]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_alloc.c
m68k: deprecate DISCONTIGMEM
[thirdparty/linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
1da177e4 74
7ee3d4e8 75#include <asm/sections.h>
1da177e4 76#include <asm/tlbflush.h>
ac924c60 77#include <asm/div64.h>
1da177e4 78#include "internal.h"
e900a918 79#include "shuffle.h"
36e66c55 80#include "page_reporting.h"
1da177e4 81
f04a5d5d
DH
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
47b6a24a
DH
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
c8e251fa
CS
110/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
111static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 112#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 113
72812019
LS
114#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
115DEFINE_PER_CPU(int, numa_node);
116EXPORT_PER_CPU_SYMBOL(numa_node);
117#endif
118
4518085e
KW
119DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
120
7aac7898
LS
121#ifdef CONFIG_HAVE_MEMORYLESS_NODES
122/*
123 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
124 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
125 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
126 * defined in <linux/topology.h>.
127 */
128DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
129EXPORT_PER_CPU_SYMBOL(_numa_mem_);
130#endif
131
bd233f53 132/* work_structs for global per-cpu drains */
d9367bd0
WY
133struct pcpu_drain {
134 struct zone *zone;
135 struct work_struct work;
136};
8b885f53
JY
137static DEFINE_MUTEX(pcpu_drain_mutex);
138static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 139
38addce8 140#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 141volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
142EXPORT_SYMBOL(latent_entropy);
143#endif
144
1da177e4 145/*
13808910 146 * Array of node states.
1da177e4 147 */
13808910
CL
148nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
149 [N_POSSIBLE] = NODE_MASK_ALL,
150 [N_ONLINE] = { { [0] = 1UL } },
151#ifndef CONFIG_NUMA
152 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
153#ifdef CONFIG_HIGHMEM
154 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 155#endif
20b2f52b 156 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
157 [N_CPU] = { { [0] = 1UL } },
158#endif /* NUMA */
159};
160EXPORT_SYMBOL(node_states);
161
ca79b0c2
AK
162atomic_long_t _totalram_pages __read_mostly;
163EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 164unsigned long totalreserve_pages __read_mostly;
e48322ab 165unsigned long totalcma_pages __read_mostly;
ab8fabd4 166
1b76b02f 167int percpu_pagelist_fraction;
dcce284a 168gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
169#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
170DEFINE_STATIC_KEY_TRUE(init_on_alloc);
171#else
172DEFINE_STATIC_KEY_FALSE(init_on_alloc);
173#endif
174EXPORT_SYMBOL(init_on_alloc);
175
176#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
177DEFINE_STATIC_KEY_TRUE(init_on_free);
178#else
179DEFINE_STATIC_KEY_FALSE(init_on_free);
180#endif
181EXPORT_SYMBOL(init_on_free);
182
183static int __init early_init_on_alloc(char *buf)
184{
185 int ret;
186 bool bool_result;
187
6471384a 188 ret = kstrtobool(buf, &bool_result);
fdd4fa1c
MN
189 if (ret)
190 return ret;
6471384a
AP
191 if (bool_result && page_poisoning_enabled())
192 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
193 if (bool_result)
194 static_branch_enable(&init_on_alloc);
195 else
196 static_branch_disable(&init_on_alloc);
fdd4fa1c 197 return 0;
6471384a
AP
198}
199early_param("init_on_alloc", early_init_on_alloc);
200
201static int __init early_init_on_free(char *buf)
202{
203 int ret;
204 bool bool_result;
205
6471384a 206 ret = kstrtobool(buf, &bool_result);
fdd4fa1c
MN
207 if (ret)
208 return ret;
6471384a
AP
209 if (bool_result && page_poisoning_enabled())
210 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
211 if (bool_result)
212 static_branch_enable(&init_on_free);
213 else
214 static_branch_disable(&init_on_free);
fdd4fa1c 215 return 0;
6471384a
AP
216}
217early_param("init_on_free", early_init_on_free);
1da177e4 218
bb14c2c7
VB
219/*
220 * A cached value of the page's pageblock's migratetype, used when the page is
221 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
222 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
223 * Also the migratetype set in the page does not necessarily match the pcplist
224 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
225 * other index - this ensures that it will be put on the correct CMA freelist.
226 */
227static inline int get_pcppage_migratetype(struct page *page)
228{
229 return page->index;
230}
231
232static inline void set_pcppage_migratetype(struct page *page, int migratetype)
233{
234 page->index = migratetype;
235}
236
452aa699
RW
237#ifdef CONFIG_PM_SLEEP
238/*
239 * The following functions are used by the suspend/hibernate code to temporarily
240 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
241 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
242 * they should always be called with system_transition_mutex held
243 * (gfp_allowed_mask also should only be modified with system_transition_mutex
244 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
245 * with that modification).
452aa699 246 */
c9e664f1
RW
247
248static gfp_t saved_gfp_mask;
249
250void pm_restore_gfp_mask(void)
452aa699 251{
55f2503c 252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
253 if (saved_gfp_mask) {
254 gfp_allowed_mask = saved_gfp_mask;
255 saved_gfp_mask = 0;
256 }
452aa699
RW
257}
258
c9e664f1 259void pm_restrict_gfp_mask(void)
452aa699 260{
55f2503c 261 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
262 WARN_ON(saved_gfp_mask);
263 saved_gfp_mask = gfp_allowed_mask;
d0164adc 264 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 265}
f90ac398
MG
266
267bool pm_suspended_storage(void)
268{
d0164adc 269 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
270 return false;
271 return true;
272}
452aa699
RW
273#endif /* CONFIG_PM_SLEEP */
274
d9c23400 275#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 276unsigned int pageblock_order __read_mostly;
d9c23400
MG
277#endif
278
7fef431b
DH
279static void __free_pages_ok(struct page *page, unsigned int order,
280 fpi_t fpi_flags);
a226f6c8 281
1da177e4
LT
282/*
283 * results with 256, 32 in the lowmem_reserve sysctl:
284 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
285 * 1G machine -> (16M dma, 784M normal, 224M high)
286 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
287 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 288 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
289 *
290 * TBD: should special case ZONE_DMA32 machines here - in those we normally
291 * don't need any ZONE_NORMAL reservation
1da177e4 292 */
d3cda233 293int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 294#ifdef CONFIG_ZONE_DMA
d3cda233 295 [ZONE_DMA] = 256,
4b51d669 296#endif
fb0e7942 297#ifdef CONFIG_ZONE_DMA32
d3cda233 298 [ZONE_DMA32] = 256,
fb0e7942 299#endif
d3cda233 300 [ZONE_NORMAL] = 32,
e53ef38d 301#ifdef CONFIG_HIGHMEM
d3cda233 302 [ZONE_HIGHMEM] = 0,
e53ef38d 303#endif
d3cda233 304 [ZONE_MOVABLE] = 0,
2f1b6248 305};
1da177e4 306
15ad7cdc 307static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 308#ifdef CONFIG_ZONE_DMA
2f1b6248 309 "DMA",
4b51d669 310#endif
fb0e7942 311#ifdef CONFIG_ZONE_DMA32
2f1b6248 312 "DMA32",
fb0e7942 313#endif
2f1b6248 314 "Normal",
e53ef38d 315#ifdef CONFIG_HIGHMEM
2a1e274a 316 "HighMem",
e53ef38d 317#endif
2a1e274a 318 "Movable",
033fbae9
DW
319#ifdef CONFIG_ZONE_DEVICE
320 "Device",
321#endif
2f1b6248
CL
322};
323
c999fbd3 324const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
325 "Unmovable",
326 "Movable",
327 "Reclaimable",
328 "HighAtomic",
329#ifdef CONFIG_CMA
330 "CMA",
331#endif
332#ifdef CONFIG_MEMORY_ISOLATION
333 "Isolate",
334#endif
335};
336
ae70eddd
AK
337compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
338 [NULL_COMPOUND_DTOR] = NULL,
339 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 340#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 341 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 342#endif
9a982250 343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 344 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 345#endif
f1e61557
KS
346};
347
1da177e4 348int min_free_kbytes = 1024;
42aa83cb 349int user_min_free_kbytes = -1;
24512228
MG
350#ifdef CONFIG_DISCONTIGMEM
351/*
352 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
353 * are not on separate NUMA nodes. Functionally this works but with
354 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
355 * quite small. By default, do not boost watermarks on discontigmem as in
356 * many cases very high-order allocations like THP are likely to be
357 * unsupported and the premature reclaim offsets the advantage of long-term
358 * fragmentation avoidance.
359 */
360int watermark_boost_factor __read_mostly;
361#else
1c30844d 362int watermark_boost_factor __read_mostly = 15000;
24512228 363#endif
795ae7a0 364int watermark_scale_factor = 10;
1da177e4 365
bbe5d993
OS
366static unsigned long nr_kernel_pages __initdata;
367static unsigned long nr_all_pages __initdata;
368static unsigned long dma_reserve __initdata;
1da177e4 369
bbe5d993
OS
370static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
371static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 372static unsigned long required_kernelcore __initdata;
a5c6d650 373static unsigned long required_kernelcore_percent __initdata;
7f16f91f 374static unsigned long required_movablecore __initdata;
a5c6d650 375static unsigned long required_movablecore_percent __initdata;
bbe5d993 376static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 377static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
378
379/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
380int movable_zone;
381EXPORT_SYMBOL(movable_zone);
c713216d 382
418508c1 383#if MAX_NUMNODES > 1
b9726c26 384unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 385unsigned int nr_online_nodes __read_mostly = 1;
418508c1 386EXPORT_SYMBOL(nr_node_ids);
62bc62a8 387EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
388#endif
389
9ef9acb0
MG
390int page_group_by_mobility_disabled __read_mostly;
391
3a80a7fa 392#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
393/*
394 * During boot we initialize deferred pages on-demand, as needed, but once
395 * page_alloc_init_late() has finished, the deferred pages are all initialized,
396 * and we can permanently disable that path.
397 */
398static DEFINE_STATIC_KEY_TRUE(deferred_pages);
399
400/*
401 * Calling kasan_free_pages() only after deferred memory initialization
402 * has completed. Poisoning pages during deferred memory init will greatly
403 * lengthen the process and cause problem in large memory systems as the
404 * deferred pages initialization is done with interrupt disabled.
405 *
406 * Assuming that there will be no reference to those newly initialized
407 * pages before they are ever allocated, this should have no effect on
408 * KASAN memory tracking as the poison will be properly inserted at page
409 * allocation time. The only corner case is when pages are allocated by
410 * on-demand allocation and then freed again before the deferred pages
411 * initialization is done, but this is not likely to happen.
412 */
413static inline void kasan_free_nondeferred_pages(struct page *page, int order)
414{
415 if (!static_branch_unlikely(&deferred_pages))
416 kasan_free_pages(page, order);
417}
418
3a80a7fa 419/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 420static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 421{
ef70b6f4
MG
422 int nid = early_pfn_to_nid(pfn);
423
424 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
425 return true;
426
427 return false;
428}
429
430/*
d3035be4 431 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
432 * later in the boot cycle when it can be parallelised.
433 */
d3035be4
PT
434static bool __meminit
435defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 436{
d3035be4
PT
437 static unsigned long prev_end_pfn, nr_initialised;
438
439 /*
440 * prev_end_pfn static that contains the end of previous zone
441 * No need to protect because called very early in boot before smp_init.
442 */
443 if (prev_end_pfn != end_pfn) {
444 prev_end_pfn = end_pfn;
445 nr_initialised = 0;
446 }
447
3c2c6488 448 /* Always populate low zones for address-constrained allocations */
d3035be4 449 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 450 return false;
23b68cfa
WY
451
452 /*
453 * We start only with one section of pages, more pages are added as
454 * needed until the rest of deferred pages are initialized.
455 */
d3035be4 456 nr_initialised++;
23b68cfa 457 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
458 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
459 NODE_DATA(nid)->first_deferred_pfn = pfn;
460 return true;
3a80a7fa 461 }
d3035be4 462 return false;
3a80a7fa
MG
463}
464#else
3c0c12cc
WL
465#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
466
3a80a7fa
MG
467static inline bool early_page_uninitialised(unsigned long pfn)
468{
469 return false;
470}
471
d3035be4 472static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 473{
d3035be4 474 return false;
3a80a7fa
MG
475}
476#endif
477
0b423ca2
MG
478/* Return a pointer to the bitmap storing bits affecting a block of pages */
479static inline unsigned long *get_pageblock_bitmap(struct page *page,
480 unsigned long pfn)
481{
482#ifdef CONFIG_SPARSEMEM
f1eca35a 483 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
484#else
485 return page_zone(page)->pageblock_flags;
486#endif /* CONFIG_SPARSEMEM */
487}
488
489static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
490{
491#ifdef CONFIG_SPARSEMEM
492 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
493#else
494 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 495#endif /* CONFIG_SPARSEMEM */
399b795b 496 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
497}
498
499/**
500 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
501 * @page: The page within the block of interest
502 * @pfn: The target page frame number
0b423ca2
MG
503 * @mask: mask of bits that the caller is interested in
504 *
505 * Return: pageblock_bits flags
506 */
535b81e2
WY
507static __always_inline
508unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 509 unsigned long pfn,
0b423ca2
MG
510 unsigned long mask)
511{
512 unsigned long *bitmap;
513 unsigned long bitidx, word_bitidx;
514 unsigned long word;
515
516 bitmap = get_pageblock_bitmap(page, pfn);
517 bitidx = pfn_to_bitidx(page, pfn);
518 word_bitidx = bitidx / BITS_PER_LONG;
519 bitidx &= (BITS_PER_LONG-1);
520
521 word = bitmap[word_bitidx];
d93d5ab9 522 return (word >> bitidx) & mask;
0b423ca2
MG
523}
524
525unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
526 unsigned long mask)
527{
535b81e2 528 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
529}
530
531static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
532{
535b81e2 533 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
534}
535
536/**
537 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
538 * @page: The page within the block of interest
539 * @flags: The flags to set
540 * @pfn: The target page frame number
0b423ca2
MG
541 * @mask: mask of bits that the caller is interested in
542 */
543void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
544 unsigned long pfn,
0b423ca2
MG
545 unsigned long mask)
546{
547 unsigned long *bitmap;
548 unsigned long bitidx, word_bitidx;
549 unsigned long old_word, word;
550
551 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 552 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
553
554 bitmap = get_pageblock_bitmap(page, pfn);
555 bitidx = pfn_to_bitidx(page, pfn);
556 word_bitidx = bitidx / BITS_PER_LONG;
557 bitidx &= (BITS_PER_LONG-1);
558
559 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
560
d93d5ab9
WY
561 mask <<= bitidx;
562 flags <<= bitidx;
0b423ca2
MG
563
564 word = READ_ONCE(bitmap[word_bitidx]);
565 for (;;) {
566 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
567 if (word == old_word)
568 break;
569 word = old_word;
570 }
571}
3a80a7fa 572
ee6f509c 573void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 574{
5d0f3f72
KM
575 if (unlikely(page_group_by_mobility_disabled &&
576 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
577 migratetype = MIGRATE_UNMOVABLE;
578
d93d5ab9 579 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 580 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
581}
582
13e7444b 583#ifdef CONFIG_DEBUG_VM
c6a57e19 584static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 585{
bdc8cb98
DH
586 int ret = 0;
587 unsigned seq;
588 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 589 unsigned long sp, start_pfn;
c6a57e19 590
bdc8cb98
DH
591 do {
592 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
593 start_pfn = zone->zone_start_pfn;
594 sp = zone->spanned_pages;
108bcc96 595 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
596 ret = 1;
597 } while (zone_span_seqretry(zone, seq));
598
b5e6a5a2 599 if (ret)
613813e8
DH
600 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
601 pfn, zone_to_nid(zone), zone->name,
602 start_pfn, start_pfn + sp);
b5e6a5a2 603
bdc8cb98 604 return ret;
c6a57e19
DH
605}
606
607static int page_is_consistent(struct zone *zone, struct page *page)
608{
14e07298 609 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 610 return 0;
1da177e4 611 if (zone != page_zone(page))
c6a57e19
DH
612 return 0;
613
614 return 1;
615}
616/*
617 * Temporary debugging check for pages not lying within a given zone.
