]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
mm: call free_huge_page() directly
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/interrupt.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
b8c73fc2 25#include <linux/kasan.h>
b073d7f8 26#include <linux/kmsan.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
a238ab5b 29#include <linux/ratelimit.h>
5a3135c2 30#include <linux/oom.h>
1da177e4
LT
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4 36#include <linux/nodemask.h>
a6cccdc3 37#include <linux/vmstat.h>
933e312e 38#include <linux/fault-inject.h>
56de7263 39#include <linux/compaction.h>
0d3d062a 40#include <trace/events/kmem.h>
d379f01d 41#include <trace/events/oom.h>
268bb0ce 42#include <linux/prefetch.h>
6e543d57 43#include <linux/mm_inline.h>
f920e413 44#include <linux/mmu_notifier.h>
041d3a8c 45#include <linux/migrate.h>
5b3cc15a 46#include <linux/sched/mm.h>
48c96a36 47#include <linux/page_owner.h>
df4e817b 48#include <linux/page_table_check.h>
4949148a 49#include <linux/memcontrol.h>
42c269c8 50#include <linux/ftrace.h>
d92a8cfc 51#include <linux/lockdep.h>
eb414681 52#include <linux/psi.h>
4aab2be0 53#include <linux/khugepaged.h>
5bf18281 54#include <linux/delayacct.h>
ac924c60 55#include <asm/div64.h>
1da177e4 56#include "internal.h"
e900a918 57#include "shuffle.h"
36e66c55 58#include "page_reporting.h"
1da177e4 59
f04a5d5d
DH
60/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61typedef int __bitwise fpi_t;
62
63/* No special request */
64#define FPI_NONE ((__force fpi_t)0)
65
66/*
67 * Skip free page reporting notification for the (possibly merged) page.
68 * This does not hinder free page reporting from grabbing the page,
69 * reporting it and marking it "reported" - it only skips notifying
70 * the free page reporting infrastructure about a newly freed page. For
71 * example, used when temporarily pulling a page from a freelist and
72 * putting it back unmodified.
73 */
74#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
75
47b6a24a
DH
76/*
77 * Place the (possibly merged) page to the tail of the freelist. Will ignore
78 * page shuffling (relevant code - e.g., memory onlining - is expected to
79 * shuffle the whole zone).
80 *
81 * Note: No code should rely on this flag for correctness - it's purely
82 * to allow for optimizations when handing back either fresh pages
83 * (memory onlining) or untouched pages (page isolation, free page
84 * reporting).
85 */
86#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
87
c8e251fa
CS
88/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 90#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 91
4b23a68f
MG
92#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93/*
94 * On SMP, spin_trylock is sufficient protection.
95 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96 */
97#define pcp_trylock_prepare(flags) do { } while (0)
98#define pcp_trylock_finish(flag) do { } while (0)
99#else
100
101/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102#define pcp_trylock_prepare(flags) local_irq_save(flags)
103#define pcp_trylock_finish(flags) local_irq_restore(flags)
104#endif
105
01b44456
MG
106/*
107 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108 * a migration causing the wrong PCP to be locked and remote memory being
109 * potentially allocated, pin the task to the CPU for the lookup+lock.
110 * preempt_disable is used on !RT because it is faster than migrate_disable.
111 * migrate_disable is used on RT because otherwise RT spinlock usage is
112 * interfered with and a high priority task cannot preempt the allocator.
113 */
114#ifndef CONFIG_PREEMPT_RT
115#define pcpu_task_pin() preempt_disable()
116#define pcpu_task_unpin() preempt_enable()
117#else
118#define pcpu_task_pin() migrate_disable()
119#define pcpu_task_unpin() migrate_enable()
120#endif
c8e251fa 121
01b44456
MG
122/*
123 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124 * Return value should be used with equivalent unlock helper.
125 */
126#define pcpu_spin_lock(type, member, ptr) \
127({ \
128 type *_ret; \
129 pcpu_task_pin(); \
130 _ret = this_cpu_ptr(ptr); \
131 spin_lock(&_ret->member); \
132 _ret; \
133})
134
57490774 135#define pcpu_spin_trylock(type, member, ptr) \
01b44456
MG
136({ \
137 type *_ret; \
138 pcpu_task_pin(); \
139 _ret = this_cpu_ptr(ptr); \
57490774 140 if (!spin_trylock(&_ret->member)) { \
01b44456
MG
141 pcpu_task_unpin(); \
142 _ret = NULL; \
143 } \
144 _ret; \
145})
146
147#define pcpu_spin_unlock(member, ptr) \
148({ \
149 spin_unlock(&ptr->member); \
150 pcpu_task_unpin(); \
151})
152
01b44456
MG
153/* struct per_cpu_pages specific helpers. */
154#define pcp_spin_lock(ptr) \
155 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156
57490774
MG
157#define pcp_spin_trylock(ptr) \
158 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
01b44456
MG
159
160#define pcp_spin_unlock(ptr) \
161 pcpu_spin_unlock(lock, ptr)
162
72812019
LS
163#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164DEFINE_PER_CPU(int, numa_node);
165EXPORT_PER_CPU_SYMBOL(numa_node);
166#endif
167
4518085e
KW
168DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169
7aac7898
LS
170#ifdef CONFIG_HAVE_MEMORYLESS_NODES
171/*
172 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175 * defined in <linux/topology.h>.
176 */
177DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
178EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179#endif
180
8b885f53 181static DEFINE_MUTEX(pcpu_drain_mutex);
bd233f53 182
38addce8 183#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 184volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
185EXPORT_SYMBOL(latent_entropy);
186#endif
187
1da177e4 188/*
13808910 189 * Array of node states.
1da177e4 190 */
13808910
CL
191nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 [N_POSSIBLE] = NODE_MASK_ALL,
193 [N_ONLINE] = { { [0] = 1UL } },
194#ifndef CONFIG_NUMA
195 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
196#ifdef CONFIG_HIGHMEM
197 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 198#endif
20b2f52b 199 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
200 [N_CPU] = { { [0] = 1UL } },
201#endif /* NUMA */
202};
203EXPORT_SYMBOL(node_states);
204
dcce284a 205gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a 206
bb14c2c7
VB
207/*
208 * A cached value of the page's pageblock's migratetype, used when the page is
209 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211 * Also the migratetype set in the page does not necessarily match the pcplist
212 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213 * other index - this ensures that it will be put on the correct CMA freelist.
214 */
215static inline int get_pcppage_migratetype(struct page *page)
216{
217 return page->index;
218}
219
220static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221{
222 page->index = migratetype;
223}
224
d9c23400 225#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 226unsigned int pageblock_order __read_mostly;
d9c23400
MG
227#endif
228
7fef431b
DH
229static void __free_pages_ok(struct page *page, unsigned int order,
230 fpi_t fpi_flags);
a226f6c8 231
1da177e4
LT
232/*
233 * results with 256, 32 in the lowmem_reserve sysctl:
234 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235 * 1G machine -> (16M dma, 784M normal, 224M high)
236 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 238 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
239 *
240 * TBD: should special case ZONE_DMA32 machines here - in those we normally
241 * don't need any ZONE_NORMAL reservation
1da177e4 242 */
62069aac 243static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 244#ifdef CONFIG_ZONE_DMA
d3cda233 245 [ZONE_DMA] = 256,
4b51d669 246#endif
fb0e7942 247#ifdef CONFIG_ZONE_DMA32
d3cda233 248 [ZONE_DMA32] = 256,
fb0e7942 249#endif
d3cda233 250 [ZONE_NORMAL] = 32,
e53ef38d 251#ifdef CONFIG_HIGHMEM
d3cda233 252 [ZONE_HIGHMEM] = 0,
e53ef38d 253#endif
d3cda233 254 [ZONE_MOVABLE] = 0,
2f1b6248 255};
1da177e4 256
9420f89d 257char * const zone_names[MAX_NR_ZONES] = {
4b51d669 258#ifdef CONFIG_ZONE_DMA
2f1b6248 259 "DMA",
4b51d669 260#endif
fb0e7942 261#ifdef CONFIG_ZONE_DMA32
2f1b6248 262 "DMA32",
fb0e7942 263#endif
2f1b6248 264 "Normal",
e53ef38d 265#ifdef CONFIG_HIGHMEM
2a1e274a 266 "HighMem",
e53ef38d 267#endif
2a1e274a 268 "Movable",
033fbae9
DW
269#ifdef CONFIG_ZONE_DEVICE
270 "Device",
271#endif
2f1b6248
CL
272};
273
c999fbd3 274const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
275 "Unmovable",
276 "Movable",
277 "Reclaimable",
278 "HighAtomic",
279#ifdef CONFIG_CMA
280 "CMA",
281#endif
282#ifdef CONFIG_MEMORY_ISOLATION
283 "Isolate",
284#endif
285};
286
cf01724e 287static compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
ae70eddd
AK
288 [NULL_COMPOUND_DTOR] = NULL,
289 [COMPOUND_PAGE_DTOR] = free_compound_page,
9a982250 290#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 291 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 292#endif
f1e61557
KS
293};
294
1da177e4 295int min_free_kbytes = 1024;
42aa83cb 296int user_min_free_kbytes = -1;
e95d372c
KW
297static int watermark_boost_factor __read_mostly = 15000;
298static int watermark_scale_factor = 10;
0ee332c1
TH
299
300/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
301int movable_zone;
302EXPORT_SYMBOL(movable_zone);
c713216d 303
418508c1 304#if MAX_NUMNODES > 1
b9726c26 305unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 306unsigned int nr_online_nodes __read_mostly = 1;
418508c1 307EXPORT_SYMBOL(nr_node_ids);
62bc62a8 308EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
309#endif
310
dcdfdd40
KS
311static bool page_contains_unaccepted(struct page *page, unsigned int order);
312static void accept_page(struct page *page, unsigned int order);
313static bool try_to_accept_memory(struct zone *zone, unsigned int order);
314static inline bool has_unaccepted_memory(void);
315static bool __free_unaccepted(struct page *page);
316
9ef9acb0
MG
317int page_group_by_mobility_disabled __read_mostly;
318
3a80a7fa 319#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
320/*
321 * During boot we initialize deferred pages on-demand, as needed, but once
322 * page_alloc_init_late() has finished, the deferred pages are all initialized,
323 * and we can permanently disable that path.
324 */
9420f89d 325DEFINE_STATIC_KEY_TRUE(deferred_pages);
3c0c12cc 326
94ae8b83 327static inline bool deferred_pages_enabled(void)
3c0c12cc 328{
94ae8b83 329 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
330}
331
3a80a7fa 332/*
9420f89d
MRI
333 * deferred_grow_zone() is __init, but it is called from
334 * get_page_from_freelist() during early boot until deferred_pages permanently
335 * disables this call. This is why we have refdata wrapper to avoid warning,
336 * and to ensure that the function body gets unloaded.
3a80a7fa 337 */
9420f89d
MRI
338static bool __ref
339_deferred_grow_zone(struct zone *zone, unsigned int order)
3a80a7fa 340{
9420f89d 341 return deferred_grow_zone(zone, order);
3a80a7fa
MG
342}
343#else
94ae8b83 344static inline bool deferred_pages_enabled(void)
2c335680 345{
94ae8b83 346 return false;
2c335680 347}
9420f89d 348#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
3a80a7fa 349
0b423ca2 350/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 351static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
352 unsigned long pfn)
353{
354#ifdef CONFIG_SPARSEMEM
f1eca35a 355 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
356#else
357 return page_zone(page)->pageblock_flags;
358#endif /* CONFIG_SPARSEMEM */
359}
360
ca891f41 361static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
362{
363#ifdef CONFIG_SPARSEMEM
364 pfn &= (PAGES_PER_SECTION-1);
0b423ca2 365#else
4f9bc69a 366 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
0b423ca2 367#endif /* CONFIG_SPARSEMEM */
399b795b 368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
369}
370
a04d12c2
KS
371/**
372 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
373 * @page: The page within the block of interest
374 * @pfn: The target page frame number
375 * @mask: mask of bits that the caller is interested in
376 *
377 * Return: pageblock_bits flags
378 */
379unsigned long get_pfnblock_flags_mask(const struct page *page,
380 unsigned long pfn, unsigned long mask)
0b423ca2
MG
381{
382 unsigned long *bitmap;
383 unsigned long bitidx, word_bitidx;
384 unsigned long word;
385
386 bitmap = get_pageblock_bitmap(page, pfn);
387 bitidx = pfn_to_bitidx(page, pfn);
388 word_bitidx = bitidx / BITS_PER_LONG;
389 bitidx &= (BITS_PER_LONG-1);
1c563432
MK
390 /*
391 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
392 * a consistent read of the memory array, so that results, even though
393 * racy, are not corrupted.
394 */
395 word = READ_ONCE(bitmap[word_bitidx]);
d93d5ab9 396 return (word >> bitidx) & mask;
0b423ca2
MG
397}
398
ca891f41
MWO
399static __always_inline int get_pfnblock_migratetype(const struct page *page,
400 unsigned long pfn)
0b423ca2 401{
a04d12c2 402 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
403}
404
405/**
406 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
407 * @page: The page within the block of interest
408 * @flags: The flags to set
409 * @pfn: The target page frame number
0b423ca2
MG
410 * @mask: mask of bits that the caller is interested in
411 */
412void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
413 unsigned long pfn,
0b423ca2
MG
414 unsigned long mask)
415{
416 unsigned long *bitmap;
417 unsigned long bitidx, word_bitidx;
04ec0061 418 unsigned long word;
0b423ca2
MG
419
420 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 421 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
422
423 bitmap = get_pageblock_bitmap(page, pfn);
424 bitidx = pfn_to_bitidx(page, pfn);
425 word_bitidx = bitidx / BITS_PER_LONG;
426 bitidx &= (BITS_PER_LONG-1);
427
428 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
429
d93d5ab9
WY
430 mask <<= bitidx;
431 flags <<= bitidx;
0b423ca2
MG
432
433 word = READ_ONCE(bitmap[word_bitidx]);
04ec0061
UB
434 do {
435 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
0b423ca2 436}
3a80a7fa 437
ee6f509c 438void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 439{
5d0f3f72
KM
440 if (unlikely(page_group_by_mobility_disabled &&
441 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
442 migratetype = MIGRATE_UNMOVABLE;
443
d93d5ab9 444 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 445 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
446}
447
13e7444b 448#ifdef CONFIG_DEBUG_VM
c6a57e19 449static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 450{
82d9b8c8 451 int ret;
bdc8cb98
DH
452 unsigned seq;
453 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 454 unsigned long sp, start_pfn;
c6a57e19 455
bdc8cb98
DH
456 do {
457 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
458 start_pfn = zone->zone_start_pfn;
459 sp = zone->spanned_pages;
82d9b8c8 460 ret = !zone_spans_pfn(zone, pfn);
bdc8cb98
DH
461 } while (zone_span_seqretry(zone, seq));
462
b5e6a5a2 463 if (ret)
613813e8
DH
464 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
465 pfn, zone_to_nid(zone), zone->name,
466 start_pfn, start_pfn + sp);
b5e6a5a2 467
bdc8cb98 468 return ret;
c6a57e19
DH
469}
470
c6a57e19
DH
471/*
472 * Temporary debugging check for pages not lying within a given zone.
473 */
d73d3c9f 474static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
475{
476 if (page_outside_zone_boundaries(zone, page))
1da177e4 477 return 1;
5b855aa3 478 if (zone != page_zone(page))
c6a57e19
DH
479 return 1;
480
1da177e4
LT
481 return 0;
482}
13e7444b 483#else
d73d3c9f 484static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
485{
486 return 0;
487}
488#endif
489
82a3241a 490static void bad_page(struct page *page, const char *reason)
1da177e4 491{
d936cf9b
HD
492 static unsigned long resume;
493 static unsigned long nr_shown;
494 static unsigned long nr_unshown;
495
496 /*
497 * Allow a burst of 60 reports, then keep quiet for that minute;
498 * or allow a steady drip of one report per second.
499 */
500 if (nr_shown == 60) {
501 if (time_before(jiffies, resume)) {
502 nr_unshown++;
503 goto out;
504 }
505 if (nr_unshown) {
ff8e8116 506 pr_alert(
1e9e6365 507 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
508 nr_unshown);
509 nr_unshown = 0;
510 }
511 nr_shown = 0;
512 }
513 if (nr_shown++ == 0)
514 resume = jiffies + 60 * HZ;
515
ff8e8116 516 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 517 current->comm, page_to_pfn(page));
d2f07ec0 518 dump_page(page, reason);
3dc14741 519
4f31888c 520 print_modules();
1da177e4 521 dump_stack();
d936cf9b 522out:
8cc3b392 523 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 524 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 525 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
526}
527
44042b44
MG
528static inline unsigned int order_to_pindex(int migratetype, int order)
529{
44042b44
MG
530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
531 if (order > PAGE_ALLOC_COSTLY_ORDER) {
532 VM_BUG_ON(order != pageblock_order);
5d0a661d 533 return NR_LOWORDER_PCP_LISTS;
44042b44
MG
534 }
535#else
536 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537#endif
538
c1dc69e6 539 return (MIGRATE_PCPTYPES * order) + migratetype;
44042b44
MG
540}
541
542static inline int pindex_to_order(unsigned int pindex)
543{
544 int order = pindex / MIGRATE_PCPTYPES;
545
546#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5d0a661d 547 if (pindex == NR_LOWORDER_PCP_LISTS)
44042b44 548 order = pageblock_order;
44042b44
MG
549#else
550 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
551#endif
552
553 return order;
554}
555
556static inline bool pcp_allowed_order(unsigned int order)
557{
558 if (order <= PAGE_ALLOC_COSTLY_ORDER)
559 return true;
560#ifdef CONFIG_TRANSPARENT_HUGEPAGE
561 if (order == pageblock_order)
562 return true;
563#endif
564 return false;
565}
566
21d02f8f
MG
567static inline void free_the_page(struct page *page, unsigned int order)
568{
44042b44
MG
569 if (pcp_allowed_order(order)) /* Via pcp? */
570 free_unref_page(page, order);
21d02f8f
MG
571 else
572 __free_pages_ok(page, order, FPI_NONE);
573}
574
1da177e4
LT
575/*
576 * Higher-order pages are called "compound pages". They are structured thusly:
577 *
1d798ca3 578 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 579 *
1d798ca3
KS
580 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
581 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 582 *
1d798ca3
KS
583 * The first tail page's ->compound_dtor holds the offset in array of compound
584 * page destructors. See compound_page_dtors.
1da177e4 585 *
1d798ca3 586 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 587 * This usage means that zero-order pages may not be compound.
1da177e4 588 */
d98c7a09 589
9a982250 590void free_compound_page(struct page *page)
d98c7a09 591{
bbc6b703 592 mem_cgroup_uncharge(page_folio(page));
44042b44 593 free_the_page(page, compound_order(page));
d98c7a09
HD
594}
595
d00181b9 596void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
597{
598 int i;
599 int nr_pages = 1 << order;
600
18229df5 601 __SetPageHead(page);
5b24eeef
JM
602 for (i = 1; i < nr_pages; i++)
603 prep_compound_tail(page, i);
1378a5ee 604
5b24eeef 605 prep_compound_head(page, order);
18229df5
AW
606}
607
5375336c
MWO
608void destroy_large_folio(struct folio *folio)
609{
a60d5942 610 enum compound_dtor_id dtor = folio->_folio_dtor;
dd6fa0b6
MWO
611
612 if (folio_test_hugetlb(folio)) {
613 free_huge_page(&folio->page);
614 return;
615 }
5375336c
MWO
616
617 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
618 compound_page_dtors[dtor](&folio->page);
619}
620
ab130f91 621static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 622{
4c21e2f2 623 set_page_private(page, order);
676165a8 624 __SetPageBuddy(page);
1da177e4
LT
625}
626
5e1f0f09
MG
627#ifdef CONFIG_COMPACTION
628static inline struct capture_control *task_capc(struct zone *zone)
629{
630 struct capture_control *capc = current->capture_control;
631
deba0487 632 return unlikely(capc) &&
5e1f0f09
MG
633 !(current->flags & PF_KTHREAD) &&
634 !capc->page &&
deba0487 635 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
636}
637
638static inline bool
639compaction_capture(struct capture_control *capc, struct page *page,
640 int order, int migratetype)
641{
642 if (!capc || order != capc->cc->order)
643 return false;
644
645 /* Do not accidentally pollute CMA or isolated regions*/
646 if (is_migrate_cma(migratetype) ||
647 is_migrate_isolate(migratetype))
648 return false;
649
650 /*
f0953a1b 651 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
652 * This might let an unmovable request use a reclaimable pageblock
653 * and vice-versa but no more than normal fallback logic which can
654 * have trouble finding a high-order free page.
655 */
656 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
657 return false;
658
659 capc->page = page;
660 return true;
661}
662
663#else
664static inline struct capture_control *task_capc(struct zone *zone)
665{
666 return NULL;
667}
668
669static inline bool
670compaction_capture(struct capture_control *capc, struct page *page,
671 int order, int migratetype)
672{
673 return false;
674}
675#endif /* CONFIG_COMPACTION */
676
6ab01363
AD
677/* Used for pages not on another list */
678static inline void add_to_free_list(struct page *page, struct zone *zone,
679 unsigned int order, int migratetype)
680{
681 struct free_area *area = &zone->free_area[order];
682
bf75f200 683 list_add(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
684 area->nr_free++;
685}
686
687/* Used for pages not on another list */
688static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
689 unsigned int order, int migratetype)
690{
691 struct free_area *area = &zone->free_area[order];
692
bf75f200 693 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
694 area->nr_free++;
695}
696
293ffa5e
DH
697/*
698 * Used for pages which are on another list. Move the pages to the tail
699 * of the list - so the moved pages won't immediately be considered for
700 * allocation again (e.g., optimization for memory onlining).
701 */
6ab01363
AD
702static inline void move_to_free_list(struct page *page, struct zone *zone,
703 unsigned int order, int migratetype)
704{
705 struct free_area *area = &zone->free_area[order];
706
bf75f200 707 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
708}
709
710static inline void del_page_from_free_list(struct page *page, struct zone *zone,
711 unsigned int order)
712{
36e66c55
AD
713 /* clear reported state and update reported page count */
714 if (page_reported(page))
715 __ClearPageReported(page);
716
bf75f200 717 list_del(&page->buddy_list);
6ab01363
AD
718 __ClearPageBuddy(page);
719 set_page_private(page, 0);
720 zone->free_area[order].nr_free--;
721}
722
5d671eb4
MRI
723static inline struct page *get_page_from_free_area(struct free_area *area,
724 int migratetype)
725{
726 return list_first_entry_or_null(&area->free_list[migratetype],
1bf61092 727 struct page, buddy_list);
5d671eb4
MRI
728}
729
a2129f24
AD
730/*
731 * If this is not the largest possible page, check if the buddy
732 * of the next-highest order is free. If it is, it's possible
733 * that pages are being freed that will coalesce soon. In case,
734 * that is happening, add the free page to the tail of the list
735 * so it's less likely to be used soon and more likely to be merged
736 * as a higher order page
737 */
738static inline bool
739buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
740 struct page *page, unsigned int order)
741{
8170ac47
ZY
742 unsigned long higher_page_pfn;
743 struct page *higher_page;
a2129f24 744
23baf831 745 if (order >= MAX_ORDER - 1)
a2129f24
AD
746 return false;
747
8170ac47
ZY
748 higher_page_pfn = buddy_pfn & pfn;
749 higher_page = page + (higher_page_pfn - pfn);
a2129f24 750
8170ac47
ZY
751 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
752 NULL) != NULL;
a2129f24
AD
753}
754
1da177e4
LT
755/*
756 * Freeing function for a buddy system allocator.
757 *
758 * The concept of a buddy system is to maintain direct-mapped table
759 * (containing bit values) for memory blocks of various "orders".
760 * The bottom level table contains the map for the smallest allocatable
761 * units of memory (here, pages), and each level above it describes
762 * pairs of units from the levels below, hence, "buddies".
763 * At a high level, all that happens here is marking the table entry
764 * at the bottom level available, and propagating the changes upward
765 * as necessary, plus some accounting needed to play nicely with other
766 * parts of the VM system.
767 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
768 * free pages of length of (1 << order) and marked with PageBuddy.
769 * Page's order is recorded in page_private(page) field.
1da177e4 770 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
771 * other. That is, if we allocate a small block, and both were
772 * free, the remainder of the region must be split into blocks.
1da177e4 773 * If a block is freed, and its buddy is also free, then this
5f63b720 774 * triggers coalescing into a block of larger size.
1da177e4 775 *
6d49e352 776 * -- nyc
1da177e4
LT
777 */
778
48db57f8 779static inline void __free_one_page(struct page *page,
dc4b0caf 780 unsigned long pfn,
ed0ae21d 781 struct zone *zone, unsigned int order,
f04a5d5d 782 int migratetype, fpi_t fpi_flags)
1da177e4 783{
a2129f24 784 struct capture_control *capc = task_capc(zone);
dae37a5d 785 unsigned long buddy_pfn = 0;
a2129f24 786 unsigned long combined_pfn;
a2129f24
AD
787 struct page *buddy;
788 bool to_tail;
d9dddbf5 789
d29bb978 790 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 791 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 792
ed0ae21d 793 VM_BUG_ON(migratetype == -1);
d9dddbf5 794 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 795 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 796
76741e77 797 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 798 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 799
23baf831 800 while (order < MAX_ORDER) {
5e1f0f09
MG
801 if (compaction_capture(capc, page, order, migratetype)) {
802 __mod_zone_freepage_state(zone, -(1 << order),
803 migratetype);
804 return;
805 }
13ad59df 806
8170ac47
ZY
807 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
808 if (!buddy)
d9dddbf5 809 goto done_merging;
bb0e28eb
ZY
810
811 if (unlikely(order >= pageblock_order)) {
812 /*
813 * We want to prevent merge between freepages on pageblock
814 * without fallbacks and normal pageblock. Without this,
815 * pageblock isolation could cause incorrect freepage or CMA
816 * accounting or HIGHATOMIC accounting.
817 */
b5ffd297 818 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
bb0e28eb
ZY
819
820 if (migratetype != buddy_mt
821 && (!migratetype_is_mergeable(migratetype) ||
822 !migratetype_is_mergeable(buddy_mt)))
823 goto done_merging;
824 }
825
c0a32fc5
SG
826 /*
827 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
828 * merge with it and move up one order.
829 */
b03641af 830 if (page_is_guard(buddy))
2847cf95 831 clear_page_guard(zone, buddy, order, migratetype);
b03641af 832 else
6ab01363 833 del_page_from_free_list(buddy, zone, order);
76741e77
VB
834 combined_pfn = buddy_pfn & pfn;
835 page = page + (combined_pfn - pfn);
836 pfn = combined_pfn;
1da177e4
LT
837 order++;
838 }
d9dddbf5
VB
839
840done_merging:
ab130f91 841 set_buddy_order(page, order);
6dda9d55 842
47b6a24a
DH
843 if (fpi_flags & FPI_TO_TAIL)
844 to_tail = true;
845 else if (is_shuffle_order(order))
a2129f24 846 to_tail = shuffle_pick_tail();
97500a4a 847 else
a2129f24 848 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 849
a2129f24 850 if (to_tail)
6ab01363 851 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 852 else
6ab01363 853 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
854
855 /* Notify page reporting subsystem of freed page */
f04a5d5d 856 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 857 page_reporting_notify_free(order);
1da177e4
LT
858}
859
b2c9e2fb
ZY
860/**
861 * split_free_page() -- split a free page at split_pfn_offset
862 * @free_page: the original free page
863 * @order: the order of the page
864 * @split_pfn_offset: split offset within the page
865 *
86d28b07
ZY
866 * Return -ENOENT if the free page is changed, otherwise 0
867 *
b2c9e2fb
ZY
868 * It is used when the free page crosses two pageblocks with different migratetypes
869 * at split_pfn_offset within the page. The split free page will be put into
870 * separate migratetype lists afterwards. Otherwise, the function achieves
871 * nothing.
