]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
mm: parallelize deferred_init_memmap()
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
e4443149 71#include <linux/padata.h>
1da177e4 72
7ee3d4e8 73#include <asm/sections.h>
1da177e4 74#include <asm/tlbflush.h>
ac924c60 75#include <asm/div64.h>
1da177e4 76#include "internal.h"
e900a918 77#include "shuffle.h"
36e66c55 78#include "page_reporting.h"
1da177e4 79
c8e251fa
CS
80/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 82#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 83
72812019
LS
84#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85DEFINE_PER_CPU(int, numa_node);
86EXPORT_PER_CPU_SYMBOL(numa_node);
87#endif
88
4518085e
KW
89DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
90
7aac7898
LS
91#ifdef CONFIG_HAVE_MEMORYLESS_NODES
92/*
93 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96 * defined in <linux/topology.h>.
97 */
98DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
99EXPORT_PER_CPU_SYMBOL(_numa_mem_);
100#endif
101
bd233f53 102/* work_structs for global per-cpu drains */
d9367bd0
WY
103struct pcpu_drain {
104 struct zone *zone;
105 struct work_struct work;
106};
8b885f53
JY
107static DEFINE_MUTEX(pcpu_drain_mutex);
108static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 109
38addce8 110#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 111volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
112EXPORT_SYMBOL(latent_entropy);
113#endif
114
1da177e4 115/*
13808910 116 * Array of node states.
1da177e4 117 */
13808910
CL
118nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
121#ifndef CONFIG_NUMA
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123#ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 125#endif
20b2f52b 126 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
127 [N_CPU] = { { [0] = 1UL } },
128#endif /* NUMA */
129};
130EXPORT_SYMBOL(node_states);
131
ca79b0c2
AK
132atomic_long_t _totalram_pages __read_mostly;
133EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 134unsigned long totalreserve_pages __read_mostly;
e48322ab 135unsigned long totalcma_pages __read_mostly;
ab8fabd4 136
1b76b02f 137int percpu_pagelist_fraction;
dcce284a 138gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
139#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141#else
142DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143#endif
144EXPORT_SYMBOL(init_on_alloc);
145
146#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147DEFINE_STATIC_KEY_TRUE(init_on_free);
148#else
149DEFINE_STATIC_KEY_FALSE(init_on_free);
150#endif
151EXPORT_SYMBOL(init_on_free);
152
153static int __init early_init_on_alloc(char *buf)
154{
155 int ret;
156 bool bool_result;
157
158 if (!buf)
159 return -EINVAL;
160 ret = kstrtobool(buf, &bool_result);
161 if (bool_result && page_poisoning_enabled())
162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 if (bool_result)
164 static_branch_enable(&init_on_alloc);
165 else
166 static_branch_disable(&init_on_alloc);
167 return ret;
168}
169early_param("init_on_alloc", early_init_on_alloc);
170
171static int __init early_init_on_free(char *buf)
172{
173 int ret;
174 bool bool_result;
175
176 if (!buf)
177 return -EINVAL;
178 ret = kstrtobool(buf, &bool_result);
179 if (bool_result && page_poisoning_enabled())
180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 if (bool_result)
182 static_branch_enable(&init_on_free);
183 else
184 static_branch_disable(&init_on_free);
185 return ret;
186}
187early_param("init_on_free", early_init_on_free);
1da177e4 188
bb14c2c7
VB
189/*
190 * A cached value of the page's pageblock's migratetype, used when the page is
191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193 * Also the migratetype set in the page does not necessarily match the pcplist
194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195 * other index - this ensures that it will be put on the correct CMA freelist.
196 */
197static inline int get_pcppage_migratetype(struct page *page)
198{
199 return page->index;
200}
201
202static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203{
204 page->index = migratetype;
205}
206
452aa699
RW
207#ifdef CONFIG_PM_SLEEP
208/*
209 * The following functions are used by the suspend/hibernate code to temporarily
210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
212 * they should always be called with system_transition_mutex held
213 * (gfp_allowed_mask also should only be modified with system_transition_mutex
214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215 * with that modification).
452aa699 216 */
c9e664f1
RW
217
218static gfp_t saved_gfp_mask;
219
220void pm_restore_gfp_mask(void)
452aa699 221{
55f2503c 222 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
223 if (saved_gfp_mask) {
224 gfp_allowed_mask = saved_gfp_mask;
225 saved_gfp_mask = 0;
226 }
452aa699
RW
227}
228
c9e664f1 229void pm_restrict_gfp_mask(void)
452aa699 230{
55f2503c 231 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
232 WARN_ON(saved_gfp_mask);
233 saved_gfp_mask = gfp_allowed_mask;
d0164adc 234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 235}
f90ac398
MG
236
237bool pm_suspended_storage(void)
238{
d0164adc 239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
240 return false;
241 return true;
242}
452aa699
RW
243#endif /* CONFIG_PM_SLEEP */
244
d9c23400 245#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 246unsigned int pageblock_order __read_mostly;
d9c23400
MG
247#endif
248
d98c7a09 249static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 250
1da177e4
LT
251/*
252 * results with 256, 32 in the lowmem_reserve sysctl:
253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254 * 1G machine -> (16M dma, 784M normal, 224M high)
255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
258 *
259 * TBD: should special case ZONE_DMA32 machines here - in those we normally
260 * don't need any ZONE_NORMAL reservation
1da177e4 261 */
d3cda233 262int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 263#ifdef CONFIG_ZONE_DMA
d3cda233 264 [ZONE_DMA] = 256,
4b51d669 265#endif
fb0e7942 266#ifdef CONFIG_ZONE_DMA32
d3cda233 267 [ZONE_DMA32] = 256,
fb0e7942 268#endif
d3cda233 269 [ZONE_NORMAL] = 32,
e53ef38d 270#ifdef CONFIG_HIGHMEM
d3cda233 271 [ZONE_HIGHMEM] = 0,
e53ef38d 272#endif
d3cda233 273 [ZONE_MOVABLE] = 0,
2f1b6248 274};
1da177e4 275
15ad7cdc 276static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 277#ifdef CONFIG_ZONE_DMA
2f1b6248 278 "DMA",
4b51d669 279#endif
fb0e7942 280#ifdef CONFIG_ZONE_DMA32
2f1b6248 281 "DMA32",
fb0e7942 282#endif
2f1b6248 283 "Normal",
e53ef38d 284#ifdef CONFIG_HIGHMEM
2a1e274a 285 "HighMem",
e53ef38d 286#endif
2a1e274a 287 "Movable",
033fbae9
DW
288#ifdef CONFIG_ZONE_DEVICE
289 "Device",
290#endif
2f1b6248
CL
291};
292
c999fbd3 293const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
294 "Unmovable",
295 "Movable",
296 "Reclaimable",
297 "HighAtomic",
298#ifdef CONFIG_CMA
299 "CMA",
300#endif
301#ifdef CONFIG_MEMORY_ISOLATION
302 "Isolate",
303#endif
304};
305
ae70eddd
AK
306compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
307 [NULL_COMPOUND_DTOR] = NULL,
308 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 309#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 310 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 311#endif
9a982250 312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 313 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 314#endif
f1e61557
KS
315};
316
1da177e4 317int min_free_kbytes = 1024;
42aa83cb 318int user_min_free_kbytes = -1;
24512228
MG
319#ifdef CONFIG_DISCONTIGMEM
320/*
321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322 * are not on separate NUMA nodes. Functionally this works but with
323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324 * quite small. By default, do not boost watermarks on discontigmem as in
325 * many cases very high-order allocations like THP are likely to be
326 * unsupported and the premature reclaim offsets the advantage of long-term
327 * fragmentation avoidance.
328 */
329int watermark_boost_factor __read_mostly;
330#else
1c30844d 331int watermark_boost_factor __read_mostly = 15000;
24512228 332#endif
795ae7a0 333int watermark_scale_factor = 10;
1da177e4 334
bbe5d993
OS
335static unsigned long nr_kernel_pages __initdata;
336static unsigned long nr_all_pages __initdata;
337static unsigned long dma_reserve __initdata;
1da177e4 338
bbe5d993
OS
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 341static unsigned long required_kernelcore __initdata;
a5c6d650 342static unsigned long required_kernelcore_percent __initdata;
7f16f91f 343static unsigned long required_movablecore __initdata;
a5c6d650 344static unsigned long required_movablecore_percent __initdata;
bbe5d993 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 346static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
c713216d 351
418508c1 352#if MAX_NUMNODES > 1
b9726c26 353unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 354unsigned int nr_online_nodes __read_mostly = 1;
418508c1 355EXPORT_SYMBOL(nr_node_ids);
62bc62a8 356EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
357#endif
358
9ef9acb0
MG
359int page_group_by_mobility_disabled __read_mostly;
360
3a80a7fa 361#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
362/*
363 * During boot we initialize deferred pages on-demand, as needed, but once
364 * page_alloc_init_late() has finished, the deferred pages are all initialized,
365 * and we can permanently disable that path.
366 */
367static DEFINE_STATIC_KEY_TRUE(deferred_pages);
368
369/*
370 * Calling kasan_free_pages() only after deferred memory initialization
371 * has completed. Poisoning pages during deferred memory init will greatly
372 * lengthen the process and cause problem in large memory systems as the
373 * deferred pages initialization is done with interrupt disabled.
374 *
375 * Assuming that there will be no reference to those newly initialized
376 * pages before they are ever allocated, this should have no effect on
377 * KASAN memory tracking as the poison will be properly inserted at page
378 * allocation time. The only corner case is when pages are allocated by
379 * on-demand allocation and then freed again before the deferred pages
380 * initialization is done, but this is not likely to happen.
381 */
382static inline void kasan_free_nondeferred_pages(struct page *page, int order)
383{
384 if (!static_branch_unlikely(&deferred_pages))
385 kasan_free_pages(page, order);
386}
387
3a80a7fa 388/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 389static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 390{
ef70b6f4
MG
391 int nid = early_pfn_to_nid(pfn);
392
393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
394 return true;
395
396 return false;
397}
398
399/*
d3035be4 400 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
401 * later in the boot cycle when it can be parallelised.
402 */
d3035be4
PT
403static bool __meminit
404defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 405{
d3035be4
PT
406 static unsigned long prev_end_pfn, nr_initialised;
407
408 /*
409 * prev_end_pfn static that contains the end of previous zone
410 * No need to protect because called very early in boot before smp_init.
411 */
412 if (prev_end_pfn != end_pfn) {
413 prev_end_pfn = end_pfn;
414 nr_initialised = 0;
415 }
416
3c2c6488 417 /* Always populate low zones for address-constrained allocations */
d3035be4 418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 419 return false;
23b68cfa
WY
420
421 /*
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
424 */
d3035be4 425 nr_initialised++;
23b68cfa 426 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
427 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 NODE_DATA(nid)->first_deferred_pfn = pfn;
429 return true;
3a80a7fa 430 }
d3035be4 431 return false;
3a80a7fa
MG
432}
433#else
3c0c12cc
WL
434#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
435
3a80a7fa
MG
436static inline bool early_page_uninitialised(unsigned long pfn)
437{
438 return false;
439}
440
d3035be4 441static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 442{
d3035be4 443 return false;
3a80a7fa
MG
444}
445#endif
446
0b423ca2
MG
447/* Return a pointer to the bitmap storing bits affecting a block of pages */
448static inline unsigned long *get_pageblock_bitmap(struct page *page,
449 unsigned long pfn)
450{
451#ifdef CONFIG_SPARSEMEM
f1eca35a 452 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
453#else
454 return page_zone(page)->pageblock_flags;
455#endif /* CONFIG_SPARSEMEM */
456}
457
458static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
459{
460#ifdef CONFIG_SPARSEMEM
461 pfn &= (PAGES_PER_SECTION-1);
462 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
463#else
464 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
466#endif /* CONFIG_SPARSEMEM */
467}
468
469/**
470 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
471 * @page: The page within the block of interest
472 * @pfn: The target page frame number
473 * @end_bitidx: The last bit of interest to retrieve
474 * @mask: mask of bits that the caller is interested in
475 *
476 * Return: pageblock_bits flags
477 */
478static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
479 unsigned long pfn,
480 unsigned long end_bitidx,
481 unsigned long mask)
482{
483 unsigned long *bitmap;
484 unsigned long bitidx, word_bitidx;
485 unsigned long word;
486
487 bitmap = get_pageblock_bitmap(page, pfn);
488 bitidx = pfn_to_bitidx(page, pfn);
489 word_bitidx = bitidx / BITS_PER_LONG;
490 bitidx &= (BITS_PER_LONG-1);
491
492 word = bitmap[word_bitidx];
493 bitidx += end_bitidx;
494 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
495}
496
497unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
498 unsigned long end_bitidx,
499 unsigned long mask)
500{
501 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
502}
503
504static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
505{
506 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
507}
508
509/**
510 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
511 * @page: The page within the block of interest
512 * @flags: The flags to set
513 * @pfn: The target page frame number
514 * @end_bitidx: The last bit of interest
515 * @mask: mask of bits that the caller is interested in
516 */
517void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
518 unsigned long pfn,
519 unsigned long end_bitidx,
520 unsigned long mask)
521{
522 unsigned long *bitmap;
523 unsigned long bitidx, word_bitidx;
524 unsigned long old_word, word;
525
526 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 527 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
528
529 bitmap = get_pageblock_bitmap(page, pfn);
530 bitidx = pfn_to_bitidx(page, pfn);
531 word_bitidx = bitidx / BITS_PER_LONG;
532 bitidx &= (BITS_PER_LONG-1);
533
534 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
535
536 bitidx += end_bitidx;
537 mask <<= (BITS_PER_LONG - bitidx - 1);
538 flags <<= (BITS_PER_LONG - bitidx - 1);
539
540 word = READ_ONCE(bitmap[word_bitidx]);
541 for (;;) {
542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
543 if (word == old_word)
544 break;
545 word = old_word;
546 }
547}
3a80a7fa 548
ee6f509c 549void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 550{
5d0f3f72
KM
551 if (unlikely(page_group_by_mobility_disabled &&
552 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
553 migratetype = MIGRATE_UNMOVABLE;
554
b2a0ac88
MG
555 set_pageblock_flags_group(page, (unsigned long)migratetype,
556 PB_migrate, PB_migrate_end);
557}
558
13e7444b 559#ifdef CONFIG_DEBUG_VM
c6a57e19 560static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 561{
bdc8cb98
DH
562 int ret = 0;
563 unsigned seq;
564 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 565 unsigned long sp, start_pfn;
c6a57e19 566
bdc8cb98
DH
567 do {
568 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
569 start_pfn = zone->zone_start_pfn;
570 sp = zone->spanned_pages;
108bcc96 571 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
572 ret = 1;
573 } while (zone_span_seqretry(zone, seq));
574
b5e6a5a2 575 if (ret)
613813e8
DH
576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 pfn, zone_to_nid(zone), zone->name,
578 start_pfn, start_pfn + sp);
b5e6a5a2 579
bdc8cb98 580 return ret;
c6a57e19
DH
581}
582
583static int page_is_consistent(struct zone *zone, struct page *page)
584{
14e07298 585 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 586 return 0;
1da177e4 587 if (zone != page_zone(page))
c6a57e19
DH
588 return 0;
589
590 return 1;
591}
592/*
593 * Temporary debugging check for pages not lying within a given zone.
594 */
d73d3c9f 595static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
596{
597 if (page_outside_zone_boundaries(zone, page))
1da177e4 598 return 1;
c6a57e19
DH
599 if (!page_is_consistent(zone, page))
600 return 1;
601
1da177e4
LT
602 return 0;
603}
13e7444b 604#else
d73d3c9f 605static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
606{
607 return 0;
608}
609#endif
610
82a3241a 611static void bad_page(struct page *page, const char *reason)
1da177e4 612{
d936cf9b
HD
613 static unsigned long resume;
614 static unsigned long nr_shown;
615 static unsigned long nr_unshown;
616
617 /*
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
620 */
621 if (nr_shown == 60) {
622 if (time_before(jiffies, resume)) {
623 nr_unshown++;
624 goto out;
625 }
626 if (nr_unshown) {
ff8e8116 627 pr_alert(
1e9e6365 628 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
629 nr_unshown);
630 nr_unshown = 0;
631 }
632 nr_shown = 0;
633 }
634 if (nr_shown++ == 0)
635 resume = jiffies + 60 * HZ;
636
ff8e8116 637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 638 current->comm, page_to_pfn(page));
ff8e8116 639 __dump_page(page, reason);
4e462112 640 dump_page_owner(page);
3dc14741 641
4f31888c 642 print_modules();
1da177e4 643 dump_stack();
d936cf9b 644out:
8cc3b392 645 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 646 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
648}
649
1da177e4
LT
650/*
651 * Higher-order pages are called "compound pages". They are structured thusly:
652 *
1d798ca3 653 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 654 *
1d798ca3
KS
655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 657 *
1d798ca3
KS
658 * The first tail page's ->compound_dtor holds the offset in array of compound
659 * page destructors. See compound_page_dtors.
1da177e4 660 *
1d798ca3 661 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 662 * This usage means that zero-order pages may not be compound.
1da177e4 663 */
d98c7a09 664
9a982250 665void free_compound_page(struct page *page)
d98c7a09 666{
7ae88534 667 mem_cgroup_uncharge(page);
d85f3385 668 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
669}
670
d00181b9 671void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
672{
673 int i;
674 int nr_pages = 1 << order;
675
f1e61557 676 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
677 set_compound_order(page, order);
678 __SetPageHead(page);
679 for (i = 1; i < nr_pages; i++) {
680 struct page *p = page + i;
58a84aa9 681 set_page_count(p, 0);
1c290f64 682 p->mapping = TAIL_MAPPING;
1d798ca3 683 set_compound_head(p, page);
18229df5 684 }
53f9263b 685 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
686 if (hpage_pincount_available(page))
687 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
688}
689
c0a32fc5
SG
690#ifdef CONFIG_DEBUG_PAGEALLOC
691unsigned int _debug_guardpage_minorder;
96a2b03f 692
8e57f8ac
VB
693bool _debug_pagealloc_enabled_early __read_mostly
694 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
695EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 696DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 697EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
698
699DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 700
031bc574
JK
701static int __init early_debug_pagealloc(char *buf)
702{
8e57f8ac 703 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
704}
705early_param("debug_pagealloc", early_debug_pagealloc);
706
8e57f8ac 707void init_debug_pagealloc(void)
e30825f1 708{
031bc574
JK
709 if (!debug_pagealloc_enabled())
710 return;
711
8e57f8ac
VB
712 static_branch_enable(&_debug_pagealloc_enabled);
713
f1c1e9f7
JK
714 if (!debug_guardpage_minorder())
715 return;
716
96a2b03f 717 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
718}
719
c0a32fc5
SG
720static int __init debug_guardpage_minorder_setup(char *buf)
721{
722 unsigned long res;
723
724 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 725 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
726 return 0;
727 }
728 _debug_guardpage_minorder = res;
1170532b 729 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
730 return 0;
731}
f1c1e9f7 732early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 733
acbc15a4 734static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 735 unsigned int order, int migratetype)
c0a32fc5 736{
e30825f1 737 if (!debug_guardpage_enabled())
acbc15a4
JK
738 return false;
739
740 if (order >= debug_guardpage_minorder())
741 return false;
e30825f1 742
3972f6bb 743 __SetPageGuard(page);
2847cf95
JK
744 INIT_LIST_HEAD(&page->lru);
745 set_page_private(page, order);
746 /* Guard pages are not available for any usage */
747 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
748
749 return true;
c0a32fc5
SG
750}
751
2847cf95
JK
752static inline void clear_page_guard(struct zone *zone, struct page *page,
753 unsigned int order, int migratetype)
c0a32fc5 754{
e30825f1
JK
755 if (!debug_guardpage_enabled())
756 return;
757
3972f6bb 758 __ClearPageGuard(page);
e30825f1 759
2847cf95
JK
760 set_page_private(page, 0);
761 if (!is_migrate_isolate(migratetype))
762 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
763}
764#else
acbc15a4
JK
765static inline bool set_page_guard(struct zone *zone, struct page *page,
766 unsigned int order, int migratetype) { return false; }
2847cf95
JK
767static inline void clear_page_guard(struct zone *zone, struct page *page,
768 unsigned int order, int migratetype) {}
c0a32fc5
SG
769#endif
770
7aeb09f9 771static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 772{
4c21e2f2 773 set_page_private(page, order);
676165a8 774 __SetPageBuddy(page);
1da177e4
LT
775}
776
1da177e4
LT
777/*
778 * This function checks whether a page is free && is the buddy
6e292b9b 779 * we can coalesce a page and its buddy if
13ad59df 780 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 781 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
782 * (c) a page and its buddy have the same order &&
783 * (d) a page and its buddy are in the same zone.
676165a8 784 *
6e292b9b
MW
785 * For recording whether a page is in the buddy system, we set PageBuddy.
786 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 787 *
676165a8 788 * For recording page's order, we use page_private(page).
1da177e4 789 */
fe925c0c 790static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 791 unsigned int order)
1da177e4 792{
fe925c0c 793 if (!page_is_guard(buddy) && !PageBuddy(buddy))
794 return false;
4c5018ce 795
fe925c0c 796 if (page_order(buddy) != order)
797 return false;
c0a32fc5 798
fe925c0c 799 /*
800 * zone check is done late to avoid uselessly calculating
801 * zone/node ids for pages that could never merge.
802 */
803 if (page_zone_id(page) != page_zone_id(buddy))
804 return false;
d34c5fa0 805
fe925c0c 806 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 807
fe925c0c 808 return true;
1da177e4
LT
809}
810
5e1f0f09
MG
811#ifdef CONFIG_COMPACTION
812static inline struct capture_control *task_capc(struct zone *zone)
813{
814 struct capture_control *capc = current->capture_control;
815
816 return capc &&
817 !(current->flags & PF_KTHREAD) &&
818 !capc->page &&
819 capc->cc->zone == zone &&
820 capc->cc->direct_compaction ? capc : NULL;
821}
822
823static inline bool
824compaction_capture(struct capture_control *capc, struct page *page,
825 int order, int migratetype)
826{
827 if (!capc || order != capc->cc->order)
828 return false;
829
830 /* Do not accidentally pollute CMA or isolated regions*/
831 if (is_migrate_cma(migratetype) ||
832 is_migrate_isolate(migratetype))
833 return false;
834
835 /*
836 * Do not let lower order allocations polluate a movable pageblock.
837 * This might let an unmovable request use a reclaimable pageblock
838 * and vice-versa but no more than normal fallback logic which can
839 * have trouble finding a high-order free page.
840 */
841 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
842 return false;
843
844 capc->page = page;
845 return true;
846}
847
848#else
849static inline struct capture_control *task_capc(struct zone *zone)
850{
851 return NULL;
852}
853
854static inline bool
855compaction_capture(struct capture_control *capc, struct page *page,
856 int order, int migratetype)
857{
858 return false;
859}
860#endif /* CONFIG_COMPACTION */
861
6ab01363
AD
862/* Used for pages not on another list */
863static inline void add_to_free_list(struct page *page, struct zone *zone,
864 unsigned int order, int migratetype)
865{
866 struct free_area *area = &zone->free_area[order];
867
868 list_add(&page->lru, &area->free_list[migratetype]);
869 area->nr_free++;
870}
871
872/* Used for pages not on another list */
873static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
874 unsigned int order, int migratetype)
875{
876 struct free_area *area = &zone->free_area[order];
877
878 list_add_tail(&page->lru, &area->free_list[migratetype]);
879 area->nr_free++;
880}
881
882/* Used for pages which are on another list */
883static inline void move_to_free_list(struct page *page, struct zone *zone,
884 unsigned int order, int migratetype)
885{
886 struct free_area *area = &zone->free_area[order];
887
888 list_move(&page->lru, &area->free_list[migratetype]);
889}
890
891static inline void del_page_from_free_list(struct page *page, struct zone *zone,
892 unsigned int order)
893{
36e66c55
AD
894 /* clear reported state and update reported page count */
895 if (page_reported(page))
896 __ClearPageReported(page);
897
6ab01363
AD
898 list_del(&page->lru);
899 __ClearPageBuddy(page);
900 set_page_private(page, 0);
901 zone->free_area[order].nr_free--;
902}
903
a2129f24
AD
904/*
905 * If this is not the largest possible page, check if the buddy
906 * of the next-highest order is free. If it is, it's possible
907 * that pages are being freed that will coalesce soon. In case,
908 * that is happening, add the free page to the tail of the list
909 * so it's less likely to be used soon and more likely to be merged
910 * as a higher order page
911 */
912static inline bool
913buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
914 struct page *page, unsigned int order)
915{
916 struct page *higher_page, *higher_buddy;
917 unsigned long combined_pfn;
918
919 if (order >= MAX_ORDER - 2)
920 return false;
921
922 if (!pfn_valid_within(buddy_pfn))
923 return false;
924
925 combined_pfn = buddy_pfn & pfn;
926 higher_page = page + (combined_pfn - pfn);
927 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
928 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
929
930 return pfn_valid_within(buddy_pfn) &&
931 page_is_buddy(higher_page, higher_buddy, order + 1);
932}
933
1da177e4
LT
934/*
935 * Freeing function for a buddy system allocator.
936 *
937 * The concept of a buddy system is to maintain direct-mapped table
938 * (containing bit values) for memory blocks of various "orders".
939 * The bottom level table contains the map for the smallest allocatable
940 * units of memory (here, pages), and each level above it describes
941 * pairs of units from the levels below, hence, "buddies".
942 * At a high level, all that happens here is marking the table entry
943 * at the bottom level available, and propagating the changes upward
944 * as necessary, plus some accounting needed to play nicely with other
945 * parts of the VM system.
946 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
947 * free pages of length of (1 << order) and marked with PageBuddy.
948 * Page's order is recorded in page_private(page) field.
1da177e4 949 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
950 * other. That is, if we allocate a small block, and both were
951 * free, the remainder of the region must be split into blocks.
1da177e4 952 * If a block is freed, and its buddy is also free, then this
5f63b720 953 * triggers coalescing into a block of larger size.
1da177e4 954 *
6d49e352 955 * -- nyc
1da177e4
LT
956 */
957
48db57f8 958static inline void __free_one_page(struct page *page,
dc4b0caf 959 unsigned long pfn,
ed0ae21d 960 struct zone *zone, unsigned int order,
36e66c55 961 int migratetype, bool report)
1da177e4 962{
a2129f24 963 struct capture_control *capc = task_capc(zone);
76741e77 964 unsigned long uninitialized_var(buddy_pfn);
a2129f24 965 unsigned long combined_pfn;
d9dddbf5 966 unsigned int max_order;
a2129f24
AD
967 struct page *buddy;
968 bool to_tail;
d9dddbf5
VB
969
970 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 971
d29bb978 972 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 973 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 974
ed0ae21d 975 VM_BUG_ON(migratetype == -1);
d9dddbf5 976 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 977 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 978
76741e77 979 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 980 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 981
d9dddbf5 982continue_merging:
3c605096 983 while (order < max_order - 1) {
5e1f0f09
MG
984 if (compaction_capture(capc, page, order, migratetype)) {
985 __mod_zone_freepage_state(zone, -(1 << order),
986 migratetype);
987 return;
988 }
76741e77
VB
989 buddy_pfn = __find_buddy_pfn(pfn, order);
990 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
991
992 if (!pfn_valid_within(buddy_pfn))
993 goto done_merging;
cb2b95e1 994 if (!page_is_buddy(page, buddy, order))
d9dddbf5 995 goto done_merging;
c0a32fc5
SG
996 /*
997 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
998 * merge with it and move up one order.
999 */
b03641af 1000 if (page_is_guard(buddy))
2847cf95 1001 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1002 else
6ab01363 1003 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1004 combined_pfn = buddy_pfn & pfn;
1005 page = page + (combined_pfn - pfn);
1006 pfn = combined_pfn;
1da177e4
LT
1007 order++;
1008 }
d9dddbf5
VB
1009 if (max_order < MAX_ORDER) {
1010 /* If we are here, it means order is >= pageblock_order.
1011 * We want to prevent merge between freepages on isolate
1012 * pageblock and normal pageblock. Without this, pageblock
1013 * isolation could cause incorrect freepage or CMA accounting.
1014 *
1015 * We don't want to hit this code for the more frequent
1016 * low-order merging.
1017 */
1018 if (unlikely(has_isolate_pageblock(zone))) {
1019 int buddy_mt;
1020
76741e77
VB
1021 buddy_pfn = __find_buddy_pfn(pfn, order);
1022 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1023 buddy_mt = get_pageblock_migratetype(buddy);
1024
1025 if (migratetype != buddy_mt
1026 && (is_migrate_isolate(migratetype) ||
1027 is_migrate_isolate(buddy_mt)))
1028 goto done_merging;
1029 }
1030 max_order++;
1031 goto continue_merging;
1032 }
1033
1034done_merging:
1da177e4 1035 set_page_order(page, order);
6dda9d55 1036
97500a4a 1037 if (is_shuffle_order(order))
a2129f24 1038 to_tail = shuffle_pick_tail();
97500a4a 1039 else
a2129f24 1040 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1041
a2129f24 1042 if (to_tail)
6ab01363 1043 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1044 else
6ab01363 1045 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1046
1047 /* Notify page reporting subsystem of freed page */
1048 if (report)
1049 page_reporting_notify_free(order);
1da177e4
LT
1050}
1051
7bfec6f4
MG
1052/*
1053 * A bad page could be due to a number of fields. Instead of multiple branches,
1054 * try and check multiple fields with one check. The caller must do a detailed
1055 * check if necessary.
1056 */
1057static inline bool page_expected_state(struct page *page,
1058 unsigned long check_flags)
1059{
1060 if (unlikely(atomic_read(&page->_mapcount) != -1))
1061 return false;
1062
1063 if (unlikely((unsigned long)page->mapping |
1064 page_ref_count(page) |
1065#ifdef CONFIG_MEMCG
1066 (unsigned long)page->mem_cgroup |
1067#endif
1068 (page->flags & check_flags)))
1069 return false;
1070
1071 return true;
1072}
1073
58b7f119 1074static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1075{
82a3241a 1076 const char *bad_reason = NULL;
f0b791a3 1077
53f9263b 1078 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1079 bad_reason = "nonzero mapcount";
1080 if (unlikely(page->mapping != NULL))
1081 bad_reason = "non-NULL mapping";
fe896d18 1082 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1083 bad_reason = "nonzero _refcount";
58b7f119
WY
1084 if (unlikely(page->flags & flags)) {
1085 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1086 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1087 else
1088 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1089 }
9edad6ea
JW
1090#ifdef CONFIG_MEMCG
1091 if (unlikely(page->mem_cgroup))
1092 bad_reason = "page still charged to cgroup";
1093#endif
58b7f119
WY
1094 return bad_reason;
1095}
1096
1097static void check_free_page_bad(struct page *page)
1098{
1099 bad_page(page,
1100 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1101}
1102
534fe5e3 1103static inline int check_free_page(struct page *page)
bb552ac6 1104{
da838d4f 1105 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1106 return 0;
bb552ac6
MG
1107
1108 /* Something has gone sideways, find it */
0d0c48a2 1109 check_free_page_bad(page);
7bfec6f4 1110 return 1;
1da177e4
LT
1111}
1112
4db7548c
MG
1113static int free_tail_pages_check(struct page *head_page, struct page *page)
1114{
1115 int ret = 1;
1116
1117 /*
1118 * We rely page->lru.next never has bit 0 set, unless the page
1119 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1120 */
1121 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1122
1123 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1124 ret = 0;
1125 goto out;
1126 }
1127 switch (page - head_page) {
1128 case 1:
4da1984e 1129 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1130 if (unlikely(compound_mapcount(page))) {
82a3241a 1131 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1132 goto out;
1133 }
1134 break;
1135 case 2:
1136 /*
1137 * the second tail page: ->mapping is
fa3015b7 1138 * deferred_list.next -- ignore value.
4db7548c
MG
1139 */
1140 break;
1141 default:
1142 if (page->mapping != TAIL_MAPPING) {
82a3241a 1143 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1144 goto out;
1145 }
1146 break;
1147 }
1148 if (unlikely(!PageTail(page))) {
82a3241a 1149 bad_page(page, "PageTail not set");
4db7548c
MG
1150 goto out;
1151 }
1152 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1153 bad_page(page, "compound_head not consistent");
4db7548c
MG
1154 goto out;
1155 }
1156 ret = 0;
1157out:
1158 page->mapping = NULL;
1159 clear_compound_head(page);
1160 return ret;
1161}
1162
6471384a
AP
1163static void kernel_init_free_pages(struct page *page, int numpages)
1164{
1165 int i;
1166
1167 for (i = 0; i < numpages; i++)
1168 clear_highpage(page + i);
1169}
1170
e2769dbd
MG
1171static __always_inline bool free_pages_prepare(struct page *page,
1172 unsigned int order, bool check_free)
4db7548c 1173{
e2769dbd 1174 int bad = 0;
4db7548c 1175
4db7548c
MG
1176 VM_BUG_ON_PAGE(PageTail(page), page);
1177
e2769dbd 1178 trace_mm_page_free(page, order);
e2769dbd
MG
1179
1180 /*
1181 * Check tail pages before head page information is cleared to
1182 * avoid checking PageCompound for order-0 pages.
1183 */
1184 if (unlikely(order)) {
1185 bool compound = PageCompound(page);
1186 int i;
1187
1188 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1189
9a73f61b
KS
1190 if (compound)
1191 ClearPageDoubleMap(page);
e2769dbd
MG
1192 for (i = 1; i < (1 << order); i++) {
1193 if (compound)
1194 bad += free_tail_pages_check(page, page + i);
534fe5e3 1195 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1196 bad++;
1197 continue;
1198 }
1199 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1200 }
1201 }
bda807d4 1202 if (PageMappingFlags(page))
4db7548c 1203 page->mapping = NULL;
c4159a75 1204 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1205 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1206 if (check_free)
534fe5e3 1207 bad += check_free_page(page);
e2769dbd
MG
1208 if (bad)
1209 return false;
4db7548c 1210
e2769dbd
MG
1211 page_cpupid_reset_last(page);
1212 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1213 reset_page_owner(page, order);
4db7548c
MG
1214
1215 if (!PageHighMem(page)) {
1216 debug_check_no_locks_freed(page_address(page),
e2769dbd 1217 PAGE_SIZE << order);
4db7548c 1218 debug_check_no_obj_freed(page_address(page),
e2769dbd 1219 PAGE_SIZE << order);
4db7548c 1220 }
6471384a
AP
1221 if (want_init_on_free())
1222 kernel_init_free_pages(page, 1 << order);
1223
e2769dbd 1224 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1225 /*
1226 * arch_free_page() can make the page's contents inaccessible. s390
1227 * does this. So nothing which can access the page's contents should
1228 * happen after this.