618 */
d73d3c9f 619static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
620{
621 if (page_outside_zone_boundaries(zone, page))
1da177e4 622 return 1;
c6a57e19
DH
623 if (!page_is_consistent(zone, page))
624 return 1;
625
1da177e4
LT
626 return 0;
627}
13e7444b 628#else
d73d3c9f 629static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
630{
631 return 0;
632}
633#endif
634
82a3241a 635static void bad_page(struct page *page, const char *reason)
1da177e4 636{
d936cf9b
HD
637 static unsigned long resume;
638 static unsigned long nr_shown;
639 static unsigned long nr_unshown;
640
641 /*
642 * Allow a burst of 60 reports, then keep quiet for that minute;
643 * or allow a steady drip of one report per second.
644 */
645 if (nr_shown == 60) {
646 if (time_before(jiffies, resume)) {
647 nr_unshown++;
648 goto out;
649 }
650 if (nr_unshown) {
ff8e8116 651 pr_alert(
1e9e6365 652 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
653 nr_unshown);
654 nr_unshown = 0;
655 }
656 nr_shown = 0;
657 }
658 if (nr_shown++ == 0)
659 resume = jiffies + 60 * HZ;
660
ff8e8116 661 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 662 current->comm, page_to_pfn(page));
ff8e8116 663 __dump_page(page, reason);
4e462112 664 dump_page_owner(page);
3dc14741 665
4f31888c 666 print_modules();
1da177e4 667 dump_stack();
d936cf9b 668out:
8cc3b392 669 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 670 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 671 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
672}
673
1da177e4
LT
674/*
675 * Higher-order pages are called "compound pages". They are structured thusly:
676 *
1d798ca3 677 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 678 *
1d798ca3
KS
679 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
680 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 681 *
1d798ca3
KS
682 * The first tail page's ->compound_dtor holds the offset in array of compound
683 * page destructors. See compound_page_dtors.
1da177e4 684 *
1d798ca3 685 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 686 * This usage means that zero-order pages may not be compound.
1da177e4 687 */
d98c7a09 688
9a982250 689void free_compound_page(struct page *page)
d98c7a09 690{
7ae88534 691 mem_cgroup_uncharge(page);
7fef431b 692 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
693}
694
d00181b9 695void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
696{
697 int i;
698 int nr_pages = 1 << order;
699
18229df5
AW
700 __SetPageHead(page);
701 for (i = 1; i < nr_pages; i++) {
702 struct page *p = page + i;
58a84aa9 703 set_page_count(p, 0);
1c290f64 704 p->mapping = TAIL_MAPPING;
1d798ca3 705 set_compound_head(p, page);
18229df5 706 }
1378a5ee
MWO
707
708 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
709 set_compound_order(page, order);
53f9263b 710 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
711 if (hpage_pincount_available(page))
712 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
713}
714
c0a32fc5
SG
715#ifdef CONFIG_DEBUG_PAGEALLOC
716unsigned int _debug_guardpage_minorder;
96a2b03f 717
8e57f8ac
VB
718bool _debug_pagealloc_enabled_early __read_mostly
719 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
720EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 721DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 722EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
723
724DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 725
031bc574
JK
726static int __init early_debug_pagealloc(char *buf)
727{
8e57f8ac 728 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
729}
730early_param("debug_pagealloc", early_debug_pagealloc);
731
8e57f8ac 732void init_debug_pagealloc(void)
e30825f1 733{
031bc574
JK
734 if (!debug_pagealloc_enabled())
735 return;
736
8e57f8ac
VB
737 static_branch_enable(&_debug_pagealloc_enabled);
738
f1c1e9f7
JK
739 if (!debug_guardpage_minorder())
740 return;
741
96a2b03f 742 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
743}
744
c0a32fc5
SG
745static int __init debug_guardpage_minorder_setup(char *buf)
746{
747 unsigned long res;
748
749 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 750 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
751 return 0;
752 }
753 _debug_guardpage_minorder = res;
1170532b 754 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
755 return 0;
756}
f1c1e9f7 757early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 758
acbc15a4 759static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 760 unsigned int order, int migratetype)
c0a32fc5 761{
e30825f1 762 if (!debug_guardpage_enabled())
acbc15a4
JK
763 return false;
764
765 if (order >= debug_guardpage_minorder())
766 return false;
e30825f1 767
3972f6bb 768 __SetPageGuard(page);
2847cf95
JK
769 INIT_LIST_HEAD(&page->lru);
770 set_page_private(page, order);
771 /* Guard pages are not available for any usage */
772 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
773
774 return true;
c0a32fc5
SG
775}
776
2847cf95
JK
777static inline void clear_page_guard(struct zone *zone, struct page *page,
778 unsigned int order, int migratetype)
c0a32fc5 779{
e30825f1
JK
780 if (!debug_guardpage_enabled())
781 return;
782
3972f6bb 783 __ClearPageGuard(page);
e30825f1 784
2847cf95
JK
785 set_page_private(page, 0);
786 if (!is_migrate_isolate(migratetype))
787 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
788}
789#else
acbc15a4
JK
790static inline bool set_page_guard(struct zone *zone, struct page *page,
791 unsigned int order, int migratetype) { return false; }
2847cf95
JK
792static inline void clear_page_guard(struct zone *zone, struct page *page,
793 unsigned int order, int migratetype) {}
c0a32fc5
SG
794#endif
795
ab130f91 796static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 797{
4c21e2f2 798 set_page_private(page, order);
676165a8 799 __SetPageBuddy(page);
1da177e4
LT
800}
801
1da177e4
LT
802/*
803 * This function checks whether a page is free && is the buddy
6e292b9b 804 * we can coalesce a page and its buddy if
13ad59df 805 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 806 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
807 * (c) a page and its buddy have the same order &&
808 * (d) a page and its buddy are in the same zone.
676165a8 809 *
6e292b9b
MW
810 * For recording whether a page is in the buddy system, we set PageBuddy.
811 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 812 *
676165a8 813 * For recording page's order, we use page_private(page).
1da177e4 814 */
fe925c0c 815static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 816 unsigned int order)
1da177e4 817{
fe925c0c 818 if (!page_is_guard(buddy) && !PageBuddy(buddy))
819 return false;
4c5018ce 820
ab130f91 821 if (buddy_order(buddy) != order)
fe925c0c 822 return false;
c0a32fc5 823
fe925c0c 824 /*
825 * zone check is done late to avoid uselessly calculating
826 * zone/node ids for pages that could never merge.
827 */
828 if (page_zone_id(page) != page_zone_id(buddy))
829 return false;
d34c5fa0 830
fe925c0c 831 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 832
fe925c0c 833 return true;
1da177e4
LT
834}
835
5e1f0f09
MG
836#ifdef CONFIG_COMPACTION
837static inline struct capture_control *task_capc(struct zone *zone)
838{
839 struct capture_control *capc = current->capture_control;
840
deba0487 841 return unlikely(capc) &&
5e1f0f09
MG
842 !(current->flags & PF_KTHREAD) &&
843 !capc->page &&
deba0487 844 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
845}
846
847static inline bool
848compaction_capture(struct capture_control *capc, struct page *page,
849 int order, int migratetype)
850{
851 if (!capc || order != capc->cc->order)
852 return false;
853
854 /* Do not accidentally pollute CMA or isolated regions*/
855 if (is_migrate_cma(migratetype) ||
856 is_migrate_isolate(migratetype))
857 return false;
858
859 /*
860 * Do not let lower order allocations polluate a movable pageblock.
861 * This might let an unmovable request use a reclaimable pageblock
862 * and vice-versa but no more than normal fallback logic which can
863 * have trouble finding a high-order free page.
864 */
865 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
866 return false;
867
868 capc->page = page;
869 return true;
870}
871
872#else
873static inline struct capture_control *task_capc(struct zone *zone)
874{
875 return NULL;
876}
877
878static inline bool
879compaction_capture(struct capture_control *capc, struct page *page,
880 int order, int migratetype)
881{
882 return false;
883}
884#endif /* CONFIG_COMPACTION */
885
6ab01363
AD
886/* Used for pages not on another list */
887static inline void add_to_free_list(struct page *page, struct zone *zone,
888 unsigned int order, int migratetype)
889{
890 struct free_area *area = &zone->free_area[order];
891
892 list_add(&page->lru, &area->free_list[migratetype]);
893 area->nr_free++;
894}
895
896/* Used for pages not on another list */
897static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
898 unsigned int order, int migratetype)
899{
900 struct free_area *area = &zone->free_area[order];
901
902 list_add_tail(&page->lru, &area->free_list[migratetype]);
903 area->nr_free++;
904}
905
293ffa5e
DH
906/*
907 * Used for pages which are on another list. Move the pages to the tail
908 * of the list - so the moved pages won't immediately be considered for
909 * allocation again (e.g., optimization for memory onlining).
910 */
6ab01363
AD
911static inline void move_to_free_list(struct page *page, struct zone *zone,
912 unsigned int order, int migratetype)
913{
914 struct free_area *area = &zone->free_area[order];
915
293ffa5e 916 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
917}
918
919static inline void del_page_from_free_list(struct page *page, struct zone *zone,
920 unsigned int order)
921{
36e66c55
AD
922 /* clear reported state and update reported page count */
923 if (page_reported(page))
924 __ClearPageReported(page);
925
6ab01363
AD
926 list_del(&page->lru);
927 __ClearPageBuddy(page);
928 set_page_private(page, 0);
929 zone->free_area[order].nr_free--;
930}
931
a2129f24
AD
932/*
933 * If this is not the largest possible page, check if the buddy
934 * of the next-highest order is free. If it is, it's possible
935 * that pages are being freed that will coalesce soon. In case,
936 * that is happening, add the free page to the tail of the list
937 * so it's less likely to be used soon and more likely to be merged
938 * as a higher order page
939 */
940static inline bool
941buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
942 struct page *page, unsigned int order)
943{
944 struct page *higher_page, *higher_buddy;
945 unsigned long combined_pfn;
946
947 if (order >= MAX_ORDER - 2)
948 return false;
949
950 if (!pfn_valid_within(buddy_pfn))
951 return false;
952
953 combined_pfn = buddy_pfn & pfn;
954 higher_page = page + (combined_pfn - pfn);
955 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
956 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
957
958 return pfn_valid_within(buddy_pfn) &&
959 page_is_buddy(higher_page, higher_buddy, order + 1);
960}
961
1da177e4
LT
962/*
963 * Freeing function for a buddy system allocator.
964 *
965 * The concept of a buddy system is to maintain direct-mapped table
966 * (containing bit values) for memory blocks of various "orders".
967 * The bottom level table contains the map for the smallest allocatable
968 * units of memory (here, pages), and each level above it describes
969 * pairs of units from the levels below, hence, "buddies".
970 * At a high level, all that happens here is marking the table entry
971 * at the bottom level available, and propagating the changes upward
972 * as necessary, plus some accounting needed to play nicely with other
973 * parts of the VM system.
974 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
975 * free pages of length of (1 << order) and marked with PageBuddy.
976 * Page's order is recorded in page_private(page) field.
1da177e4 977 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
978 * other. That is, if we allocate a small block, and both were
979 * free, the remainder of the region must be split into blocks.
1da177e4 980 * If a block is freed, and its buddy is also free, then this
5f63b720 981 * triggers coalescing into a block of larger size.
1da177e4 982 *
6d49e352 983 * -- nyc
1da177e4
LT
984 */
985
48db57f8 986static inline void __free_one_page(struct page *page,
dc4b0caf 987 unsigned long pfn,
ed0ae21d 988 struct zone *zone, unsigned int order,
f04a5d5d 989 int migratetype, fpi_t fpi_flags)
1da177e4 990{
a2129f24 991 struct capture_control *capc = task_capc(zone);
3f649ab7 992 unsigned long buddy_pfn;
a2129f24 993 unsigned long combined_pfn;
d9dddbf5 994 unsigned int max_order;
a2129f24
AD
995 struct page *buddy;
996 bool to_tail;
d9dddbf5
VB
997
998 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 999
d29bb978 1000 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1001 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1002
ed0ae21d 1003 VM_BUG_ON(migratetype == -1);
d9dddbf5 1004 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1005 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1006
76741e77 1007 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1008 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1009
d9dddbf5 1010continue_merging:
3c605096 1011 while (order < max_order - 1) {
5e1f0f09
MG
1012 if (compaction_capture(capc, page, order, migratetype)) {
1013 __mod_zone_freepage_state(zone, -(1 << order),
1014 migratetype);
1015 return;
1016 }
76741e77
VB
1017 buddy_pfn = __find_buddy_pfn(pfn, order);
1018 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1019
1020 if (!pfn_valid_within(buddy_pfn))
1021 goto done_merging;
cb2b95e1 1022 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1023 goto done_merging;
c0a32fc5
SG
1024 /*
1025 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1026 * merge with it and move up one order.
1027 */
b03641af 1028 if (page_is_guard(buddy))
2847cf95 1029 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1030 else
6ab01363 1031 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1032 combined_pfn = buddy_pfn & pfn;
1033 page = page + (combined_pfn - pfn);
1034 pfn = combined_pfn;
1da177e4
LT
1035 order++;
1036 }
d9dddbf5
VB
1037 if (max_order < MAX_ORDER) {
1038 /* If we are here, it means order is >= pageblock_order.
1039 * We want to prevent merge between freepages on isolate
1040 * pageblock and normal pageblock. Without this, pageblock
1041 * isolation could cause incorrect freepage or CMA accounting.
1042 *
1043 * We don't want to hit this code for the more frequent
1044 * low-order merging.