872 */
86d28b07
ZY
873int split_free_page(struct page *free_page,
874 unsigned int order, unsigned long split_pfn_offset)
b2c9e2fb
ZY
875{
876 struct zone *zone = page_zone(free_page);
877 unsigned long free_page_pfn = page_to_pfn(free_page);
878 unsigned long pfn;
879 unsigned long flags;
880 int free_page_order;
86d28b07
ZY
881 int mt;
882 int ret = 0;
b2c9e2fb 883
88ee1343 884 if (split_pfn_offset == 0)
86d28b07 885 return ret;
88ee1343 886
b2c9e2fb 887 spin_lock_irqsave(&zone->lock, flags);
86d28b07
ZY
888
889 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
890 ret = -ENOENT;
891 goto out;
892 }
893
b5ffd297 894 mt = get_pfnblock_migratetype(free_page, free_page_pfn);
86d28b07
ZY
895 if (likely(!is_migrate_isolate(mt)))
896 __mod_zone_freepage_state(zone, -(1UL << order), mt);
897
b2c9e2fb
ZY
898 del_page_from_free_list(free_page, zone, order);
899 for (pfn = free_page_pfn;
900 pfn < free_page_pfn + (1UL << order);) {
901 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
902
86d28b07 903 free_page_order = min_t(unsigned int,
88ee1343
ZY
904 pfn ? __ffs(pfn) : order,
905 __fls(split_pfn_offset));
b2c9e2fb
ZY
906 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
907 mt, FPI_NONE);
908 pfn += 1UL << free_page_order;
909 split_pfn_offset -= (1UL << free_page_order);
910 /* we have done the first part, now switch to second part */
911 if (split_pfn_offset == 0)
912 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
913 }
86d28b07 914out:
b2c9e2fb 915 spin_unlock_irqrestore(&zone->lock, flags);
86d28b07 916 return ret;
b2c9e2fb 917}
7bfec6f4
MG
918/*
919 * A bad page could be due to a number of fields. Instead of multiple branches,
920 * try and check multiple fields with one check. The caller must do a detailed
921 * check if necessary.
922 */
923static inline bool page_expected_state(struct page *page,
924 unsigned long check_flags)
925{
926 if (unlikely(atomic_read(&page->_mapcount) != -1))
927 return false;
928
929 if (unlikely((unsigned long)page->mapping |
930 page_ref_count(page) |
931#ifdef CONFIG_MEMCG
48060834 932 page->memcg_data |
7bfec6f4
MG
933#endif
934 (page->flags & check_flags)))
935 return false;
936
937 return true;
938}
939
58b7f119 940static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 941{
82a3241a 942 const char *bad_reason = NULL;
f0b791a3 943
53f9263b 944 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
945 bad_reason = "nonzero mapcount";
946 if (unlikely(page->mapping != NULL))
947 bad_reason = "non-NULL mapping";
fe896d18 948 if (unlikely(page_ref_count(page) != 0))
0139aa7b 949 bad_reason = "nonzero _refcount";
58b7f119
WY
950 if (unlikely(page->flags & flags)) {
951 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
952 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
953 else
954 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 955 }
9edad6ea 956#ifdef CONFIG_MEMCG
48060834 957 if (unlikely(page->memcg_data))
9edad6ea
JW
958 bad_reason = "page still charged to cgroup";
959#endif
58b7f119
WY
960 return bad_reason;
961}
962
a8368cd8 963static void free_page_is_bad_report(struct page *page)
58b7f119
WY
964{
965 bad_page(page,
966 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
967}
968
a8368cd8 969static inline bool free_page_is_bad(struct page *page)
bb552ac6 970{
da838d4f 971 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
a8368cd8 972 return false;
bb552ac6
MG
973
974 /* Something has gone sideways, find it */
a8368cd8
AM
975 free_page_is_bad_report(page);
976 return true;
1da177e4
LT
977}
978
ecbb490d
KW
979static inline bool is_check_pages_enabled(void)
980{
981 return static_branch_unlikely(&check_pages_enabled);
982}
983
8666925c 984static int free_tail_page_prepare(struct page *head_page, struct page *page)
4db7548c 985{
94688e8e 986 struct folio *folio = (struct folio *)head_page;
4db7548c
MG
987 int ret = 1;
988
989 /*
990 * We rely page->lru.next never has bit 0 set, unless the page
991 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
992 */
993 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
994
ecbb490d 995 if (!is_check_pages_enabled()) {
4db7548c
MG
996 ret = 0;
997 goto out;
998 }
999 switch (page - head_page) {
1000 case 1:
cb67f428 1001 /* the first tail page: these may be in place of ->mapping */
65a689f3
MWO
1002 if (unlikely(folio_entire_mapcount(folio))) {
1003 bad_page(page, "nonzero entire_mapcount");
4db7548c
MG
1004 goto out;
1005 }
65a689f3
MWO
1006 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1007 bad_page(page, "nonzero nr_pages_mapped");
cb67f428
HD
1008 goto out;
1009 }
94688e8e
MWO
1010 if (unlikely(atomic_read(&folio->_pincount))) {
1011 bad_page(page, "nonzero pincount");
cb67f428
HD
1012 goto out;
1013 }
4db7548c
MG
1014 break;
1015 case 2:
1016 /*
1017 * the second tail page: ->mapping is
fa3015b7 1018 * deferred_list.next -- ignore value.
4db7548c
MG
1019 */
1020 break;
1021 default:
1022 if (page->mapping != TAIL_MAPPING) {
82a3241a 1023 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1024 goto out;
1025 }
1026 break;
1027 }
1028 if (unlikely(!PageTail(page))) {
82a3241a 1029 bad_page(page, "PageTail not set");
4db7548c
MG
1030 goto out;
1031 }
1032 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1033 bad_page(page, "compound_head not consistent");
4db7548c
MG
1034 goto out;
1035 }
1036 ret = 0;
1037out:
1038 page->mapping = NULL;
1039 clear_compound_head(page);
1040 return ret;
1041}
1042
94ae8b83
AK
1043/*
1044 * Skip KASAN memory poisoning when either:
1045 *
0a54864f
PC
1046 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1047 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1048 * using page tags instead (see below).
1049 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1050 * that error detection is disabled for accesses via the page address.
1051 *
1052 * Pages will have match-all tags in the following circumstances:
1053 *
1054 * 1. Pages are being initialized for the first time, including during deferred
1055 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1056 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1057 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1058 * 3. The allocation was excluded from being checked due to sampling,
44383cef 1059 * see the call to kasan_unpoison_pages.
94ae8b83
AK
1060 *
1061 * Poisoning pages during deferred memory init will greatly lengthen the
1062 * process and cause problem in large memory systems as the deferred pages
1063 * initialization is done with interrupt disabled.
1064 *
1065 * Assuming that there will be no reference to those newly initialized
1066 * pages before they are ever allocated, this should have no effect on
1067 * KASAN memory tracking as the poison will be properly inserted at page
1068 * allocation time. The only corner case is when pages are allocated by
1069 * on-demand allocation and then freed again before the deferred pages
1070 * initialization is done, but this is not likely to happen.
1071 */
1072static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1073{
0a54864f
PC
1074 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1075 return deferred_pages_enabled();
1076
1077 return page_kasan_tag(page) == 0xff;
94ae8b83
AK
1078}
1079
aeaec8e2 1080static void kernel_init_pages(struct page *page, int numpages)
6471384a
AP
1081{
1082 int i;
1083
9e15afa5
QC
1084 /* s390's use of memset() could override KASAN redzones. */
1085 kasan_disable_current();
d9da8f6c
AK
1086 for (i = 0; i < numpages; i++)
1087 clear_highpage_kasan_tagged(page + i);
9e15afa5 1088 kasan_enable_current();
6471384a
AP
1089}
1090
e2769dbd 1091static __always_inline bool free_pages_prepare(struct page *page,
700d2e9a 1092 unsigned int order, fpi_t fpi_flags)
4db7548c 1093{
e2769dbd 1094 int bad = 0;
f446883d 1095 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
c3525330 1096 bool init = want_init_on_free();
4db7548c 1097
4db7548c
MG
1098 VM_BUG_ON_PAGE(PageTail(page), page);
1099
e2769dbd 1100 trace_mm_page_free(page, order);
b073d7f8 1101 kmsan_free_page(page, order);
e2769dbd 1102
79f5f8fa
OS
1103 if (unlikely(PageHWPoison(page)) && !order) {
1104 /*
1105 * Do not let hwpoison pages hit pcplists/buddy
1106 * Untie memcg state and reset page's owner
1107 */
f7a449f7 1108 if (memcg_kmem_online() && PageMemcgKmem(page))
79f5f8fa
OS
1109 __memcg_kmem_uncharge_page(page, order);
1110 reset_page_owner(page, order);
df4e817b 1111 page_table_check_free(page, order);
79f5f8fa
OS
1112 return false;
1113 }
1114
e2769dbd
MG
1115 /*
1116 * Check tail pages before head page information is cleared to
1117 * avoid checking PageCompound for order-0 pages.
1118 */
1119 if (unlikely(order)) {
1120 bool compound = PageCompound(page);
1121 int i;
1122
1123 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1124
cb67f428 1125 if (compound)
eac96c3e 1126 ClearPageHasHWPoisoned(page);
e2769dbd
MG
1127 for (i = 1; i < (1 << order); i++) {
1128 if (compound)
8666925c 1129 bad += free_tail_page_prepare(page, page + i);
fce0b421 1130 if (is_check_pages_enabled()) {
8666925c 1131 if (free_page_is_bad(page + i)) {
700d2e9a
VB
1132 bad++;
1133 continue;
1134 }
e2769dbd
MG
1135 }
1136 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1137 }
1138 }
bda807d4 1139 if (PageMappingFlags(page))
4db7548c 1140 page->mapping = NULL;
f7a449f7 1141 if (memcg_kmem_online() && PageMemcgKmem(page))
f4b00eab 1142 __memcg_kmem_uncharge_page(page, order);
fce0b421 1143 if (is_check_pages_enabled()) {
700d2e9a
VB
1144 if (free_page_is_bad(page))
1145 bad++;
1146 if (bad)
1147 return false;
1148 }
4db7548c 1149
e2769dbd
MG
1150 page_cpupid_reset_last(page);
1151 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1152 reset_page_owner(page, order);
df4e817b 1153 page_table_check_free(page, order);
4db7548c
MG
1154
1155 if (!PageHighMem(page)) {
1156 debug_check_no_locks_freed(page_address(page),
e2769dbd 1157 PAGE_SIZE << order);
4db7548c 1158 debug_check_no_obj_freed(page_address(page),
e2769dbd 1159 PAGE_SIZE << order);
4db7548c 1160 }
6471384a 1161
8db26a3d
VB
1162 kernel_poison_pages(page, 1 << order);
1163
f9d79e8d 1164 /*
1bb5eab3 1165 * As memory initialization might be integrated into KASAN,
7c13c163 1166 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1167 * kept together to avoid discrepancies in behavior.
1168 *
f9d79e8d
AK
1169 * With hardware tag-based KASAN, memory tags must be set before the
1170 * page becomes unavailable via debug_pagealloc or arch_free_page.
1171 */
f446883d 1172 if (!skip_kasan_poison) {
c3525330 1173 kasan_poison_pages(page, order, init);
f9d79e8d 1174
db8a0477
AK
1175 /* Memory is already initialized if KASAN did it internally. */
1176 if (kasan_has_integrated_init())
1177 init = false;
1178 }
1179 if (init)
aeaec8e2 1180 kernel_init_pages(page, 1 << order);
db8a0477 1181
234fdce8
QC
1182 /*
1183 * arch_free_page() can make the page's contents inaccessible. s390
1184 * does this. So nothing which can access the page's contents should
1185 * happen after this.
1186 */
1187 arch_free_page(page, order);
1188
77bc7fd6 1189 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1190
4db7548c
MG
1191 return true;
1192}
1193
1da177e4 1194/*
5f8dcc21 1195 * Frees a number of pages from the PCP lists
7cba630b 1196 * Assumes all pages on list are in same zone.
207f36ee 1197 * count is the number of pages to free.
1da177e4 1198 */
5f8dcc21 1199static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1200 struct per_cpu_pages *pcp,
1201 int pindex)
1da177e4 1202{
57490774 1203 unsigned long flags;
44042b44 1204 unsigned int order;
3777999d 1205 bool isolated_pageblocks;
8b10b465 1206 struct page *page;
f2260e6b 1207
88e8ac11
CTR
1208 /*
1209 * Ensure proper count is passed which otherwise would stuck in the
1210 * below while (list_empty(list)) loop.
1211 */
1212 count = min(pcp->count, count);
d61372bc
MG
1213
1214 /* Ensure requested pindex is drained first. */
1215 pindex = pindex - 1;
1216
57490774 1217 spin_lock_irqsave(&zone->lock, flags);
8b10b465
MG
1218 isolated_pageblocks = has_isolate_pageblock(zone);
1219
44042b44 1220 while (count > 0) {
5f8dcc21 1221 struct list_head *list;
fd56eef2 1222 int nr_pages;
5f8dcc21 1223
fd56eef2 1224 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1225 do {
f142b2c2
KS
1226 if (++pindex > NR_PCP_LISTS - 1)
1227 pindex = 0;
44042b44 1228 list = &pcp->lists[pindex];
f142b2c2 1229 } while (list_empty(list));
48db57f8 1230
44042b44 1231 order = pindex_to_order(pindex);
fd56eef2 1232 nr_pages = 1 << order;
a6f9edd6 1233 do {
8b10b465
MG
1234 int mt;
1235
bf75f200 1236 page = list_last_entry(list, struct page, pcp_list);
8b10b465
MG
1237 mt = get_pcppage_migratetype(page);
1238
0a5f4e5b 1239 /* must delete to avoid corrupting pcp list */
bf75f200 1240 list_del(&page->pcp_list);
fd56eef2
MG
1241 count -= nr_pages;
1242 pcp->count -= nr_pages;
aa016d14 1243
8b10b465
MG
1244 /* MIGRATE_ISOLATE page should not go to pcplists */
1245 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1246 /* Pageblock could have been isolated meanwhile */
1247 if (unlikely(isolated_pageblocks))
1248 mt = get_pageblock_migratetype(page);
0a5f4e5b 1249
8b10b465
MG
1250 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1251 trace_mm_page_pcpu_drain(page, order, mt);
1252 } while (count > 0 && !list_empty(list));
0a5f4e5b 1253 }
8b10b465 1254
57490774 1255 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4
LT
1256}
1257
dc4b0caf
MG
1258static void free_one_page(struct zone *zone,
1259 struct page *page, unsigned long pfn,
7aeb09f9 1260 unsigned int order,
7fef431b 1261 int migratetype, fpi_t fpi_flags)
1da177e4 1262{
df1acc85
MG
1263 unsigned long flags;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1266 if (unlikely(has_isolate_pageblock(zone) ||
1267 is_migrate_isolate(migratetype))) {
1268 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1269 }
7fef431b 1270 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1271 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1272}
1273
7fef431b
DH
1274static void __free_pages_ok(struct page *page, unsigned int order,
1275 fpi_t fpi_flags)
ec95f53a 1276{
d34b0733 1277 unsigned long flags;
95e34412 1278 int migratetype;
dc4b0caf 1279 unsigned long pfn = page_to_pfn(page);
56f0e661 1280 struct zone *zone = page_zone(page);
ec95f53a 1281
700d2e9a 1282 if (!free_pages_prepare(page, order, fpi_flags))
ec95f53a
KM
1283 return;
1284
ac4b2901
DW
1285 /*
1286 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1287 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1288 * This will reduce the lock holding time.
1289 */
cfc47a28 1290 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1291
56f0e661 1292 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1293 if (unlikely(has_isolate_pageblock(zone) ||
1294 is_migrate_isolate(migratetype))) {
1295 migratetype = get_pfnblock_migratetype(page, pfn);
1296 }
1297 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1298 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1299
d34b0733 1300 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1301}
1302
a9cd410a 1303void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1304{
c3993076 1305 unsigned int nr_pages = 1 << order;
e2d0bd2b 1306 struct page *p = page;
c3993076 1307 unsigned int loop;
a226f6c8 1308
7fef431b
DH
1309 /*
1310 * When initializing the memmap, __init_single_page() sets the refcount
1311 * of all pages to 1 ("allocated"/"not free"). We have to set the
1312 * refcount of all involved pages to 0.
1313 */
e2d0bd2b
YL
1314 prefetchw(p);
1315 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1316 prefetchw(p + 1);
c3993076
JW
1317 __ClearPageReserved(p);
1318 set_page_count(p, 0);
a226f6c8 1319 }
e2d0bd2b
YL
1320 __ClearPageReserved(p);
1321 set_page_count(p, 0);
c3993076 1322
9705bea5 1323 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b 1324
dcdfdd40
KS
1325 if (page_contains_unaccepted(page, order)) {
1326 if (order == MAX_ORDER && __free_unaccepted(page))
1327 return;
1328
1329 accept_page(page, order);
1330 }
1331
7fef431b
DH
1332 /*
1333 * Bypass PCP and place fresh pages right to the tail, primarily
1334 * relevant for memory onlining.
1335 */
0a54864f 1336 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1337}
1338
7cf91a98
JK
1339/*
1340 * Check that the whole (or subset of) a pageblock given by the interval of
1341 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1342 * with the migration of free compaction scanner.
7cf91a98
JK
1343 *
1344 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1345 *
1346 * It's possible on some configurations to have a setup like node0 node1 node0
1347 * i.e. it's possible that all pages within a zones range of pages do not
1348 * belong to a single zone. We assume that a border between node0 and node1
1349 * can occur within a single pageblock, but not a node0 node1 node0
1350 * interleaving within a single pageblock. It is therefore sufficient to check
1351 * the first and last page of a pageblock and avoid checking each individual
1352 * page in a pageblock.
65f67a3e
BW
1353 *
1354 * Note: the function may return non-NULL struct page even for a page block
1355 * which contains a memory hole (i.e. there is no physical memory for a subset
1356 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1357 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1358 * even though the start pfn is online and valid. This should be safe most of
1359 * the time because struct pages are still initialized via init_unavailable_range()
1360 * and pfn walkers shouldn't touch any physical memory range for which they do
1361 * not recognize any specific metadata in struct pages.
7cf91a98
JK
1362 */
1363struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1364 unsigned long end_pfn, struct zone *zone)
1365{
1366 struct page *start_page;
1367 struct page *end_page;
1368
1369 /* end_pfn is one past the range we are checking */
1370 end_pfn--;
1371
3c4322c9 1372 if (!pfn_valid(end_pfn))
7cf91a98
JK
1373 return NULL;
1374
2d070eab
MH
1375 start_page = pfn_to_online_page(start_pfn);
1376 if (!start_page)
1377 return NULL;
7cf91a98
JK
1378
1379 if (page_zone(start_page) != zone)
1380 return NULL;
1381
1382 end_page = pfn_to_page(end_pfn);
1383
1384 /* This gives a shorter code than deriving page_zone(end_page) */
1385 if (page_zone_id(start_page) != page_zone_id(end_page))
1386 return NULL;
1387
1388 return start_page;
1389}
1390
2f47a91f 1391/*
9420f89d
MRI
1392 * The order of subdivision here is critical for the IO subsystem.
1393 * Please do not alter this order without good reasons and regression
1394 * testing. Specifically, as large blocks of memory are subdivided,
1395 * the order in which smaller blocks are delivered depends on the order
1396 * they're subdivided in this function. This is the primary factor
1397 * influencing the order in which pages are delivered to the IO
1398 * subsystem according to empirical testing, and this is also justified
1399 * by considering the behavior of a buddy system containing a single
1400 * large block of memory acted on by a series of small allocations.
1401 * This behavior is a critical factor in sglist merging's success.
80b1f41c 1402 *
9420f89d 1403 * -- nyc
2f47a91f 1404 */
9420f89d
MRI
1405static inline void expand(struct zone *zone, struct page *page,
1406 int low, int high, int migratetype)
2f47a91f 1407{
9420f89d 1408 unsigned long size = 1 << high;
2f47a91f 1409
9420f89d
MRI
1410 while (high > low) {
1411 high--;
1412 size >>= 1;
1413 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2f47a91f 1414
9420f89d
MRI
1415 /*
1416 * Mark as guard pages (or page), that will allow to
1417 * merge back to allocator when buddy will be freed.
1418 * Corresponding page table entries will not be touched,
1419 * pages will stay not present in virtual address space
1420 */
1421 if (set_page_guard(zone, &page[size], high, migratetype))
2f47a91f 1422 continue;
9420f89d
MRI
1423
1424 add_to_free_list(&page[size], zone, high, migratetype);
1425 set_buddy_order(&page[size], high);
2f47a91f 1426 }
2f47a91f
PT
1427}
1428
9420f89d 1429static void check_new_page_bad(struct page *page)
0e56acae 1430{
9420f89d
MRI
1431 if (unlikely(page->flags & __PG_HWPOISON)) {
1432 /* Don't complain about hwpoisoned pages */
1433 page_mapcount_reset(page); /* remove PageBuddy */
1434 return;
0e56acae
AD
1435 }
1436
9420f89d
MRI
1437 bad_page(page,
1438 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
0e56acae
AD
1439}
1440
1441/*
9420f89d 1442 * This page is about to be returned from the page allocator
0e56acae 1443 */
9420f89d 1444static int check_new_page(struct page *page)
0e56acae 1445{
9420f89d
MRI
1446 if (likely(page_expected_state(page,
1447 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1448 return 0;
0e56acae 1449
9420f89d
MRI
1450 check_new_page_bad(page);
1451 return 1;
1452}
0e56acae 1453
9420f89d
MRI
1454static inline bool check_new_pages(struct page *page, unsigned int order)
1455{
1456 if (is_check_pages_enabled()) {
1457 for (int i = 0; i < (1 << order); i++) {
1458 struct page *p = page + i;
0e56acae 1459
8666925c 1460 if (check_new_page(p))
9420f89d 1461 return true;
0e56acae
AD
1462 }
1463 }
1464
9420f89d 1465 return false;
0e56acae
AD
1466}
1467
9420f89d 1468static inline bool should_skip_kasan_unpoison(gfp_t flags)
e4443149 1469{
9420f89d
MRI
1470 /* Don't skip if a software KASAN mode is enabled. */
1471 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1472 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1473 return false;
e4443149 1474
9420f89d
MRI
1475 /* Skip, if hardware tag-based KASAN is not enabled. */
1476 if (!kasan_hw_tags_enabled())
1477 return true;
e4443149
DJ
1478
1479 /*
9420f89d
MRI
1480 * With hardware tag-based KASAN enabled, skip if this has been
1481 * requested via __GFP_SKIP_KASAN.
e4443149 1482 */
9420f89d 1483 return flags & __GFP_SKIP_KASAN;
e4443149
DJ
1484}
1485
9420f89d 1486static inline bool should_skip_init(gfp_t flags)
ecd09650 1487{
9420f89d
MRI
1488 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1489 if (!kasan_hw_tags_enabled())
1490 return false;
1491
1492 /* For hardware tag-based KASAN, skip if requested. */
1493 return (flags & __GFP_SKIP_ZERO);
ecd09650
DJ
1494}
1495
9420f89d
MRI
1496inline void post_alloc_hook(struct page *page, unsigned int order,
1497 gfp_t gfp_flags)
7e18adb4 1498{
9420f89d
MRI
1499 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1500 !should_skip_init(gfp_flags);
1501 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1502 int i;
1503
1504 set_page_private(page, 0);
1505 set_page_refcounted(page);
0e1cc95b 1506
9420f89d
MRI
1507 arch_alloc_page(page, order);
1508 debug_pagealloc_map_pages(page, 1 << order);
7e18adb4 1509
3d060856 1510 /*
9420f89d
MRI
1511 * Page unpoisoning must happen before memory initialization.
1512 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1513 * allocations and the page unpoisoning code will complain.
3d060856 1514 */
9420f89d 1515 kernel_unpoison_pages(page, 1 << order);
862b6dee 1516
1bb5eab3
AK
1517 /*
1518 * As memory initialization might be integrated into KASAN,
b42090ae 1519 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
1520 * kept together to avoid discrepancies in behavior.
1521 */
9294b128
AK
1522
1523 /*
44383cef
AK
1524 * If memory tags should be zeroed
1525 * (which happens only when memory should be initialized as well).
9294b128 1526 */
44383cef 1527 if (zero_tags) {
420ef683 1528 /* Initialize both memory and memory tags. */
9294b128
AK
1529 for (i = 0; i != 1 << order; ++i)
1530 tag_clear_highpage(page + i);
1531
44383cef 1532 /* Take note that memory was initialized by the loop above. */
9294b128
AK
1533 init = false;
1534 }
0a54864f
PC
1535 if (!should_skip_kasan_unpoison(gfp_flags) &&
1536 kasan_unpoison_pages(page, order, init)) {
1537 /* Take note that memory was initialized by KASAN. */
1538 if (kasan_has_integrated_init())
1539 init = false;
1540 } else {
1541 /*
1542 * If memory tags have not been set by KASAN, reset the page
1543 * tags to ensure page_address() dereferencing does not fault.
1544 */
70c248ac
CM
1545 for (i = 0; i != 1 << order; ++i)
1546 page_kasan_tag_reset(page + i);
7a3b8353 1547 }
44383cef 1548 /* If memory is still not initialized, initialize it now. */
7e3cbba6 1549 if (init)
aeaec8e2 1550 kernel_init_pages(page, 1 << order);
1bb5eab3
AK
1551
1552 set_page_owner(page, order, gfp_flags);
df4e817b 1553 page_table_check_alloc(page, order);
46f24fd8
JK
1554}
1555
479f854a 1556static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1557 unsigned int alloc_flags)
2a7684a2 1558{
46f24fd8 1559 post_alloc_hook(page, order, gfp_flags);
17cf4406 1560
17cf4406
NP
1561 if (order && (gfp_flags & __GFP_COMP))
1562 prep_compound_page(page, order);
1563
75379191 1564 /*
2f064f34 1565 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1566 * allocate the page. The expectation is that the caller is taking
1567 * steps that will free more memory. The caller should avoid the page
1568 * being used for !PFMEMALLOC purposes.
1569 */
2f064f34
MH
1570 if (alloc_flags & ALLOC_NO_WATERMARKS)
1571 set_page_pfmemalloc(page);
1572 else
1573 clear_page_pfmemalloc(page);
1da177e4
LT
1574}
1575
56fd56b8
MG
1576/*
1577 * Go through the free lists for the given migratetype and remove
1578 * the smallest available page from the freelists
1579 */
85ccc8fa 1580static __always_inline
728ec980 1581struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1582 int migratetype)
1583{
1584 unsigned int current_order;
b8af2941 1585 struct free_area *area;
56fd56b8
MG
1586 struct page *page;
1587
1588 /* Find a page of the appropriate size in the preferred list */
23baf831 1589 for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
56fd56b8 1590 area = &(zone->free_area[current_order]);
b03641af 1591 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
1592 if (!page)
1593 continue;
6ab01363
AD
1594 del_page_from_free_list(page, zone, current_order);
1595 expand(zone, page, order, current_order, migratetype);
bb14c2c7 1596 set_pcppage_migratetype(page, migratetype);
10e0f753
WY
1597 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1598 pcp_allowed_order(order) &&
1599 migratetype < MIGRATE_PCPTYPES);
56fd56b8
MG
1600 return page;
1601 }
1602
1603 return NULL;
1604}
1605
1606
b2a0ac88
MG
1607/*
1608 * This array describes the order lists are fallen back to when
1609 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
1610 *
1611 * The other migratetypes do not have fallbacks.
b2a0ac88 1612 */
aa02d3c1
YD
1613static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1614 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1615 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1616 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
b2a0ac88
MG
1617};
1618
dc67647b 1619#ifdef CONFIG_CMA
85ccc8fa 1620static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1621 unsigned int order)
1622{
1623 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1624}
1625#else
1626static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1627 unsigned int order) { return NULL; }
1628#endif
1629
c361be55 1630/*
293ffa5e 1631 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 1632 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1633 * boundary. If alignment is required, use move_freepages_block()
1634 */
02aa0cdd 1635static int move_freepages(struct zone *zone,
39ddb991 1636 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 1637 int migratetype, int *num_movable)
c361be55
MG
1638{
1639 struct page *page;
39ddb991 1640 unsigned long pfn;
d00181b9 1641 unsigned int order;
d100313f 1642 int pages_moved = 0;
c361be55 1643
39ddb991 1644 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 1645 page = pfn_to_page(pfn);
c361be55 1646 if (!PageBuddy(page)) {
02aa0cdd
VB
1647 /*
1648 * We assume that pages that could be isolated for
1649 * migration are movable. But we don't actually try
1650 * isolating, as that would be expensive.