1229 */
1230 arch_free_page(page, order);
1231
8e57f8ac 1232 if (debug_pagealloc_enabled_static())
d6332692
RE
1233 kernel_map_pages(page, 1 << order, 0);
1234
3c0c12cc 1235 kasan_free_nondeferred_pages(page, order);
4db7548c 1236
4db7548c
MG
1237 return true;
1238}
1239
e2769dbd 1240#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1241/*
1242 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1243 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1244 * moved from pcp lists to free lists.
1245 */
1246static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1247{
1248 return free_pages_prepare(page, 0, true);
1249}
1250
4462b32c 1251static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1252{
8e57f8ac 1253 if (debug_pagealloc_enabled_static())
534fe5e3 1254 return check_free_page(page);
4462b32c
VB
1255 else
1256 return false;
e2769dbd
MG
1257}
1258#else
4462b32c
VB
1259/*
1260 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1261 * moving from pcp lists to free list in order to reduce overhead. With
1262 * debug_pagealloc enabled, they are checked also immediately when being freed
1263 * to the pcp lists.
1264 */
e2769dbd
MG
1265static bool free_pcp_prepare(struct page *page)
1266{
8e57f8ac 1267 if (debug_pagealloc_enabled_static())
4462b32c
VB
1268 return free_pages_prepare(page, 0, true);
1269 else
1270 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1271}
1272
4db7548c
MG
1273static bool bulkfree_pcp_prepare(struct page *page)
1274{
534fe5e3 1275 return check_free_page(page);
4db7548c
MG
1276}
1277#endif /* CONFIG_DEBUG_VM */
1278
97334162
AL
1279static inline void prefetch_buddy(struct page *page)
1280{
1281 unsigned long pfn = page_to_pfn(page);
1282 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1283 struct page *buddy = page + (buddy_pfn - pfn);
1284
1285 prefetch(buddy);
1286}
1287
1da177e4 1288/*
5f8dcc21 1289 * Frees a number of pages from the PCP lists
1da177e4 1290 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1291 * count is the number of pages to free.
1da177e4
LT
1292 *
1293 * If the zone was previously in an "all pages pinned" state then look to
1294 * see if this freeing clears that state.
1295 *
1296 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1297 * pinned" detection logic.
1298 */
5f8dcc21
MG
1299static void free_pcppages_bulk(struct zone *zone, int count,
1300 struct per_cpu_pages *pcp)
1da177e4 1301{
5f8dcc21 1302 int migratetype = 0;
a6f9edd6 1303 int batch_free = 0;
97334162 1304 int prefetch_nr = 0;
3777999d 1305 bool isolated_pageblocks;
0a5f4e5b
AL
1306 struct page *page, *tmp;
1307 LIST_HEAD(head);
f2260e6b 1308
e5b31ac2 1309 while (count) {
5f8dcc21
MG
1310 struct list_head *list;
1311
1312 /*
a6f9edd6
MG
1313 * Remove pages from lists in a round-robin fashion. A
1314 * batch_free count is maintained that is incremented when an
1315 * empty list is encountered. This is so more pages are freed
1316 * off fuller lists instead of spinning excessively around empty
1317 * lists
5f8dcc21
MG
1318 */
1319 do {
a6f9edd6 1320 batch_free++;
5f8dcc21
MG
1321 if (++migratetype == MIGRATE_PCPTYPES)
1322 migratetype = 0;
1323 list = &pcp->lists[migratetype];
1324 } while (list_empty(list));
48db57f8 1325
1d16871d
NK
1326 /* This is the only non-empty list. Free them all. */
1327 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1328 batch_free = count;
1d16871d 1329
a6f9edd6 1330 do {
a16601c5 1331 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1332 /* must delete to avoid corrupting pcp list */
a6f9edd6 1333 list_del(&page->lru);
77ba9062 1334 pcp->count--;
aa016d14 1335
4db7548c
MG
1336 if (bulkfree_pcp_prepare(page))
1337 continue;
1338
0a5f4e5b 1339 list_add_tail(&page->lru, &head);
97334162
AL
1340
1341 /*
1342 * We are going to put the page back to the global
1343 * pool, prefetch its buddy to speed up later access
1344 * under zone->lock. It is believed the overhead of
1345 * an additional test and calculating buddy_pfn here
1346 * can be offset by reduced memory latency later. To
1347 * avoid excessive prefetching due to large count, only
1348 * prefetch buddy for the first pcp->batch nr of pages.
1349 */
1350 if (prefetch_nr++ < pcp->batch)
1351 prefetch_buddy(page);
e5b31ac2 1352 } while (--count && --batch_free && !list_empty(list));
1da177e4 1353 }
0a5f4e5b
AL
1354
1355 spin_lock(&zone->lock);
1356 isolated_pageblocks = has_isolate_pageblock(zone);
1357
1358 /*
1359 * Use safe version since after __free_one_page(),
1360 * page->lru.next will not point to original list.
1361 */
1362 list_for_each_entry_safe(page, tmp, &head, lru) {
1363 int mt = get_pcppage_migratetype(page);
1364 /* MIGRATE_ISOLATE page should not go to pcplists */
1365 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1366 /* Pageblock could have been isolated meanwhile */
1367 if (unlikely(isolated_pageblocks))
1368 mt = get_pageblock_migratetype(page);
1369
36e66c55 1370 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
0a5f4e5b
AL
1371 trace_mm_page_pcpu_drain(page, 0, mt);
1372 }
d34b0733 1373 spin_unlock(&zone->lock);
1da177e4
LT
1374}
1375
dc4b0caf
MG
1376static void free_one_page(struct zone *zone,
1377 struct page *page, unsigned long pfn,
7aeb09f9 1378 unsigned int order,
ed0ae21d 1379 int migratetype)
1da177e4 1380{
d34b0733 1381 spin_lock(&zone->lock);
ad53f92e
JK
1382 if (unlikely(has_isolate_pageblock(zone) ||
1383 is_migrate_isolate(migratetype))) {
1384 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1385 }
36e66c55 1386 __free_one_page(page, pfn, zone, order, migratetype, true);
d34b0733 1387 spin_unlock(&zone->lock);
48db57f8
NP
1388}
1389
1e8ce83c 1390static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1391 unsigned long zone, int nid)
1e8ce83c 1392{
d0dc12e8 1393 mm_zero_struct_page(page);
1e8ce83c 1394 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1395 init_page_count(page);
1396 page_mapcount_reset(page);
1397 page_cpupid_reset_last(page);
2813b9c0 1398 page_kasan_tag_reset(page);
1e8ce83c 1399
1e8ce83c
RH
1400 INIT_LIST_HEAD(&page->lru);
1401#ifdef WANT_PAGE_VIRTUAL
1402 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1403 if (!is_highmem_idx(zone))
1404 set_page_address(page, __va(pfn << PAGE_SHIFT));
1405#endif
1406}
1407
7e18adb4 1408#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1409static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1410{
1411 pg_data_t *pgdat;
1412 int nid, zid;
1413
1414 if (!early_page_uninitialised(pfn))
1415 return;
1416
1417 nid = early_pfn_to_nid(pfn);
1418 pgdat = NODE_DATA(nid);
1419
1420 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1421 struct zone *zone = &pgdat->node_zones[zid];
1422
1423 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1424 break;
1425 }
d0dc12e8 1426 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1427}
1428#else
1429static inline void init_reserved_page(unsigned long pfn)
1430{
1431}
1432#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1433
92923ca3
NZ
1434/*
1435 * Initialised pages do not have PageReserved set. This function is
1436 * called for each range allocated by the bootmem allocator and
1437 * marks the pages PageReserved. The remaining valid pages are later
1438 * sent to the buddy page allocator.
1439 */
4b50bcc7 1440void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1441{
1442 unsigned long start_pfn = PFN_DOWN(start);
1443 unsigned long end_pfn = PFN_UP(end);
1444
7e18adb4
MG
1445 for (; start_pfn < end_pfn; start_pfn++) {
1446 if (pfn_valid(start_pfn)) {
1447 struct page *page = pfn_to_page(start_pfn);
1448
1449 init_reserved_page(start_pfn);
1d798ca3
KS
1450
1451 /* Avoid false-positive PageTail() */
1452 INIT_LIST_HEAD(&page->lru);
1453
d483da5b
AD
1454 /*
1455 * no need for atomic set_bit because the struct
1456 * page is not visible yet so nobody should
1457 * access it yet.
1458 */
1459 __SetPageReserved(page);
7e18adb4
MG
1460 }
1461 }
92923ca3
NZ
1462}
1463
ec95f53a
KM
1464static void __free_pages_ok(struct page *page, unsigned int order)
1465{
d34b0733 1466 unsigned long flags;
95e34412 1467 int migratetype;
dc4b0caf 1468 unsigned long pfn = page_to_pfn(page);
ec95f53a 1469
e2769dbd 1470 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1471 return;
1472
cfc47a28 1473 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1474 local_irq_save(flags);
1475 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1476 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1477 local_irq_restore(flags);
1da177e4
LT
1478}
1479
a9cd410a 1480void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1481{
c3993076 1482 unsigned int nr_pages = 1 << order;
e2d0bd2b 1483 struct page *p = page;
c3993076 1484 unsigned int loop;
a226f6c8 1485
e2d0bd2b
YL
1486 prefetchw(p);
1487 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1488 prefetchw(p + 1);
c3993076
JW
1489 __ClearPageReserved(p);
1490 set_page_count(p, 0);
a226f6c8 1491 }
e2d0bd2b
YL
1492 __ClearPageReserved(p);
1493 set_page_count(p, 0);
c3993076 1494
9705bea5 1495 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1496 set_page_refcounted(page);
1497 __free_pages(page, order);
a226f6c8
DH
1498}
1499
3f08a302 1500#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1501
75a592a4
MG
1502static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1503
6f24fbd3
MR
1504#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1505
1506/*
1507 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1508 */
1509int __meminit __early_pfn_to_nid(unsigned long pfn,
1510 struct mminit_pfnnid_cache *state)
1511{
1512 unsigned long start_pfn, end_pfn;
1513 int nid;
1514
1515 if (state->last_start <= pfn && pfn < state->last_end)
1516 return state->last_nid;
1517
1518 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1519 if (nid != NUMA_NO_NODE) {
1520 state->last_start = start_pfn;
1521 state->last_end = end_pfn;
1522 state->last_nid = nid;
1523 }
1524
1525 return nid;
1526}
1527#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1528
75a592a4
MG
1529int __meminit early_pfn_to_nid(unsigned long pfn)
1530{
7ace9917 1531 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1532 int nid;
1533
7ace9917 1534 spin_lock(&early_pfn_lock);
75a592a4 1535 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1536 if (nid < 0)
e4568d38 1537 nid = first_online_node;
7ace9917
MG
1538 spin_unlock(&early_pfn_lock);
1539
1540 return nid;
75a592a4 1541}
3f08a302 1542#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1543
7c2ee349 1544void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1545 unsigned int order)
1546{
1547 if (early_page_uninitialised(pfn))
1548 return;
a9cd410a 1549 __free_pages_core(page, order);
3a80a7fa
MG
1550}
1551
7cf91a98
JK
1552/*
1553 * Check that the whole (or subset of) a pageblock given by the interval of
1554 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1555 * with the migration of free compaction scanner. The scanners then need to
1556 * use only pfn_valid_within() check for arches that allow holes within
1557 * pageblocks.
1558 *
1559 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1560 *
1561 * It's possible on some configurations to have a setup like node0 node1 node0
1562 * i.e. it's possible that all pages within a zones range of pages do not
1563 * belong to a single zone. We assume that a border between node0 and node1
1564 * can occur within a single pageblock, but not a node0 node1 node0
1565 * interleaving within a single pageblock. It is therefore sufficient to check
1566 * the first and last page of a pageblock and avoid checking each individual
1567 * page in a pageblock.
1568 */
1569struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1570 unsigned long end_pfn, struct zone *zone)
1571{
1572 struct page *start_page;
1573 struct page *end_page;
1574
1575 /* end_pfn is one past the range we are checking */
1576 end_pfn--;
1577
1578 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1579 return NULL;
1580
2d070eab
MH
1581 start_page = pfn_to_online_page(start_pfn);
1582 if (!start_page)
1583 return NULL;
7cf91a98
JK
1584
1585 if (page_zone(start_page) != zone)
1586 return NULL;
1587
1588 end_page = pfn_to_page(end_pfn);
1589
1590 /* This gives a shorter code than deriving page_zone(end_page) */
1591 if (page_zone_id(start_page) != page_zone_id(end_page))
1592 return NULL;
1593
1594 return start_page;
1595}
1596
1597void set_zone_contiguous(struct zone *zone)
1598{
1599 unsigned long block_start_pfn = zone->zone_start_pfn;
1600 unsigned long block_end_pfn;
1601
1602 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1603 for (; block_start_pfn < zone_end_pfn(zone);
1604 block_start_pfn = block_end_pfn,
1605 block_end_pfn += pageblock_nr_pages) {
1606
1607 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1608
1609 if (!__pageblock_pfn_to_page(block_start_pfn,
1610 block_end_pfn, zone))
1611 return;
e84fe99b 1612 cond_resched();
7cf91a98
JK
1613 }
1614
1615 /* We confirm that there is no hole */
1616 zone->contiguous = true;
1617}
1618
1619void clear_zone_contiguous(struct zone *zone)
1620{
1621 zone->contiguous = false;
1622}
1623
7e18adb4 1624#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1625static void __init deferred_free_range(unsigned long pfn,
1626 unsigned long nr_pages)
a4de83dd 1627{
2f47a91f
PT
1628 struct page *page;
1629 unsigned long i;
a4de83dd 1630
2f47a91f 1631 if (!nr_pages)
a4de83dd
MG
1632 return;
1633
2f47a91f
PT
1634 page = pfn_to_page(pfn);
1635
a4de83dd 1636 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1637 if (nr_pages == pageblock_nr_pages &&
1638 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1639 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1640 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1641 return;
1642 }
1643
e780149b
XQ
1644 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1645 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1646 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1647 __free_pages_core(page, 0);
e780149b 1648 }
a4de83dd
MG
1649}
1650
d3cd131d
NS
1651/* Completion tracking for deferred_init_memmap() threads */
1652static atomic_t pgdat_init_n_undone __initdata;
1653static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1654
1655static inline void __init pgdat_init_report_one_done(void)
1656{
1657 if (atomic_dec_and_test(&pgdat_init_n_undone))
1658 complete(&pgdat_init_all_done_comp);
1659}
0e1cc95b 1660
2f47a91f 1661/*
80b1f41c
PT
1662 * Returns true if page needs to be initialized or freed to buddy allocator.
1663 *
1664 * First we check if pfn is valid on architectures where it is possible to have
1665 * holes within pageblock_nr_pages. On systems where it is not possible, this
1666 * function is optimized out.
1667 *
1668 * Then, we check if a current large page is valid by only checking the validity
1669 * of the head pfn.
2f47a91f 1670 */
56ec43d8 1671static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1672{
80b1f41c
PT
1673 if (!pfn_valid_within(pfn))
1674 return false;
1675 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1676 return false;
80b1f41c
PT
1677 return true;
1678}
2f47a91f 1679
80b1f41c
PT
1680/*
1681 * Free pages to buddy allocator. Try to free aligned pages in
1682 * pageblock_nr_pages sizes.
1683 */
56ec43d8 1684static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1685 unsigned long end_pfn)
1686{
80b1f41c
PT
1687 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1688 unsigned long nr_free = 0;
2f47a91f 1689
80b1f41c 1690 for (; pfn < end_pfn; pfn++) {
56ec43d8 1691 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1692 deferred_free_range(pfn - nr_free, nr_free);
1693 nr_free = 0;
1694 } else if (!(pfn & nr_pgmask)) {
1695 deferred_free_range(pfn - nr_free, nr_free);
1696 nr_free = 1;
80b1f41c
PT
1697 } else {
1698 nr_free++;
1699 }
1700 }
1701 /* Free the last block of pages to allocator */
1702 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1703}
1704
80b1f41c
PT
1705/*
1706 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1707 * by performing it only once every pageblock_nr_pages.
1708 * Return number of pages initialized.
1709 */
56ec43d8 1710static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1711 unsigned long pfn,
1712 unsigned long end_pfn)
2f47a91f 1713{
2f47a91f 1714 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1715 int nid = zone_to_nid(zone);
2f47a91f 1716 unsigned long nr_pages = 0;
56ec43d8 1717 int zid = zone_idx(zone);
2f47a91f 1718 struct page *page = NULL;
2f47a91f 1719
80b1f41c 1720 for (; pfn < end_pfn; pfn++) {
56ec43d8 1721 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1722 page = NULL;
2f47a91f 1723 continue;
80b1f41c 1724 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1725 page = pfn_to_page(pfn);
80b1f41c
PT
1726 } else {
1727 page++;
2f47a91f 1728 }
d0dc12e8 1729 __init_single_page(page, pfn, zid, nid);
80b1f41c 1730 nr_pages++;
2f47a91f 1731 }
80b1f41c 1732 return (nr_pages);
2f47a91f
PT
1733}
1734
0e56acae
AD
1735/*
1736 * This function is meant to pre-load the iterator for the zone init.
1737 * Specifically it walks through the ranges until we are caught up to the
1738 * first_init_pfn value and exits there. If we never encounter the value we
1739 * return false indicating there are no valid ranges left.
1740 */
1741static bool __init
1742deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1743 unsigned long *spfn, unsigned long *epfn,
1744 unsigned long first_init_pfn)
1745{
1746 u64 j;
1747
1748 /*
1749 * Start out by walking through the ranges in this zone that have
1750 * already been initialized. We don't need to do anything with them
1751 * so we just need to flush them out of the system.
1752 */
1753 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1754 if (*epfn <= first_init_pfn)
1755 continue;
1756 if (*spfn < first_init_pfn)
1757 *spfn = first_init_pfn;
1758 *i = j;
1759 return true;
1760 }
1761
1762 return false;
1763}
1764
1765/*
1766 * Initialize and free pages. We do it in two loops: first we initialize
1767 * struct page, then free to buddy allocator, because while we are
1768 * freeing pages we can access pages that are ahead (computing buddy
1769 * page in __free_one_page()).
1770 *
1771 * In order to try and keep some memory in the cache we have the loop
1772 * broken along max page order boundaries. This way we will not cause
1773 * any issues with the buddy page computation.
1774 */
1775static unsigned long __init
1776deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1777 unsigned long *end_pfn)
1778{
1779 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1780 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1781 unsigned long nr_pages = 0;
1782 u64 j = *i;
1783
1784 /* First we loop through and initialize the page values */
1785 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1786 unsigned long t;
1787
1788 if (mo_pfn <= *start_pfn)
1789 break;
1790
1791 t = min(mo_pfn, *end_pfn);
1792 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1793
1794 if (mo_pfn < *end_pfn) {
1795 *start_pfn = mo_pfn;
1796 break;
1797 }
1798 }
1799
1800 /* Reset values and now loop through freeing pages as needed */
1801 swap(j, *i);
1802
1803 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1804 unsigned long t;
1805
1806 if (mo_pfn <= spfn)
1807 break;
1808
1809 t = min(mo_pfn, epfn);
1810 deferred_free_pages(spfn, t);
1811
1812 if (mo_pfn <= epfn)
1813 break;
1814 }
1815
1816 return nr_pages;
1817}
1818
e4443149
DJ
1819static void __init
1820deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1821 void *arg)
1822{
1823 unsigned long spfn, epfn;
1824 struct zone *zone = arg;
1825 u64 i;
1826
1827 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1828
1829 /*
1830 * Initialize and free pages in MAX_ORDER sized increments so that we
1831 * can avoid introducing any issues with the buddy allocator.
1832 */
1833 while (spfn < end_pfn) {
1834 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1835 cond_resched();
1836 }
1837}
1838
7e18adb4 1839/* Initialise remaining memory on a node */
0e1cc95b 1840static int __init deferred_init_memmap(void *data)
7e18adb4 1841{
0e1cc95b 1842 pg_data_t *pgdat = data;
0e56acae 1843 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1844 unsigned long spfn = 0, epfn = 0;
0e56acae 1845 unsigned long first_init_pfn, flags;
7e18adb4 1846 unsigned long start = jiffies;
7e18adb4 1847 struct zone *zone;
e4443149 1848 int zid, max_threads;
2f47a91f 1849 u64 i;
7e18adb4 1850
3a2d7fa8
PT
1851 /* Bind memory initialisation thread to a local node if possible */
1852 if (!cpumask_empty(cpumask))
1853 set_cpus_allowed_ptr(current, cpumask);
1854
1855 pgdat_resize_lock(pgdat, &flags);
1856 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1857 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1858 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1859 pgdat_init_report_one_done();
0e1cc95b
MG
1860 return 0;
1861 }
1862
7e18adb4
MG
1863 /* Sanity check boundaries */
1864 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1865 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1866 pgdat->first_deferred_pfn = ULONG_MAX;
1867
3d060856
PT
1868 /*
1869 * Once we unlock here, the zone cannot be grown anymore, thus if an
1870 * interrupt thread must allocate this early in boot, zone must be
1871 * pre-grown prior to start of deferred page initialization.
1872 */
1873 pgdat_resize_unlock(pgdat, &flags);
1874
7e18adb4
MG
1875 /* Only the highest zone is deferred so find it */
1876 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1877 zone = pgdat->node_zones + zid;
1878 if (first_init_pfn < zone_end_pfn(zone))
1879 break;
1880 }
0e56acae
AD
1881
1882 /* If the zone is empty somebody else may have cleared out the zone */
1883 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1884 first_init_pfn))
1885 goto zone_empty;
7e18adb4 1886
80b1f41c 1887 /*
e4443149
DJ
1888 * More CPUs always led to greater speedups on tested systems, up to
1889 * all the nodes' CPUs. Use all since the system is otherwise idle now.
80b1f41c 1890 */
e4443149
DJ
1891 max_threads = max(cpumask_weight(cpumask), 1u);
1892
117003c3 1893 while (spfn < epfn) {
e4443149
DJ
1894 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1895 struct padata_mt_job job = {
1896 .thread_fn = deferred_init_memmap_chunk,
1897 .fn_arg = zone,
1898 .start = spfn,
1899 .size = epfn_align - spfn,
1900 .align = PAGES_PER_SECTION,
1901 .min_chunk = PAGES_PER_SECTION,
1902 .max_threads = max_threads,
1903 };
1904
1905 padata_do_multithreaded(&job);
1906 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1907 epfn_align);
117003c3 1908 }
0e56acae 1909zone_empty:
7e18adb4
MG
1910 /* Sanity check that the next zone really is unpopulated */
1911 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1912
89c7c402
DJ
1913 pr_info("node %d deferred pages initialised in %ums\n",
1914 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1915
1916 pgdat_init_report_one_done();
0e1cc95b
MG
1917 return 0;
1918}
c9e97a19 1919
c9e97a19
PT
1920/*
1921 * If this zone has deferred pages, try to grow it by initializing enough
1922 * deferred pages to satisfy the allocation specified by order, rounded up to
1923 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1924 * of SECTION_SIZE bytes by initializing struct pages in increments of
1925 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1926 *
1927 * Return true when zone was grown, otherwise return false. We return true even
1928 * when we grow less than requested, to let the caller decide if there are
1929 * enough pages to satisfy the allocation.
1930 *
1931 * Note: We use noinline because this function is needed only during boot, and
1932 * it is called from a __ref function _deferred_grow_zone. This way we are
1933 * making sure that it is not inlined into permanent text section.
1934 */
1935static noinline bool __init
1936deferred_grow_zone(struct zone *zone, unsigned int order)
1937{
c9e97a19 1938 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1939 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1940 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1941 unsigned long spfn, epfn, flags;
1942 unsigned long nr_pages = 0;
c9e97a19
PT
1943 u64 i;
1944
1945 /* Only the last zone may have deferred pages */
1946 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1947 return false;
1948
1949 pgdat_resize_lock(pgdat, &flags);
1950
c9e97a19
PT
1951 /*
1952 * If someone grew this zone while we were waiting for spinlock, return
1953 * true, as there might be enough pages already.
1954 */
1955 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1956 pgdat_resize_unlock(pgdat, &flags);
1957 return true;
1958 }
1959
0e56acae
AD
1960 /* If the zone is empty somebody else may have cleared out the zone */
1961 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1962 first_deferred_pfn)) {
1963 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1964 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1965 /* Retry only once. */
1966 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1967 }
1968
0e56acae
AD
1969 /*
1970 * Initialize and free pages in MAX_ORDER sized increments so
1971 * that we can avoid introducing any issues with the buddy
1972 * allocator.
1973 */
1974 while (spfn < epfn) {
1975 /* update our first deferred PFN for this section */
1976 first_deferred_pfn = spfn;
1977
1978 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 1979 touch_nmi_watchdog();
c9e97a19 1980
0e56acae
AD
1981 /* We should only stop along section boundaries */
1982 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1983 continue;
c9e97a19 1984
0e56acae 1985 /* If our quota has been met we can stop here */
c9e97a19
PT
1986 if (nr_pages >= nr_pages_needed)
1987 break;
1988 }
1989
0e56acae 1990 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1991 pgdat_resize_unlock(pgdat, &flags);
1992
1993 return nr_pages > 0;
1994}
1995
1996/*
1997 * deferred_grow_zone() is __init, but it is called from
1998 * get_page_from_freelist() during early boot until deferred_pages permanently
1999 * disables this call. This is why we have refdata wrapper to avoid warning,
2000 * and to ensure that the function body gets unloaded.
2001 */
2002static bool __ref
2003_deferred_grow_zone(struct zone *zone, unsigned int order)
2004{
2005 return deferred_grow_zone(zone, order);
2006}
2007
7cf91a98 2008#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2009
2010void __init page_alloc_init_late(void)
2011{
7cf91a98 2012 struct zone *zone;
e900a918 2013 int nid;
7cf91a98
JK
2014
2015#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2016
d3cd131d
NS
2017 /* There will be num_node_state(N_MEMORY) threads */
2018 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2019 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2020 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2021 }
2022
2023 /* Block until all are initialised */
d3cd131d 2024 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2025
3e8fc007
MG
2026 /*
2027 * The number of managed pages has changed due to the initialisation
2028 * so the pcpu batch and high limits needs to be updated or the limits
2029 * will be artificially small.
2030 */
2031 for_each_populated_zone(zone)
2032 zone_pcp_update(zone);
2033
c9e97a19
PT
2034 /*
2035 * We initialized the rest of the deferred pages. Permanently disable
2036 * on-demand struct page initialization.
2037 */
2038 static_branch_disable(&deferred_pages);
2039
4248b0da
MG
2040 /* Reinit limits that are based on free pages after the kernel is up */
2041 files_maxfiles_init();
7cf91a98 2042#endif
350e88ba 2043
3010f876
PT
2044 /* Discard memblock private memory */
2045 memblock_discard();
7cf91a98 2046
e900a918
DW
2047 for_each_node_state(nid, N_MEMORY)
2048 shuffle_free_memory(NODE_DATA(nid));
2049
7cf91a98
JK
2050 for_each_populated_zone(zone)
2051 set_zone_contiguous(zone);
7e18adb4 2052}
7e18adb4 2053
47118af0 2054#ifdef CONFIG_CMA
9cf510a5 2055/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2056void __init init_cma_reserved_pageblock(struct page *page)
2057{
2058 unsigned i = pageblock_nr_pages;
2059 struct page *p = page;
2060
2061 do {
2062 __ClearPageReserved(p);
2063 set_page_count(p, 0);
d883c6cf 2064 } while (++p, --i);
47118af0 2065
47118af0 2066 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2067
2068 if (pageblock_order >= MAX_ORDER) {
2069 i = pageblock_nr_pages;
2070 p = page;
2071 do {
2072 set_page_refcounted(p);
2073 __free_pages(p, MAX_ORDER - 1);
2074 p += MAX_ORDER_NR_PAGES;
2075 } while (i -= MAX_ORDER_NR_PAGES);
2076 } else {
2077 set_page_refcounted(page);
2078 __free_pages(page, pageblock_order);
2079 }
2080
3dcc0571 2081 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2082}
2083#endif
1da177e4
LT
2084
2085/*
2086 * The order of subdivision here is critical for the IO subsystem.
2087 * Please do not alter this order without good reasons and regression
2088 * testing. Specifically, as large blocks of memory are subdivided,
2089 * the order in which smaller blocks are delivered depends on the order
2090 * they're subdivided in this function. This is the primary factor
2091 * influencing the order in which pages are delivered to the IO
2092 * subsystem according to empirical testing, and this is also justified
2093 * by considering the behavior of a buddy system containing a single
2094 * large block of memory acted on by a series of small allocations.
2095 * This behavior is a critical factor in sglist merging's success.
2096 *
6d49e352 2097 * -- nyc
1da177e4 2098 */
085cc7d5 2099static inline void expand(struct zone *zone, struct page *page,
6ab01363 2100 int low, int high, int migratetype)
1da177e4
LT
2101{
2102 unsigned long size = 1 << high;
2103
2104 while (high > low) {
1da177e4
LT
2105 high--;
2106 size >>= 1;
309381fe 2107 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2108
acbc15a4
JK
2109 /*
2110 * Mark as guard pages (or page), that will allow to
2111 * merge back to allocator when buddy will be freed.
2112 * Corresponding page table entries will not be touched,
2113 * pages will stay not present in virtual address space
2114 */
2115 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2116 continue;
acbc15a4 2117
6ab01363 2118 add_to_free_list(&page[size], zone, high, migratetype);
1da177e4
LT
2119 set_page_order(&page[size], high);
2120 }
1da177e4
LT
2121}
2122
4e611801 2123static void check_new_page_bad(struct page *page)
1da177e4 2124{
833d8a42
WY
2125 if (unlikely(page->flags & __PG_HWPOISON)) {
2126 /* Don't complain about hwpoisoned pages */
2127 page_mapcount_reset(page); /* remove PageBuddy */
2128 return;
2129 }
58b7f119
WY
2130
2131 bad_page(page,
2132 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2133}
2134
2135/*
2136 * This page is about to be returned from the page allocator
2137 */
2138static inline int check_new_page(struct page *page)
2139{
2140 if (likely(page_expected_state(page,
2141 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2142 return 0;
2143
2144 check_new_page_bad(page);
2145 return 1;
2a7684a2
WF
2146}
2147
bd33ef36 2148static inline bool free_pages_prezeroed(void)
1414c7f4 2149{
6471384a
AP
2150 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2151 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2152}
2153
479f854a 2154#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2155/*
2156 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2157 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2158 * also checked when pcp lists are refilled from the free lists.
2159 */
2160static inline bool check_pcp_refill(struct page *page)
479f854a 2161{
8e57f8ac 2162 if (debug_pagealloc_enabled_static())
4462b32c
VB
2163 return check_new_page(page);
2164 else
2165 return false;
479f854a
MG
2166}
2167
4462b32c 2168static inline bool check_new_pcp(struct page *page)
479f854a
MG
2169{
2170 return check_new_page(page);
2171}
2172#else
4462b32c
VB
2173/*
2174 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2175 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2176 * enabled, they are also checked when being allocated from the pcp lists.
2177 */
2178static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2179{
2180 return check_new_page(page);
2181}
4462b32c 2182static inline bool check_new_pcp(struct page *page)
479f854a 2183{
8e57f8ac 2184 if (debug_pagealloc_enabled_static())
4462b32c
VB
2185 return check_new_page(page);
2186 else
2187 return false;
479f854a
MG
2188}
2189#endif /* CONFIG_DEBUG_VM */
2190
2191static bool check_new_pages(struct page *page, unsigned int order)
2192{
2193 int i;
2194 for (i = 0; i < (1 << order); i++) {
2195 struct page *p = page + i;
2196
2197 if (unlikely(check_new_page(p)))
2198 return true;
2199 }
2200
2201 return false;
2202}
2203
46f24fd8
JK
2204inline void post_alloc_hook(struct page *page, unsigned int order,
2205 gfp_t gfp_flags)
2206{
2207 set_page_private(page, 0);
2208 set_page_refcounted(page);
2209
2210 arch_alloc_page(page, order);
8e57f8ac 2211 if (debug_pagealloc_enabled_static())
d6332692 2212 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2213 kasan_alloc_pages(page, order);
4117992d 2214 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2215 set_page_owner(page, order, gfp_flags);
2216}
2217
479f854a 2218static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2219 unsigned int alloc_flags)
2a7684a2 2220{
46f24fd8 2221 post_alloc_hook(page, order, gfp_flags);
17cf4406 2222
6471384a
AP
2223 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2224 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2225
2226 if (order && (gfp_flags & __GFP_COMP))
2227 prep_compound_page(page, order);
2228
75379191 2229 /*
2f064f34 2230 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2231 * allocate the page. The expectation is that the caller is taking
2232 * steps that will free more memory. The caller should avoid the page
2233 * being used for !PFMEMALLOC purposes.
2234 */
2f064f34
MH
2235 if (alloc_flags & ALLOC_NO_WATERMARKS)
2236 set_page_pfmemalloc(page);
2237 else
2238 clear_page_pfmemalloc(page);
1da177e4
LT
2239}
2240
56fd56b8
MG
2241/*
2242 * Go through the free lists for the given migratetype and remove
2243 * the smallest available page from the freelists
2244 */
85ccc8fa 2245static __always_inline
728ec980 2246struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2247 int migratetype)
2248{
2249 unsigned int current_order;
b8af2941 2250 struct free_area *area;
56fd56b8
MG
2251 struct page *page;
2252
2253 /* Find a page of the appropriate size in the preferred list */
2254 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2255 area = &(zone->free_area[current_order]);
b03641af 2256 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2257 if (!page)
2258 continue;
6ab01363
AD
2259 del_page_from_free_list(page, zone, current_order);
2260 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2261 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2262 return page;
2263 }
2264
2265 return NULL;
2266}
2267
2268
b2a0ac88
MG
2269/*
2270 * This array describes the order lists are fallen back to when
2271 * the free lists for the desirable migrate type are depleted
2272 */
47118af0 2273static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2274 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2275 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2276 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2277#ifdef CONFIG_CMA
974a786e 2278 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2279#endif
194159fb 2280#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2281 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2282#endif
b2a0ac88
MG
2283};
2284
dc67647b 2285#ifdef CONFIG_CMA
85ccc8fa 2286static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2287 unsigned int order)
2288{
2289 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2290}
2291#else
2292static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2293 unsigned int order) { return NULL; }
2294#endif
2295
c361be55
MG
2296/*
2297 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2298 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2299 * boundary. If alignment is required, use move_freepages_block()
2300 */
02aa0cdd 2301static int move_freepages(struct zone *zone,
b69a7288 2302 struct page *start_page, struct page *end_page,
02aa0cdd 2303 int migratetype, int *num_movable)
c361be55
MG
2304{
2305 struct page *page;
d00181b9 2306 unsigned int order;
d100313f 2307 int pages_moved = 0;
c361be55 2308
c361be55
MG
2309 for (page = start_page; page <= end_page;) {
2310 if (!pfn_valid_within(page_to_pfn(page))) {
2311 page++;
2312 continue;
2313 }
2314
2315 if (!PageBuddy(page)) {
02aa0cdd
VB
2316 /*
2317 * We assume that pages that could be isolated for
2318 * migration are movable. But we don't actually try
2319 * isolating, as that would be expensive.
