a
MG
7227 /* Check if this whole range is within ZONE_MOVABLE */
7228 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7229 *zone_start_pfn = *zone_end_pfn;
7230 }
7231}
7232
c713216d
MG
7233/*
7234 * Return the number of pages a zone spans in a node, including holes
7235 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7236 */
bbe5d993 7237static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7238 unsigned long zone_type,
7960aedd
ZY
7239 unsigned long node_start_pfn,
7240 unsigned long node_end_pfn,
d91749c1 7241 unsigned long *zone_start_pfn,
854e8848 7242 unsigned long *zone_end_pfn)
c713216d 7243{
299c83dc
LF
7244 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7245 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7246 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7247 if (!node_start_pfn && !node_end_pfn)
7248 return 0;
7249
7960aedd 7250 /* Get the start and end of the zone */
299c83dc
LF
7251 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7252 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7253 adjust_zone_range_for_zone_movable(nid, zone_type,
7254 node_start_pfn, node_end_pfn,
d91749c1 7255 zone_start_pfn, zone_end_pfn);
c713216d
MG
7256
7257 /* Check that this node has pages within the zone's required range */
d91749c1 7258 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7259 return 0;
7260
7261 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7262 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7263 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7264
7265 /* Return the spanned pages */
d91749c1 7266 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7267}
7268
7269/*
7270 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7271 * then all holes in the requested range will be accounted for.
c713216d 7272 */
bbe5d993 7273unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7274 unsigned long range_start_pfn,
7275 unsigned long range_end_pfn)
7276{
96e907d1
TH
7277 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7278 unsigned long start_pfn, end_pfn;
7279 int i;
c713216d 7280
96e907d1
TH
7281 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7282 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7283 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7284 nr_absent -= end_pfn - start_pfn;
c713216d 7285 }
96e907d1 7286 return nr_absent;
c713216d
MG
7287}
7288
7289/**
7290 * absent_pages_in_range - Return number of page frames in holes within a range
7291 * @start_pfn: The start PFN to start searching for holes
7292 * @end_pfn: The end PFN to stop searching for holes
7293 *
a862f68a 7294 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7295 */
7296unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7297 unsigned long end_pfn)
7298{
7299 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7300}
7301
7302/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7303static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7304 unsigned long zone_type,
7960aedd 7305 unsigned long node_start_pfn,
854e8848 7306 unsigned long node_end_pfn)
c713216d 7307{
96e907d1
TH
7308 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7309 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7310 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7311 unsigned long nr_absent;
9c7cd687 7312
b5685e92 7313 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7314 if (!node_start_pfn && !node_end_pfn)
7315 return 0;
7316
96e907d1
TH
7317 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7318 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7319
2a1e274a
MG
7320 adjust_zone_range_for_zone_movable(nid, zone_type,
7321 node_start_pfn, node_end_pfn,
7322 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7323 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7324
7325 /*
7326 * ZONE_MOVABLE handling.
7327 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7328 * and vice versa.
7329 */
e506b996
XQ
7330 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7331 unsigned long start_pfn, end_pfn;
7332 struct memblock_region *r;
7333
cc6de168 7334 for_each_mem_region(r) {
e506b996
XQ
7335 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7336 zone_start_pfn, zone_end_pfn);
7337 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7338 zone_start_pfn, zone_end_pfn);
7339
7340 if (zone_type == ZONE_MOVABLE &&
7341 memblock_is_mirror(r))
7342 nr_absent += end_pfn - start_pfn;
7343
7344 if (zone_type == ZONE_NORMAL &&
7345 !memblock_is_mirror(r))
7346 nr_absent += end_pfn - start_pfn;
342332e6
TI
7347 }
7348 }
7349
7350 return nr_absent;
c713216d 7351}
0e0b864e 7352
bbe5d993 7353static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7354 unsigned long node_start_pfn,
854e8848 7355 unsigned long node_end_pfn)
c713216d 7356{
febd5949 7357 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7358 enum zone_type i;
7359
febd5949
GZ
7360 for (i = 0; i < MAX_NR_ZONES; i++) {
7361 struct zone *zone = pgdat->node_zones + i;
d91749c1 7362 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7363 unsigned long spanned, absent;
febd5949 7364 unsigned long size, real_size;
c713216d 7365
854e8848
MR
7366 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7367 node_start_pfn,
7368 node_end_pfn,
7369 &zone_start_pfn,
7370 &zone_end_pfn);
7371 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7372 node_start_pfn,
7373 node_end_pfn);
3f08a302
MR
7374
7375 size = spanned;
7376 real_size = size - absent;
7377
d91749c1
TI
7378 if (size)
7379 zone->zone_start_pfn = zone_start_pfn;
7380 else
7381 zone->zone_start_pfn = 0;
febd5949
GZ
7382 zone->spanned_pages = size;
7383 zone->present_pages = real_size;
4b097002
DH
7384#if defined(CONFIG_MEMORY_HOTPLUG)
7385 zone->present_early_pages = real_size;
7386#endif
febd5949
GZ
7387
7388 totalpages += size;
7389 realtotalpages += real_size;
7390 }
7391
7392 pgdat->node_spanned_pages = totalpages;
c713216d 7393 pgdat->node_present_pages = realtotalpages;
9660ecaa 7394 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7395}
7396
835c134e
MG
7397#ifndef CONFIG_SPARSEMEM
7398/*
7399 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7400 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7401 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7402 * round what is now in bits to nearest long in bits, then return it in
7403 * bytes.
7404 */
7c45512d 7405static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7406{
7407 unsigned long usemapsize;
7408
7c45512d 7409 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7410 usemapsize = roundup(zonesize, pageblock_nr_pages);
7411 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7412 usemapsize *= NR_PAGEBLOCK_BITS;
7413 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7414
7415 return usemapsize / 8;
7416}
7417
7010a6ec 7418static void __ref setup_usemap(struct zone *zone)
835c134e 7419{
7010a6ec
BH
7420 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7421 zone->spanned_pages);
835c134e 7422 zone->pageblock_flags = NULL;
23a7052a 7423 if (usemapsize) {
6782832e 7424 zone->pageblock_flags =
26fb3dae 7425 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7426 zone_to_nid(zone));
23a7052a
MR
7427 if (!zone->pageblock_flags)
7428 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7429 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7430 }
835c134e
MG
7431}
7432#else
7010a6ec 7433static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7434#endif /* CONFIG_SPARSEMEM */
7435
d9c23400 7436#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7437
d9c23400 7438/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7439void __init set_pageblock_order(void)
d9c23400 7440{
b3d40a2b 7441 unsigned int order = MAX_ORDER - 1;
955c1cd7 7442
d9c23400
MG
7443 /* Check that pageblock_nr_pages has not already been setup */
7444 if (pageblock_order)
7445 return;
7446
b3d40a2b
DH
7447 /* Don't let pageblocks exceed the maximum allocation granularity. */
7448 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
955c1cd7 7449 order = HUGETLB_PAGE_ORDER;
955c1cd7 7450
d9c23400
MG
7451 /*
7452 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7453 * This value may be variable depending on boot parameters on IA64 and
7454 * powerpc.
d9c23400
MG
7455 */
7456 pageblock_order = order;
7457}
7458#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7459
ba72cb8c
MG
7460/*
7461 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7462 * is unused as pageblock_order is set at compile-time. See
7463 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7464 * the kernel config
ba72cb8c 7465 */
03e85f9d 7466void __init set_pageblock_order(void)
ba72cb8c 7467{
ba72cb8c 7468}
d9c23400
MG
7469
7470#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7471
03e85f9d 7472static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7473 unsigned long present_pages)
01cefaef
JL
7474{
7475 unsigned long pages = spanned_pages;
7476
7477 /*
7478 * Provide a more accurate estimation if there are holes within
7479 * the zone and SPARSEMEM is in use. If there are holes within the
7480 * zone, each populated memory region may cost us one or two extra
7481 * memmap pages due to alignment because memmap pages for each
89d790ab 7482 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7483 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7484 */
7485 if (spanned_pages > present_pages + (present_pages >> 4) &&
7486 IS_ENABLED(CONFIG_SPARSEMEM))
7487 pages = present_pages;
7488
7489 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7490}
7491
ace1db39
OS
7492#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7493static void pgdat_init_split_queue(struct pglist_data *pgdat)
7494{
364c1eeb
YS
7495 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7496
7497 spin_lock_init(&ds_queue->split_queue_lock);
7498 INIT_LIST_HEAD(&ds_queue->split_queue);
7499 ds_queue->split_queue_len = 0;
ace1db39
OS
7500}
7501#else
7502static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7503#endif
7504
7505#ifdef CONFIG_COMPACTION
7506static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7507{
7508 init_waitqueue_head(&pgdat->kcompactd_wait);
7509}
7510#else
7511static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7512#endif
7513
03e85f9d 7514static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7515{
8cd7c588
MG
7516 int i;
7517
208d54e5 7518 pgdat_resize_init(pgdat);
ace1db39 7519
ace1db39
OS
7520 pgdat_init_split_queue(pgdat);
7521 pgdat_init_kcompactd(pgdat);
7522
1da177e4 7523 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7524 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7525
8cd7c588
MG
7526 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7527 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7528
eefa864b 7529 pgdat_page_ext_init(pgdat);
867e5e1d 7530 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7531}
7532
7533static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7534 unsigned long remaining_pages)
7535{
9705bea5 7536 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7537 zone_set_nid(zone, nid);
7538 zone->name = zone_names[idx];
7539 zone->zone_pgdat = NODE_DATA(nid);
7540 spin_lock_init(&zone->lock);
7541 zone_seqlock_init(zone);
7542 zone_pcp_init(zone);
7543}
7544
7545/*
7546 * Set up the zone data structures
7547 * - init pgdat internals
7548 * - init all zones belonging to this node
7549 *
7550 * NOTE: this function is only called during memory hotplug
7551 */
7552#ifdef CONFIG_MEMORY_HOTPLUG
70b5b46a 7553void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
03e85f9d 7554{
70b5b46a 7555 int nid = pgdat->node_id;
03e85f9d 7556 enum zone_type z;
70b5b46a 7557 int cpu;
03e85f9d
OS
7558
7559 pgdat_init_internals(pgdat);
70b5b46a
MH
7560
7561 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7562 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7563
7564 /*
7565 * Reset the nr_zones, order and highest_zoneidx before reuse.