1045 */
1046 if (unlikely(has_isolate_pageblock(zone))) {
1047 int buddy_mt;
1048
76741e77
VB
1049 buddy_pfn = __find_buddy_pfn(pfn, order);
1050 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1051 buddy_mt = get_pageblock_migratetype(buddy);
1052
1053 if (migratetype != buddy_mt
1054 && (is_migrate_isolate(migratetype) ||
1055 is_migrate_isolate(buddy_mt)))
1056 goto done_merging;
1057 }
1058 max_order++;
1059 goto continue_merging;
1060 }
1061
1062done_merging:
ab130f91 1063 set_buddy_order(page, order);
6dda9d55 1064
47b6a24a
DH
1065 if (fpi_flags & FPI_TO_TAIL)
1066 to_tail = true;
1067 else if (is_shuffle_order(order))
a2129f24 1068 to_tail = shuffle_pick_tail();
97500a4a 1069 else
a2129f24 1070 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1071
a2129f24 1072 if (to_tail)
6ab01363 1073 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1074 else
6ab01363 1075 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1076
1077 /* Notify page reporting subsystem of freed page */
f04a5d5d 1078 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1079 page_reporting_notify_free(order);
1da177e4
LT
1080}
1081
7bfec6f4
MG
1082/*
1083 * A bad page could be due to a number of fields. Instead of multiple branches,
1084 * try and check multiple fields with one check. The caller must do a detailed
1085 * check if necessary.
1086 */
1087static inline bool page_expected_state(struct page *page,
1088 unsigned long check_flags)
1089{
1090 if (unlikely(atomic_read(&page->_mapcount) != -1))
1091 return false;
1092
1093 if (unlikely((unsigned long)page->mapping |
1094 page_ref_count(page) |
1095#ifdef CONFIG_MEMCG
1096 (unsigned long)page->mem_cgroup |
1097#endif
1098 (page->flags & check_flags)))
1099 return false;
1100
1101 return true;
1102}
1103
58b7f119 1104static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1105{
82a3241a 1106 const char *bad_reason = NULL;
f0b791a3 1107
53f9263b 1108 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1109 bad_reason = "nonzero mapcount";
1110 if (unlikely(page->mapping != NULL))
1111 bad_reason = "non-NULL mapping";
fe896d18 1112 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1113 bad_reason = "nonzero _refcount";
58b7f119
WY
1114 if (unlikely(page->flags & flags)) {
1115 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1116 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1117 else
1118 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1119 }
9edad6ea
JW
1120#ifdef CONFIG_MEMCG
1121 if (unlikely(page->mem_cgroup))
1122 bad_reason = "page still charged to cgroup";
1123#endif
58b7f119
WY
1124 return bad_reason;
1125}
1126
1127static void check_free_page_bad(struct page *page)
1128{
1129 bad_page(page,
1130 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1131}
1132
534fe5e3 1133static inline int check_free_page(struct page *page)
bb552ac6 1134{
da838d4f 1135 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1136 return 0;
bb552ac6
MG
1137
1138 /* Something has gone sideways, find it */
0d0c48a2 1139 check_free_page_bad(page);
7bfec6f4 1140 return 1;
1da177e4
LT
1141}
1142
4db7548c
MG
1143static int free_tail_pages_check(struct page *head_page, struct page *page)
1144{
1145 int ret = 1;
1146
1147 /*
1148 * We rely page->lru.next never has bit 0 set, unless the page
1149 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1150 */
1151 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1152
1153 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1154 ret = 0;
1155 goto out;
1156 }
1157 switch (page - head_page) {
1158 case 1:
4da1984e 1159 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1160 if (unlikely(compound_mapcount(page))) {
82a3241a 1161 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1162 goto out;
1163 }
1164 break;
1165 case 2:
1166 /*
1167 * the second tail page: ->mapping is
fa3015b7 1168 * deferred_list.next -- ignore value.
4db7548c
MG
1169 */
1170 break;
1171 default:
1172 if (page->mapping != TAIL_MAPPING) {
82a3241a 1173 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1174 goto out;
1175 }
1176 break;
1177 }
1178 if (unlikely(!PageTail(page))) {
82a3241a 1179 bad_page(page, "PageTail not set");
4db7548c
MG
1180 goto out;
1181 }
1182 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1183 bad_page(page, "compound_head not consistent");
4db7548c
MG
1184 goto out;
1185 }
1186 ret = 0;
1187out:
1188 page->mapping = NULL;
1189 clear_compound_head(page);
1190 return ret;
1191}
1192
6471384a
AP
1193static void kernel_init_free_pages(struct page *page, int numpages)
1194{
1195 int i;
1196
9e15afa5
QC
1197 /* s390's use of memset() could override KASAN redzones. */
1198 kasan_disable_current();
6471384a
AP
1199 for (i = 0; i < numpages; i++)
1200 clear_highpage(page + i);
9e15afa5 1201 kasan_enable_current();
6471384a
AP
1202}
1203
e2769dbd
MG
1204static __always_inline bool free_pages_prepare(struct page *page,
1205 unsigned int order, bool check_free)
4db7548c 1206{
e2769dbd 1207 int bad = 0;
4db7548c 1208
4db7548c
MG
1209 VM_BUG_ON_PAGE(PageTail(page), page);
1210
e2769dbd 1211 trace_mm_page_free(page, order);
e2769dbd 1212
79f5f8fa
OS
1213 if (unlikely(PageHWPoison(page)) && !order) {
1214 /*
1215 * Do not let hwpoison pages hit pcplists/buddy
1216 * Untie memcg state and reset page's owner
1217 */
1218 if (memcg_kmem_enabled() && PageKmemcg(page))
1219 __memcg_kmem_uncharge_page(page, order);
1220 reset_page_owner(page, order);
1221 return false;
1222 }
1223
e2769dbd
MG
1224 /*
1225 * Check tail pages before head page information is cleared to
1226 * avoid checking PageCompound for order-0 pages.
1227 */
1228 if (unlikely(order)) {
1229 bool compound = PageCompound(page);
1230 int i;
1231
1232 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1233
9a73f61b
KS
1234 if (compound)
1235 ClearPageDoubleMap(page);
e2769dbd
MG
1236 for (i = 1; i < (1 << order); i++) {
1237 if (compound)
1238 bad += free_tail_pages_check(page, page + i);
534fe5e3 1239 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1240 bad++;
1241 continue;
1242 }
1243 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1244 }
1245 }
bda807d4 1246 if (PageMappingFlags(page))
4db7548c 1247 page->mapping = NULL;
c4159a75 1248 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1249 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1250 if (check_free)
534fe5e3 1251 bad += check_free_page(page);
e2769dbd
MG
1252 if (bad)
1253 return false;
4db7548c 1254
e2769dbd
MG
1255 page_cpupid_reset_last(page);
1256 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1257 reset_page_owner(page, order);
4db7548c
MG
1258
1259 if (!PageHighMem(page)) {
1260 debug_check_no_locks_freed(page_address(page),
e2769dbd 1261 PAGE_SIZE << order);
4db7548c 1262 debug_check_no_obj_freed(page_address(page),
e2769dbd 1263 PAGE_SIZE << order);
4db7548c 1264 }
6471384a
AP
1265 if (want_init_on_free())
1266 kernel_init_free_pages(page, 1 << order);
1267
e2769dbd 1268 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1269 /*
1270 * arch_free_page() can make the page's contents inaccessible. s390
1271 * does this. So nothing which can access the page's contents should
1272 * happen after this.
1273 */
1274 arch_free_page(page, order);
1275
8e57f8ac 1276 if (debug_pagealloc_enabled_static())
d6332692
RE
1277 kernel_map_pages(page, 1 << order, 0);
1278
3c0c12cc 1279 kasan_free_nondeferred_pages(page, order);
4db7548c 1280
4db7548c
MG
1281 return true;
1282}
1283
e2769dbd 1284#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1285/*
1286 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1287 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1288 * moved from pcp lists to free lists.
1289 */
1290static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1291{
1292 return free_pages_prepare(page, 0, true);
1293}
1294
4462b32c 1295static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1296{
8e57f8ac 1297 if (debug_pagealloc_enabled_static())
534fe5e3 1298 return check_free_page(page);
4462b32c
VB
1299 else
1300 return false;
e2769dbd
MG
1301}
1302#else
4462b32c
VB
1303/*
1304 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1305 * moving from pcp lists to free list in order to reduce overhead. With
1306 * debug_pagealloc enabled, they are checked also immediately when being freed
1307 * to the pcp lists.
1308 */
e2769dbd
MG
1309static bool free_pcp_prepare(struct page *page)
1310{
8e57f8ac 1311 if (debug_pagealloc_enabled_static())
4462b32c
VB
1312 return free_pages_prepare(page, 0, true);
1313 else
1314 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1315}
1316
4db7548c
MG
1317static bool bulkfree_pcp_prepare(struct page *page)
1318{
534fe5e3 1319 return check_free_page(page);
4db7548c
MG
1320}
1321#endif /* CONFIG_DEBUG_VM */
1322
97334162
AL
1323static inline void prefetch_buddy(struct page *page)
1324{
1325 unsigned long pfn = page_to_pfn(page);
1326 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1327 struct page *buddy = page + (buddy_pfn - pfn);
1328
1329 prefetch(buddy);
1330}
1331
1da177e4 1332/*
5f8dcc21 1333 * Frees a number of pages from the PCP lists
1da177e4 1334 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1335 * count is the number of pages to free.
1da177e4
LT
1336 *
1337 * If the zone was previously in an "all pages pinned" state then look to
1338 * see if this freeing clears that state.
1339 *
1340 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1341 * pinned" detection logic.
1342 */
5f8dcc21
MG
1343static void free_pcppages_bulk(struct zone *zone, int count,
1344 struct per_cpu_pages *pcp)
1da177e4 1345{
5f8dcc21 1346 int migratetype = 0;
a6f9edd6 1347 int batch_free = 0;
97334162 1348 int prefetch_nr = 0;
3777999d 1349 bool isolated_pageblocks;
0a5f4e5b
AL
1350 struct page *page, *tmp;
1351 LIST_HEAD(head);
f2260e6b 1352
88e8ac11
CTR
1353 /*
1354 * Ensure proper count is passed which otherwise would stuck in the
1355 * below while (list_empty(list)) loop.
1356 */
1357 count = min(pcp->count, count);
e5b31ac2 1358 while (count) {
5f8dcc21
MG
1359 struct list_head *list;
1360
1361 /*
a6f9edd6
MG
1362 * Remove pages from lists in a round-robin fashion. A
1363 * batch_free count is maintained that is incremented when an
1364 * empty list is encountered. This is so more pages are freed
1365 * off fuller lists instead of spinning excessively around empty
1366 * lists
5f8dcc21
MG
1367 */
1368 do {
a6f9edd6 1369 batch_free++;
5f8dcc21
MG
1370 if (++migratetype == MIGRATE_PCPTYPES)
1371 migratetype = 0;
1372 list = &pcp->lists[migratetype];
1373 } while (list_empty(list));
48db57f8 1374
1d16871d
NK
1375 /* This is the only non-empty list. Free them all. */
1376 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1377 batch_free = count;
1d16871d 1378
a6f9edd6 1379 do {
a16601c5 1380 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1381 /* must delete to avoid corrupting pcp list */
a6f9edd6 1382 list_del(&page->lru);
77ba9062 1383 pcp->count--;
aa016d14 1384
4db7548c
MG
1385 if (bulkfree_pcp_prepare(page))
1386 continue;
1387
0a5f4e5b 1388 list_add_tail(&page->lru, &head);
97334162
AL
1389
1390 /*
1391 * We are going to put the page back to the global
1392 * pool, prefetch its buddy to speed up later access
1393 * under zone->lock. It is believed the overhead of
1394 * an additional test and calculating buddy_pfn here
1395 * can be offset by reduced memory latency later. To
1396 * avoid excessive prefetching due to large count, only
1397 * prefetch buddy for the first pcp->batch nr of pages.
1398 */
1399 if (prefetch_nr++ < pcp->batch)
1400 prefetch_buddy(page);
e5b31ac2 1401 } while (--count && --batch_free && !list_empty(list));
1da177e4 1402 }
0a5f4e5b
AL
1403
1404 spin_lock(&zone->lock);
1405 isolated_pageblocks = has_isolate_pageblock(zone);
1406
1407 /*
1408 * Use safe version since after __free_one_page(),
1409 * page->lru.next will not point to original list.
1410 */
1411 list_for_each_entry_safe(page, tmp, &head, lru) {
1412 int mt = get_pcppage_migratetype(page);
1413 /* MIGRATE_ISOLATE page should not go to pcplists */
1414 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1415 /* Pageblock could have been isolated meanwhile */
1416 if (unlikely(isolated_pageblocks))
1417 mt = get_pageblock_migratetype(page);
1418
f04a5d5d 1419 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1420 trace_mm_page_pcpu_drain(page, 0, mt);
1421 }
d34b0733 1422 spin_unlock(&zone->lock);
1da177e4
LT
1423}
1424
dc4b0caf
MG
1425static void free_one_page(struct zone *zone,
1426 struct page *page, unsigned long pfn,
7aeb09f9 1427 unsigned int order,
7fef431b 1428 int migratetype, fpi_t fpi_flags)
1da177e4 1429{
d34b0733 1430 spin_lock(&zone->lock);
ad53f92e
JK
1431 if (unlikely(has_isolate_pageblock(zone) ||
1432 is_migrate_isolate(migratetype))) {
1433 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1434 }
7fef431b 1435 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
d34b0733 1436 spin_unlock(&zone->lock);
48db57f8
NP
1437}
1438
1e8ce83c 1439static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1440 unsigned long zone, int nid)
1e8ce83c 1441{
d0dc12e8 1442 mm_zero_struct_page(page);
1e8ce83c 1443 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1444 init_page_count(page);
1445 page_mapcount_reset(page);
1446 page_cpupid_reset_last(page);
2813b9c0 1447 page_kasan_tag_reset(page);
1e8ce83c 1448
1e8ce83c
RH
1449 INIT_LIST_HEAD(&page->lru);
1450#ifdef WANT_PAGE_VIRTUAL
1451 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1452 if (!is_highmem_idx(zone))
1453 set_page_address(page, __va(pfn << PAGE_SHIFT));
1454#endif
1455}
1456
7e18adb4 1457#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1458static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1459{
1460 pg_data_t *pgdat;
1461 int nid, zid;
1462
1463 if (!early_page_uninitialised(pfn))
1464 return;
1465
1466 nid = early_pfn_to_nid(pfn);
1467 pgdat = NODE_DATA(nid);
1468
1469 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1470 struct zone *zone = &pgdat->node_zones[zid];
1471
1472 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1473 break;
1474 }
d0dc12e8 1475 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1476}
1477#else
1478static inline void init_reserved_page(unsigned long pfn)
1479{
1480}
1481#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1482
92923ca3
NZ
1483/*
1484 * Initialised pages do not have PageReserved set. This function is
1485 * called for each range allocated by the bootmem allocator and
1486 * marks the pages PageReserved. The remaining valid pages are later
1487 * sent to the buddy page allocator.
1488 */
4b50bcc7 1489void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1490{
1491 unsigned long start_pfn = PFN_DOWN(start);
1492 unsigned long end_pfn = PFN_UP(end);
1493
7e18adb4
MG
1494 for (; start_pfn < end_pfn; start_pfn++) {
1495 if (pfn_valid(start_pfn)) {
1496 struct page *page = pfn_to_page(start_pfn);
1497
1498 init_reserved_page(start_pfn);
1d798ca3
KS
1499
1500 /* Avoid false-positive PageTail() */
1501 INIT_LIST_HEAD(&page->lru);
1502
d483da5b
AD
1503 /*
1504 * no need for atomic set_bit because the struct
1505 * page is not visible yet so nobody should
1506 * access it yet.