1651 */
1652 if (num_movable &&
1653 (PageLRU(page) || __PageMovable(page)))
1654 (*num_movable)++;
39ddb991 1655 pfn++;
c361be55
MG
1656 continue;
1657 }
1658
cd961038
DR
1659 /* Make sure we are not inadvertently changing nodes */
1660 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1661 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1662
ab130f91 1663 order = buddy_order(page);
6ab01363 1664 move_to_free_list(page, zone, order, migratetype);
39ddb991 1665 pfn += 1 << order;
d100313f 1666 pages_moved += 1 << order;
c361be55
MG
1667 }
1668
d100313f 1669 return pages_moved;
c361be55
MG
1670}
1671
ee6f509c 1672int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1673 int migratetype, int *num_movable)
c361be55 1674{
39ddb991 1675 unsigned long start_pfn, end_pfn, pfn;
c361be55 1676
4a222127
DR
1677 if (num_movable)
1678 *num_movable = 0;
1679
39ddb991 1680 pfn = page_to_pfn(page);
4f9bc69a
KW
1681 start_pfn = pageblock_start_pfn(pfn);
1682 end_pfn = pageblock_end_pfn(pfn) - 1;
c361be55
MG
1683
1684 /* Do not cross zone boundaries */
108bcc96 1685 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 1686 start_pfn = pfn;
108bcc96 1687 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1688 return 0;
1689
39ddb991 1690 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 1691 num_movable);
c361be55
MG
1692}
1693
2f66a68f
MG
1694static void change_pageblock_range(struct page *pageblock_page,
1695 int start_order, int migratetype)
1696{
1697 int nr_pageblocks = 1 << (start_order - pageblock_order);
1698
1699 while (nr_pageblocks--) {
1700 set_pageblock_migratetype(pageblock_page, migratetype);
1701 pageblock_page += pageblock_nr_pages;
1702 }
1703}
1704
fef903ef 1705/*
9c0415eb
VB
1706 * When we are falling back to another migratetype during allocation, try to
1707 * steal extra free pages from the same pageblocks to satisfy further
1708 * allocations, instead of polluting multiple pageblocks.
1709 *
1710 * If we are stealing a relatively large buddy page, it is likely there will
1711 * be more free pages in the pageblock, so try to steal them all. For
1712 * reclaimable and unmovable allocations, we steal regardless of page size,
1713 * as fragmentation caused by those allocations polluting movable pageblocks
1714 * is worse than movable allocations stealing from unmovable and reclaimable
1715 * pageblocks.
fef903ef 1716 */
4eb7dce6
JK
1717static bool can_steal_fallback(unsigned int order, int start_mt)
1718{
1719 /*
1720 * Leaving this order check is intended, although there is
1721 * relaxed order check in next check. The reason is that
1722 * we can actually steal whole pageblock if this condition met,
1723 * but, below check doesn't guarantee it and that is just heuristic
1724 * so could be changed anytime.
1725 */
1726 if (order >= pageblock_order)
1727 return true;
1728
1729 if (order >= pageblock_order / 2 ||
1730 start_mt == MIGRATE_RECLAIMABLE ||
1731 start_mt == MIGRATE_UNMOVABLE ||
1732 page_group_by_mobility_disabled)
1733 return true;
1734
1735 return false;
1736}
1737
597c8920 1738static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
1739{
1740 unsigned long max_boost;
1741
1742 if (!watermark_boost_factor)
597c8920 1743 return false;
14f69140
HW
1744 /*
1745 * Don't bother in zones that are unlikely to produce results.
1746 * On small machines, including kdump capture kernels running
1747 * in a small area, boosting the watermark can cause an out of
1748 * memory situation immediately.
1749 */
1750 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 1751 return false;
1c30844d
MG
1752
1753 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1754 watermark_boost_factor, 10000);
94b3334c
MG
1755
1756 /*
1757 * high watermark may be uninitialised if fragmentation occurs
1758 * very early in boot so do not boost. We do not fall
1759 * through and boost by pageblock_nr_pages as failing
1760 * allocations that early means that reclaim is not going
1761 * to help and it may even be impossible to reclaim the
1762 * boosted watermark resulting in a hang.
1763 */
1764 if (!max_boost)
597c8920 1765 return false;
94b3334c 1766
1c30844d
MG
1767 max_boost = max(pageblock_nr_pages, max_boost);
1768
1769 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1770 max_boost);
597c8920
JW
1771
1772 return true;
1c30844d
MG
1773}
1774
4eb7dce6
JK
1775/*
1776 * This function implements actual steal behaviour. If order is large enough,
1777 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1778 * pageblock to our migratetype and determine how many already-allocated pages
1779 * are there in the pageblock with a compatible migratetype. If at least half
1780 * of pages are free or compatible, we can change migratetype of the pageblock
1781 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
1782 */
1783static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 1784 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 1785{
ab130f91 1786 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
1787 int free_pages, movable_pages, alike_pages;
1788 int old_block_type;
1789
1790 old_block_type = get_pageblock_migratetype(page);
fef903ef 1791
3bc48f96
VB
1792 /*
1793 * This can happen due to races and we want to prevent broken
1794 * highatomic accounting.
1795 */
02aa0cdd 1796 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
1797 goto single_page;
1798
fef903ef
SB
1799 /* Take ownership for orders >= pageblock_order */
1800 if (current_order >= pageblock_order) {
1801 change_pageblock_range(page, current_order, start_type);
3bc48f96 1802 goto single_page;
fef903ef
SB
1803 }
1804
1c30844d
MG
1805 /*
1806 * Boost watermarks to increase reclaim pressure to reduce the
1807 * likelihood of future fallbacks. Wake kswapd now as the node
1808 * may be balanced overall and kswapd will not wake naturally.
1809 */
597c8920 1810 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 1811 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 1812
3bc48f96
VB
1813 /* We are not allowed to try stealing from the whole block */
1814 if (!whole_block)
1815 goto single_page;
1816
02aa0cdd
VB
1817 free_pages = move_freepages_block(zone, page, start_type,
1818 &movable_pages);
ebddd111
ML
1819 /* moving whole block can fail due to zone boundary conditions */
1820 if (!free_pages)
1821 goto single_page;
1822
02aa0cdd
VB
1823 /*
1824 * Determine how many pages are compatible with our allocation.
1825 * For movable allocation, it's the number of movable pages which
1826 * we just obtained. For other types it's a bit more tricky.
1827 */
1828 if (start_type == MIGRATE_MOVABLE) {
1829 alike_pages = movable_pages;
1830 } else {
1831 /*
1832 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1833 * to MOVABLE pageblock, consider all non-movable pages as
1834 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1835 * vice versa, be conservative since we can't distinguish the
1836 * exact migratetype of non-movable pages.
1837 */
1838 if (old_block_type == MIGRATE_MOVABLE)
1839 alike_pages = pageblock_nr_pages
1840 - (free_pages + movable_pages);
1841 else
1842 alike_pages = 0;
1843 }
02aa0cdd
VB
1844 /*
1845 * If a sufficient number of pages in the block are either free or of
ebddd111 1846 * compatible migratability as our allocation, claim the whole block.
02aa0cdd
VB
1847 */
1848 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
1849 page_group_by_mobility_disabled)
1850 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
1851
1852 return;
1853
1854single_page:
6ab01363 1855 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
1856}
1857
2149cdae
JK
1858/*
1859 * Check whether there is a suitable fallback freepage with requested order.
1860 * If only_stealable is true, this function returns fallback_mt only if
1861 * we can steal other freepages all together. This would help to reduce
1862 * fragmentation due to mixed migratetype pages in one pageblock.
1863 */
1864int find_suitable_fallback(struct free_area *area, unsigned int order,
1865 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1866{
1867 int i;
1868 int fallback_mt;
1869
1870 if (area->nr_free == 0)
1871 return -1;
1872
1873 *can_steal = false;
aa02d3c1 1874 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
4eb7dce6 1875 fallback_mt = fallbacks[migratetype][i];
b03641af 1876 if (free_area_empty(area, fallback_mt))
4eb7dce6 1877 continue;
fef903ef 1878
4eb7dce6
JK
1879 if (can_steal_fallback(order, migratetype))
1880 *can_steal = true;
1881
2149cdae
JK
1882 if (!only_stealable)
1883 return fallback_mt;
1884
1885 if (*can_steal)
1886 return fallback_mt;
fef903ef 1887 }
4eb7dce6
JK
1888
1889 return -1;
fef903ef
SB
1890}
1891
0aaa29a5
MG
1892/*
1893 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1894 * there are no empty page blocks that contain a page with a suitable order
1895 */
368d983b 1896static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
0aaa29a5
MG
1897{
1898 int mt;
1899 unsigned long max_managed, flags;
1900
1901 /*
1902 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1903 * Check is race-prone but harmless.
1904 */
9705bea5 1905 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
1906 if (zone->nr_reserved_highatomic >= max_managed)
1907 return;
1908
1909 spin_lock_irqsave(&zone->lock, flags);
1910
1911 /* Recheck the nr_reserved_highatomic limit under the lock */
1912 if (zone->nr_reserved_highatomic >= max_managed)
1913 goto out_unlock;
1914
1915 /* Yoink! */
1916 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
1917 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1918 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
1919 zone->nr_reserved_highatomic += pageblock_nr_pages;
1920 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 1921 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
1922 }
1923
1924out_unlock:
1925 spin_unlock_irqrestore(&zone->lock, flags);
1926}
1927
1928/*
1929 * Used when an allocation is about to fail under memory pressure. This
1930 * potentially hurts the reliability of high-order allocations when under
1931 * intense memory pressure but failed atomic allocations should be easier
1932 * to recover from than an OOM.
29fac03b
MK
1933 *
1934 * If @force is true, try to unreserve a pageblock even though highatomic
1935 * pageblock is exhausted.
0aaa29a5 1936 */
29fac03b
MK
1937static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1938 bool force)
0aaa29a5
MG
1939{
1940 struct zonelist *zonelist = ac->zonelist;
1941 unsigned long flags;
1942 struct zoneref *z;
1943 struct zone *zone;
1944 struct page *page;
1945 int order;
04c8716f 1946 bool ret;
0aaa29a5 1947
97a225e6 1948 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 1949 ac->nodemask) {
29fac03b
MK
1950 /*
1951 * Preserve at least one pageblock unless memory pressure
1952 * is really high.
1953 */
1954 if (!force && zone->nr_reserved_highatomic <=
1955 pageblock_nr_pages)
0aaa29a5
MG
1956 continue;
1957
1958 spin_lock_irqsave(&zone->lock, flags);
23baf831 1959 for (order = 0; order <= MAX_ORDER; order++) {
0aaa29a5
MG
1960 struct free_area *area = &(zone->free_area[order]);
1961
b03641af 1962 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 1963 if (!page)
0aaa29a5
MG
1964 continue;
1965
0aaa29a5 1966 /*
4855e4a7
MK
1967 * In page freeing path, migratetype change is racy so
1968 * we can counter several free pages in a pageblock
f0953a1b 1969 * in this loop although we changed the pageblock type
4855e4a7
MK
1970 * from highatomic to ac->migratetype. So we should
1971 * adjust the count once.
0aaa29a5 1972 */
a6ffdc07 1973 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
1974 /*
1975 * It should never happen but changes to
1976 * locking could inadvertently allow a per-cpu
1977 * drain to add pages to MIGRATE_HIGHATOMIC
1978 * while unreserving so be safe and watch for
1979 * underflows.
1980 */
1981 zone->nr_reserved_highatomic -= min(
1982 pageblock_nr_pages,
1983 zone->nr_reserved_highatomic);
1984 }
0aaa29a5
MG
1985
1986 /*
1987 * Convert to ac->migratetype and avoid the normal
1988 * pageblock stealing heuristics. Minimally, the caller
1989 * is doing the work and needs the pages. More
1990 * importantly, if the block was always converted to
1991 * MIGRATE_UNMOVABLE or another type then the number
1992 * of pageblocks that cannot be completely freed
1993 * may increase.
1994 */
1995 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
1996 ret = move_freepages_block(zone, page, ac->migratetype,
1997 NULL);
29fac03b
MK
1998 if (ret) {
1999 spin_unlock_irqrestore(&zone->lock, flags);
2000 return ret;
2001 }
0aaa29a5
MG
2002 }
2003 spin_unlock_irqrestore(&zone->lock, flags);
2004 }
04c8716f
MK
2005
2006 return false;
0aaa29a5
MG
2007}
2008
3bc48f96
VB
2009/*
2010 * Try finding a free buddy page on the fallback list and put it on the free
2011 * list of requested migratetype, possibly along with other pages from the same
2012 * block, depending on fragmentation avoidance heuristics. Returns true if
2013 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2014 *
2015 * The use of signed ints for order and current_order is a deliberate
2016 * deviation from the rest of this file, to make the for loop
2017 * condition simpler.
3bc48f96 2018 */
85ccc8fa 2019static __always_inline bool
6bb15450
MG
2020__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2021 unsigned int alloc_flags)
b2a0ac88 2022{
b8af2941 2023 struct free_area *area;
b002529d 2024 int current_order;
6bb15450 2025 int min_order = order;
b2a0ac88 2026 struct page *page;
4eb7dce6
JK
2027 int fallback_mt;
2028 bool can_steal;
b2a0ac88 2029
6bb15450
MG
2030 /*
2031 * Do not steal pages from freelists belonging to other pageblocks
2032 * i.e. orders < pageblock_order. If there are no local zones free,
2033 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2034 */
e933dc4a 2035 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
6bb15450
MG
2036 min_order = pageblock_order;
2037
7a8f58f3
VB
2038 /*
2039 * Find the largest available free page in the other list. This roughly
2040 * approximates finding the pageblock with the most free pages, which
2041 * would be too costly to do exactly.
2042 */
23baf831 2043 for (current_order = MAX_ORDER; current_order >= min_order;
7aeb09f9 2044 --current_order) {
4eb7dce6
JK
2045 area = &(zone->free_area[current_order]);
2046 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2047 start_migratetype, false, &can_steal);
4eb7dce6
JK
2048 if (fallback_mt == -1)
2049 continue;
b2a0ac88 2050
7a8f58f3
VB
2051 /*
2052 * We cannot steal all free pages from the pageblock and the
2053 * requested migratetype is movable. In that case it's better to
2054 * steal and split the smallest available page instead of the
2055 * largest available page, because even if the next movable
2056 * allocation falls back into a different pageblock than this
2057 * one, it won't cause permanent fragmentation.
2058 */
2059 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2060 && current_order > order)
2061 goto find_smallest;
b2a0ac88 2062
7a8f58f3
VB
2063 goto do_steal;
2064 }
e0fff1bd 2065
7a8f58f3 2066 return false;
e0fff1bd 2067
7a8f58f3 2068find_smallest:
23baf831 2069 for (current_order = order; current_order <= MAX_ORDER;
7a8f58f3
VB
2070 current_order++) {
2071 area = &(zone->free_area[current_order]);
2072 fallback_mt = find_suitable_fallback(area, current_order,
2073 start_migratetype, false, &can_steal);
2074 if (fallback_mt != -1)
2075 break;
b2a0ac88
MG
2076 }
2077
7a8f58f3
VB
2078 /*
2079 * This should not happen - we already found a suitable fallback
2080 * when looking for the largest page.
2081 */
23baf831 2082 VM_BUG_ON(current_order > MAX_ORDER);
7a8f58f3
VB
2083
2084do_steal:
b03641af 2085 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2086
1c30844d
MG
2087 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2088 can_steal);
7a8f58f3
VB
2089
2090 trace_mm_page_alloc_extfrag(page, order, current_order,
2091 start_migratetype, fallback_mt);
2092
2093 return true;
2094
b2a0ac88
MG
2095}
2096
56fd56b8 2097/*
1da177e4
LT
2098 * Do the hard work of removing an element from the buddy allocator.
2099 * Call me with the zone->lock already held.
2100 */
85ccc8fa 2101static __always_inline struct page *
6bb15450
MG
2102__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2103 unsigned int alloc_flags)
1da177e4 2104{
1da177e4
LT
2105 struct page *page;
2106
ce8f86ee
H
2107 if (IS_ENABLED(CONFIG_CMA)) {
2108 /*
2109 * Balance movable allocations between regular and CMA areas by
2110 * allocating from CMA when over half of the zone's free memory
2111 * is in the CMA area.
2112 */
2113 if (alloc_flags & ALLOC_CMA &&
2114 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2115 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2116 page = __rmqueue_cma_fallback(zone, order);
2117 if (page)
10e0f753 2118 return page;
ce8f86ee 2119 }
16867664 2120 }
3bc48f96 2121retry:
56fd56b8 2122 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2123 if (unlikely(!page)) {
8510e69c 2124 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2125 page = __rmqueue_cma_fallback(zone, order);
2126
6bb15450
MG
2127 if (!page && __rmqueue_fallback(zone, order, migratetype,
2128 alloc_flags))
3bc48f96 2129 goto retry;
728ec980 2130 }
b2a0ac88 2131 return page;
1da177e4
LT
2132}
2133
5f63b720 2134/*
1da177e4
LT
2135 * Obtain a specified number of elements from the buddy allocator, all under
2136 * a single hold of the lock, for efficiency. Add them to the supplied list.
2137 * Returns the number of new pages which were placed at *list.
2138 */
5f63b720 2139static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2140 unsigned long count, struct list_head *list,
6bb15450 2141 int migratetype, unsigned int alloc_flags)
1da177e4 2142{
57490774 2143 unsigned long flags;
700d2e9a 2144 int i;
5f63b720 2145
57490774 2146 spin_lock_irqsave(&zone->lock, flags);
1da177e4 2147 for (i = 0; i < count; ++i) {
6bb15450
MG
2148 struct page *page = __rmqueue(zone, order, migratetype,
2149 alloc_flags);
085cc7d5 2150 if (unlikely(page == NULL))
1da177e4 2151 break;
81eabcbe
MG
2152
2153 /*
0fac3ba5
VB
2154 * Split buddy pages returned by expand() are received here in
2155 * physical page order. The page is added to the tail of
2156 * caller's list. From the callers perspective, the linked list
2157 * is ordered by page number under some conditions. This is
2158 * useful for IO devices that can forward direction from the
2159 * head, thus also in the physical page order. This is useful
2160 * for IO devices that can merge IO requests if the physical
2161 * pages are ordered properly.
81eabcbe 2162 */
bf75f200 2163 list_add_tail(&page->pcp_list, list);
bb14c2c7 2164 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2165 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2166 -(1 << order));
1da177e4 2167 }
a6de734b 2168
f2260e6b 2169 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
57490774 2170 spin_unlock_irqrestore(&zone->lock, flags);
2ede3c13 2171
700d2e9a 2172 return i;
1da177e4
LT
2173}
2174
4ae7c039 2175#ifdef CONFIG_NUMA
8fce4d8e 2176/*
4037d452
CL
2177 * Called from the vmstat counter updater to drain pagesets of this
2178 * currently executing processor on remote nodes after they have
2179 * expired.
8fce4d8e 2180 */
4037d452 2181void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2182{
7be12fc9 2183 int to_drain, batch;
4ae7c039 2184
4db0c3c2 2185 batch = READ_ONCE(pcp->batch);
7be12fc9 2186 to_drain = min(pcp->count, batch);
4b23a68f 2187 if (to_drain > 0) {
57490774 2188 spin_lock(&pcp->lock);
fd56eef2 2189 free_pcppages_bulk(zone, to_drain, pcp, 0);
57490774 2190 spin_unlock(&pcp->lock);
4b23a68f 2191 }
4ae7c039
CL
2192}
2193#endif
2194
9f8f2172 2195/*
93481ff0 2196 * Drain pcplists of the indicated processor and zone.
9f8f2172 2197 */
93481ff0 2198static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2199{
93481ff0 2200 struct per_cpu_pages *pcp;
1da177e4 2201
28f836b6 2202 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
4b23a68f 2203 if (pcp->count) {
57490774 2204 spin_lock(&pcp->lock);
4b23a68f 2205 free_pcppages_bulk(zone, pcp->count, pcp, 0);
57490774 2206 spin_unlock(&pcp->lock);
4b23a68f 2207 }
93481ff0 2208}
3dfa5721 2209
93481ff0
VB
2210/*
2211 * Drain pcplists of all zones on the indicated processor.
93481ff0
VB
2212 */
2213static void drain_pages(unsigned int cpu)
2214{
2215 struct zone *zone;
2216
2217 for_each_populated_zone(zone) {
2218 drain_pages_zone(cpu, zone);
1da177e4
LT
2219 }
2220}
1da177e4 2221
9f8f2172
CL
2222/*
2223 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2224 */
93481ff0 2225void drain_local_pages(struct zone *zone)
9f8f2172 2226{
93481ff0
VB
2227 int cpu = smp_processor_id();
2228
2229 if (zone)
2230 drain_pages_zone(cpu, zone);
2231 else
2232 drain_pages(cpu);
9f8f2172
CL
2233}
2234
2235/*
ec6e8c7e
VB
2236 * The implementation of drain_all_pages(), exposing an extra parameter to
2237 * drain on all cpus.
93481ff0 2238 *
ec6e8c7e
VB
2239 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2240 * not empty. The check for non-emptiness can however race with a free to
2241 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2242 * that need the guarantee that every CPU has drained can disable the
2243 * optimizing racy check.
9f8f2172 2244 */
3b1f3658 2245static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 2246{
74046494 2247 int cpu;
74046494
GBY
2248
2249 /*
041711ce 2250 * Allocate in the BSS so we won't require allocation in
74046494
GBY
2251 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2252 */
2253 static cpumask_t cpus_with_pcps;
2254
bd233f53
MG
2255 /*
2256 * Do not drain if one is already in progress unless it's specific to
2257 * a zone. Such callers are primarily CMA and memory hotplug and need
2258 * the drain to be complete when the call returns.
2259 */
2260 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2261 if (!zone)
2262 return;
2263 mutex_lock(&pcpu_drain_mutex);
2264 }
0ccce3b9 2265
74046494
GBY
2266 /*
2267 * We don't care about racing with CPU hotplug event
2268 * as offline notification will cause the notified
2269 * cpu to drain that CPU pcps and on_each_cpu_mask
2270 * disables preemption as part of its processing
2271 */
2272 for_each_online_cpu(cpu) {
28f836b6 2273 struct per_cpu_pages *pcp;
93481ff0 2274 struct zone *z;
74046494 2275 bool has_pcps = false;
93481ff0 2276
ec6e8c7e
VB
2277 if (force_all_cpus) {
2278 /*
2279 * The pcp.count check is racy, some callers need a
2280 * guarantee that no cpu is missed.
2281 */
2282 has_pcps = true;
2283 } else if (zone) {
28f836b6
MG
2284 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2285 if (pcp->count)
74046494 2286 has_pcps = true;
93481ff0
VB
2287 } else {
2288 for_each_populated_zone(z) {
28f836b6
MG
2289 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2290 if (pcp->count) {
93481ff0
VB
2291 has_pcps = true;
2292 break;
2293 }
74046494
GBY
2294 }
2295 }
93481ff0 2296
74046494
GBY
2297 if (has_pcps)
2298 cpumask_set_cpu(cpu, &cpus_with_pcps);
2299 else
2300 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2301 }
0ccce3b9 2302
bd233f53 2303 for_each_cpu(cpu, &cpus_with_pcps) {
443c2acc
NSJ
2304 if (zone)
2305 drain_pages_zone(cpu, zone);
2306 else
2307 drain_pages(cpu);
0ccce3b9 2308 }
bd233f53
MG
2309
2310 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2311}
2312
ec6e8c7e
VB
2313/*
2314 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2315 *
2316 * When zone parameter is non-NULL, spill just the single zone's pages.
ec6e8c7e
VB
2317 */
2318void drain_all_pages(struct zone *zone)
2319{
2320 __drain_all_pages(zone, false);
2321}
2322
44042b44
MG
2323static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2324 unsigned int order)
1da177e4 2325{
5f8dcc21 2326 int migratetype;
1da177e4 2327
700d2e9a 2328 if (!free_pages_prepare(page, order, FPI_NONE))
9cca35d4 2329 return false;
689bcebf 2330
dc4b0caf 2331 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2332 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2333 return true;
2334}
2335
13058705 2336static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
3b12e7e9
MG
2337{
2338 int min_nr_free, max_nr_free;
13058705 2339 int batch = READ_ONCE(pcp->batch);
3b12e7e9 2340
f26b3fa0
MG
2341 /* Free everything if batch freeing high-order pages. */
2342 if (unlikely(free_high))
2343 return pcp->count;
2344
3b12e7e9
MG
2345 /* Check for PCP disabled or boot pageset */
2346 if (unlikely(high < batch))
2347 return 1;
2348
2349 /* Leave at least pcp->batch pages on the list */
2350 min_nr_free = batch;
2351 max_nr_free = high - batch;
2352
2353 /*
2354 * Double the number of pages freed each time there is subsequent
2355 * freeing of pages without any allocation.
2356 */
2357 batch <<= pcp->free_factor;
2358 if (batch < max_nr_free)
2359 pcp->free_factor++;
2360 batch = clamp(batch, min_nr_free, max_nr_free);
2361
2362 return batch;
2363}
2364
f26b3fa0
MG
2365static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2366 bool free_high)
c49c2c47
MG
2367{
2368 int high = READ_ONCE(pcp->high);
2369
f26b3fa0 2370 if (unlikely(!high || free_high))
c49c2c47
MG
2371 return 0;
2372
2373 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2374 return high;
2375
2376 /*
2377 * If reclaim is active, limit the number of pages that can be
2378 * stored on pcp lists
2379 */
2380 return min(READ_ONCE(pcp->batch) << 2, high);
2381}
2382
4b23a68f
MG
2383static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2384 struct page *page, int migratetype,
56651377 2385 unsigned int order)
9cca35d4 2386{
3b12e7e9 2387 int high;
44042b44 2388 int pindex;
f26b3fa0 2389 bool free_high;
9cca35d4 2390
15cd9004 2391 __count_vm_events(PGFREE, 1 << order);
44042b44 2392 pindex = order_to_pindex(migratetype, order);
bf75f200 2393 list_add(&page->pcp_list, &pcp->lists[pindex]);
44042b44 2394 pcp->count += 1 << order;
f26b3fa0
MG
2395
2396 /*
2397 * As high-order pages other than THP's stored on PCP can contribute
2398 * to fragmentation, limit the number stored when PCP is heavily
2399 * freeing without allocation. The remainder after bulk freeing
2400 * stops will be drained from vmstat refresh context.
2401 */
2402 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2403
2404 high = nr_pcp_high(pcp, zone, free_high);
3b12e7e9 2405 if (pcp->count >= high) {
13058705 2406 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
3b12e7e9 2407 }
9cca35d4 2408}
5f8dcc21 2409
9cca35d4 2410/*
44042b44 2411 * Free a pcp page
9cca35d4 2412 */
44042b44 2413void free_unref_page(struct page *page, unsigned int order)
9cca35d4 2414{
4b23a68f
MG
2415 unsigned long __maybe_unused UP_flags;
2416 struct per_cpu_pages *pcp;
2417 struct zone *zone;
9cca35d4 2418 unsigned long pfn = page_to_pfn(page);
df1acc85 2419 int migratetype;
9cca35d4 2420
44042b44 2421 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 2422 return;
da456f14 2423
5f8dcc21
MG
2424 /*
2425 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 2426 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 2427 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2428 * areas back if necessary. Otherwise, we may have to free
2429 * excessively into the page allocator
2430 */
df1acc85
MG
2431 migratetype = get_pcppage_migratetype(page);
2432 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 2433 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 2434 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 2435 return;
5f8dcc21
MG
2436 }
2437 migratetype = MIGRATE_MOVABLE;
2438 }
2439
4b23a68f
MG
2440 zone = page_zone(page);
2441 pcp_trylock_prepare(UP_flags);
57490774 2442 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 2443 if (pcp) {
4b23a68f 2444 free_unref_page_commit(zone, pcp, page, migratetype, order);
57490774 2445 pcp_spin_unlock(pcp);
4b23a68f
MG
2446 } else {
2447 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2448 }
2449 pcp_trylock_finish(UP_flags);
1da177e4
LT
2450}
2451
cc59850e
KK
2452/*
2453 * Free a list of 0-order pages
2454 */
2d4894b5 2455void free_unref_page_list(struct list_head *list)
cc59850e 2456{
57490774 2457 unsigned long __maybe_unused UP_flags;
cc59850e 2458 struct page *page, *next;
4b23a68f
MG
2459 struct per_cpu_pages *pcp = NULL;
2460 struct zone *locked_zone = NULL;
c24ad77d 2461 int batch_count = 0;
df1acc85 2462 int migratetype;
9cca35d4
MG
2463
2464 /* Prepare pages for freeing */
2465 list_for_each_entry_safe(page, next, list, lru) {
56651377 2466 unsigned long pfn = page_to_pfn(page);
053cfda1 2467 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 2468 list_del(&page->lru);
053cfda1
ML
2469 continue;
2470 }
df1acc85
MG
2471
2472 /*
2473 * Free isolated pages directly to the allocator, see
2474 * comment in free_unref_page.