7566 * Note that kswapd will init kswapd_highest_zoneidx properly
7567 * when it starts in the near future.
7568 */
7569 pgdat->nr_zones = 0;
7570 pgdat->kswapd_order = 0;
7571 pgdat->kswapd_highest_zoneidx = 0;
7572 pgdat->node_start_pfn = 0;
7573 for_each_online_cpu(cpu) {
7574 struct per_cpu_nodestat *p;
7575
7576 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7577 memset(p, 0, sizeof(*p));
7578 }
7579
03e85f9d
OS
7580 for (z = 0; z < MAX_NR_ZONES; z++)
7581 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7582}
7583#endif
7584
7585/*
7586 * Set up the zone data structures:
7587 * - mark all pages reserved
7588 * - mark all memory queues empty
7589 * - clear the memory bitmaps
7590 *
7591 * NOTE: pgdat should get zeroed by caller.
7592 * NOTE: this function is only called during early init.
7593 */
7594static void __init free_area_init_core(struct pglist_data *pgdat)
7595{
7596 enum zone_type j;
7597 int nid = pgdat->node_id;
5f63b720 7598
03e85f9d 7599 pgdat_init_internals(pgdat);
385386cf
JW
7600 pgdat->per_cpu_nodestats = &boot_nodestats;
7601
1da177e4
LT
7602 for (j = 0; j < MAX_NR_ZONES; j++) {
7603 struct zone *zone = pgdat->node_zones + j;
e6943859 7604 unsigned long size, freesize, memmap_pages;
1da177e4 7605
febd5949 7606 size = zone->spanned_pages;
e6943859 7607 freesize = zone->present_pages;
1da177e4 7608
0e0b864e 7609 /*
9feedc9d 7610 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7611 * is used by this zone for memmap. This affects the watermark
7612 * and per-cpu initialisations
7613 */
e6943859 7614 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7615 if (!is_highmem_idx(j)) {
7616 if (freesize >= memmap_pages) {
7617 freesize -= memmap_pages;
7618 if (memmap_pages)
9660ecaa
HK
7619 pr_debug(" %s zone: %lu pages used for memmap\n",
7620 zone_names[j], memmap_pages);
ba914f48 7621 } else
e47aa905 7622 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7623 zone_names[j], memmap_pages, freesize);
7624 }
0e0b864e 7625
6267276f 7626 /* Account for reserved pages */
9feedc9d
JL
7627 if (j == 0 && freesize > dma_reserve) {
7628 freesize -= dma_reserve;
9660ecaa 7629 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7630 }
7631
98d2b0eb 7632 if (!is_highmem_idx(j))
9feedc9d 7633 nr_kernel_pages += freesize;
01cefaef
JL
7634 /* Charge for highmem memmap if there are enough kernel pages */
7635 else if (nr_kernel_pages > memmap_pages * 2)
7636 nr_kernel_pages -= memmap_pages;
9feedc9d 7637 nr_all_pages += freesize;
1da177e4 7638
9feedc9d
JL
7639 /*
7640 * Set an approximate value for lowmem here, it will be adjusted
7641 * when the bootmem allocator frees pages into the buddy system.
7642 * And all highmem pages will be managed by the buddy system.
7643 */
03e85f9d 7644 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7645
d883c6cf 7646 if (!size)
1da177e4
LT
7647 continue;
7648
955c1cd7 7649 set_pageblock_order();
7010a6ec 7650 setup_usemap(zone);
9699ee7b 7651 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7652 }
7653}
7654
43b02ba9 7655#ifdef CONFIG_FLATMEM
3b446da6 7656static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7657{
b0aeba74 7658 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7659 unsigned long __maybe_unused offset = 0;
7660
1da177e4
LT
7661 /* Skip empty nodes */
7662 if (!pgdat->node_spanned_pages)
7663 return;
7664
b0aeba74
TL
7665 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7666 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7667 /* ia64 gets its own node_mem_map, before this, without bootmem */
7668 if (!pgdat->node_mem_map) {
b0aeba74 7669 unsigned long size, end;
d41dee36
AW
7670 struct page *map;
7671
e984bb43
BP
7672 /*
7673 * The zone's endpoints aren't required to be MAX_ORDER
7674 * aligned but the node_mem_map endpoints must be in order
7675 * for the buddy allocator to function correctly.
7676 */
108bcc96 7677 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7678 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7679 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7680 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7681 pgdat->node_id, false);
23a7052a
MR
7682 if (!map)
7683 panic("Failed to allocate %ld bytes for node %d memory map\n",
7684 size, pgdat->node_id);
a1c34a3b 7685 pgdat->node_mem_map = map + offset;
1da177e4 7686 }
0cd842f9
OS
7687 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7688 __func__, pgdat->node_id, (unsigned long)pgdat,
7689 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7690#ifndef CONFIG_NUMA
1da177e4
LT
7691 /*
7692 * With no DISCONTIG, the global mem_map is just set as node 0's
7693 */
c713216d 7694 if (pgdat == NODE_DATA(0)) {
1da177e4 7695 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7696 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7697 mem_map -= offset;
c713216d 7698 }
1da177e4
LT
7699#endif
7700}
0cd842f9 7701#else
3b446da6 7702static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7703#endif /* CONFIG_FLATMEM */
1da177e4 7704
0188dc98
OS
7705#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7706static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7707{
0188dc98
OS
7708 pgdat->first_deferred_pfn = ULONG_MAX;
7709}
7710#else
7711static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7712#endif
7713
854e8848 7714static void __init free_area_init_node(int nid)
1da177e4 7715{
9109fb7b 7716 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7717 unsigned long start_pfn = 0;
7718 unsigned long end_pfn = 0;
9109fb7b 7719
88fdf75d 7720 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7721 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7722
854e8848 7723 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7724
1da177e4 7725 pgdat->node_id = nid;
854e8848 7726 pgdat->node_start_pfn = start_pfn;
75ef7184 7727 pgdat->per_cpu_nodestats = NULL;
854e8848 7728
7c30daac
MH
7729 if (start_pfn != end_pfn) {
7730 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7731 (u64)start_pfn << PAGE_SHIFT,
7732 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7733 } else {
7734 pr_info("Initmem setup node %d as memoryless\n", nid);
7735 }
7736
854e8848 7737 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7738
7739 alloc_node_mem_map(pgdat);
0188dc98 7740 pgdat_set_deferred_range(pgdat);
1da177e4 7741
7f3eb55b 7742 free_area_init_core(pgdat);
1da177e4
LT
7743}
7744
1ca75fa7 7745static void __init free_area_init_memoryless_node(int nid)
3f08a302 7746{
854e8848 7747 free_area_init_node(nid);
3f08a302
MR
7748}
7749
418508c1
MS
7750#if MAX_NUMNODES > 1
7751/*
7752 * Figure out the number of possible node ids.
7753 */
f9872caf 7754void __init setup_nr_node_ids(void)
418508c1 7755{
904a9553 7756 unsigned int highest;
418508c1 7757
904a9553 7758 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7759 nr_node_ids = highest + 1;
7760}
418508c1
MS
7761#endif
7762
1e01979c
TH
7763/**
7764 * node_map_pfn_alignment - determine the maximum internode alignment
7765 *
7766 * This function should be called after node map is populated and sorted.
7767 * It calculates the maximum power of two alignment which can distinguish
7768 * all the nodes.
7769 *
7770 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7771 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7772 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7773 * shifted, 1GiB is enough and this function will indicate so.
7774 *
7775 * This is used to test whether pfn -> nid mapping of the chosen memory
7776 * model has fine enough granularity to avoid incorrect mapping for the
7777 * populated node map.
7778 *
a862f68a 7779 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7780 * requirement (single node).
7781 */
7782unsigned long __init node_map_pfn_alignment(void)
7783{
7784 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7785 unsigned long start, end, mask;
98fa15f3 7786 int last_nid = NUMA_NO_NODE;
c13291a5 7787 int i, nid;
1e01979c 7788
c13291a5 7789 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7790 if (!start || last_nid < 0 || last_nid == nid) {
7791 last_nid = nid;
7792 last_end = end;
7793 continue;
7794 }
7795
7796 /*
7797 * Start with a mask granular enough to pin-point to the
7798 * start pfn and tick off bits one-by-one until it becomes
7799 * too coarse to separate the current node from the last.
7800 */
7801 mask = ~((1 << __ffs(start)) - 1);
7802 while (mask && last_end <= (start & (mask << 1)))
7803 mask <<= 1;
7804
7805 /* accumulate all internode masks */
7806 accl_mask |= mask;
7807 }
7808
7809 /* convert mask to number of pages */
7810 return ~accl_mask + 1;
7811}
7812
c713216d
MG
7813/**
7814 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7815 *
a862f68a 7816 * Return: the minimum PFN based on information provided via
7d018176 7817 * memblock_set_node().
c713216d
MG
7818 */
7819unsigned long __init find_min_pfn_with_active_regions(void)
7820{
8a1b25fe 7821 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7822}
7823
37b07e41
LS
7824/*
7825 * early_calculate_totalpages()
7826 * Sum pages in active regions for movable zone.