2320 */
2321 if (num_movable &&
2322 (PageLRU(page) || __PageMovable(page)))
2323 (*num_movable)++;
2324
c361be55
MG
2325 page++;
2326 continue;
2327 }
2328
cd961038
DR
2329 /* Make sure we are not inadvertently changing nodes */
2330 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2331 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2332
c361be55 2333 order = page_order(page);
6ab01363 2334 move_to_free_list(page, zone, order, migratetype);
c361be55 2335 page += 1 << order;
d100313f 2336 pages_moved += 1 << order;
c361be55
MG
2337 }
2338
d100313f 2339 return pages_moved;
c361be55
MG
2340}
2341
ee6f509c 2342int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2343 int migratetype, int *num_movable)
c361be55
MG
2344{
2345 unsigned long start_pfn, end_pfn;
2346 struct page *start_page, *end_page;
2347
4a222127
DR
2348 if (num_movable)
2349 *num_movable = 0;
2350
c361be55 2351 start_pfn = page_to_pfn(page);
d9c23400 2352 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2353 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2354 end_page = start_page + pageblock_nr_pages - 1;
2355 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2356
2357 /* Do not cross zone boundaries */
108bcc96 2358 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2359 start_page = page;
108bcc96 2360 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2361 return 0;
2362
02aa0cdd
VB
2363 return move_freepages(zone, start_page, end_page, migratetype,
2364 num_movable);
c361be55
MG
2365}
2366
2f66a68f
MG
2367static void change_pageblock_range(struct page *pageblock_page,
2368 int start_order, int migratetype)
2369{
2370 int nr_pageblocks = 1 << (start_order - pageblock_order);
2371
2372 while (nr_pageblocks--) {
2373 set_pageblock_migratetype(pageblock_page, migratetype);
2374 pageblock_page += pageblock_nr_pages;
2375 }
2376}
2377
fef903ef 2378/*
9c0415eb
VB
2379 * When we are falling back to another migratetype during allocation, try to
2380 * steal extra free pages from the same pageblocks to satisfy further
2381 * allocations, instead of polluting multiple pageblocks.
2382 *
2383 * If we are stealing a relatively large buddy page, it is likely there will
2384 * be more free pages in the pageblock, so try to steal them all. For
2385 * reclaimable and unmovable allocations, we steal regardless of page size,
2386 * as fragmentation caused by those allocations polluting movable pageblocks
2387 * is worse than movable allocations stealing from unmovable and reclaimable
2388 * pageblocks.
fef903ef 2389 */
4eb7dce6
JK
2390static bool can_steal_fallback(unsigned int order, int start_mt)
2391{
2392 /*
2393 * Leaving this order check is intended, although there is
2394 * relaxed order check in next check. The reason is that
2395 * we can actually steal whole pageblock if this condition met,
2396 * but, below check doesn't guarantee it and that is just heuristic
2397 * so could be changed anytime.
2398 */
2399 if (order >= pageblock_order)
2400 return true;
2401
2402 if (order >= pageblock_order / 2 ||
2403 start_mt == MIGRATE_RECLAIMABLE ||
2404 start_mt == MIGRATE_UNMOVABLE ||
2405 page_group_by_mobility_disabled)
2406 return true;
2407
2408 return false;
2409}
2410
1c30844d
MG
2411static inline void boost_watermark(struct zone *zone)
2412{
2413 unsigned long max_boost;
2414
2415 if (!watermark_boost_factor)
2416 return;
14f69140
HW
2417 /*
2418 * Don't bother in zones that are unlikely to produce results.
2419 * On small machines, including kdump capture kernels running
2420 * in a small area, boosting the watermark can cause an out of
2421 * memory situation immediately.
2422 */
2423 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2424 return;
1c30844d
MG
2425
2426 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2427 watermark_boost_factor, 10000);
94b3334c
MG
2428
2429 /*
2430 * high watermark may be uninitialised if fragmentation occurs
2431 * very early in boot so do not boost. We do not fall
2432 * through and boost by pageblock_nr_pages as failing
2433 * allocations that early means that reclaim is not going
2434 * to help and it may even be impossible to reclaim the
2435 * boosted watermark resulting in a hang.
2436 */
2437 if (!max_boost)
2438 return;
2439
1c30844d
MG
2440 max_boost = max(pageblock_nr_pages, max_boost);
2441
2442 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2443 max_boost);
2444}
2445
4eb7dce6
JK
2446/*
2447 * This function implements actual steal behaviour. If order is large enough,
2448 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2449 * pageblock to our migratetype and determine how many already-allocated pages
2450 * are there in the pageblock with a compatible migratetype. If at least half
2451 * of pages are free or compatible, we can change migratetype of the pageblock
2452 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2453 */
2454static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2455 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2456{
d00181b9 2457 unsigned int current_order = page_order(page);
02aa0cdd
VB
2458 int free_pages, movable_pages, alike_pages;
2459 int old_block_type;
2460
2461 old_block_type = get_pageblock_migratetype(page);
fef903ef 2462
3bc48f96
VB
2463 /*
2464 * This can happen due to races and we want to prevent broken
2465 * highatomic accounting.
2466 */
02aa0cdd 2467 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2468 goto single_page;
2469
fef903ef
SB
2470 /* Take ownership for orders >= pageblock_order */
2471 if (current_order >= pageblock_order) {
2472 change_pageblock_range(page, current_order, start_type);
3bc48f96 2473 goto single_page;
fef903ef
SB
2474 }
2475
1c30844d
MG
2476 /*
2477 * Boost watermarks to increase reclaim pressure to reduce the
2478 * likelihood of future fallbacks. Wake kswapd now as the node
2479 * may be balanced overall and kswapd will not wake naturally.
2480 */
2481 boost_watermark(zone);
2482 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2483 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2484
3bc48f96
VB
2485 /* We are not allowed to try stealing from the whole block */
2486 if (!whole_block)
2487 goto single_page;
2488
02aa0cdd
VB
2489 free_pages = move_freepages_block(zone, page, start_type,
2490 &movable_pages);
2491 /*
2492 * Determine how many pages are compatible with our allocation.
2493 * For movable allocation, it's the number of movable pages which
2494 * we just obtained. For other types it's a bit more tricky.
2495 */
2496 if (start_type == MIGRATE_MOVABLE) {
2497 alike_pages = movable_pages;
2498 } else {
2499 /*
2500 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2501 * to MOVABLE pageblock, consider all non-movable pages as
2502 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2503 * vice versa, be conservative since we can't distinguish the
2504 * exact migratetype of non-movable pages.
2505 */
2506 if (old_block_type == MIGRATE_MOVABLE)
2507 alike_pages = pageblock_nr_pages
2508 - (free_pages + movable_pages);
2509 else
2510 alike_pages = 0;
2511 }
2512
3bc48f96 2513 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2514 if (!free_pages)
3bc48f96 2515 goto single_page;
fef903ef 2516
02aa0cdd
VB
2517 /*
2518 * If a sufficient number of pages in the block are either free or of
2519 * comparable migratability as our allocation, claim the whole block.
2520 */
2521 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2522 page_group_by_mobility_disabled)
2523 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2524
2525 return;
2526
2527single_page:
6ab01363 2528 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2529}
2530
2149cdae
JK
2531/*
2532 * Check whether there is a suitable fallback freepage with requested order.
2533 * If only_stealable is true, this function returns fallback_mt only if
2534 * we can steal other freepages all together. This would help to reduce
2535 * fragmentation due to mixed migratetype pages in one pageblock.
2536 */
2537int find_suitable_fallback(struct free_area *area, unsigned int order,
2538 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2539{
2540 int i;
2541 int fallback_mt;
2542
2543 if (area->nr_free == 0)
2544 return -1;
2545
2546 *can_steal = false;
2547 for (i = 0;; i++) {
2548 fallback_mt = fallbacks[migratetype][i];
974a786e 2549 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2550 break;
2551
b03641af 2552 if (free_area_empty(area, fallback_mt))
4eb7dce6 2553 continue;
fef903ef 2554
4eb7dce6
JK
2555 if (can_steal_fallback(order, migratetype))
2556 *can_steal = true;
2557
2149cdae
JK
2558 if (!only_stealable)
2559 return fallback_mt;
2560
2561 if (*can_steal)
2562 return fallback_mt;
fef903ef 2563 }
4eb7dce6
JK
2564
2565 return -1;
fef903ef
SB
2566}
2567
0aaa29a5
MG
2568/*
2569 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2570 * there are no empty page blocks that contain a page with a suitable order
2571 */
2572static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2573 unsigned int alloc_order)
2574{
2575 int mt;
2576 unsigned long max_managed, flags;
2577
2578 /*
2579 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2580 * Check is race-prone but harmless.
2581 */
9705bea5 2582 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2583 if (zone->nr_reserved_highatomic >= max_managed)
2584 return;
2585
2586 spin_lock_irqsave(&zone->lock, flags);
2587
2588 /* Recheck the nr_reserved_highatomic limit under the lock */
2589 if (zone->nr_reserved_highatomic >= max_managed)
2590 goto out_unlock;
2591
2592 /* Yoink! */
2593 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2594 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2595 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2596 zone->nr_reserved_highatomic += pageblock_nr_pages;
2597 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2598 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2599 }
2600
2601out_unlock:
2602 spin_unlock_irqrestore(&zone->lock, flags);
2603}
2604
2605/*
2606 * Used when an allocation is about to fail under memory pressure. This
2607 * potentially hurts the reliability of high-order allocations when under
2608 * intense memory pressure but failed atomic allocations should be easier
2609 * to recover from than an OOM.
29fac03b
MK
2610 *
2611 * If @force is true, try to unreserve a pageblock even though highatomic
2612 * pageblock is exhausted.
0aaa29a5 2613 */
29fac03b
MK
2614static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2615 bool force)
0aaa29a5
MG
2616{
2617 struct zonelist *zonelist = ac->zonelist;
2618 unsigned long flags;
2619 struct zoneref *z;
2620 struct zone *zone;
2621 struct page *page;
2622 int order;
04c8716f 2623 bool ret;
0aaa29a5 2624
97a225e6 2625 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2626 ac->nodemask) {
29fac03b
MK
2627 /*
2628 * Preserve at least one pageblock unless memory pressure
2629 * is really high.
2630 */
2631 if (!force && zone->nr_reserved_highatomic <=
2632 pageblock_nr_pages)
0aaa29a5
MG
2633 continue;
2634
2635 spin_lock_irqsave(&zone->lock, flags);
2636 for (order = 0; order < MAX_ORDER; order++) {
2637 struct free_area *area = &(zone->free_area[order]);
2638
b03641af 2639 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2640 if (!page)
0aaa29a5
MG
2641 continue;
2642
0aaa29a5 2643 /*
4855e4a7
MK
2644 * In page freeing path, migratetype change is racy so
2645 * we can counter several free pages in a pageblock
2646 * in this loop althoug we changed the pageblock type
2647 * from highatomic to ac->migratetype. So we should
2648 * adjust the count once.
0aaa29a5 2649 */
a6ffdc07 2650 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2651 /*
2652 * It should never happen but changes to
2653 * locking could inadvertently allow a per-cpu
2654 * drain to add pages to MIGRATE_HIGHATOMIC
2655 * while unreserving so be safe and watch for
2656 * underflows.
2657 */
2658 zone->nr_reserved_highatomic -= min(
2659 pageblock_nr_pages,
2660 zone->nr_reserved_highatomic);
2661 }
0aaa29a5
MG
2662
2663 /*
2664 * Convert to ac->migratetype and avoid the normal
2665 * pageblock stealing heuristics. Minimally, the caller
2666 * is doing the work and needs the pages. More
2667 * importantly, if the block was always converted to
2668 * MIGRATE_UNMOVABLE or another type then the number
2669 * of pageblocks that cannot be completely freed
2670 * may increase.
2671 */
2672 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2673 ret = move_freepages_block(zone, page, ac->migratetype,
2674 NULL);
29fac03b
MK
2675 if (ret) {
2676 spin_unlock_irqrestore(&zone->lock, flags);
2677 return ret;
2678 }
0aaa29a5
MG
2679 }
2680 spin_unlock_irqrestore(&zone->lock, flags);
2681 }
04c8716f
MK
2682
2683 return false;
0aaa29a5
MG
2684}
2685
3bc48f96
VB
2686/*
2687 * Try finding a free buddy page on the fallback list and put it on the free
2688 * list of requested migratetype, possibly along with other pages from the same
2689 * block, depending on fragmentation avoidance heuristics. Returns true if
2690 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2691 *
2692 * The use of signed ints for order and current_order is a deliberate
2693 * deviation from the rest of this file, to make the for loop
2694 * condition simpler.
3bc48f96 2695 */
85ccc8fa 2696static __always_inline bool
6bb15450
MG
2697__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2698 unsigned int alloc_flags)
b2a0ac88 2699{
b8af2941 2700 struct free_area *area;
b002529d 2701 int current_order;
6bb15450 2702 int min_order = order;
b2a0ac88 2703 struct page *page;
4eb7dce6
JK
2704 int fallback_mt;
2705 bool can_steal;
b2a0ac88 2706
6bb15450
MG
2707 /*
2708 * Do not steal pages from freelists belonging to other pageblocks
2709 * i.e. orders < pageblock_order. If there are no local zones free,
2710 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2711 */
2712 if (alloc_flags & ALLOC_NOFRAGMENT)
2713 min_order = pageblock_order;
2714
7a8f58f3
VB
2715 /*
2716 * Find the largest available free page in the other list. This roughly
2717 * approximates finding the pageblock with the most free pages, which
2718 * would be too costly to do exactly.
2719 */
6bb15450 2720 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2721 --current_order) {
4eb7dce6
JK
2722 area = &(zone->free_area[current_order]);
2723 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2724 start_migratetype, false, &can_steal);
4eb7dce6
JK
2725 if (fallback_mt == -1)
2726 continue;
b2a0ac88 2727
7a8f58f3
VB
2728 /*
2729 * We cannot steal all free pages from the pageblock and the
2730 * requested migratetype is movable. In that case it's better to
2731 * steal and split the smallest available page instead of the
2732 * largest available page, because even if the next movable
2733 * allocation falls back into a different pageblock than this
2734 * one, it won't cause permanent fragmentation.
2735 */
2736 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2737 && current_order > order)
2738 goto find_smallest;
b2a0ac88 2739
7a8f58f3
VB
2740 goto do_steal;
2741 }
e0fff1bd 2742
7a8f58f3 2743 return false;
e0fff1bd 2744
7a8f58f3
VB
2745find_smallest:
2746 for (current_order = order; current_order < MAX_ORDER;
2747 current_order++) {
2748 area = &(zone->free_area[current_order]);
2749 fallback_mt = find_suitable_fallback(area, current_order,
2750 start_migratetype, false, &can_steal);
2751 if (fallback_mt != -1)
2752 break;
b2a0ac88
MG
2753 }
2754
7a8f58f3
VB
2755 /*
2756 * This should not happen - we already found a suitable fallback
2757 * when looking for the largest page.
2758 */
2759 VM_BUG_ON(current_order == MAX_ORDER);
2760
2761do_steal:
b03641af 2762 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2763
1c30844d
MG
2764 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2765 can_steal);
7a8f58f3
VB
2766
2767 trace_mm_page_alloc_extfrag(page, order, current_order,
2768 start_migratetype, fallback_mt);
2769
2770 return true;
2771
b2a0ac88
MG
2772}
2773
56fd56b8 2774/*
1da177e4
LT
2775 * Do the hard work of removing an element from the buddy allocator.
2776 * Call me with the zone->lock already held.
2777 */
85ccc8fa 2778static __always_inline struct page *
6bb15450
MG
2779__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2780 unsigned int alloc_flags)
1da177e4 2781{
1da177e4
LT
2782 struct page *page;
2783
16867664
RG
2784#ifdef CONFIG_CMA
2785 /*
2786 * Balance movable allocations between regular and CMA areas by
2787 * allocating from CMA when over half of the zone's free memory
2788 * is in the CMA area.
2789 */
2790 if (migratetype == MIGRATE_MOVABLE &&
2791 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2792 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2793 page = __rmqueue_cma_fallback(zone, order);
2794 if (page)
2795 return page;
2796 }
2797#endif
3bc48f96 2798retry:
56fd56b8 2799 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2800 if (unlikely(!page)) {
dc67647b
JK
2801 if (migratetype == MIGRATE_MOVABLE)
2802 page = __rmqueue_cma_fallback(zone, order);
2803
6bb15450
MG
2804 if (!page && __rmqueue_fallback(zone, order, migratetype,
2805 alloc_flags))
3bc48f96 2806 goto retry;
728ec980
MG
2807 }
2808
0d3d062a 2809 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2810 return page;
1da177e4
LT
2811}
2812
5f63b720 2813/*
1da177e4
LT
2814 * Obtain a specified number of elements from the buddy allocator, all under
2815 * a single hold of the lock, for efficiency. Add them to the supplied list.
2816 * Returns the number of new pages which were placed at *list.
2817 */
5f63b720 2818static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2819 unsigned long count, struct list_head *list,
6bb15450 2820 int migratetype, unsigned int alloc_flags)
1da177e4 2821{
a6de734b 2822 int i, alloced = 0;
5f63b720 2823
d34b0733 2824 spin_lock(&zone->lock);
1da177e4 2825 for (i = 0; i < count; ++i) {
6bb15450
MG
2826 struct page *page = __rmqueue(zone, order, migratetype,
2827 alloc_flags);
085cc7d5 2828 if (unlikely(page == NULL))
1da177e4 2829 break;
81eabcbe 2830
479f854a
MG
2831 if (unlikely(check_pcp_refill(page)))
2832 continue;
2833
81eabcbe 2834 /*
0fac3ba5
VB
2835 * Split buddy pages returned by expand() are received here in
2836 * physical page order. The page is added to the tail of
2837 * caller's list. From the callers perspective, the linked list
2838 * is ordered by page number under some conditions. This is
2839 * useful for IO devices that can forward direction from the
2840 * head, thus also in the physical page order. This is useful
2841 * for IO devices that can merge IO requests if the physical
2842 * pages are ordered properly.
81eabcbe 2843 */
0fac3ba5 2844 list_add_tail(&page->lru, list);
a6de734b 2845 alloced++;
bb14c2c7 2846 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2847 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2848 -(1 << order));
1da177e4 2849 }
a6de734b
MG
2850
2851 /*
2852 * i pages were removed from the buddy list even if some leak due
2853 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2854 * on i. Do not confuse with 'alloced' which is the number of
2855 * pages added to the pcp list.
2856 */
f2260e6b 2857 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2858 spin_unlock(&zone->lock);
a6de734b 2859 return alloced;
1da177e4
LT
2860}
2861
4ae7c039 2862#ifdef CONFIG_NUMA
8fce4d8e 2863/*
4037d452
CL
2864 * Called from the vmstat counter updater to drain pagesets of this
2865 * currently executing processor on remote nodes after they have
2866 * expired.
2867 *
879336c3
CL
2868 * Note that this function must be called with the thread pinned to
2869 * a single processor.
8fce4d8e 2870 */
4037d452 2871void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2872{
4ae7c039 2873 unsigned long flags;
7be12fc9 2874 int to_drain, batch;
4ae7c039 2875
4037d452 2876 local_irq_save(flags);
4db0c3c2 2877 batch = READ_ONCE(pcp->batch);
7be12fc9 2878 to_drain = min(pcp->count, batch);
77ba9062 2879 if (to_drain > 0)
2a13515c 2880 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2881 local_irq_restore(flags);
4ae7c039
CL
2882}
2883#endif
2884
9f8f2172 2885/*
93481ff0 2886 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2887 *
2888 * The processor must either be the current processor and the
2889 * thread pinned to the current processor or a processor that
2890 * is not online.
2891 */
93481ff0 2892static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2893{
c54ad30c 2894 unsigned long flags;
93481ff0
VB
2895 struct per_cpu_pageset *pset;
2896 struct per_cpu_pages *pcp;
1da177e4 2897
93481ff0
VB
2898 local_irq_save(flags);
2899 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2900
93481ff0 2901 pcp = &pset->pcp;
77ba9062 2902 if (pcp->count)
93481ff0 2903 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2904 local_irq_restore(flags);
2905}
3dfa5721 2906
93481ff0
VB
2907/*
2908 * Drain pcplists of all zones on the indicated processor.
2909 *
2910 * The processor must either be the current processor and the
2911 * thread pinned to the current processor or a processor that
2912 * is not online.
2913 */
2914static void drain_pages(unsigned int cpu)
2915{
2916 struct zone *zone;
2917
2918 for_each_populated_zone(zone) {
2919 drain_pages_zone(cpu, zone);
1da177e4
LT
2920 }
2921}
1da177e4 2922
9f8f2172
CL
2923/*
2924 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2925 *
2926 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2927 * the single zone's pages.
9f8f2172 2928 */
93481ff0 2929void drain_local_pages(struct zone *zone)
9f8f2172 2930{
93481ff0
VB
2931 int cpu = smp_processor_id();
2932
2933 if (zone)
2934 drain_pages_zone(cpu, zone);
2935 else
2936 drain_pages(cpu);
9f8f2172
CL
2937}
2938
0ccce3b9
MG
2939static void drain_local_pages_wq(struct work_struct *work)
2940{
d9367bd0
WY
2941 struct pcpu_drain *drain;
2942
2943 drain = container_of(work, struct pcpu_drain, work);
2944
a459eeb7
MH
2945 /*
2946 * drain_all_pages doesn't use proper cpu hotplug protection so
2947 * we can race with cpu offline when the WQ can move this from
2948 * a cpu pinned worker to an unbound one. We can operate on a different
2949 * cpu which is allright but we also have to make sure to not move to
2950 * a different one.
2951 */
2952 preempt_disable();
d9367bd0 2953 drain_local_pages(drain->zone);
a459eeb7 2954 preempt_enable();
0ccce3b9
MG
2955}
2956
9f8f2172 2957/*
74046494
GBY
2958 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2959 *
93481ff0
VB
2960 * When zone parameter is non-NULL, spill just the single zone's pages.
2961 *
0ccce3b9 2962 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2963 */
93481ff0 2964void drain_all_pages(struct zone *zone)
9f8f2172 2965{
74046494 2966 int cpu;
74046494
GBY
2967
2968 /*
2969 * Allocate in the BSS so we wont require allocation in
2970 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2971 */
2972 static cpumask_t cpus_with_pcps;
2973
ce612879
MH
2974 /*
2975 * Make sure nobody triggers this path before mm_percpu_wq is fully
2976 * initialized.
2977 */
2978 if (WARN_ON_ONCE(!mm_percpu_wq))
2979 return;
2980
bd233f53
MG
2981 /*
2982 * Do not drain if one is already in progress unless it's specific to
2983 * a zone. Such callers are primarily CMA and memory hotplug and need
2984 * the drain to be complete when the call returns.
2985 */
2986 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2987 if (!zone)
2988 return;
2989 mutex_lock(&pcpu_drain_mutex);
2990 }
0ccce3b9 2991
74046494
GBY
2992 /*
2993 * We don't care about racing with CPU hotplug event
2994 * as offline notification will cause the notified
2995 * cpu to drain that CPU pcps and on_each_cpu_mask
2996 * disables preemption as part of its processing
2997 */
2998 for_each_online_cpu(cpu) {
93481ff0
VB
2999 struct per_cpu_pageset *pcp;
3000 struct zone *z;
74046494 3001 bool has_pcps = false;
93481ff0
VB
3002
3003 if (zone) {
74046494 3004 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3005 if (pcp->pcp.count)
74046494 3006 has_pcps = true;
93481ff0
VB
3007 } else {
3008 for_each_populated_zone(z) {
3009 pcp = per_cpu_ptr(z->pageset, cpu);
3010 if (pcp->pcp.count) {
3011 has_pcps = true;
3012 break;
3013 }
74046494
GBY
3014 }
3015 }
93481ff0 3016
74046494
GBY
3017 if (has_pcps)
3018 cpumask_set_cpu(cpu, &cpus_with_pcps);
3019 else
3020 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3021 }
0ccce3b9 3022
bd233f53 3023 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3024 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3025
3026 drain->zone = zone;
3027 INIT_WORK(&drain->work, drain_local_pages_wq);
3028 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3029 }
bd233f53 3030 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3031 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3032
3033 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3034}
3035
296699de 3036#ifdef CONFIG_HIBERNATION
1da177e4 3037
556b969a
CY
3038/*
3039 * Touch the watchdog for every WD_PAGE_COUNT pages.
3040 */
3041#define WD_PAGE_COUNT (128*1024)
3042
1da177e4
LT
3043void mark_free_pages(struct zone *zone)
3044{
556b969a 3045 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3046 unsigned long flags;
7aeb09f9 3047 unsigned int order, t;
86760a2c 3048 struct page *page;
1da177e4 3049
8080fc03 3050 if (zone_is_empty(zone))
1da177e4
LT
3051 return;
3052
3053 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3054
108bcc96 3055 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3056 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3057 if (pfn_valid(pfn)) {
86760a2c 3058 page = pfn_to_page(pfn);
ba6b0979 3059
556b969a
CY
3060 if (!--page_count) {
3061 touch_nmi_watchdog();
3062 page_count = WD_PAGE_COUNT;
3063 }
3064
ba6b0979
JK
3065 if (page_zone(page) != zone)
3066 continue;
3067
7be98234
RW
3068 if (!swsusp_page_is_forbidden(page))
3069 swsusp_unset_page_free(page);
f623f0db 3070 }
1da177e4 3071
b2a0ac88 3072 for_each_migratetype_order(order, t) {
86760a2c
GT
3073 list_for_each_entry(page,
3074 &zone->free_area[order].free_list[t], lru) {
f623f0db 3075 unsigned long i;
1da177e4 3076
86760a2c 3077 pfn = page_to_pfn(page);
556b969a
CY
3078 for (i = 0; i < (1UL << order); i++) {
3079 if (!--page_count) {
3080 touch_nmi_watchdog();
3081 page_count = WD_PAGE_COUNT;
3082 }
7be98234 3083 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3084 }
f623f0db 3085 }
b2a0ac88 3086 }
1da177e4
LT
3087 spin_unlock_irqrestore(&zone->lock, flags);
3088}
e2c55dc8 3089#endif /* CONFIG_PM */
1da177e4 3090
2d4894b5 3091static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3092{
5f8dcc21 3093 int migratetype;
1da177e4 3094
4db7548c 3095 if (!free_pcp_prepare(page))
9cca35d4 3096 return false;
689bcebf 3097
dc4b0caf 3098 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3099 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3100 return true;
3101}
3102
2d4894b5 3103static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3104{
3105 struct zone *zone = page_zone(page);
3106 struct per_cpu_pages *pcp;
3107 int migratetype;
3108
3109 migratetype = get_pcppage_migratetype(page);
d34b0733 3110 __count_vm_event(PGFREE);
da456f14 3111
5f8dcc21
MG
3112 /*
3113 * We only track unmovable, reclaimable and movable on pcp lists.
3114 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3115 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3116 * areas back if necessary. Otherwise, we may have to free
3117 * excessively into the page allocator
3118 */
3119 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3120 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3121 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3122 return;
5f8dcc21
MG
3123 }
3124 migratetype = MIGRATE_MOVABLE;
3125 }
3126
99dcc3e5 3127 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3128 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3129 pcp->count++;
48db57f8 3130 if (pcp->count >= pcp->high) {
4db0c3c2 3131 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3132 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3133 }
9cca35d4 3134}
5f8dcc21 3135
9cca35d4
MG
3136/*
3137 * Free a 0-order page
9cca35d4 3138 */
2d4894b5 3139void free_unref_page(struct page *page)
9cca35d4
MG
3140{
3141 unsigned long flags;
3142 unsigned long pfn = page_to_pfn(page);
3143
2d4894b5 3144 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3145 return;
3146
3147 local_irq_save(flags);
2d4894b5 3148 free_unref_page_commit(page, pfn);
d34b0733 3149 local_irq_restore(flags);
1da177e4
LT
3150}
3151
cc59850e
KK
3152/*
3153 * Free a list of 0-order pages
3154 */
2d4894b5 3155void free_unref_page_list(struct list_head *list)
cc59850e
KK
3156{
3157 struct page *page, *next;
9cca35d4 3158 unsigned long flags, pfn;
c24ad77d 3159 int batch_count = 0;
9cca35d4
MG
3160
3161 /* Prepare pages for freeing */
3162 list_for_each_entry_safe(page, next, list, lru) {
3163 pfn = page_to_pfn(page);
2d4894b5 3164 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3165 list_del(&page->lru);
3166 set_page_private(page, pfn);
3167 }
cc59850e 3168
9cca35d4 3169 local_irq_save(flags);
cc59850e 3170 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3171 unsigned long pfn = page_private(page);
3172
3173 set_page_private(page, 0);
2d4894b5
MG
3174 trace_mm_page_free_batched(page);
3175 free_unref_page_commit(page, pfn);
c24ad77d
LS
3176
3177 /*
3178 * Guard against excessive IRQ disabled times when we get
3179 * a large list of pages to free.
3180 */
3181 if (++batch_count == SWAP_CLUSTER_MAX) {
3182 local_irq_restore(flags);
3183 batch_count = 0;
3184 local_irq_save(flags);
3185 }
cc59850e 3186 }
9cca35d4 3187 local_irq_restore(flags);
cc59850e
KK
3188}
3189
8dfcc9ba
NP
3190/*
3191 * split_page takes a non-compound higher-order page, and splits it into
3192 * n (1<<order) sub-pages: page[0..n]
3193 * Each sub-page must be freed individually.
3194 *
3195 * Note: this is probably too low level an operation for use in drivers.
3196 * Please consult with lkml before using this in your driver.
3197 */
3198void split_page(struct page *page, unsigned int order)
3199{
3200 int i;
3201
309381fe
SL
3202 VM_BUG_ON_PAGE(PageCompound(page), page);
3203 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3204
a9627bc5 3205 for (i = 1; i < (1 << order); i++)
7835e98b 3206 set_page_refcounted(page + i);
a9627bc5 3207 split_page_owner(page, order);
8dfcc9ba 3208}
5853ff23 3209EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3210
3c605096 3211int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3212{
748446bb
MG
3213 unsigned long watermark;
3214 struct zone *zone;
2139cbe6 3215 int mt;
748446bb
MG
3216
3217 BUG_ON(!PageBuddy(page));
3218
3219 zone = page_zone(page);
2e30abd1 3220 mt = get_pageblock_migratetype(page);
748446bb 3221
194159fb 3222 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3223 /*
3224 * Obey watermarks as if the page was being allocated. We can
3225 * emulate a high-order watermark check with a raised order-0
3226 * watermark, because we already know our high-order page
3227 * exists.
3228 */
fd1444b2 3229 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3230 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3231 return 0;
3232
8fb74b9f 3233 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3234 }
748446bb
MG
3235
3236 /* Remove page from free list */
b03641af 3237
6ab01363 3238 del_page_from_free_list(page, zone, order);
2139cbe6 3239
400bc7fd 3240 /*
3241 * Set the pageblock if the isolated page is at least half of a
3242 * pageblock
3243 */
748446bb
MG
3244 if (order >= pageblock_order - 1) {
3245 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3246 for (; page < endpage; page += pageblock_nr_pages) {
3247 int mt = get_pageblock_migratetype(page);
88ed365e 3248 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3249 && !is_migrate_highatomic(mt))
47118af0
MN
3250 set_pageblock_migratetype(page,
3251 MIGRATE_MOVABLE);
3252 }
748446bb
MG
3253 }
3254
f3a14ced 3255
8fb74b9f 3256 return 1UL << order;
1fb3f8ca
MG
3257}
3258
624f58d8
AD
3259/**
3260 * __putback_isolated_page - Return a now-isolated page back where we got it
3261 * @page: Page that was isolated
3262 * @order: Order of the isolated page
e6a0a7ad 3263 * @mt: The page's pageblock's migratetype
624f58d8
AD
3264 *
3265 * This function is meant to return a page pulled from the free lists via
3266 * __isolate_free_page back to the free lists they were pulled from.
3267 */
3268void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3269{
3270 struct zone *zone = page_zone(page);
3271
3272 /* zone lock should be held when this function is called */
3273 lockdep_assert_held(&zone->lock);
3274
3275 /* Return isolated page to tail of freelist. */
36e66c55 3276 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
624f58d8
AD
3277}
3278
060e7417
MG
3279/*
3280 * Update NUMA hit/miss statistics
3281 *
3282 * Must be called with interrupts disabled.
060e7417 3283 */
41b6167e 3284static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3285{
3286#ifdef CONFIG_NUMA
3a321d2a 3287 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3288
4518085e
KW
3289 /* skip numa counters update if numa stats is disabled */
3290 if (!static_branch_likely(&vm_numa_stat_key))
3291 return;
3292
c1093b74 3293 if (zone_to_nid(z) != numa_node_id())
060e7417 3294 local_stat = NUMA_OTHER;
060e7417 3295
c1093b74 3296 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3297 __inc_numa_state(z, NUMA_HIT);
2df26639 3298 else {
3a321d2a
KW
3299 __inc_numa_state(z, NUMA_MISS);
3300 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3301 }
3a321d2a 3302 __inc_numa_state(z, local_stat);
060e7417
MG
3303#endif
3304}
3305
066b2393
MG
3306/* Remove page from the per-cpu list, caller must protect the list */
3307static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3308 unsigned int alloc_flags,
453f85d4 3309 struct per_cpu_pages *pcp,
066b2393
MG
3310 struct list_head *list)
3311{
3312 struct page *page;
3313
3314 do {
3315 if (list_empty(list)) {
3316 pcp->count += rmqueue_bulk(zone, 0,
3317 pcp->batch, list,
6bb15450 3318 migratetype, alloc_flags);
066b2393
MG
3319 if (unlikely(list_empty(list)))
3320 return NULL;
3321 }
3322
453f85d4 3323 page = list_first_entry(list, struct page, lru);
066b2393
MG
3324 list_del(&page->lru);
3325 pcp->count--;
3326 } while (check_new_pcp(page));
3327
3328 return page;
3329}
3330
3331/* Lock and remove page from the per-cpu list */
3332static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3333 struct zone *zone, gfp_t gfp_flags,
3334 int migratetype, unsigned int alloc_flags)
066b2393
MG
3335{
3336 struct per_cpu_pages *pcp;
3337 struct list_head *list;
066b2393 3338 struct page *page;
d34b0733 3339 unsigned long flags;
066b2393 3340
d34b0733 3341 local_irq_save(flags);
066b2393
MG
3342 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3343 list = &pcp->lists[migratetype];
6bb15450 3344 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3345 if (page) {
1c52e6d0 3346 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3347 zone_statistics(preferred_zone, zone);
3348 }
d34b0733 3349 local_irq_restore(flags);
066b2393
MG
3350 return page;
3351}
3352
1da177e4 3353/*
75379191 3354 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3355 */
0a15c3e9 3356static inline
066b2393 3357struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3358 struct zone *zone, unsigned int order,
c603844b
MG
3359 gfp_t gfp_flags, unsigned int alloc_flags,
3360 int migratetype)
1da177e4
LT
3361{
3362 unsigned long flags;
689bcebf 3363 struct page *page;
1da177e4 3364
d34b0733 3365 if (likely(order == 0)) {
1c52e6d0
YS
3366 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3367 migratetype, alloc_flags);
066b2393
MG
3368 goto out;
3369 }
83b9355b 3370
066b2393
MG
3371 /*
3372 * We most definitely don't want callers attempting to
3373 * allocate greater than order-1 page units with __GFP_NOFAIL.