2475 */
2476 migratetype = get_pcppage_migratetype(page);
47aef601
DB
2477 if (unlikely(is_migrate_isolate(migratetype))) {
2478 list_del(&page->lru);
2479 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2480 continue;
df1acc85 2481 }
9cca35d4 2482 }
cc59850e
KK
2483
2484 list_for_each_entry_safe(page, next, list, lru) {
4b23a68f
MG
2485 struct zone *zone = page_zone(page);
2486
c3e58a70 2487 list_del(&page->lru);
57490774 2488 migratetype = get_pcppage_migratetype(page);
c3e58a70 2489
a4bafffb
MG
2490 /*
2491 * Either different zone requiring a different pcp lock or
2492 * excessive lock hold times when freeing a large list of
2493 * pages.
2494 */
2495 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
57490774
MG
2496 if (pcp) {
2497 pcp_spin_unlock(pcp);
2498 pcp_trylock_finish(UP_flags);
2499 }
01b44456 2500
a4bafffb
MG
2501 batch_count = 0;
2502
57490774
MG
2503 /*
2504 * trylock is necessary as pages may be getting freed
2505 * from IRQ or SoftIRQ context after an IO completion.
2506 */
2507 pcp_trylock_prepare(UP_flags);
2508 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2509 if (unlikely(!pcp)) {
2510 pcp_trylock_finish(UP_flags);
2511 free_one_page(zone, page, page_to_pfn(page),
2512 0, migratetype, FPI_NONE);
2513 locked_zone = NULL;
2514 continue;
2515 }
4b23a68f 2516 locked_zone = zone;
4b23a68f
MG
2517 }
2518
47aef601
DB
2519 /*
2520 * Non-isolated types over MIGRATE_PCPTYPES get added
2521 * to the MIGRATE_MOVABLE pcp list.
2522 */
47aef601
DB
2523 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2524 migratetype = MIGRATE_MOVABLE;
2525
2d4894b5 2526 trace_mm_page_free_batched(page);
4b23a68f 2527 free_unref_page_commit(zone, pcp, page, migratetype, 0);
a4bafffb 2528 batch_count++;
cc59850e 2529 }
4b23a68f 2530
57490774
MG
2531 if (pcp) {
2532 pcp_spin_unlock(pcp);
2533 pcp_trylock_finish(UP_flags);
2534 }
cc59850e
KK
2535}
2536
8dfcc9ba
NP
2537/*
2538 * split_page takes a non-compound higher-order page, and splits it into
2539 * n (1<<order) sub-pages: page[0..n]
2540 * Each sub-page must be freed individually.
2541 *
2542 * Note: this is probably too low level an operation for use in drivers.
2543 * Please consult with lkml before using this in your driver.
2544 */
2545void split_page(struct page *page, unsigned int order)
2546{
2547 int i;
2548
309381fe
SL
2549 VM_BUG_ON_PAGE(PageCompound(page), page);
2550 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2551
a9627bc5 2552 for (i = 1; i < (1 << order); i++)
7835e98b 2553 set_page_refcounted(page + i);
8fb156c9 2554 split_page_owner(page, 1 << order);
e1baddf8 2555 split_page_memcg(page, 1 << order);
8dfcc9ba 2556}
5853ff23 2557EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2558
3c605096 2559int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2560{
9a157dd8
KW
2561 struct zone *zone = page_zone(page);
2562 int mt = get_pageblock_migratetype(page);
748446bb 2563
194159fb 2564 if (!is_migrate_isolate(mt)) {
9a157dd8 2565 unsigned long watermark;
8348faf9
VB
2566 /*
2567 * Obey watermarks as if the page was being allocated. We can
2568 * emulate a high-order watermark check with a raised order-0
2569 * watermark, because we already know our high-order page
2570 * exists.
2571 */
fd1444b2 2572 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 2573 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2574 return 0;
2575
8fb74b9f 2576 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2577 }
748446bb 2578
6ab01363 2579 del_page_from_free_list(page, zone, order);
2139cbe6 2580
400bc7fd 2581 /*
2582 * Set the pageblock if the isolated page is at least half of a
2583 * pageblock
2584 */
748446bb
MG
2585 if (order >= pageblock_order - 1) {
2586 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2587 for (; page < endpage; page += pageblock_nr_pages) {
2588 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2589 /*
2590 * Only change normal pageblocks (i.e., they can merge
2591 * with others)
2592 */
2593 if (migratetype_is_mergeable(mt))
47118af0
MN
2594 set_pageblock_migratetype(page,
2595 MIGRATE_MOVABLE);
2596 }
748446bb
MG
2597 }
2598
8fb74b9f 2599 return 1UL << order;
1fb3f8ca
MG
2600}
2601
624f58d8
AD
2602/**
2603 * __putback_isolated_page - Return a now-isolated page back where we got it
2604 * @page: Page that was isolated
2605 * @order: Order of the isolated page
e6a0a7ad 2606 * @mt: The page's pageblock's migratetype
624f58d8
AD
2607 *
2608 * This function is meant to return a page pulled from the free lists via
2609 * __isolate_free_page back to the free lists they were pulled from.
2610 */
2611void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2612{
2613 struct zone *zone = page_zone(page);
2614
2615 /* zone lock should be held when this function is called */
2616 lockdep_assert_held(&zone->lock);
2617
2618 /* Return isolated page to tail of freelist. */
f04a5d5d 2619 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 2620 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
2621}
2622
060e7417
MG
2623/*
2624 * Update NUMA hit/miss statistics
060e7417 2625 */
3e23060b
MG
2626static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2627 long nr_account)
060e7417
MG
2628{
2629#ifdef CONFIG_NUMA
3a321d2a 2630 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2631
4518085e
KW
2632 /* skip numa counters update if numa stats is disabled */
2633 if (!static_branch_likely(&vm_numa_stat_key))
2634 return;
2635
c1093b74 2636 if (zone_to_nid(z) != numa_node_id())
060e7417 2637 local_stat = NUMA_OTHER;
060e7417 2638
c1093b74 2639 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 2640 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 2641 else {
3e23060b
MG
2642 __count_numa_events(z, NUMA_MISS, nr_account);
2643 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 2644 }
3e23060b 2645 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
2646#endif
2647}
2648
589d9973
MG
2649static __always_inline
2650struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2651 unsigned int order, unsigned int alloc_flags,
2652 int migratetype)
2653{
2654 struct page *page;
2655 unsigned long flags;
2656
2657 do {
2658 page = NULL;
2659 spin_lock_irqsave(&zone->lock, flags);
2660 /*
2661 * order-0 request can reach here when the pcplist is skipped
2662 * due to non-CMA allocation context. HIGHATOMIC area is
2663 * reserved for high-order atomic allocation, so order-0
2664 * request should skip it.
2665 */
eb2e2b42 2666 if (alloc_flags & ALLOC_HIGHATOMIC)
589d9973
MG
2667 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2668 if (!page) {
2669 page = __rmqueue(zone, order, migratetype, alloc_flags);
eb2e2b42
MG
2670
2671 /*
2672 * If the allocation fails, allow OOM handling access
2673 * to HIGHATOMIC reserves as failing now is worse than
2674 * failing a high-order atomic allocation in the
2675 * future.
2676 */
2677 if (!page && (alloc_flags & ALLOC_OOM))
2678 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2679
589d9973
MG
2680 if (!page) {
2681 spin_unlock_irqrestore(&zone->lock, flags);
2682 return NULL;
2683 }
2684 }
2685 __mod_zone_freepage_state(zone, -(1 << order),
2686 get_pcppage_migratetype(page));
2687 spin_unlock_irqrestore(&zone->lock, flags);
2688 } while (check_new_pages(page, order));
2689
2690 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2691 zone_statistics(preferred_zone, zone, 1);
2692
2693 return page;
2694}
2695
066b2393 2696/* Remove page from the per-cpu list, caller must protect the list */
3b822017 2697static inline
44042b44
MG
2698struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2699 int migratetype,
6bb15450 2700 unsigned int alloc_flags,
453f85d4 2701 struct per_cpu_pages *pcp,
066b2393
MG
2702 struct list_head *list)
2703{
2704 struct page *page;
2705
2706 do {
2707 if (list_empty(list)) {
44042b44
MG
2708 int batch = READ_ONCE(pcp->batch);
2709 int alloced;
2710
2711 /*
2712 * Scale batch relative to order if batch implies
2713 * free pages can be stored on the PCP. Batch can
2714 * be 1 for small zones or for boot pagesets which
2715 * should never store free pages as the pages may
2716 * belong to arbitrary zones.
2717 */
2718 if (batch > 1)
2719 batch = max(batch >> order, 2);
2720 alloced = rmqueue_bulk(zone, order,
2721 batch, list,
6bb15450 2722 migratetype, alloc_flags);
44042b44
MG
2723
2724 pcp->count += alloced << order;
066b2393
MG
2725 if (unlikely(list_empty(list)))
2726 return NULL;
2727 }
2728
bf75f200
MG
2729 page = list_first_entry(list, struct page, pcp_list);
2730 list_del(&page->pcp_list);
44042b44 2731 pcp->count -= 1 << order;
700d2e9a 2732 } while (check_new_pages(page, order));
066b2393
MG
2733
2734 return page;
2735}
2736
2737/* Lock and remove page from the per-cpu list */
2738static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44 2739 struct zone *zone, unsigned int order,
663d0cfd 2740 int migratetype, unsigned int alloc_flags)
066b2393
MG
2741{
2742 struct per_cpu_pages *pcp;
2743 struct list_head *list;
066b2393 2744 struct page *page;
4b23a68f 2745 unsigned long __maybe_unused UP_flags;
066b2393 2746
57490774 2747 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 2748 pcp_trylock_prepare(UP_flags);
57490774 2749 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 2750 if (!pcp) {
4b23a68f 2751 pcp_trylock_finish(UP_flags);
4b23a68f
MG
2752 return NULL;
2753 }
3b12e7e9
MG
2754
2755 /*
2756 * On allocation, reduce the number of pages that are batch freed.
2757 * See nr_pcp_free() where free_factor is increased for subsequent
2758 * frees.
2759 */
3b12e7e9 2760 pcp->free_factor >>= 1;
44042b44
MG
2761 list = &pcp->lists[order_to_pindex(migratetype, order)];
2762 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
57490774 2763 pcp_spin_unlock(pcp);
4b23a68f 2764 pcp_trylock_finish(UP_flags);
066b2393 2765 if (page) {
15cd9004 2766 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 2767 zone_statistics(preferred_zone, zone, 1);
066b2393 2768 }
066b2393
MG
2769 return page;
2770}
2771
1da177e4 2772/*
a57ae9ef
RX
2773 * Allocate a page from the given zone.
2774 * Use pcplists for THP or "cheap" high-order allocations.
1da177e4 2775 */
b073d7f8
AP
2776
2777/*
2778 * Do not instrument rmqueue() with KMSAN. This function may call
2779 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2780 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2781 * may call rmqueue() again, which will result in a deadlock.
1da177e4 2782 */
b073d7f8 2783__no_sanitize_memory
0a15c3e9 2784static inline
066b2393 2785struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2786 struct zone *zone, unsigned int order,
c603844b
MG
2787 gfp_t gfp_flags, unsigned int alloc_flags,
2788 int migratetype)
1da177e4 2789{
689bcebf 2790 struct page *page;
1da177e4 2791
589d9973
MG
2792 /*
2793 * We most definitely don't want callers attempting to
2794 * allocate greater than order-1 page units with __GFP_NOFAIL.
2795 */
2796 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2797
44042b44 2798 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
2799 /*
2800 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
2801 * we need to skip it when CMA area isn't allowed.
2802 */
2803 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
2804 migratetype != MIGRATE_MOVABLE) {
44042b44 2805 page = rmqueue_pcplist(preferred_zone, zone, order,
663d0cfd 2806 migratetype, alloc_flags);
4b23a68f
MG
2807 if (likely(page))
2808 goto out;
1d91df85 2809 }
066b2393 2810 }
83b9355b 2811
589d9973
MG
2812 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2813 migratetype);
1da177e4 2814
066b2393 2815out:
73444bc4 2816 /* Separate test+clear to avoid unnecessary atomics */
3b11edf1
TH
2817 if ((alloc_flags & ALLOC_KSWAPD) &&
2818 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
73444bc4
MG
2819 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2820 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2821 }
2822
066b2393 2823 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4
LT
2824 return page;
2825}
2826
54aa3866 2827noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
2828{
2829 return __should_fail_alloc_page(gfp_mask, order);
2830}
2831ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2832
f27ce0e1
JK
2833static inline long __zone_watermark_unusable_free(struct zone *z,
2834 unsigned int order, unsigned int alloc_flags)
2835{
f27ce0e1
JK
2836 long unusable_free = (1 << order) - 1;
2837
2838 /*
ab350885
MG
2839 * If the caller does not have rights to reserves below the min
2840 * watermark then subtract the high-atomic reserves. This will
2841 * over-estimate the size of the atomic reserve but it avoids a search.
f27ce0e1 2842 */
ab350885 2843 if (likely(!(alloc_flags & ALLOC_RESERVES)))
f27ce0e1
JK
2844 unusable_free += z->nr_reserved_highatomic;
2845
2846#ifdef CONFIG_CMA
2847 /* If allocation can't use CMA areas don't use free CMA pages */
2848 if (!(alloc_flags & ALLOC_CMA))
2849 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2850#endif
dcdfdd40
KS
2851#ifdef CONFIG_UNACCEPTED_MEMORY
2852 unusable_free += zone_page_state(z, NR_UNACCEPTED);
2853#endif
f27ce0e1
JK
2854
2855 return unusable_free;
2856}
2857
1da177e4 2858/*
97a16fc8
MG
2859 * Return true if free base pages are above 'mark'. For high-order checks it
2860 * will return true of the order-0 watermark is reached and there is at least
2861 * one free page of a suitable size. Checking now avoids taking the zone lock
2862 * to check in the allocation paths if no pages are free.
1da177e4 2863 */
86a294a8 2864bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 2865 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 2866 long free_pages)
1da177e4 2867{
d23ad423 2868 long min = mark;
1da177e4
LT
2869 int o;
2870
0aaa29a5 2871 /* free_pages may go negative - that's OK */
f27ce0e1 2872 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 2873
ab350885
MG
2874 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2875 /*
2876 * __GFP_HIGH allows access to 50% of the min reserve as well
2877 * as OOM.
2878 */
1ebbb218 2879 if (alloc_flags & ALLOC_MIN_RESERVE) {
ab350885 2880 min -= min / 2;
0aaa29a5 2881
1ebbb218
MG
2882 /*
2883 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2884 * access more reserves than just __GFP_HIGH. Other
2885 * non-blocking allocations requests such as GFP_NOWAIT
2886 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2887 * access to the min reserve.
2888 */
2889 if (alloc_flags & ALLOC_NON_BLOCK)
2890 min -= min / 4;
2891 }
0aaa29a5 2892
cd04ae1e 2893 /*
ab350885 2894 * OOM victims can try even harder than the normal reserve
cd04ae1e
MH
2895 * users on the grounds that it's definitely going to be in
2896 * the exit path shortly and free memory. Any allocation it
2897 * makes during the free path will be small and short-lived.
2898 */
2899 if (alloc_flags & ALLOC_OOM)
2900 min -= min / 2;
cd04ae1e
MH
2901 }
2902
97a16fc8
MG
2903 /*
2904 * Check watermarks for an order-0 allocation request. If these
2905 * are not met, then a high-order request also cannot go ahead
2906 * even if a suitable page happened to be free.
2907 */
97a225e6 2908 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 2909 return false;
1da177e4 2910
97a16fc8
MG
2911 /* If this is an order-0 request then the watermark is fine */
2912 if (!order)
2913 return true;
2914
2915 /* For a high-order request, check at least one suitable page is free */
23baf831 2916 for (o = order; o <= MAX_ORDER; o++) {
97a16fc8
MG
2917 struct free_area *area = &z->free_area[o];
2918 int mt;
2919
2920 if (!area->nr_free)
2921 continue;
2922
97a16fc8 2923 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 2924 if (!free_area_empty(area, mt))
97a16fc8
MG
2925 return true;
2926 }
2927
2928#ifdef CONFIG_CMA
d883c6cf 2929 if ((alloc_flags & ALLOC_CMA) &&
b03641af 2930 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 2931 return true;
d883c6cf 2932 }
97a16fc8 2933#endif
eb2e2b42
MG
2934 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2935 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
b050e376 2936 return true;
eb2e2b42 2937 }
1da177e4 2938 }
97a16fc8 2939 return false;
88f5acf8
MG
2940}
2941
7aeb09f9 2942bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 2943 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 2944{
97a225e6 2945 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
2946 zone_page_state(z, NR_FREE_PAGES));
2947}
2948
48ee5f36 2949static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 2950 unsigned long mark, int highest_zoneidx,
f80b08fc 2951 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 2952{
f27ce0e1 2953 long free_pages;
d883c6cf 2954
f27ce0e1 2955 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
2956
2957 /*
2958 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 2959 * need to be calculated.
48ee5f36 2960 */
f27ce0e1 2961 if (!order) {
9282012f
JK
2962 long usable_free;
2963 long reserved;
f27ce0e1 2964
9282012f
JK
2965 usable_free = free_pages;
2966 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2967
2968 /* reserved may over estimate high-atomic reserves. */
2969 usable_free -= min(usable_free, reserved);
2970 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
f27ce0e1
JK
2971 return true;
2972 }
48ee5f36 2973
f80b08fc
CTR
2974 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2975 free_pages))
2976 return true;
2973d822 2977
f80b08fc 2978 /*
2973d822 2979 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
f80b08fc
CTR
2980 * when checking the min watermark. The min watermark is the
2981 * point where boosting is ignored so that kswapd is woken up
2982 * when below the low watermark.
2983 */
2973d822 2984 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
f80b08fc
CTR
2985 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2986 mark = z->_watermark[WMARK_MIN];
2987 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2988 alloc_flags, free_pages);
2989 }
2990
2991 return false;
48ee5f36
MG
2992}
2993
7aeb09f9 2994bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 2995 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
2996{
2997 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2998
2999 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3000 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3001
97a225e6 3002 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3003 free_pages);
1da177e4
LT
3004}
3005
9276b1bc 3006#ifdef CONFIG_NUMA
61bb6cd2
GU
3007int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3008
957f822a
DR
3009static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3010{
e02dc017 3011 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3012 node_reclaim_distance;
957f822a 3013}
9276b1bc 3014#else /* CONFIG_NUMA */
957f822a
DR
3015static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3016{
3017 return true;
3018}
9276b1bc
PJ
3019#endif /* CONFIG_NUMA */
3020
6bb15450
MG
3021/*
3022 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3023 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3024 * premature use of a lower zone may cause lowmem pressure problems that
3025 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3026 * probably too small. It only makes sense to spread allocations to avoid
3027 * fragmentation between the Normal and DMA32 zones.
3028 */
3029static inline unsigned int
0a79cdad 3030alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3031{
736838e9 3032 unsigned int alloc_flags;
0a79cdad 3033
736838e9
MN
3034 /*
3035 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3036 * to save a branch.
3037 */
3038 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3039
3040#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3041 if (!zone)
3042 return alloc_flags;
3043
6bb15450 3044 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3045 return alloc_flags;
6bb15450
MG
3046
3047 /*
3048 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3049 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3050 * on UMA that if Normal is populated then so is DMA32.
3051 */
3052 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3053 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3054 return alloc_flags;
6bb15450 3055
8118b82e 3056 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3057#endif /* CONFIG_ZONE_DMA32 */
3058 return alloc_flags;
6bb15450 3059}
6bb15450 3060
8e3560d9
PT
3061/* Must be called after current_gfp_context() which can change gfp_mask */
3062static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3063 unsigned int alloc_flags)
8510e69c
JK
3064{
3065#ifdef CONFIG_CMA
8e3560d9 3066 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 3067 alloc_flags |= ALLOC_CMA;
8510e69c
JK
3068#endif
3069 return alloc_flags;
3070}
3071
7fb1d9fc 3072/*
0798e519 3073 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3074 * a page.
3075 */
3076static struct page *
a9263751
VB
3077get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3078 const struct alloc_context *ac)
753ee728 3079{
6bb15450 3080 struct zoneref *z;
5117f45d 3081 struct zone *zone;
8a87d695
WY
3082 struct pglist_data *last_pgdat = NULL;
3083 bool last_pgdat_dirty_ok = false;
6bb15450 3084 bool no_fallback;
3b8c0be4 3085
6bb15450 3086retry:
7fb1d9fc 3087 /*
9276b1bc 3088 * Scan zonelist, looking for a zone with enough free.
8e464522 3089 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
7fb1d9fc 3090 */
6bb15450
MG
3091 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3092 z = ac->preferred_zoneref;
30d8ec73
MN
3093 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3094 ac->nodemask) {
be06af00 3095 struct page *page;
e085dbc5
JW
3096 unsigned long mark;
3097
664eedde
MG
3098 if (cpusets_enabled() &&
3099 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3100 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3101 continue;
a756cf59
JW
3102 /*
3103 * When allocating a page cache page for writing, we
281e3726
MG
3104 * want to get it from a node that is within its dirty
3105 * limit, such that no single node holds more than its
a756cf59 3106 * proportional share of globally allowed dirty pages.
281e3726 3107 * The dirty limits take into account the node's
a756cf59
JW
3108 * lowmem reserves and high watermark so that kswapd
3109 * should be able to balance it without having to
3110 * write pages from its LRU list.
3111 *
a756cf59 3112 * XXX: For now, allow allocations to potentially
281e3726 3113 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3114 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3115 * which is important when on a NUMA setup the allowed
281e3726 3116 * nodes are together not big enough to reach the
a756cf59 3117 * global limit. The proper fix for these situations
281e3726 3118 * will require awareness of nodes in the
a756cf59
JW
3119 * dirty-throttling and the flusher threads.
3120 */
3b8c0be4 3121 if (ac->spread_dirty_pages) {
8a87d695
WY
3122 if (last_pgdat != zone->zone_pgdat) {
3123 last_pgdat = zone->zone_pgdat;
3124 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3125 }
3b8c0be4 3126
8a87d695 3127 if (!last_pgdat_dirty_ok)
3b8c0be4 3128 continue;
3b8c0be4 3129 }
7fb1d9fc 3130
6bb15450
MG
3131 if (no_fallback && nr_online_nodes > 1 &&
3132 zone != ac->preferred_zoneref->zone) {
3133 int local_nid;
3134
3135 /*
3136 * If moving to a remote node, retry but allow
3137 * fragmenting fallbacks. Locality is more important
3138 * than fragmentation avoidance.
3139 */
3140 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3141 if (zone_to_nid(zone) != local_nid) {
3142 alloc_flags &= ~ALLOC_NOFRAGMENT;
3143 goto retry;
3144 }
3145 }
3146
a9214443 3147 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3148 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3149 ac->highest_zoneidx, alloc_flags,
3150 gfp_mask)) {
fa5e084e
MG
3151 int ret;
3152
dcdfdd40
KS
3153 if (has_unaccepted_memory()) {
3154 if (try_to_accept_memory(zone, order))
3155 goto try_this_zone;
3156 }
3157
c9e97a19
PT
3158#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3159 /*
3160 * Watermark failed for this zone, but see if we can
3161 * grow this zone if it contains deferred pages.
3162 */
076cf7ea 3163 if (deferred_pages_enabled()) {
c9e97a19
PT
3164 if (_deferred_grow_zone(zone, order))
3165 goto try_this_zone;
3166 }
3167#endif
5dab2911
MG
3168 /* Checked here to keep the fast path fast */
3169 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3170 if (alloc_flags & ALLOC_NO_WATERMARKS)
3171 goto try_this_zone;
3172
202e35db 3173 if (!node_reclaim_enabled() ||
c33d6c06 3174 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3175 continue;
3176
a5f5f91d 3177 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3178 switch (ret) {
a5f5f91d 3179 case NODE_RECLAIM_NOSCAN:
fa5e084e 3180 /* did not scan */
cd38b115 3181 continue;
a5f5f91d 3182 case NODE_RECLAIM_FULL:
fa5e084e 3183 /* scanned but unreclaimable */
cd38b115 3184 continue;
fa5e084e
MG
3185 default:
3186 /* did we reclaim enough */
fed2719e 3187 if (zone_watermark_ok(zone, order, mark,
97a225e6 3188 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3189 goto try_this_zone;
3190
fed2719e 3191 continue;
0798e519 3192 }
7fb1d9fc
RS
3193 }
3194
fa5e084e 3195try_this_zone:
066b2393 3196 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3197 gfp_mask, alloc_flags, ac->migratetype);
75379191 3198 if (page) {
479f854a 3199 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3200
3201 /*
3202 * If this is a high-order atomic allocation then check
3203 * if the pageblock should be reserved for the future
3204 */
eb2e2b42 3205 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
368d983b 3206 reserve_highatomic_pageblock(page, zone);
0aaa29a5 3207
75379191 3208 return page;
c9e97a19 3209 } else {
dcdfdd40
KS
3210 if (has_unaccepted_memory()) {
3211 if (try_to_accept_memory(zone, order))
3212 goto try_this_zone;
3213 }
3214
c9e97a19
PT
3215#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3216 /* Try again if zone has deferred pages */
076cf7ea 3217 if (deferred_pages_enabled()) {
c9e97a19
PT
3218 if (_deferred_grow_zone(zone, order))
3219 goto try_this_zone;
3220 }
3221#endif
75379191 3222 }
54a6eb5c 3223 }
9276b1bc 3224
6bb15450
MG
3225 /*
3226 * It's possible on a UMA machine to get through all zones that are
3227 * fragmented. If avoiding fragmentation, reset and try again.
3228 */
3229 if (no_fallback) {
3230 alloc_flags &= ~ALLOC_NOFRAGMENT;
3231 goto retry;
3232 }
3233
4ffeaf35 3234 return NULL;
753ee728
MH
3235}
3236
9af744d7 3237static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3238{
a238ab5b 3239 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3240
3241 /*
3242 * This documents exceptions given to allocations in certain
3243 * contexts that are allowed to allocate outside current's set
3244 * of allowed nodes.
3245 */
3246 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3247 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3248 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3249 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 3250 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3251 filter &= ~SHOW_MEM_FILTER_NODES;
3252
974f4367 3253 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
aa187507
MH
3254}
3255
a8e99259 3256void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3257{
3258 struct va_format vaf;
3259 va_list args;
1be334e5 3260 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3261
c4dc63f0
BH
3262 if ((gfp_mask & __GFP_NOWARN) ||
3263 !__ratelimit(&nopage_rs) ||
3264 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
3265 return;
3266
7877cdcc
MH
3267 va_start(args, fmt);
3268 vaf.fmt = fmt;
3269 vaf.va = &args;
ef8444ea 3270 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3271 current->comm, &vaf, gfp_mask, &gfp_mask,
3272 nodemask_pr_args(nodemask));
7877cdcc 3273 va_end(args);
3ee9a4f0 3274
a8e99259 3275 cpuset_print_current_mems_allowed();
ef8444ea 3276 pr_cont("\n");
a238ab5b 3277 dump_stack();
685dbf6f 3278 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3279}
3280
6c18ba7a
MH
3281static inline struct page *
3282__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3283 unsigned int alloc_flags,
3284 const struct alloc_context *ac)
3285{
3286 struct page *page;
3287
3288 page = get_page_from_freelist(gfp_mask, order,
3289 alloc_flags|ALLOC_CPUSET, ac);
3290 /*
3291 * fallback to ignore cpuset restriction if our nodes
3292 * are depleted
3293 */
3294 if (!page)
3295 page = get_page_from_freelist(gfp_mask, order,
3296 alloc_flags, ac);
3297
3298 return page;
3299}
3300
11e33f6a
MG
3301static inline struct page *
3302__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3303 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3304{
6e0fc46d
DR
3305 struct oom_control oc = {
3306 .zonelist = ac->zonelist,
3307 .nodemask = ac->nodemask,
2a966b77 3308 .memcg = NULL,
6e0fc46d
DR
3309 .gfp_mask = gfp_mask,
3310 .order = order,
6e0fc46d 3311 };
11e33f6a
MG
3312 struct page *page;
3313
9879de73
JW
3314 *did_some_progress = 0;
3315
9879de73 3316 /*
dc56401f
JW
3317 * Acquire the oom lock. If that fails, somebody else is
3318 * making progress for us.