4b0ef1fe 7827 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7828 */
484f51f8 7829static unsigned long __init early_calculate_totalpages(void)
7e63efef 7830{
7e63efef 7831 unsigned long totalpages = 0;
c13291a5
TH
7832 unsigned long start_pfn, end_pfn;
7833 int i, nid;
7834
7835 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7836 unsigned long pages = end_pfn - start_pfn;
7e63efef 7837
37b07e41
LS
7838 totalpages += pages;
7839 if (pages)
4b0ef1fe 7840 node_set_state(nid, N_MEMORY);
37b07e41 7841 }
b8af2941 7842 return totalpages;
7e63efef
MG
7843}
7844
2a1e274a
MG
7845/*
7846 * Find the PFN the Movable zone begins in each node. Kernel memory
7847 * is spread evenly between nodes as long as the nodes have enough
7848 * memory. When they don't, some nodes will have more kernelcore than
7849 * others
7850 */
b224ef85 7851static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7852{
7853 int i, nid;
7854 unsigned long usable_startpfn;
7855 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7856 /* save the state before borrow the nodemask */
4b0ef1fe 7857 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7858 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7859 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7860 struct memblock_region *r;
b2f3eebe
TC
7861
7862 /* Need to find movable_zone earlier when movable_node is specified. */
7863 find_usable_zone_for_movable();
7864
7865 /*
7866 * If movable_node is specified, ignore kernelcore and movablecore
7867 * options.
7868 */
7869 if (movable_node_is_enabled()) {
cc6de168 7870 for_each_mem_region(r) {
136199f0 7871 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7872 continue;
7873
d622abf7 7874 nid = memblock_get_region_node(r);
b2f3eebe 7875
136199f0 7876 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7877 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7878 min(usable_startpfn, zone_movable_pfn[nid]) :
7879 usable_startpfn;
7880 }
7881
7882 goto out2;
7883 }
2a1e274a 7884
342332e6
TI
7885 /*
7886 * If kernelcore=mirror is specified, ignore movablecore option
7887 */
7888 if (mirrored_kernelcore) {
7889 bool mem_below_4gb_not_mirrored = false;
7890
cc6de168 7891 for_each_mem_region(r) {
342332e6
TI
7892 if (memblock_is_mirror(r))
7893 continue;
7894
d622abf7 7895 nid = memblock_get_region_node(r);
342332e6
TI
7896
7897 usable_startpfn = memblock_region_memory_base_pfn(r);
7898
aa282a15 7899 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
342332e6
TI
7900 mem_below_4gb_not_mirrored = true;
7901 continue;
7902 }
7903
7904 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7905 min(usable_startpfn, zone_movable_pfn[nid]) :
7906 usable_startpfn;
7907 }
7908
7909 if (mem_below_4gb_not_mirrored)
633bf2fe 7910 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7911
7912 goto out2;
7913 }
7914
7e63efef 7915 /*
a5c6d650
DR
7916 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7917 * amount of necessary memory.
7918 */
7919 if (required_kernelcore_percent)
7920 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7921 10000UL;
7922 if (required_movablecore_percent)
7923 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7924 10000UL;
7925
7926 /*
7927 * If movablecore= was specified, calculate what size of
7e63efef
MG
7928 * kernelcore that corresponds so that memory usable for
7929 * any allocation type is evenly spread. If both kernelcore
7930 * and movablecore are specified, then the value of kernelcore
7931 * will be used for required_kernelcore if it's greater than
7932 * what movablecore would have allowed.
7933 */
7934 if (required_movablecore) {
7e63efef
MG
7935 unsigned long corepages;
7936
7937 /*
7938 * Round-up so that ZONE_MOVABLE is at least as large as what
7939 * was requested by the user
7940 */
7941 required_movablecore =
7942 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7943 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7944 corepages = totalpages - required_movablecore;
7945
7946 required_kernelcore = max(required_kernelcore, corepages);
7947 }
7948
bde304bd
XQ
7949 /*
7950 * If kernelcore was not specified or kernelcore size is larger
7951 * than totalpages, there is no ZONE_MOVABLE.
7952 */
7953 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7954 goto out;
2a1e274a
MG
7955
7956 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7957 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7958
7959restart:
7960 /* Spread kernelcore memory as evenly as possible throughout nodes */
7961 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7962 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7963 unsigned long start_pfn, end_pfn;
7964
2a1e274a
MG
7965 /*
7966 * Recalculate kernelcore_node if the division per node
7967 * now exceeds what is necessary to satisfy the requested
7968 * amount of memory for the kernel
7969 */
7970 if (required_kernelcore < kernelcore_node)
7971 kernelcore_node = required_kernelcore / usable_nodes;
7972
7973 /*
7974 * As the map is walked, we track how much memory is usable
7975 * by the kernel using kernelcore_remaining. When it is
7976 * 0, the rest of the node is usable by ZONE_MOVABLE
7977 */
7978 kernelcore_remaining = kernelcore_node;
7979
7980 /* Go through each range of PFNs within this node */
c13291a5 7981 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7982 unsigned long size_pages;
7983
c13291a5 7984 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7985 if (start_pfn >= end_pfn)
7986 continue;
7987
7988 /* Account for what is only usable for kernelcore */
7989 if (start_pfn < usable_startpfn) {
7990 unsigned long kernel_pages;
7991 kernel_pages = min(end_pfn, usable_startpfn)
7992 - start_pfn;
7993
7994 kernelcore_remaining -= min(kernel_pages,
7995 kernelcore_remaining);
7996 required_kernelcore -= min(kernel_pages,
7997 required_kernelcore);
7998
7999 /* Continue if range is now fully accounted */
8000 if (end_pfn <= usable_startpfn) {
8001
8002 /*
8003 * Push zone_movable_pfn to the end so
8004 * that if we have to rebalance
8005 * kernelcore across nodes, we will
8006 * not double account here
8007 */
8008 zone_movable_pfn[nid] = end_pfn;
8009 continue;
8010 }
8011 start_pfn = usable_startpfn;
8012 }
8013
8014 /*
8015 * The usable PFN range for ZONE_MOVABLE is from
8016 * start_pfn->end_pfn. Calculate size_pages as the
8017 * number of pages used as kernelcore
8018 */
8019 size_pages = end_pfn - start_pfn;
8020 if (size_pages > kernelcore_remaining)
8021 size_pages = kernelcore_remaining;
8022 zone_movable_pfn[nid] = start_pfn + size_pages;
8023
8024 /*
8025 * Some kernelcore has been met, update counts and
8026 * break if the kernelcore for this node has been
b8af2941 8027 * satisfied
2a1e274a
MG
8028 */
8029 required_kernelcore -= min(required_kernelcore,
8030 size_pages);
8031 kernelcore_remaining -= size_pages;
8032 if (!kernelcore_remaining)
8033 break;
8034 }
8035 }
8036
8037 /*
8038 * If there is still required_kernelcore, we do another pass with one
8039 * less node in the count. This will push zone_movable_pfn[nid] further
8040 * along on the nodes that still have memory until kernelcore is
b8af2941 8041 * satisfied
2a1e274a
MG
8042 */
8043 usable_nodes--;
8044 if (usable_nodes && required_kernelcore > usable_nodes)
8045 goto restart;
8046
b2f3eebe 8047out2:
2a1e274a 8048 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
ddbc84f3
AP
8049 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8050 unsigned long start_pfn, end_pfn;
8051
2a1e274a
MG
8052 zone_movable_pfn[nid] =
8053 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 8054
ddbc84f3
AP
8055 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8056 if (zone_movable_pfn[nid] >= end_pfn)
8057 zone_movable_pfn[nid] = 0;
8058 }
8059
20e6926d 8060out:
66918dcd 8061 /* restore the node_state */
4b0ef1fe 8062 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
8063}
8064
4b0ef1fe
LJ
8065/* Any regular or high memory on that node ? */
8066static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 8067{
37b07e41
LS
8068 enum zone_type zone_type;
8069
4b0ef1fe 8070 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 8071 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 8072 if (populated_zone(zone)) {
7b0e0c0e
OS
8073 if (IS_ENABLED(CONFIG_HIGHMEM))
8074 node_set_state(nid, N_HIGH_MEMORY);
8075 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 8076 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
8077 break;
8078 }
37b07e41 8079 }
37b07e41
LS
8080}
8081
51930df5 8082/*
f0953a1b 8083 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
8084 * such cases we allow max_zone_pfn sorted in the descending order
8085 */
8086bool __weak arch_has_descending_max_zone_pfns(void)
8087{
8088 return false;
8089}
8090
c713216d 8091/**
9691a071 8092 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 8093 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
8094 *
8095 * This will call free_area_init_node() for each active node in the system.
7d018176 8096 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
8097 * zone in each node and their holes is calculated. If the maximum PFN
8098 * between two adjacent zones match, it is assumed that the zone is empty.
8099 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8100 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8101 * starts where the previous one ended. For example, ZONE_DMA32 starts
8102 * at arch_max_dma_pfn.