3374 */
3375 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3376 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3377
066b2393
MG
3378 do {
3379 page = NULL;
3380 if (alloc_flags & ALLOC_HARDER) {
3381 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3382 if (page)
3383 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3384 }
a74609fa 3385 if (!page)
6bb15450 3386 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3387 } while (page && check_new_pages(page, order));
3388 spin_unlock(&zone->lock);
3389 if (!page)
3390 goto failed;
3391 __mod_zone_freepage_state(zone, -(1 << order),
3392 get_pcppage_migratetype(page));
1da177e4 3393
16709d1d 3394 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3395 zone_statistics(preferred_zone, zone);
a74609fa 3396 local_irq_restore(flags);
1da177e4 3397
066b2393 3398out:
73444bc4
MG
3399 /* Separate test+clear to avoid unnecessary atomics */
3400 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3401 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3402 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3403 }
3404
066b2393 3405 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3406 return page;
a74609fa
NP
3407
3408failed:
3409 local_irq_restore(flags);
a74609fa 3410 return NULL;
1da177e4
LT
3411}
3412
933e312e
AM
3413#ifdef CONFIG_FAIL_PAGE_ALLOC
3414
b2588c4b 3415static struct {
933e312e
AM
3416 struct fault_attr attr;
3417
621a5f7a 3418 bool ignore_gfp_highmem;
71baba4b 3419 bool ignore_gfp_reclaim;
54114994 3420 u32 min_order;
933e312e
AM
3421} fail_page_alloc = {
3422 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3423 .ignore_gfp_reclaim = true,
621a5f7a 3424 .ignore_gfp_highmem = true,
54114994 3425 .min_order = 1,
933e312e
AM
3426};
3427
3428static int __init setup_fail_page_alloc(char *str)
3429{
3430 return setup_fault_attr(&fail_page_alloc.attr, str);
3431}
3432__setup("fail_page_alloc=", setup_fail_page_alloc);
3433
af3b8544 3434static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3435{
54114994 3436 if (order < fail_page_alloc.min_order)
deaf386e 3437 return false;
933e312e 3438 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3439 return false;
933e312e 3440 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3441 return false;
71baba4b
MG
3442 if (fail_page_alloc.ignore_gfp_reclaim &&
3443 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3444 return false;
933e312e
AM
3445
3446 return should_fail(&fail_page_alloc.attr, 1 << order);
3447}
3448
3449#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3450
3451static int __init fail_page_alloc_debugfs(void)
3452{
0825a6f9 3453 umode_t mode = S_IFREG | 0600;
933e312e 3454 struct dentry *dir;
933e312e 3455
dd48c085
AM
3456 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3457 &fail_page_alloc.attr);
b2588c4b 3458
d9f7979c
GKH
3459 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3460 &fail_page_alloc.ignore_gfp_reclaim);
3461 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3462 &fail_page_alloc.ignore_gfp_highmem);
3463 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3464
d9f7979c 3465 return 0;
933e312e
AM
3466}
3467
3468late_initcall(fail_page_alloc_debugfs);
3469
3470#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3471
3472#else /* CONFIG_FAIL_PAGE_ALLOC */
3473
af3b8544 3474static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3475{
deaf386e 3476 return false;
933e312e
AM
3477}
3478
3479#endif /* CONFIG_FAIL_PAGE_ALLOC */
3480
af3b8544
BP
3481static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3482{
3483 return __should_fail_alloc_page(gfp_mask, order);
3484}
3485ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3486
1da177e4 3487/*
97a16fc8
MG
3488 * Return true if free base pages are above 'mark'. For high-order checks it
3489 * will return true of the order-0 watermark is reached and there is at least
3490 * one free page of a suitable size. Checking now avoids taking the zone lock
3491 * to check in the allocation paths if no pages are free.
1da177e4 3492 */
86a294a8 3493bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3494 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3495 long free_pages)
1da177e4 3496{
d23ad423 3497 long min = mark;
1da177e4 3498 int o;
cd04ae1e 3499 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3500
0aaa29a5 3501 /* free_pages may go negative - that's OK */
df0a6daa 3502 free_pages -= (1 << order) - 1;
0aaa29a5 3503
7fb1d9fc 3504 if (alloc_flags & ALLOC_HIGH)
1da177e4 3505 min -= min / 2;
0aaa29a5
MG
3506
3507 /*
3508 * If the caller does not have rights to ALLOC_HARDER then subtract
3509 * the high-atomic reserves. This will over-estimate the size of the
3510 * atomic reserve but it avoids a search.
3511 */
cd04ae1e 3512 if (likely(!alloc_harder)) {
0aaa29a5 3513 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3514 } else {
3515 /*
3516 * OOM victims can try even harder than normal ALLOC_HARDER
3517 * users on the grounds that it's definitely going to be in
3518 * the exit path shortly and free memory. Any allocation it
3519 * makes during the free path will be small and short-lived.
3520 */
3521 if (alloc_flags & ALLOC_OOM)
3522 min -= min / 2;
3523 else
3524 min -= min / 4;
3525 }
3526
e2b19197 3527
d883c6cf
JK
3528#ifdef CONFIG_CMA
3529 /* If allocation can't use CMA areas don't use free CMA pages */
3530 if (!(alloc_flags & ALLOC_CMA))
3531 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3532#endif
3533
97a16fc8
MG
3534 /*
3535 * Check watermarks for an order-0 allocation request. If these
3536 * are not met, then a high-order request also cannot go ahead
3537 * even if a suitable page happened to be free.
3538 */
97a225e6 3539 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3540 return false;
1da177e4 3541
97a16fc8
MG
3542 /* If this is an order-0 request then the watermark is fine */
3543 if (!order)
3544 return true;
3545
3546 /* For a high-order request, check at least one suitable page is free */
3547 for (o = order; o < MAX_ORDER; o++) {
3548 struct free_area *area = &z->free_area[o];
3549 int mt;
3550
3551 if (!area->nr_free)
3552 continue;
3553
97a16fc8 3554 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3555 if (!free_area_empty(area, mt))
97a16fc8
MG
3556 return true;
3557 }
3558
3559#ifdef CONFIG_CMA
d883c6cf 3560 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3561 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3562 return true;
d883c6cf 3563 }
97a16fc8 3564#endif
76089d00 3565 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3566 return true;
1da177e4 3567 }
97a16fc8 3568 return false;
88f5acf8
MG
3569}
3570
7aeb09f9 3571bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3572 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3573{
97a225e6 3574 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3575 zone_page_state(z, NR_FREE_PAGES));
3576}
3577
48ee5f36 3578static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6
JK
3579 unsigned long mark, int highest_zoneidx,
3580 unsigned int alloc_flags)
48ee5f36
MG
3581{
3582 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3583 long cma_pages = 0;
3584
3585#ifdef CONFIG_CMA
3586 /* If allocation can't use CMA areas don't use free CMA pages */
3587 if (!(alloc_flags & ALLOC_CMA))
3588 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3589#endif
48ee5f36
MG
3590
3591 /*
3592 * Fast check for order-0 only. If this fails then the reserves
3593 * need to be calculated. There is a corner case where the check
3594 * passes but only the high-order atomic reserve are free. If
3595 * the caller is !atomic then it'll uselessly search the free
3596 * list. That corner case is then slower but it is harmless.
3597 */
97a225e6
JK
3598 if (!order && (free_pages - cma_pages) >
3599 mark + z->lowmem_reserve[highest_zoneidx])
48ee5f36
MG
3600 return true;
3601
97a225e6 3602 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
48ee5f36
MG
3603 free_pages);
3604}
3605
7aeb09f9 3606bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3607 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3608{
3609 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3610
3611 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3612 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3613
97a225e6 3614 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3615 free_pages);
1da177e4
LT
3616}
3617
9276b1bc 3618#ifdef CONFIG_NUMA
957f822a
DR
3619static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3620{
e02dc017 3621 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3622 node_reclaim_distance;
957f822a 3623}
9276b1bc 3624#else /* CONFIG_NUMA */
957f822a
DR
3625static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3626{
3627 return true;
3628}
9276b1bc
PJ
3629#endif /* CONFIG_NUMA */
3630
6bb15450
MG
3631/*
3632 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3633 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3634 * premature use of a lower zone may cause lowmem pressure problems that
3635 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3636 * probably too small. It only makes sense to spread allocations to avoid
3637 * fragmentation between the Normal and DMA32 zones.
3638 */
3639static inline unsigned int
0a79cdad 3640alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3641{
736838e9 3642 unsigned int alloc_flags;
0a79cdad 3643
736838e9
MN
3644 /*
3645 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3646 * to save a branch.
3647 */
3648 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3649
3650#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3651 if (!zone)
3652 return alloc_flags;
3653
6bb15450 3654 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3655 return alloc_flags;
6bb15450
MG
3656
3657 /*
3658 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3659 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3660 * on UMA that if Normal is populated then so is DMA32.
3661 */
3662 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3663 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3664 return alloc_flags;
6bb15450 3665
8118b82e 3666 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3667#endif /* CONFIG_ZONE_DMA32 */
3668 return alloc_flags;
6bb15450 3669}
6bb15450 3670
7fb1d9fc 3671/*
0798e519 3672 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3673 * a page.
3674 */
3675static struct page *
a9263751
VB
3676get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3677 const struct alloc_context *ac)
753ee728 3678{
6bb15450 3679 struct zoneref *z;
5117f45d 3680 struct zone *zone;
3b8c0be4 3681 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3682 bool no_fallback;
3b8c0be4 3683
6bb15450 3684retry:
7fb1d9fc 3685 /*
9276b1bc 3686 * Scan zonelist, looking for a zone with enough free.
344736f2 3687 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3688 */
6bb15450
MG
3689 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3690 z = ac->preferred_zoneref;
97a225e6
JK
3691 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3692 ac->highest_zoneidx, ac->nodemask) {
be06af00 3693 struct page *page;
e085dbc5
JW
3694 unsigned long mark;
3695
664eedde
MG
3696 if (cpusets_enabled() &&
3697 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3698 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3699 continue;
a756cf59
JW
3700 /*
3701 * When allocating a page cache page for writing, we
281e3726
MG
3702 * want to get it from a node that is within its dirty
3703 * limit, such that no single node holds more than its
a756cf59 3704 * proportional share of globally allowed dirty pages.
281e3726 3705 * The dirty limits take into account the node's
a756cf59
JW
3706 * lowmem reserves and high watermark so that kswapd
3707 * should be able to balance it without having to
3708 * write pages from its LRU list.
3709 *
a756cf59 3710 * XXX: For now, allow allocations to potentially
281e3726 3711 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3712 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3713 * which is important when on a NUMA setup the allowed
281e3726 3714 * nodes are together not big enough to reach the
a756cf59 3715 * global limit. The proper fix for these situations
281e3726 3716 * will require awareness of nodes in the
a756cf59
JW
3717 * dirty-throttling and the flusher threads.
3718 */
3b8c0be4
MG
3719 if (ac->spread_dirty_pages) {
3720 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3721 continue;
3722
3723 if (!node_dirty_ok(zone->zone_pgdat)) {
3724 last_pgdat_dirty_limit = zone->zone_pgdat;
3725 continue;
3726 }
3727 }
7fb1d9fc 3728
6bb15450
MG
3729 if (no_fallback && nr_online_nodes > 1 &&
3730 zone != ac->preferred_zoneref->zone) {
3731 int local_nid;
3732
3733 /*
3734 * If moving to a remote node, retry but allow
3735 * fragmenting fallbacks. Locality is more important
3736 * than fragmentation avoidance.
3737 */
3738 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3739 if (zone_to_nid(zone) != local_nid) {
3740 alloc_flags &= ~ALLOC_NOFRAGMENT;
3741 goto retry;
3742 }
3743 }
3744
a9214443 3745 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3746 if (!zone_watermark_fast(zone, order, mark,
97a225e6 3747 ac->highest_zoneidx, alloc_flags)) {
fa5e084e
MG
3748 int ret;
3749
c9e97a19
PT
3750#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3751 /*
3752 * Watermark failed for this zone, but see if we can
3753 * grow this zone if it contains deferred pages.
3754 */
3755 if (static_branch_unlikely(&deferred_pages)) {
3756 if (_deferred_grow_zone(zone, order))
3757 goto try_this_zone;
3758 }
3759#endif
5dab2911
MG
3760 /* Checked here to keep the fast path fast */
3761 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3762 if (alloc_flags & ALLOC_NO_WATERMARKS)
3763 goto try_this_zone;
3764
a5f5f91d 3765 if (node_reclaim_mode == 0 ||
c33d6c06 3766 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3767 continue;
3768
a5f5f91d 3769 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3770 switch (ret) {
a5f5f91d 3771 case NODE_RECLAIM_NOSCAN:
fa5e084e 3772 /* did not scan */
cd38b115 3773 continue;
a5f5f91d 3774 case NODE_RECLAIM_FULL:
fa5e084e 3775 /* scanned but unreclaimable */
cd38b115 3776 continue;
fa5e084e
MG
3777 default:
3778 /* did we reclaim enough */
fed2719e 3779 if (zone_watermark_ok(zone, order, mark,
97a225e6 3780 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3781 goto try_this_zone;
3782
fed2719e 3783 continue;
0798e519 3784 }
7fb1d9fc
RS
3785 }
3786
fa5e084e 3787try_this_zone:
066b2393 3788 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3789 gfp_mask, alloc_flags, ac->migratetype);
75379191 3790 if (page) {
479f854a 3791 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3792
3793 /*
3794 * If this is a high-order atomic allocation then check
3795 * if the pageblock should be reserved for the future
3796 */
3797 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3798 reserve_highatomic_pageblock(page, zone, order);
3799
75379191 3800 return page;
c9e97a19
PT
3801 } else {
3802#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3803 /* Try again if zone has deferred pages */
3804 if (static_branch_unlikely(&deferred_pages)) {
3805 if (_deferred_grow_zone(zone, order))
3806 goto try_this_zone;
3807 }
3808#endif
75379191 3809 }
54a6eb5c 3810 }
9276b1bc 3811
6bb15450
MG
3812 /*
3813 * It's possible on a UMA machine to get through all zones that are
3814 * fragmented. If avoiding fragmentation, reset and try again.
3815 */
3816 if (no_fallback) {
3817 alloc_flags &= ~ALLOC_NOFRAGMENT;
3818 goto retry;
3819 }
3820
4ffeaf35 3821 return NULL;
753ee728
MH
3822}
3823
9af744d7 3824static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3825{
a238ab5b 3826 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3827
3828 /*
3829 * This documents exceptions given to allocations in certain
3830 * contexts that are allowed to allocate outside current's set
3831 * of allowed nodes.
3832 */
3833 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3834 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3835 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3836 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3837 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3838 filter &= ~SHOW_MEM_FILTER_NODES;
3839
9af744d7 3840 show_mem(filter, nodemask);
aa187507
MH
3841}
3842
a8e99259 3843void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3844{
3845 struct va_format vaf;
3846 va_list args;
1be334e5 3847 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3848
0f7896f1 3849 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3850 return;
3851
7877cdcc
MH
3852 va_start(args, fmt);
3853 vaf.fmt = fmt;
3854 vaf.va = &args;
ef8444ea 3855 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3856 current->comm, &vaf, gfp_mask, &gfp_mask,
3857 nodemask_pr_args(nodemask));
7877cdcc 3858 va_end(args);
3ee9a4f0 3859
a8e99259 3860 cpuset_print_current_mems_allowed();
ef8444ea 3861 pr_cont("\n");
a238ab5b 3862 dump_stack();
685dbf6f 3863 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3864}
3865
6c18ba7a
MH
3866static inline struct page *
3867__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3868 unsigned int alloc_flags,
3869 const struct alloc_context *ac)
3870{
3871 struct page *page;
3872
3873 page = get_page_from_freelist(gfp_mask, order,
3874 alloc_flags|ALLOC_CPUSET, ac);
3875 /*
3876 * fallback to ignore cpuset restriction if our nodes
3877 * are depleted
3878 */
3879 if (!page)
3880 page = get_page_from_freelist(gfp_mask, order,
3881 alloc_flags, ac);
3882
3883 return page;
3884}
3885
11e33f6a
MG
3886static inline struct page *
3887__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3888 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3889{
6e0fc46d
DR
3890 struct oom_control oc = {
3891 .zonelist = ac->zonelist,
3892 .nodemask = ac->nodemask,
2a966b77 3893 .memcg = NULL,
6e0fc46d
DR
3894 .gfp_mask = gfp_mask,
3895 .order = order,
6e0fc46d 3896 };
11e33f6a
MG
3897 struct page *page;
3898
9879de73
JW
3899 *did_some_progress = 0;
3900
9879de73 3901 /*
dc56401f
JW
3902 * Acquire the oom lock. If that fails, somebody else is
3903 * making progress for us.
9879de73 3904 */
dc56401f 3905 if (!mutex_trylock(&oom_lock)) {
9879de73 3906 *did_some_progress = 1;
11e33f6a 3907 schedule_timeout_uninterruptible(1);
1da177e4
LT
3908 return NULL;
3909 }
6b1de916 3910
11e33f6a
MG
3911 /*
3912 * Go through the zonelist yet one more time, keep very high watermark
3913 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3914 * we're still under heavy pressure. But make sure that this reclaim
3915 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3916 * allocation which will never fail due to oom_lock already held.
11e33f6a 3917 */
e746bf73
TH
3918 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3919 ~__GFP_DIRECT_RECLAIM, order,
3920 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3921 if (page)
11e33f6a
MG
3922 goto out;
3923
06ad276a
MH
3924 /* Coredumps can quickly deplete all memory reserves */
3925 if (current->flags & PF_DUMPCORE)
3926 goto out;
3927 /* The OOM killer will not help higher order allocs */
3928 if (order > PAGE_ALLOC_COSTLY_ORDER)
3929 goto out;
dcda9b04
MH
3930 /*
3931 * We have already exhausted all our reclaim opportunities without any
3932 * success so it is time to admit defeat. We will skip the OOM killer
3933 * because it is very likely that the caller has a more reasonable
3934 * fallback than shooting a random task.
3935 */
3936 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3937 goto out;
06ad276a 3938 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 3939 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
3940 goto out;
3941 if (pm_suspended_storage())
3942 goto out;
3943 /*
3944 * XXX: GFP_NOFS allocations should rather fail than rely on
3945 * other request to make a forward progress.
3946 * We are in an unfortunate situation where out_of_memory cannot
3947 * do much for this context but let's try it to at least get
3948 * access to memory reserved if the current task is killed (see
3949 * out_of_memory). Once filesystems are ready to handle allocation
3950 * failures more gracefully we should just bail out here.
3951 */
3952
3953 /* The OOM killer may not free memory on a specific node */
3954 if (gfp_mask & __GFP_THISNODE)
3955 goto out;
3da88fb3 3956
3c2c6488 3957 /* Exhausted what can be done so it's blame time */
5020e285 3958 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3959 *did_some_progress = 1;
5020e285 3960
6c18ba7a
MH
3961 /*
3962 * Help non-failing allocations by giving them access to memory
3963 * reserves
3964 */
3965 if (gfp_mask & __GFP_NOFAIL)
3966 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3967 ALLOC_NO_WATERMARKS, ac);
5020e285 3968 }
11e33f6a 3969out:
dc56401f 3970 mutex_unlock(&oom_lock);
11e33f6a
MG
3971 return page;
3972}
3973
33c2d214
MH
3974/*
3975 * Maximum number of compaction retries wit a progress before OOM
3976 * killer is consider as the only way to move forward.
3977 */
3978#define MAX_COMPACT_RETRIES 16
3979
56de7263
MG
3980#ifdef CONFIG_COMPACTION
3981/* Try memory compaction for high-order allocations before reclaim */
3982static struct page *
3983__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3984 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3985 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3986{
5e1f0f09 3987 struct page *page = NULL;
eb414681 3988 unsigned long pflags;
499118e9 3989 unsigned int noreclaim_flag;
53853e2d
VB
3990
3991 if (!order)
66199712 3992 return NULL;
66199712 3993
eb414681 3994 psi_memstall_enter(&pflags);
499118e9 3995 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3996
c5d01d0d 3997 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3998 prio, &page);
eb414681 3999
499118e9 4000 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4001 psi_memstall_leave(&pflags);
56de7263 4002
98dd3b48
VB
4003 /*
4004 * At least in one zone compaction wasn't deferred or skipped, so let's
4005 * count a compaction stall
4006 */
4007 count_vm_event(COMPACTSTALL);
8fb74b9f 4008
5e1f0f09
MG
4009 /* Prep a captured page if available */
4010 if (page)
4011 prep_new_page(page, order, gfp_mask, alloc_flags);
4012
4013 /* Try get a page from the freelist if available */
4014 if (!page)
4015 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4016
98dd3b48
VB
4017 if (page) {
4018 struct zone *zone = page_zone(page);
53853e2d 4019
98dd3b48
VB
4020 zone->compact_blockskip_flush = false;
4021 compaction_defer_reset(zone, order, true);
4022 count_vm_event(COMPACTSUCCESS);
4023 return page;
4024 }
56de7263 4025
98dd3b48
VB
4026 /*
4027 * It's bad if compaction run occurs and fails. The most likely reason
4028 * is that pages exist, but not enough to satisfy watermarks.
4029 */
4030 count_vm_event(COMPACTFAIL);
66199712 4031
98dd3b48 4032 cond_resched();
56de7263
MG
4033
4034 return NULL;
4035}
33c2d214 4036
3250845d
VB
4037static inline bool
4038should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4039 enum compact_result compact_result,
4040 enum compact_priority *compact_priority,
d9436498 4041 int *compaction_retries)
3250845d
VB
4042{
4043 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4044 int min_priority;
65190cff
MH
4045 bool ret = false;
4046 int retries = *compaction_retries;
4047 enum compact_priority priority = *compact_priority;
3250845d
VB
4048
4049 if (!order)
4050 return false;
4051
d9436498
VB
4052 if (compaction_made_progress(compact_result))
4053 (*compaction_retries)++;
4054
3250845d
VB
4055 /*
4056 * compaction considers all the zone as desperately out of memory
4057 * so it doesn't really make much sense to retry except when the
4058 * failure could be caused by insufficient priority
4059 */
d9436498
VB
4060 if (compaction_failed(compact_result))
4061 goto check_priority;
3250845d 4062
49433085
VB
4063 /*
4064 * compaction was skipped because there are not enough order-0 pages
4065 * to work with, so we retry only if it looks like reclaim can help.
4066 */
4067 if (compaction_needs_reclaim(compact_result)) {
4068 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4069 goto out;
4070 }
4071
3250845d
VB
4072 /*
4073 * make sure the compaction wasn't deferred or didn't bail out early
4074 * due to locks contention before we declare that we should give up.
49433085
VB
4075 * But the next retry should use a higher priority if allowed, so
4076 * we don't just keep bailing out endlessly.
3250845d 4077 */
65190cff 4078 if (compaction_withdrawn(compact_result)) {
49433085 4079 goto check_priority;
65190cff 4080 }
3250845d
VB
4081
4082 /*
dcda9b04 4083 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4084 * costly ones because they are de facto nofail and invoke OOM
4085 * killer to move on while costly can fail and users are ready
4086 * to cope with that. 1/4 retries is rather arbitrary but we
4087 * would need much more detailed feedback from compaction to
4088 * make a better decision.
4089 */
4090 if (order > PAGE_ALLOC_COSTLY_ORDER)
4091 max_retries /= 4;
65190cff
MH
4092 if (*compaction_retries <= max_retries) {
4093 ret = true;
4094 goto out;
4095 }
3250845d 4096
d9436498
VB
4097 /*
4098 * Make sure there are attempts at the highest priority if we exhausted
4099 * all retries or failed at the lower priorities.
4100 */
4101check_priority:
c2033b00
VB
4102 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4103 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4104
c2033b00 4105 if (*compact_priority > min_priority) {
d9436498
VB
4106 (*compact_priority)--;
4107 *compaction_retries = 0;
65190cff 4108 ret = true;
d9436498 4109 }
65190cff
MH
4110out:
4111 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4112 return ret;
3250845d 4113}
56de7263
MG
4114#else
4115static inline struct page *
4116__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4117 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4118 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4119{
33c2d214 4120 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4121 return NULL;
4122}
33c2d214
MH
4123
4124static inline bool
86a294a8
MH
4125should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4126 enum compact_result compact_result,
a5508cd8 4127 enum compact_priority *compact_priority,
d9436498 4128 int *compaction_retries)
33c2d214 4129{
31e49bfd
MH
4130 struct zone *zone;
4131 struct zoneref *z;
4132
4133 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4134 return false;
4135
4136 /*
4137 * There are setups with compaction disabled which would prefer to loop
4138 * inside the allocator rather than hit the oom killer prematurely.
4139 * Let's give them a good hope and keep retrying while the order-0
4140 * watermarks are OK.
4141 */
97a225e6
JK
4142 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4143 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4144 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4145 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4146 return true;
4147 }
33c2d214
MH
4148 return false;
4149}
3250845d 4150#endif /* CONFIG_COMPACTION */
56de7263 4151
d92a8cfc 4152#ifdef CONFIG_LOCKDEP
93781325 4153static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4154 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4155
4156static bool __need_fs_reclaim(gfp_t gfp_mask)
4157{
4158 gfp_mask = current_gfp_context(gfp_mask);
4159
4160 /* no reclaim without waiting on it */
4161 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4162 return false;
4163
4164 /* this guy won't enter reclaim */
2e517d68 4165 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4166 return false;
4167
4168 /* We're only interested __GFP_FS allocations for now */
4169 if (!(gfp_mask & __GFP_FS))
4170 return false;
4171
4172 if (gfp_mask & __GFP_NOLOCKDEP)
4173 return false;
4174
4175 return true;
4176}
4177
93781325
OS
4178void __fs_reclaim_acquire(void)
4179{
4180 lock_map_acquire(&__fs_reclaim_map);
4181}
4182
4183void __fs_reclaim_release(void)
4184{
4185 lock_map_release(&__fs_reclaim_map);
4186}
4187
d92a8cfc
PZ
4188void fs_reclaim_acquire(gfp_t gfp_mask)
4189{
4190 if (__need_fs_reclaim(gfp_mask))
93781325 4191 __fs_reclaim_acquire();
d92a8cfc
PZ
4192}
4193EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4194
4195void fs_reclaim_release(gfp_t gfp_mask)
4196{
4197 if (__need_fs_reclaim(gfp_mask))
93781325 4198 __fs_reclaim_release();
d92a8cfc
PZ
4199}
4200EXPORT_SYMBOL_GPL(fs_reclaim_release);
4201#endif
4202
bba90710
MS
4203/* Perform direct synchronous page reclaim */
4204static int
a9263751
VB
4205__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4206 const struct alloc_context *ac)
11e33f6a 4207{
bba90710 4208 int progress;
499118e9 4209 unsigned int noreclaim_flag;
eb414681 4210 unsigned long pflags;
11e33f6a
MG
4211
4212 cond_resched();
4213
4214 /* We now go into synchronous reclaim */
4215 cpuset_memory_pressure_bump();
eb414681 4216 psi_memstall_enter(&pflags);
d92a8cfc 4217 fs_reclaim_acquire(gfp_mask);
93781325 4218 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4219
a9263751
VB
4220 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4221 ac->nodemask);
11e33f6a 4222
499118e9 4223 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4224 fs_reclaim_release(gfp_mask);
eb414681 4225 psi_memstall_leave(&pflags);
11e33f6a
MG
4226
4227 cond_resched();
4228
bba90710
MS
4229 return progress;
4230}
4231
4232/* The really slow allocator path where we enter direct reclaim */
4233static inline struct page *
4234__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4235 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4236 unsigned long *did_some_progress)
bba90710
MS
4237{
4238 struct page *page = NULL;
4239 bool drained = false;
4240
a9263751 4241 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4242 if (unlikely(!(*did_some_progress)))
4243 return NULL;
11e33f6a 4244
9ee493ce 4245retry:
31a6c190 4246 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4247
4248 /*
4249 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4250 * pages are pinned on the per-cpu lists or in high alloc reserves.
4251 * Shrink them them and try again
9ee493ce
MG
4252 */
4253 if (!page && !drained) {
29fac03b 4254 unreserve_highatomic_pageblock(ac, false);
93481ff0 4255 drain_all_pages(NULL);
9ee493ce
MG
4256 drained = true;
4257 goto retry;
4258 }
4259
11e33f6a
MG
4260 return page;
4261}
4262
5ecd9d40
DR
4263static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4264 const struct alloc_context *ac)
3a025760
JW
4265{
4266 struct zoneref *z;
4267 struct zone *zone;
e1a55637 4268 pg_data_t *last_pgdat = NULL;
97a225e6 4269 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4270
97a225e6 4271 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4272 ac->nodemask) {
e1a55637 4273 if (last_pgdat != zone->zone_pgdat)
97a225e6 4274 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4275 last_pgdat = zone->zone_pgdat;
4276 }
3a025760
JW
4277}
4278
c603844b 4279static inline unsigned int
341ce06f
PZ
4280gfp_to_alloc_flags(gfp_t gfp_mask)
4281{
c603844b 4282 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4283
736838e9
MN
4284 /*
4285 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4286 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4287 * to save two branches.
4288 */
e6223a3b 4289 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4290 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4291
341ce06f
PZ
4292 /*
4293 * The caller may dip into page reserves a bit more if the caller
4294 * cannot run direct reclaim, or if the caller has realtime scheduling
4295 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4296 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4297 */
736838e9
MN
4298 alloc_flags |= (__force int)
4299 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4300
d0164adc 4301 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4302 /*
b104a35d
DR
4303 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4304 * if it can't schedule.
5c3240d9 4305 */
b104a35d 4306 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4307 alloc_flags |= ALLOC_HARDER;
523b9458 4308 /*
b104a35d 4309 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4310 * comment for __cpuset_node_allowed().
523b9458 4311 */
341ce06f 4312 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4313 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4314 alloc_flags |= ALLOC_HARDER;
4315
d883c6cf 4316#ifdef CONFIG_CMA
01c0bfe0 4317 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d883c6cf
JK
4318 alloc_flags |= ALLOC_CMA;
4319#endif
341ce06f
PZ
4320 return alloc_flags;
4321}
4322
cd04ae1e 4323static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4324{
cd04ae1e
MH
4325 if (!tsk_is_oom_victim(tsk))
4326 return false;
4327
4328 /*
4329 * !MMU doesn't have oom reaper so give access to memory reserves
4330 * only to the thread with TIF_MEMDIE set
4331 */
4332 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4333 return false;
4334
cd04ae1e
MH
4335 return true;
4336}
4337
4338/*
4339 * Distinguish requests which really need access to full memory
4340 * reserves from oom victims which can live with a portion of it
4341 */
4342static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4343{
4344 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4345 return 0;
31a6c190 4346 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4347 return ALLOC_NO_WATERMARKS;
31a6c190 4348 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4349 return ALLOC_NO_WATERMARKS;
4350 if (!in_interrupt()) {
4351 if (current->flags & PF_MEMALLOC)
4352 return ALLOC_NO_WATERMARKS;
4353 else if (oom_reserves_allowed(current))
4354 return ALLOC_OOM;
4355 }
31a6c190 4356
cd04ae1e
MH
4357 return 0;
4358}
4359
4360bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4361{
4362 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4363}
4364
0a0337e0
MH
4365/*
4366 * Checks whether it makes sense to retry the reclaim to make a forward progress
4367 * for the given allocation request.
491d79ae
JW
4368 *
4369 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4370 * without success, or when we couldn't even meet the watermark if we
4371 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4372 *
4373 * Returns true if a retry is viable or false to enter the oom path.
4374 */
4375static inline bool
4376should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4377 struct alloc_context *ac, int alloc_flags,
423b452e 4378 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4379{
4380 struct zone *zone;
4381 struct zoneref *z;
15f570bf 4382 bool ret = false;
0a0337e0 4383
423b452e
VB
4384 /*
4385 * Costly allocations might have made a progress but this doesn't mean
4386 * their order will become available due to high fragmentation so
4387 * always increment the no progress counter for them
4388 */
4389 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4390 *no_progress_loops = 0;
4391 else
4392 (*no_progress_loops)++;
4393
0a0337e0
MH
4394 /*
4395 * Make sure we converge to OOM if we cannot make any progress
4396 * several times in the row.
4397 */
04c8716f
MK
4398 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4399 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4400 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4401 }
0a0337e0 4402
bca67592
MG
4403 /*
4404 * Keep reclaiming pages while there is a chance this will lead
4405 * somewhere. If none of the target zones can satisfy our allocation
4406 * request even if all reclaimable pages are considered then we are
4407 * screwed and have to go OOM.
0a0337e0 4408 */
97a225e6
JK
4409 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4410 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4411 unsigned long available;
ede37713 4412 unsigned long reclaimable;
d379f01d
MH
4413 unsigned long min_wmark = min_wmark_pages(zone);
4414 bool wmark;
0a0337e0 4415
5a1c84b4 4416 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4417 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4418
4419 /*
491d79ae
JW
4420 * Would the allocation succeed if we reclaimed all
4421 * reclaimable pages?
0a0337e0 4422 */
d379f01d 4423 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4424 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4425 trace_reclaim_retry_zone(z, order, reclaimable,
4426 available, min_wmark, *no_progress_loops, wmark);
4427 if (wmark) {
ede37713
MH
4428 /*
4429 * If we didn't make any progress and have a lot of
4430 * dirty + writeback pages then we should wait for
4431 * an IO to complete to slow down the reclaim and
4432 * prevent from pre mature OOM
4433 */
4434 if (!did_some_progress) {
11fb9989 4435 unsigned long write_pending;
ede37713 4436
5a1c84b4
MG
4437 write_pending = zone_page_state_snapshot(zone,
4438 NR_ZONE_WRITE_PENDING);
ede37713 4439
11fb9989 4440 if (2 * write_pending > reclaimable) {
ede37713
MH
4441 congestion_wait(BLK_RW_ASYNC, HZ/10);
4442 return true;
4443 }
4444 }
5a1c84b4 4445
15f570bf
MH
4446 ret = true;
4447 goto out;
0a0337e0
MH
4448 }
4449 }
4450
15f570bf
MH
4451out:
4452 /*
4453 * Memory allocation/reclaim might be called from a WQ context and the
4454 * current implementation of the WQ concurrency control doesn't
4455 * recognize that a particular WQ is congested if the worker thread is
4456 * looping without ever sleeping. Therefore we have to do a short sleep
4457 * here rather than calling cond_resched().