9879de73 3319 */
dc56401f 3320 if (!mutex_trylock(&oom_lock)) {
9879de73 3321 *did_some_progress = 1;
11e33f6a 3322 schedule_timeout_uninterruptible(1);
1da177e4
LT
3323 return NULL;
3324 }
6b1de916 3325
11e33f6a
MG
3326 /*
3327 * Go through the zonelist yet one more time, keep very high watermark
3328 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3329 * we're still under heavy pressure. But make sure that this reclaim
3330 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3331 * allocation which will never fail due to oom_lock already held.
11e33f6a 3332 */
e746bf73
TH
3333 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3334 ~__GFP_DIRECT_RECLAIM, order,
3335 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3336 if (page)
11e33f6a
MG
3337 goto out;
3338
06ad276a
MH
3339 /* Coredumps can quickly deplete all memory reserves */
3340 if (current->flags & PF_DUMPCORE)
3341 goto out;
3342 /* The OOM killer will not help higher order allocs */
3343 if (order > PAGE_ALLOC_COSTLY_ORDER)
3344 goto out;
dcda9b04
MH
3345 /*
3346 * We have already exhausted all our reclaim opportunities without any
3347 * success so it is time to admit defeat. We will skip the OOM killer
3348 * because it is very likely that the caller has a more reasonable
3349 * fallback than shooting a random task.
cfb4a541
MN
3350 *
3351 * The OOM killer may not free memory on a specific node.
dcda9b04 3352 */
cfb4a541 3353 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 3354 goto out;
06ad276a 3355 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 3356 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
3357 goto out;
3358 if (pm_suspended_storage())
3359 goto out;
3360 /*
3361 * XXX: GFP_NOFS allocations should rather fail than rely on
3362 * other request to make a forward progress.
3363 * We are in an unfortunate situation where out_of_memory cannot
3364 * do much for this context but let's try it to at least get
3365 * access to memory reserved if the current task is killed (see
3366 * out_of_memory). Once filesystems are ready to handle allocation
3367 * failures more gracefully we should just bail out here.
3368 */
3369
3c2c6488 3370 /* Exhausted what can be done so it's blame time */
3f913fc5
QZ
3371 if (out_of_memory(&oc) ||
3372 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
c32b3cbe 3373 *did_some_progress = 1;
5020e285 3374
6c18ba7a
MH
3375 /*
3376 * Help non-failing allocations by giving them access to memory
3377 * reserves
3378 */
3379 if (gfp_mask & __GFP_NOFAIL)
3380 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3381 ALLOC_NO_WATERMARKS, ac);
5020e285 3382 }
11e33f6a 3383out:
dc56401f 3384 mutex_unlock(&oom_lock);
11e33f6a
MG
3385 return page;
3386}
3387
33c2d214 3388/*
baf2f90b 3389 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
3390 * killer is consider as the only way to move forward.
3391 */
3392#define MAX_COMPACT_RETRIES 16
3393
56de7263
MG
3394#ifdef CONFIG_COMPACTION
3395/* Try memory compaction for high-order allocations before reclaim */
3396static struct page *
3397__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3398 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3399 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3400{
5e1f0f09 3401 struct page *page = NULL;
eb414681 3402 unsigned long pflags;
499118e9 3403 unsigned int noreclaim_flag;
53853e2d
VB
3404
3405 if (!order)
66199712 3406 return NULL;
66199712 3407
eb414681 3408 psi_memstall_enter(&pflags);
5bf18281 3409 delayacct_compact_start();
499118e9 3410 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3411
c5d01d0d 3412 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3413 prio, &page);
eb414681 3414
499118e9 3415 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3416 psi_memstall_leave(&pflags);
5bf18281 3417 delayacct_compact_end();
56de7263 3418
06dac2f4
CTR
3419 if (*compact_result == COMPACT_SKIPPED)
3420 return NULL;
98dd3b48
VB
3421 /*
3422 * At least in one zone compaction wasn't deferred or skipped, so let's
3423 * count a compaction stall
3424 */
3425 count_vm_event(COMPACTSTALL);
8fb74b9f 3426
5e1f0f09
MG
3427 /* Prep a captured page if available */
3428 if (page)
3429 prep_new_page(page, order, gfp_mask, alloc_flags);
3430
3431 /* Try get a page from the freelist if available */
3432 if (!page)
3433 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3434
98dd3b48
VB
3435 if (page) {
3436 struct zone *zone = page_zone(page);
53853e2d 3437
98dd3b48
VB
3438 zone->compact_blockskip_flush = false;
3439 compaction_defer_reset(zone, order, true);
3440 count_vm_event(COMPACTSUCCESS);
3441 return page;
3442 }
56de7263 3443
98dd3b48
VB
3444 /*
3445 * It's bad if compaction run occurs and fails. The most likely reason
3446 * is that pages exist, but not enough to satisfy watermarks.
3447 */
3448 count_vm_event(COMPACTFAIL);
66199712 3449
98dd3b48 3450 cond_resched();
56de7263
MG
3451
3452 return NULL;
3453}
33c2d214 3454
3250845d
VB
3455static inline bool
3456should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3457 enum compact_result compact_result,
3458 enum compact_priority *compact_priority,
d9436498 3459 int *compaction_retries)
3250845d
VB
3460{
3461 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3462 int min_priority;
65190cff
MH
3463 bool ret = false;
3464 int retries = *compaction_retries;
3465 enum compact_priority priority = *compact_priority;
3250845d
VB
3466
3467 if (!order)
3468 return false;
3469
691d9497
AT
3470 if (fatal_signal_pending(current))
3471 return false;
3472
49433085 3473 /*
ecd8b292
JW
3474 * Compaction was skipped due to a lack of free order-0
3475 * migration targets. Continue if reclaim can help.
49433085 3476 */
ecd8b292 3477 if (compact_result == COMPACT_SKIPPED) {
49433085
VB
3478 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3479 goto out;
3480 }
3481
3250845d 3482 /*
511a69b2
JW
3483 * Compaction managed to coalesce some page blocks, but the
3484 * allocation failed presumably due to a race. Retry some.
3250845d 3485 */
511a69b2
JW
3486 if (compact_result == COMPACT_SUCCESS) {
3487 /*
3488 * !costly requests are much more important than
3489 * __GFP_RETRY_MAYFAIL costly ones because they are de
3490 * facto nofail and invoke OOM killer to move on while
3491 * costly can fail and users are ready to cope with
3492 * that. 1/4 retries is rather arbitrary but we would
3493 * need much more detailed feedback from compaction to
3494 * make a better decision.
3495 */
3496 if (order > PAGE_ALLOC_COSTLY_ORDER)
3497 max_retries /= 4;
3250845d 3498
511a69b2
JW
3499 if (++(*compaction_retries) <= max_retries) {
3500 ret = true;
3501 goto out;
3502 }
65190cff 3503 }
3250845d 3504
d9436498 3505 /*
511a69b2 3506 * Compaction failed. Retry with increasing priority.
d9436498 3507 */
c2033b00
VB
3508 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3509 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3510
c2033b00 3511 if (*compact_priority > min_priority) {
d9436498
VB
3512 (*compact_priority)--;
3513 *compaction_retries = 0;
65190cff 3514 ret = true;
d9436498 3515 }
65190cff
MH
3516out:
3517 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3518 return ret;
3250845d 3519}
56de7263
MG
3520#else
3521static inline struct page *
3522__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3523 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3524 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3525{
33c2d214 3526 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3527 return NULL;
3528}
33c2d214
MH
3529
3530static inline bool
86a294a8
MH
3531should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3532 enum compact_result compact_result,
a5508cd8 3533 enum compact_priority *compact_priority,
d9436498 3534 int *compaction_retries)
33c2d214 3535{
31e49bfd
MH
3536 struct zone *zone;
3537 struct zoneref *z;
3538
3539 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3540 return false;
3541
3542 /*
3543 * There are setups with compaction disabled which would prefer to loop
3544 * inside the allocator rather than hit the oom killer prematurely.
3545 * Let's give them a good hope and keep retrying while the order-0
3546 * watermarks are OK.
3547 */
97a225e6
JK
3548 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3549 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 3550 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 3551 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
3552 return true;
3553 }
33c2d214
MH
3554 return false;
3555}
3250845d 3556#endif /* CONFIG_COMPACTION */
56de7263 3557
d92a8cfc 3558#ifdef CONFIG_LOCKDEP
93781325 3559static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3560 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3561
f920e413 3562static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 3563{
d92a8cfc
PZ
3564 /* no reclaim without waiting on it */
3565 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3566 return false;
3567
3568 /* this guy won't enter reclaim */
2e517d68 3569 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3570 return false;
3571
d92a8cfc
PZ
3572 if (gfp_mask & __GFP_NOLOCKDEP)
3573 return false;
3574
3575 return true;
3576}
3577
4f3eaf45 3578void __fs_reclaim_acquire(unsigned long ip)
93781325 3579{
4f3eaf45 3580 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
3581}
3582
4f3eaf45 3583void __fs_reclaim_release(unsigned long ip)
93781325 3584{
4f3eaf45 3585 lock_release(&__fs_reclaim_map, ip);
93781325
OS
3586}
3587
d92a8cfc
PZ
3588void fs_reclaim_acquire(gfp_t gfp_mask)
3589{
f920e413
DV
3590 gfp_mask = current_gfp_context(gfp_mask);
3591
3592 if (__need_reclaim(gfp_mask)) {
3593 if (gfp_mask & __GFP_FS)
4f3eaf45 3594 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
3595
3596#ifdef CONFIG_MMU_NOTIFIER
3597 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3598 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3599#endif
3600
3601 }
d92a8cfc
PZ
3602}
3603EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3604
3605void fs_reclaim_release(gfp_t gfp_mask)
3606{
f920e413
DV
3607 gfp_mask = current_gfp_context(gfp_mask);
3608
3609 if (__need_reclaim(gfp_mask)) {
3610 if (gfp_mask & __GFP_FS)
4f3eaf45 3611 __fs_reclaim_release(_RET_IP_);
f920e413 3612 }
d92a8cfc
PZ
3613}
3614EXPORT_SYMBOL_GPL(fs_reclaim_release);
3615#endif
3616
3d36424b
MG
3617/*
3618 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3619 * have been rebuilt so allocation retries. Reader side does not lock and
3620 * retries the allocation if zonelist changes. Writer side is protected by the
3621 * embedded spin_lock.
3622 */
3623static DEFINE_SEQLOCK(zonelist_update_seq);
3624
3625static unsigned int zonelist_iter_begin(void)
3626{
3627 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3628 return read_seqbegin(&zonelist_update_seq);
3629
3630 return 0;
3631}
3632
3633static unsigned int check_retry_zonelist(unsigned int seq)
3634{
3635 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3636 return read_seqretry(&zonelist_update_seq, seq);
3637
3638 return seq;
3639}
3640
bba90710 3641/* Perform direct synchronous page reclaim */
2187e17b 3642static unsigned long
a9263751
VB
3643__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3644 const struct alloc_context *ac)
11e33f6a 3645{
499118e9 3646 unsigned int noreclaim_flag;
fa7fc75f 3647 unsigned long progress;
11e33f6a
MG
3648
3649 cond_resched();
3650
3651 /* We now go into synchronous reclaim */
3652 cpuset_memory_pressure_bump();
d92a8cfc 3653 fs_reclaim_acquire(gfp_mask);
93781325 3654 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3655
a9263751
VB
3656 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3657 ac->nodemask);
11e33f6a 3658
499118e9 3659 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3660 fs_reclaim_release(gfp_mask);
11e33f6a
MG
3661
3662 cond_resched();
3663
bba90710
MS
3664 return progress;
3665}
3666
3667/* The really slow allocator path where we enter direct reclaim */
3668static inline struct page *
3669__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3670 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3671 unsigned long *did_some_progress)
bba90710
MS
3672{
3673 struct page *page = NULL;
fa7fc75f 3674 unsigned long pflags;
bba90710
MS
3675 bool drained = false;
3676
fa7fc75f 3677 psi_memstall_enter(&pflags);
a9263751 3678 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 3679 if (unlikely(!(*did_some_progress)))
fa7fc75f 3680 goto out;
11e33f6a 3681
9ee493ce 3682retry:
31a6c190 3683 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3684
3685 /*
3686 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 3687 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 3688 * Shrink them and try again
9ee493ce
MG
3689 */
3690 if (!page && !drained) {
29fac03b 3691 unreserve_highatomic_pageblock(ac, false);
93481ff0 3692 drain_all_pages(NULL);
9ee493ce
MG
3693 drained = true;
3694 goto retry;
3695 }
fa7fc75f
SB
3696out:
3697 psi_memstall_leave(&pflags);
9ee493ce 3698
11e33f6a
MG
3699 return page;
3700}
3701
5ecd9d40
DR
3702static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3703 const struct alloc_context *ac)
3a025760
JW
3704{
3705 struct zoneref *z;
3706 struct zone *zone;
e1a55637 3707 pg_data_t *last_pgdat = NULL;
97a225e6 3708 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 3709
97a225e6 3710 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 3711 ac->nodemask) {
bc53008e
WY
3712 if (!managed_zone(zone))
3713 continue;
d137a7cb 3714 if (last_pgdat != zone->zone_pgdat) {
97a225e6 3715 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
d137a7cb
CW
3716 last_pgdat = zone->zone_pgdat;
3717 }
e1a55637 3718 }
3a025760
JW
3719}
3720
c603844b 3721static inline unsigned int
eb2e2b42 3722gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
341ce06f 3723{
c603844b 3724 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3725
736838e9 3726 /*
524c4807 3727 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
736838e9
MN
3728 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3729 * to save two branches.
3730 */
524c4807 3731 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
736838e9 3732 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 3733
341ce06f
PZ
3734 /*
3735 * The caller may dip into page reserves a bit more if the caller
3736 * cannot run direct reclaim, or if the caller has realtime scheduling
3737 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1ebbb218 3738 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
341ce06f 3739 */
736838e9
MN
3740 alloc_flags |= (__force int)
3741 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 3742
1ebbb218 3743 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
5c3240d9 3744 /*
b104a35d
DR
3745 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3746 * if it can't schedule.
5c3240d9 3747 */
eb2e2b42 3748 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1ebbb218 3749 alloc_flags |= ALLOC_NON_BLOCK;
eb2e2b42
MG
3750
3751 if (order > 0)
3752 alloc_flags |= ALLOC_HIGHATOMIC;
3753 }
3754
523b9458 3755 /*
1ebbb218
MG
3756 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3757 * GFP_ATOMIC) rather than fail, see the comment for
8e464522 3758 * cpuset_node_allowed().
523b9458 3759 */
1ebbb218
MG
3760 if (alloc_flags & ALLOC_MIN_RESERVE)
3761 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 3762 } else if (unlikely(rt_task(current)) && in_task())
c988dcbe 3763 alloc_flags |= ALLOC_MIN_RESERVE;
341ce06f 3764
8e3560d9 3765 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 3766
341ce06f
PZ
3767 return alloc_flags;
3768}
3769
cd04ae1e 3770static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3771{
cd04ae1e
MH
3772 if (!tsk_is_oom_victim(tsk))
3773 return false;
3774
3775 /*
3776 * !MMU doesn't have oom reaper so give access to memory reserves
3777 * only to the thread with TIF_MEMDIE set
3778 */
3779 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3780 return false;
3781
cd04ae1e
MH
3782 return true;
3783}
3784
3785/*
3786 * Distinguish requests which really need access to full memory
3787 * reserves from oom victims which can live with a portion of it
3788 */
3789static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3790{
3791 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3792 return 0;
31a6c190 3793 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3794 return ALLOC_NO_WATERMARKS;
31a6c190 3795 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3796 return ALLOC_NO_WATERMARKS;
3797 if (!in_interrupt()) {
3798 if (current->flags & PF_MEMALLOC)
3799 return ALLOC_NO_WATERMARKS;
3800 else if (oom_reserves_allowed(current))
3801 return ALLOC_OOM;
3802 }
31a6c190 3803
cd04ae1e
MH
3804 return 0;
3805}
3806
3807bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3808{
3809 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3810}
3811
0a0337e0
MH
3812/*
3813 * Checks whether it makes sense to retry the reclaim to make a forward progress
3814 * for the given allocation request.
491d79ae
JW
3815 *
3816 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3817 * without success, or when we couldn't even meet the watermark if we
3818 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3819 *
3820 * Returns true if a retry is viable or false to enter the oom path.
3821 */
3822static inline bool
3823should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3824 struct alloc_context *ac, int alloc_flags,
423b452e 3825 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3826{
3827 struct zone *zone;
3828 struct zoneref *z;
15f570bf 3829 bool ret = false;
0a0337e0 3830
423b452e
VB
3831 /*
3832 * Costly allocations might have made a progress but this doesn't mean
3833 * their order will become available due to high fragmentation so
3834 * always increment the no progress counter for them
3835 */
3836 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3837 *no_progress_loops = 0;
3838 else
3839 (*no_progress_loops)++;
3840
0a0337e0
MH
3841 /*
3842 * Make sure we converge to OOM if we cannot make any progress
3843 * several times in the row.
3844 */
04c8716f
MK
3845 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3846 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3847 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3848 }
0a0337e0 3849
bca67592
MG
3850 /*
3851 * Keep reclaiming pages while there is a chance this will lead
3852 * somewhere. If none of the target zones can satisfy our allocation
3853 * request even if all reclaimable pages are considered then we are
3854 * screwed and have to go OOM.
0a0337e0 3855 */
97a225e6
JK
3856 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3857 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 3858 unsigned long available;
ede37713 3859 unsigned long reclaimable;
d379f01d
MH
3860 unsigned long min_wmark = min_wmark_pages(zone);
3861 bool wmark;
0a0337e0 3862
5a1c84b4 3863 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3864 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3865
3866 /*
491d79ae
JW
3867 * Would the allocation succeed if we reclaimed all
3868 * reclaimable pages?
0a0337e0 3869 */
d379f01d 3870 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 3871 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
3872 trace_reclaim_retry_zone(z, order, reclaimable,
3873 available, min_wmark, *no_progress_loops, wmark);
3874 if (wmark) {
15f570bf 3875 ret = true;
132b0d21 3876 break;
0a0337e0
MH
3877 }
3878 }
3879
15f570bf
MH
3880 /*
3881 * Memory allocation/reclaim might be called from a WQ context and the
3882 * current implementation of the WQ concurrency control doesn't
3883 * recognize that a particular WQ is congested if the worker thread is
3884 * looping without ever sleeping. Therefore we have to do a short sleep
3885 * here rather than calling cond_resched().
3886 */
3887 if (current->flags & PF_WQ_WORKER)
3888 schedule_timeout_uninterruptible(1);
3889 else
3890 cond_resched();
3891 return ret;
0a0337e0
MH
3892}
3893
902b6281
VB
3894static inline bool
3895check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3896{
3897 /*
3898 * It's possible that cpuset's mems_allowed and the nodemask from
3899 * mempolicy don't intersect. This should be normally dealt with by
3900 * policy_nodemask(), but it's possible to race with cpuset update in
3901 * such a way the check therein was true, and then it became false
3902 * before we got our cpuset_mems_cookie here.
3903 * This assumes that for all allocations, ac->nodemask can come only
3904 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3905 * when it does not intersect with the cpuset restrictions) or the
3906 * caller can deal with a violated nodemask.
3907 */
3908 if (cpusets_enabled() && ac->nodemask &&
3909 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3910 ac->nodemask = NULL;
3911 return true;
3912 }
3913
3914 /*
3915 * When updating a task's mems_allowed or mempolicy nodemask, it is
3916 * possible to race with parallel threads in such a way that our
3917 * allocation can fail while the mask is being updated. If we are about
3918 * to fail, check if the cpuset changed during allocation and if so,
3919 * retry.
3920 */
3921 if (read_mems_allowed_retry(cpuset_mems_cookie))
3922 return true;
3923
3924 return false;
3925}
3926
11e33f6a
MG
3927static inline struct page *
3928__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3929 struct alloc_context *ac)
11e33f6a 3930{
d0164adc 3931 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3932 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3933 struct page *page = NULL;
c603844b 3934 unsigned int alloc_flags;
11e33f6a 3935 unsigned long did_some_progress;
5ce9bfef 3936 enum compact_priority compact_priority;
c5d01d0d 3937 enum compact_result compact_result;
5ce9bfef
VB
3938 int compaction_retries;
3939 int no_progress_loops;
5ce9bfef 3940 unsigned int cpuset_mems_cookie;
3d36424b 3941 unsigned int zonelist_iter_cookie;
cd04ae1e 3942 int reserve_flags;
1da177e4 3943
3d36424b 3944restart:
5ce9bfef
VB
3945 compaction_retries = 0;
3946 no_progress_loops = 0;
3947 compact_priority = DEF_COMPACT_PRIORITY;
3948 cpuset_mems_cookie = read_mems_allowed_begin();
3d36424b 3949 zonelist_iter_cookie = zonelist_iter_begin();
9a67f648
MH
3950
3951 /*
3952 * The fast path uses conservative alloc_flags to succeed only until
3953 * kswapd needs to be woken up, and to avoid the cost of setting up
3954 * alloc_flags precisely. So we do that now.
3955 */
eb2e2b42 3956 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
9a67f648 3957
e47483bc
VB
3958 /*
3959 * We need to recalculate the starting point for the zonelist iterator
3960 * because we might have used different nodemask in the fast path, or
3961 * there was a cpuset modification and we are retrying - otherwise we
3962 * could end up iterating over non-eligible zones endlessly.
3963 */
3964 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 3965 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
3966 if (!ac->preferred_zoneref->zone)
3967 goto nopage;
3968
8ca1b5a4
FT
3969 /*
3970 * Check for insane configurations where the cpuset doesn't contain
3971 * any suitable zone to satisfy the request - e.g. non-movable
3972 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3973 */
3974 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3975 struct zoneref *z = first_zones_zonelist(ac->zonelist,
3976 ac->highest_zoneidx,
3977 &cpuset_current_mems_allowed);
3978 if (!z->zone)
3979 goto nopage;
3980 }
3981
0a79cdad 3982 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 3983 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
3984
3985 /*
3986 * The adjusted alloc_flags might result in immediate success, so try
3987 * that first
3988 */
3989 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3990 if (page)
3991 goto got_pg;
3992
a8161d1e
VB
3993 /*
3994 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3995 * that we have enough base pages and don't need to reclaim. For non-
3996 * movable high-order allocations, do that as well, as compaction will
3997 * try prevent permanent fragmentation by migrating from blocks of the
3998 * same migratetype.
3999 * Don't try this for allocations that are allowed to ignore
4000 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4001 */
282722b0
VB
4002 if (can_direct_reclaim &&
4003 (costly_order ||
4004 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4005 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4006 page = __alloc_pages_direct_compact(gfp_mask, order,
4007 alloc_flags, ac,
a5508cd8 4008 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4009 &compact_result);
4010 if (page)
4011 goto got_pg;
4012
cc638f32
VB
4013 /*
4014 * Checks for costly allocations with __GFP_NORETRY, which
4015 * includes some THP page fault allocations
4016 */
4017 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4018 /*
4019 * If allocating entire pageblock(s) and compaction
4020 * failed because all zones are below low watermarks
4021 * or is prohibited because it recently failed at this
3f36d866
DR
4022 * order, fail immediately unless the allocator has
4023 * requested compaction and reclaim retry.
b39d0ee2
DR
4024 *
4025 * Reclaim is
4026 * - potentially very expensive because zones are far
4027 * below their low watermarks or this is part of very
4028 * bursty high order allocations,
4029 * - not guaranteed to help because isolate_freepages()
4030 * may not iterate over freed pages as part of its
4031 * linear scan, and
4032 * - unlikely to make entire pageblocks free on its
4033 * own.
4034 */
4035 if (compact_result == COMPACT_SKIPPED ||
4036 compact_result == COMPACT_DEFERRED)
4037 goto nopage;
a8161d1e 4038
a8161d1e 4039 /*
3eb2771b
VB
4040 * Looks like reclaim/compaction is worth trying, but
4041 * sync compaction could be very expensive, so keep
25160354 4042 * using async compaction.
a8161d1e 4043 */
a5508cd8 4044 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4045 }
4046 }
23771235 4047
31a6c190 4048retry:
23771235 4049 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4050 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4051 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4052
cd04ae1e
MH
4053 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4054 if (reserve_flags)
ce96fa62
ML
4055 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4056 (alloc_flags & ALLOC_KSWAPD);
23771235 4057
e46e7b77 4058 /*
d6a24df0
VB
4059 * Reset the nodemask and zonelist iterators if memory policies can be
4060 * ignored. These allocations are high priority and system rather than
4061 * user oriented.
e46e7b77 4062 */
cd04ae1e 4063 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4064 ac->nodemask = NULL;
e46e7b77 4065 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4066 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4067 }
4068
23771235 4069 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4070 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4071 if (page)
4072 goto got_pg;
1da177e4 4073
d0164adc 4074 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4075 if (!can_direct_reclaim)
1da177e4
LT
4076 goto nopage;
4077
9a67f648
MH
4078 /* Avoid recursion of direct reclaim */
4079 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4080 goto nopage;
4081
a8161d1e
VB
4082 /* Try direct reclaim and then allocating */
4083 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4084 &did_some_progress);
4085 if (page)
4086 goto got_pg;
4087
4088 /* Try direct compaction and then allocating */
a9263751 4089 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4090 compact_priority, &compact_result);
56de7263
MG
4091 if (page)
4092 goto got_pg;
75f30861 4093
9083905a
JW
4094 /* Do not loop if specifically requested */
4095 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4096 goto nopage;
9083905a 4097
0a0337e0
MH
4098 /*
4099 * Do not retry costly high order allocations unless they are
dcda9b04 4100 * __GFP_RETRY_MAYFAIL
0a0337e0 4101 */
dcda9b04 4102 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4103 goto nopage;
0a0337e0 4104
0a0337e0 4105 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4106 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4107 goto retry;
4108
33c2d214
MH
4109 /*
4110 * It doesn't make any sense to retry for the compaction if the order-0
4111 * reclaim is not able to make any progress because the current
4112 * implementation of the compaction depends on the sufficient amount
4113 * of free memory (see __compaction_suitable)
4114 */
4115 if (did_some_progress > 0 &&
86a294a8 4116 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4117 compact_result, &compact_priority,
d9436498 4118 &compaction_retries))
33c2d214
MH
4119 goto retry;
4120
902b6281 4121
3d36424b
MG
4122 /*
4123 * Deal with possible cpuset update races or zonelist updates to avoid
4124 * a unnecessary OOM kill.
4125 */
4126 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4127 check_retry_zonelist(zonelist_iter_cookie))
4128 goto restart;
e47483bc 4129
9083905a
JW
4130 /* Reclaim has failed us, start killing things */
4131 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4132 if (page)
4133 goto got_pg;
4134
9a67f648 4135 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4136 if (tsk_is_oom_victim(current) &&
8510e69c 4137 (alloc_flags & ALLOC_OOM ||
c288983d 4138 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4139 goto nopage;
4140
9083905a 4141 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4142 if (did_some_progress) {
4143 no_progress_loops = 0;
9083905a 4144 goto retry;
0a0337e0 4145 }
9083905a 4146
1da177e4 4147nopage:
3d36424b
MG
4148 /*
4149 * Deal with possible cpuset update races or zonelist updates to avoid
4150 * a unnecessary OOM kill.
4151 */
4152 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4153 check_retry_zonelist(zonelist_iter_cookie))
4154 goto restart;
5ce9bfef 4155
9a67f648
MH
4156 /*
4157 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4158 * we always retry
4159 */
4160 if (gfp_mask & __GFP_NOFAIL) {
4161 /*
4162 * All existing users of the __GFP_NOFAIL are blockable, so warn
4163 * of any new users that actually require GFP_NOWAIT
4164 */
3f913fc5 4165 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
9a67f648
MH
4166 goto fail;
4167
4168 /*
4169 * PF_MEMALLOC request from this context is rather bizarre
4170 * because we cannot reclaim anything and only can loop waiting
4171 * for somebody to do a work for us
4172 */
3f913fc5 4173 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
9a67f648
MH
4174
4175 /*
4176 * non failing costly orders are a hard requirement which we
4177 * are not prepared for much so let's warn about these users
4178 * so that we can identify them and convert them to something
4179 * else.
4180 */
896c4d52 4181 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
9a67f648 4182
6c18ba7a 4183 /*
1ebbb218
MG
4184 * Help non-failing allocations by giving some access to memory
4185 * reserves normally used for high priority non-blocking
4186 * allocations but do not use ALLOC_NO_WATERMARKS because this
6c18ba7a 4187 * could deplete whole memory reserves which would just make
1ebbb218 4188 * the situation worse.