8103 */
9691a071 8104void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 8105{
c13291a5 8106 unsigned long start_pfn, end_pfn;
51930df5
MR
8107 int i, nid, zone;
8108 bool descending;
a6af2bc3 8109
c713216d
MG
8110 /* Record where the zone boundaries are */
8111 memset(arch_zone_lowest_possible_pfn, 0,
8112 sizeof(arch_zone_lowest_possible_pfn));
8113 memset(arch_zone_highest_possible_pfn, 0,
8114 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
8115
8116 start_pfn = find_min_pfn_with_active_regions();
51930df5 8117 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
8118
8119 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
8120 if (descending)
8121 zone = MAX_NR_ZONES - i - 1;
8122 else
8123 zone = i;
8124
8125 if (zone == ZONE_MOVABLE)
2a1e274a 8126 continue;
90cae1fe 8127
51930df5
MR
8128 end_pfn = max(max_zone_pfn[zone], start_pfn);
8129 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8130 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
8131
8132 start_pfn = end_pfn;
c713216d 8133 }
2a1e274a
MG
8134
8135 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8136 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 8137 find_zone_movable_pfns_for_nodes();
c713216d 8138
c713216d 8139 /* Print out the zone ranges */
f88dfff5 8140 pr_info("Zone ranges:\n");
2a1e274a
MG
8141 for (i = 0; i < MAX_NR_ZONES; i++) {
8142 if (i == ZONE_MOVABLE)
8143 continue;
f88dfff5 8144 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
8145 if (arch_zone_lowest_possible_pfn[i] ==
8146 arch_zone_highest_possible_pfn[i])
f88dfff5 8147 pr_cont("empty\n");
72f0ba02 8148 else
8d29e18a
JG
8149 pr_cont("[mem %#018Lx-%#018Lx]\n",
8150 (u64)arch_zone_lowest_possible_pfn[i]
8151 << PAGE_SHIFT,
8152 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 8153 << PAGE_SHIFT) - 1);
2a1e274a
MG
8154 }
8155
8156 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 8157 pr_info("Movable zone start for each node\n");
2a1e274a
MG
8158 for (i = 0; i < MAX_NUMNODES; i++) {
8159 if (zone_movable_pfn[i])
8d29e18a
JG
8160 pr_info(" Node %d: %#018Lx\n", i,
8161 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 8162 }
c713216d 8163
f46edbd1
DW
8164 /*
8165 * Print out the early node map, and initialize the
8166 * subsection-map relative to active online memory ranges to
8167 * enable future "sub-section" extensions of the memory map.
8168 */
f88dfff5 8169 pr_info("Early memory node ranges\n");
f46edbd1 8170 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8171 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8172 (u64)start_pfn << PAGE_SHIFT,
8173 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8174 subsection_map_init(start_pfn, end_pfn - start_pfn);
8175 }
c713216d
MG
8176
8177 /* Initialise every node */
708614e6 8178 mminit_verify_pageflags_layout();
8ef82866 8179 setup_nr_node_ids();
09f49dca
MH
8180 for_each_node(nid) {
8181 pg_data_t *pgdat;
8182
8183 if (!node_online(nid)) {
8184 pr_info("Initializing node %d as memoryless\n", nid);
8185
8186 /* Allocator not initialized yet */
8187 pgdat = arch_alloc_nodedata(nid);
8188 if (!pgdat) {
8189 pr_err("Cannot allocate %zuB for node %d.\n",
8190 sizeof(*pgdat), nid);
8191 continue;
8192 }
8193 arch_refresh_nodedata(nid, pgdat);
8194 free_area_init_memoryless_node(nid);
8195
8196 /*
8197 * We do not want to confuse userspace by sysfs
8198 * files/directories for node without any memory
8199 * attached to it, so this node is not marked as
8200 * N_MEMORY and not marked online so that no sysfs
8201 * hierarchy will be created via register_one_node for
8202 * it. The pgdat will get fully initialized by
8203 * hotadd_init_pgdat() when memory is hotplugged into
8204 * this node.
8205 */
8206 continue;
8207 }
8208
8209 pgdat = NODE_DATA(nid);
854e8848 8210 free_area_init_node(nid);
37b07e41
LS
8211
8212 /* Any memory on that node */
8213 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8214 node_set_state(nid, N_MEMORY);
8215 check_for_memory(pgdat, nid);
c713216d 8216 }
122e093c
MR
8217
8218 memmap_init();
c713216d 8219}
2a1e274a 8220
a5c6d650
DR
8221static int __init cmdline_parse_core(char *p, unsigned long *core,
8222 unsigned long *percent)
2a1e274a
MG
8223{
8224 unsigned long long coremem;
a5c6d650
DR
8225 char *endptr;
8226
2a1e274a
MG
8227 if (!p)
8228 return -EINVAL;
8229
a5c6d650
DR
8230 /* Value may be a percentage of total memory, otherwise bytes */
8231 coremem = simple_strtoull(p, &endptr, 0);
8232 if (*endptr == '%') {
8233 /* Paranoid check for percent values greater than 100 */
8234 WARN_ON(coremem > 100);
2a1e274a 8235
a5c6d650
DR
8236 *percent = coremem;
8237 } else {
8238 coremem = memparse(p, &p);
8239 /* Paranoid check that UL is enough for the coremem value */
8240 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8241
a5c6d650
DR
8242 *core = coremem >> PAGE_SHIFT;
8243 *percent = 0UL;
8244 }
2a1e274a
MG
8245 return 0;
8246}
ed7ed365 8247
7e63efef
MG
8248/*
8249 * kernelcore=size sets the amount of memory for use for allocations that
8250 * cannot be reclaimed or migrated.
8251 */
8252static int __init cmdline_parse_kernelcore(char *p)
8253{
342332e6
TI
8254 /* parse kernelcore=mirror */
8255 if (parse_option_str(p, "mirror")) {
8256 mirrored_kernelcore = true;
8257 return 0;
8258 }
8259
a5c6d650
DR
8260 return cmdline_parse_core(p, &required_kernelcore,
8261 &required_kernelcore_percent);
7e63efef
MG
8262}
8263
8264/*
8265 * movablecore=size sets the amount of memory for use for allocations that
8266 * can be reclaimed or migrated.
8267 */
8268static int __init cmdline_parse_movablecore(char *p)
8269{
a5c6d650
DR
8270 return cmdline_parse_core(p, &required_movablecore,
8271 &required_movablecore_percent);
7e63efef
MG
8272}
8273
ed7ed365 8274early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8275early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8276
c3d5f5f0
JL
8277void adjust_managed_page_count(struct page *page, long count)
8278{
9705bea5 8279 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8280 totalram_pages_add(count);
3dcc0571
JL
8281#ifdef CONFIG_HIGHMEM
8282 if (PageHighMem(page))
ca79b0c2 8283 totalhigh_pages_add(count);
3dcc0571 8284#endif
c3d5f5f0 8285}
3dcc0571 8286EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8287
e5cb113f 8288unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8289{
11199692
JL
8290 void *pos;
8291 unsigned long pages = 0;
69afade7 8292
11199692
JL
8293 start = (void *)PAGE_ALIGN((unsigned long)start);
8294 end = (void *)((unsigned long)end & PAGE_MASK);
8295 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8296 struct page *page = virt_to_page(pos);
8297 void *direct_map_addr;
8298
8299 /*
8300 * 'direct_map_addr' might be different from 'pos'
8301 * because some architectures' virt_to_page()
8302 * work with aliases. Getting the direct map
8303 * address ensures that we get a _writeable_
8304 * alias for the memset().
8305 */
8306 direct_map_addr = page_address(page);
c746170d
VF
8307 /*
8308 * Perform a kasan-unchecked memset() since this memory
8309 * has not been initialized.
8310 */
8311 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8312 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8313 memset(direct_map_addr, poison, PAGE_SIZE);
8314
8315 free_reserved_page(page);
69afade7
JL
8316 }
8317
8318 if (pages && s)
ff7ed9e4 8319 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
8320
8321 return pages;
8322}
8323
1f9d03c5 8324void __init mem_init_print_info(void)
7ee3d4e8
JL
8325{
8326 unsigned long physpages, codesize, datasize, rosize, bss_size;
8327 unsigned long init_code_size, init_data_size;
8328
8329 physpages = get_num_physpages();
8330 codesize = _etext - _stext;
8331 datasize = _edata - _sdata;
8332 rosize = __end_rodata - __start_rodata;
8333 bss_size = __bss_stop - __bss_start;
8334 init_data_size = __init_end - __init_begin;
8335 init_code_size = _einittext - _sinittext;
8336
8337 /*
8338 * Detect special cases and adjust section sizes accordingly:
8339 * 1) .init.* may be embedded into .data sections
8340 * 2) .init.text.* may be out of [__init_begin, __init_end],
8341 * please refer to arch/tile/kernel/vmlinux.lds.S.
8342 * 3) .rodata.* may be embedded into .text or .data sections.
8343 */
8344#define adj_init_size(start, end, size, pos, adj) \
b8af2941 8345 do { \
ca831f29 8346 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
b8af2941
PK
8347 size -= adj; \
8348 } while (0)
7ee3d4e8
JL
8349
8350 adj_init_size(__init_begin, __init_end, init_data_size,
8351 _sinittext, init_code_size);
8352 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8353 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8354 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8355 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8356
8357#undef adj_init_size
8358
756a025f 8359 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8360#ifdef CONFIG_HIGHMEM
756a025f 8361 ", %luK highmem"
7ee3d4e8 8362#endif
1f9d03c5 8363 ")\n",
ff7ed9e4 8364 K(nr_free_pages()), K(physpages),
756a025f
JP
8365 codesize >> 10, datasize >> 10, rosize >> 10,
8366 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ff7ed9e4
ML
8367 K(physpages - totalram_pages() - totalcma_pages),
8368 K(totalcma_pages)
7ee3d4e8 8369#ifdef CONFIG_HIGHMEM
ff7ed9e4 8370 , K(totalhigh_pages())
7ee3d4e8 8371#endif
1f9d03c5 8372 );
7ee3d4e8
JL
8373}
8374
0e0b864e 8375/**
88ca3b94
RD
8376 * set_dma_reserve - set the specified number of pages reserved in the first zone
8377 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8378 *
013110a7 8379 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8380 * In the DMA zone, a significant percentage may be consumed by kernel image
8381 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8382 * function may optionally be used to account for unfreeable pages in the
8383 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8384 * smaller per-cpu batchsize.