1507 */
1508 __SetPageReserved(page);
7e18adb4
MG
1509 }
1510 }
92923ca3
NZ
1511}
1512
7fef431b
DH
1513static void __free_pages_ok(struct page *page, unsigned int order,
1514 fpi_t fpi_flags)
ec95f53a 1515{
d34b0733 1516 unsigned long flags;
95e34412 1517 int migratetype;
dc4b0caf 1518 unsigned long pfn = page_to_pfn(page);
ec95f53a 1519
e2769dbd 1520 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1521 return;
1522
cfc47a28 1523 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1524 local_irq_save(flags);
1525 __count_vm_events(PGFREE, 1 << order);
7fef431b
DH
1526 free_one_page(page_zone(page), page, pfn, order, migratetype,
1527 fpi_flags);
d34b0733 1528 local_irq_restore(flags);
1da177e4
LT
1529}
1530
a9cd410a 1531void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1532{
c3993076 1533 unsigned int nr_pages = 1 << order;
e2d0bd2b 1534 struct page *p = page;
c3993076 1535 unsigned int loop;
a226f6c8 1536
7fef431b
DH
1537 /*
1538 * When initializing the memmap, __init_single_page() sets the refcount
1539 * of all pages to 1 ("allocated"/"not free"). We have to set the
1540 * refcount of all involved pages to 0.
1541 */
e2d0bd2b
YL
1542 prefetchw(p);
1543 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1544 prefetchw(p + 1);
c3993076
JW
1545 __ClearPageReserved(p);
1546 set_page_count(p, 0);
a226f6c8 1547 }
e2d0bd2b
YL
1548 __ClearPageReserved(p);
1549 set_page_count(p, 0);
c3993076 1550
9705bea5 1551 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1552
1553 /*
1554 * Bypass PCP and place fresh pages right to the tail, primarily
1555 * relevant for memory onlining.
1556 */
1557 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1558}
1559
3f08a302 1560#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1561
03e92a5e
MR
1562/*
1563 * During memory init memblocks map pfns to nids. The search is expensive and
1564 * this caches recent lookups. The implementation of __early_pfn_to_nid
1565 * treats start/end as pfns.
1566 */
1567struct mminit_pfnnid_cache {
1568 unsigned long last_start;
1569 unsigned long last_end;
1570 int last_nid;
1571};
75a592a4 1572
03e92a5e 1573static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1574
1575/*
1576 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1577 */
03e92a5e 1578static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1579 struct mminit_pfnnid_cache *state)
75a592a4 1580{
6f24fbd3 1581 unsigned long start_pfn, end_pfn;
75a592a4
MG
1582 int nid;
1583
6f24fbd3
MR
1584 if (state->last_start <= pfn && pfn < state->last_end)
1585 return state->last_nid;
1586
1587 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1588 if (nid != NUMA_NO_NODE) {
1589 state->last_start = start_pfn;
1590 state->last_end = end_pfn;
1591 state->last_nid = nid;
1592 }
7ace9917
MG
1593
1594 return nid;
75a592a4 1595}
75a592a4 1596
75a592a4 1597int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1598{
7ace9917 1599 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1600 int nid;
1601
7ace9917 1602 spin_lock(&early_pfn_lock);
56ec43d8 1603 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1604 if (nid < 0)
e4568d38 1605 nid = first_online_node;
7ace9917 1606 spin_unlock(&early_pfn_lock);
75a592a4 1607
7ace9917 1608 return nid;
75a592a4 1609}
3f08a302 1610#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1611
7c2ee349 1612void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1613 unsigned int order)
1614{
1615 if (early_page_uninitialised(pfn))
1616 return;
a9cd410a 1617 __free_pages_core(page, order);
3a80a7fa
MG
1618}
1619
7cf91a98
JK
1620/*
1621 * Check that the whole (or subset of) a pageblock given by the interval of
1622 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1623 * with the migration of free compaction scanner. The scanners then need to
1624 * use only pfn_valid_within() check for arches that allow holes within
1625 * pageblocks.
1626 *
1627 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1628 *
1629 * It's possible on some configurations to have a setup like node0 node1 node0
1630 * i.e. it's possible that all pages within a zones range of pages do not
1631 * belong to a single zone. We assume that a border between node0 and node1
1632 * can occur within a single pageblock, but not a node0 node1 node0
1633 * interleaving within a single pageblock. It is therefore sufficient to check
1634 * the first and last page of a pageblock and avoid checking each individual
1635 * page in a pageblock.
1636 */
1637struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1638 unsigned long end_pfn, struct zone *zone)
1639{
1640 struct page *start_page;
1641 struct page *end_page;
1642
1643 /* end_pfn is one past the range we are checking */
1644 end_pfn--;
1645
1646 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1647 return NULL;
1648
2d070eab
MH
1649 start_page = pfn_to_online_page(start_pfn);
1650 if (!start_page)
1651 return NULL;
7cf91a98
JK
1652
1653 if (page_zone(start_page) != zone)
1654 return NULL;
1655
1656 end_page = pfn_to_page(end_pfn);
1657
1658 /* This gives a shorter code than deriving page_zone(end_page) */
1659 if (page_zone_id(start_page) != page_zone_id(end_page))
1660 return NULL;
1661
1662 return start_page;
1663}
1664
1665void set_zone_contiguous(struct zone *zone)
1666{
1667 unsigned long block_start_pfn = zone->zone_start_pfn;
1668 unsigned long block_end_pfn;
1669
1670 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1671 for (; block_start_pfn < zone_end_pfn(zone);
1672 block_start_pfn = block_end_pfn,
1673 block_end_pfn += pageblock_nr_pages) {
1674
1675 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1676
1677 if (!__pageblock_pfn_to_page(block_start_pfn,
1678 block_end_pfn, zone))
1679 return;
e84fe99b 1680 cond_resched();
7cf91a98
JK
1681 }
1682
1683 /* We confirm that there is no hole */
1684 zone->contiguous = true;
1685}
1686
1687void clear_zone_contiguous(struct zone *zone)
1688{
1689 zone->contiguous = false;
1690}
1691
7e18adb4 1692#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1693static void __init deferred_free_range(unsigned long pfn,
1694 unsigned long nr_pages)
a4de83dd 1695{
2f47a91f
PT
1696 struct page *page;
1697 unsigned long i;
a4de83dd 1698
2f47a91f 1699 if (!nr_pages)
a4de83dd
MG
1700 return;
1701
2f47a91f
PT
1702 page = pfn_to_page(pfn);
1703
a4de83dd 1704 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1705 if (nr_pages == pageblock_nr_pages &&
1706 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1707 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1708 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1709 return;
1710 }
1711
e780149b
XQ
1712 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1713 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1714 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1715 __free_pages_core(page, 0);
e780149b 1716 }
a4de83dd
MG
1717}
1718
d3cd131d
NS
1719/* Completion tracking for deferred_init_memmap() threads */
1720static atomic_t pgdat_init_n_undone __initdata;
1721static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1722
1723static inline void __init pgdat_init_report_one_done(void)
1724{
1725 if (atomic_dec_and_test(&pgdat_init_n_undone))
1726 complete(&pgdat_init_all_done_comp);
1727}
0e1cc95b 1728
2f47a91f 1729/*
80b1f41c
PT
1730 * Returns true if page needs to be initialized or freed to buddy allocator.
1731 *
1732 * First we check if pfn is valid on architectures where it is possible to have
1733 * holes within pageblock_nr_pages. On systems where it is not possible, this
1734 * function is optimized out.
1735 *
1736 * Then, we check if a current large page is valid by only checking the validity
1737 * of the head pfn.
2f47a91f 1738 */
56ec43d8 1739static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1740{
80b1f41c
PT
1741 if (!pfn_valid_within(pfn))
1742 return false;
1743 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1744 return false;
80b1f41c
PT
1745 return true;
1746}
2f47a91f 1747
80b1f41c
PT
1748/*
1749 * Free pages to buddy allocator. Try to free aligned pages in
1750 * pageblock_nr_pages sizes.
1751 */
56ec43d8 1752static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1753 unsigned long end_pfn)
1754{
80b1f41c
PT
1755 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1756 unsigned long nr_free = 0;
2f47a91f 1757
80b1f41c 1758 for (; pfn < end_pfn; pfn++) {
56ec43d8 1759 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1760 deferred_free_range(pfn - nr_free, nr_free);
1761 nr_free = 0;
1762 } else if (!(pfn & nr_pgmask)) {
1763 deferred_free_range(pfn - nr_free, nr_free);
1764 nr_free = 1;
80b1f41c
PT
1765 } else {
1766 nr_free++;
1767 }
1768 }
1769 /* Free the last block of pages to allocator */
1770 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1771}
1772
80b1f41c
PT
1773/*
1774 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1775 * by performing it only once every pageblock_nr_pages.
1776 * Return number of pages initialized.
1777 */
56ec43d8 1778static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1779 unsigned long pfn,
1780 unsigned long end_pfn)
2f47a91f 1781{
2f47a91f 1782 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1783 int nid = zone_to_nid(zone);
2f47a91f 1784 unsigned long nr_pages = 0;
56ec43d8 1785 int zid = zone_idx(zone);
2f47a91f 1786 struct page *page = NULL;
2f47a91f 1787
80b1f41c 1788 for (; pfn < end_pfn; pfn++) {
56ec43d8 1789 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1790 page = NULL;
2f47a91f 1791 continue;
80b1f41c 1792 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1793 page = pfn_to_page(pfn);
80b1f41c
PT
1794 } else {
1795 page++;
2f47a91f 1796 }
d0dc12e8 1797 __init_single_page(page, pfn, zid, nid);
80b1f41c 1798 nr_pages++;
2f47a91f 1799 }
80b1f41c 1800 return (nr_pages);
2f47a91f
PT
1801}
1802
0e56acae
AD
1803/*
1804 * This function is meant to pre-load the iterator for the zone init.
1805 * Specifically it walks through the ranges until we are caught up to the
1806 * first_init_pfn value and exits there. If we never encounter the value we
1807 * return false indicating there are no valid ranges left.
1808 */
1809static bool __init
1810deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1811 unsigned long *spfn, unsigned long *epfn,
1812 unsigned long first_init_pfn)
1813{
1814 u64 j;
1815
1816 /*
1817 * Start out by walking through the ranges in this zone that have
1818 * already been initialized. We don't need to do anything with them
1819 * so we just need to flush them out of the system.
1820 */
1821 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1822 if (*epfn <= first_init_pfn)
1823 continue;
1824 if (*spfn < first_init_pfn)
1825 *spfn = first_init_pfn;
1826 *i = j;
1827 return true;
1828 }
1829
1830 return false;
1831}
1832
1833/*
1834 * Initialize and free pages. We do it in two loops: first we initialize
1835 * struct page, then free to buddy allocator, because while we are
1836 * freeing pages we can access pages that are ahead (computing buddy
1837 * page in __free_one_page()).
1838 *
1839 * In order to try and keep some memory in the cache we have the loop
1840 * broken along max page order boundaries. This way we will not cause
1841 * any issues with the buddy page computation.
1842 */
1843static unsigned long __init
1844deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1845 unsigned long *end_pfn)
1846{
1847 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1848 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1849 unsigned long nr_pages = 0;
1850 u64 j = *i;
1851
1852 /* First we loop through and initialize the page values */
1853 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1854 unsigned long t;
1855
1856 if (mo_pfn <= *start_pfn)
1857 break;
1858
1859 t = min(mo_pfn, *end_pfn);
1860 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1861
1862 if (mo_pfn < *end_pfn) {
1863 *start_pfn = mo_pfn;
1864 break;
1865 }
1866 }
1867
1868 /* Reset values and now loop through freeing pages as needed */
1869 swap(j, *i);
1870
1871 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1872 unsigned long t;
1873
1874 if (mo_pfn <= spfn)
1875 break;
1876
1877 t = min(mo_pfn, epfn);
1878 deferred_free_pages(spfn, t);
1879
1880 if (mo_pfn <= epfn)
1881 break;
1882 }
1883
1884 return nr_pages;
1885}
1886
e4443149
DJ
1887static void __init
1888deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1889 void *arg)
1890{
1891 unsigned long spfn, epfn;
1892 struct zone *zone = arg;
1893 u64 i;
1894
1895 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1896
1897 /*
1898 * Initialize and free pages in MAX_ORDER sized increments so that we
1899 * can avoid introducing any issues with the buddy allocator.
1900 */
1901 while (spfn < end_pfn) {
1902 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1903 cond_resched();
1904 }
1905}
1906
ecd09650
DJ
1907/* An arch may override for more concurrency. */
1908__weak int __init
1909deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1910{
1911 return 1;
1912}
1913
7e18adb4 1914/* Initialise remaining memory on a node */
0e1cc95b 1915static int __init deferred_init_memmap(void *data)
7e18adb4 1916{
0e1cc95b 1917 pg_data_t *pgdat = data;
0e56acae 1918 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1919 unsigned long spfn = 0, epfn = 0;
0e56acae 1920 unsigned long first_init_pfn, flags;
7e18adb4 1921 unsigned long start = jiffies;
7e18adb4 1922 struct zone *zone;
e4443149 1923 int zid, max_threads;
2f47a91f 1924 u64 i;
7e18adb4 1925
3a2d7fa8
PT
1926 /* Bind memory initialisation thread to a local node if possible */
1927 if (!cpumask_empty(cpumask))
1928 set_cpus_allowed_ptr(current, cpumask);
1929
1930 pgdat_resize_lock(pgdat, &flags);
1931 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1932 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1933 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1934 pgdat_init_report_one_done();
0e1cc95b
MG
1935 return 0;
1936 }
1937
7e18adb4
MG
1938 /* Sanity check boundaries */
1939 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1940 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1941 pgdat->first_deferred_pfn = ULONG_MAX;
1942
3d060856
PT
1943 /*
1944 * Once we unlock here, the zone cannot be grown anymore, thus if an
1945 * interrupt thread must allocate this early in boot, zone must be
1946 * pre-grown prior to start of deferred page initialization.
1947 */
1948 pgdat_resize_unlock(pgdat, &flags);
1949
7e18adb4
MG
1950 /* Only the highest zone is deferred so find it */
1951 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1952 zone = pgdat->node_zones + zid;
1953 if (first_init_pfn < zone_end_pfn(zone))
1954 break;
1955 }
0e56acae
AD
1956
1957 /* If the zone is empty somebody else may have cleared out the zone */
1958 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1959 first_init_pfn))
1960 goto zone_empty;
7e18adb4 1961
ecd09650 1962 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1963
117003c3 1964 while (spfn < epfn) {
e4443149
DJ
1965 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1966 struct padata_mt_job job = {
1967 .thread_fn = deferred_init_memmap_chunk,
1968 .fn_arg = zone,
1969 .start = spfn,
1970 .size = epfn_align - spfn,
1971 .align = PAGES_PER_SECTION,
1972 .min_chunk = PAGES_PER_SECTION,
1973 .max_threads = max_threads,
1974 };
1975
1976 padata_do_multithreaded(&job);
1977 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1978 epfn_align);
117003c3 1979 }
0e56acae 1980zone_empty:
7e18adb4
MG
1981 /* Sanity check that the next zone really is unpopulated */
1982 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1983
89c7c402
DJ
1984 pr_info("node %d deferred pages initialised in %ums\n",
1985 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1986
1987 pgdat_init_report_one_done();
0e1cc95b
MG
1988 return 0;
1989}
c9e97a19 1990
c9e97a19
PT
1991/*
1992 * If this zone has deferred pages, try to grow it by initializing enough
1993 * deferred pages to satisfy the allocation specified by order, rounded up to
1994 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1995 * of SECTION_SIZE bytes by initializing struct pages in increments of
1996 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1997 *
1998 * Return true when zone was grown, otherwise return false. We return true even
1999 * when we grow less than requested, to let the caller decide if there are
2000 * enough pages to satisfy the allocation.