6c18ba7a 4189 */
1ebbb218 4190 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
6c18ba7a
MH
4191 if (page)
4192 goto got_pg;
4193
9a67f648
MH
4194 cond_resched();
4195 goto retry;
4196 }
4197fail:
a8e99259 4198 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4199 "page allocation failure: order:%u", order);
1da177e4 4200got_pg:
072bb0aa 4201 return page;
1da177e4 4202}
11e33f6a 4203
9cd75558 4204static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4205 int preferred_nid, nodemask_t *nodemask,
8e6a930b 4206 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 4207 unsigned int *alloc_flags)
11e33f6a 4208{
97a225e6 4209 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4210 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4211 ac->nodemask = nodemask;
01c0bfe0 4212 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4213
682a3385 4214 if (cpusets_enabled()) {
8e6a930b 4215 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
4216 /*
4217 * When we are in the interrupt context, it is irrelevant
4218 * to the current task context. It means that any node ok.
4219 */
88dc6f20 4220 if (in_task() && !ac->nodemask)
9cd75558 4221 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4222 else
4223 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4224 }
4225
446ec838 4226 might_alloc(gfp_mask);
11e33f6a
MG
4227
4228 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4229 return false;
11e33f6a 4230
8e3560d9 4231 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 4232
c9ab0c4f 4233 /* Dirty zone balancing only done in the fast path */
9cd75558 4234 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4235
e46e7b77
MG
4236 /*
4237 * The preferred zone is used for statistics but crucially it is
4238 * also used as the starting point for the zonelist iterator. It
4239 * may get reset for allocations that ignore memory policies.
4240 */
9cd75558 4241 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4242 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4243
4244 return true;
9cd75558
MG
4245}
4246
387ba26f 4247/*
0f87d9d3 4248 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
4249 * @gfp: GFP flags for the allocation
4250 * @preferred_nid: The preferred NUMA node ID to allocate from
4251 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
4252 * @nr_pages: The number of pages desired on the list or array
4253 * @page_list: Optional list to store the allocated pages
4254 * @page_array: Optional array to store the pages
387ba26f
MG
4255 *
4256 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
4257 * allocate nr_pages quickly. Pages are added to page_list if page_list
4258 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 4259 *
0f87d9d3
MG
4260 * For lists, nr_pages is the number of pages that should be allocated.
4261 *
4262 * For arrays, only NULL elements are populated with pages and nr_pages
4263 * is the maximum number of pages that will be stored in the array.
4264 *
4265 * Returns the number of pages on the list or array.
387ba26f
MG
4266 */
4267unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4268 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
4269 struct list_head *page_list,
4270 struct page **page_array)
387ba26f
MG
4271{
4272 struct page *page;
4b23a68f 4273 unsigned long __maybe_unused UP_flags;
387ba26f
MG
4274 struct zone *zone;
4275 struct zoneref *z;
4276 struct per_cpu_pages *pcp;
4277 struct list_head *pcp_list;
4278 struct alloc_context ac;
4279 gfp_t alloc_gfp;
4280 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 4281 int nr_populated = 0, nr_account = 0;
387ba26f 4282
0f87d9d3
MG
4283 /*
4284 * Skip populated array elements to determine if any pages need
4285 * to be allocated before disabling IRQs.
4286 */
b08e50dd 4287 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
4288 nr_populated++;
4289
06147843
CL
4290 /* No pages requested? */
4291 if (unlikely(nr_pages <= 0))
4292 goto out;
4293
b3b64ebd
MG
4294 /* Already populated array? */
4295 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 4296 goto out;
b3b64ebd 4297
8dcb3060 4298 /* Bulk allocator does not support memcg accounting. */
f7a449f7 4299 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
8dcb3060
SB
4300 goto failed;
4301
387ba26f 4302 /* Use the single page allocator for one page. */
0f87d9d3 4303 if (nr_pages - nr_populated == 1)
387ba26f
MG
4304 goto failed;
4305
187ad460
MG
4306#ifdef CONFIG_PAGE_OWNER
4307 /*
4308 * PAGE_OWNER may recurse into the allocator to allocate space to
4309 * save the stack with pagesets.lock held. Releasing/reacquiring
4310 * removes much of the performance benefit of bulk allocation so
4311 * force the caller to allocate one page at a time as it'll have
4312 * similar performance to added complexity to the bulk allocator.
4313 */
4314 if (static_branch_unlikely(&page_owner_inited))
4315 goto failed;
4316#endif
4317
387ba26f
MG
4318 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4319 gfp &= gfp_allowed_mask;
4320 alloc_gfp = gfp;
4321 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 4322 goto out;
387ba26f
MG
4323 gfp = alloc_gfp;
4324
4325 /* Find an allowed local zone that meets the low watermark. */
4326 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4327 unsigned long mark;
4328
4329 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4330 !__cpuset_zone_allowed(zone, gfp)) {
4331 continue;
4332 }
4333
4334 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4335 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4336 goto failed;
4337 }
4338
4339 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4340 if (zone_watermark_fast(zone, 0, mark,
4341 zonelist_zone_idx(ac.preferred_zoneref),
4342 alloc_flags, gfp)) {
4343 break;
4344 }
4345 }
4346
4347 /*
4348 * If there are no allowed local zones that meets the watermarks then
4349 * try to allocate a single page and reclaim if necessary.
4350 */
ce76f9a1 4351 if (unlikely(!zone))
387ba26f
MG
4352 goto failed;
4353
57490774 4354 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 4355 pcp_trylock_prepare(UP_flags);
57490774 4356 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 4357 if (!pcp)
4b23a68f 4358 goto failed_irq;
387ba26f 4359
387ba26f 4360 /* Attempt the batch allocation */
44042b44 4361 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
0f87d9d3
MG
4362 while (nr_populated < nr_pages) {
4363
4364 /* Skip existing pages */
4365 if (page_array && page_array[nr_populated]) {
4366 nr_populated++;
4367 continue;
4368 }
4369
44042b44 4370 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 4371 pcp, pcp_list);
ce76f9a1 4372 if (unlikely(!page)) {
c572e488 4373 /* Try and allocate at least one page */
4b23a68f 4374 if (!nr_account) {
57490774 4375 pcp_spin_unlock(pcp);
387ba26f 4376 goto failed_irq;
4b23a68f 4377 }
387ba26f
MG
4378 break;
4379 }
3e23060b 4380 nr_account++;
387ba26f
MG
4381
4382 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
4383 if (page_list)
4384 list_add(&page->lru, page_list);
4385 else
4386 page_array[nr_populated] = page;
4387 nr_populated++;
387ba26f
MG
4388 }
4389
57490774 4390 pcp_spin_unlock(pcp);
4b23a68f 4391 pcp_trylock_finish(UP_flags);
43c95bcc 4392
3e23060b
MG
4393 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4394 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 4395
06147843 4396out:
0f87d9d3 4397 return nr_populated;
387ba26f
MG
4398
4399failed_irq:
4b23a68f 4400 pcp_trylock_finish(UP_flags);
387ba26f
MG
4401
4402failed:
4403 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4404 if (page) {
0f87d9d3
MG
4405 if (page_list)
4406 list_add(&page->lru, page_list);
4407 else
4408 page_array[nr_populated] = page;
4409 nr_populated++;
387ba26f
MG
4410 }
4411
06147843 4412 goto out;
387ba26f
MG
4413}
4414EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4415
9cd75558
MG
4416/*
4417 * This is the 'heart' of the zoned buddy allocator.
4418 */
84172f4b 4419struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 4420 nodemask_t *nodemask)
9cd75558
MG
4421{
4422 struct page *page;
4423 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 4424 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4425 struct alloc_context ac = { };
4426
c63ae43b
MH
4427 /*
4428 * There are several places where we assume that the order value is sane
4429 * so bail out early if the request is out of bound.
4430 */
23baf831 4431 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
c63ae43b 4432 return NULL;
c63ae43b 4433
6e5e0f28 4434 gfp &= gfp_allowed_mask;
da6df1b0
PT
4435 /*
4436 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4437 * resp. GFP_NOIO which has to be inherited for all allocation requests
4438 * from a particular context which has been marked by
8e3560d9
PT
4439 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4440 * movable zones are not used during allocation.
da6df1b0
PT
4441 */
4442 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
4443 alloc_gfp = gfp;
4444 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 4445 &alloc_gfp, &alloc_flags))
9cd75558
MG
4446 return NULL;
4447
6bb15450
MG
4448 /*
4449 * Forbid the first pass from falling back to types that fragment
4450 * memory until all local zones are considered.
4451 */
6e5e0f28 4452 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 4453
5117f45d 4454 /* First allocation attempt */
8e6a930b 4455 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
4456 if (likely(page))
4457 goto out;
11e33f6a 4458
da6df1b0 4459 alloc_gfp = gfp;
4fcb0971 4460 ac.spread_dirty_pages = false;
23f086f9 4461
4741526b
MG
4462 /*
4463 * Restore the original nodemask if it was potentially replaced with
4464 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4465 */
97ce86f9 4466 ac.nodemask = nodemask;
16096c25 4467
8e6a930b 4468 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 4469
4fcb0971 4470out:
f7a449f7 4471 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
6e5e0f28 4472 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
4473 __free_pages(page, order);
4474 page = NULL;
4949148a
VD
4475 }
4476
8e6a930b 4477 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
b073d7f8 4478 kmsan_alloc_page(page, order, alloc_gfp);
4fcb0971 4479
11e33f6a 4480 return page;
1da177e4 4481}
84172f4b 4482EXPORT_SYMBOL(__alloc_pages);
1da177e4 4483
cc09cb13
MWO
4484struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4485 nodemask_t *nodemask)
4486{
4487 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4488 preferred_nid, nodemask);
4489
4490 if (page && order > 1)
4491 prep_transhuge_page(page);
4492 return (struct folio *)page;
4493}
4494EXPORT_SYMBOL(__folio_alloc);
4495
1da177e4 4496/*
9ea9a680
MH
4497 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4498 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4499 * you need to access high mem.
1da177e4 4500 */
920c7a5d 4501unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4502{
945a1113
AM
4503 struct page *page;
4504
9ea9a680 4505 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4506 if (!page)
4507 return 0;
4508 return (unsigned long) page_address(page);
4509}
1da177e4
LT
4510EXPORT_SYMBOL(__get_free_pages);
4511
920c7a5d 4512unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4513{
dcc1be11 4514 return __get_free_page(gfp_mask | __GFP_ZERO);
1da177e4 4515}
1da177e4
LT
4516EXPORT_SYMBOL(get_zeroed_page);
4517
7f194fbb
MWO
4518/**
4519 * __free_pages - Free pages allocated with alloc_pages().
4520 * @page: The page pointer returned from alloc_pages().
4521 * @order: The order of the allocation.
4522 *
4523 * This function can free multi-page allocations that are not compound
4524 * pages. It does not check that the @order passed in matches that of
4525 * the allocation, so it is easy to leak memory. Freeing more memory
4526 * than was allocated will probably emit a warning.
4527 *
4528 * If the last reference to this page is speculative, it will be released
4529 * by put_page() which only frees the first page of a non-compound
4530 * allocation. To prevent the remaining pages from being leaked, we free
4531 * the subsequent pages here. If you want to use the page's reference
4532 * count to decide when to free the allocation, you should allocate a
4533 * compound page, and use put_page() instead of __free_pages().
4534 *
4535 * Context: May be called in interrupt context or while holding a normal
4536 * spinlock, but not in NMI context or while holding a raw spinlock.
4537 */
742aa7fb
AL
4538void __free_pages(struct page *page, unsigned int order)
4539{
462a8e08
DC
4540 /* get PageHead before we drop reference */
4541 int head = PageHead(page);
4542
742aa7fb
AL
4543 if (put_page_testzero(page))
4544 free_the_page(page, order);
462a8e08 4545 else if (!head)
e320d301
MWO
4546 while (order-- > 0)
4547 free_the_page(page + (1 << order), order);
742aa7fb 4548}
1da177e4
LT
4549EXPORT_SYMBOL(__free_pages);
4550
920c7a5d 4551void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4552{
4553 if (addr != 0) {
725d704e 4554 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4555 __free_pages(virt_to_page((void *)addr), order);
4556 }
4557}
4558
4559EXPORT_SYMBOL(free_pages);
4560
b63ae8ca
AD
4561/*
4562 * Page Fragment:
4563 * An arbitrary-length arbitrary-offset area of memory which resides
4564 * within a 0 or higher order page. Multiple fragments within that page
4565 * are individually refcounted, in the page's reference counter.
4566 *
4567 * The page_frag functions below provide a simple allocation framework for
4568 * page fragments. This is used by the network stack and network device
4569 * drivers to provide a backing region of memory for use as either an
4570 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4571 */
2976db80
AD
4572static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4573 gfp_t gfp_mask)
b63ae8ca
AD
4574{
4575 struct page *page = NULL;
4576 gfp_t gfp = gfp_mask;
4577
4578#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4579 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4580 __GFP_NOMEMALLOC;
4581 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4582 PAGE_FRAG_CACHE_MAX_ORDER);
4583 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4584#endif
4585 if (unlikely(!page))
4586 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4587
4588 nc->va = page ? page_address(page) : NULL;
4589
4590 return page;
4591}
4592
2976db80 4593void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4594{
4595 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4596
742aa7fb
AL
4597 if (page_ref_sub_and_test(page, count))
4598 free_the_page(page, compound_order(page));
44fdffd7 4599}
2976db80 4600EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4601
b358e212
KH
4602void *page_frag_alloc_align(struct page_frag_cache *nc,
4603 unsigned int fragsz, gfp_t gfp_mask,
4604 unsigned int align_mask)
b63ae8ca
AD
4605{
4606 unsigned int size = PAGE_SIZE;
4607 struct page *page;
4608 int offset;
4609
4610 if (unlikely(!nc->va)) {
4611refill:
2976db80 4612 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4613 if (!page)
4614 return NULL;
4615
4616#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4617 /* if size can vary use size else just use PAGE_SIZE */
4618 size = nc->size;
4619#endif
4620 /* Even if we own the page, we do not use atomic_set().
4621 * This would break get_page_unless_zero() users.
4622 */
86447726 4623 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4624
4625 /* reset page count bias and offset to start of new frag */
2f064f34 4626 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4627 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4628 nc->offset = size;
4629 }
4630
4631 offset = nc->offset - fragsz;
4632 if (unlikely(offset < 0)) {
4633 page = virt_to_page(nc->va);
4634
fe896d18 4635 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4636 goto refill;
4637
d8c19014
DZ
4638 if (unlikely(nc->pfmemalloc)) {
4639 free_the_page(page, compound_order(page));
4640 goto refill;
4641 }
4642
b63ae8ca
AD
4643#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4644 /* if size can vary use size else just use PAGE_SIZE */
4645 size = nc->size;
4646#endif
4647 /* OK, page count is 0, we can safely set it */
86447726 4648 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4649
4650 /* reset page count bias and offset to start of new frag */
86447726 4651 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca 4652 offset = size - fragsz;
dac22531
ML
4653 if (unlikely(offset < 0)) {
4654 /*
4655 * The caller is trying to allocate a fragment
4656 * with fragsz > PAGE_SIZE but the cache isn't big
4657 * enough to satisfy the request, this may
4658 * happen in low memory conditions.
4659 * We don't release the cache page because
4660 * it could make memory pressure worse
4661 * so we simply return NULL here.
4662 */
4663 return NULL;
4664 }
b63ae8ca
AD
4665 }
4666
4667 nc->pagecnt_bias--;
b358e212 4668 offset &= align_mask;
b63ae8ca
AD
4669 nc->offset = offset;
4670
4671 return nc->va + offset;
4672}
b358e212 4673EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
4674
4675/*
4676 * Frees a page fragment allocated out of either a compound or order 0 page.
4677 */
8c2dd3e4 4678void page_frag_free(void *addr)
b63ae8ca
AD
4679{
4680 struct page *page = virt_to_head_page(addr);
4681
742aa7fb
AL
4682 if (unlikely(put_page_testzero(page)))
4683 free_the_page(page, compound_order(page));
b63ae8ca 4684}
8c2dd3e4 4685EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4686
d00181b9
KS
4687static void *make_alloc_exact(unsigned long addr, unsigned int order,
4688 size_t size)
ee85c2e1
AK
4689{
4690 if (addr) {
df48a5f7
LH
4691 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4692 struct page *page = virt_to_page((void *)addr);
4693 struct page *last = page + nr;
4694
4695 split_page_owner(page, 1 << order);
4696 split_page_memcg(page, 1 << order);
4697 while (page < --last)
4698 set_page_refcounted(last);
4699
4700 last = page + (1UL << order);
4701 for (page += nr; page < last; page++)
4702 __free_pages_ok(page, 0, FPI_TO_TAIL);
ee85c2e1
AK
4703 }
4704 return (void *)addr;
4705}
4706
2be0ffe2
TT
4707/**
4708 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4709 * @size: the number of bytes to allocate
63931eb9 4710 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4711 *
4712 * This function is similar to alloc_pages(), except that it allocates the
4713 * minimum number of pages to satisfy the request. alloc_pages() can only
4714 * allocate memory in power-of-two pages.
4715 *
4716 * This function is also limited by MAX_ORDER.
4717 *
4718 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4719 *
4720 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4721 */
4722void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4723{
4724 unsigned int order = get_order(size);
4725 unsigned long addr;
4726
ba7f1b9e
ML
4727 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4728 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 4729
2be0ffe2 4730 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4731 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4732}
4733EXPORT_SYMBOL(alloc_pages_exact);
4734
ee85c2e1
AK
4735/**
4736 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4737 * pages on a node.
b5e6ab58 4738 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4739 * @size: the number of bytes to allocate
63931eb9 4740 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4741 *
4742 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4743 * back.
a862f68a
MR
4744 *
4745 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4746 */
e1931811 4747void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4748{
d00181b9 4749 unsigned int order = get_order(size);
63931eb9
VB
4750 struct page *p;
4751
ba7f1b9e
ML
4752 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4753 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
4754
4755 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4756 if (!p)
4757 return NULL;
4758 return make_alloc_exact((unsigned long)page_address(p), order, size);
4759}
ee85c2e1 4760
2be0ffe2
TT
4761/**
4762 * free_pages_exact - release memory allocated via alloc_pages_exact()
4763 * @virt: the value returned by alloc_pages_exact.
4764 * @size: size of allocation, same value as passed to alloc_pages_exact().
4765 *
4766 * Release the memory allocated by a previous call to alloc_pages_exact.
4767 */
4768void free_pages_exact(void *virt, size_t size)
4769{
4770 unsigned long addr = (unsigned long)virt;
4771 unsigned long end = addr + PAGE_ALIGN(size);
4772
4773 while (addr < end) {
4774 free_page(addr);
4775 addr += PAGE_SIZE;
4776 }
4777}
4778EXPORT_SYMBOL(free_pages_exact);
4779
e0fb5815
ZY
4780/**
4781 * nr_free_zone_pages - count number of pages beyond high watermark
4782 * @offset: The zone index of the highest zone
4783 *
a862f68a 4784 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
4785 * high watermark within all zones at or below a given zone index. For each
4786 * zone, the number of pages is calculated as:
0e056eb5
MCC
4787 *
4788 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
4789 *
4790 * Return: number of pages beyond high watermark.
e0fb5815 4791 */
ebec3862 4792static unsigned long nr_free_zone_pages(int offset)
1da177e4 4793{
dd1a239f 4794 struct zoneref *z;
54a6eb5c
MG
4795 struct zone *zone;
4796
e310fd43 4797 /* Just pick one node, since fallback list is circular */
ebec3862 4798 unsigned long sum = 0;
1da177e4 4799
0e88460d 4800 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4801
54a6eb5c 4802 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4803 unsigned long size = zone_managed_pages(zone);
41858966 4804 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4805 if (size > high)
4806 sum += size - high;
1da177e4
LT
4807 }
4808
4809 return sum;
4810}
4811
e0fb5815
ZY
4812/**
4813 * nr_free_buffer_pages - count number of pages beyond high watermark
4814 *
4815 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4816 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
4817 *
4818 * Return: number of pages beyond high watermark within ZONE_DMA and
4819 * ZONE_NORMAL.
1da177e4 4820 */
ebec3862 4821unsigned long nr_free_buffer_pages(void)
1da177e4 4822{
af4ca457 4823 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4824}
c2f1a551 4825EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4826
19770b32
MG
4827static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4828{
4829 zoneref->zone = zone;
4830 zoneref->zone_idx = zone_idx(zone);
4831}
4832
1da177e4
LT
4833/*
4834 * Builds allocation fallback zone lists.
1a93205b
CL
4835 *
4836 * Add all populated zones of a node to the zonelist.
1da177e4 4837 */
9d3be21b 4838static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4839{
1a93205b 4840 struct zone *zone;
bc732f1d 4841 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4842 int nr_zones = 0;
02a68a5e
CL
4843
4844 do {
2f6726e5 4845 zone_type--;
070f8032 4846 zone = pgdat->node_zones + zone_type;
e553f62f 4847 if (populated_zone(zone)) {
9d3be21b 4848 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4849 check_highest_zone(zone_type);
1da177e4 4850 }
2f6726e5 4851 } while (zone_type);
bc732f1d 4852
070f8032 4853 return nr_zones;
1da177e4
LT
4854}
4855
4856#ifdef CONFIG_NUMA
f0c0b2b8
KH
4857
4858static int __parse_numa_zonelist_order(char *s)
4859{
c9bff3ee 4860 /*
f0953a1b 4861 * We used to support different zonelists modes but they turned
c9bff3ee
MH
4862 * out to be just not useful. Let's keep the warning in place
4863 * if somebody still use the cmd line parameter so that we do
4864 * not fail it silently
4865 */
4866 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4867 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4868 return -EINVAL;
4869 }
4870 return 0;
4871}
4872
e95d372c
KW
4873static char numa_zonelist_order[] = "Node";
4874#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8
KH
4875/*
4876 * sysctl handler for numa_zonelist_order
4877 */
e95d372c 4878static int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 4879 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 4880{
32927393
CH
4881 if (write)
4882 return __parse_numa_zonelist_order(buffer);
4883 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
4884}
4885
f0c0b2b8
KH
4886static int node_load[MAX_NUMNODES];
4887
1da177e4 4888/**
4dc3b16b 4889 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4890 * @node: node whose fallback list we're appending
4891 * @used_node_mask: nodemask_t of already used nodes
4892 *
4893 * We use a number of factors to determine which is the next node that should
4894 * appear on a given node's fallback list. The node should not have appeared
4895 * already in @node's fallback list, and it should be the next closest node
4896 * according to the distance array (which contains arbitrary distance values
4897 * from each node to each node in the system), and should also prefer nodes
4898 * with no CPUs, since presumably they'll have very little allocation pressure
4899 * on them otherwise.
a862f68a
MR
4900 *
4901 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 4902 */
79c28a41 4903int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4904{
4cf808eb 4905 int n, val;
1da177e4 4906 int min_val = INT_MAX;
00ef2d2f 4907 int best_node = NUMA_NO_NODE;
1da177e4 4908
4cf808eb
LT
4909 /* Use the local node if we haven't already */
4910 if (!node_isset(node, *used_node_mask)) {
4911 node_set(node, *used_node_mask);
4912 return node;
4913 }
1da177e4 4914
4b0ef1fe 4915 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4916
4917 /* Don't want a node to appear more than once */
4918 if (node_isset(n, *used_node_mask))
4919 continue;
4920
1da177e4
LT
4921 /* Use the distance array to find the distance */
4922 val = node_distance(node, n);
4923
4cf808eb
LT
4924 /* Penalize nodes under us ("prefer the next node") */
4925 val += (n < node);
4926
1da177e4 4927 /* Give preference to headless and unused nodes */
b630749f 4928 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
4929 val += PENALTY_FOR_NODE_WITH_CPUS;
4930
4931 /* Slight preference for less loaded node */
37931324 4932 val *= MAX_NUMNODES;
1da177e4
LT
4933 val += node_load[n];
4934
4935 if (val < min_val) {
4936 min_val = val;
4937 best_node = n;
4938 }
4939 }
4940
4941 if (best_node >= 0)
4942 node_set(best_node, *used_node_mask);
4943
4944 return best_node;
4945}
4946
f0c0b2b8
KH
4947
4948/*
4949 * Build zonelists ordered by node and zones within node.
4950 * This results in maximum locality--normal zone overflows into local
4951 * DMA zone, if any--but risks exhausting DMA zone.
4952 */
9d3be21b
MH
4953static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4954 unsigned nr_nodes)
1da177e4 4955{
9d3be21b
MH
4956 struct zoneref *zonerefs;
4957 int i;
4958
4959 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4960
4961 for (i = 0; i < nr_nodes; i++) {
4962 int nr_zones;
4963
4964 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 4965
9d3be21b
MH
4966 nr_zones = build_zonerefs_node(node, zonerefs);
4967 zonerefs += nr_zones;
4968 }
4969 zonerefs->zone = NULL;
4970 zonerefs->zone_idx = 0;
f0c0b2b8
KH
4971}
4972
523b9458
CL
4973/*
4974 * Build gfp_thisnode zonelists
4975 */
4976static void build_thisnode_zonelists(pg_data_t *pgdat)
4977{
9d3be21b
MH
4978 struct zoneref *zonerefs;
4979 int nr_zones;
523b9458 4980
9d3be21b
MH
4981 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4982 nr_zones = build_zonerefs_node(pgdat, zonerefs);
4983 zonerefs += nr_zones;
4984 zonerefs->zone = NULL;
4985 zonerefs->zone_idx = 0;
523b9458
CL
4986}
4987
f0c0b2b8
KH
4988/*
4989 * Build zonelists ordered by zone and nodes within zones.
4990 * This results in conserving DMA zone[s] until all Normal memory is
4991 * exhausted, but results in overflowing to remote node while memory
4992 * may still exist in local DMA zone.
4993 */
f0c0b2b8 4994
f0c0b2b8
KH
4995static void build_zonelists(pg_data_t *pgdat)
4996{
9d3be21b 4997 static int node_order[MAX_NUMNODES];
37931324 4998 int node, nr_nodes = 0;
d0ddf49b 4999 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5000 int local_node, prev_node;
1da177e4
LT
5001
5002 /* NUMA-aware ordering of nodes */
5003 local_node = pgdat->node_id;
1da177e4 5004 prev_node = local_node;
f0c0b2b8 5005
f0c0b2b8 5006 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5007 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5008 /*
5009 * We don't want to pressure a particular node.
5010 * So adding penalty to the first node in same
5011 * distance group to make it round-robin.
5012 */
957f822a
DR
5013 if (node_distance(local_node, node) !=
5014 node_distance(local_node, prev_node))
37931324 5015 node_load[node] += 1;
f0c0b2b8 5016
9d3be21b 5017 node_order[nr_nodes++] = node;
1da177e4 5018 prev_node = node;
1da177e4 5019 }
523b9458 5020
9d3be21b 5021 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5022 build_thisnode_zonelists(pgdat);
6cf25392
BR
5023 pr_info("Fallback order for Node %d: ", local_node);
5024 for (node = 0; node < nr_nodes; node++)
5025 pr_cont("%d ", node_order[node]);
5026 pr_cont("\n");
1da177e4
LT
5027}
5028
7aac7898
LS
5029#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5030/*
5031 * Return node id of node used for "local" allocations.
5032 * I.e., first node id of first zone in arg node's generic zonelist.
5033 * Used for initializing percpu 'numa_mem', which is used primarily
5034 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5035 */
5036int local_memory_node(int node)
5037{
c33d6c06 5038 struct zoneref *z;
7aac7898 5039
c33d6c06 5040 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5041 gfp_zone(GFP_KERNEL),
c33d6c06 5042 NULL);
c1093b74 5043 return zone_to_nid(z->zone);
7aac7898
LS
5044}
5045#endif
f0c0b2b8 5046
6423aa81
JK
5047static void setup_min_unmapped_ratio(void);
5048static void setup_min_slab_ratio(void);
1da177e4
LT
5049#else /* CONFIG_NUMA */
5050
f0c0b2b8 5051static void build_zonelists(pg_data_t *pgdat)
1da177e4 5052{
19655d34 5053 int node, local_node;
9d3be21b
MH
5054 struct zoneref *zonerefs;
5055 int nr_zones;
1da177e4
LT
5056
5057 local_node = pgdat->node_id;
1da177e4 5058
9d3be21b
MH
5059 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5060 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5061 zonerefs += nr_zones;
1da177e4 5062
54a6eb5c
MG
5063 /*
5064 * Now we build the zonelist so that it contains the zones
5065 * of all the other nodes.