0e0b864e
MG
8385 */
8386void __init set_dma_reserve(unsigned long new_dma_reserve)
8387{
8388 dma_reserve = new_dma_reserve;
8389}
8390
005fd4bb 8391static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8392{
04f8cfea 8393 struct zone *zone;
1da177e4 8394
005fd4bb 8395 lru_add_drain_cpu(cpu);
adb11e78 8396 mlock_page_drain_remote(cpu);
005fd4bb 8397 drain_pages(cpu);
9f8f2172 8398
005fd4bb
SAS
8399 /*
8400 * Spill the event counters of the dead processor
8401 * into the current processors event counters.
8402 * This artificially elevates the count of the current
8403 * processor.
8404 */
8405 vm_events_fold_cpu(cpu);
9f8f2172 8406
005fd4bb
SAS
8407 /*
8408 * Zero the differential counters of the dead processor
8409 * so that the vm statistics are consistent.
8410 *
8411 * This is only okay since the processor is dead and cannot
8412 * race with what we are doing.
8413 */
8414 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8415
8416 for_each_populated_zone(zone)
8417 zone_pcp_update(zone, 0);
8418
8419 return 0;
8420}
8421
8422static int page_alloc_cpu_online(unsigned int cpu)
8423{
8424 struct zone *zone;
8425
8426 for_each_populated_zone(zone)
8427 zone_pcp_update(zone, 1);
005fd4bb 8428 return 0;
1da177e4 8429}
1da177e4 8430
e03a5125
NP
8431#ifdef CONFIG_NUMA
8432int hashdist = HASHDIST_DEFAULT;
8433
8434static int __init set_hashdist(char *str)
8435{
8436 if (!str)
8437 return 0;
8438 hashdist = simple_strtoul(str, &str, 0);
8439 return 1;
8440}
8441__setup("hashdist=", set_hashdist);
8442#endif
8443
1da177e4
LT
8444void __init page_alloc_init(void)
8445{
005fd4bb
SAS
8446 int ret;
8447
e03a5125
NP
8448#ifdef CONFIG_NUMA
8449 if (num_node_state(N_MEMORY) == 1)
8450 hashdist = 0;
8451#endif
8452
04f8cfea
MG
8453 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8454 "mm/page_alloc:pcp",
8455 page_alloc_cpu_online,
005fd4bb
SAS
8456 page_alloc_cpu_dead);
8457 WARN_ON(ret < 0);
1da177e4
LT
8458}
8459
cb45b0e9 8460/*
34b10060 8461 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8462 * or min_free_kbytes changes.
8463 */
8464static void calculate_totalreserve_pages(void)
8465{
8466 struct pglist_data *pgdat;
8467 unsigned long reserve_pages = 0;
2f6726e5 8468 enum zone_type i, j;
cb45b0e9
HA
8469
8470 for_each_online_pgdat(pgdat) {
281e3726
MG
8471
8472 pgdat->totalreserve_pages = 0;
8473
cb45b0e9
HA
8474 for (i = 0; i < MAX_NR_ZONES; i++) {
8475 struct zone *zone = pgdat->node_zones + i;
3484b2de 8476 long max = 0;
9705bea5 8477 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8478
8479 /* Find valid and maximum lowmem_reserve in the zone */
8480 for (j = i; j < MAX_NR_ZONES; j++) {
8481 if (zone->lowmem_reserve[j] > max)
8482 max = zone->lowmem_reserve[j];
8483 }
8484
41858966
MG
8485 /* we treat the high watermark as reserved pages. */
8486 max += high_wmark_pages(zone);
cb45b0e9 8487
3d6357de
AK
8488 if (max > managed_pages)
8489 max = managed_pages;
a8d01437 8490
281e3726 8491 pgdat->totalreserve_pages += max;
a8d01437 8492
cb45b0e9
HA
8493 reserve_pages += max;
8494 }
8495 }
8496 totalreserve_pages = reserve_pages;
8497}
8498
1da177e4
LT
8499/*
8500 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8501 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8502 * has a correct pages reserved value, so an adequate number of
8503 * pages are left in the zone after a successful __alloc_pages().
8504 */
8505static void setup_per_zone_lowmem_reserve(void)
8506{
8507 struct pglist_data *pgdat;
470c61d7 8508 enum zone_type i, j;
1da177e4 8509
ec936fc5 8510 for_each_online_pgdat(pgdat) {
470c61d7
LS
8511 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8512 struct zone *zone = &pgdat->node_zones[i];
8513 int ratio = sysctl_lowmem_reserve_ratio[i];
8514 bool clear = !ratio || !zone_managed_pages(zone);
8515 unsigned long managed_pages = 0;
8516
8517 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8518 struct zone *upper_zone = &pgdat->node_zones[j];
8519
8520 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8521
f7ec1044
LS
8522 if (clear)
8523 zone->lowmem_reserve[j] = 0;
8524 else
470c61d7 8525 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8526 }
8527 }
8528 }
cb45b0e9
HA
8529
8530 /* update totalreserve_pages */
8531 calculate_totalreserve_pages();
1da177e4
LT
8532}
8533
cfd3da1e 8534static void __setup_per_zone_wmarks(void)
1da177e4
LT
8535{
8536 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8537 unsigned long lowmem_pages = 0;
8538 struct zone *zone;
8539 unsigned long flags;
8540
8541 /* Calculate total number of !ZONE_HIGHMEM pages */
8542 for_each_zone(zone) {
8543 if (!is_highmem(zone))
9705bea5 8544 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8545 }
8546
8547 for_each_zone(zone) {
ac924c60
AM
8548 u64 tmp;
8549
1125b4e3 8550 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8551 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8552 do_div(tmp, lowmem_pages);
1da177e4
LT
8553 if (is_highmem(zone)) {
8554 /*
669ed175
NP
8555 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8556 * need highmem pages, so cap pages_min to a small
8557 * value here.
8558 *
41858966 8559 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8560 * deltas control async page reclaim, and so should
669ed175 8561 * not be capped for highmem.
1da177e4 8562 */
90ae8d67 8563 unsigned long min_pages;
1da177e4 8564
9705bea5 8565 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8566 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8567 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8568 } else {
669ed175
NP
8569 /*
8570 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8571 * proportionate to the zone's size.
8572 */
a9214443 8573 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8574 }
8575
795ae7a0
JW
8576 /*
8577 * Set the kswapd watermarks distance according to the
8578 * scale factor in proportion to available memory, but
8579 * ensure a minimum size on small systems.
8580 */
8581 tmp = max_t(u64, tmp >> 2,
9705bea5 8582 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8583 watermark_scale_factor, 10000));
8584
aa092591 8585 zone->watermark_boost = 0;
a9214443 8586 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
HY
8587 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8588 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 8589
1125b4e3 8590 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8591 }
cb45b0e9
HA
8592
8593 /* update totalreserve_pages */
8594 calculate_totalreserve_pages();
1da177e4
LT
8595}
8596
cfd3da1e
MG
8597/**
8598 * setup_per_zone_wmarks - called when min_free_kbytes changes
8599 * or when memory is hot-{added|removed}
8600 *
8601 * Ensures that the watermark[min,low,high] values for each zone are set
8602 * correctly with respect to min_free_kbytes.
8603 */
8604void setup_per_zone_wmarks(void)
8605{
b92ca18e 8606 struct zone *zone;
b93e0f32
MH
8607 static DEFINE_SPINLOCK(lock);
8608
8609 spin_lock(&lock);
cfd3da1e 8610 __setup_per_zone_wmarks();
b93e0f32 8611 spin_unlock(&lock);
b92ca18e
MG
8612
8613 /*
8614 * The watermark size have changed so update the pcpu batch
8615 * and high limits or the limits may be inappropriate.
8616 */
8617 for_each_zone(zone)
04f8cfea 8618 zone_pcp_update(zone, 0);
cfd3da1e
MG
8619}
8620
1da177e4
LT
8621/*
8622 * Initialise min_free_kbytes.
8623 *
8624 * For small machines we want it small (128k min). For large machines
8beeae86 8625 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8626 * bandwidth does not increase linearly with machine size. We use
8627 *
b8af2941 8628 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8629 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8630 *
8631 * which yields
8632 *
8633 * 16MB: 512k
8634 * 32MB: 724k
8635 * 64MB: 1024k
8636 * 128MB: 1448k
8637 * 256MB: 2048k
8638 * 512MB: 2896k
8639 * 1024MB: 4096k
8640 * 2048MB: 5792k
8641 * 4096MB: 8192k
8642 * 8192MB: 11584k
8643 * 16384MB: 16384k
8644 */
bd3400ea 8645void calculate_min_free_kbytes(void)
1da177e4
LT
8646{
8647 unsigned long lowmem_kbytes;
5f12733e 8648 int new_min_free_kbytes;
1da177e4
LT
8649
8650 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8651 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8652
59d336bd
WS
8653 if (new_min_free_kbytes > user_min_free_kbytes)
8654 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8655 else
5f12733e
MH
8656 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8657 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 8658
bd3400ea
LF
8659}
8660
8661int __meminit init_per_zone_wmark_min(void)
8662{
8663 calculate_min_free_kbytes();
bc75d33f 8664 setup_per_zone_wmarks();
a6cccdc3 8665 refresh_zone_stat_thresholds();
1da177e4 8666 setup_per_zone_lowmem_reserve();
6423aa81
JK
8667
8668#ifdef CONFIG_NUMA
8669 setup_min_unmapped_ratio();
8670 setup_min_slab_ratio();
8671#endif
8672
4aab2be0
VB
8673 khugepaged_min_free_kbytes_update();
8674
1da177e4
LT
8675 return 0;
8676}
e08d3fdf 8677postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8678
8679/*
b8af2941 8680 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8681 * that we can call two helper functions whenever min_free_kbytes
8682 * changes.