2001 *
2002 * Note: We use noinline because this function is needed only during boot, and
2003 * it is called from a __ref function _deferred_grow_zone. This way we are
2004 * making sure that it is not inlined into permanent text section.
2005 */
2006static noinline bool __init
2007deferred_grow_zone(struct zone *zone, unsigned int order)
2008{
c9e97a19 2009 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2010 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2011 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2012 unsigned long spfn, epfn, flags;
2013 unsigned long nr_pages = 0;
c9e97a19
PT
2014 u64 i;
2015
2016 /* Only the last zone may have deferred pages */
2017 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2018 return false;
2019
2020 pgdat_resize_lock(pgdat, &flags);
2021
c9e97a19
PT
2022 /*
2023 * If someone grew this zone while we were waiting for spinlock, return
2024 * true, as there might be enough pages already.
2025 */
2026 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2027 pgdat_resize_unlock(pgdat, &flags);
2028 return true;
2029 }
2030
0e56acae
AD
2031 /* If the zone is empty somebody else may have cleared out the zone */
2032 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2033 first_deferred_pfn)) {
2034 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2035 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2036 /* Retry only once. */
2037 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2038 }
2039
0e56acae
AD
2040 /*
2041 * Initialize and free pages in MAX_ORDER sized increments so
2042 * that we can avoid introducing any issues with the buddy
2043 * allocator.
2044 */
2045 while (spfn < epfn) {
2046 /* update our first deferred PFN for this section */
2047 first_deferred_pfn = spfn;
2048
2049 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2050 touch_nmi_watchdog();
c9e97a19 2051
0e56acae
AD
2052 /* We should only stop along section boundaries */
2053 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2054 continue;
c9e97a19 2055
0e56acae 2056 /* If our quota has been met we can stop here */
c9e97a19
PT
2057 if (nr_pages >= nr_pages_needed)
2058 break;
2059 }
2060
0e56acae 2061 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2062 pgdat_resize_unlock(pgdat, &flags);
2063
2064 return nr_pages > 0;
2065}
2066
2067/*
2068 * deferred_grow_zone() is __init, but it is called from
2069 * get_page_from_freelist() during early boot until deferred_pages permanently
2070 * disables this call. This is why we have refdata wrapper to avoid warning,
2071 * and to ensure that the function body gets unloaded.
2072 */
2073static bool __ref
2074_deferred_grow_zone(struct zone *zone, unsigned int order)
2075{
2076 return deferred_grow_zone(zone, order);
2077}
2078
7cf91a98 2079#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2080
2081void __init page_alloc_init_late(void)
2082{
7cf91a98 2083 struct zone *zone;
e900a918 2084 int nid;
7cf91a98
JK
2085
2086#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2087
d3cd131d
NS
2088 /* There will be num_node_state(N_MEMORY) threads */
2089 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2090 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2091 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2092 }
2093
2094 /* Block until all are initialised */
d3cd131d 2095 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2096
3e8fc007
MG
2097 /*
2098 * The number of managed pages has changed due to the initialisation
2099 * so the pcpu batch and high limits needs to be updated or the limits
2100 * will be artificially small.
2101 */
2102 for_each_populated_zone(zone)
2103 zone_pcp_update(zone);
2104
c9e97a19
PT
2105 /*
2106 * We initialized the rest of the deferred pages. Permanently disable
2107 * on-demand struct page initialization.
2108 */
2109 static_branch_disable(&deferred_pages);
2110
4248b0da
MG
2111 /* Reinit limits that are based on free pages after the kernel is up */
2112 files_maxfiles_init();
7cf91a98 2113#endif
350e88ba 2114
3010f876
PT
2115 /* Discard memblock private memory */
2116 memblock_discard();
7cf91a98 2117
e900a918
DW
2118 for_each_node_state(nid, N_MEMORY)
2119 shuffle_free_memory(NODE_DATA(nid));
2120
7cf91a98
JK
2121 for_each_populated_zone(zone)
2122 set_zone_contiguous(zone);
7e18adb4 2123}
7e18adb4 2124
47118af0 2125#ifdef CONFIG_CMA
9cf510a5 2126/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2127void __init init_cma_reserved_pageblock(struct page *page)
2128{
2129 unsigned i = pageblock_nr_pages;
2130 struct page *p = page;
2131
2132 do {
2133 __ClearPageReserved(p);
2134 set_page_count(p, 0);
d883c6cf 2135 } while (++p, --i);
47118af0 2136
47118af0 2137 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2138
2139 if (pageblock_order >= MAX_ORDER) {
2140 i = pageblock_nr_pages;
2141 p = page;
2142 do {
2143 set_page_refcounted(p);
2144 __free_pages(p, MAX_ORDER - 1);
2145 p += MAX_ORDER_NR_PAGES;
2146 } while (i -= MAX_ORDER_NR_PAGES);
2147 } else {
2148 set_page_refcounted(page);
2149 __free_pages(page, pageblock_order);
2150 }
2151
3dcc0571 2152 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2153}
2154#endif
1da177e4
LT
2155
2156/*
2157 * The order of subdivision here is critical for the IO subsystem.
2158 * Please do not alter this order without good reasons and regression
2159 * testing. Specifically, as large blocks of memory are subdivided,
2160 * the order in which smaller blocks are delivered depends on the order
2161 * they're subdivided in this function. This is the primary factor
2162 * influencing the order in which pages are delivered to the IO
2163 * subsystem according to empirical testing, and this is also justified
2164 * by considering the behavior of a buddy system containing a single
2165 * large block of memory acted on by a series of small allocations.
2166 * This behavior is a critical factor in sglist merging's success.
2167 *
6d49e352 2168 * -- nyc
1da177e4 2169 */
085cc7d5 2170static inline void expand(struct zone *zone, struct page *page,
6ab01363 2171 int low, int high, int migratetype)
1da177e4
LT
2172{
2173 unsigned long size = 1 << high;
2174
2175 while (high > low) {
1da177e4
LT
2176 high--;
2177 size >>= 1;
309381fe 2178 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2179
acbc15a4
JK
2180 /*
2181 * Mark as guard pages (or page), that will allow to
2182 * merge back to allocator when buddy will be freed.
2183 * Corresponding page table entries will not be touched,
2184 * pages will stay not present in virtual address space
2185 */
2186 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2187 continue;
acbc15a4 2188
6ab01363 2189 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2190 set_buddy_order(&page[size], high);
1da177e4 2191 }
1da177e4
LT
2192}
2193
4e611801 2194static void check_new_page_bad(struct page *page)
1da177e4 2195{
f4c18e6f 2196 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2197 /* Don't complain about hwpoisoned pages */
2198 page_mapcount_reset(page); /* remove PageBuddy */
2199 return;
f4c18e6f 2200 }
58b7f119
WY
2201
2202 bad_page(page,
2203 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2204}
2205
2206/*
2207 * This page is about to be returned from the page allocator
2208 */
2209static inline int check_new_page(struct page *page)
2210{
2211 if (likely(page_expected_state(page,
2212 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2213 return 0;
2214
2215 check_new_page_bad(page);
2216 return 1;
2a7684a2
WF
2217}
2218
bd33ef36 2219static inline bool free_pages_prezeroed(void)
1414c7f4 2220{
6471384a
AP
2221 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2222 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2223}
2224
479f854a 2225#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2226/*
2227 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2228 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2229 * also checked when pcp lists are refilled from the free lists.
2230 */
2231static inline bool check_pcp_refill(struct page *page)
479f854a 2232{
8e57f8ac 2233 if (debug_pagealloc_enabled_static())
4462b32c
VB
2234 return check_new_page(page);
2235 else
2236 return false;
479f854a
MG
2237}
2238
4462b32c 2239static inline bool check_new_pcp(struct page *page)
479f854a
MG
2240{
2241 return check_new_page(page);
2242}
2243#else
4462b32c
VB
2244/*
2245 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2246 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2247 * enabled, they are also checked when being allocated from the pcp lists.
2248 */
2249static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2250{
2251 return check_new_page(page);
2252}
4462b32c 2253static inline bool check_new_pcp(struct page *page)
479f854a 2254{
8e57f8ac 2255 if (debug_pagealloc_enabled_static())
4462b32c
VB
2256 return check_new_page(page);
2257 else
2258 return false;
479f854a
MG
2259}
2260#endif /* CONFIG_DEBUG_VM */
2261
2262static bool check_new_pages(struct page *page, unsigned int order)
2263{
2264 int i;
2265 for (i = 0; i < (1 << order); i++) {
2266 struct page *p = page + i;
2267
2268 if (unlikely(check_new_page(p)))
2269 return true;
2270 }
2271
2272 return false;
2273}
2274
46f24fd8
JK
2275inline void post_alloc_hook(struct page *page, unsigned int order,
2276 gfp_t gfp_flags)
2277{
2278 set_page_private(page, 0);
2279 set_page_refcounted(page);
2280
2281 arch_alloc_page(page, order);
8e57f8ac 2282 if (debug_pagealloc_enabled_static())
d6332692 2283 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2284 kasan_alloc_pages(page, order);
4117992d 2285 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2286 set_page_owner(page, order, gfp_flags);
2287}
2288
479f854a 2289static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2290 unsigned int alloc_flags)
2a7684a2 2291{
46f24fd8 2292 post_alloc_hook(page, order, gfp_flags);
17cf4406 2293
6471384a
AP
2294 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2295 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2296
2297 if (order && (gfp_flags & __GFP_COMP))
2298 prep_compound_page(page, order);
2299
75379191 2300 /*
2f064f34 2301 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2302 * allocate the page. The expectation is that the caller is taking
2303 * steps that will free more memory. The caller should avoid the page
2304 * being used for !PFMEMALLOC purposes.
2305 */
2f064f34
MH
2306 if (alloc_flags & ALLOC_NO_WATERMARKS)
2307 set_page_pfmemalloc(page);
2308 else
2309 clear_page_pfmemalloc(page);
1da177e4
LT
2310}
2311
56fd56b8
MG
2312/*
2313 * Go through the free lists for the given migratetype and remove
2314 * the smallest available page from the freelists
2315 */
85ccc8fa 2316static __always_inline
728ec980 2317struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2318 int migratetype)
2319{
2320 unsigned int current_order;
b8af2941 2321 struct free_area *area;
56fd56b8
MG
2322 struct page *page;
2323
2324 /* Find a page of the appropriate size in the preferred list */
2325 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2326 area = &(zone->free_area[current_order]);
b03641af 2327 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2328 if (!page)
2329 continue;
6ab01363
AD
2330 del_page_from_free_list(page, zone, current_order);
2331 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2332 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2333 return page;
2334 }
2335
2336 return NULL;
2337}
2338
2339
b2a0ac88
MG
2340/*
2341 * This array describes the order lists are fallen back to when
2342 * the free lists for the desirable migrate type are depleted
2343 */
da415663 2344static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2345 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2346 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2347 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2348#ifdef CONFIG_CMA
974a786e 2349 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2350#endif
194159fb 2351#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2352 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2353#endif
b2a0ac88
MG
2354};
2355
dc67647b 2356#ifdef CONFIG_CMA
85ccc8fa 2357static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2358 unsigned int order)
2359{
2360 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2361}
2362#else
2363static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2364 unsigned int order) { return NULL; }
2365#endif
2366
c361be55 2367/*
293ffa5e 2368 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2369 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2370 * boundary. If alignment is required, use move_freepages_block()
2371 */
02aa0cdd 2372static int move_freepages(struct zone *zone,
b69a7288 2373 struct page *start_page, struct page *end_page,
02aa0cdd 2374 int migratetype, int *num_movable)
c361be55
MG
2375{
2376 struct page *page;
d00181b9 2377 unsigned int order;
d100313f 2378 int pages_moved = 0;
c361be55 2379
c361be55
MG
2380 for (page = start_page; page <= end_page;) {
2381 if (!pfn_valid_within(page_to_pfn(page))) {
2382 page++;
2383 continue;
2384 }
2385
2386 if (!PageBuddy(page)) {
02aa0cdd
VB
2387 /*
2388 * We assume that pages that could be isolated for
2389 * migration are movable. But we don't actually try
2390 * isolating, as that would be expensive.
2391 */
2392 if (num_movable &&
2393 (PageLRU(page) || __PageMovable(page)))
2394 (*num_movable)++;
2395
c361be55
MG
2396 page++;
2397 continue;
2398 }
2399
cd961038
DR
2400 /* Make sure we are not inadvertently changing nodes */
2401 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2402 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2403
ab130f91 2404 order = buddy_order(page);
6ab01363 2405 move_to_free_list(page, zone, order, migratetype);
c361be55 2406 page += 1 << order;
d100313f 2407 pages_moved += 1 << order;
c361be55
MG
2408 }
2409
d100313f 2410 return pages_moved;
c361be55
MG
2411}
2412
ee6f509c 2413int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2414 int migratetype, int *num_movable)
c361be55
MG
2415{
2416 unsigned long start_pfn, end_pfn;
2417 struct page *start_page, *end_page;
2418
4a222127
DR
2419 if (num_movable)
2420 *num_movable = 0;
2421
c361be55 2422 start_pfn = page_to_pfn(page);
d9c23400 2423 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2424 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2425 end_page = start_page + pageblock_nr_pages - 1;
2426 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2427
2428 /* Do not cross zone boundaries */
108bcc96 2429 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2430 start_page = page;
108bcc96 2431 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2432 return 0;
2433
02aa0cdd
VB
2434 return move_freepages(zone, start_page, end_page, migratetype,
2435 num_movable);
c361be55
MG
2436}
2437
2f66a68f
MG
2438static void change_pageblock_range(struct page *pageblock_page,
2439 int start_order, int migratetype)
2440{
2441 int nr_pageblocks = 1 << (start_order - pageblock_order);
2442
2443 while (nr_pageblocks--) {
2444 set_pageblock_migratetype(pageblock_page, migratetype);
2445 pageblock_page += pageblock_nr_pages;
2446 }
2447}
2448
fef903ef 2449/*
9c0415eb
VB
2450 * When we are falling back to another migratetype during allocation, try to
2451 * steal extra free pages from the same pageblocks to satisfy further
2452 * allocations, instead of polluting multiple pageblocks.