5066 * We don't want to pressure a particular node, so when
5067 * building the zones for node N, we make sure that the
5068 * zones coming right after the local ones are those from
5069 * node N+1 (modulo N)
5070 */
5071 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5072 if (!node_online(node))
5073 continue;
9d3be21b
MH
5074 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5075 zonerefs += nr_zones;
1da177e4 5076 }
54a6eb5c
MG
5077 for (node = 0; node < local_node; node++) {
5078 if (!node_online(node))
5079 continue;
9d3be21b
MH
5080 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5081 zonerefs += nr_zones;
54a6eb5c
MG
5082 }
5083
9d3be21b
MH
5084 zonerefs->zone = NULL;
5085 zonerefs->zone_idx = 0;
1da177e4
LT
5086}
5087
5088#endif /* CONFIG_NUMA */
5089
99dcc3e5
CL
5090/*
5091 * Boot pageset table. One per cpu which is going to be used for all
5092 * zones and all nodes. The parameters will be set in such a way
5093 * that an item put on a list will immediately be handed over to
5094 * the buddy list. This is safe since pageset manipulation is done
5095 * with interrupts disabled.
5096 *
5097 * The boot_pagesets must be kept even after bootup is complete for
5098 * unused processors and/or zones. They do play a role for bootstrapping
5099 * hotplugged processors.
5100 *
5101 * zoneinfo_show() and maybe other functions do
5102 * not check if the processor is online before following the pageset pointer.
5103 * Other parts of the kernel may not check if the zone is available.
5104 */
28f836b6 5105static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
5106/* These effectively disable the pcplists in the boot pageset completely */
5107#define BOOT_PAGESET_HIGH 0
5108#define BOOT_PAGESET_BATCH 1
28f836b6
MG
5109static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5110static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
99dcc3e5 5111
11cd8638 5112static void __build_all_zonelists(void *data)
1da177e4 5113{
6811378e 5114 int nid;
afb6ebb3 5115 int __maybe_unused cpu;
9adb62a5 5116 pg_data_t *self = data;
1007843a 5117 unsigned long flags;
b93e0f32 5118
1007843a 5119 /*
a2ebb515
SAS
5120 * The zonelist_update_seq must be acquired with irqsave because the
5121 * reader can be invoked from IRQ with GFP_ATOMIC.
1007843a 5122 */
a2ebb515 5123 write_seqlock_irqsave(&zonelist_update_seq, flags);
1007843a 5124 /*
a2ebb515
SAS
5125 * Also disable synchronous printk() to prevent any printk() from
5126 * trying to hold port->lock, for
1007843a
TH
5127 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5128 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5129 */
5130 printk_deferred_enter();
9276b1bc 5131
7f9cfb31
BL
5132#ifdef CONFIG_NUMA
5133 memset(node_load, 0, sizeof(node_load));
5134#endif
9adb62a5 5135
c1152583
WY
5136 /*
5137 * This node is hotadded and no memory is yet present. So just
5138 * building zonelists is fine - no need to touch other nodes.
5139 */
9adb62a5
JL
5140 if (self && !node_online(self->node_id)) {
5141 build_zonelists(self);
c1152583 5142 } else {
09f49dca
MH
5143 /*
5144 * All possible nodes have pgdat preallocated
5145 * in free_area_init
5146 */
5147 for_each_node(nid) {
c1152583 5148 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5149
c1152583
WY
5150 build_zonelists(pgdat);
5151 }
99dcc3e5 5152
7aac7898
LS
5153#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5154 /*
5155 * We now know the "local memory node" for each node--
5156 * i.e., the node of the first zone in the generic zonelist.
5157 * Set up numa_mem percpu variable for on-line cpus. During
5158 * boot, only the boot cpu should be on-line; we'll init the
5159 * secondary cpus' numa_mem as they come on-line. During
5160 * node/memory hotplug, we'll fixup all on-line cpus.
5161 */
d9c9a0b9 5162 for_each_online_cpu(cpu)
7aac7898 5163 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5164#endif
d9c9a0b9 5165 }
b93e0f32 5166
1007843a 5167 printk_deferred_exit();
a2ebb515 5168 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
6811378e
YG
5169}
5170
061f67bc
RV
5171static noinline void __init
5172build_all_zonelists_init(void)
5173{
afb6ebb3
MH
5174 int cpu;
5175
061f67bc 5176 __build_all_zonelists(NULL);
afb6ebb3
MH
5177
5178 /*
5179 * Initialize the boot_pagesets that are going to be used
5180 * for bootstrapping processors. The real pagesets for
5181 * each zone will be allocated later when the per cpu
5182 * allocator is available.
5183 *
5184 * boot_pagesets are used also for bootstrapping offline
5185 * cpus if the system is already booted because the pagesets
5186 * are needed to initialize allocators on a specific cpu too.
5187 * F.e. the percpu allocator needs the page allocator which
5188 * needs the percpu allocator in order to allocate its pagesets
5189 * (a chicken-egg dilemma).
5190 */
5191 for_each_possible_cpu(cpu)
28f836b6 5192 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 5193
061f67bc
RV
5194 mminit_verify_zonelist();
5195 cpuset_init_current_mems_allowed();
5196}
5197
4eaf3f64 5198/*
4eaf3f64 5199 * unless system_state == SYSTEM_BOOTING.
061f67bc 5200 *
72675e13 5201 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5202 * [protected by SYSTEM_BOOTING].
4eaf3f64 5203 */
72675e13 5204void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 5205{
0a18e607
DH
5206 unsigned long vm_total_pages;
5207
6811378e 5208 if (system_state == SYSTEM_BOOTING) {
061f67bc 5209 build_all_zonelists_init();
6811378e 5210 } else {
11cd8638 5211 __build_all_zonelists(pgdat);
6811378e
YG
5212 /* cpuset refresh routine should be here */
5213 }
56b9413b
DH
5214 /* Get the number of free pages beyond high watermark in all zones. */
5215 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
5216 /*
5217 * Disable grouping by mobility if the number of pages in the
5218 * system is too low to allow the mechanism to work. It would be
5219 * more accurate, but expensive to check per-zone. This check is
5220 * made on memory-hotadd so a system can start with mobility
5221 * disabled and enable it later
5222 */
d9c23400 5223 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5224 page_group_by_mobility_disabled = 1;
5225 else
5226 page_group_by_mobility_disabled = 0;
5227
ce0725f7 5228 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5229 nr_online_nodes,
756a025f
JP
5230 page_group_by_mobility_disabled ? "off" : "on",
5231 vm_total_pages);
f0c0b2b8 5232#ifdef CONFIG_NUMA
f88dfff5 5233 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5234#endif
1da177e4
LT
5235}
5236
9420f89d 5237static int zone_batchsize(struct zone *zone)
1da177e4 5238{
9420f89d
MRI
5239#ifdef CONFIG_MMU
5240 int batch;
1da177e4 5241
9420f89d
MRI
5242 /*
5243 * The number of pages to batch allocate is either ~0.1%
5244 * of the zone or 1MB, whichever is smaller. The batch
5245 * size is striking a balance between allocation latency
5246 * and zone lock contention.
5247 */
5248 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5249 batch /= 4; /* We effectively *= 4 below */
5250 if (batch < 1)
5251 batch = 1;
22b31eec 5252
4b94ffdc 5253 /*
9420f89d
MRI
5254 * Clamp the batch to a 2^n - 1 value. Having a power
5255 * of 2 value was found to be more likely to have
5256 * suboptimal cache aliasing properties in some cases.
5257 *
5258 * For example if 2 tasks are alternately allocating
5259 * batches of pages, one task can end up with a lot
5260 * of pages of one half of the possible page colors
5261 * and the other with pages of the other colors.
4b94ffdc 5262 */
9420f89d 5263 batch = rounddown_pow_of_two(batch + batch/2) - 1;
966cf44f 5264
9420f89d 5265 return batch;
3a6be87f
DH
5266
5267#else
5268 /* The deferral and batching of frees should be suppressed under NOMMU
5269 * conditions.
5270 *
5271 * The problem is that NOMMU needs to be able to allocate large chunks
5272 * of contiguous memory as there's no hardware page translation to
5273 * assemble apparent contiguous memory from discontiguous pages.
5274 *
5275 * Queueing large contiguous runs of pages for batching, however,
5276 * causes the pages to actually be freed in smaller chunks. As there
5277 * can be a significant delay between the individual batches being
5278 * recycled, this leads to the once large chunks of space being
5279 * fragmented and becoming unavailable for high-order allocations.
5280 */
5281 return 0;
5282#endif
e7c8d5c9
CL
5283}
5284
e95d372c 5285static int percpu_pagelist_high_fraction;
04f8cfea 5286static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e 5287{
9420f89d
MRI
5288#ifdef CONFIG_MMU
5289 int high;
5290 int nr_split_cpus;
5291 unsigned long total_pages;
c13291a5 5292
9420f89d 5293 if (!percpu_pagelist_high_fraction) {
2a1e274a 5294 /*
9420f89d
MRI
5295 * By default, the high value of the pcp is based on the zone
5296 * low watermark so that if they are full then background
5297 * reclaim will not be started prematurely.
2a1e274a 5298 */
9420f89d
MRI
5299 total_pages = low_wmark_pages(zone);
5300 } else {
2a1e274a 5301 /*
9420f89d
MRI
5302 * If percpu_pagelist_high_fraction is configured, the high
5303 * value is based on a fraction of the managed pages in the
5304 * zone.
2a1e274a 5305 */
9420f89d 5306 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
2a1e274a
MG
5307 }
5308
5309 /*
9420f89d
MRI
5310 * Split the high value across all online CPUs local to the zone. Note
5311 * that early in boot that CPUs may not be online yet and that during
5312 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5313 * onlined. For memory nodes that have no CPUs, split pcp->high across
5314 * all online CPUs to mitigate the risk that reclaim is triggered
5315 * prematurely due to pages stored on pcp lists.
2a1e274a 5316 */
9420f89d
MRI
5317 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5318 if (!nr_split_cpus)
5319 nr_split_cpus = num_online_cpus();
5320 high = total_pages / nr_split_cpus;
2a1e274a 5321
9420f89d
MRI
5322 /*
5323 * Ensure high is at least batch*4. The multiple is based on the
5324 * historical relationship between high and batch.
5325 */
5326 high = max(high, batch << 2);
37b07e41 5327
9420f89d
MRI
5328 return high;
5329#else
5330 return 0;
5331#endif
37b07e41
LS
5332}
5333
51930df5 5334/*
9420f89d
MRI
5335 * pcp->high and pcp->batch values are related and generally batch is lower
5336 * than high. They are also related to pcp->count such that count is lower
5337 * than high, and as soon as it reaches high, the pcplist is flushed.
5338 *
5339 * However, guaranteeing these relations at all times would require e.g. write
5340 * barriers here but also careful usage of read barriers at the read side, and
5341 * thus be prone to error and bad for performance. Thus the update only prevents
5342 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5343 * can cope with those fields changing asynchronously, and fully trust only the
5344 * pcp->count field on the local CPU with interrupts disabled.
5345 *
5346 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5347 * outside of boot time (or some other assurance that no concurrent updaters
5348 * exist).
51930df5 5349 */
9420f89d
MRI
5350static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5351 unsigned long batch)
51930df5 5352{
9420f89d
MRI
5353 WRITE_ONCE(pcp->batch, batch);
5354 WRITE_ONCE(pcp->high, high);
51930df5
MR
5355}
5356
9420f89d 5357static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
c713216d 5358{
9420f89d 5359 int pindex;
90cae1fe 5360
9420f89d
MRI
5361 memset(pcp, 0, sizeof(*pcp));
5362 memset(pzstats, 0, sizeof(*pzstats));
90cae1fe 5363
9420f89d
MRI
5364 spin_lock_init(&pcp->lock);
5365 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5366 INIT_LIST_HEAD(&pcp->lists[pindex]);
2a1e274a 5367
9420f89d
MRI
5368 /*
5369 * Set batch and high values safe for a boot pageset. A true percpu
5370 * pageset's initialization will update them subsequently. Here we don't
5371 * need to be as careful as pageset_update() as nobody can access the
5372 * pageset yet.
5373 */
5374 pcp->high = BOOT_PAGESET_HIGH;
5375 pcp->batch = BOOT_PAGESET_BATCH;
5376 pcp->free_factor = 0;
5377}
c713216d 5378
9420f89d
MRI
5379static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5380 unsigned long batch)
5381{
5382 struct per_cpu_pages *pcp;
5383 int cpu;
2a1e274a 5384
9420f89d
MRI
5385 for_each_possible_cpu(cpu) {
5386 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5387 pageset_update(pcp, high, batch);
2a1e274a 5388 }
9420f89d 5389}
c713216d 5390
9420f89d
MRI
5391/*
5392 * Calculate and set new high and batch values for all per-cpu pagesets of a
5393 * zone based on the zone's size.
5394 */
5395static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5396{
5397 int new_high, new_batch;
09f49dca 5398
9420f89d
MRI
5399 new_batch = max(1, zone_batchsize(zone));
5400 new_high = zone_highsize(zone, new_batch, cpu_online);
09f49dca 5401
9420f89d
MRI
5402 if (zone->pageset_high == new_high &&
5403 zone->pageset_batch == new_batch)
5404 return;
37b07e41 5405
9420f89d
MRI
5406 zone->pageset_high = new_high;
5407 zone->pageset_batch = new_batch;
122e093c 5408
9420f89d 5409 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
c713216d 5410}
2a1e274a 5411
9420f89d 5412void __meminit setup_zone_pageset(struct zone *zone)
2a1e274a 5413{
9420f89d 5414 int cpu;
2a1e274a 5415
9420f89d
MRI
5416 /* Size may be 0 on !SMP && !NUMA */
5417 if (sizeof(struct per_cpu_zonestat) > 0)
5418 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
2a1e274a 5419
9420f89d
MRI
5420 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5421 for_each_possible_cpu(cpu) {
5422 struct per_cpu_pages *pcp;
5423 struct per_cpu_zonestat *pzstats;
2a1e274a 5424
9420f89d
MRI
5425 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5426 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5427 per_cpu_pages_init(pcp, pzstats);
a5c6d650 5428 }
9420f89d
MRI
5429
5430 zone_set_pageset_high_and_batch(zone, 0);
2a1e274a 5431}
ed7ed365 5432
7e63efef 5433/*
9420f89d
MRI
5434 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5435 * page high values need to be recalculated.
7e63efef 5436 */
9420f89d 5437static void zone_pcp_update(struct zone *zone, int cpu_online)
7e63efef 5438{
9420f89d
MRI
5439 mutex_lock(&pcp_batch_high_lock);
5440 zone_set_pageset_high_and_batch(zone, cpu_online);
5441 mutex_unlock(&pcp_batch_high_lock);
7e63efef
MG
5442}
5443
5444/*
9420f89d
MRI
5445 * Allocate per cpu pagesets and initialize them.
5446 * Before this call only boot pagesets were available.
7e63efef 5447 */
9420f89d 5448void __init setup_per_cpu_pageset(void)
7e63efef 5449{
9420f89d
MRI
5450 struct pglist_data *pgdat;
5451 struct zone *zone;
5452 int __maybe_unused cpu;
5453
5454 for_each_populated_zone(zone)
5455 setup_zone_pageset(zone);
5456
5457#ifdef CONFIG_NUMA
5458 /*
5459 * Unpopulated zones continue using the boot pagesets.
5460 * The numa stats for these pagesets need to be reset.
5461 * Otherwise, they will end up skewing the stats of
5462 * the nodes these zones are associated with.
5463 */
5464 for_each_possible_cpu(cpu) {
5465 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5466 memset(pzstats->vm_numa_event, 0,
5467 sizeof(pzstats->vm_numa_event));
5468 }
5469#endif
5470
5471 for_each_online_pgdat(pgdat)
5472 pgdat->per_cpu_nodestats =
5473 alloc_percpu(struct per_cpu_nodestat);
7e63efef
MG
5474}
5475
9420f89d
MRI
5476__meminit void zone_pcp_init(struct zone *zone)
5477{
5478 /*
5479 * per cpu subsystem is not up at this point. The following code
5480 * relies on the ability of the linker to provide the
5481 * offset of a (static) per cpu variable into the per cpu area.
5482 */
5483 zone->per_cpu_pageset = &boot_pageset;
5484 zone->per_cpu_zonestats = &boot_zonestats;
5485 zone->pageset_high = BOOT_PAGESET_HIGH;
5486 zone->pageset_batch = BOOT_PAGESET_BATCH;
5487
5488 if (populated_zone(zone))
5489 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5490 zone->present_pages, zone_batchsize(zone));
5491}
ed7ed365 5492
c3d5f5f0
JL
5493void adjust_managed_page_count(struct page *page, long count)
5494{
9705bea5 5495 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 5496 totalram_pages_add(count);
3dcc0571
JL
5497#ifdef CONFIG_HIGHMEM
5498 if (PageHighMem(page))
ca79b0c2 5499 totalhigh_pages_add(count);
3dcc0571 5500#endif
c3d5f5f0 5501}
3dcc0571 5502EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5503
e5cb113f 5504unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 5505{
11199692
JL
5506 void *pos;
5507 unsigned long pages = 0;
69afade7 5508
11199692
JL
5509 start = (void *)PAGE_ALIGN((unsigned long)start);
5510 end = (void *)((unsigned long)end & PAGE_MASK);
5511 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
5512 struct page *page = virt_to_page(pos);
5513 void *direct_map_addr;
5514
5515 /*
5516 * 'direct_map_addr' might be different from 'pos'
5517 * because some architectures' virt_to_page()
5518 * work with aliases. Getting the direct map
5519 * address ensures that we get a _writeable_
5520 * alias for the memset().
5521 */
5522 direct_map_addr = page_address(page);
c746170d
VF
5523 /*
5524 * Perform a kasan-unchecked memset() since this memory
5525 * has not been initialized.
5526 */
5527 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 5528 if ((unsigned int)poison <= 0xFF)
0d834328
DH
5529 memset(direct_map_addr, poison, PAGE_SIZE);
5530
5531 free_reserved_page(page);
69afade7
JL
5532 }
5533
5534 if (pages && s)
ff7ed9e4 5535 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
5536
5537 return pages;
5538}
5539
005fd4bb 5540static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 5541{
04f8cfea 5542 struct zone *zone;
1da177e4 5543
005fd4bb 5544 lru_add_drain_cpu(cpu);
96f97c43 5545 mlock_drain_remote(cpu);
005fd4bb 5546 drain_pages(cpu);
9f8f2172 5547
005fd4bb
SAS
5548 /*
5549 * Spill the event counters of the dead processor
5550 * into the current processors event counters.
5551 * This artificially elevates the count of the current
5552 * processor.
5553 */
5554 vm_events_fold_cpu(cpu);
9f8f2172 5555
005fd4bb
SAS
5556 /*
5557 * Zero the differential counters of the dead processor
5558 * so that the vm statistics are consistent.
5559 *
5560 * This is only okay since the processor is dead and cannot
5561 * race with what we are doing.
5562 */
5563 cpu_vm_stats_fold(cpu);
04f8cfea
MG
5564
5565 for_each_populated_zone(zone)
5566 zone_pcp_update(zone, 0);
5567
5568 return 0;
5569}
5570
5571static int page_alloc_cpu_online(unsigned int cpu)
5572{
5573 struct zone *zone;
5574
5575 for_each_populated_zone(zone)
5576 zone_pcp_update(zone, 1);
005fd4bb 5577 return 0;
1da177e4 5578}
1da177e4 5579
c4fbed4b 5580void __init page_alloc_init_cpuhp(void)
1da177e4 5581{
005fd4bb
SAS
5582 int ret;
5583
04f8cfea
MG
5584 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5585 "mm/page_alloc:pcp",
5586 page_alloc_cpu_online,
005fd4bb
SAS
5587 page_alloc_cpu_dead);
5588 WARN_ON(ret < 0);
1da177e4
LT
5589}
5590
cb45b0e9 5591/*
34b10060 5592 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
5593 * or min_free_kbytes changes.
5594 */
5595static void calculate_totalreserve_pages(void)
5596{
5597 struct pglist_data *pgdat;
5598 unsigned long reserve_pages = 0;
2f6726e5 5599 enum zone_type i, j;
cb45b0e9
HA
5600
5601 for_each_online_pgdat(pgdat) {
281e3726
MG
5602
5603 pgdat->totalreserve_pages = 0;
5604
cb45b0e9
HA
5605 for (i = 0; i < MAX_NR_ZONES; i++) {
5606 struct zone *zone = pgdat->node_zones + i;
3484b2de 5607 long max = 0;
9705bea5 5608 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
5609
5610 /* Find valid and maximum lowmem_reserve in the zone */
5611 for (j = i; j < MAX_NR_ZONES; j++) {
5612 if (zone->lowmem_reserve[j] > max)
5613 max = zone->lowmem_reserve[j];
5614 }
5615
41858966
MG
5616 /* we treat the high watermark as reserved pages. */
5617 max += high_wmark_pages(zone);
cb45b0e9 5618
3d6357de
AK
5619 if (max > managed_pages)
5620 max = managed_pages;
a8d01437 5621
281e3726 5622 pgdat->totalreserve_pages += max;
a8d01437 5623
cb45b0e9
HA
5624 reserve_pages += max;
5625 }
5626 }
5627 totalreserve_pages = reserve_pages;
5628}
5629
1da177e4
LT
5630/*
5631 * setup_per_zone_lowmem_reserve - called whenever
34b10060 5632 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
5633 * has a correct pages reserved value, so an adequate number of
5634 * pages are left in the zone after a successful __alloc_pages().
5635 */
5636static void setup_per_zone_lowmem_reserve(void)
5637{
5638 struct pglist_data *pgdat;
470c61d7 5639 enum zone_type i, j;
1da177e4 5640
ec936fc5 5641 for_each_online_pgdat(pgdat) {
470c61d7
LS
5642 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5643 struct zone *zone = &pgdat->node_zones[i];
5644 int ratio = sysctl_lowmem_reserve_ratio[i];
5645 bool clear = !ratio || !zone_managed_pages(zone);
5646 unsigned long managed_pages = 0;
5647
5648 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
5649 struct zone *upper_zone = &pgdat->node_zones[j];
5650
5651 managed_pages += zone_managed_pages(upper_zone);
470c61d7 5652
f7ec1044
LS
5653 if (clear)
5654 zone->lowmem_reserve[j] = 0;
5655 else
470c61d7 5656 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
5657 }
5658 }
5659 }
cb45b0e9
HA
5660
5661 /* update totalreserve_pages */
5662 calculate_totalreserve_pages();
1da177e4
LT
5663}
5664
cfd3da1e 5665static void __setup_per_zone_wmarks(void)
1da177e4
LT
5666{
5667 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5668 unsigned long lowmem_pages = 0;
5669 struct zone *zone;
5670 unsigned long flags;
5671
416ef04f 5672 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
1da177e4 5673 for_each_zone(zone) {
416ef04f 5674 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
9705bea5 5675 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
5676 }
5677
5678 for_each_zone(zone) {
ac924c60
AM
5679 u64 tmp;
5680
1125b4e3 5681 spin_lock_irqsave(&zone->lock, flags);
9705bea5 5682 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 5683 do_div(tmp, lowmem_pages);
416ef04f 5684 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
1da177e4 5685 /*
669ed175 5686 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
416ef04f 5687 * need highmem and movable zones pages, so cap pages_min
5688 * to a small value here.
669ed175 5689 *
41858966 5690 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 5691 * deltas control async page reclaim, and so should
416ef04f 5692 * not be capped for highmem and movable zones.
1da177e4 5693 */
90ae8d67 5694 unsigned long min_pages;
1da177e4 5695
9705bea5 5696 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 5697 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 5698 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 5699 } else {
669ed175
NP
5700 /*
5701 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5702 * proportionate to the zone's size.
5703 */
a9214443 5704 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
5705 }
5706
795ae7a0
JW
5707 /*
5708 * Set the kswapd watermarks distance according to the
5709 * scale factor in proportion to available memory, but
5710 * ensure a minimum size on small systems.
5711 */
5712 tmp = max_t(u64, tmp >> 2,
9705bea5 5713 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
5714 watermark_scale_factor, 10000));
5715
aa092591 5716 zone->watermark_boost = 0;
a9214443 5717 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
HY
5718 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5719 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 5720
1125b4e3 5721 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5722 }
cb45b0e9
HA
5723
5724 /* update totalreserve_pages */
5725 calculate_totalreserve_pages();
1da177e4
LT
5726}
5727
cfd3da1e
MG
5728/**
5729 * setup_per_zone_wmarks - called when min_free_kbytes changes
5730 * or when memory is hot-{added|removed}
5731 *
5732 * Ensures that the watermark[min,low,high] values for each zone are set
5733 * correctly with respect to min_free_kbytes.
5734 */
5735void setup_per_zone_wmarks(void)
5736{
b92ca18e 5737 struct zone *zone;
b93e0f32
MH
5738 static DEFINE_SPINLOCK(lock);
5739
5740 spin_lock(&lock);
cfd3da1e 5741 __setup_per_zone_wmarks();
b93e0f32 5742 spin_unlock(&lock);
b92ca18e
MG
5743
5744 /*
5745 * The watermark size have changed so update the pcpu batch
5746 * and high limits or the limits may be inappropriate.
5747 */
5748 for_each_zone(zone)
04f8cfea 5749 zone_pcp_update(zone, 0);
cfd3da1e
MG
5750}
5751
1da177e4
LT
5752/*
5753 * Initialise min_free_kbytes.
5754 *
5755 * For small machines we want it small (128k min). For large machines
8beeae86 5756 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
5757 * bandwidth does not increase linearly with machine size. We use
5758 *
b8af2941 5759 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5760 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5761 *
5762 * which yields
5763 *
5764 * 16MB: 512k
5765 * 32MB: 724k
5766 * 64MB: 1024k
5767 * 128MB: 1448k
5768 * 256MB: 2048k
5769 * 512MB: 2896k
5770 * 1024MB: 4096k
5771 * 2048MB: 5792k
5772 * 4096MB: 8192k
5773 * 8192MB: 11584k
5774 * 16384MB: 16384k
5775 */
bd3400ea 5776void calculate_min_free_kbytes(void)
1da177e4
LT
5777{
5778 unsigned long lowmem_kbytes;
5f12733e 5779 int new_min_free_kbytes;
1da177e4
LT
5780
5781 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5782 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5783
59d336bd
WS
5784 if (new_min_free_kbytes > user_min_free_kbytes)
5785 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5786 else
5f12733e
MH
5787 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5788 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 5789
bd3400ea
LF
5790}
5791
5792int __meminit init_per_zone_wmark_min(void)
5793{
5794 calculate_min_free_kbytes();
bc75d33f 5795 setup_per_zone_wmarks();
a6cccdc3 5796 refresh_zone_stat_thresholds();
1da177e4 5797 setup_per_zone_lowmem_reserve();
6423aa81
JK
5798
5799#ifdef CONFIG_NUMA
5800 setup_min_unmapped_ratio();
5801 setup_min_slab_ratio();
5802#endif
5803
4aab2be0
VB
5804 khugepaged_min_free_kbytes_update();
5805
1da177e4
LT
5806 return 0;
5807}
e08d3fdf 5808postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
5809
5810/*
b8af2941 5811 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5812 * that we can call two helper functions whenever min_free_kbytes
5813 * changes.