8683 */
cccad5b9 8684int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8685 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8686{
da8c757b
HP
8687 int rc;
8688
8689 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8690 if (rc)
8691 return rc;
8692
5f12733e
MH
8693 if (write) {
8694 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8695 setup_per_zone_wmarks();
5f12733e 8696 }
1da177e4
LT
8697 return 0;
8698}
8699
795ae7a0 8700int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8701 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8702{
8703 int rc;
8704
8705 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8706 if (rc)
8707 return rc;
8708
8709 if (write)
8710 setup_per_zone_wmarks();
8711
8712 return 0;
8713}
8714
9614634f 8715#ifdef CONFIG_NUMA
6423aa81 8716static void setup_min_unmapped_ratio(void)
9614634f 8717{
6423aa81 8718 pg_data_t *pgdat;
9614634f 8719 struct zone *zone;
9614634f 8720
a5f5f91d 8721 for_each_online_pgdat(pgdat)
81cbcbc2 8722 pgdat->min_unmapped_pages = 0;
a5f5f91d 8723
9614634f 8724 for_each_zone(zone)
9705bea5
AK
8725 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8726 sysctl_min_unmapped_ratio) / 100;
9614634f 8727}
0ff38490 8728
6423aa81
JK
8729
8730int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8731 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8732{
0ff38490
CL
8733 int rc;
8734
8d65af78 8735 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8736 if (rc)
8737 return rc;
8738
6423aa81
JK
8739 setup_min_unmapped_ratio();
8740
8741 return 0;
8742}
8743
8744static void setup_min_slab_ratio(void)
8745{
8746 pg_data_t *pgdat;
8747 struct zone *zone;
8748
a5f5f91d
MG
8749 for_each_online_pgdat(pgdat)
8750 pgdat->min_slab_pages = 0;
8751
0ff38490 8752 for_each_zone(zone)
9705bea5
AK
8753 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8754 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8755}
8756
8757int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8758 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8759{
8760 int rc;
8761
8762 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8763 if (rc)
8764 return rc;
8765
8766 setup_min_slab_ratio();
8767
0ff38490
CL
8768 return 0;
8769}
9614634f
CL
8770#endif
8771
1da177e4
LT
8772/*
8773 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8774 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8775 * whenever sysctl_lowmem_reserve_ratio changes.
8776 *
8777 * The reserve ratio obviously has absolutely no relation with the
41858966 8778 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8779 * if in function of the boot time zone sizes.
8780 */
cccad5b9 8781int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8782 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8783{
86aaf255
BH
8784 int i;
8785
8d65af78 8786 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8787
8788 for (i = 0; i < MAX_NR_ZONES; i++) {
8789 if (sysctl_lowmem_reserve_ratio[i] < 1)
8790 sysctl_lowmem_reserve_ratio[i] = 0;
8791 }
8792
1da177e4
LT
8793 setup_per_zone_lowmem_reserve();
8794 return 0;
8795}
8796
8ad4b1fb 8797/*
74f44822
MG
8798 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8799 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 8800 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8801 */
74f44822
MG
8802int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8803 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8804{
8805 struct zone *zone;
74f44822 8806 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
8807 int ret;
8808
7cd2b0a3 8809 mutex_lock(&pcp_batch_high_lock);
74f44822 8810 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 8811
8d65af78 8812 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8813 if (!write || ret < 0)
8814 goto out;
8815
8816 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
8817 if (percpu_pagelist_high_fraction &&
8818 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8819 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
8820 ret = -EINVAL;
8821 goto out;
8822 }
8823
8824 /* No change? */
74f44822 8825 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 8826 goto out;
c8e251fa 8827
cb1ef534 8828 for_each_populated_zone(zone)
74f44822 8829 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 8830out:
c8e251fa 8831 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8832 return ret;
8ad4b1fb
RS
8833}
8834
f6f34b43
SD
8835#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8836/*
8837 * Returns the number of pages that arch has reserved but
8838 * is not known to alloc_large_system_hash().
8839 */
8840static unsigned long __init arch_reserved_kernel_pages(void)
8841{
8842 return 0;
8843}
8844#endif
8845
9017217b
PT
8846/*
8847 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8848 * machines. As memory size is increased the scale is also increased but at
8849 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8850 * quadruples the scale is increased by one, which means the size of hash table
8851 * only doubles, instead of quadrupling as well.
8852 * Because 32-bit systems cannot have large physical memory, where this scaling
8853 * makes sense, it is disabled on such platforms.
8854 */
8855#if __BITS_PER_LONG > 32
8856#define ADAPT_SCALE_BASE (64ul << 30)
8857#define ADAPT_SCALE_SHIFT 2
8858#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8859#endif
8860
1da177e4
LT
8861/*
8862 * allocate a large system hash table from bootmem
8863 * - it is assumed that the hash table must contain an exact power-of-2
8864 * quantity of entries
8865 * - limit is the number of hash buckets, not the total allocation size
8866 */
8867void *__init alloc_large_system_hash(const char *tablename,
8868 unsigned long bucketsize,
8869 unsigned long numentries,
8870 int scale,
8871 int flags,
8872 unsigned int *_hash_shift,
8873 unsigned int *_hash_mask,
31fe62b9
TB
8874 unsigned long low_limit,
8875 unsigned long high_limit)
1da177e4 8876{
31fe62b9 8877 unsigned long long max = high_limit;
1da177e4
LT
8878 unsigned long log2qty, size;
8879 void *table = NULL;
3749a8f0 8880 gfp_t gfp_flags;
ec11408a 8881 bool virt;
121e6f32 8882 bool huge;
1da177e4
LT
8883
8884 /* allow the kernel cmdline to have a say */
8885 if (!numentries) {
8886 /* round applicable memory size up to nearest megabyte */
04903664 8887 numentries = nr_kernel_pages;
f6f34b43 8888 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8889
8890 /* It isn't necessary when PAGE_SIZE >= 1MB */
8891 if (PAGE_SHIFT < 20)
8892 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8893
9017217b
PT
8894#if __BITS_PER_LONG > 32
8895 if (!high_limit) {
8896 unsigned long adapt;
8897
8898 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8899 adapt <<= ADAPT_SCALE_SHIFT)
8900 scale++;
8901 }
8902#endif
8903
1da177e4
LT
8904 /* limit to 1 bucket per 2^scale bytes of low memory */
8905 if (scale > PAGE_SHIFT)
8906 numentries >>= (scale - PAGE_SHIFT);
8907 else
8908 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8909
8910 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8911 if (unlikely(flags & HASH_SMALL)) {
8912 /* Makes no sense without HASH_EARLY */
8913 WARN_ON(!(flags & HASH_EARLY));
8914 if (!(numentries >> *_hash_shift)) {
8915 numentries = 1UL << *_hash_shift;
8916 BUG_ON(!numentries);
8917 }
8918 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8919 numentries = PAGE_SIZE / bucketsize;
1da177e4 8920 }
6e692ed3 8921 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8922
8923 /* limit allocation size to 1/16 total memory by default */
8924 if (max == 0) {
8925 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8926 do_div(max, bucketsize);
8927 }
074b8517 8928 max = min(max, 0x80000000ULL);
1da177e4 8929
31fe62b9
TB
8930 if (numentries < low_limit)
8931 numentries = low_limit;
1da177e4
LT
8932 if (numentries > max)
8933 numentries = max;
8934
f0d1b0b3 8935 log2qty = ilog2(numentries);
1da177e4 8936
3749a8f0 8937 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8938 do {
ec11408a 8939 virt = false;
1da177e4 8940 size = bucketsize << log2qty;
ea1f5f37
PT
8941 if (flags & HASH_EARLY) {
8942 if (flags & HASH_ZERO)
26fb3dae 8943 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8944 else
7e1c4e27
MR
8945 table = memblock_alloc_raw(size,
8946 SMP_CACHE_BYTES);
ec11408a 8947 } else if (get_order(size) >= MAX_ORDER || hashdist) {
f2edd118 8948 table = vmalloc_huge(size, gfp_flags);
ec11408a 8949 virt = true;
084f7e23
ED
8950 if (table)
8951 huge = is_vm_area_hugepages(table);
ea1f5f37 8952 } else {
1037b83b
ED
8953 /*
8954 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8955 * some pages at the end of hash table which
8956 * alloc_pages_exact() automatically does
1037b83b 8957 */
ec11408a
NP
8958 table = alloc_pages_exact(size, gfp_flags);
8959 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8960 }
8961 } while (!table && size > PAGE_SIZE && --log2qty);
8962
8963 if (!table)
8964 panic("Failed to allocate %s hash table\n", tablename);
8965
ec11408a
NP
8966 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8967 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8968 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8969
8970 if (_hash_shift)
8971 *_hash_shift = log2qty;
8972 if (_hash_mask)
8973 *_hash_mask = (1 << log2qty) - 1;
8974
8975 return table;
8976}
a117e66e 8977
8df995f6 8978#ifdef CONFIG_CONTIG_ALLOC
a1394bdd
MK
8979#if defined(CONFIG_DYNAMIC_DEBUG) || \
8980 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8981/* Usage: See admin-guide/dynamic-debug-howto.rst */
8982static void alloc_contig_dump_pages(struct list_head *page_list)
8983{
8984 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8985
8986 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8987 struct page *page;
8988
8989 dump_stack();
8990 list_for_each_entry(page, page_list, lru)
8991 dump_page(page, "migration failure");
8992 }
8993}
8994#else
8995static inline void alloc_contig_dump_pages(struct list_head *page_list)
8996{
8997}
8998#endif
8999
041d3a8c 9000/* [start, end) must belong to a single zone. */
b2c9e2fb 9001int __alloc_contig_migrate_range(struct compact_control *cc,
bb13ffeb 9002 unsigned long start, unsigned long end)
041d3a8c
MN
9003{
9004 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 9005 unsigned int nr_reclaimed;
041d3a8c
MN
9006 unsigned long pfn = start;
9007 unsigned int tries = 0;
9008 int ret = 0;
8b94e0b8
JK
9009 struct migration_target_control mtc = {
9010 .nid = zone_to_nid(cc->zone),
9011 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9012 };
041d3a8c 9013
361a2a22 9014 lru_cache_disable();
041d3a8c 9015
bb13ffeb 9016 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
9017 if (fatal_signal_pending(current)) {
9018 ret = -EINTR;
9019 break;
9020 }
9021
bb13ffeb
MG
9022 if (list_empty(&cc->migratepages)) {
9023 cc->nr_migratepages = 0;
c2ad7a1f
OS
9024 ret = isolate_migratepages_range(cc, pfn, end);
9025 if (ret && ret != -EAGAIN)
041d3a8c 9026 break;
c2ad7a1f 9027 pfn = cc->migrate_pfn;
041d3a8c
MN
9028 tries = 0;
9029 } else if (++tries == 5) {
c8e28b47 9030 ret = -EBUSY;
041d3a8c
MN
9031 break;
9032 }
9033
beb51eaa
MK
9034 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9035 &cc->migratepages);
9036 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 9037
8b94e0b8 9038 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 9039 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
9040
9041 /*
9042 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9043 * to retry again over this error, so do the same here.