2453 *
2454 * If we are stealing a relatively large buddy page, it is likely there will
2455 * be more free pages in the pageblock, so try to steal them all. For
2456 * reclaimable and unmovable allocations, we steal regardless of page size,
2457 * as fragmentation caused by those allocations polluting movable pageblocks
2458 * is worse than movable allocations stealing from unmovable and reclaimable
2459 * pageblocks.
fef903ef 2460 */
4eb7dce6
JK
2461static bool can_steal_fallback(unsigned int order, int start_mt)
2462{
2463 /*
2464 * Leaving this order check is intended, although there is
2465 * relaxed order check in next check. The reason is that
2466 * we can actually steal whole pageblock if this condition met,
2467 * but, below check doesn't guarantee it and that is just heuristic
2468 * so could be changed anytime.
2469 */
2470 if (order >= pageblock_order)
2471 return true;
2472
2473 if (order >= pageblock_order / 2 ||
2474 start_mt == MIGRATE_RECLAIMABLE ||
2475 start_mt == MIGRATE_UNMOVABLE ||
2476 page_group_by_mobility_disabled)
2477 return true;
2478
2479 return false;
2480}
2481
1c30844d
MG
2482static inline void boost_watermark(struct zone *zone)
2483{
2484 unsigned long max_boost;
2485
2486 if (!watermark_boost_factor)
2487 return;
14f69140
HW
2488 /*
2489 * Don't bother in zones that are unlikely to produce results.
2490 * On small machines, including kdump capture kernels running
2491 * in a small area, boosting the watermark can cause an out of
2492 * memory situation immediately.
2493 */
2494 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2495 return;
1c30844d
MG
2496
2497 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2498 watermark_boost_factor, 10000);
94b3334c
MG
2499
2500 /*
2501 * high watermark may be uninitialised if fragmentation occurs
2502 * very early in boot so do not boost. We do not fall
2503 * through and boost by pageblock_nr_pages as failing
2504 * allocations that early means that reclaim is not going
2505 * to help and it may even be impossible to reclaim the
2506 * boosted watermark resulting in a hang.
2507 */
2508 if (!max_boost)
2509 return;
2510
1c30844d
MG
2511 max_boost = max(pageblock_nr_pages, max_boost);
2512
2513 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2514 max_boost);
2515}
2516
4eb7dce6
JK
2517/*
2518 * This function implements actual steal behaviour. If order is large enough,
2519 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2520 * pageblock to our migratetype and determine how many already-allocated pages
2521 * are there in the pageblock with a compatible migratetype. If at least half
2522 * of pages are free or compatible, we can change migratetype of the pageblock
2523 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2524 */
2525static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2526 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2527{
ab130f91 2528 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2529 int free_pages, movable_pages, alike_pages;
2530 int old_block_type;
2531
2532 old_block_type = get_pageblock_migratetype(page);
fef903ef 2533
3bc48f96
VB
2534 /*
2535 * This can happen due to races and we want to prevent broken
2536 * highatomic accounting.
2537 */
02aa0cdd 2538 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2539 goto single_page;
2540
fef903ef
SB
2541 /* Take ownership for orders >= pageblock_order */
2542 if (current_order >= pageblock_order) {
2543 change_pageblock_range(page, current_order, start_type);
3bc48f96 2544 goto single_page;
fef903ef
SB
2545 }
2546
1c30844d
MG
2547 /*
2548 * Boost watermarks to increase reclaim pressure to reduce the
2549 * likelihood of future fallbacks. Wake kswapd now as the node
2550 * may be balanced overall and kswapd will not wake naturally.
2551 */
2552 boost_watermark(zone);
2553 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2554 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2555
3bc48f96
VB
2556 /* We are not allowed to try stealing from the whole block */
2557 if (!whole_block)
2558 goto single_page;
2559
02aa0cdd
VB
2560 free_pages = move_freepages_block(zone, page, start_type,
2561 &movable_pages);
2562 /*
2563 * Determine how many pages are compatible with our allocation.
2564 * For movable allocation, it's the number of movable pages which
2565 * we just obtained. For other types it's a bit more tricky.
2566 */
2567 if (start_type == MIGRATE_MOVABLE) {
2568 alike_pages = movable_pages;
2569 } else {
2570 /*
2571 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2572 * to MOVABLE pageblock, consider all non-movable pages as
2573 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2574 * vice versa, be conservative since we can't distinguish the
2575 * exact migratetype of non-movable pages.
2576 */
2577 if (old_block_type == MIGRATE_MOVABLE)
2578 alike_pages = pageblock_nr_pages
2579 - (free_pages + movable_pages);
2580 else
2581 alike_pages = 0;
2582 }
2583
3bc48f96 2584 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2585 if (!free_pages)
3bc48f96 2586 goto single_page;
fef903ef 2587
02aa0cdd
VB
2588 /*
2589 * If a sufficient number of pages in the block are either free or of
2590 * comparable migratability as our allocation, claim the whole block.
2591 */
2592 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2593 page_group_by_mobility_disabled)
2594 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2595
2596 return;
2597
2598single_page:
6ab01363 2599 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2600}
2601
2149cdae
JK
2602/*
2603 * Check whether there is a suitable fallback freepage with requested order.
2604 * If only_stealable is true, this function returns fallback_mt only if
2605 * we can steal other freepages all together. This would help to reduce
2606 * fragmentation due to mixed migratetype pages in one pageblock.
2607 */
2608int find_suitable_fallback(struct free_area *area, unsigned int order,
2609 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2610{
2611 int i;
2612 int fallback_mt;
2613
2614 if (area->nr_free == 0)
2615 return -1;
2616
2617 *can_steal = false;
2618 for (i = 0;; i++) {
2619 fallback_mt = fallbacks[migratetype][i];
974a786e 2620 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2621 break;
2622
b03641af 2623 if (free_area_empty(area, fallback_mt))
4eb7dce6 2624 continue;
fef903ef 2625
4eb7dce6
JK
2626 if (can_steal_fallback(order, migratetype))
2627 *can_steal = true;
2628
2149cdae
JK
2629 if (!only_stealable)
2630 return fallback_mt;
2631
2632 if (*can_steal)
2633 return fallback_mt;
fef903ef 2634 }
4eb7dce6
JK
2635
2636 return -1;
fef903ef
SB
2637}
2638
0aaa29a5
MG
2639/*
2640 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2641 * there are no empty page blocks that contain a page with a suitable order
2642 */
2643static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2644 unsigned int alloc_order)
2645{
2646 int mt;
2647 unsigned long max_managed, flags;
2648
2649 /*
2650 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2651 * Check is race-prone but harmless.
2652 */
9705bea5 2653 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2654 if (zone->nr_reserved_highatomic >= max_managed)
2655 return;
2656
2657 spin_lock_irqsave(&zone->lock, flags);
2658
2659 /* Recheck the nr_reserved_highatomic limit under the lock */
2660 if (zone->nr_reserved_highatomic >= max_managed)
2661 goto out_unlock;
2662
2663 /* Yoink! */
2664 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2665 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2666 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2667 zone->nr_reserved_highatomic += pageblock_nr_pages;
2668 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2669 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2670 }
2671
2672out_unlock:
2673 spin_unlock_irqrestore(&zone->lock, flags);
2674}
2675
2676/*
2677 * Used when an allocation is about to fail under memory pressure. This
2678 * potentially hurts the reliability of high-order allocations when under
2679 * intense memory pressure but failed atomic allocations should be easier
2680 * to recover from than an OOM.
29fac03b
MK
2681 *
2682 * If @force is true, try to unreserve a pageblock even though highatomic
2683 * pageblock is exhausted.
0aaa29a5 2684 */
29fac03b
MK
2685static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2686 bool force)
0aaa29a5
MG
2687{
2688 struct zonelist *zonelist = ac->zonelist;
2689 unsigned long flags;
2690 struct zoneref *z;
2691 struct zone *zone;
2692 struct page *page;
2693 int order;
04c8716f 2694 bool ret;
0aaa29a5 2695
97a225e6 2696 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2697 ac->nodemask) {
29fac03b
MK
2698 /*
2699 * Preserve at least one pageblock unless memory pressure
2700 * is really high.
2701 */
2702 if (!force && zone->nr_reserved_highatomic <=
2703 pageblock_nr_pages)
0aaa29a5
MG
2704 continue;
2705
2706 spin_lock_irqsave(&zone->lock, flags);
2707 for (order = 0; order < MAX_ORDER; order++) {
2708 struct free_area *area = &(zone->free_area[order]);
2709
b03641af 2710 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2711 if (!page)
0aaa29a5
MG
2712 continue;
2713
0aaa29a5 2714 /*
4855e4a7
MK
2715 * In page freeing path, migratetype change is racy so
2716 * we can counter several free pages in a pageblock
2717 * in this loop althoug we changed the pageblock type
2718 * from highatomic to ac->migratetype. So we should
2719 * adjust the count once.
0aaa29a5 2720 */
a6ffdc07 2721 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2722 /*
2723 * It should never happen but changes to
2724 * locking could inadvertently allow a per-cpu
2725 * drain to add pages to MIGRATE_HIGHATOMIC
2726 * while unreserving so be safe and watch for
2727 * underflows.
2728 */
2729 zone->nr_reserved_highatomic -= min(
2730 pageblock_nr_pages,
2731 zone->nr_reserved_highatomic);
2732 }
0aaa29a5
MG
2733
2734 /*
2735 * Convert to ac->migratetype and avoid the normal
2736 * pageblock stealing heuristics. Minimally, the caller
2737 * is doing the work and needs the pages. More
2738 * importantly, if the block was always converted to
2739 * MIGRATE_UNMOVABLE or another type then the number
2740 * of pageblocks that cannot be completely freed
2741 * may increase.
2742 */
2743 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2744 ret = move_freepages_block(zone, page, ac->migratetype,
2745 NULL);
29fac03b
MK
2746 if (ret) {
2747 spin_unlock_irqrestore(&zone->lock, flags);
2748 return ret;
2749 }
0aaa29a5
MG
2750 }
2751 spin_unlock_irqrestore(&zone->lock, flags);
2752 }
04c8716f
MK
2753
2754 return false;
0aaa29a5
MG
2755}
2756
3bc48f96
VB
2757/*
2758 * Try finding a free buddy page on the fallback list and put it on the free
2759 * list of requested migratetype, possibly along with other pages from the same
2760 * block, depending on fragmentation avoidance heuristics. Returns true if
2761 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2762 *
2763 * The use of signed ints for order and current_order is a deliberate
2764 * deviation from the rest of this file, to make the for loop
2765 * condition simpler.
3bc48f96 2766 */
85ccc8fa 2767static __always_inline bool
6bb15450
MG
2768__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2769 unsigned int alloc_flags)
b2a0ac88 2770{
b8af2941 2771 struct free_area *area;
b002529d 2772 int current_order;
6bb15450 2773 int min_order = order;
b2a0ac88 2774 struct page *page;
4eb7dce6
JK
2775 int fallback_mt;
2776 bool can_steal;
b2a0ac88 2777
6bb15450
MG
2778 /*
2779 * Do not steal pages from freelists belonging to other pageblocks
2780 * i.e. orders < pageblock_order. If there are no local zones free,
2781 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2782 */
2783 if (alloc_flags & ALLOC_NOFRAGMENT)
2784 min_order = pageblock_order;
2785
7a8f58f3
VB
2786 /*
2787 * Find the largest available free page in the other list. This roughly
2788 * approximates finding the pageblock with the most free pages, which
2789 * would be too costly to do exactly.
2790 */
6bb15450 2791 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2792 --current_order) {
4eb7dce6
JK
2793 area = &(zone->free_area[current_order]);
2794 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2795 start_migratetype, false, &can_steal);
4eb7dce6
JK
2796 if (fallback_mt == -1)
2797 continue;
b2a0ac88 2798
7a8f58f3
VB
2799 /*
2800 * We cannot steal all free pages from the pageblock and the
2801 * requested migratetype is movable. In that case it's better to
2802 * steal and split the smallest available page instead of the
2803 * largest available page, because even if the next movable
2804 * allocation falls back into a different pageblock than this
2805 * one, it won't cause permanent fragmentation.
2806 */
2807 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2808 && current_order > order)
2809 goto find_smallest;
b2a0ac88 2810
7a8f58f3
VB
2811 goto do_steal;
2812 }
e0fff1bd 2813
7a8f58f3 2814 return false;
e0fff1bd 2815
7a8f58f3
VB
2816find_smallest:
2817 for (current_order = order; current_order < MAX_ORDER;
2818 current_order++) {
2819 area = &(zone->free_area[current_order]);
2820 fallback_mt = find_suitable_fallback(area, current_order,
2821 start_migratetype, false, &can_steal);
2822 if (fallback_mt != -1)
2823 break;
b2a0ac88
MG
2824 }
2825
7a8f58f3
VB
2826 /*
2827 * This should not happen - we already found a suitable fallback
2828 * when looking for the largest page.
2829 */
2830 VM_BUG_ON(current_order == MAX_ORDER);
2831
2832do_steal:
b03641af 2833 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2834
1c30844d
MG
2835 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2836 can_steal);
7a8f58f3
VB
2837
2838 trace_mm_page_alloc_extfrag(page, order, current_order,
2839 start_migratetype, fallback_mt);
2840
2841 return true;
2842
b2a0ac88
MG
2843}
2844
56fd56b8 2845/*
1da177e4
LT
2846 * Do the hard work of removing an element from the buddy allocator.
2847 * Call me with the zone->lock already held.
2848 */
85ccc8fa 2849static __always_inline struct page *
6bb15450
MG
2850__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2851 unsigned int alloc_flags)
1da177e4 2852{
1da177e4
LT
2853 struct page *page;
2854
16867664
RG
2855#ifdef CONFIG_CMA
2856 /*
2857 * Balance movable allocations between regular and CMA areas by
2858 * allocating from CMA when over half of the zone's free memory
2859 * is in the CMA area.
2860 */
8510e69c 2861 if (alloc_flags & ALLOC_CMA &&
16867664
RG
2862 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2863 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2864 page = __rmqueue_cma_fallback(zone, order);
2865 if (page)
2866 return page;
2867 }
2868#endif
3bc48f96 2869retry:
56fd56b8 2870 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2871 if (unlikely(!page)) {
8510e69c 2872 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2873 page = __rmqueue_cma_fallback(zone, order);
2874
6bb15450
MG
2875 if (!page && __rmqueue_fallback(zone, order, migratetype,
2876 alloc_flags))
3bc48f96 2877 goto retry;
728ec980
MG
2878 }
2879
0d3d062a 2880 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2881 return page;
1da177e4
LT
2882}
2883
5f63b720 2884/*
1da177e4
LT
2885 * Obtain a specified number of elements from the buddy allocator, all under
2886 * a single hold of the lock, for efficiency. Add them to the supplied list.
2887 * Returns the number of new pages which were placed at *list.