4458 */
4459 if (current->flags & PF_WQ_WORKER)
4460 schedule_timeout_uninterruptible(1);
4461 else
4462 cond_resched();
4463 return ret;
0a0337e0
MH
4464}
4465
902b6281
VB
4466static inline bool
4467check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4468{
4469 /*
4470 * It's possible that cpuset's mems_allowed and the nodemask from
4471 * mempolicy don't intersect. This should be normally dealt with by
4472 * policy_nodemask(), but it's possible to race with cpuset update in
4473 * such a way the check therein was true, and then it became false
4474 * before we got our cpuset_mems_cookie here.
4475 * This assumes that for all allocations, ac->nodemask can come only
4476 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4477 * when it does not intersect with the cpuset restrictions) or the
4478 * caller can deal with a violated nodemask.
4479 */
4480 if (cpusets_enabled() && ac->nodemask &&
4481 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4482 ac->nodemask = NULL;
4483 return true;
4484 }
4485
4486 /*
4487 * When updating a task's mems_allowed or mempolicy nodemask, it is
4488 * possible to race with parallel threads in such a way that our
4489 * allocation can fail while the mask is being updated. If we are about
4490 * to fail, check if the cpuset changed during allocation and if so,
4491 * retry.
4492 */
4493 if (read_mems_allowed_retry(cpuset_mems_cookie))
4494 return true;
4495
4496 return false;
4497}
4498
11e33f6a
MG
4499static inline struct page *
4500__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4501 struct alloc_context *ac)
11e33f6a 4502{
d0164adc 4503 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4504 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4505 struct page *page = NULL;
c603844b 4506 unsigned int alloc_flags;
11e33f6a 4507 unsigned long did_some_progress;
5ce9bfef 4508 enum compact_priority compact_priority;
c5d01d0d 4509 enum compact_result compact_result;
5ce9bfef
VB
4510 int compaction_retries;
4511 int no_progress_loops;
5ce9bfef 4512 unsigned int cpuset_mems_cookie;
cd04ae1e 4513 int reserve_flags;
1da177e4 4514
d0164adc
MG
4515 /*
4516 * We also sanity check to catch abuse of atomic reserves being used by
4517 * callers that are not in atomic context.
4518 */
4519 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4520 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4521 gfp_mask &= ~__GFP_ATOMIC;
4522
5ce9bfef
VB
4523retry_cpuset:
4524 compaction_retries = 0;
4525 no_progress_loops = 0;
4526 compact_priority = DEF_COMPACT_PRIORITY;
4527 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4528
4529 /*
4530 * The fast path uses conservative alloc_flags to succeed only until
4531 * kswapd needs to be woken up, and to avoid the cost of setting up
4532 * alloc_flags precisely. So we do that now.
4533 */
4534 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4535
e47483bc
VB
4536 /*
4537 * We need to recalculate the starting point for the zonelist iterator
4538 * because we might have used different nodemask in the fast path, or
4539 * there was a cpuset modification and we are retrying - otherwise we
4540 * could end up iterating over non-eligible zones endlessly.
4541 */
4542 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4543 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4544 if (!ac->preferred_zoneref->zone)
4545 goto nopage;
4546
0a79cdad 4547 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4548 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4549
4550 /*
4551 * The adjusted alloc_flags might result in immediate success, so try
4552 * that first
4553 */
4554 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4555 if (page)
4556 goto got_pg;
4557
a8161d1e
VB
4558 /*
4559 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4560 * that we have enough base pages and don't need to reclaim. For non-
4561 * movable high-order allocations, do that as well, as compaction will
4562 * try prevent permanent fragmentation by migrating from blocks of the
4563 * same migratetype.
4564 * Don't try this for allocations that are allowed to ignore
4565 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4566 */
282722b0
VB
4567 if (can_direct_reclaim &&
4568 (costly_order ||
4569 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4570 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4571 page = __alloc_pages_direct_compact(gfp_mask, order,
4572 alloc_flags, ac,
a5508cd8 4573 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4574 &compact_result);
4575 if (page)
4576 goto got_pg;
4577
cc638f32
VB
4578 /*
4579 * Checks for costly allocations with __GFP_NORETRY, which
4580 * includes some THP page fault allocations
4581 */
4582 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4583 /*
4584 * If allocating entire pageblock(s) and compaction
4585 * failed because all zones are below low watermarks
4586 * or is prohibited because it recently failed at this
3f36d866
DR
4587 * order, fail immediately unless the allocator has
4588 * requested compaction and reclaim retry.
b39d0ee2
DR
4589 *
4590 * Reclaim is
4591 * - potentially very expensive because zones are far
4592 * below their low watermarks or this is part of very
4593 * bursty high order allocations,
4594 * - not guaranteed to help because isolate_freepages()
4595 * may not iterate over freed pages as part of its
4596 * linear scan, and
4597 * - unlikely to make entire pageblocks free on its
4598 * own.
4599 */
4600 if (compact_result == COMPACT_SKIPPED ||
4601 compact_result == COMPACT_DEFERRED)
4602 goto nopage;
a8161d1e 4603
a8161d1e 4604 /*
3eb2771b
VB
4605 * Looks like reclaim/compaction is worth trying, but
4606 * sync compaction could be very expensive, so keep
25160354 4607 * using async compaction.
a8161d1e 4608 */
a5508cd8 4609 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4610 }
4611 }
23771235 4612
31a6c190 4613retry:
23771235 4614 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4615 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4616 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4617
cd04ae1e
MH
4618 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4619 if (reserve_flags)
4620 alloc_flags = reserve_flags;
23771235 4621
e46e7b77 4622 /*
d6a24df0
VB
4623 * Reset the nodemask and zonelist iterators if memory policies can be
4624 * ignored. These allocations are high priority and system rather than
4625 * user oriented.
e46e7b77 4626 */
cd04ae1e 4627 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4628 ac->nodemask = NULL;
e46e7b77 4629 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4630 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4631 }
4632
23771235 4633 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4634 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4635 if (page)
4636 goto got_pg;
1da177e4 4637
d0164adc 4638 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4639 if (!can_direct_reclaim)
1da177e4
LT
4640 goto nopage;
4641
9a67f648
MH
4642 /* Avoid recursion of direct reclaim */
4643 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4644 goto nopage;
4645
a8161d1e
VB
4646 /* Try direct reclaim and then allocating */
4647 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4648 &did_some_progress);
4649 if (page)
4650 goto got_pg;
4651
4652 /* Try direct compaction and then allocating */
a9263751 4653 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4654 compact_priority, &compact_result);
56de7263
MG
4655 if (page)
4656 goto got_pg;
75f30861 4657
9083905a
JW
4658 /* Do not loop if specifically requested */
4659 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4660 goto nopage;
9083905a 4661
0a0337e0
MH
4662 /*
4663 * Do not retry costly high order allocations unless they are
dcda9b04 4664 * __GFP_RETRY_MAYFAIL
0a0337e0 4665 */
dcda9b04 4666 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4667 goto nopage;
0a0337e0 4668
0a0337e0 4669 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4670 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4671 goto retry;
4672
33c2d214
MH
4673 /*
4674 * It doesn't make any sense to retry for the compaction if the order-0
4675 * reclaim is not able to make any progress because the current
4676 * implementation of the compaction depends on the sufficient amount
4677 * of free memory (see __compaction_suitable)
4678 */
4679 if (did_some_progress > 0 &&
86a294a8 4680 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4681 compact_result, &compact_priority,
d9436498 4682 &compaction_retries))
33c2d214
MH
4683 goto retry;
4684
902b6281
VB
4685
4686 /* Deal with possible cpuset update races before we start OOM killing */
4687 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4688 goto retry_cpuset;
4689
9083905a
JW
4690 /* Reclaim has failed us, start killing things */
4691 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4692 if (page)
4693 goto got_pg;
4694
9a67f648 4695 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4696 if (tsk_is_oom_victim(current) &&
4697 (alloc_flags == ALLOC_OOM ||
c288983d 4698 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4699 goto nopage;
4700
9083905a 4701 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4702 if (did_some_progress) {
4703 no_progress_loops = 0;
9083905a 4704 goto retry;
0a0337e0 4705 }
9083905a 4706
1da177e4 4707nopage:
902b6281
VB
4708 /* Deal with possible cpuset update races before we fail */
4709 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4710 goto retry_cpuset;
4711
9a67f648
MH
4712 /*
4713 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4714 * we always retry
4715 */
4716 if (gfp_mask & __GFP_NOFAIL) {
4717 /*
4718 * All existing users of the __GFP_NOFAIL are blockable, so warn
4719 * of any new users that actually require GFP_NOWAIT
4720 */
4721 if (WARN_ON_ONCE(!can_direct_reclaim))
4722 goto fail;
4723
4724 /*
4725 * PF_MEMALLOC request from this context is rather bizarre
4726 * because we cannot reclaim anything and only can loop waiting
4727 * for somebody to do a work for us
4728 */
4729 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4730
4731 /*
4732 * non failing costly orders are a hard requirement which we
4733 * are not prepared for much so let's warn about these users
4734 * so that we can identify them and convert them to something
4735 * else.
4736 */
4737 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4738
6c18ba7a
MH
4739 /*
4740 * Help non-failing allocations by giving them access to memory
4741 * reserves but do not use ALLOC_NO_WATERMARKS because this
4742 * could deplete whole memory reserves which would just make
4743 * the situation worse
4744 */
4745 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4746 if (page)
4747 goto got_pg;
4748
9a67f648
MH
4749 cond_resched();
4750 goto retry;
4751 }
4752fail:
a8e99259 4753 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4754 "page allocation failure: order:%u", order);
1da177e4 4755got_pg:
072bb0aa 4756 return page;
1da177e4 4757}
11e33f6a 4758
9cd75558 4759static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4760 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4761 struct alloc_context *ac, gfp_t *alloc_mask,
4762 unsigned int *alloc_flags)
11e33f6a 4763{
97a225e6 4764 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4765 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4766 ac->nodemask = nodemask;
01c0bfe0 4767 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4768
682a3385 4769 if (cpusets_enabled()) {
9cd75558 4770 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4771 if (!ac->nodemask)
4772 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4773 else
4774 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4775 }
4776
d92a8cfc
PZ
4777 fs_reclaim_acquire(gfp_mask);
4778 fs_reclaim_release(gfp_mask);
11e33f6a 4779
d0164adc 4780 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4781
4782 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4783 return false;
11e33f6a 4784
d883c6cf
JK
4785 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4786 *alloc_flags |= ALLOC_CMA;
4787
9cd75558
MG
4788 return true;
4789}
21bb9bd1 4790
9cd75558 4791/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4792static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4793{
c9ab0c4f 4794 /* Dirty zone balancing only done in the fast path */
9cd75558 4795 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4796
e46e7b77
MG
4797 /*
4798 * The preferred zone is used for statistics but crucially it is
4799 * also used as the starting point for the zonelist iterator. It
4800 * may get reset for allocations that ignore memory policies.
4801 */
9cd75558 4802 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4803 ac->highest_zoneidx, ac->nodemask);
9cd75558
MG
4804}
4805
4806/*
4807 * This is the 'heart' of the zoned buddy allocator.
4808 */
4809struct page *
04ec6264
VB
4810__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4811 nodemask_t *nodemask)
9cd75558
MG
4812{
4813 struct page *page;
4814 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4815 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4816 struct alloc_context ac = { };
4817
c63ae43b
MH
4818 /*
4819 * There are several places where we assume that the order value is sane
4820 * so bail out early if the request is out of bound.
4821 */
4822 if (unlikely(order >= MAX_ORDER)) {
4823 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4824 return NULL;
4825 }
4826
9cd75558 4827 gfp_mask &= gfp_allowed_mask;
f19360f0 4828 alloc_mask = gfp_mask;
04ec6264 4829 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4830 return NULL;
4831
a380b40a 4832 finalise_ac(gfp_mask, &ac);
5bb1b169 4833
6bb15450
MG
4834 /*
4835 * Forbid the first pass from falling back to types that fragment
4836 * memory until all local zones are considered.
4837 */
0a79cdad 4838 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4839
5117f45d 4840 /* First allocation attempt */
a9263751 4841 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4842 if (likely(page))
4843 goto out;
11e33f6a 4844
4fcb0971 4845 /*
7dea19f9
MH
4846 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4847 * resp. GFP_NOIO which has to be inherited for all allocation requests
4848 * from a particular context which has been marked by
4849 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4850 */
7dea19f9 4851 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4852 ac.spread_dirty_pages = false;
23f086f9 4853
4741526b
MG
4854 /*
4855 * Restore the original nodemask if it was potentially replaced with
4856 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4857 */
97ce86f9 4858 ac.nodemask = nodemask;
16096c25 4859
4fcb0971 4860 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4861
4fcb0971 4862out:
c4159a75 4863 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4864 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4865 __free_pages(page, order);
4866 page = NULL;
4949148a
VD
4867 }
4868
4fcb0971
MG
4869 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4870
11e33f6a 4871 return page;
1da177e4 4872}
d239171e 4873EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4874
4875/*
9ea9a680
MH
4876 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4877 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4878 * you need to access high mem.
1da177e4 4879 */
920c7a5d 4880unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4881{
945a1113
AM
4882 struct page *page;
4883
9ea9a680 4884 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4885 if (!page)
4886 return 0;
4887 return (unsigned long) page_address(page);
4888}
1da177e4
LT
4889EXPORT_SYMBOL(__get_free_pages);
4890
920c7a5d 4891unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4892{
945a1113 4893 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4894}
1da177e4
LT
4895EXPORT_SYMBOL(get_zeroed_page);
4896
742aa7fb 4897static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4898{
742aa7fb
AL
4899 if (order == 0) /* Via pcp? */
4900 free_unref_page(page);
4901 else
4902 __free_pages_ok(page, order);
1da177e4
LT
4903}
4904
742aa7fb
AL
4905void __free_pages(struct page *page, unsigned int order)
4906{
4907 if (put_page_testzero(page))
4908 free_the_page(page, order);
4909}
1da177e4
LT
4910EXPORT_SYMBOL(__free_pages);
4911
920c7a5d 4912void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4913{
4914 if (addr != 0) {
725d704e 4915 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4916 __free_pages(virt_to_page((void *)addr), order);
4917 }
4918}
4919
4920EXPORT_SYMBOL(free_pages);
4921
b63ae8ca
AD
4922/*
4923 * Page Fragment:
4924 * An arbitrary-length arbitrary-offset area of memory which resides
4925 * within a 0 or higher order page. Multiple fragments within that page
4926 * are individually refcounted, in the page's reference counter.
4927 *
4928 * The page_frag functions below provide a simple allocation framework for
4929 * page fragments. This is used by the network stack and network device
4930 * drivers to provide a backing region of memory for use as either an
4931 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4932 */
2976db80
AD
4933static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4934 gfp_t gfp_mask)
b63ae8ca
AD
4935{
4936 struct page *page = NULL;
4937 gfp_t gfp = gfp_mask;
4938
4939#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4940 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4941 __GFP_NOMEMALLOC;
4942 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4943 PAGE_FRAG_CACHE_MAX_ORDER);
4944 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4945#endif
4946 if (unlikely(!page))
4947 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4948
4949 nc->va = page ? page_address(page) : NULL;
4950
4951 return page;
4952}
4953
2976db80 4954void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4955{
4956 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4957
742aa7fb
AL
4958 if (page_ref_sub_and_test(page, count))
4959 free_the_page(page, compound_order(page));
44fdffd7 4960}
2976db80 4961EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4962
8c2dd3e4
AD
4963void *page_frag_alloc(struct page_frag_cache *nc,
4964 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4965{
4966 unsigned int size = PAGE_SIZE;
4967 struct page *page;
4968 int offset;
4969
4970 if (unlikely(!nc->va)) {
4971refill:
2976db80 4972 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4973 if (!page)
4974 return NULL;
4975
4976#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4977 /* if size can vary use size else just use PAGE_SIZE */
4978 size = nc->size;
4979#endif
4980 /* Even if we own the page, we do not use atomic_set().
4981 * This would break get_page_unless_zero() users.
4982 */
86447726 4983 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4984
4985 /* reset page count bias and offset to start of new frag */
2f064f34 4986 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4987 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4988 nc->offset = size;
4989 }
4990
4991 offset = nc->offset - fragsz;
4992 if (unlikely(offset < 0)) {
4993 page = virt_to_page(nc->va);
4994
fe896d18 4995 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4996 goto refill;
4997
4998#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4999 /* if size can vary use size else just use PAGE_SIZE */
5000 size = nc->size;
5001#endif
5002 /* OK, page count is 0, we can safely set it */
86447726 5003 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5004
5005 /* reset page count bias and offset to start of new frag */
86447726 5006 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5007 offset = size - fragsz;
5008 }
5009
5010 nc->pagecnt_bias--;
5011 nc->offset = offset;
5012
5013 return nc->va + offset;
5014}
8c2dd3e4 5015EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5016
5017/*
5018 * Frees a page fragment allocated out of either a compound or order 0 page.
5019 */
8c2dd3e4 5020void page_frag_free(void *addr)
b63ae8ca
AD
5021{
5022 struct page *page = virt_to_head_page(addr);
5023
742aa7fb
AL
5024 if (unlikely(put_page_testzero(page)))
5025 free_the_page(page, compound_order(page));
b63ae8ca 5026}
8c2dd3e4 5027EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5028
d00181b9
KS
5029static void *make_alloc_exact(unsigned long addr, unsigned int order,
5030 size_t size)
ee85c2e1
AK
5031{
5032 if (addr) {
5033 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5034 unsigned long used = addr + PAGE_ALIGN(size);
5035
5036 split_page(virt_to_page((void *)addr), order);
5037 while (used < alloc_end) {
5038 free_page(used);
5039 used += PAGE_SIZE;
5040 }
5041 }
5042 return (void *)addr;
5043}
5044
2be0ffe2
TT
5045/**
5046 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5047 * @size: the number of bytes to allocate
63931eb9 5048 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5049 *
5050 * This function is similar to alloc_pages(), except that it allocates the
5051 * minimum number of pages to satisfy the request. alloc_pages() can only
5052 * allocate memory in power-of-two pages.
5053 *
5054 * This function is also limited by MAX_ORDER.
5055 *
5056 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5057 *
5058 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5059 */
5060void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5061{
5062 unsigned int order = get_order(size);
5063 unsigned long addr;
5064
63931eb9
VB
5065 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5066 gfp_mask &= ~__GFP_COMP;
5067
2be0ffe2 5068 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5069 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5070}
5071EXPORT_SYMBOL(alloc_pages_exact);
5072
ee85c2e1
AK
5073/**
5074 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5075 * pages on a node.
b5e6ab58 5076 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5077 * @size: the number of bytes to allocate
63931eb9 5078 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5079 *
5080 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5081 * back.
a862f68a
MR
5082 *
5083 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5084 */
e1931811 5085void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5086{
d00181b9 5087 unsigned int order = get_order(size);
63931eb9
VB
5088 struct page *p;
5089
5090 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5091 gfp_mask &= ~__GFP_COMP;
5092
5093 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5094 if (!p)
5095 return NULL;
5096 return make_alloc_exact((unsigned long)page_address(p), order, size);
5097}
ee85c2e1 5098
2be0ffe2
TT
5099/**
5100 * free_pages_exact - release memory allocated via alloc_pages_exact()
5101 * @virt: the value returned by alloc_pages_exact.
5102 * @size: size of allocation, same value as passed to alloc_pages_exact().
5103 *
5104 * Release the memory allocated by a previous call to alloc_pages_exact.
5105 */
5106void free_pages_exact(void *virt, size_t size)
5107{
5108 unsigned long addr = (unsigned long)virt;
5109 unsigned long end = addr + PAGE_ALIGN(size);
5110
5111 while (addr < end) {
5112 free_page(addr);
5113 addr += PAGE_SIZE;
5114 }
5115}
5116EXPORT_SYMBOL(free_pages_exact);
5117
e0fb5815
ZY
5118/**
5119 * nr_free_zone_pages - count number of pages beyond high watermark
5120 * @offset: The zone index of the highest zone
5121 *
a862f68a 5122 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5123 * high watermark within all zones at or below a given zone index. For each
5124 * zone, the number of pages is calculated as:
0e056eb5
MCC
5125 *
5126 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5127 *
5128 * Return: number of pages beyond high watermark.
e0fb5815 5129 */
ebec3862 5130static unsigned long nr_free_zone_pages(int offset)
1da177e4 5131{
dd1a239f 5132 struct zoneref *z;
54a6eb5c
MG
5133 struct zone *zone;
5134
e310fd43 5135 /* Just pick one node, since fallback list is circular */
ebec3862 5136 unsigned long sum = 0;
1da177e4 5137
0e88460d 5138 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5139
54a6eb5c 5140 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5141 unsigned long size = zone_managed_pages(zone);
41858966 5142 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5143 if (size > high)
5144 sum += size - high;
1da177e4
LT
5145 }
5146
5147 return sum;
5148}
5149
e0fb5815
ZY
5150/**
5151 * nr_free_buffer_pages - count number of pages beyond high watermark
5152 *
5153 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5154 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5155 *
5156 * Return: number of pages beyond high watermark within ZONE_DMA and
5157 * ZONE_NORMAL.
1da177e4 5158 */
ebec3862 5159unsigned long nr_free_buffer_pages(void)
1da177e4 5160{
af4ca457 5161 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5162}
c2f1a551 5163EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5164
e0fb5815
ZY
5165/**
5166 * nr_free_pagecache_pages - count number of pages beyond high watermark
5167 *
5168 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5169 * high watermark within all zones.
a862f68a
MR
5170 *
5171 * Return: number of pages beyond high watermark within all zones.
1da177e4 5172 */
ebec3862 5173unsigned long nr_free_pagecache_pages(void)
1da177e4 5174{
2a1e274a 5175 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5176}
08e0f6a9
CL
5177
5178static inline void show_node(struct zone *zone)
1da177e4 5179{
e5adfffc 5180 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5181 printk("Node %d ", zone_to_nid(zone));
1da177e4 5182}
1da177e4 5183
d02bd27b
IR
5184long si_mem_available(void)
5185{
5186 long available;
5187 unsigned long pagecache;
5188 unsigned long wmark_low = 0;
5189 unsigned long pages[NR_LRU_LISTS];
b29940c1 5190 unsigned long reclaimable;
d02bd27b
IR
5191 struct zone *zone;
5192 int lru;
5193
5194 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5195 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5196
5197 for_each_zone(zone)
a9214443 5198 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5199
5200 /*
5201 * Estimate the amount of memory available for userspace allocations,
5202 * without causing swapping.
5203 */
c41f012a 5204 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5205
5206 /*
5207 * Not all the page cache can be freed, otherwise the system will
5208 * start swapping. Assume at least half of the page cache, or the
5209 * low watermark worth of cache, needs to stay.
5210 */
5211 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5212 pagecache -= min(pagecache / 2, wmark_low);
5213 available += pagecache;
5214
5215 /*
b29940c1
VB
5216 * Part of the reclaimable slab and other kernel memory consists of
5217 * items that are in use, and cannot be freed. Cap this estimate at the
5218 * low watermark.
d02bd27b 5219 */
b29940c1
VB
5220 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5221 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5222 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5223
d02bd27b
IR
5224 if (available < 0)
5225 available = 0;
5226 return available;
5227}
5228EXPORT_SYMBOL_GPL(si_mem_available);
5229
1da177e4
LT
5230void si_meminfo(struct sysinfo *val)
5231{
ca79b0c2 5232 val->totalram = totalram_pages();
11fb9989 5233 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5234 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5235 val->bufferram = nr_blockdev_pages();
ca79b0c2 5236 val->totalhigh = totalhigh_pages();
1da177e4 5237 val->freehigh = nr_free_highpages();
1da177e4
LT
5238 val->mem_unit = PAGE_SIZE;
5239}
5240
5241EXPORT_SYMBOL(si_meminfo);
5242
5243#ifdef CONFIG_NUMA
5244void si_meminfo_node(struct sysinfo *val, int nid)
5245{
cdd91a77
JL
5246 int zone_type; /* needs to be signed */
5247 unsigned long managed_pages = 0;
fc2bd799
JK
5248 unsigned long managed_highpages = 0;
5249 unsigned long free_highpages = 0;
1da177e4
LT
5250 pg_data_t *pgdat = NODE_DATA(nid);
5251
cdd91a77 5252 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5253 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5254 val->totalram = managed_pages;
11fb9989 5255 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5256 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5257#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5258 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5259 struct zone *zone = &pgdat->node_zones[zone_type];
5260
5261 if (is_highmem(zone)) {
9705bea5 5262 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5263 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5264 }
5265 }
5266 val->totalhigh = managed_highpages;
5267 val->freehigh = free_highpages;
98d2b0eb 5268#else
fc2bd799
JK
5269 val->totalhigh = managed_highpages;
5270 val->freehigh = free_highpages;
98d2b0eb 5271#endif
1da177e4
LT
5272 val->mem_unit = PAGE_SIZE;
5273}
5274#endif
5275
ddd588b5 5276/*
7bf02ea2
DR
5277 * Determine whether the node should be displayed or not, depending on whether
5278 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5279 */
9af744d7 5280static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5281{
ddd588b5 5282 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5283 return false;
ddd588b5 5284
9af744d7
MH
5285 /*
5286 * no node mask - aka implicit memory numa policy. Do not bother with
5287 * the synchronization - read_mems_allowed_begin - because we do not
5288 * have to be precise here.
5289 */
5290 if (!nodemask)
5291 nodemask = &cpuset_current_mems_allowed;
5292
5293 return !node_isset(nid, *nodemask);
ddd588b5
DR
5294}
5295
1da177e4
LT
5296#define K(x) ((x) << (PAGE_SHIFT-10))
5297
377e4f16
RV
5298static void show_migration_types(unsigned char type)
5299{
5300 static const char types[MIGRATE_TYPES] = {
5301 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5302 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5303 [MIGRATE_RECLAIMABLE] = 'E',
5304 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5305#ifdef CONFIG_CMA
5306 [MIGRATE_CMA] = 'C',
5307#endif
194159fb 5308#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5309 [MIGRATE_ISOLATE] = 'I',
194159fb 5310#endif
377e4f16
RV
5311 };
5312 char tmp[MIGRATE_TYPES + 1];
5313 char *p = tmp;
5314 int i;
5315
5316 for (i = 0; i < MIGRATE_TYPES; i++) {
5317 if (type & (1 << i))
5318 *p++ = types[i];
5319 }
5320
5321 *p = '\0';
1f84a18f 5322 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5323}
5324
1da177e4
LT
5325/*
5326 * Show free area list (used inside shift_scroll-lock stuff)
5327 * We also calculate the percentage fragmentation. We do this by counting the
5328 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5329 *
5330 * Bits in @filter:
5331 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5332 * cpuset.
1da177e4 5333 */
9af744d7 5334void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5335{
d1bfcdb8 5336 unsigned long free_pcp = 0;
c7241913 5337 int cpu;
1da177e4 5338 struct zone *zone;
599d0c95 5339 pg_data_t *pgdat;
1da177e4 5340
ee99c71c 5341 for_each_populated_zone(zone) {
9af744d7 5342 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5343 continue;
d1bfcdb8 5344
761b0677
KK
5345 for_each_online_cpu(cpu)
5346 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5347 }
5348
a731286d
KM
5349 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5350 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5351 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5352 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5353 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5354 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5355 global_node_page_state(NR_ACTIVE_ANON),
5356 global_node_page_state(NR_INACTIVE_ANON),
5357 global_node_page_state(NR_ISOLATED_ANON),
5358 global_node_page_state(NR_ACTIVE_FILE),
5359 global_node_page_state(NR_INACTIVE_FILE),
5360 global_node_page_state(NR_ISOLATED_FILE),
5361 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5362 global_node_page_state(NR_FILE_DIRTY),
5363 global_node_page_state(NR_WRITEBACK),
d507e2eb
JW
5364 global_node_page_state(NR_SLAB_RECLAIMABLE),
5365 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5366 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5367 global_node_page_state(NR_SHMEM),
c41f012a
MH
5368 global_zone_page_state(NR_PAGETABLE),
5369 global_zone_page_state(NR_BOUNCE),
5370 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5371 free_pcp,
c41f012a 5372 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5373
599d0c95 5374 for_each_online_pgdat(pgdat) {
9af744d7 5375 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5376 continue;
5377
599d0c95
MG
5378 printk("Node %d"
5379 " active_anon:%lukB"
5380 " inactive_anon:%lukB"
5381 " active_file:%lukB"
5382 " inactive_file:%lukB"
5383 " unevictable:%lukB"
5384 " isolated(anon):%lukB"
5385 " isolated(file):%lukB"
50658e2e 5386 " mapped:%lukB"
11fb9989
MG
5387 " dirty:%lukB"
5388 " writeback:%lukB"
5389 " shmem:%lukB"
5390#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5391 " shmem_thp: %lukB"
5392 " shmem_pmdmapped: %lukB"
5393 " anon_thp: %lukB"
5394#endif
5395 " writeback_tmp:%lukB"
599d0c95
MG
5396 " all_unreclaimable? %s"
5397 "\n",
5398 pgdat->node_id,
5399 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5400 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5401 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5402 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5403 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5404 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5405 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5406 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5407 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5408 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5409 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5410#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5411 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5412 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5413 * HPAGE_PMD_NR),
5414 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5415#endif
11fb9989 5416 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
c73322d0
JW
5417 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5418 "yes" : "no");
599d0c95
MG
5419 }
5420
ee99c71c 5421 for_each_populated_zone(zone) {
1da177e4
LT
5422 int i;
5423
9af744d7 5424 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5425 continue;
d1bfcdb8
KK
5426
5427 free_pcp = 0;
5428 for_each_online_cpu(cpu)
5429 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5430
1da177e4 5431 show_node(zone);
1f84a18f
JP
5432 printk(KERN_CONT
5433 "%s"
1da177e4
LT
5434 " free:%lukB"
5435 " min:%lukB"
5436 " low:%lukB"
5437 " high:%lukB"
e47b346a 5438 " reserved_highatomic:%luKB"
71c799f4
MK
5439 " active_anon:%lukB"
5440 " inactive_anon:%lukB"
5441 " active_file:%lukB"
5442 " inactive_file:%lukB"
5443 " unevictable:%lukB"
5a1c84b4 5444 " writepending:%lukB"
1da177e4 5445 " present:%lukB"
9feedc9d 5446 " managed:%lukB"
4a0aa73f 5447 " mlocked:%lukB"
c6a7f572 5448 " kernel_stack:%lukB"
628d06a4
ST
5449#ifdef CONFIG_SHADOW_CALL_STACK
5450 " shadow_call_stack:%lukB"
5451#endif
4a0aa73f 5452 " pagetables:%lukB"
4a0aa73f 5453 " bounce:%lukB"
d1bfcdb8
KK
5454 " free_pcp:%lukB"
5455 " local_pcp:%ukB"
d1ce749a 5456 " free_cma:%lukB"
1da177e4
LT
5457 "\n",
5458 zone->name,
88f5acf8 5459 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5460 K(min_wmark_pages(zone)),
5461 K(low_wmark_pages(zone)),
5462 K(high_wmark_pages(zone)),
e47b346a 5463 K(zone->nr_reserved_highatomic),
71c799f4
MK
5464 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5465 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5466 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5467 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5468 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5469 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5470 K(zone->present_pages),
9705bea5 5471 K(zone_managed_pages(zone)),
4a0aa73f 5472 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5473 zone_page_state(zone, NR_KERNEL_STACK_KB),
628d06a4
ST
5474#ifdef CONFIG_SHADOW_CALL_STACK
5475 zone_page_state(zone, NR_KERNEL_SCS_KB),
5476#endif
4a0aa73f 5477 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5478 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5479 K(free_pcp),
5480 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5481 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5482 printk("lowmem_reserve[]:");
5483 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5484 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5485 printk(KERN_CONT "\n");
1da177e4
LT
5486 }
5487
ee99c71c 5488 for_each_populated_zone(zone) {
d00181b9
KS
5489 unsigned int order;
5490 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5491 unsigned char types[MAX_ORDER];
1da177e4 5492
9af744d7 5493 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5494 continue;
1da177e4 5495 show_node(zone);
1f84a18f 5496 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5497
5498 spin_lock_irqsave(&zone->lock, flags);
5499 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5500 struct free_area *area = &zone->free_area[order];
5501 int type;
5502
5503 nr[order] = area->nr_free;
8f9de51a 5504 total += nr[order] << order;
377e4f16
RV
5505
5506 types[order] = 0;
5507 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5508 if (!free_area_empty(area, type))
377e4f16
RV
5509 types[order] |= 1 << type;
5510 }
1da177e4
LT
5511 }
5512 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5513 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5514 printk(KERN_CONT "%lu*%lukB ",
5515 nr[order], K(1UL) << order);
377e4f16
RV
5516 if (nr[order])
5517 show_migration_types(types[order]);
5518 }
1f84a18f 5519 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5520 }
5521
949f7ec5
DR
5522 hugetlb_show_meminfo();
5523
11fb9989 5524 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5525
1da177e4
LT
5526 show_swap_cache_info();
5527}
5528
19770b32
MG
5529static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5530{
5531 zoneref->zone = zone;
5532 zoneref->zone_idx = zone_idx(zone);
5533}
5534
1da177e4
LT
5535/*
5536 * Builds allocation fallback zone lists.
1a93205b
CL
5537 *
5538 * Add all populated zones of a node to the zonelist.