9044 */
9045 if (ret == -ENOMEM)
9046 break;
041d3a8c 9047 }
d479960e 9048
361a2a22 9049 lru_cache_enable();
2a6f5124 9050 if (ret < 0) {
3f913fc5 9051 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
151e084a 9052 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
9053 putback_movable_pages(&cc->migratepages);
9054 return ret;
9055 }
9056 return 0;
041d3a8c
MN
9057}
9058
9059/**
9060 * alloc_contig_range() -- tries to allocate given range of pages
9061 * @start: start PFN to allocate
9062 * @end: one-past-the-last PFN to allocate
f0953a1b 9063 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9064 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9065 * in range must have the same migratetype and it must
9066 * be either of the two.
ca96b625 9067 * @gfp_mask: GFP mask to use during compaction
041d3a8c 9068 *
11ac3e87
ZY
9069 * The PFN range does not have to be pageblock aligned. The PFN range must
9070 * belong to a single zone.
041d3a8c 9071 *
2c7452a0
MK
9072 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9073 * pageblocks in the range. Once isolated, the pageblocks should not
9074 * be modified by others.
041d3a8c 9075 *
a862f68a 9076 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9077 * pages which PFN is in [start, end) are allocated for the caller and
9078 * need to be freed with free_contig_range().
9079 */
0815f3d8 9080int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9081 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9082{
041d3a8c 9083 unsigned long outer_start, outer_end;
b2c9e2fb 9084 int order;
d00181b9 9085 int ret = 0;
041d3a8c 9086
bb13ffeb
MG
9087 struct compact_control cc = {
9088 .nr_migratepages = 0,
9089 .order = -1,
9090 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9091 .mode = MIGRATE_SYNC,
bb13ffeb 9092 .ignore_skip_hint = true,
2583d671 9093 .no_set_skip_hint = true,
7dea19f9 9094 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9095 .alloc_contig = true,
bb13ffeb
MG
9096 };
9097 INIT_LIST_HEAD(&cc.migratepages);
9098
041d3a8c
MN
9099 /*
9100 * What we do here is we mark all pageblocks in range as
9101 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9102 * have different sizes, and due to the way page allocator
b2c9e2fb 9103 * work, start_isolate_page_range() has special handlings for this.
041d3a8c
MN
9104 *
9105 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9106 * migrate the pages from an unaligned range (ie. pages that
b2c9e2fb 9107 * we are interested in). This will put all the pages in
041d3a8c
MN
9108 * range back to page allocator as MIGRATE_ISOLATE.
9109 *
9110 * When this is done, we take the pages in range from page
9111 * allocator removing them from the buddy system. This way
9112 * page allocator will never consider using them.
9113 *
9114 * This lets us mark the pageblocks back as
9115 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9116 * aligned range but not in the unaligned, original range are
9117 * put back to page allocator so that buddy can use them.
9118 */
9119
6e263fff 9120 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
3fa0c7c7 9121 if (ret)
b2c9e2fb 9122 goto done;
041d3a8c 9123
7612921f
VB
9124 drain_all_pages(cc.zone);
9125
8ef5849f
JK
9126 /*
9127 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9128 * So, just fall through. test_pages_isolated() has a tracepoint
9129 * which will report the busy page.
9130 *
9131 * It is possible that busy pages could become available before
9132 * the call to test_pages_isolated, and the range will actually be
9133 * allocated. So, if we fall through be sure to clear ret so that
9134 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9135 */
bb13ffeb 9136 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9137 if (ret && ret != -EBUSY)
041d3a8c 9138 goto done;
68d68ff6 9139 ret = 0;
041d3a8c
MN
9140
9141 /*
b2c9e2fb 9142 * Pages from [start, end) are within a pageblock_nr_pages
041d3a8c
MN
9143 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9144 * more, all pages in [start, end) are free in page allocator.
9145 * What we are going to do is to allocate all pages from
9146 * [start, end) (that is remove them from page allocator).
9147 *
9148 * The only problem is that pages at the beginning and at the
9149 * end of interesting range may be not aligned with pages that
9150 * page allocator holds, ie. they can be part of higher order
9151 * pages. Because of this, we reserve the bigger range and
9152 * once this is done free the pages we are not interested in.
9153 *
9154 * We don't have to hold zone->lock here because the pages are
9155 * isolated thus they won't get removed from buddy.
9156 */
9157
041d3a8c
MN
9158 order = 0;
9159 outer_start = start;
9160 while (!PageBuddy(pfn_to_page(outer_start))) {
9161 if (++order >= MAX_ORDER) {
8ef5849f
JK
9162 outer_start = start;
9163 break;
041d3a8c
MN
9164 }
9165 outer_start &= ~0UL << order;
9166 }
9167
8ef5849f 9168 if (outer_start != start) {
ab130f91 9169 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9170
9171 /*
9172 * outer_start page could be small order buddy page and
9173 * it doesn't include start page. Adjust outer_start
9174 * in this case to report failed page properly
9175 * on tracepoint in test_pages_isolated()
9176 */
9177 if (outer_start + (1UL << order) <= start)
9178 outer_start = start;
9179 }
9180
041d3a8c 9181 /* Make sure the range is really isolated. */
756d25be 9182 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9183 ret = -EBUSY;
9184 goto done;
9185 }
9186
49f223a9 9187 /* Grab isolated pages from freelists. */
bb13ffeb 9188 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9189 if (!outer_end) {
9190 ret = -EBUSY;
9191 goto done;
9192 }
9193
9194 /* Free head and tail (if any) */
9195 if (start != outer_start)
9196 free_contig_range(outer_start, start - outer_start);
9197 if (end != outer_end)
9198 free_contig_range(end, outer_end - end);
9199
9200done:
6e263fff 9201 undo_isolate_page_range(start, end, migratetype);
041d3a8c
MN
9202 return ret;
9203}
255f5985 9204EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9205
9206static int __alloc_contig_pages(unsigned long start_pfn,
9207 unsigned long nr_pages, gfp_t gfp_mask)
9208{
9209 unsigned long end_pfn = start_pfn + nr_pages;
9210
9211 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9212 gfp_mask);
9213}
9214
9215static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9216 unsigned long nr_pages)
9217{
9218 unsigned long i, end_pfn = start_pfn + nr_pages;
9219 struct page *page;
9220
9221 for (i = start_pfn; i < end_pfn; i++) {
9222 page = pfn_to_online_page(i);
9223 if (!page)
9224 return false;
9225
9226 if (page_zone(page) != z)
9227 return false;
9228
9229 if (PageReserved(page))
9230 return false;
5e27a2df
AK
9231 }
9232 return true;
9233}
9234
9235static bool zone_spans_last_pfn(const struct zone *zone,
9236 unsigned long start_pfn, unsigned long nr_pages)
9237{
9238 unsigned long last_pfn = start_pfn + nr_pages - 1;
9239
9240 return zone_spans_pfn(zone, last_pfn);
9241}
9242
9243/**
9244 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9245 * @nr_pages: Number of contiguous pages to allocate
9246 * @gfp_mask: GFP mask to limit search and used during compaction
9247 * @nid: Target node
9248 * @nodemask: Mask for other possible nodes
9249 *
9250 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9251 * on an applicable zonelist to find a contiguous pfn range which can then be
9252 * tried for allocation with alloc_contig_range(). This routine is intended
9253 * for allocation requests which can not be fulfilled with the buddy allocator.
9254 *
9255 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
9256 * power of two, then allocated range is also guaranteed to be aligned to same
9257 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
9258 *
9259 * Allocated pages can be freed with free_contig_range() or by manually calling
9260 * __free_page() on each allocated page.