2888 */
5f63b720 2889static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2890 unsigned long count, struct list_head *list,
6bb15450 2891 int migratetype, unsigned int alloc_flags)
1da177e4 2892{
a6de734b 2893 int i, alloced = 0;
5f63b720 2894
d34b0733 2895 spin_lock(&zone->lock);
1da177e4 2896 for (i = 0; i < count; ++i) {
6bb15450
MG
2897 struct page *page = __rmqueue(zone, order, migratetype,
2898 alloc_flags);
085cc7d5 2899 if (unlikely(page == NULL))
1da177e4 2900 break;
81eabcbe 2901
479f854a
MG
2902 if (unlikely(check_pcp_refill(page)))
2903 continue;
2904
81eabcbe 2905 /*
0fac3ba5
VB
2906 * Split buddy pages returned by expand() are received here in
2907 * physical page order. The page is added to the tail of
2908 * caller's list. From the callers perspective, the linked list
2909 * is ordered by page number under some conditions. This is
2910 * useful for IO devices that can forward direction from the
2911 * head, thus also in the physical page order. This is useful
2912 * for IO devices that can merge IO requests if the physical
2913 * pages are ordered properly.
81eabcbe 2914 */
0fac3ba5 2915 list_add_tail(&page->lru, list);
a6de734b 2916 alloced++;
bb14c2c7 2917 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2918 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2919 -(1 << order));
1da177e4 2920 }
a6de734b
MG
2921
2922 /*
2923 * i pages were removed from the buddy list even if some leak due
2924 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2925 * on i. Do not confuse with 'alloced' which is the number of
2926 * pages added to the pcp list.
2927 */
f2260e6b 2928 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2929 spin_unlock(&zone->lock);
a6de734b 2930 return alloced;
1da177e4
LT
2931}
2932
4ae7c039 2933#ifdef CONFIG_NUMA
8fce4d8e 2934/*
4037d452
CL
2935 * Called from the vmstat counter updater to drain pagesets of this
2936 * currently executing processor on remote nodes after they have
2937 * expired.
2938 *
879336c3
CL
2939 * Note that this function must be called with the thread pinned to
2940 * a single processor.
8fce4d8e 2941 */
4037d452 2942void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2943{
4ae7c039 2944 unsigned long flags;
7be12fc9 2945 int to_drain, batch;
4ae7c039 2946
4037d452 2947 local_irq_save(flags);
4db0c3c2 2948 batch = READ_ONCE(pcp->batch);
7be12fc9 2949 to_drain = min(pcp->count, batch);
77ba9062 2950 if (to_drain > 0)
2a13515c 2951 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2952 local_irq_restore(flags);
4ae7c039
CL
2953}
2954#endif
2955
9f8f2172 2956/*
93481ff0 2957 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2958 *
2959 * The processor must either be the current processor and the
2960 * thread pinned to the current processor or a processor that
2961 * is not online.
2962 */
93481ff0 2963static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2964{
c54ad30c 2965 unsigned long flags;
93481ff0
VB
2966 struct per_cpu_pageset *pset;
2967 struct per_cpu_pages *pcp;
1da177e4 2968
93481ff0
VB
2969 local_irq_save(flags);
2970 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2971
93481ff0 2972 pcp = &pset->pcp;
77ba9062 2973 if (pcp->count)
93481ff0 2974 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2975 local_irq_restore(flags);
2976}
3dfa5721 2977
93481ff0
VB
2978/*
2979 * Drain pcplists of all zones on the indicated processor.
2980 *
2981 * The processor must either be the current processor and the
2982 * thread pinned to the current processor or a processor that
2983 * is not online.
2984 */
2985static void drain_pages(unsigned int cpu)
2986{
2987 struct zone *zone;
2988
2989 for_each_populated_zone(zone) {
2990 drain_pages_zone(cpu, zone);
1da177e4
LT
2991 }
2992}
1da177e4 2993
9f8f2172
CL
2994/*
2995 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2996 *
2997 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2998 * the single zone's pages.
9f8f2172 2999 */
93481ff0 3000void drain_local_pages(struct zone *zone)
9f8f2172 3001{
93481ff0
VB
3002 int cpu = smp_processor_id();
3003
3004 if (zone)
3005 drain_pages_zone(cpu, zone);
3006 else
3007 drain_pages(cpu);
9f8f2172
CL
3008}
3009
0ccce3b9
MG
3010static void drain_local_pages_wq(struct work_struct *work)
3011{
d9367bd0
WY
3012 struct pcpu_drain *drain;
3013
3014 drain = container_of(work, struct pcpu_drain, work);
3015
a459eeb7
MH
3016 /*
3017 * drain_all_pages doesn't use proper cpu hotplug protection so
3018 * we can race with cpu offline when the WQ can move this from
3019 * a cpu pinned worker to an unbound one. We can operate on a different
3020 * cpu which is allright but we also have to make sure to not move to
3021 * a different one.
3022 */
3023 preempt_disable();
d9367bd0 3024 drain_local_pages(drain->zone);
a459eeb7 3025 preempt_enable();
0ccce3b9
MG
3026}
3027
9f8f2172 3028/*
74046494
GBY
3029 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3030 *
93481ff0
VB
3031 * When zone parameter is non-NULL, spill just the single zone's pages.
3032 *
0ccce3b9 3033 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 3034 */
93481ff0 3035void drain_all_pages(struct zone *zone)
9f8f2172 3036{
74046494 3037 int cpu;
74046494
GBY
3038
3039 /*
3040 * Allocate in the BSS so we wont require allocation in
3041 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3042 */
3043 static cpumask_t cpus_with_pcps;
3044
ce612879
MH
3045 /*
3046 * Make sure nobody triggers this path before mm_percpu_wq is fully
3047 * initialized.
3048 */
3049 if (WARN_ON_ONCE(!mm_percpu_wq))
3050 return;
3051
bd233f53
MG
3052 /*
3053 * Do not drain if one is already in progress unless it's specific to
3054 * a zone. Such callers are primarily CMA and memory hotplug and need
3055 * the drain to be complete when the call returns.
3056 */
3057 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3058 if (!zone)
3059 return;
3060 mutex_lock(&pcpu_drain_mutex);
3061 }
0ccce3b9 3062
74046494
GBY
3063 /*
3064 * We don't care about racing with CPU hotplug event
3065 * as offline notification will cause the notified
3066 * cpu to drain that CPU pcps and on_each_cpu_mask
3067 * disables preemption as part of its processing
3068 */
3069 for_each_online_cpu(cpu) {
93481ff0
VB
3070 struct per_cpu_pageset *pcp;
3071 struct zone *z;
74046494 3072 bool has_pcps = false;
93481ff0
VB
3073
3074 if (zone) {
74046494 3075 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3076 if (pcp->pcp.count)
74046494 3077 has_pcps = true;
93481ff0
VB
3078 } else {
3079 for_each_populated_zone(z) {
3080 pcp = per_cpu_ptr(z->pageset, cpu);
3081 if (pcp->pcp.count) {
3082 has_pcps = true;
3083 break;
3084 }
74046494
GBY
3085 }
3086 }
93481ff0 3087
74046494
GBY
3088 if (has_pcps)
3089 cpumask_set_cpu(cpu, &cpus_with_pcps);
3090 else
3091 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3092 }
0ccce3b9 3093
bd233f53 3094 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3095 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3096
3097 drain->zone = zone;
3098 INIT_WORK(&drain->work, drain_local_pages_wq);
3099 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3100 }
bd233f53 3101 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3102 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3103
3104 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3105}
3106
296699de 3107#ifdef CONFIG_HIBERNATION
1da177e4 3108
556b969a
CY
3109/*
3110 * Touch the watchdog for every WD_PAGE_COUNT pages.
3111 */
3112#define WD_PAGE_COUNT (128*1024)
3113
1da177e4
LT
3114void mark_free_pages(struct zone *zone)
3115{
556b969a 3116 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3117 unsigned long flags;
7aeb09f9 3118 unsigned int order, t;
86760a2c 3119 struct page *page;
1da177e4 3120
8080fc03 3121 if (zone_is_empty(zone))
1da177e4
LT
3122 return;
3123
3124 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3125
108bcc96 3126 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3127 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3128 if (pfn_valid(pfn)) {
86760a2c 3129 page = pfn_to_page(pfn);
ba6b0979 3130
556b969a
CY
3131 if (!--page_count) {
3132 touch_nmi_watchdog();
3133 page_count = WD_PAGE_COUNT;
3134 }
3135
ba6b0979
JK
3136 if (page_zone(page) != zone)
3137 continue;
3138
7be98234
RW
3139 if (!swsusp_page_is_forbidden(page))
3140 swsusp_unset_page_free(page);
f623f0db 3141 }
1da177e4 3142
b2a0ac88 3143 for_each_migratetype_order(order, t) {
86760a2c
GT
3144 list_for_each_entry(page,
3145 &zone->free_area[order].free_list[t], lru) {
f623f0db 3146 unsigned long i;
1da177e4 3147
86760a2c 3148 pfn = page_to_pfn(page);
556b969a
CY
3149 for (i = 0; i < (1UL << order); i++) {
3150 if (!--page_count) {
3151 touch_nmi_watchdog();
3152 page_count = WD_PAGE_COUNT;
3153 }
7be98234 3154 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3155 }
f623f0db 3156 }
b2a0ac88 3157 }
1da177e4
LT
3158 spin_unlock_irqrestore(&zone->lock, flags);
3159}
e2c55dc8 3160#endif /* CONFIG_PM */
1da177e4 3161
2d4894b5 3162static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3163{
5f8dcc21 3164 int migratetype;
1da177e4 3165
4db7548c 3166 if (!free_pcp_prepare(page))
9cca35d4 3167 return false;
689bcebf 3168
dc4b0caf 3169 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3170 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3171 return true;
3172}
3173
2d4894b5 3174static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3175{
3176 struct zone *zone = page_zone(page);
3177 struct per_cpu_pages *pcp;
3178 int migratetype;
3179
3180 migratetype = get_pcppage_migratetype(page);
d34b0733 3181 __count_vm_event(PGFREE);
da456f14 3182
5f8dcc21
MG
3183 /*
3184 * We only track unmovable, reclaimable and movable on pcp lists.
3185 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3186 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3187 * areas back if necessary. Otherwise, we may have to free
3188 * excessively into the page allocator
3189 */
3190 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3191 if (unlikely(is_migrate_isolate(migratetype))) {
7fef431b
DH
3192 free_one_page(zone, page, pfn, 0, migratetype,
3193 FPI_NONE);
9cca35d4 3194 return;
5f8dcc21
MG
3195 }
3196 migratetype = MIGRATE_MOVABLE;
3197 }
3198
99dcc3e5 3199 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3200 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3201 pcp->count++;
48db57f8 3202 if (pcp->count >= pcp->high) {
4db0c3c2 3203 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3204 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3205 }
9cca35d4 3206}
5f8dcc21 3207
9cca35d4
MG
3208/*
3209 * Free a 0-order page
9cca35d4 3210 */
2d4894b5 3211void free_unref_page(struct page *page)
9cca35d4
MG
3212{
3213 unsigned long flags;
3214 unsigned long pfn = page_to_pfn(page);
3215
2d4894b5 3216 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3217 return;
3218
3219 local_irq_save(flags);
2d4894b5 3220 free_unref_page_commit(page, pfn);
d34b0733 3221 local_irq_restore(flags);
1da177e4
LT
3222}
3223
cc59850e
KK
3224/*
3225 * Free a list of 0-order pages
3226 */
2d4894b5 3227void free_unref_page_list(struct list_head *list)
cc59850e
KK
3228{
3229 struct page *page, *next;
9cca35d4 3230 unsigned long flags, pfn;
c24ad77d 3231 int batch_count = 0;
9cca35d4
MG
3232
3233 /* Prepare pages for freeing */
3234 list_for_each_entry_safe(page, next, list, lru) {
3235 pfn = page_to_pfn(page);
2d4894b5 3236 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3237 list_del(&page->lru);
3238 set_page_private(page, pfn);
3239 }
cc59850e 3240
9cca35d4 3241 local_irq_save(flags);
cc59850e 3242 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3243 unsigned long pfn = page_private(page);
3244
3245 set_page_private(page, 0);
2d4894b5
MG
3246 trace_mm_page_free_batched(page);
3247 free_unref_page_commit(page, pfn);
c24ad77d
LS
3248
3249 /*
3250 * Guard against excessive IRQ disabled times when we get
3251 * a large list of pages to free.
3252 */
3253 if (++batch_count == SWAP_CLUSTER_MAX) {
3254 local_irq_restore(flags);
3255 batch_count = 0;
3256 local_irq_save(flags);
3257 }
cc59850e 3258 }
9cca35d4 3259 local_irq_restore(flags);
cc59850e
KK
3260}
3261
8dfcc9ba
NP
3262/*
3263 * split_page takes a non-compound higher-order page, and splits it into
3264 * n (1<<order) sub-pages: page[0..n]
3265 * Each sub-page must be freed individually.
3266 *
3267 * Note: this is probably too low level an operation for use in drivers.
3268 * Please consult with lkml before using this in your driver.
3269 */
3270void split_page(struct page *page, unsigned int order)
3271{
3272 int i;
3273
309381fe
SL
3274 VM_BUG_ON_PAGE(PageCompound(page), page);
3275 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3276
a9627bc5 3277 for (i = 1; i < (1 << order); i++)
7835e98b 3278 set_page_refcounted(page + i);
8fb156c9 3279 split_page_owner(page, 1 << order);
8dfcc9ba 3280}
5853ff23 3281EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3282
3c605096 3283int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3284{
748446bb
MG
3285 unsigned long watermark;
3286 struct zone *zone;
2139cbe6 3287 int mt;
748446bb
MG
3288
3289 BUG_ON(!PageBuddy(page));
3290
3291 zone = page_zone(page);
2e30abd1 3292 mt = get_pageblock_migratetype(page);
748446bb 3293
194159fb 3294 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3295 /*
3296 * Obey watermarks as if the page was being allocated. We can
3297 * emulate a high-order watermark check with a raised order-0
3298 * watermark, because we already know our high-order page
3299 * exists.
3300 */
fd1444b2 3301 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3302 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3303 return 0;
3304
8fb74b9f 3305 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3306 }
748446bb
MG
3307
3308 /* Remove page from free list */
b03641af 3309
6ab01363 3310 del_page_from_free_list(page, zone, order);
2139cbe6 3311
400bc7fd 3312 /*
3313 * Set the pageblock if the isolated page is at least half of a
3314 * pageblock
3315 */
748446bb
MG
3316 if (order >= pageblock_order - 1) {
3317 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3318 for (; page < endpage; page += pageblock_nr_pages) {
3319 int mt = get_pageblock_migratetype(page);
88ed365e 3320 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3321 && !is_migrate_highatomic(mt))
47118af0
MN
3322 set_pageblock_migratetype(page,
3323 MIGRATE_MOVABLE);
3324 }
748446bb
MG
3325 }
3326
f3a14ced 3327
8fb74b9f 3328 return 1UL << order;
1fb3f8ca
MG
3329}
3330
624f58d8
AD
3331/**
3332 * __putback_isolated_page - Return a now-isolated page back where we got it
3333 * @page: Page that was isolated
3334 * @order: Order of the isolated page
e6a0a7ad 3335 * @mt: The page's pageblock's migratetype
624f58d8
AD
3336 *
3337 * This function is meant to return a page pulled from the free lists via
3338 * __isolate_free_page back to the free lists they were pulled from.