1da177e4 5539 */
9d3be21b 5540static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5541{
1a93205b 5542 struct zone *zone;
bc732f1d 5543 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5544 int nr_zones = 0;
02a68a5e
CL
5545
5546 do {
2f6726e5 5547 zone_type--;
070f8032 5548 zone = pgdat->node_zones + zone_type;
6aa303de 5549 if (managed_zone(zone)) {
9d3be21b 5550 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5551 check_highest_zone(zone_type);
1da177e4 5552 }
2f6726e5 5553 } while (zone_type);
bc732f1d 5554
070f8032 5555 return nr_zones;
1da177e4
LT
5556}
5557
5558#ifdef CONFIG_NUMA
f0c0b2b8
KH
5559
5560static int __parse_numa_zonelist_order(char *s)
5561{
c9bff3ee
MH
5562 /*
5563 * We used to support different zonlists modes but they turned
5564 * out to be just not useful. Let's keep the warning in place
5565 * if somebody still use the cmd line parameter so that we do
5566 * not fail it silently
5567 */
5568 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5569 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5570 return -EINVAL;
5571 }
5572 return 0;
5573}
5574
5575static __init int setup_numa_zonelist_order(char *s)
5576{
ecb256f8
VL
5577 if (!s)
5578 return 0;
5579
c9bff3ee 5580 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5581}
5582early_param("numa_zonelist_order", setup_numa_zonelist_order);
5583
c9bff3ee
MH
5584char numa_zonelist_order[] = "Node";
5585
f0c0b2b8
KH
5586/*
5587 * sysctl handler for numa_zonelist_order
5588 */
cccad5b9 5589int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5590 void __user *buffer, size_t *length,
f0c0b2b8
KH
5591 loff_t *ppos)
5592{
c9bff3ee 5593 char *str;
f0c0b2b8
KH
5594 int ret;
5595
c9bff3ee
MH
5596 if (!write)
5597 return proc_dostring(table, write, buffer, length, ppos);
5598 str = memdup_user_nul(buffer, 16);
5599 if (IS_ERR(str))
5600 return PTR_ERR(str);
dacbde09 5601
c9bff3ee
MH
5602 ret = __parse_numa_zonelist_order(str);
5603 kfree(str);
443c6f14 5604 return ret;
f0c0b2b8
KH
5605}
5606
5607
62bc62a8 5608#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5609static int node_load[MAX_NUMNODES];
5610
1da177e4 5611/**
4dc3b16b 5612 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5613 * @node: node whose fallback list we're appending
5614 * @used_node_mask: nodemask_t of already used nodes
5615 *
5616 * We use a number of factors to determine which is the next node that should
5617 * appear on a given node's fallback list. The node should not have appeared
5618 * already in @node's fallback list, and it should be the next closest node
5619 * according to the distance array (which contains arbitrary distance values
5620 * from each node to each node in the system), and should also prefer nodes
5621 * with no CPUs, since presumably they'll have very little allocation pressure
5622 * on them otherwise.
a862f68a
MR
5623 *
5624 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5625 */
f0c0b2b8 5626static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5627{
4cf808eb 5628 int n, val;
1da177e4 5629 int min_val = INT_MAX;
00ef2d2f 5630 int best_node = NUMA_NO_NODE;
a70f7302 5631 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5632
4cf808eb
LT
5633 /* Use the local node if we haven't already */
5634 if (!node_isset(node, *used_node_mask)) {
5635 node_set(node, *used_node_mask);
5636 return node;
5637 }
1da177e4 5638
4b0ef1fe 5639 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5640
5641 /* Don't want a node to appear more than once */
5642 if (node_isset(n, *used_node_mask))
5643 continue;
5644
1da177e4
LT
5645 /* Use the distance array to find the distance */
5646 val = node_distance(node, n);
5647
4cf808eb
LT
5648 /* Penalize nodes under us ("prefer the next node") */
5649 val += (n < node);
5650
1da177e4 5651 /* Give preference to headless and unused nodes */
a70f7302
RR
5652 tmp = cpumask_of_node(n);
5653 if (!cpumask_empty(tmp))
1da177e4
LT
5654 val += PENALTY_FOR_NODE_WITH_CPUS;
5655
5656 /* Slight preference for less loaded node */
5657 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5658 val += node_load[n];
5659
5660 if (val < min_val) {
5661 min_val = val;
5662 best_node = n;
5663 }
5664 }
5665
5666 if (best_node >= 0)
5667 node_set(best_node, *used_node_mask);
5668
5669 return best_node;
5670}
5671
f0c0b2b8
KH
5672
5673/*
5674 * Build zonelists ordered by node and zones within node.
5675 * This results in maximum locality--normal zone overflows into local
5676 * DMA zone, if any--but risks exhausting DMA zone.
5677 */
9d3be21b
MH
5678static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5679 unsigned nr_nodes)
1da177e4 5680{
9d3be21b
MH
5681 struct zoneref *zonerefs;
5682 int i;
5683
5684 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5685
5686 for (i = 0; i < nr_nodes; i++) {
5687 int nr_zones;
5688
5689 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5690
9d3be21b
MH
5691 nr_zones = build_zonerefs_node(node, zonerefs);
5692 zonerefs += nr_zones;
5693 }
5694 zonerefs->zone = NULL;
5695 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5696}
5697
523b9458
CL
5698/*
5699 * Build gfp_thisnode zonelists
5700 */
5701static void build_thisnode_zonelists(pg_data_t *pgdat)
5702{
9d3be21b
MH
5703 struct zoneref *zonerefs;
5704 int nr_zones;
523b9458 5705
9d3be21b
MH
5706 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5707 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5708 zonerefs += nr_zones;
5709 zonerefs->zone = NULL;
5710 zonerefs->zone_idx = 0;
523b9458
CL
5711}
5712
f0c0b2b8
KH
5713/*
5714 * Build zonelists ordered by zone and nodes within zones.
5715 * This results in conserving DMA zone[s] until all Normal memory is
5716 * exhausted, but results in overflowing to remote node while memory
5717 * may still exist in local DMA zone.
5718 */
f0c0b2b8 5719
f0c0b2b8
KH
5720static void build_zonelists(pg_data_t *pgdat)
5721{
9d3be21b
MH
5722 static int node_order[MAX_NUMNODES];
5723 int node, load, nr_nodes = 0;
d0ddf49b 5724 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5725 int local_node, prev_node;
1da177e4
LT
5726
5727 /* NUMA-aware ordering of nodes */
5728 local_node = pgdat->node_id;
62bc62a8 5729 load = nr_online_nodes;
1da177e4 5730 prev_node = local_node;
f0c0b2b8 5731
f0c0b2b8 5732 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5733 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5734 /*
5735 * We don't want to pressure a particular node.
5736 * So adding penalty to the first node in same
5737 * distance group to make it round-robin.
5738 */
957f822a
DR
5739 if (node_distance(local_node, node) !=
5740 node_distance(local_node, prev_node))
f0c0b2b8
KH
5741 node_load[node] = load;
5742
9d3be21b 5743 node_order[nr_nodes++] = node;
1da177e4
LT
5744 prev_node = node;
5745 load--;
1da177e4 5746 }
523b9458 5747
9d3be21b 5748 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5749 build_thisnode_zonelists(pgdat);
1da177e4
LT
5750}
5751
7aac7898
LS
5752#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5753/*
5754 * Return node id of node used for "local" allocations.
5755 * I.e., first node id of first zone in arg node's generic zonelist.
5756 * Used for initializing percpu 'numa_mem', which is used primarily
5757 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5758 */
5759int local_memory_node(int node)
5760{
c33d6c06 5761 struct zoneref *z;
7aac7898 5762
c33d6c06 5763 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5764 gfp_zone(GFP_KERNEL),
c33d6c06 5765 NULL);
c1093b74 5766 return zone_to_nid(z->zone);
7aac7898
LS
5767}
5768#endif
f0c0b2b8 5769
6423aa81
JK
5770static void setup_min_unmapped_ratio(void);
5771static void setup_min_slab_ratio(void);
1da177e4
LT
5772#else /* CONFIG_NUMA */
5773
f0c0b2b8 5774static void build_zonelists(pg_data_t *pgdat)
1da177e4 5775{
19655d34 5776 int node, local_node;
9d3be21b
MH
5777 struct zoneref *zonerefs;
5778 int nr_zones;
1da177e4
LT
5779
5780 local_node = pgdat->node_id;
1da177e4 5781
9d3be21b
MH
5782 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5783 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5784 zonerefs += nr_zones;
1da177e4 5785
54a6eb5c
MG
5786 /*
5787 * Now we build the zonelist so that it contains the zones
5788 * of all the other nodes.
5789 * We don't want to pressure a particular node, so when
5790 * building the zones for node N, we make sure that the
5791 * zones coming right after the local ones are those from
5792 * node N+1 (modulo N)
5793 */
5794 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5795 if (!node_online(node))
5796 continue;
9d3be21b
MH
5797 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5798 zonerefs += nr_zones;
1da177e4 5799 }
54a6eb5c
MG
5800 for (node = 0; node < local_node; node++) {
5801 if (!node_online(node))
5802 continue;
9d3be21b
MH
5803 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5804 zonerefs += nr_zones;
54a6eb5c
MG
5805 }
5806
9d3be21b
MH
5807 zonerefs->zone = NULL;
5808 zonerefs->zone_idx = 0;
1da177e4
LT
5809}
5810
5811#endif /* CONFIG_NUMA */
5812
99dcc3e5
CL
5813/*
5814 * Boot pageset table. One per cpu which is going to be used for all
5815 * zones and all nodes. The parameters will be set in such a way
5816 * that an item put on a list will immediately be handed over to
5817 * the buddy list. This is safe since pageset manipulation is done
5818 * with interrupts disabled.
5819 *
5820 * The boot_pagesets must be kept even after bootup is complete for
5821 * unused processors and/or zones. They do play a role for bootstrapping
5822 * hotplugged processors.
5823 *
5824 * zoneinfo_show() and maybe other functions do
5825 * not check if the processor is online before following the pageset pointer.
5826 * Other parts of the kernel may not check if the zone is available.
5827 */
5828static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5829static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5830static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5831
11cd8638 5832static void __build_all_zonelists(void *data)
1da177e4 5833{
6811378e 5834 int nid;
afb6ebb3 5835 int __maybe_unused cpu;
9adb62a5 5836 pg_data_t *self = data;
b93e0f32
MH
5837 static DEFINE_SPINLOCK(lock);
5838
5839 spin_lock(&lock);
9276b1bc 5840
7f9cfb31
BL
5841#ifdef CONFIG_NUMA
5842 memset(node_load, 0, sizeof(node_load));
5843#endif
9adb62a5 5844
c1152583
WY
5845 /*
5846 * This node is hotadded and no memory is yet present. So just
5847 * building zonelists is fine - no need to touch other nodes.
5848 */
9adb62a5
JL
5849 if (self && !node_online(self->node_id)) {
5850 build_zonelists(self);
c1152583
WY
5851 } else {
5852 for_each_online_node(nid) {
5853 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5854
c1152583
WY
5855 build_zonelists(pgdat);
5856 }
99dcc3e5 5857
7aac7898
LS
5858#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5859 /*
5860 * We now know the "local memory node" for each node--
5861 * i.e., the node of the first zone in the generic zonelist.
5862 * Set up numa_mem percpu variable for on-line cpus. During
5863 * boot, only the boot cpu should be on-line; we'll init the
5864 * secondary cpus' numa_mem as they come on-line. During
5865 * node/memory hotplug, we'll fixup all on-line cpus.
5866 */
d9c9a0b9 5867 for_each_online_cpu(cpu)
7aac7898 5868 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5869#endif
d9c9a0b9 5870 }
b93e0f32
MH
5871
5872 spin_unlock(&lock);
6811378e
YG
5873}
5874
061f67bc
RV
5875static noinline void __init
5876build_all_zonelists_init(void)
5877{
afb6ebb3
MH
5878 int cpu;
5879
061f67bc 5880 __build_all_zonelists(NULL);
afb6ebb3
MH
5881
5882 /*
5883 * Initialize the boot_pagesets that are going to be used
5884 * for bootstrapping processors. The real pagesets for
5885 * each zone will be allocated later when the per cpu
5886 * allocator is available.
5887 *
5888 * boot_pagesets are used also for bootstrapping offline
5889 * cpus if the system is already booted because the pagesets
5890 * are needed to initialize allocators on a specific cpu too.
5891 * F.e. the percpu allocator needs the page allocator which
5892 * needs the percpu allocator in order to allocate its pagesets
5893 * (a chicken-egg dilemma).
5894 */
5895 for_each_possible_cpu(cpu)
5896 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5897
061f67bc
RV
5898 mminit_verify_zonelist();
5899 cpuset_init_current_mems_allowed();
5900}
5901
4eaf3f64 5902/*
4eaf3f64 5903 * unless system_state == SYSTEM_BOOTING.
061f67bc 5904 *
72675e13 5905 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5906 * [protected by SYSTEM_BOOTING].
4eaf3f64 5907 */
72675e13 5908void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5909{
5910 if (system_state == SYSTEM_BOOTING) {
061f67bc 5911 build_all_zonelists_init();
6811378e 5912 } else {
11cd8638 5913 __build_all_zonelists(pgdat);
6811378e
YG
5914 /* cpuset refresh routine should be here */
5915 }
bd1e22b8 5916 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5917 /*
5918 * Disable grouping by mobility if the number of pages in the
5919 * system is too low to allow the mechanism to work. It would be
5920 * more accurate, but expensive to check per-zone. This check is
5921 * made on memory-hotadd so a system can start with mobility
5922 * disabled and enable it later
5923 */
d9c23400 5924 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5925 page_group_by_mobility_disabled = 1;
5926 else
5927 page_group_by_mobility_disabled = 0;
5928
ce0725f7 5929 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5930 nr_online_nodes,
756a025f
JP
5931 page_group_by_mobility_disabled ? "off" : "on",
5932 vm_total_pages);
f0c0b2b8 5933#ifdef CONFIG_NUMA
f88dfff5 5934 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5935#endif
1da177e4
LT
5936}
5937
a9a9e77f
PT
5938/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5939static bool __meminit
5940overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5941{
a9a9e77f
PT
5942 static struct memblock_region *r;
5943
5944 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5945 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5946 for_each_memblock(memory, r) {
5947 if (*pfn < memblock_region_memory_end_pfn(r))
5948 break;
5949 }
5950 }
5951 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5952 memblock_is_mirror(r)) {
5953 *pfn = memblock_region_memory_end_pfn(r);
5954 return true;
5955 }
5956 }
a9a9e77f
PT
5957 return false;
5958}
5959
1da177e4
LT
5960/*
5961 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5962 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5963 * done. Non-atomic initialization, single-pass.
5964 */
c09b4240 5965void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5966 unsigned long start_pfn, enum memmap_context context,
5967 struct vmem_altmap *altmap)
1da177e4 5968{
a9a9e77f 5969 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5970 struct page *page;
1da177e4 5971
22b31eec
HD
5972 if (highest_memmap_pfn < end_pfn - 1)
5973 highest_memmap_pfn = end_pfn - 1;
5974
966cf44f 5975#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5976 /*
5977 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5978 * memory. We limit the total number of pages to initialize to just
5979 * those that might contain the memory mapping. We will defer the
5980 * ZONE_DEVICE page initialization until after we have released
5981 * the hotplug lock.
4b94ffdc 5982 */
966cf44f
AD
5983 if (zone == ZONE_DEVICE) {
5984 if (!altmap)
5985 return;
5986
5987 if (start_pfn == altmap->base_pfn)
5988 start_pfn += altmap->reserve;
5989 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5990 }
5991#endif
4b94ffdc 5992
948c436e 5993 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 5994 /*
b72d0ffb
AM
5995 * There can be holes in boot-time mem_map[]s handed to this
5996 * function. They do not exist on hotplugged memory.
a2f3aa02 5997 */
a9a9e77f 5998 if (context == MEMMAP_EARLY) {
a9a9e77f
PT
5999 if (overlap_memmap_init(zone, &pfn))
6000 continue;
6001 if (defer_init(nid, pfn, end_pfn))
6002 break;
a2f3aa02 6003 }
ac5d2539 6004
d0dc12e8
PT
6005 page = pfn_to_page(pfn);
6006 __init_single_page(page, pfn, zone, nid);
6007 if (context == MEMMAP_HOTPLUG)
d483da5b 6008 __SetPageReserved(page);
d0dc12e8 6009
ac5d2539
MG
6010 /*
6011 * Mark the block movable so that blocks are reserved for
6012 * movable at startup. This will force kernel allocations
6013 * to reserve their blocks rather than leaking throughout
6014 * the address space during boot when many long-lived
974a786e 6015 * kernel allocations are made.
ac5d2539
MG
6016 *
6017 * bitmap is created for zone's valid pfn range. but memmap
6018 * can be created for invalid pages (for alignment)
6019 * check here not to call set_pageblock_migratetype() against
6020 * pfn out of zone.
6021 */
6022 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 6023 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 6024 cond_resched();
ac5d2539 6025 }
948c436e 6026 pfn++;
1da177e4
LT
6027 }
6028}
6029
966cf44f
AD
6030#ifdef CONFIG_ZONE_DEVICE
6031void __ref memmap_init_zone_device(struct zone *zone,
6032 unsigned long start_pfn,
1f8d75c1 6033 unsigned long nr_pages,
966cf44f
AD
6034 struct dev_pagemap *pgmap)
6035{
1f8d75c1 6036 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6037 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6038 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6039 unsigned long zone_idx = zone_idx(zone);
6040 unsigned long start = jiffies;
6041 int nid = pgdat->node_id;
6042
46d945ae 6043 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6044 return;
6045
6046 /*
6047 * The call to memmap_init_zone should have already taken care
6048 * of the pages reserved for the memmap, so we can just jump to
6049 * the end of that region and start processing the device pages.
6050 */
514caf23 6051 if (altmap) {
966cf44f 6052 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6053 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6054 }
6055
6056 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6057 struct page *page = pfn_to_page(pfn);
6058
6059 __init_single_page(page, pfn, zone_idx, nid);
6060
6061 /*
6062 * Mark page reserved as it will need to wait for onlining
6063 * phase for it to be fully associated with a zone.
6064 *
6065 * We can use the non-atomic __set_bit operation for setting
6066 * the flag as we are still initializing the pages.
6067 */
6068 __SetPageReserved(page);
6069
6070 /*
8a164fef
CH
6071 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6072 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6073 * ever freed or placed on a driver-private list.
966cf44f
AD
6074 */
6075 page->pgmap = pgmap;
8a164fef 6076 page->zone_device_data = NULL;
966cf44f
AD
6077
6078 /*
6079 * Mark the block movable so that blocks are reserved for
6080 * movable at startup. This will force kernel allocations
6081 * to reserve their blocks rather than leaking throughout
6082 * the address space during boot when many long-lived
6083 * kernel allocations are made.
6084 *
6085 * bitmap is created for zone's valid pfn range. but memmap
6086 * can be created for invalid pages (for alignment)
6087 * check here not to call set_pageblock_migratetype() against
6088 * pfn out of zone.
6089 *
6090 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 6091 * because this is done early in section_activate()
966cf44f
AD
6092 */
6093 if (!(pfn & (pageblock_nr_pages - 1))) {
6094 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6095 cond_resched();
6096 }
6097 }
6098
fdc029b1 6099 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6100 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6101}
6102
6103#endif
1e548deb 6104static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6105{
7aeb09f9 6106 unsigned int order, t;
b2a0ac88
MG
6107 for_each_migratetype_order(order, t) {
6108 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6109 zone->free_area[order].nr_free = 0;
6110 }
6111}
6112
dfb3ccd0 6113void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6114 unsigned long zone,
6115 unsigned long range_start_pfn)
dfb3ccd0 6116{
73a6e474
BH
6117 unsigned long start_pfn, end_pfn;
6118 unsigned long range_end_pfn = range_start_pfn + size;
6119 int i;
6120
6121 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6122 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6123 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6124
6125 if (end_pfn > start_pfn) {
6126 size = end_pfn - start_pfn;
6127 memmap_init_zone(size, nid, zone, start_pfn,
6128 MEMMAP_EARLY, NULL);
6129 }
6130 }
dfb3ccd0 6131}
1da177e4 6132
7cd2b0a3 6133static int zone_batchsize(struct zone *zone)
e7c8d5c9 6134{
3a6be87f 6135#ifdef CONFIG_MMU
e7c8d5c9
CL
6136 int batch;
6137
6138 /*
6139 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6140 * size of the zone.
e7c8d5c9 6141 */
9705bea5 6142 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6143 /* But no more than a meg. */
6144 if (batch * PAGE_SIZE > 1024 * 1024)
6145 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6146 batch /= 4; /* We effectively *= 4 below */
6147 if (batch < 1)
6148 batch = 1;
6149
6150 /*
0ceaacc9
NP
6151 * Clamp the batch to a 2^n - 1 value. Having a power
6152 * of 2 value was found to be more likely to have
6153 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6154 *
0ceaacc9
NP
6155 * For example if 2 tasks are alternately allocating
6156 * batches of pages, one task can end up with a lot
6157 * of pages of one half of the possible page colors
6158 * and the other with pages of the other colors.
e7c8d5c9 6159 */
9155203a 6160 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6161
e7c8d5c9 6162 return batch;
3a6be87f
DH
6163
6164#else
6165 /* The deferral and batching of frees should be suppressed under NOMMU
6166 * conditions.
6167 *
6168 * The problem is that NOMMU needs to be able to allocate large chunks
6169 * of contiguous memory as there's no hardware page translation to
6170 * assemble apparent contiguous memory from discontiguous pages.
6171 *
6172 * Queueing large contiguous runs of pages for batching, however,
6173 * causes the pages to actually be freed in smaller chunks. As there
6174 * can be a significant delay between the individual batches being
6175 * recycled, this leads to the once large chunks of space being
6176 * fragmented and becoming unavailable for high-order allocations.
6177 */
6178 return 0;
6179#endif
e7c8d5c9
CL
6180}
6181
8d7a8fa9
CS
6182/*
6183 * pcp->high and pcp->batch values are related and dependent on one another:
6184 * ->batch must never be higher then ->high.
6185 * The following function updates them in a safe manner without read side
6186 * locking.
6187 *
6188 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6189 * those fields changing asynchronously (acording the the above rule).
6190 *
6191 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6192 * outside of boot time (or some other assurance that no concurrent updaters
6193 * exist).
6194 */
6195static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6196 unsigned long batch)
6197{
6198 /* start with a fail safe value for batch */
6199 pcp->batch = 1;
6200 smp_wmb();
6201
6202 /* Update high, then batch, in order */
6203 pcp->high = high;
6204 smp_wmb();
6205
6206 pcp->batch = batch;
6207}
6208
3664033c 6209/* a companion to pageset_set_high() */
4008bab7
CS
6210static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6211{
8d7a8fa9 6212 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6213}
6214
88c90dbc 6215static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6216{
6217 struct per_cpu_pages *pcp;
5f8dcc21 6218 int migratetype;
2caaad41 6219
1c6fe946
MD
6220 memset(p, 0, sizeof(*p));
6221
3dfa5721 6222 pcp = &p->pcp;
5f8dcc21
MG
6223 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6224 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6225}
6226
88c90dbc
CS
6227static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6228{
6229 pageset_init(p);
6230 pageset_set_batch(p, batch);
6231}
6232
8ad4b1fb 6233/*
3664033c 6234 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6235 * to the value high for the pageset p.
6236 */
3664033c 6237static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6238 unsigned long high)
6239{
8d7a8fa9
CS
6240 unsigned long batch = max(1UL, high / 4);
6241 if ((high / 4) > (PAGE_SHIFT * 8))
6242 batch = PAGE_SHIFT * 8;
8ad4b1fb 6243
8d7a8fa9 6244 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6245}
6246
7cd2b0a3
DR
6247static void pageset_set_high_and_batch(struct zone *zone,
6248 struct per_cpu_pageset *pcp)
56cef2b8 6249{
56cef2b8 6250 if (percpu_pagelist_fraction)
3664033c 6251 pageset_set_high(pcp,
9705bea5 6252 (zone_managed_pages(zone) /
56cef2b8
CS
6253 percpu_pagelist_fraction));
6254 else
6255 pageset_set_batch(pcp, zone_batchsize(zone));
6256}
6257
169f6c19
CS
6258static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6259{
6260 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6261
6262 pageset_init(pcp);
6263 pageset_set_high_and_batch(zone, pcp);
6264}
6265
72675e13 6266void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6267{
6268 int cpu;
319774e2 6269 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6270 for_each_possible_cpu(cpu)
6271 zone_pageset_init(zone, cpu);
319774e2
WF
6272}
6273
2caaad41 6274/*
99dcc3e5
CL
6275 * Allocate per cpu pagesets and initialize them.
6276 * Before this call only boot pagesets were available.
e7c8d5c9 6277 */
99dcc3e5 6278void __init setup_per_cpu_pageset(void)
e7c8d5c9 6279{
b4911ea2 6280 struct pglist_data *pgdat;
99dcc3e5 6281 struct zone *zone;
b418a0f9 6282 int __maybe_unused cpu;
e7c8d5c9 6283
319774e2
WF
6284 for_each_populated_zone(zone)
6285 setup_zone_pageset(zone);
b4911ea2 6286
b418a0f9
SD
6287#ifdef CONFIG_NUMA
6288 /*
6289 * Unpopulated zones continue using the boot pagesets.
6290 * The numa stats for these pagesets need to be reset.
6291 * Otherwise, they will end up skewing the stats of
6292 * the nodes these zones are associated with.
6293 */
6294 for_each_possible_cpu(cpu) {
6295 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6296 memset(pcp->vm_numa_stat_diff, 0,
6297 sizeof(pcp->vm_numa_stat_diff));
6298 }
6299#endif
6300
b4911ea2
MG
6301 for_each_online_pgdat(pgdat)
6302 pgdat->per_cpu_nodestats =
6303 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6304}
6305
c09b4240 6306static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6307{
99dcc3e5
CL
6308 /*
6309 * per cpu subsystem is not up at this point. The following code
6310 * relies on the ability of the linker to provide the
6311 * offset of a (static) per cpu variable into the per cpu area.
6312 */
6313 zone->pageset = &boot_pageset;
ed8ece2e 6314
b38a8725 6315 if (populated_zone(zone))
99dcc3e5
CL
6316 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6317 zone->name, zone->present_pages,
6318 zone_batchsize(zone));
ed8ece2e
DH
6319}
6320
dc0bbf3b 6321void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6322 unsigned long zone_start_pfn,
b171e409 6323 unsigned long size)
ed8ece2e
DH
6324{
6325 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6326 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6327
8f416836
WY
6328 if (zone_idx > pgdat->nr_zones)
6329 pgdat->nr_zones = zone_idx;
ed8ece2e 6330
ed8ece2e
DH
6331 zone->zone_start_pfn = zone_start_pfn;
6332
708614e6
MG
6333 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6334 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6335 pgdat->node_id,
6336 (unsigned long)zone_idx(zone),
6337 zone_start_pfn, (zone_start_pfn + size));
6338
1e548deb 6339 zone_init_free_lists(zone);
9dcb8b68 6340 zone->initialized = 1;
ed8ece2e
DH
6341}
6342
c713216d
MG
6343/**
6344 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6345 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6346 *
7d018176
ZZ
6347 * If an architecture guarantees that all ranges registered contain no holes and may
6348 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6349 */
6350void __init sparse_memory_present_with_active_regions(int nid)
6351{
c13291a5
TH
6352 unsigned long start_pfn, end_pfn;
6353 int i, this_nid;
c713216d 6354
c13291a5
TH
6355 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6356 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6357}
6358
6359/**
6360 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6361 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6362 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6363 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6364 *
6365 * It returns the start and end page frame of a node based on information
7d018176 6366 * provided by memblock_set_node(). If called for a node
c713216d 6367 * with no available memory, a warning is printed and the start and end
88ca3b94 6368 * PFNs will be 0.
c713216d 6369 */
bbe5d993 6370void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6371 unsigned long *start_pfn, unsigned long *end_pfn)
6372{
c13291a5 6373 unsigned long this_start_pfn, this_end_pfn;
c713216d 6374 int i;
c13291a5 6375
c713216d
MG
6376 *start_pfn = -1UL;
6377 *end_pfn = 0;
6378
c13291a5
TH
6379 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6380 *start_pfn = min(*start_pfn, this_start_pfn);
6381 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6382 }
6383
633c0666 6384 if (*start_pfn == -1UL)
c713216d 6385 *start_pfn = 0;
c713216d
MG
6386}
6387
2a1e274a
MG
6388/*
6389 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6390 * assumption is made that zones within a node are ordered in monotonic
6391 * increasing memory addresses so that the "highest" populated zone is used
6392 */
b69a7288 6393static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6394{
6395 int zone_index;
6396 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6397 if (zone_index == ZONE_MOVABLE)
6398 continue;
6399
6400 if (arch_zone_highest_possible_pfn[zone_index] >
6401 arch_zone_lowest_possible_pfn[zone_index])
6402 break;
6403 }
6404
6405 VM_BUG_ON(zone_index == -1);
6406 movable_zone = zone_index;
6407}
6408
6409/*
6410 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6411 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6412 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6413 * in each node depending on the size of each node and how evenly kernelcore
6414 * is distributed. This helper function adjusts the zone ranges
6415 * provided by the architecture for a given node by using the end of the
6416 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6417 * zones within a node are in order of monotonic increases memory addresses
6418 */
bbe5d993 6419static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6420 unsigned long zone_type,
6421 unsigned long node_start_pfn,
6422 unsigned long node_end_pfn,
6423 unsigned long *zone_start_pfn,
6424 unsigned long *zone_end_pfn)
6425{
6426 /* Only adjust if ZONE_MOVABLE is on this node */
6427 if (zone_movable_pfn[nid]) {
6428 /* Size ZONE_MOVABLE */
6429 if (zone_type == ZONE_MOVABLE) {
6430 *zone_start_pfn = zone_movable_pfn[nid];
6431 *zone_end_pfn = min(node_end_pfn,
6432 arch_zone_highest_possible_pfn[movable_zone]);
6433
e506b996
XQ
6434 /* Adjust for ZONE_MOVABLE starting within this range */
6435 } else if (!mirrored_kernelcore &&
6436 *zone_start_pfn < zone_movable_pfn[nid] &&
6437 *zone_end_pfn > zone_movable_pfn[nid]) {
6438 *zone_end_pfn = zone_movable_pfn[nid];
6439
2a1e274a
MG
6440 /* Check if this whole range is within ZONE_MOVABLE */
6441 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6442 *zone_start_pfn = *zone_end_pfn;
6443 }
6444}
6445
c713216d
MG
6446/*
6447 * Return the number of pages a zone spans in a node, including holes
6448 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6449 */
bbe5d993 6450static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6451 unsigned long zone_type,
7960aedd
ZY
6452 unsigned long node_start_pfn,
6453 unsigned long node_end_pfn,
d91749c1 6454 unsigned long *zone_start_pfn,
854e8848 6455 unsigned long *zone_end_pfn)
c713216d 6456{
299c83dc
LF
6457 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6458 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6459 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6460 if (!node_start_pfn && !node_end_pfn)
6461 return 0;
6462
7960aedd 6463 /* Get the start and end of the zone */
299c83dc
LF
6464 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6465 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6466 adjust_zone_range_for_zone_movable(nid, zone_type,
6467 node_start_pfn, node_end_pfn,
d91749c1 6468 zone_start_pfn, zone_end_pfn);
c713216d
MG
6469
6470 /* Check that this node has pages within the zone's required range */
d91749c1 6471 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6472 return 0;
6473
6474 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6475 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6476 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6477
6478 /* Return the spanned pages */
d91749c1 6479 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6480}
6481
6482/*
6483 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6484 * then all holes in the requested range will be accounted for.
c713216d 6485 */
bbe5d993 6486unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6487 unsigned long range_start_pfn,
6488 unsigned long range_end_pfn)
6489{
96e907d1
TH
6490 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6491 unsigned long start_pfn, end_pfn;
6492 int i;
c713216d 6493
96e907d1
TH
6494 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6495 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6496 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6497 nr_absent -= end_pfn - start_pfn;
c713216d 6498 }
96e907d1 6499 return nr_absent;
c713216d
MG
6500}
6501
6502/**
6503 * absent_pages_in_range - Return number of page frames in holes within a range
6504 * @start_pfn: The start PFN to start searching for holes
6505 * @end_pfn: The end PFN to stop searching for holes
6506 *
a862f68a 6507 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6508 */
6509unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6510 unsigned long end_pfn)
6511{
6512 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6513}
6514
6515/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6516static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6517 unsigned long zone_type,
7960aedd 6518 unsigned long node_start_pfn,
854e8848 6519 unsigned long node_end_pfn)
c713216d 6520{
96e907d1
TH
6521 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6522 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6523 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6524 unsigned long nr_absent;
9c7cd687 6525
b5685e92 6526 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6527 if (!node_start_pfn && !node_end_pfn)
6528 return 0;
6529
96e907d1
TH
6530 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6531 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6532
2a1e274a
MG
6533 adjust_zone_range_for_zone_movable(nid, zone_type,
6534 node_start_pfn, node_end_pfn,
6535 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6536 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6537
6538 /*
6539 * ZONE_MOVABLE handling.
6540 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6541 * and vice versa.
6542 */
e506b996
XQ
6543 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6544 unsigned long start_pfn, end_pfn;
6545 struct memblock_region *r;
6546
6547 for_each_memblock(memory, r) {
6548 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6549 zone_start_pfn, zone_end_pfn);
6550 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6551 zone_start_pfn, zone_end_pfn);
6552
6553 if (zone_type == ZONE_MOVABLE &&
6554 memblock_is_mirror(r))
6555 nr_absent += end_pfn - start_pfn;
6556
6557 if (zone_type == ZONE_NORMAL &&
6558 !memblock_is_mirror(r))
6559 nr_absent += end_pfn - start_pfn;
342332e6
TI
6560 }
6561 }
6562
6563 return nr_absent;
c713216d 6564}
0e0b864e 6565
bbe5d993 6566static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6567 unsigned long node_start_pfn,
854e8848 6568 unsigned long node_end_pfn)
c713216d 6569{
febd5949 6570 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6571 enum zone_type i;
6572
febd5949
GZ
6573 for (i = 0; i < MAX_NR_ZONES; i++) {
6574 struct zone *zone = pgdat->node_zones + i;
d91749c1 6575 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6576 unsigned long spanned, absent;
febd5949 6577 unsigned long size, real_size;
c713216d 6578
854e8848
MR
6579 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6580 node_start_pfn,
6581 node_end_pfn,
6582 &zone_start_pfn,
6583 &zone_end_pfn);
6584 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6585 node_start_pfn,
6586 node_end_pfn);
3f08a302
MR
6587
6588 size = spanned;
6589 real_size = size - absent;
6590
d91749c1
TI
6591 if (size)
6592 zone->zone_start_pfn = zone_start_pfn;
6593 else
6594 zone->zone_start_pfn = 0;
febd5949
GZ
6595 zone->spanned_pages = size;
6596 zone->present_pages = real_size;
6597
6598 totalpages += size;
6599 realtotalpages += real_size;
6600 }
6601
6602 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6603 pgdat->node_present_pages = realtotalpages;
6604 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6605 realtotalpages);
6606}
6607
835c134e
MG
6608#ifndef CONFIG_SPARSEMEM
6609/*
6610 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6611 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6612 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6613 * round what is now in bits to nearest long in bits, then return it in
6614 * bytes.