9261 *
9262 * Return: pointer to contiguous pages on success, or NULL if not successful.
9263 */
9264struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9265 int nid, nodemask_t *nodemask)
9266{
9267 unsigned long ret, pfn, flags;
9268 struct zonelist *zonelist;
9269 struct zone *zone;
9270 struct zoneref *z;
9271
9272 zonelist = node_zonelist(nid, gfp_mask);
9273 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9274 gfp_zone(gfp_mask), nodemask) {
9275 spin_lock_irqsave(&zone->lock, flags);
9276
9277 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9278 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9279 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9280 /*
9281 * We release the zone lock here because
9282 * alloc_contig_range() will also lock the zone
9283 * at some point. If there's an allocation
9284 * spinning on this lock, it may win the race
9285 * and cause alloc_contig_range() to fail...
9286 */
9287 spin_unlock_irqrestore(&zone->lock, flags);
9288 ret = __alloc_contig_pages(pfn, nr_pages,
9289 gfp_mask);
9290 if (!ret)
9291 return pfn_to_page(pfn);
9292 spin_lock_irqsave(&zone->lock, flags);
9293 }
9294 pfn += nr_pages;
9295 }
9296 spin_unlock_irqrestore(&zone->lock, flags);
9297 }
9298 return NULL;
9299}
4eb0716e 9300#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9301
78fa5150 9302void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9303{
78fa5150 9304 unsigned long count = 0;
bcc2b02f
MS
9305
9306 for (; nr_pages--; pfn++) {
9307 struct page *page = pfn_to_page(pfn);
9308
9309 count += page_count(page) != 1;
9310 __free_page(page);
9311 }
78fa5150 9312 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9313}
255f5985 9314EXPORT_SYMBOL(free_contig_range);
041d3a8c 9315
0a647f38
CS
9316/*
9317 * The zone indicated has a new number of managed_pages; batch sizes and percpu
f0953a1b 9318 * page high values need to be recalculated.
0a647f38 9319 */
04f8cfea 9320void zone_pcp_update(struct zone *zone, int cpu_online)
4ed7e022 9321{
c8e251fa 9322 mutex_lock(&pcp_batch_high_lock);
04f8cfea 9323 zone_set_pageset_high_and_batch(zone, cpu_online);
c8e251fa 9324 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 9325}
4ed7e022 9326
ec6e8c7e
VB
9327/*
9328 * Effectively disable pcplists for the zone by setting the high limit to 0
9329 * and draining all cpus. A concurrent page freeing on another CPU that's about
9330 * to put the page on pcplist will either finish before the drain and the page
9331 * will be drained, or observe the new high limit and skip the pcplist.
9332 *
9333 * Must be paired with a call to zone_pcp_enable().
9334 */
9335void zone_pcp_disable(struct zone *zone)
9336{
9337 mutex_lock(&pcp_batch_high_lock);
9338 __zone_set_pageset_high_and_batch(zone, 0, 1);
9339 __drain_all_pages(zone, true);
9340}
9341
9342void zone_pcp_enable(struct zone *zone)
9343{
9344 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9345 mutex_unlock(&pcp_batch_high_lock);
9346}
9347
340175b7
JL
9348void zone_pcp_reset(struct zone *zone)
9349{
5a883813 9350 int cpu;
28f836b6 9351 struct per_cpu_zonestat *pzstats;
340175b7 9352
28f836b6 9353 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9354 for_each_online_cpu(cpu) {
28f836b6
MG
9355 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9356 drain_zonestat(zone, pzstats);
5a883813 9357 }
28f836b6
MG
9358 free_percpu(zone->per_cpu_pageset);
9359 free_percpu(zone->per_cpu_zonestats);
9360 zone->per_cpu_pageset = &boot_pageset;
9361 zone->per_cpu_zonestats = &boot_zonestats;
340175b7 9362 }
340175b7
JL
9363}
9364
6dcd73d7 9365#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9366/*
257bea71
DH
9367 * All pages in the range must be in a single zone, must not contain holes,
9368 * must span full sections, and must be isolated before calling this function.
0c0e6195 9369 */
257bea71 9370void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9371{
257bea71 9372 unsigned long pfn = start_pfn;
0c0e6195
KH
9373 struct page *page;
9374 struct zone *zone;
0ee5f4f3 9375 unsigned int order;
0c0e6195 9376 unsigned long flags;
5557c766 9377
2d070eab 9378 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9379 zone = page_zone(pfn_to_page(pfn));
9380 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9381 while (pfn < end_pfn) {
0c0e6195 9382 page = pfn_to_page(pfn);
b023f468
WC
9383 /*
9384 * The HWPoisoned page may be not in buddy system, and
9385 * page_count() is not 0.
9386 */
9387 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9388 pfn++;
b023f468
WC
9389 continue;
9390 }
aa218795
DH
9391 /*
9392 * At this point all remaining PageOffline() pages have a
9393 * reference count of 0 and can simply be skipped.
9394 */
9395 if (PageOffline(page)) {
9396 BUG_ON(page_count(page));
9397 BUG_ON(PageBuddy(page));
9398 pfn++;
aa218795
DH
9399 continue;
9400 }
b023f468 9401
0c0e6195
KH
9402 BUG_ON(page_count(page));
9403 BUG_ON(!PageBuddy(page));
ab130f91 9404 order = buddy_order(page);
6ab01363 9405 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9406 pfn += (1 << order);
9407 }
9408 spin_unlock_irqrestore(&zone->lock, flags);
9409}
9410#endif
8d22ba1b 9411
8446b59b
ED
9412/*
9413 * This function returns a stable result only if called under zone lock.
9414 */
8d22ba1b
WF
9415bool is_free_buddy_page(struct page *page)
9416{
8d22ba1b 9417 unsigned long pfn = page_to_pfn(page);
7aeb09f9 9418 unsigned int order;
8d22ba1b 9419
8d22ba1b
WF
9420 for (order = 0; order < MAX_ORDER; order++) {
9421 struct page *page_head = page - (pfn & ((1 << order) - 1));
9422
8446b59b
ED
9423 if (PageBuddy(page_head) &&
9424 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
9425 break;
9426 }
8d22ba1b
WF
9427
9428 return order < MAX_ORDER;
9429}
a581865e 9430EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
9431
9432#ifdef CONFIG_MEMORY_FAILURE
9433/*
06be6ff3
OS
9434 * Break down a higher-order page in sub-pages, and keep our target out of
9435 * buddy allocator.
d4ae9916 9436 */
06be6ff3
OS
9437static void break_down_buddy_pages(struct zone *zone, struct page *page,
9438 struct page *target, int low, int high,
9439 int migratetype)
9440{
9441 unsigned long size = 1 << high;
9442 struct page *current_buddy, *next_page;
9443
9444 while (high > low) {
9445 high--;
9446 size >>= 1;
9447
9448 if (target >= &page[size]) {
9449 next_page = page + size;
9450 current_buddy = page;
9451 } else {
9452 next_page = page;
9453 current_buddy = page + size;
9454 }
9455
9456 if (set_page_guard(zone, current_buddy, high, migratetype))
9457 continue;
9458
9459 if (current_buddy != target) {
9460 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9461 set_buddy_order(current_buddy, high);
06be6ff3
OS
9462 page = next_page;
9463 }
9464 }
9465}
9466
9467/*
9468 * Take a page that will be marked as poisoned off the buddy allocator.
9469 */
9470bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9471{
9472 struct zone *zone = page_zone(page);
9473 unsigned long pfn = page_to_pfn(page);
9474 unsigned long flags;
9475 unsigned int order;
06be6ff3 9476 bool ret = false;
d4ae9916
NH
9477
9478 spin_lock_irqsave(&zone->lock, flags);
9479 for (order = 0; order < MAX_ORDER; order++) {
9480 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9481 int page_order = buddy_order(page_head);
d4ae9916 9482
ab130f91 9483 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9484 unsigned long pfn_head = page_to_pfn(page_head);
9485 int migratetype = get_pfnblock_migratetype(page_head,
9486 pfn_head);
9487
ab130f91 9488 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9489 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9490 page_order, migratetype);
bf181c58 9491 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
9492 if (!is_migrate_isolate(migratetype))
9493 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9494 ret = true;
d4ae9916
NH
9495 break;
9496 }
06be6ff3
OS
9497 if (page_count(page_head) > 0)
9498 break;
d4ae9916
NH
9499 }
9500 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9501 return ret;
d4ae9916 9502}
bf181c58
NH
9503
9504/*
9505 * Cancel takeoff done by take_page_off_buddy().
9506 */
9507bool put_page_back_buddy(struct page *page)
9508{
9509 struct zone *zone = page_zone(page);
9510 unsigned long pfn = page_to_pfn(page);
9511 unsigned long flags;
9512 int migratetype = get_pfnblock_migratetype(page, pfn);
9513 bool ret = false;
9514
9515 spin_lock_irqsave(&zone->lock, flags);
9516 if (put_page_testzero(page)) {
9517 ClearPageHWPoisonTakenOff(page);
9518 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9519 if (TestClearPageHWPoison(page)) {
bf181c58
NH
9520 ret = true;
9521 }
9522 }
9523 spin_unlock_irqrestore(&zone->lock, flags);
9524
9525 return ret;
9526}
d4ae9916 9527#endif
62b31070
BH
9528
9529#ifdef CONFIG_ZONE_DMA
9530bool has_managed_dma(void)
9531{
9532 struct pglist_data *pgdat;
9533
9534 for_each_online_pgdat(pgdat) {
9535 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9536
9537 if (managed_zone(zone))
9538 return true;
9539 }
9540 return false;
9541}
9542#endif /* CONFIG_ZONE_DMA */