5814 */
e95d372c 5815static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 5816 void *buffer, size_t *length, loff_t *ppos)
1da177e4 5817{
da8c757b
HP
5818 int rc;
5819
5820 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5821 if (rc)
5822 return rc;
5823
5f12733e
MH
5824 if (write) {
5825 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5826 setup_per_zone_wmarks();
5f12733e 5827 }
1da177e4
LT
5828 return 0;
5829}
5830
e95d372c 5831static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 5832 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
5833{
5834 int rc;
5835
5836 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5837 if (rc)
5838 return rc;
5839
5840 if (write)
5841 setup_per_zone_wmarks();
5842
5843 return 0;
5844}
5845
9614634f 5846#ifdef CONFIG_NUMA
6423aa81 5847static void setup_min_unmapped_ratio(void)
9614634f 5848{
6423aa81 5849 pg_data_t *pgdat;
9614634f 5850 struct zone *zone;
9614634f 5851
a5f5f91d 5852 for_each_online_pgdat(pgdat)
81cbcbc2 5853 pgdat->min_unmapped_pages = 0;
a5f5f91d 5854
9614634f 5855 for_each_zone(zone)
9705bea5
AK
5856 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5857 sysctl_min_unmapped_ratio) / 100;
9614634f 5858}
0ff38490 5859
6423aa81 5860
e95d372c 5861static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 5862 void *buffer, size_t *length, loff_t *ppos)
0ff38490 5863{
0ff38490
CL
5864 int rc;
5865
8d65af78 5866 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5867 if (rc)
5868 return rc;
5869
6423aa81
JK
5870 setup_min_unmapped_ratio();
5871
5872 return 0;
5873}
5874
5875static void setup_min_slab_ratio(void)
5876{
5877 pg_data_t *pgdat;
5878 struct zone *zone;
5879
a5f5f91d
MG
5880 for_each_online_pgdat(pgdat)
5881 pgdat->min_slab_pages = 0;
5882
0ff38490 5883 for_each_zone(zone)
9705bea5
AK
5884 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5885 sysctl_min_slab_ratio) / 100;
6423aa81
JK
5886}
5887
e95d372c 5888static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 5889 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
5890{
5891 int rc;
5892
5893 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5894 if (rc)
5895 return rc;
5896
5897 setup_min_slab_ratio();
5898
0ff38490
CL
5899 return 0;
5900}
9614634f
CL
5901#endif
5902
1da177e4
LT
5903/*
5904 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5905 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5906 * whenever sysctl_lowmem_reserve_ratio changes.
5907 *
5908 * The reserve ratio obviously has absolutely no relation with the
41858966 5909 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5910 * if in function of the boot time zone sizes.
5911 */
e95d372c
KW
5912static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5913 int write, void *buffer, size_t *length, loff_t *ppos)
1da177e4 5914{
86aaf255
BH
5915 int i;
5916
8d65af78 5917 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
5918
5919 for (i = 0; i < MAX_NR_ZONES; i++) {
5920 if (sysctl_lowmem_reserve_ratio[i] < 1)
5921 sysctl_lowmem_reserve_ratio[i] = 0;
5922 }
5923
1da177e4
LT
5924 setup_per_zone_lowmem_reserve();
5925 return 0;
5926}
5927
8ad4b1fb 5928/*
74f44822
MG
5929 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5930 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 5931 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5932 */
e95d372c 5933static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
74f44822 5934 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5935{
5936 struct zone *zone;
74f44822 5937 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
5938 int ret;
5939
7cd2b0a3 5940 mutex_lock(&pcp_batch_high_lock);
74f44822 5941 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 5942
8d65af78 5943 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5944 if (!write || ret < 0)
5945 goto out;
5946
5947 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
5948 if (percpu_pagelist_high_fraction &&
5949 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5950 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
5951 ret = -EINVAL;
5952 goto out;
5953 }
5954
5955 /* No change? */
74f44822 5956 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 5957 goto out;
c8e251fa 5958
cb1ef534 5959 for_each_populated_zone(zone)
74f44822 5960 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 5961out:
c8e251fa 5962 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5963 return ret;
8ad4b1fb
RS
5964}
5965
e95d372c
KW
5966static struct ctl_table page_alloc_sysctl_table[] = {
5967 {
5968 .procname = "min_free_kbytes",
5969 .data = &min_free_kbytes,
5970 .maxlen = sizeof(min_free_kbytes),
5971 .mode = 0644,
5972 .proc_handler = min_free_kbytes_sysctl_handler,
5973 .extra1 = SYSCTL_ZERO,
5974 },
5975 {
5976 .procname = "watermark_boost_factor",
5977 .data = &watermark_boost_factor,
5978 .maxlen = sizeof(watermark_boost_factor),
5979 .mode = 0644,
5980 .proc_handler = proc_dointvec_minmax,
5981 .extra1 = SYSCTL_ZERO,
5982 },
5983 {
5984 .procname = "watermark_scale_factor",
5985 .data = &watermark_scale_factor,
5986 .maxlen = sizeof(watermark_scale_factor),
5987 .mode = 0644,
5988 .proc_handler = watermark_scale_factor_sysctl_handler,
5989 .extra1 = SYSCTL_ONE,
5990 .extra2 = SYSCTL_THREE_THOUSAND,
5991 },
5992 {
5993 .procname = "percpu_pagelist_high_fraction",
5994 .data = &percpu_pagelist_high_fraction,
5995 .maxlen = sizeof(percpu_pagelist_high_fraction),
5996 .mode = 0644,
5997 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
5998 .extra1 = SYSCTL_ZERO,
5999 },
6000 {
6001 .procname = "lowmem_reserve_ratio",
6002 .data = &sysctl_lowmem_reserve_ratio,
6003 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6004 .mode = 0644,
6005 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6006 },
6007#ifdef CONFIG_NUMA
6008 {
6009 .procname = "numa_zonelist_order",
6010 .data = &numa_zonelist_order,
6011 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6012 .mode = 0644,
6013 .proc_handler = numa_zonelist_order_handler,
6014 },
6015 {
6016 .procname = "min_unmapped_ratio",
6017 .data = &sysctl_min_unmapped_ratio,
6018 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6019 .mode = 0644,
6020 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6021 .extra1 = SYSCTL_ZERO,
6022 .extra2 = SYSCTL_ONE_HUNDRED,
6023 },
6024 {
6025 .procname = "min_slab_ratio",
6026 .data = &sysctl_min_slab_ratio,
6027 .maxlen = sizeof(sysctl_min_slab_ratio),
6028 .mode = 0644,
6029 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6030 .extra1 = SYSCTL_ZERO,
6031 .extra2 = SYSCTL_ONE_HUNDRED,
6032 },
6033#endif
6034 {}
6035};
6036
6037void __init page_alloc_sysctl_init(void)
6038{
6039 register_sysctl_init("vm", page_alloc_sysctl_table);
6040}
6041
8df995f6 6042#ifdef CONFIG_CONTIG_ALLOC
a1394bdd
MK
6043/* Usage: See admin-guide/dynamic-debug-howto.rst */
6044static void alloc_contig_dump_pages(struct list_head *page_list)
6045{
6046 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6047
6048 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6049 struct page *page;
6050
6051 dump_stack();
6052 list_for_each_entry(page, page_list, lru)
6053 dump_page(page, "migration failure");
6054 }
6055}
a1394bdd 6056
041d3a8c 6057/* [start, end) must belong to a single zone. */
b2c9e2fb 6058int __alloc_contig_migrate_range(struct compact_control *cc,
bb13ffeb 6059 unsigned long start, unsigned long end)
041d3a8c
MN
6060{
6061 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 6062 unsigned int nr_reclaimed;
041d3a8c
MN
6063 unsigned long pfn = start;
6064 unsigned int tries = 0;
6065 int ret = 0;
8b94e0b8
JK
6066 struct migration_target_control mtc = {
6067 .nid = zone_to_nid(cc->zone),
6068 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6069 };
041d3a8c 6070
361a2a22 6071 lru_cache_disable();
041d3a8c 6072
bb13ffeb 6073 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6074 if (fatal_signal_pending(current)) {
6075 ret = -EINTR;
6076 break;
6077 }
6078
bb13ffeb
MG
6079 if (list_empty(&cc->migratepages)) {
6080 cc->nr_migratepages = 0;
c2ad7a1f
OS
6081 ret = isolate_migratepages_range(cc, pfn, end);
6082 if (ret && ret != -EAGAIN)
041d3a8c 6083 break;
c2ad7a1f 6084 pfn = cc->migrate_pfn;
041d3a8c
MN
6085 tries = 0;
6086 } else if (++tries == 5) {
c8e28b47 6087 ret = -EBUSY;
041d3a8c
MN
6088 break;
6089 }
6090
beb51eaa
MK
6091 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6092 &cc->migratepages);
6093 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6094
8b94e0b8 6095 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 6096 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
6097
6098 /*
6099 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6100 * to retry again over this error, so do the same here.
6101 */
6102 if (ret == -ENOMEM)
6103 break;
041d3a8c 6104 }
d479960e 6105
361a2a22 6106 lru_cache_enable();
2a6f5124 6107 if (ret < 0) {
3f913fc5 6108 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
151e084a 6109 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
6110 putback_movable_pages(&cc->migratepages);
6111 return ret;
6112 }
6113 return 0;
041d3a8c
MN
6114}
6115
6116/**
6117 * alloc_contig_range() -- tries to allocate given range of pages
6118 * @start: start PFN to allocate
6119 * @end: one-past-the-last PFN to allocate
f0953a1b 6120 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
6121 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6122 * in range must have the same migratetype and it must
6123 * be either of the two.
ca96b625 6124 * @gfp_mask: GFP mask to use during compaction
041d3a8c 6125 *
11ac3e87
ZY
6126 * The PFN range does not have to be pageblock aligned. The PFN range must
6127 * belong to a single zone.
041d3a8c 6128 *
2c7452a0
MK
6129 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6130 * pageblocks in the range. Once isolated, the pageblocks should not
6131 * be modified by others.
041d3a8c 6132 *
a862f68a 6133 * Return: zero on success or negative error code. On success all
041d3a8c
MN
6134 * pages which PFN is in [start, end) are allocated for the caller and
6135 * need to be freed with free_contig_range().
6136 */
0815f3d8 6137int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 6138 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 6139{
041d3a8c 6140 unsigned long outer_start, outer_end;
b2c9e2fb 6141 int order;
d00181b9 6142 int ret = 0;
041d3a8c 6143
bb13ffeb
MG
6144 struct compact_control cc = {
6145 .nr_migratepages = 0,
6146 .order = -1,
6147 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6148 .mode = MIGRATE_SYNC,
bb13ffeb 6149 .ignore_skip_hint = true,
2583d671 6150 .no_set_skip_hint = true,
7dea19f9 6151 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 6152 .alloc_contig = true,
bb13ffeb
MG
6153 };
6154 INIT_LIST_HEAD(&cc.migratepages);
6155
041d3a8c
MN
6156 /*
6157 * What we do here is we mark all pageblocks in range as
6158 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6159 * have different sizes, and due to the way page allocator
b2c9e2fb 6160 * work, start_isolate_page_range() has special handlings for this.
041d3a8c
MN
6161 *
6162 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6163 * migrate the pages from an unaligned range (ie. pages that
b2c9e2fb 6164 * we are interested in). This will put all the pages in
041d3a8c
MN
6165 * range back to page allocator as MIGRATE_ISOLATE.
6166 *
6167 * When this is done, we take the pages in range from page
6168 * allocator removing them from the buddy system. This way
6169 * page allocator will never consider using them.
6170 *
6171 * This lets us mark the pageblocks back as
6172 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6173 * aligned range but not in the unaligned, original range are
6174 * put back to page allocator so that buddy can use them.
6175 */
6176
6e263fff 6177 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
3fa0c7c7 6178 if (ret)
b2c9e2fb 6179 goto done;
041d3a8c 6180
7612921f
VB
6181 drain_all_pages(cc.zone);
6182
8ef5849f
JK
6183 /*
6184 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
6185 * So, just fall through. test_pages_isolated() has a tracepoint
6186 * which will report the busy page.
6187 *
6188 * It is possible that busy pages could become available before
6189 * the call to test_pages_isolated, and the range will actually be
6190 * allocated. So, if we fall through be sure to clear ret so that
6191 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 6192 */
bb13ffeb 6193 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6194 if (ret && ret != -EBUSY)
041d3a8c 6195 goto done;
68d68ff6 6196 ret = 0;
041d3a8c
MN
6197
6198 /*
b2c9e2fb 6199 * Pages from [start, end) are within a pageblock_nr_pages
041d3a8c
MN
6200 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6201 * more, all pages in [start, end) are free in page allocator.
6202 * What we are going to do is to allocate all pages from
6203 * [start, end) (that is remove them from page allocator).
6204 *
6205 * The only problem is that pages at the beginning and at the
6206 * end of interesting range may be not aligned with pages that
6207 * page allocator holds, ie. they can be part of higher order
6208 * pages. Because of this, we reserve the bigger range and
6209 * once this is done free the pages we are not interested in.
6210 *
6211 * We don't have to hold zone->lock here because the pages are
6212 * isolated thus they won't get removed from buddy.
6213 */
6214
041d3a8c
MN
6215 order = 0;
6216 outer_start = start;
6217 while (!PageBuddy(pfn_to_page(outer_start))) {
23baf831 6218 if (++order > MAX_ORDER) {
8ef5849f
JK
6219 outer_start = start;
6220 break;
041d3a8c
MN
6221 }
6222 outer_start &= ~0UL << order;
6223 }
6224
8ef5849f 6225 if (outer_start != start) {
ab130f91 6226 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
6227
6228 /*
6229 * outer_start page could be small order buddy page and
6230 * it doesn't include start page. Adjust outer_start
6231 * in this case to report failed page properly
6232 * on tracepoint in test_pages_isolated()
6233 */
6234 if (outer_start + (1UL << order) <= start)
6235 outer_start = start;
6236 }
6237
041d3a8c 6238 /* Make sure the range is really isolated. */
756d25be 6239 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
6240 ret = -EBUSY;
6241 goto done;
6242 }
6243
49f223a9 6244 /* Grab isolated pages from freelists. */
bb13ffeb 6245 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6246 if (!outer_end) {
6247 ret = -EBUSY;
6248 goto done;
6249 }
6250
6251 /* Free head and tail (if any) */
6252 if (start != outer_start)
6253 free_contig_range(outer_start, start - outer_start);
6254 if (end != outer_end)
6255 free_contig_range(end, outer_end - end);
6256
6257done:
6e263fff 6258 undo_isolate_page_range(start, end, migratetype);
041d3a8c
MN
6259 return ret;
6260}
255f5985 6261EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
6262
6263static int __alloc_contig_pages(unsigned long start_pfn,
6264 unsigned long nr_pages, gfp_t gfp_mask)
6265{
6266 unsigned long end_pfn = start_pfn + nr_pages;
6267
6268 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6269 gfp_mask);
6270}
6271
6272static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6273 unsigned long nr_pages)
6274{
6275 unsigned long i, end_pfn = start_pfn + nr_pages;
6276 struct page *page;
6277
6278 for (i = start_pfn; i < end_pfn; i++) {
6279 page = pfn_to_online_page(i);
6280 if (!page)
6281 return false;
6282
6283 if (page_zone(page) != z)
6284 return false;
6285
6286 if (PageReserved(page))
4d73ba5f
MG
6287 return false;
6288
6289 if (PageHuge(page))
5e27a2df 6290 return false;
5e27a2df
AK
6291 }
6292 return true;
6293}
6294
6295static bool zone_spans_last_pfn(const struct zone *zone,
6296 unsigned long start_pfn, unsigned long nr_pages)
6297{
6298 unsigned long last_pfn = start_pfn + nr_pages - 1;
6299
6300 return zone_spans_pfn(zone, last_pfn);
6301}
6302
6303/**
6304 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6305 * @nr_pages: Number of contiguous pages to allocate
6306 * @gfp_mask: GFP mask to limit search and used during compaction
6307 * @nid: Target node
6308 * @nodemask: Mask for other possible nodes
6309 *
6310 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6311 * on an applicable zonelist to find a contiguous pfn range which can then be
6312 * tried for allocation with alloc_contig_range(). This routine is intended
6313 * for allocation requests which can not be fulfilled with the buddy allocator.
6314 *
6315 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
6316 * power of two, then allocated range is also guaranteed to be aligned to same
6317 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
6318 *
6319 * Allocated pages can be freed with free_contig_range() or by manually calling
6320 * __free_page() on each allocated page.
6321 *
6322 * Return: pointer to contiguous pages on success, or NULL if not successful.
6323 */
6324struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6325 int nid, nodemask_t *nodemask)
6326{
6327 unsigned long ret, pfn, flags;
6328 struct zonelist *zonelist;
6329 struct zone *zone;
6330 struct zoneref *z;
6331
6332 zonelist = node_zonelist(nid, gfp_mask);
6333 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6334 gfp_zone(gfp_mask), nodemask) {
6335 spin_lock_irqsave(&zone->lock, flags);
6336
6337 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6338 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6339 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6340 /*
6341 * We release the zone lock here because
6342 * alloc_contig_range() will also lock the zone
6343 * at some point. If there's an allocation
6344 * spinning on this lock, it may win the race
6345 * and cause alloc_contig_range() to fail...
6346 */
6347 spin_unlock_irqrestore(&zone->lock, flags);
6348 ret = __alloc_contig_pages(pfn, nr_pages,
6349 gfp_mask);
6350 if (!ret)
6351 return pfn_to_page(pfn);
6352 spin_lock_irqsave(&zone->lock, flags);
6353 }
6354 pfn += nr_pages;
6355 }
6356 spin_unlock_irqrestore(&zone->lock, flags);
6357 }
6358 return NULL;
6359}
4eb0716e 6360#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 6361
78fa5150 6362void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 6363{
78fa5150 6364 unsigned long count = 0;
bcc2b02f
MS
6365
6366 for (; nr_pages--; pfn++) {
6367 struct page *page = pfn_to_page(pfn);
6368
6369 count += page_count(page) != 1;
6370 __free_page(page);
6371 }
78fa5150 6372 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 6373}
255f5985 6374EXPORT_SYMBOL(free_contig_range);
041d3a8c 6375
ec6e8c7e
VB
6376/*
6377 * Effectively disable pcplists for the zone by setting the high limit to 0
6378 * and draining all cpus. A concurrent page freeing on another CPU that's about
6379 * to put the page on pcplist will either finish before the drain and the page
6380 * will be drained, or observe the new high limit and skip the pcplist.
6381 *
6382 * Must be paired with a call to zone_pcp_enable().
6383 */
6384void zone_pcp_disable(struct zone *zone)
6385{
6386 mutex_lock(&pcp_batch_high_lock);
6387 __zone_set_pageset_high_and_batch(zone, 0, 1);
6388 __drain_all_pages(zone, true);
6389}
6390
6391void zone_pcp_enable(struct zone *zone)
6392{
6393 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6394 mutex_unlock(&pcp_batch_high_lock);
6395}
6396
340175b7
JL
6397void zone_pcp_reset(struct zone *zone)
6398{
5a883813 6399 int cpu;
28f836b6 6400 struct per_cpu_zonestat *pzstats;
340175b7 6401
28f836b6 6402 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 6403 for_each_online_cpu(cpu) {
28f836b6
MG
6404 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6405 drain_zonestat(zone, pzstats);
5a883813 6406 }
28f836b6 6407 free_percpu(zone->per_cpu_pageset);
28f836b6 6408 zone->per_cpu_pageset = &boot_pageset;
022e7fa0
ML
6409 if (zone->per_cpu_zonestats != &boot_zonestats) {
6410 free_percpu(zone->per_cpu_zonestats);
6411 zone->per_cpu_zonestats = &boot_zonestats;
6412 }
340175b7 6413 }
340175b7
JL
6414}
6415
6dcd73d7 6416#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 6417/*
257bea71
DH
6418 * All pages in the range must be in a single zone, must not contain holes,
6419 * must span full sections, and must be isolated before calling this function.
0c0e6195 6420 */
257bea71 6421void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 6422{
257bea71 6423 unsigned long pfn = start_pfn;
0c0e6195
KH
6424 struct page *page;
6425 struct zone *zone;
0ee5f4f3 6426 unsigned int order;
0c0e6195 6427 unsigned long flags;
5557c766 6428
2d070eab 6429 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
6430 zone = page_zone(pfn_to_page(pfn));
6431 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 6432 while (pfn < end_pfn) {
0c0e6195 6433 page = pfn_to_page(pfn);
b023f468
WC
6434 /*
6435 * The HWPoisoned page may be not in buddy system, and
6436 * page_count() is not 0.
6437 */
6438 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6439 pfn++;
b023f468
WC
6440 continue;
6441 }
aa218795
DH
6442 /*
6443 * At this point all remaining PageOffline() pages have a
6444 * reference count of 0 and can simply be skipped.
6445 */
6446 if (PageOffline(page)) {
6447 BUG_ON(page_count(page));
6448 BUG_ON(PageBuddy(page));
6449 pfn++;
aa218795
DH
6450 continue;
6451 }
b023f468 6452
0c0e6195
KH
6453 BUG_ON(page_count(page));
6454 BUG_ON(!PageBuddy(page));
ab130f91 6455 order = buddy_order(page);
6ab01363 6456 del_page_from_free_list(page, zone, order);
0c0e6195
KH
6457 pfn += (1 << order);
6458 }
6459 spin_unlock_irqrestore(&zone->lock, flags);
6460}
6461#endif
8d22ba1b 6462
8446b59b
ED
6463/*
6464 * This function returns a stable result only if called under zone lock.
6465 */
8d22ba1b
WF
6466bool is_free_buddy_page(struct page *page)
6467{
8d22ba1b 6468 unsigned long pfn = page_to_pfn(page);
7aeb09f9 6469 unsigned int order;
8d22ba1b 6470
23baf831 6471 for (order = 0; order <= MAX_ORDER; order++) {
8d22ba1b
WF
6472 struct page *page_head = page - (pfn & ((1 << order) - 1));
6473
8446b59b
ED
6474 if (PageBuddy(page_head) &&
6475 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
6476 break;
6477 }
8d22ba1b 6478
23baf831 6479 return order <= MAX_ORDER;
8d22ba1b 6480}
a581865e 6481EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
6482
6483#ifdef CONFIG_MEMORY_FAILURE
6484/*
06be6ff3
OS
6485 * Break down a higher-order page in sub-pages, and keep our target out of
6486 * buddy allocator.
d4ae9916 6487 */
06be6ff3
OS
6488static void break_down_buddy_pages(struct zone *zone, struct page *page,
6489 struct page *target, int low, int high,
6490 int migratetype)
6491{
6492 unsigned long size = 1 << high;
6493 struct page *current_buddy, *next_page;
6494
6495 while (high > low) {
6496 high--;
6497 size >>= 1;
6498
6499 if (target >= &page[size]) {
6500 next_page = page + size;
6501 current_buddy = page;
6502 } else {
6503 next_page = page;
6504 current_buddy = page + size;
6505 }
6506
6507 if (set_page_guard(zone, current_buddy, high, migratetype))
6508 continue;
6509
6510 if (current_buddy != target) {
6511 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 6512 set_buddy_order(current_buddy, high);
06be6ff3
OS
6513 page = next_page;
6514 }
6515 }
6516}
6517
6518/*
6519 * Take a page that will be marked as poisoned off the buddy allocator.
6520 */
6521bool take_page_off_buddy(struct page *page)
d4ae9916
NH
6522{
6523 struct zone *zone = page_zone(page);
6524 unsigned long pfn = page_to_pfn(page);
6525 unsigned long flags;
6526 unsigned int order;
06be6ff3 6527 bool ret = false;
d4ae9916
NH
6528
6529 spin_lock_irqsave(&zone->lock, flags);
23baf831 6530 for (order = 0; order <= MAX_ORDER; order++) {
d4ae9916 6531 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 6532 int page_order = buddy_order(page_head);
d4ae9916 6533
ab130f91 6534 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
6535 unsigned long pfn_head = page_to_pfn(page_head);
6536 int migratetype = get_pfnblock_migratetype(page_head,
6537 pfn_head);
6538
ab130f91 6539 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 6540 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 6541 page_order, migratetype);
bf181c58 6542 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
6543 if (!is_migrate_isolate(migratetype))
6544 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 6545 ret = true;
d4ae9916
NH
6546 break;
6547 }
06be6ff3
OS
6548 if (page_count(page_head) > 0)
6549 break;
d4ae9916
NH
6550 }
6551 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 6552 return ret;
d4ae9916 6553}
bf181c58
NH
6554
6555/*
6556 * Cancel takeoff done by take_page_off_buddy().
6557 */
6558bool put_page_back_buddy(struct page *page)
6559{
6560 struct zone *zone = page_zone(page);
6561 unsigned long pfn = page_to_pfn(page);
6562 unsigned long flags;
6563 int migratetype = get_pfnblock_migratetype(page, pfn);
6564 bool ret = false;
6565
6566 spin_lock_irqsave(&zone->lock, flags);
6567 if (put_page_testzero(page)) {
6568 ClearPageHWPoisonTakenOff(page);
6569 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6570 if (TestClearPageHWPoison(page)) {
bf181c58
NH
6571 ret = true;
6572 }
6573 }
6574 spin_unlock_irqrestore(&zone->lock, flags);
6575
6576 return ret;
6577}
d4ae9916 6578#endif
62b31070
BH
6579
6580#ifdef CONFIG_ZONE_DMA
6581bool has_managed_dma(void)
6582{
6583 struct pglist_data *pgdat;
6584
6585 for_each_online_pgdat(pgdat) {
6586 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6587
6588 if (managed_zone(zone))
6589 return true;
6590 }
6591 return false;
6592}
6593#endif /* CONFIG_ZONE_DMA */
dcdfdd40
KS
6594
6595#ifdef CONFIG_UNACCEPTED_MEMORY
6596
6597/* Counts number of zones with unaccepted pages. */
6598static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6599
6600static bool lazy_accept = true;
6601
6602static int __init accept_memory_parse(char *p)
6603{
6604 if (!strcmp(p, "lazy")) {
6605 lazy_accept = true;
6606 return 0;
6607 } else if (!strcmp(p, "eager")) {
6608 lazy_accept = false;
6609 return 0;
6610 } else {
6611 return -EINVAL;
6612 }
6613}
6614early_param("accept_memory", accept_memory_parse);
6615
6616static bool page_contains_unaccepted(struct page *page, unsigned int order)
6617{
6618 phys_addr_t start = page_to_phys(page);
6619 phys_addr_t end = start + (PAGE_SIZE << order);
6620
6621 return range_contains_unaccepted_memory(start, end);
6622}
6623
6624static void accept_page(struct page *page, unsigned int order)
6625{
6626 phys_addr_t start = page_to_phys(page);
6627
6628 accept_memory(start, start + (PAGE_SIZE << order));
6629}
6630
6631static bool try_to_accept_memory_one(struct zone *zone)
6632{
6633 unsigned long flags;
6634 struct page *page;
6635 bool last;
6636
6637 if (list_empty(&zone->unaccepted_pages))
6638 return false;
6639
6640 spin_lock_irqsave(&zone->lock, flags);
6641 page = list_first_entry_or_null(&zone->unaccepted_pages,
6642 struct page, lru);
6643 if (!page) {
6644 spin_unlock_irqrestore(&zone->lock, flags);
6645 return false;
6646 }
6647
6648 list_del(&page->lru);
6649 last = list_empty(&zone->unaccepted_pages);
6650
6651 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6652 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6653 spin_unlock_irqrestore(&zone->lock, flags);
6654
6655 accept_page(page, MAX_ORDER);
6656
6657 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6658
6659 if (last)
6660 static_branch_dec(&zones_with_unaccepted_pages);
6661
6662 return true;
6663}
6664
6665static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6666{
6667 long to_accept;
6668 int ret = false;
6669
6670 /* How much to accept to get to high watermark? */
6671 to_accept = high_wmark_pages(zone) -
6672 (zone_page_state(zone, NR_FREE_PAGES) -
6673 __zone_watermark_unusable_free(zone, order, 0));
6674
6675 /* Accept at least one page */
6676 do {
6677 if (!try_to_accept_memory_one(zone))
6678 break;
6679 ret = true;
6680 to_accept -= MAX_ORDER_NR_PAGES;
6681 } while (to_accept > 0);
6682
6683 return ret;
6684}
6685
6686static inline bool has_unaccepted_memory(void)
6687{
6688 return static_branch_unlikely(&zones_with_unaccepted_pages);
6689}
6690
6691static bool __free_unaccepted(struct page *page)
6692{
6693 struct zone *zone = page_zone(page);
6694 unsigned long flags;
6695 bool first = false;
6696
6697 if (!lazy_accept)
6698 return false;
6699
6700 spin_lock_irqsave(&zone->lock, flags);
6701 first = list_empty(&zone->unaccepted_pages);
6702 list_add_tail(&page->lru, &zone->unaccepted_pages);
6703 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6704 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6705 spin_unlock_irqrestore(&zone->lock, flags);
6706
6707 if (first)
6708 static_branch_inc(&zones_with_unaccepted_pages);
6709
6710 return true;
6711}
6712
6713#else
6714
6715static bool page_contains_unaccepted(struct page *page, unsigned int order)
6716{
6717 return false;
6718}
6719
6720static void accept_page(struct page *page, unsigned int order)
6721{
6722}
6723
6724static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6725{
6726 return false;
6727}
6728
6729static inline bool has_unaccepted_memory(void)
6730{
6731 return false;
6732}
6733
6734static bool __free_unaccepted(struct page *page)
6735{
6736 BUILD_BUG();
6737 return false;
6738}
6739
6740#endif /* CONFIG_UNACCEPTED_MEMORY */