6615 */
7c45512d 6616static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6617{
6618 unsigned long usemapsize;
6619
7c45512d 6620 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6621 usemapsize = roundup(zonesize, pageblock_nr_pages);
6622 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6623 usemapsize *= NR_PAGEBLOCK_BITS;
6624 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6625
6626 return usemapsize / 8;
6627}
6628
7cc2a959 6629static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6630 struct zone *zone,
6631 unsigned long zone_start_pfn,
6632 unsigned long zonesize)
835c134e 6633{
7c45512d 6634 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6635 zone->pageblock_flags = NULL;
23a7052a 6636 if (usemapsize) {
6782832e 6637 zone->pageblock_flags =
26fb3dae
MR
6638 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6639 pgdat->node_id);
23a7052a
MR
6640 if (!zone->pageblock_flags)
6641 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6642 usemapsize, zone->name, pgdat->node_id);
6643 }
835c134e
MG
6644}
6645#else
7c45512d
LT
6646static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6647 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6648#endif /* CONFIG_SPARSEMEM */
6649
d9c23400 6650#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6651
d9c23400 6652/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6653void __init set_pageblock_order(void)
d9c23400 6654{
955c1cd7
AM
6655 unsigned int order;
6656
d9c23400
MG
6657 /* Check that pageblock_nr_pages has not already been setup */
6658 if (pageblock_order)
6659 return;
6660
955c1cd7
AM
6661 if (HPAGE_SHIFT > PAGE_SHIFT)
6662 order = HUGETLB_PAGE_ORDER;
6663 else
6664 order = MAX_ORDER - 1;
6665
d9c23400
MG
6666 /*
6667 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6668 * This value may be variable depending on boot parameters on IA64 and
6669 * powerpc.
d9c23400
MG
6670 */
6671 pageblock_order = order;
6672}
6673#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6674
ba72cb8c
MG
6675/*
6676 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6677 * is unused as pageblock_order is set at compile-time. See
6678 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6679 * the kernel config
ba72cb8c 6680 */
03e85f9d 6681void __init set_pageblock_order(void)
ba72cb8c 6682{
ba72cb8c 6683}
d9c23400
MG
6684
6685#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6686
03e85f9d 6687static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6688 unsigned long present_pages)
01cefaef
JL
6689{
6690 unsigned long pages = spanned_pages;
6691
6692 /*
6693 * Provide a more accurate estimation if there are holes within
6694 * the zone and SPARSEMEM is in use. If there are holes within the
6695 * zone, each populated memory region may cost us one or two extra
6696 * memmap pages due to alignment because memmap pages for each
89d790ab 6697 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6698 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6699 */
6700 if (spanned_pages > present_pages + (present_pages >> 4) &&
6701 IS_ENABLED(CONFIG_SPARSEMEM))
6702 pages = present_pages;
6703
6704 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6705}
6706
ace1db39
OS
6707#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6708static void pgdat_init_split_queue(struct pglist_data *pgdat)
6709{
364c1eeb
YS
6710 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6711
6712 spin_lock_init(&ds_queue->split_queue_lock);
6713 INIT_LIST_HEAD(&ds_queue->split_queue);
6714 ds_queue->split_queue_len = 0;
ace1db39
OS
6715}
6716#else
6717static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6718#endif
6719
6720#ifdef CONFIG_COMPACTION
6721static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6722{
6723 init_waitqueue_head(&pgdat->kcompactd_wait);
6724}
6725#else
6726static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6727#endif
6728
03e85f9d 6729static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6730{
208d54e5 6731 pgdat_resize_init(pgdat);
ace1db39 6732
ace1db39
OS
6733 pgdat_init_split_queue(pgdat);
6734 pgdat_init_kcompactd(pgdat);
6735
1da177e4 6736 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6737 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6738
eefa864b 6739 pgdat_page_ext_init(pgdat);
a52633d8 6740 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6741 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6742}
6743
6744static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6745 unsigned long remaining_pages)
6746{
9705bea5 6747 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6748 zone_set_nid(zone, nid);
6749 zone->name = zone_names[idx];
6750 zone->zone_pgdat = NODE_DATA(nid);
6751 spin_lock_init(&zone->lock);
6752 zone_seqlock_init(zone);
6753 zone_pcp_init(zone);
6754}
6755
6756/*
6757 * Set up the zone data structures
6758 * - init pgdat internals
6759 * - init all zones belonging to this node
6760 *
6761 * NOTE: this function is only called during memory hotplug
6762 */
6763#ifdef CONFIG_MEMORY_HOTPLUG
6764void __ref free_area_init_core_hotplug(int nid)
6765{
6766 enum zone_type z;
6767 pg_data_t *pgdat = NODE_DATA(nid);
6768
6769 pgdat_init_internals(pgdat);
6770 for (z = 0; z < MAX_NR_ZONES; z++)
6771 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6772}
6773#endif
6774
6775/*
6776 * Set up the zone data structures:
6777 * - mark all pages reserved
6778 * - mark all memory queues empty
6779 * - clear the memory bitmaps
6780 *
6781 * NOTE: pgdat should get zeroed by caller.
6782 * NOTE: this function is only called during early init.
6783 */
6784static void __init free_area_init_core(struct pglist_data *pgdat)
6785{
6786 enum zone_type j;
6787 int nid = pgdat->node_id;
5f63b720 6788
03e85f9d 6789 pgdat_init_internals(pgdat);
385386cf
JW
6790 pgdat->per_cpu_nodestats = &boot_nodestats;
6791
1da177e4
LT
6792 for (j = 0; j < MAX_NR_ZONES; j++) {
6793 struct zone *zone = pgdat->node_zones + j;
e6943859 6794 unsigned long size, freesize, memmap_pages;
d91749c1 6795 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6796
febd5949 6797 size = zone->spanned_pages;
e6943859 6798 freesize = zone->present_pages;
1da177e4 6799
0e0b864e 6800 /*
9feedc9d 6801 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6802 * is used by this zone for memmap. This affects the watermark
6803 * and per-cpu initialisations
6804 */
e6943859 6805 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6806 if (!is_highmem_idx(j)) {
6807 if (freesize >= memmap_pages) {
6808 freesize -= memmap_pages;
6809 if (memmap_pages)
6810 printk(KERN_DEBUG
6811 " %s zone: %lu pages used for memmap\n",
6812 zone_names[j], memmap_pages);
6813 } else
1170532b 6814 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6815 zone_names[j], memmap_pages, freesize);
6816 }
0e0b864e 6817
6267276f 6818 /* Account for reserved pages */
9feedc9d
JL
6819 if (j == 0 && freesize > dma_reserve) {
6820 freesize -= dma_reserve;
d903ef9f 6821 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6822 zone_names[0], dma_reserve);
0e0b864e
MG
6823 }
6824
98d2b0eb 6825 if (!is_highmem_idx(j))
9feedc9d 6826 nr_kernel_pages += freesize;
01cefaef
JL
6827 /* Charge for highmem memmap if there are enough kernel pages */
6828 else if (nr_kernel_pages > memmap_pages * 2)
6829 nr_kernel_pages -= memmap_pages;
9feedc9d 6830 nr_all_pages += freesize;
1da177e4 6831
9feedc9d
JL
6832 /*
6833 * Set an approximate value for lowmem here, it will be adjusted
6834 * when the bootmem allocator frees pages into the buddy system.
6835 * And all highmem pages will be managed by the buddy system.
6836 */
03e85f9d 6837 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6838
d883c6cf 6839 if (!size)
1da177e4
LT
6840 continue;
6841
955c1cd7 6842 set_pageblock_order();
d883c6cf
JK
6843 setup_usemap(pgdat, zone, zone_start_pfn, size);
6844 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6845 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6846 }
6847}
6848
0cd842f9 6849#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6850static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6851{
b0aeba74 6852 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6853 unsigned long __maybe_unused offset = 0;
6854
1da177e4
LT
6855 /* Skip empty nodes */
6856 if (!pgdat->node_spanned_pages)
6857 return;
6858
b0aeba74
TL
6859 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6860 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6861 /* ia64 gets its own node_mem_map, before this, without bootmem */
6862 if (!pgdat->node_mem_map) {
b0aeba74 6863 unsigned long size, end;
d41dee36
AW
6864 struct page *map;
6865
e984bb43
BP
6866 /*
6867 * The zone's endpoints aren't required to be MAX_ORDER
6868 * aligned but the node_mem_map endpoints must be in order
6869 * for the buddy allocator to function correctly.
6870 */
108bcc96 6871 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6872 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6873 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6874 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6875 pgdat->node_id);
23a7052a
MR
6876 if (!map)
6877 panic("Failed to allocate %ld bytes for node %d memory map\n",
6878 size, pgdat->node_id);
a1c34a3b 6879 pgdat->node_mem_map = map + offset;
1da177e4 6880 }
0cd842f9
OS
6881 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6882 __func__, pgdat->node_id, (unsigned long)pgdat,
6883 (unsigned long)pgdat->node_mem_map);
12d810c1 6884#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6885 /*
6886 * With no DISCONTIG, the global mem_map is just set as node 0's
6887 */
c713216d 6888 if (pgdat == NODE_DATA(0)) {
1da177e4 6889 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6890 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6891 mem_map -= offset;
c713216d 6892 }
1da177e4
LT
6893#endif
6894}
0cd842f9
OS
6895#else
6896static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6897#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6898
0188dc98
OS
6899#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6900static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6901{
0188dc98
OS
6902 pgdat->first_deferred_pfn = ULONG_MAX;
6903}
6904#else
6905static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6906#endif
6907
854e8848 6908static void __init free_area_init_node(int nid)
1da177e4 6909{
9109fb7b 6910 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6911 unsigned long start_pfn = 0;
6912 unsigned long end_pfn = 0;
9109fb7b 6913
88fdf75d 6914 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 6915 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 6916
854e8848
MR
6917 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6918
1da177e4 6919 pgdat->node_id = nid;
854e8848 6920 pgdat->node_start_pfn = start_pfn;
75ef7184 6921 pgdat->per_cpu_nodestats = NULL;
854e8848
MR
6922
6923 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6924 (u64)start_pfn << PAGE_SHIFT,
6925 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6926 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
6927
6928 alloc_node_mem_map(pgdat);
0188dc98 6929 pgdat_set_deferred_range(pgdat);
1da177e4 6930
7f3eb55b 6931 free_area_init_core(pgdat);
1da177e4
LT
6932}
6933
bc9331a1 6934void __init free_area_init_memoryless_node(int nid)
3f08a302 6935{
854e8848 6936 free_area_init_node(nid);
3f08a302
MR
6937}
6938
aca52c39 6939#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 6940/*
4b094b78
DH
6941 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6942 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 6943 */
4b094b78 6944static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
6945{
6946 unsigned long pfn;
6947 u64 pgcnt = 0;
6948
6949 for (pfn = spfn; pfn < epfn; pfn++) {
6950 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6951 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6952 + pageblock_nr_pages - 1;
6953 continue;
6954 }
4b094b78
DH
6955 /*
6956 * Use a fake node/zone (0) for now. Some of these pages
6957 * (in memblock.reserved but not in memblock.memory) will
6958 * get re-initialized via reserve_bootmem_region() later.
6959 */
6960 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6961 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
6962 pgcnt++;
6963 }
6964
6965 return pgcnt;
6966}
6967
a4a3ede2
PT
6968/*
6969 * Only struct pages that are backed by physical memory are zeroed and
6970 * initialized by going through __init_single_page(). But, there are some
6971 * struct pages which are reserved in memblock allocator and their fields
6972 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 6973 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
6974 *
6975 * This function also addresses a similar issue where struct pages are left
6976 * uninitialized because the physical address range is not covered by
6977 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
6978 * layout is manually configured via memmap=, or when the highest physical
6979 * address (max_pfn) does not end on a section boundary.
a4a3ede2 6980 */
4b094b78 6981static void __init init_unavailable_mem(void)
a4a3ede2
PT
6982{
6983 phys_addr_t start, end;
a4a3ede2 6984 u64 i, pgcnt;
907ec5fc 6985 phys_addr_t next = 0;
a4a3ede2
PT
6986
6987 /*
907ec5fc 6988 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6989 */
6990 pgcnt = 0;
907ec5fc
NH
6991 for_each_mem_range(i, &memblock.memory, NULL,
6992 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f 6993 if (next < start)
4b094b78
DH
6994 pgcnt += init_unavailable_range(PFN_DOWN(next),
6995 PFN_UP(start));
907ec5fc
NH
6996 next = end;
6997 }
e822969c
DH
6998
6999 /*
7000 * Early sections always have a fully populated memmap for the whole
7001 * section - see pfn_valid(). If the last section has holes at the
7002 * end and that section is marked "online", the memmap will be
7003 * considered initialized. Make sure that memmap has a well defined
7004 * state.
7005 */
4b094b78
DH
7006 pgcnt += init_unavailable_range(PFN_DOWN(next),
7007 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7008
a4a3ede2
PT
7009 /*
7010 * Struct pages that do not have backing memory. This could be because
7011 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7012 */
7013 if (pgcnt)
907ec5fc 7014 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7015}
4b094b78
DH
7016#else
7017static inline void __init init_unavailable_mem(void)
7018{
7019}
aca52c39 7020#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7021
418508c1
MS
7022#if MAX_NUMNODES > 1
7023/*
7024 * Figure out the number of possible node ids.
7025 */
f9872caf 7026void __init setup_nr_node_ids(void)
418508c1 7027{
904a9553 7028 unsigned int highest;
418508c1 7029
904a9553 7030 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7031 nr_node_ids = highest + 1;
7032}
418508c1
MS
7033#endif
7034
1e01979c
TH
7035/**
7036 * node_map_pfn_alignment - determine the maximum internode alignment
7037 *
7038 * This function should be called after node map is populated and sorted.
7039 * It calculates the maximum power of two alignment which can distinguish
7040 * all the nodes.
7041 *
7042 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7043 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7044 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7045 * shifted, 1GiB is enough and this function will indicate so.
7046 *
7047 * This is used to test whether pfn -> nid mapping of the chosen memory
7048 * model has fine enough granularity to avoid incorrect mapping for the
7049 * populated node map.
7050 *
a862f68a 7051 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7052 * requirement (single node).
7053 */
7054unsigned long __init node_map_pfn_alignment(void)
7055{
7056 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7057 unsigned long start, end, mask;
98fa15f3 7058 int last_nid = NUMA_NO_NODE;
c13291a5 7059 int i, nid;
1e01979c 7060
c13291a5 7061 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7062 if (!start || last_nid < 0 || last_nid == nid) {
7063 last_nid = nid;
7064 last_end = end;
7065 continue;
7066 }
7067
7068 /*
7069 * Start with a mask granular enough to pin-point to the
7070 * start pfn and tick off bits one-by-one until it becomes
7071 * too coarse to separate the current node from the last.
7072 */
7073 mask = ~((1 << __ffs(start)) - 1);
7074 while (mask && last_end <= (start & (mask << 1)))
7075 mask <<= 1;
7076
7077 /* accumulate all internode masks */
7078 accl_mask |= mask;
7079 }
7080
7081 /* convert mask to number of pages */
7082 return ~accl_mask + 1;
7083}
7084
c713216d
MG
7085/**
7086 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7087 *
a862f68a 7088 * Return: the minimum PFN based on information provided via
7d018176 7089 * memblock_set_node().
c713216d
MG
7090 */
7091unsigned long __init find_min_pfn_with_active_regions(void)
7092{
8a1b25fe 7093 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7094}
7095
37b07e41
LS
7096/*
7097 * early_calculate_totalpages()
7098 * Sum pages in active regions for movable zone.
4b0ef1fe 7099 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7100 */
484f51f8 7101static unsigned long __init early_calculate_totalpages(void)
7e63efef 7102{
7e63efef 7103 unsigned long totalpages = 0;
c13291a5
TH
7104 unsigned long start_pfn, end_pfn;
7105 int i, nid;
7106
7107 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7108 unsigned long pages = end_pfn - start_pfn;
7e63efef 7109
37b07e41
LS
7110 totalpages += pages;
7111 if (pages)
4b0ef1fe 7112 node_set_state(nid, N_MEMORY);
37b07e41 7113 }
b8af2941 7114 return totalpages;
7e63efef
MG
7115}
7116
2a1e274a
MG
7117/*
7118 * Find the PFN the Movable zone begins in each node. Kernel memory
7119 * is spread evenly between nodes as long as the nodes have enough
7120 * memory. When they don't, some nodes will have more kernelcore than
7121 * others
7122 */
b224ef85 7123static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7124{
7125 int i, nid;
7126 unsigned long usable_startpfn;
7127 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7128 /* save the state before borrow the nodemask */
4b0ef1fe 7129 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7130 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7131 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7132 struct memblock_region *r;
b2f3eebe
TC
7133
7134 /* Need to find movable_zone earlier when movable_node is specified. */
7135 find_usable_zone_for_movable();
7136
7137 /*
7138 * If movable_node is specified, ignore kernelcore and movablecore
7139 * options.
7140 */
7141 if (movable_node_is_enabled()) {
136199f0
EM
7142 for_each_memblock(memory, r) {
7143 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7144 continue;
7145
d622abf7 7146 nid = memblock_get_region_node(r);
b2f3eebe 7147
136199f0 7148 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7149 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7150 min(usable_startpfn, zone_movable_pfn[nid]) :
7151 usable_startpfn;
7152 }
7153
7154 goto out2;
7155 }
2a1e274a 7156
342332e6
TI
7157 /*
7158 * If kernelcore=mirror is specified, ignore movablecore option
7159 */
7160 if (mirrored_kernelcore) {
7161 bool mem_below_4gb_not_mirrored = false;
7162
7163 for_each_memblock(memory, r) {
7164 if (memblock_is_mirror(r))
7165 continue;
7166
d622abf7 7167 nid = memblock_get_region_node(r);
342332e6
TI
7168
7169 usable_startpfn = memblock_region_memory_base_pfn(r);
7170
7171 if (usable_startpfn < 0x100000) {
7172 mem_below_4gb_not_mirrored = true;
7173 continue;
7174 }
7175
7176 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7177 min(usable_startpfn, zone_movable_pfn[nid]) :
7178 usable_startpfn;
7179 }
7180
7181 if (mem_below_4gb_not_mirrored)
7182 pr_warn("This configuration results in unmirrored kernel memory.");
7183
7184 goto out2;
7185 }
7186
7e63efef 7187 /*
a5c6d650
DR
7188 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7189 * amount of necessary memory.
7190 */
7191 if (required_kernelcore_percent)
7192 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7193 10000UL;
7194 if (required_movablecore_percent)
7195 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7196 10000UL;
7197
7198 /*
7199 * If movablecore= was specified, calculate what size of
7e63efef
MG
7200 * kernelcore that corresponds so that memory usable for
7201 * any allocation type is evenly spread. If both kernelcore
7202 * and movablecore are specified, then the value of kernelcore
7203 * will be used for required_kernelcore if it's greater than
7204 * what movablecore would have allowed.
7205 */
7206 if (required_movablecore) {
7e63efef
MG
7207 unsigned long corepages;
7208
7209 /*
7210 * Round-up so that ZONE_MOVABLE is at least as large as what
7211 * was requested by the user
7212 */
7213 required_movablecore =
7214 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7215 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7216 corepages = totalpages - required_movablecore;
7217
7218 required_kernelcore = max(required_kernelcore, corepages);
7219 }
7220
bde304bd
XQ
7221 /*
7222 * If kernelcore was not specified or kernelcore size is larger
7223 * than totalpages, there is no ZONE_MOVABLE.
7224 */
7225 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7226 goto out;
2a1e274a
MG
7227
7228 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7229 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7230
7231restart:
7232 /* Spread kernelcore memory as evenly as possible throughout nodes */
7233 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7234 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7235 unsigned long start_pfn, end_pfn;
7236
2a1e274a
MG
7237 /*
7238 * Recalculate kernelcore_node if the division per node
7239 * now exceeds what is necessary to satisfy the requested
7240 * amount of memory for the kernel
7241 */
7242 if (required_kernelcore < kernelcore_node)
7243 kernelcore_node = required_kernelcore / usable_nodes;
7244
7245 /*
7246 * As the map is walked, we track how much memory is usable
7247 * by the kernel using kernelcore_remaining. When it is
7248 * 0, the rest of the node is usable by ZONE_MOVABLE
7249 */
7250 kernelcore_remaining = kernelcore_node;
7251
7252 /* Go through each range of PFNs within this node */
c13291a5 7253 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7254 unsigned long size_pages;
7255
c13291a5 7256 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7257 if (start_pfn >= end_pfn)
7258 continue;
7259
7260 /* Account for what is only usable for kernelcore */
7261 if (start_pfn < usable_startpfn) {
7262 unsigned long kernel_pages;
7263 kernel_pages = min(end_pfn, usable_startpfn)
7264 - start_pfn;
7265
7266 kernelcore_remaining -= min(kernel_pages,
7267 kernelcore_remaining);
7268 required_kernelcore -= min(kernel_pages,
7269 required_kernelcore);
7270
7271 /* Continue if range is now fully accounted */
7272 if (end_pfn <= usable_startpfn) {
7273
7274 /*
7275 * Push zone_movable_pfn to the end so
7276 * that if we have to rebalance
7277 * kernelcore across nodes, we will
7278 * not double account here
7279 */
7280 zone_movable_pfn[nid] = end_pfn;
7281 continue;
7282 }
7283 start_pfn = usable_startpfn;
7284 }
7285
7286 /*
7287 * The usable PFN range for ZONE_MOVABLE is from
7288 * start_pfn->end_pfn. Calculate size_pages as the
7289 * number of pages used as kernelcore
7290 */
7291 size_pages = end_pfn - start_pfn;
7292 if (size_pages > kernelcore_remaining)
7293 size_pages = kernelcore_remaining;
7294 zone_movable_pfn[nid] = start_pfn + size_pages;
7295
7296 /*
7297 * Some kernelcore has been met, update counts and
7298 * break if the kernelcore for this node has been
b8af2941 7299 * satisfied
2a1e274a
MG
7300 */
7301 required_kernelcore -= min(required_kernelcore,
7302 size_pages);
7303 kernelcore_remaining -= size_pages;
7304 if (!kernelcore_remaining)
7305 break;
7306 }
7307 }
7308
7309 /*
7310 * If there is still required_kernelcore, we do another pass with one
7311 * less node in the count. This will push zone_movable_pfn[nid] further
7312 * along on the nodes that still have memory until kernelcore is
b8af2941 7313 * satisfied
2a1e274a
MG
7314 */
7315 usable_nodes--;
7316 if (usable_nodes && required_kernelcore > usable_nodes)
7317 goto restart;
7318
b2f3eebe 7319out2:
2a1e274a
MG
7320 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7321 for (nid = 0; nid < MAX_NUMNODES; nid++)
7322 zone_movable_pfn[nid] =
7323 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7324
20e6926d 7325out:
66918dcd 7326 /* restore the node_state */
4b0ef1fe 7327 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7328}
7329
4b0ef1fe
LJ
7330/* Any regular or high memory on that node ? */
7331static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7332{
37b07e41
LS
7333 enum zone_type zone_type;
7334
4b0ef1fe 7335 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7336 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7337 if (populated_zone(zone)) {
7b0e0c0e
OS
7338 if (IS_ENABLED(CONFIG_HIGHMEM))
7339 node_set_state(nid, N_HIGH_MEMORY);
7340 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7341 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7342 break;
7343 }
37b07e41 7344 }
37b07e41
LS
7345}
7346
51930df5
MR
7347/*
7348 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7349 * such cases we allow max_zone_pfn sorted in the descending order
7350 */
7351bool __weak arch_has_descending_max_zone_pfns(void)
7352{
7353 return false;
7354}
7355
c713216d 7356/**
9691a071 7357 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7358 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7359 *
7360 * This will call free_area_init_node() for each active node in the system.
7d018176 7361 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7362 * zone in each node and their holes is calculated. If the maximum PFN
7363 * between two adjacent zones match, it is assumed that the zone is empty.
7364 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7365 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7366 * starts where the previous one ended. For example, ZONE_DMA32 starts
7367 * at arch_max_dma_pfn.
7368 */
9691a071 7369void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7370{
c13291a5 7371 unsigned long start_pfn, end_pfn;
51930df5
MR
7372 int i, nid, zone;
7373 bool descending;
a6af2bc3 7374
c713216d
MG
7375 /* Record where the zone boundaries are */
7376 memset(arch_zone_lowest_possible_pfn, 0,
7377 sizeof(arch_zone_lowest_possible_pfn));
7378 memset(arch_zone_highest_possible_pfn, 0,
7379 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7380
7381 start_pfn = find_min_pfn_with_active_regions();
51930df5 7382 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7383
7384 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7385 if (descending)
7386 zone = MAX_NR_ZONES - i - 1;
7387 else
7388 zone = i;
7389
7390 if (zone == ZONE_MOVABLE)
2a1e274a 7391 continue;
90cae1fe 7392
51930df5
MR
7393 end_pfn = max(max_zone_pfn[zone], start_pfn);
7394 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7395 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7396
7397 start_pfn = end_pfn;
c713216d 7398 }
2a1e274a
MG
7399
7400 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7401 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7402 find_zone_movable_pfns_for_nodes();
c713216d 7403
c713216d 7404 /* Print out the zone ranges */
f88dfff5 7405 pr_info("Zone ranges:\n");
2a1e274a
MG
7406 for (i = 0; i < MAX_NR_ZONES; i++) {
7407 if (i == ZONE_MOVABLE)
7408 continue;
f88dfff5 7409 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7410 if (arch_zone_lowest_possible_pfn[i] ==
7411 arch_zone_highest_possible_pfn[i])
f88dfff5 7412 pr_cont("empty\n");
72f0ba02 7413 else
8d29e18a
JG
7414 pr_cont("[mem %#018Lx-%#018Lx]\n",
7415 (u64)arch_zone_lowest_possible_pfn[i]
7416 << PAGE_SHIFT,
7417 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7418 << PAGE_SHIFT) - 1);
2a1e274a
MG
7419 }
7420
7421 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7422 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7423 for (i = 0; i < MAX_NUMNODES; i++) {
7424 if (zone_movable_pfn[i])
8d29e18a
JG
7425 pr_info(" Node %d: %#018Lx\n", i,
7426 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7427 }
c713216d 7428
f46edbd1
DW
7429 /*
7430 * Print out the early node map, and initialize the
7431 * subsection-map relative to active online memory ranges to
7432 * enable future "sub-section" extensions of the memory map.
7433 */
f88dfff5 7434 pr_info("Early memory node ranges\n");
f46edbd1 7435 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7436 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7437 (u64)start_pfn << PAGE_SHIFT,
7438 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7439 subsection_map_init(start_pfn, end_pfn - start_pfn);
7440 }
c713216d
MG
7441
7442 /* Initialise every node */
708614e6 7443 mminit_verify_pageflags_layout();
8ef82866 7444 setup_nr_node_ids();
4b094b78 7445 init_unavailable_mem();
c713216d
MG
7446 for_each_online_node(nid) {
7447 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7448 free_area_init_node(nid);
37b07e41
LS
7449
7450 /* Any memory on that node */
7451 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7452 node_set_state(nid, N_MEMORY);
7453 check_for_memory(pgdat, nid);
c713216d
MG
7454 }
7455}
2a1e274a 7456
a5c6d650
DR
7457static int __init cmdline_parse_core(char *p, unsigned long *core,
7458 unsigned long *percent)
2a1e274a
MG
7459{
7460 unsigned long long coremem;
a5c6d650
DR
7461 char *endptr;
7462
2a1e274a
MG
7463 if (!p)
7464 return -EINVAL;
7465
a5c6d650
DR
7466 /* Value may be a percentage of total memory, otherwise bytes */
7467 coremem = simple_strtoull(p, &endptr, 0);
7468 if (*endptr == '%') {
7469 /* Paranoid check for percent values greater than 100 */
7470 WARN_ON(coremem > 100);
2a1e274a 7471
a5c6d650
DR
7472 *percent = coremem;
7473 } else {
7474 coremem = memparse(p, &p);
7475 /* Paranoid check that UL is enough for the coremem value */
7476 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7477
a5c6d650
DR
7478 *core = coremem >> PAGE_SHIFT;
7479 *percent = 0UL;
7480 }
2a1e274a
MG
7481 return 0;
7482}
ed7ed365 7483
7e63efef
MG
7484/*
7485 * kernelcore=size sets the amount of memory for use for allocations that
7486 * cannot be reclaimed or migrated.
7487 */
7488static int __init cmdline_parse_kernelcore(char *p)
7489{
342332e6
TI
7490 /* parse kernelcore=mirror */
7491 if (parse_option_str(p, "mirror")) {
7492 mirrored_kernelcore = true;
7493 return 0;
7494 }
7495
a5c6d650
DR
7496 return cmdline_parse_core(p, &required_kernelcore,
7497 &required_kernelcore_percent);
7e63efef
MG
7498}
7499
7500/*
7501 * movablecore=size sets the amount of memory for use for allocations that
7502 * can be reclaimed or migrated.
7503 */
7504static int __init cmdline_parse_movablecore(char *p)
7505{
a5c6d650
DR
7506 return cmdline_parse_core(p, &required_movablecore,
7507 &required_movablecore_percent);
7e63efef
MG
7508}
7509
ed7ed365 7510early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7511early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7512
c3d5f5f0
JL
7513void adjust_managed_page_count(struct page *page, long count)
7514{
9705bea5 7515 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7516 totalram_pages_add(count);
3dcc0571
JL
7517#ifdef CONFIG_HIGHMEM
7518 if (PageHighMem(page))
ca79b0c2 7519 totalhigh_pages_add(count);
3dcc0571 7520#endif
c3d5f5f0 7521}
3dcc0571 7522EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7523
e5cb113f 7524unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7525{
11199692
JL
7526 void *pos;
7527 unsigned long pages = 0;
69afade7 7528
11199692
JL
7529 start = (void *)PAGE_ALIGN((unsigned long)start);
7530 end = (void *)((unsigned long)end & PAGE_MASK);
7531 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7532 struct page *page = virt_to_page(pos);
7533 void *direct_map_addr;
7534
7535 /*
7536 * 'direct_map_addr' might be different from 'pos'
7537 * because some architectures' virt_to_page()
7538 * work with aliases. Getting the direct map
7539 * address ensures that we get a _writeable_
7540 * alias for the memset().
7541 */
7542 direct_map_addr = page_address(page);
dbe67df4 7543 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7544 memset(direct_map_addr, poison, PAGE_SIZE);
7545
7546 free_reserved_page(page);
69afade7
JL
7547 }
7548
7549 if (pages && s)
adb1fe9a
JP
7550 pr_info("Freeing %s memory: %ldK\n",
7551 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7552
7553 return pages;
7554}
7555
cfa11e08
JL
7556#ifdef CONFIG_HIGHMEM
7557void free_highmem_page(struct page *page)
7558{
7559 __free_reserved_page(page);
ca79b0c2 7560 totalram_pages_inc();
9705bea5 7561 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7562 totalhigh_pages_inc();
cfa11e08
JL
7563}
7564#endif
7565
7ee3d4e8
JL
7566
7567void __init mem_init_print_info(const char *str)
7568{
7569 unsigned long physpages, codesize, datasize, rosize, bss_size;
7570 unsigned long init_code_size, init_data_size;
7571
7572 physpages = get_num_physpages();
7573 codesize = _etext - _stext;
7574 datasize = _edata - _sdata;
7575 rosize = __end_rodata - __start_rodata;
7576 bss_size = __bss_stop - __bss_start;
7577 init_data_size = __init_end - __init_begin;
7578 init_code_size = _einittext - _sinittext;
7579
7580 /*
7581 * Detect special cases and adjust section sizes accordingly:
7582 * 1) .init.* may be embedded into .data sections
7583 * 2) .init.text.* may be out of [__init_begin, __init_end],
7584 * please refer to arch/tile/kernel/vmlinux.lds.S.
7585 * 3) .rodata.* may be embedded into .text or .data sections.
7586 */
7587#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7588 do { \
7589 if (start <= pos && pos < end && size > adj) \
7590 size -= adj; \
7591 } while (0)
7ee3d4e8
JL
7592
7593 adj_init_size(__init_begin, __init_end, init_data_size,
7594 _sinittext, init_code_size);
7595 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7596 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7597 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7598 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7599
7600#undef adj_init_size
7601
756a025f 7602 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7603#ifdef CONFIG_HIGHMEM
756a025f 7604 ", %luK highmem"
7ee3d4e8 7605#endif
756a025f
JP
7606 "%s%s)\n",
7607 nr_free_pages() << (PAGE_SHIFT - 10),
7608 physpages << (PAGE_SHIFT - 10),
7609 codesize >> 10, datasize >> 10, rosize >> 10,
7610 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7611 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7612 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7613#ifdef CONFIG_HIGHMEM
ca79b0c2 7614 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7615#endif
756a025f 7616 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7617}
7618
0e0b864e 7619/**
88ca3b94
RD
7620 * set_dma_reserve - set the specified number of pages reserved in the first zone
7621 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7622 *
013110a7 7623 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7624 * In the DMA zone, a significant percentage may be consumed by kernel image
7625 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7626 * function may optionally be used to account for unfreeable pages in the
7627 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7628 * smaller per-cpu batchsize.
0e0b864e
MG
7629 */
7630void __init set_dma_reserve(unsigned long new_dma_reserve)
7631{
7632 dma_reserve = new_dma_reserve;
7633}
7634
005fd4bb 7635static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7636{
1da177e4 7637
005fd4bb
SAS
7638 lru_add_drain_cpu(cpu);
7639 drain_pages(cpu);
9f8f2172 7640
005fd4bb
SAS
7641 /*
7642 * Spill the event counters of the dead processor
7643 * into the current processors event counters.
7644 * This artificially elevates the count of the current
7645 * processor.
7646 */
7647 vm_events_fold_cpu(cpu);
9f8f2172 7648
005fd4bb
SAS
7649 /*
7650 * Zero the differential counters of the dead processor
7651 * so that the vm statistics are consistent.
7652 *
7653 * This is only okay since the processor is dead and cannot
7654 * race with what we are doing.
7655 */
7656 cpu_vm_stats_fold(cpu);
7657 return 0;
1da177e4 7658}
1da177e4 7659
e03a5125
NP
7660#ifdef CONFIG_NUMA
7661int hashdist = HASHDIST_DEFAULT;
7662
7663static int __init set_hashdist(char *str)
7664{
7665 if (!str)
7666 return 0;
7667 hashdist = simple_strtoul(str, &str, 0);
7668 return 1;
7669}
7670__setup("hashdist=", set_hashdist);
7671#endif
7672
1da177e4
LT
7673void __init page_alloc_init(void)
7674{
005fd4bb
SAS
7675 int ret;
7676
e03a5125
NP
7677#ifdef CONFIG_NUMA
7678 if (num_node_state(N_MEMORY) == 1)
7679 hashdist = 0;
7680#endif
7681
005fd4bb
SAS
7682 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7683 "mm/page_alloc:dead", NULL,
7684 page_alloc_cpu_dead);
7685 WARN_ON(ret < 0);
1da177e4
LT
7686}
7687
cb45b0e9 7688/*
34b10060 7689 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7690 * or min_free_kbytes changes.
7691 */
7692static void calculate_totalreserve_pages(void)
7693{
7694 struct pglist_data *pgdat;
7695 unsigned long reserve_pages = 0;
2f6726e5 7696 enum zone_type i, j;
cb45b0e9
HA
7697
7698 for_each_online_pgdat(pgdat) {
281e3726
MG
7699
7700 pgdat->totalreserve_pages = 0;
7701
cb45b0e9
HA
7702 for (i = 0; i < MAX_NR_ZONES; i++) {
7703 struct zone *zone = pgdat->node_zones + i;
3484b2de 7704 long max = 0;
9705bea5 7705 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7706
7707 /* Find valid and maximum lowmem_reserve in the zone */
7708 for (j = i; j < MAX_NR_ZONES; j++) {
7709 if (zone->lowmem_reserve[j] > max)
7710 max = zone->lowmem_reserve[j];
7711 }
7712
41858966
MG
7713 /* we treat the high watermark as reserved pages. */
7714 max += high_wmark_pages(zone);
cb45b0e9 7715
3d6357de
AK
7716 if (max > managed_pages)
7717 max = managed_pages;
a8d01437 7718
281e3726 7719 pgdat->totalreserve_pages += max;
a8d01437 7720
cb45b0e9
HA
7721 reserve_pages += max;
7722 }
7723 }
7724 totalreserve_pages = reserve_pages;
7725}
7726
1da177e4
LT
7727/*
7728 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7729 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7730 * has a correct pages reserved value, so an adequate number of
7731 * pages are left in the zone after a successful __alloc_pages().
7732 */
7733static void setup_per_zone_lowmem_reserve(void)
7734{
7735 struct pglist_data *pgdat;
2f6726e5 7736 enum zone_type j, idx;
1da177e4 7737
ec936fc5 7738 for_each_online_pgdat(pgdat) {
1da177e4
LT
7739 for (j = 0; j < MAX_NR_ZONES; j++) {
7740 struct zone *zone = pgdat->node_zones + j;
9705bea5 7741 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7742
7743 zone->lowmem_reserve[j] = 0;
7744
2f6726e5
CL
7745 idx = j;
7746 while (idx) {
1da177e4
LT
7747 struct zone *lower_zone;
7748
2f6726e5 7749 idx--;
1da177e4 7750 lower_zone = pgdat->node_zones + idx;
d3cda233 7751
f6366156
BH
7752 if (!sysctl_lowmem_reserve_ratio[idx] ||
7753 !zone_managed_pages(lower_zone)) {
d3cda233 7754 lower_zone->lowmem_reserve[j] = 0;
f6366156 7755 continue;
d3cda233
JK
7756 } else {
7757 lower_zone->lowmem_reserve[j] =
7758 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7759 }
9705bea5 7760 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7761 }
7762 }
7763 }
cb45b0e9
HA
7764
7765 /* update totalreserve_pages */
7766 calculate_totalreserve_pages();
1da177e4
LT
7767}
7768
cfd3da1e 7769static void __setup_per_zone_wmarks(void)
1da177e4
LT
7770{
7771 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7772 unsigned long lowmem_pages = 0;
7773 struct zone *zone;
7774 unsigned long flags;
7775
7776 /* Calculate total number of !ZONE_HIGHMEM pages */
7777 for_each_zone(zone) {
7778 if (!is_highmem(zone))
9705bea5 7779 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7780 }
7781
7782 for_each_zone(zone) {
ac924c60
AM
7783 u64 tmp;
7784
1125b4e3 7785 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7786 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7787 do_div(tmp, lowmem_pages);
1da177e4
LT
7788 if (is_highmem(zone)) {
7789 /*
669ed175
NP
7790 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7791 * need highmem pages, so cap pages_min to a small
7792 * value here.
7793 *
41858966 7794 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7795 * deltas control async page reclaim, and so should
669ed175 7796 * not be capped for highmem.
1da177e4 7797 */
90ae8d67 7798 unsigned long min_pages;
1da177e4 7799
9705bea5 7800 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7801 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7802 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7803 } else {
669ed175
NP
7804 /*
7805 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7806 * proportionate to the zone's size.
7807 */
a9214443 7808 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7809 }
7810
795ae7a0
JW
7811 /*
7812 * Set the kswapd watermarks distance according to the
7813 * scale factor in proportion to available memory, but
7814 * ensure a minimum size on small systems.
7815 */
7816 tmp = max_t(u64, tmp >> 2,
9705bea5 7817 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7818 watermark_scale_factor, 10000));
7819
aa092591 7820 zone->watermark_boost = 0;
a9214443
MG
7821 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7822 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7823
1125b4e3 7824 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7825 }
cb45b0e9
HA
7826
7827 /* update totalreserve_pages */
7828 calculate_totalreserve_pages();
1da177e4
LT
7829}
7830
cfd3da1e
MG
7831/**
7832 * setup_per_zone_wmarks - called when min_free_kbytes changes
7833 * or when memory is hot-{added|removed}
7834 *
7835 * Ensures that the watermark[min,low,high] values for each zone are set
7836 * correctly with respect to min_free_kbytes.
7837 */
7838void setup_per_zone_wmarks(void)
7839{
b93e0f32
MH
7840 static DEFINE_SPINLOCK(lock);
7841
7842 spin_lock(&lock);
cfd3da1e 7843 __setup_per_zone_wmarks();
b93e0f32 7844 spin_unlock(&lock);
cfd3da1e
MG
7845}
7846
1da177e4
LT
7847/*
7848 * Initialise min_free_kbytes.
7849 *
7850 * For small machines we want it small (128k min). For large machines
7851 * we want it large (64MB max). But it is not linear, because network
7852 * bandwidth does not increase linearly with machine size. We use
7853 *
b8af2941 7854 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7855 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7856 *
7857 * which yields
7858 *
7859 * 16MB: 512k
7860 * 32MB: 724k
7861 * 64MB: 1024k
7862 * 128MB: 1448k
7863 * 256MB: 2048k
7864 * 512MB: 2896k
7865 * 1024MB: 4096k
7866 * 2048MB: 5792k
7867 * 4096MB: 8192k
7868 * 8192MB: 11584k
7869 * 16384MB: 16384k
7870 */
1b79acc9 7871int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7872{
7873 unsigned long lowmem_kbytes;
5f12733e 7874 int new_min_free_kbytes;
1da177e4
LT
7875
7876 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7877 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7878
7879 if (new_min_free_kbytes > user_min_free_kbytes) {
7880 min_free_kbytes = new_min_free_kbytes;
7881 if (min_free_kbytes < 128)
7882 min_free_kbytes = 128;
ee8eb9a5
JS
7883 if (min_free_kbytes > 262144)
7884 min_free_kbytes = 262144;
5f12733e
MH
7885 } else {
7886 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7887 new_min_free_kbytes, user_min_free_kbytes);
7888 }
bc75d33f 7889 setup_per_zone_wmarks();
a6cccdc3 7890 refresh_zone_stat_thresholds();
1da177e4 7891 setup_per_zone_lowmem_reserve();
6423aa81
JK
7892
7893#ifdef CONFIG_NUMA
7894 setup_min_unmapped_ratio();
7895 setup_min_slab_ratio();
7896#endif
7897
1da177e4
LT
7898 return 0;
7899}
bc22af74 7900core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7901
7902/*
b8af2941 7903 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7904 * that we can call two helper functions whenever min_free_kbytes
7905 * changes.
7906 */
cccad5b9 7907int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7908 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7909{
da8c757b
HP
7910 int rc;
7911
7912 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7913 if (rc)
7914 return rc;
7915
5f12733e
MH
7916 if (write) {
7917 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7918 setup_per_zone_wmarks();
5f12733e 7919 }
1da177e4
LT
7920 return 0;
7921}
7922
1c30844d
MG
7923int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7924 void __user *buffer, size_t *length, loff_t *ppos)
7925{
7926 int rc;
7927
7928 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7929 if (rc)
7930 return rc;
7931
7932 return 0;
7933}
7934
795ae7a0
JW
7935int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7936 void __user *buffer, size_t *length, loff_t *ppos)
7937{
7938 int rc;
7939
7940 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7941 if (rc)
7942 return rc;
7943
7944 if (write)
7945 setup_per_zone_wmarks();
7946
7947 return 0;
7948}
7949
9614634f 7950#ifdef CONFIG_NUMA
6423aa81 7951static void setup_min_unmapped_ratio(void)
9614634f 7952{
6423aa81 7953 pg_data_t *pgdat;
9614634f 7954 struct zone *zone;
9614634f 7955
a5f5f91d 7956 for_each_online_pgdat(pgdat)
81cbcbc2 7957 pgdat->min_unmapped_pages = 0;
a5f5f91d 7958
9614634f 7959 for_each_zone(zone)
9705bea5
AK
7960 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7961 sysctl_min_unmapped_ratio) / 100;
9614634f 7962}
0ff38490 7963
6423aa81
JK
7964
7965int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7966 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7967{
0ff38490
CL
7968 int rc;
7969
8d65af78 7970 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7971 if (rc)
7972 return rc;
7973
6423aa81
JK
7974 setup_min_unmapped_ratio();
7975
7976 return 0;
7977}
7978
7979static void setup_min_slab_ratio(void)
7980{
7981 pg_data_t *pgdat;
7982 struct zone *zone;
7983
a5f5f91d
MG
7984 for_each_online_pgdat(pgdat)
7985 pgdat->min_slab_pages = 0;
7986
0ff38490 7987 for_each_zone(zone)
9705bea5
AK
7988 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7989 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7990}
7991
7992int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7993 void __user *buffer, size_t *length, loff_t *ppos)
7994{
7995 int rc;
7996
7997 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7998 if (rc)
7999 return rc;
8000
8001 setup_min_slab_ratio();
8002
0ff38490
CL
8003 return 0;
8004}
9614634f
CL
8005#endif
8006
1da177e4
LT
8007/*
8008 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8009 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8010 * whenever sysctl_lowmem_reserve_ratio changes.
8011 *
8012 * The reserve ratio obviously has absolutely no relation with the
41858966 8013 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8014 * if in function of the boot time zone sizes.
8015 */
cccad5b9 8016int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8017 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 8018{
86aaf255
BH
8019 int i;
8020
8d65af78 8021 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8022
8023 for (i = 0; i < MAX_NR_ZONES; i++) {
8024 if (sysctl_lowmem_reserve_ratio[i] < 1)
8025 sysctl_lowmem_reserve_ratio[i] = 0;
8026 }
8027
1da177e4
LT
8028 setup_per_zone_lowmem_reserve();
8029 return 0;
8030}
8031
cb1ef534
MG
8032static void __zone_pcp_update(struct zone *zone)
8033{
8034 unsigned int cpu;
8035
8036 for_each_possible_cpu(cpu)
8037 pageset_set_high_and_batch(zone,
8038 per_cpu_ptr(zone->pageset, cpu));
8039}
8040
8ad4b1fb
RS
8041/*
8042 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8043 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8044 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8045 */
cccad5b9 8046int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8047 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8048{
8049 struct zone *zone;
7cd2b0a3 8050 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8051 int ret;
8052
7cd2b0a3
DR
8053 mutex_lock(&pcp_batch_high_lock);
8054 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8055
8d65af78 8056 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8057 if (!write || ret < 0)
8058 goto out;
8059
8060 /* Sanity checking to avoid pcp imbalance */
8061 if (percpu_pagelist_fraction &&
8062 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8063 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8064 ret = -EINVAL;
8065 goto out;
8066 }
8067
8068 /* No change? */
8069 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8070 goto out;
c8e251fa 8071
cb1ef534
MG
8072 for_each_populated_zone(zone)
8073 __zone_pcp_update(zone);
7cd2b0a3 8074out:
c8e251fa 8075 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8076 return ret;
8ad4b1fb
RS
8077}
8078
f6f34b43
SD
8079#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8080/*
8081 * Returns the number of pages that arch has reserved but
8082 * is not known to alloc_large_system_hash().
8083 */
8084static unsigned long __init arch_reserved_kernel_pages(void)
8085{
8086 return 0;
8087}
8088#endif
8089
9017217b
PT
8090/*
8091 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8092 * machines. As memory size is increased the scale is also increased but at
8093 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8094 * quadruples the scale is increased by one, which means the size of hash table
8095 * only doubles, instead of quadrupling as well.
8096 * Because 32-bit systems cannot have large physical memory, where this scaling
8097 * makes sense, it is disabled on such platforms.
8098 */
8099#if __BITS_PER_LONG > 32
8100#define ADAPT_SCALE_BASE (64ul << 30)
8101#define ADAPT_SCALE_SHIFT 2
8102#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8103#endif
8104
1da177e4
LT
8105/*
8106 * allocate a large system hash table from bootmem
8107 * - it is assumed that the hash table must contain an exact power-of-2
8108 * quantity of entries
8109 * - limit is the number of hash buckets, not the total allocation size
8110 */
8111void *__init alloc_large_system_hash(const char *tablename,
8112 unsigned long bucketsize,
8113 unsigned long numentries,
8114 int scale,
8115 int flags,
8116 unsigned int *_hash_shift,
8117 unsigned int *_hash_mask,
31fe62b9
TB
8118 unsigned long low_limit,
8119 unsigned long high_limit)
1da177e4 8120{
31fe62b9 8121 unsigned long long max = high_limit;
1da177e4
LT
8122 unsigned long log2qty, size;
8123 void *table = NULL;
3749a8f0 8124 gfp_t gfp_flags;
ec11408a 8125 bool virt;
1da177e4
LT
8126
8127 /* allow the kernel cmdline to have a say */
8128 if (!numentries) {
8129 /* round applicable memory size up to nearest megabyte */
04903664 8130 numentries = nr_kernel_pages;
f6f34b43 8131 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8132
8133 /* It isn't necessary when PAGE_SIZE >= 1MB */
8134 if (PAGE_SHIFT < 20)
8135 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8136
9017217b
PT
8137#if __BITS_PER_LONG > 32
8138 if (!high_limit) {
8139 unsigned long adapt;
8140
8141 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8142 adapt <<= ADAPT_SCALE_SHIFT)
8143 scale++;
8144 }
8145#endif
8146
1da177e4
LT
8147 /* limit to 1 bucket per 2^scale bytes of low memory */
8148 if (scale > PAGE_SHIFT)
8149 numentries >>= (scale - PAGE_SHIFT);
8150 else
8151 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8152
8153 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8154 if (unlikely(flags & HASH_SMALL)) {
8155 /* Makes no sense without HASH_EARLY */
8156 WARN_ON(!(flags & HASH_EARLY));
8157 if (!(numentries >> *_hash_shift)) {
8158 numentries = 1UL << *_hash_shift;
8159 BUG_ON(!numentries);
8160 }
8161 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8162 numentries = PAGE_SIZE / bucketsize;
1da177e4 8163 }
6e692ed3 8164 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8165
8166 /* limit allocation size to 1/16 total memory by default */
8167 if (max == 0) {
8168 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8169 do_div(max, bucketsize);
8170 }
074b8517 8171 max = min(max, 0x80000000ULL);
1da177e4 8172
31fe62b9
TB
8173 if (numentries < low_limit)
8174 numentries = low_limit;
1da177e4
LT
8175 if (numentries > max)
8176 numentries = max;
8177
f0d1b0b3 8178 log2qty = ilog2(numentries);
1da177e4 8179
3749a8f0 8180 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8181 do {
ec11408a 8182 virt = false;
1da177e4 8183 size = bucketsize << log2qty;
ea1f5f37
PT
8184 if (flags & HASH_EARLY) {
8185 if (flags & HASH_ZERO)
26fb3dae 8186 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8187 else
7e1c4e27
MR
8188 table = memblock_alloc_raw(size,
8189 SMP_CACHE_BYTES);
ec11408a 8190 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8191 table = __vmalloc(size, gfp_flags);
ec11408a 8192 virt = true;
ea1f5f37 8193 } else {
1037b83b
ED
8194 /*
8195 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8196 * some pages at the end of hash table which
8197 * alloc_pages_exact() automatically does
1037b83b 8198 */
ec11408a
NP
8199 table = alloc_pages_exact(size, gfp_flags);
8200 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8201 }
8202 } while (!table && size > PAGE_SIZE && --log2qty);
8203
8204 if (!table)
8205 panic("Failed to allocate %s hash table\n", tablename);
8206
ec11408a
NP
8207 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8208 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8209 virt ? "vmalloc" : "linear");
1da177e4
LT
8210
8211 if (_hash_shift)
8212 *_hash_shift = log2qty;
8213 if (_hash_mask)
8214 *_hash_mask = (1 << log2qty) - 1;
8215
8216 return table;
8217}
a117e66e 8218
a5d76b54 8219/*
80934513 8220 * This function checks whether pageblock includes unmovable pages or not.
80934513 8221 *
b8af2941 8222 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8223 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8224 * check without lock_page also may miss some movable non-lru pages at
8225 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8226 *
8227 * Returns a page without holding a reference. If the caller wants to
8228 * dereference that page (e.g., dumping), it has to make sure that that it
8229 * cannot get removed (e.g., via memory unplug) concurrently.
8230 *
a5d76b54 8231 */
4a55c047
QC
8232struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8233 int migratetype, int flags)
49ac8255 8234{
1a9f2191
QC
8235 unsigned long iter = 0;
8236 unsigned long pfn = page_to_pfn(page);
47118af0 8237
49ac8255 8238 /*
15c30bc0
MH
8239 * TODO we could make this much more efficient by not checking every
8240 * page in the range if we know all of them are in MOVABLE_ZONE and
8241 * that the movable zone guarantees that pages are migratable but
8242 * the later is not the case right now unfortunatelly. E.g. movablecore
8243 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8244 */
49ac8255 8245
1a9f2191
QC
8246 if (is_migrate_cma_page(page)) {
8247 /*
8248 * CMA allocations (alloc_contig_range) really need to mark
8249 * isolate CMA pageblocks even when they are not movable in fact
8250 * so consider them movable here.
8251 */
8252 if (is_migrate_cma(migratetype))
4a55c047 8253 return NULL;
1a9f2191 8254
3d680bdf 8255 return page;
1a9f2191 8256 }
4da2ce25 8257
fe4c86c9
DH
8258 for (; iter < pageblock_nr_pages; iter++) {
8259 if (!pfn_valid_within(pfn + iter))
49ac8255 8260 continue;
29723fcc 8261
fe4c86c9 8262 page = pfn_to_page(pfn + iter);
c8721bbb 8263
d7ab3672 8264 if (PageReserved(page))
3d680bdf 8265 return page;
d7ab3672 8266
9d789999
MH
8267 /*
8268 * If the zone is movable and we have ruled out all reserved
8269 * pages then it should be reasonably safe to assume the rest
8270 * is movable.
8271 */
8272 if (zone_idx(zone) == ZONE_MOVABLE)
8273 continue;
8274
c8721bbb
NH
8275 /*
8276 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8277 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8278 * We need not scan over tail pages because we don't
c8721bbb
NH
8279 * handle each tail page individually in migration.
8280 */
1da2f328 8281 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8282 struct page *head = compound_head(page);
8283 unsigned int skip_pages;
464c7ffb 8284
1da2f328
RR
8285 if (PageHuge(page)) {
8286 if (!hugepage_migration_supported(page_hstate(head)))
8287 return page;
8288 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8289 return page;
1da2f328 8290 }
464c7ffb 8291
d8c6546b 8292 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8293 iter += skip_pages - 1;
c8721bbb
NH
8294 continue;
8295 }
8296
97d255c8
MK
8297 /*
8298 * We can't use page_count without pin a page
8299 * because another CPU can free compound page.
8300 * This check already skips compound tails of THP
0139aa7b 8301 * because their page->_refcount is zero at all time.
97d255c8 8302 */
fe896d18 8303 if (!page_ref_count(page)) {
49ac8255
KH
8304 if (PageBuddy(page))
8305 iter += (1 << page_order(page)) - 1;
8306 continue;
8307 }
97d255c8 8308
b023f468
WC
8309 /*
8310 * The HWPoisoned page may be not in buddy system, and
8311 * page_count() is not 0.
8312 */
756d25be 8313 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8314 continue;
8315
fe4c86c9 8316 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8317 continue;
8318
49ac8255 8319 /*
6b4f7799
JW
8320 * If there are RECLAIMABLE pages, we need to check
8321 * it. But now, memory offline itself doesn't call
8322 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8323 */
8324 /*
8325 * If the page is not RAM, page_count()should be 0.
8326 * we don't need more check. This is an _used_ not-movable page.
8327 *
8328 * The problematic thing here is PG_reserved pages. PG_reserved
8329 * is set to both of a memory hole page and a _used_ kernel
8330 * page at boot.
8331 */
3d680bdf 8332 return page;
49ac8255 8333 }
4a55c047 8334 return NULL;
49ac8255
KH
8335}
8336
8df995f6 8337#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8338static unsigned long pfn_max_align_down(unsigned long pfn)
8339{
8340 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8341 pageblock_nr_pages) - 1);
8342}
8343
8344static unsigned long pfn_max_align_up(unsigned long pfn)
8345{
8346 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8347 pageblock_nr_pages));
8348}
8349
041d3a8c 8350/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8351static int __alloc_contig_migrate_range(struct compact_control *cc,
8352 unsigned long start, unsigned long end)
041d3a8c
MN
8353{
8354 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8355 unsigned long nr_reclaimed;
041d3a8c
MN
8356 unsigned long pfn = start;
8357 unsigned int tries = 0;
8358 int ret = 0;
8359
be49a6e1 8360 migrate_prep();
041d3a8c 8361
bb13ffeb 8362 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8363 if (fatal_signal_pending(current)) {
8364 ret = -EINTR;
8365 break;
8366 }
8367
bb13ffeb
MG
8368 if (list_empty(&cc->migratepages)) {
8369 cc->nr_migratepages = 0;
edc2ca61 8370 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8371 if (!pfn) {
8372 ret = -EINTR;
8373 break;
8374 }
8375 tries = 0;
8376 } else if (++tries == 5) {
8377 ret = ret < 0 ? ret : -EBUSY;
8378 break;
8379 }
8380
beb51eaa
MK
8381 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8382 &cc->migratepages);
8383 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8384
9c620e2b 8385 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8386 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8387 }
2a6f5124
SP
8388 if (ret < 0) {
8389 putback_movable_pages(&cc->migratepages);
8390 return ret;
8391 }
8392 return 0;
041d3a8c
MN
8393}
8394
8395/**
8396 * alloc_contig_range() -- tries to allocate given range of pages
8397 * @start: start PFN to allocate
8398 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8399 * @migratetype: migratetype of the underlaying pageblocks (either
8400 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8401 * in range must have the same migratetype and it must
8402 * be either of the two.
ca96b625 8403 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8404 *
8405 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8406 * aligned. The PFN range must belong to a single zone.
041d3a8c 8407 *
2c7452a0
MK
8408 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8409 * pageblocks in the range. Once isolated, the pageblocks should not
8410 * be modified by others.
041d3a8c 8411 *
a862f68a 8412 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8413 * pages which PFN is in [start, end) are allocated for the caller and
8414 * need to be freed with free_contig_range().
8415 */
0815f3d8 8416int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8417 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8418{
041d3a8c 8419 unsigned long outer_start, outer_end;
d00181b9
KS
8420 unsigned int order;
8421 int ret = 0;
041d3a8c 8422
bb13ffeb
MG
8423 struct compact_control cc = {
8424 .nr_migratepages = 0,
8425 .order = -1,
8426 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8427 .mode = MIGRATE_SYNC,
bb13ffeb 8428 .ignore_skip_hint = true,
2583d671 8429 .no_set_skip_hint = true,
7dea19f9 8430 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8431 .alloc_contig = true,
bb13ffeb
MG
8432 };
8433 INIT_LIST_HEAD(&cc.migratepages);
8434
041d3a8c
MN
8435 /*
8436 * What we do here is we mark all pageblocks in range as
8437 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8438 * have different sizes, and due to the way page allocator
8439 * work, we align the range to biggest of the two pages so
8440 * that page allocator won't try to merge buddies from
8441 * different pageblocks and change MIGRATE_ISOLATE to some
8442 * other migration type.
8443 *
8444 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8445 * migrate the pages from an unaligned range (ie. pages that
8446 * we are interested in). This will put all the pages in
8447 * range back to page allocator as MIGRATE_ISOLATE.
8448 *
8449 * When this is done, we take the pages in range from page
8450 * allocator removing them from the buddy system. This way
8451 * page allocator will never consider using them.
8452 *
8453 * This lets us mark the pageblocks back as
8454 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8455 * aligned range but not in the unaligned, original range are
8456 * put back to page allocator so that buddy can use them.
8457 */
8458
8459 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8460 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8461 if (ret < 0)
86a595f9 8462 return ret;
041d3a8c 8463
8ef5849f
JK
8464 /*
8465 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8466 * So, just fall through. test_pages_isolated() has a tracepoint
8467 * which will report the busy page.
8468 *
8469 * It is possible that busy pages could become available before
8470 * the call to test_pages_isolated, and the range will actually be
8471 * allocated. So, if we fall through be sure to clear ret so that
8472 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8473 */
bb13ffeb 8474 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8475 if (ret && ret != -EBUSY)
041d3a8c 8476 goto done;
63cd4489 8477 ret =0;
041d3a8c
MN
8478
8479 /*
8480 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8481 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8482 * more, all pages in [start, end) are free in page allocator.
8483 * What we are going to do is to allocate all pages from
8484 * [start, end) (that is remove them from page allocator).
8485 *
8486 * The only problem is that pages at the beginning and at the
8487 * end of interesting range may be not aligned with pages that
8488 * page allocator holds, ie. they can be part of higher order
8489 * pages. Because of this, we reserve the bigger range and
8490 * once this is done free the pages we are not interested in.
8491 *
8492 * We don't have to hold zone->lock here because the pages are
8493 * isolated thus they won't get removed from buddy.
8494 */
8495
8496 lru_add_drain_all();
041d3a8c
MN
8497
8498 order = 0;
8499 outer_start = start;
8500 while (!PageBuddy(pfn_to_page(outer_start))) {
8501 if (++order >= MAX_ORDER) {
8ef5849f
JK
8502 outer_start = start;
8503 break;
041d3a8c
MN
8504 }
8505 outer_start &= ~0UL << order;
8506 }
8507
8ef5849f
JK
8508 if (outer_start != start) {
8509 order = page_order(pfn_to_page(outer_start));
8510
8511 /*
8512 * outer_start page could be small order buddy page and
8513 * it doesn't include start page. Adjust outer_start
8514 * in this case to report failed page properly
8515 * on tracepoint in test_pages_isolated()
8516 */
8517 if (outer_start + (1UL << order) <= start)
8518 outer_start = start;
8519 }
8520
041d3a8c 8521 /* Make sure the range is really isolated. */
756d25be 8522 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8523 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8524 __func__, outer_start, end);
041d3a8c
MN
8525 ret = -EBUSY;
8526 goto done;
8527 }
8528
49f223a9 8529 /* Grab isolated pages from freelists. */
bb13ffeb 8530 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8531 if (!outer_end) {
8532 ret = -EBUSY;
8533 goto done;
8534 }
8535
8536 /* Free head and tail (if any) */
8537 if (start != outer_start)
8538 free_contig_range(outer_start, start - outer_start);
8539 if (end != outer_end)
8540 free_contig_range(end, outer_end - end);
8541
8542done:
8543 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8544 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8545 return ret;
8546}
5e27a2df
AK
8547
8548static int __alloc_contig_pages(unsigned long start_pfn,
8549 unsigned long nr_pages, gfp_t gfp_mask)
8550{
8551 unsigned long end_pfn = start_pfn + nr_pages;
8552
8553 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8554 gfp_mask);
8555}
8556
8557static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8558 unsigned long nr_pages)
8559{
8560 unsigned long i, end_pfn = start_pfn + nr_pages;
8561 struct page *page;
8562
8563 for (i = start_pfn; i < end_pfn; i++) {
8564 page = pfn_to_online_page(i);
8565 if (!page)
8566 return false;
8567
8568 if (page_zone(page) != z)
8569 return false;
8570
8571 if (PageReserved(page))
8572 return false;
8573
8574 if (page_count(page) > 0)
8575 return false;
8576
8577 if (PageHuge(page))
8578 return false;
8579 }
8580 return true;
8581}
8582
8583static bool zone_spans_last_pfn(const struct zone *zone,
8584 unsigned long start_pfn, unsigned long nr_pages)
8585{
8586 unsigned long last_pfn = start_pfn + nr_pages - 1;
8587
8588 return zone_spans_pfn(zone, last_pfn);
8589}
8590
8591/**
8592 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8593 * @nr_pages: Number of contiguous pages to allocate
8594 * @gfp_mask: GFP mask to limit search and used during compaction
8595 * @nid: Target node
8596 * @nodemask: Mask for other possible nodes
8597 *
8598 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8599 * on an applicable zonelist to find a contiguous pfn range which can then be
8600 * tried for allocation with alloc_contig_range(). This routine is intended
8601 * for allocation requests which can not be fulfilled with the buddy allocator.
8602 *
8603 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8604 * power of two then the alignment is guaranteed to be to the given nr_pages
8605 * (e.g. 1GB request would be aligned to 1GB).
8606 *
8607 * Allocated pages can be freed with free_contig_range() or by manually calling
8608 * __free_page() on each allocated page.
8609 *
8610 * Return: pointer to contiguous pages on success, or NULL if not successful.
8611 */
8612struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8613 int nid, nodemask_t *nodemask)
8614{
8615 unsigned long ret, pfn, flags;
8616 struct zonelist *zonelist;
8617 struct zone *zone;
8618 struct zoneref *z;
8619
8620 zonelist = node_zonelist(nid, gfp_mask);
8621 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8622 gfp_zone(gfp_mask), nodemask) {
8623 spin_lock_irqsave(&zone->lock, flags);
8624
8625 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8626 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8627 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8628 /*
8629 * We release the zone lock here because
8630 * alloc_contig_range() will also lock the zone
8631 * at some point. If there's an allocation
8632 * spinning on this lock, it may win the race
8633 * and cause alloc_contig_range() to fail...
8634 */
8635 spin_unlock_irqrestore(&zone->lock, flags);
8636 ret = __alloc_contig_pages(pfn, nr_pages,
8637 gfp_mask);
8638 if (!ret)
8639 return pfn_to_page(pfn);
8640 spin_lock_irqsave(&zone->lock, flags);
8641 }
8642 pfn += nr_pages;
8643 }
8644 spin_unlock_irqrestore(&zone->lock, flags);
8645 }
8646 return NULL;
8647}
4eb0716e 8648#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8649
4eb0716e 8650void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8651{
bcc2b02f
MS
8652 unsigned int count = 0;
8653
8654 for (; nr_pages--; pfn++) {
8655 struct page *page = pfn_to_page(pfn);
8656
8657 count += page_count(page) != 1;
8658 __free_page(page);
8659 }
8660 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8661}
041d3a8c 8662
0a647f38
CS
8663/*
8664 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8665 * page high values need to be recalulated.
8666 */
4ed7e022
JL
8667void __meminit zone_pcp_update(struct zone *zone)
8668{
c8e251fa 8669 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8670 __zone_pcp_update(zone);
c8e251fa 8671 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8672}
4ed7e022 8673
340175b7
JL
8674void zone_pcp_reset(struct zone *zone)
8675{
8676 unsigned long flags;
5a883813
MK
8677 int cpu;
8678 struct per_cpu_pageset *pset;
340175b7
JL
8679
8680 /* avoid races with drain_pages() */
8681 local_irq_save(flags);
8682 if (zone->pageset != &boot_pageset) {
5a883813
MK
8683 for_each_online_cpu(cpu) {
8684 pset = per_cpu_ptr(zone->pageset, cpu);
8685 drain_zonestat(zone, pset);
8686 }
340175b7
JL
8687 free_percpu(zone->pageset);
8688 zone->pageset = &boot_pageset;
8689 }
8690 local_irq_restore(flags);
8691}
8692
6dcd73d7 8693#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8694/*
b9eb6319
JK
8695 * All pages in the range must be in a single zone and isolated
8696 * before calling this.
0c0e6195 8697 */
5557c766 8698unsigned long
0c0e6195
KH
8699__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8700{
8701 struct page *page;
8702 struct zone *zone;
0ee5f4f3 8703 unsigned int order;
0c0e6195
KH
8704 unsigned long pfn;
8705 unsigned long flags;
5557c766
MH
8706 unsigned long offlined_pages = 0;
8707
0c0e6195
KH
8708 /* find the first valid pfn */
8709 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8710 if (pfn_valid(pfn))
8711 break;
8712 if (pfn == end_pfn)
5557c766
MH
8713 return offlined_pages;
8714
2d070eab 8715 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8716 zone = page_zone(pfn_to_page(pfn));
8717 spin_lock_irqsave(&zone->lock, flags);
8718 pfn = start_pfn;
8719 while (pfn < end_pfn) {
8720 if (!pfn_valid(pfn)) {
8721 pfn++;
8722 continue;
8723 }
8724 page = pfn_to_page(pfn);
b023f468
WC
8725 /*
8726 * The HWPoisoned page may be not in buddy system, and
8727 * page_count() is not 0.
8728 */
8729 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8730 pfn++;
5557c766 8731 offlined_pages++;
b023f468
WC
8732 continue;
8733 }
8734
0c0e6195
KH
8735 BUG_ON(page_count(page));
8736 BUG_ON(!PageBuddy(page));
8737 order = page_order(page);
5557c766 8738 offlined_pages += 1 << order;
6ab01363 8739 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8740 pfn += (1 << order);
8741 }
8742 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8743
8744 return offlined_pages;
0c0e6195
KH
8745}
8746#endif
8d22ba1b 8747
8d22ba1b
WF
8748bool is_free_buddy_page(struct page *page)
8749{
8750 struct zone *zone = page_zone(page);
8751 unsigned long pfn = page_to_pfn(page);
8752 unsigned long flags;
7aeb09f9 8753 unsigned int order;
8d22ba1b
WF
8754
8755 spin_lock_irqsave(&zone->lock, flags);
8756 for (order = 0; order < MAX_ORDER; order++) {
8757 struct page *page_head = page - (pfn & ((1 << order) - 1));
8758
8759 if (PageBuddy(page_head) && page_order(page_head) >= order)
8760 break;
8761 }
8762 spin_unlock_irqrestore(&zone->lock, flags);
8763
8764 return order < MAX_ORDER;
8765}
d4ae9916
NH
8766
8767#ifdef CONFIG_MEMORY_FAILURE
8768/*
8769 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8770 * test is performed under the zone lock to prevent a race against page
8771 * allocation.
8772 */
8773bool set_hwpoison_free_buddy_page(struct page *page)
8774{
8775 struct zone *zone = page_zone(page);
8776 unsigned long pfn = page_to_pfn(page);
8777 unsigned long flags;
8778 unsigned int order;
8779 bool hwpoisoned = false;
8780
8781 spin_lock_irqsave(&zone->lock, flags);
8782 for (order = 0; order < MAX_ORDER; order++) {
8783 struct page *page_head = page - (pfn & ((1 << order) - 1));
8784
8785 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8786 if (!TestSetPageHWPoison(page))
8787 hwpoisoned = true;
8788 break;
8789 }
8790 }
8791 spin_unlock_irqrestore(&zone->lock, flags);
8792
8793 return hwpoisoned;
8794}
8795#endif