3339 */
3340void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3341{
3342 struct zone *zone = page_zone(page);
3343
3344 /* zone lock should be held when this function is called */
3345 lockdep_assert_held(&zone->lock);
3346
3347 /* Return isolated page to tail of freelist. */
f04a5d5d 3348 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3349 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3350}
3351
060e7417
MG
3352/*
3353 * Update NUMA hit/miss statistics
3354 *
3355 * Must be called with interrupts disabled.
060e7417 3356 */
41b6167e 3357static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3358{
3359#ifdef CONFIG_NUMA
3a321d2a 3360 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3361
4518085e
KW
3362 /* skip numa counters update if numa stats is disabled */
3363 if (!static_branch_likely(&vm_numa_stat_key))
3364 return;
3365
c1093b74 3366 if (zone_to_nid(z) != numa_node_id())
060e7417 3367 local_stat = NUMA_OTHER;
060e7417 3368
c1093b74 3369 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3370 __inc_numa_state(z, NUMA_HIT);
2df26639 3371 else {
3a321d2a
KW
3372 __inc_numa_state(z, NUMA_MISS);
3373 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3374 }
3a321d2a 3375 __inc_numa_state(z, local_stat);
060e7417
MG
3376#endif
3377}
3378
066b2393
MG
3379/* Remove page from the per-cpu list, caller must protect the list */
3380static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3381 unsigned int alloc_flags,
453f85d4 3382 struct per_cpu_pages *pcp,
066b2393
MG
3383 struct list_head *list)
3384{
3385 struct page *page;
3386
3387 do {
3388 if (list_empty(list)) {
3389 pcp->count += rmqueue_bulk(zone, 0,
3390 pcp->batch, list,
6bb15450 3391 migratetype, alloc_flags);
066b2393
MG
3392 if (unlikely(list_empty(list)))
3393 return NULL;
3394 }
3395
453f85d4 3396 page = list_first_entry(list, struct page, lru);
066b2393
MG
3397 list_del(&page->lru);
3398 pcp->count--;
3399 } while (check_new_pcp(page));
3400
3401 return page;
3402}
3403
3404/* Lock and remove page from the per-cpu list */
3405static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3406 struct zone *zone, gfp_t gfp_flags,
3407 int migratetype, unsigned int alloc_flags)
066b2393
MG
3408{
3409 struct per_cpu_pages *pcp;
3410 struct list_head *list;
066b2393 3411 struct page *page;
d34b0733 3412 unsigned long flags;
066b2393 3413
d34b0733 3414 local_irq_save(flags);
066b2393
MG
3415 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3416 list = &pcp->lists[migratetype];
6bb15450 3417 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3418 if (page) {
1c52e6d0 3419 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3420 zone_statistics(preferred_zone, zone);
3421 }
d34b0733 3422 local_irq_restore(flags);
066b2393
MG
3423 return page;
3424}
3425
1da177e4 3426/*
75379191 3427 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3428 */
0a15c3e9 3429static inline
066b2393 3430struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3431 struct zone *zone, unsigned int order,
c603844b
MG
3432 gfp_t gfp_flags, unsigned int alloc_flags,
3433 int migratetype)
1da177e4
LT
3434{
3435 unsigned long flags;
689bcebf 3436 struct page *page;
1da177e4 3437
d34b0733 3438 if (likely(order == 0)) {
1d91df85
JK
3439 /*
3440 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3441 * we need to skip it when CMA area isn't allowed.
3442 */
3443 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3444 migratetype != MIGRATE_MOVABLE) {
3445 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3446 migratetype, alloc_flags);
1d91df85
JK
3447 goto out;
3448 }
066b2393 3449 }
83b9355b 3450
066b2393
MG
3451 /*
3452 * We most definitely don't want callers attempting to
3453 * allocate greater than order-1 page units with __GFP_NOFAIL.
3454 */
3455 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3456 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3457
066b2393
MG
3458 do {
3459 page = NULL;
1d91df85
JK
3460 /*
3461 * order-0 request can reach here when the pcplist is skipped
3462 * due to non-CMA allocation context. HIGHATOMIC area is
3463 * reserved for high-order atomic allocation, so order-0
3464 * request should skip it.
3465 */
3466 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3467 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3468 if (page)
3469 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3470 }
a74609fa 3471 if (!page)
6bb15450 3472 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3473 } while (page && check_new_pages(page, order));
3474 spin_unlock(&zone->lock);
3475 if (!page)
3476 goto failed;
3477 __mod_zone_freepage_state(zone, -(1 << order),
3478 get_pcppage_migratetype(page));
1da177e4 3479
16709d1d 3480 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3481 zone_statistics(preferred_zone, zone);
a74609fa 3482 local_irq_restore(flags);
1da177e4 3483
066b2393 3484out:
73444bc4
MG
3485 /* Separate test+clear to avoid unnecessary atomics */
3486 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3487 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3488 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3489 }
3490
066b2393 3491 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3492 return page;
a74609fa
NP
3493
3494failed:
3495 local_irq_restore(flags);
a74609fa 3496 return NULL;
1da177e4
LT
3497}
3498
933e312e
AM
3499#ifdef CONFIG_FAIL_PAGE_ALLOC
3500
b2588c4b 3501static struct {
933e312e
AM
3502 struct fault_attr attr;
3503
621a5f7a 3504 bool ignore_gfp_highmem;
71baba4b 3505 bool ignore_gfp_reclaim;
54114994 3506 u32 min_order;
933e312e
AM
3507} fail_page_alloc = {
3508 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3509 .ignore_gfp_reclaim = true,
621a5f7a 3510 .ignore_gfp_highmem = true,
54114994 3511 .min_order = 1,
933e312e
AM
3512};
3513
3514static int __init setup_fail_page_alloc(char *str)
3515{
3516 return setup_fault_attr(&fail_page_alloc.attr, str);
3517}
3518__setup("fail_page_alloc=", setup_fail_page_alloc);
3519
af3b8544 3520static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3521{
54114994 3522 if (order < fail_page_alloc.min_order)
deaf386e 3523 return false;
933e312e 3524 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3525 return false;
933e312e 3526 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3527 return false;
71baba4b
MG
3528 if (fail_page_alloc.ignore_gfp_reclaim &&
3529 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3530 return false;
933e312e
AM
3531
3532 return should_fail(&fail_page_alloc.attr, 1 << order);
3533}
3534
3535#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3536
3537static int __init fail_page_alloc_debugfs(void)
3538{
0825a6f9 3539 umode_t mode = S_IFREG | 0600;
933e312e 3540 struct dentry *dir;
933e312e 3541
dd48c085
AM
3542 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3543 &fail_page_alloc.attr);
b2588c4b 3544
d9f7979c
GKH
3545 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3546 &fail_page_alloc.ignore_gfp_reclaim);
3547 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3548 &fail_page_alloc.ignore_gfp_highmem);
3549 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3550
d9f7979c 3551 return 0;
933e312e
AM
3552}
3553
3554late_initcall(fail_page_alloc_debugfs);
3555
3556#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3557
3558#else /* CONFIG_FAIL_PAGE_ALLOC */
3559
af3b8544 3560static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3561{
deaf386e 3562 return false;
933e312e
AM
3563}
3564
3565#endif /* CONFIG_FAIL_PAGE_ALLOC */
3566
76cd6173 3567noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3568{
3569 return __should_fail_alloc_page(gfp_mask, order);
3570}
3571ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3572
f27ce0e1
JK
3573static inline long __zone_watermark_unusable_free(struct zone *z,
3574 unsigned int order, unsigned int alloc_flags)
3575{
3576 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3577 long unusable_free = (1 << order) - 1;
3578
3579 /*
3580 * If the caller does not have rights to ALLOC_HARDER then subtract
3581 * the high-atomic reserves. This will over-estimate the size of the
3582 * atomic reserve but it avoids a search.
3583 */
3584 if (likely(!alloc_harder))
3585 unusable_free += z->nr_reserved_highatomic;
3586
3587#ifdef CONFIG_CMA
3588 /* If allocation can't use CMA areas don't use free CMA pages */
3589 if (!(alloc_flags & ALLOC_CMA))
3590 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3591#endif
3592
3593 return unusable_free;
3594}
3595
1da177e4 3596/*
97a16fc8
MG
3597 * Return true if free base pages are above 'mark'. For high-order checks it
3598 * will return true of the order-0 watermark is reached and there is at least
3599 * one free page of a suitable size. Checking now avoids taking the zone lock
3600 * to check in the allocation paths if no pages are free.
1da177e4 3601 */
86a294a8 3602bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3603 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3604 long free_pages)
1da177e4 3605{
d23ad423 3606 long min = mark;
1da177e4 3607 int o;
cd04ae1e 3608 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3609
0aaa29a5 3610 /* free_pages may go negative - that's OK */
f27ce0e1 3611 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3612
7fb1d9fc 3613 if (alloc_flags & ALLOC_HIGH)
1da177e4 3614 min -= min / 2;
0aaa29a5 3615
f27ce0e1 3616 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3617 /*
3618 * OOM victims can try even harder than normal ALLOC_HARDER
3619 * users on the grounds that it's definitely going to be in
3620 * the exit path shortly and free memory. Any allocation it
3621 * makes during the free path will be small and short-lived.
3622 */
3623 if (alloc_flags & ALLOC_OOM)
3624 min -= min / 2;
3625 else
3626 min -= min / 4;
3627 }
3628
97a16fc8
MG
3629 /*
3630 * Check watermarks for an order-0 allocation request. If these
3631 * are not met, then a high-order request also cannot go ahead
3632 * even if a suitable page happened to be free.
3633 */
97a225e6 3634 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3635 return false;
1da177e4 3636
97a16fc8
MG
3637 /* If this is an order-0 request then the watermark is fine */
3638 if (!order)
3639 return true;
3640
3641 /* For a high-order request, check at least one suitable page is free */
3642 for (o = order; o < MAX_ORDER; o++) {
3643 struct free_area *area = &z->free_area[o];
3644 int mt;
3645
3646 if (!area->nr_free)
3647 continue;
3648
97a16fc8 3649 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3650 if (!free_area_empty(area, mt))
97a16fc8
MG
3651 return true;
3652 }
3653
3654#ifdef CONFIG_CMA
d883c6cf 3655 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3656 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3657 return true;
d883c6cf 3658 }
97a16fc8 3659#endif
76089d00 3660 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3661 return true;
1da177e4 3662 }
97a16fc8 3663 return false;
88f5acf8
MG
3664}
3665
7aeb09f9 3666bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3667 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3668{
97a225e6 3669 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3670 zone_page_state(z, NR_FREE_PAGES));
3671}
3672
48ee5f36 3673static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3674 unsigned long mark, int highest_zoneidx,
f80b08fc 3675 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3676{
f27ce0e1 3677 long free_pages;
d883c6cf 3678
f27ce0e1 3679 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3680
3681 /*
3682 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3683 * need to be calculated.
48ee5f36 3684 */
f27ce0e1
JK
3685 if (!order) {
3686 long fast_free;
3687
3688 fast_free = free_pages;
3689 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3690 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3691 return true;
3692 }
48ee5f36 3693
f80b08fc
CTR
3694 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3695 free_pages))
3696 return true;
3697 /*
3698 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3699 * when checking the min watermark. The min watermark is the
3700 * point where boosting is ignored so that kswapd is woken up
3701 * when below the low watermark.
3702 */
3703 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3704 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3705 mark = z->_watermark[WMARK_MIN];
3706 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3707 alloc_flags, free_pages);
3708 }
3709
3710 return false;
48ee5f36
MG
3711}
3712
7aeb09f9 3713bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3714 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3715{
3716 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3717
3718 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3719 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3720
97a225e6 3721 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3722 free_pages);
1da177e4
LT
3723}
3724
9276b1bc 3725#ifdef CONFIG_NUMA
957f822a
DR
3726static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3727{
e02dc017 3728 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3729 node_reclaim_distance;
957f822a 3730}
9276b1bc 3731#else /* CONFIG_NUMA */
957f822a
DR
3732static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3733{
3734 return true;
3735}
9276b1bc
PJ
3736#endif /* CONFIG_NUMA */
3737
6bb15450
MG
3738/*
3739 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3740 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3741 * premature use of a lower zone may cause lowmem pressure problems that
3742 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3743 * probably too small. It only makes sense to spread allocations to avoid
3744 * fragmentation between the Normal and DMA32 zones.
3745 */
3746static inline unsigned int
0a79cdad 3747alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3748{
736838e9 3749 unsigned int alloc_flags;
0a79cdad 3750
736838e9
MN
3751 /*
3752 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3753 * to save a branch.
3754 */
3755 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3756
3757#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3758 if (!zone)
3759 return alloc_flags;
3760
6bb15450 3761 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3762 return alloc_flags;
6bb15450
MG
3763
3764 /*
3765 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3766 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3767 * on UMA that if Normal is populated then so is DMA32.
3768 */
3769 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3770 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3771 return alloc_flags;
6bb15450 3772
8118b82e 3773 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3774#endif /* CONFIG_ZONE_DMA32 */
3775 return alloc_flags;
6bb15450 3776}
6bb15450 3777
8510e69c
JK
3778static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3779 unsigned int alloc_flags)
3780{
3781#ifdef CONFIG_CMA
3782 unsigned int pflags = current->flags;
3783
3784 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3785 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3786 alloc_flags |= ALLOC_CMA;
3787
3788#endif
3789 return alloc_flags;
3790}
3791
7fb1d9fc 3792/*
0798e519 3793 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3794 * a page.
3795 */
3796static struct page *
a9263751
VB
3797get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3798 const struct alloc_context *ac)
753ee728 3799{
6bb15450 3800 struct zoneref *z;
5117f45d 3801 struct zone *zone;
3b8c0be4 3802 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3803 bool no_fallback;
3b8c0be4 3804
6bb15450 3805retry:
7fb1d9fc 3806 /*
9276b1bc 3807 * Scan zonelist, looking for a zone with enough free.
344736f2 3808 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3809 */
6bb15450
MG
3810 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3811 z = ac->preferred_zoneref;
30d8ec73
MN
3812 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3813 ac->nodemask) {
be06af00 3814 struct page *page;
e085dbc5
JW
3815 unsigned long mark;
3816
664eedde
MG
3817 if (cpusets_enabled() &&
3818 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3819 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3820 continue;
a756cf59
JW
3821 /*
3822 * When allocating a page cache page for writing, we
281e3726
MG
3823 * want to get it from a node that is within its dirty
3824 * limit, such that no single node holds more than its
a756cf59 3825 * proportional share of globally allowed dirty pages.
281e3726 3826 * The dirty limits take into account the node's
a756cf59
JW
3827 * lowmem reserves and high watermark so that kswapd
3828 * should be able to balance it without having to
3829 * write pages from its LRU list.
3830 *
a756cf59 3831 * XXX: For now, allow allocations to potentially
281e3726 3832 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3833 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3834 * which is important when on a NUMA setup the allowed
281e3726 3835 * nodes are together not big enough to reach the
a756cf59 3836 * global limit. The proper fix for these situations
281e3726 3837 * will require awareness of nodes in the
a756cf59
JW
3838 * dirty-throttling and the flusher threads.
3839 */
3b8c0be4
MG
3840 if (ac->spread_dirty_pages) {
3841 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3842 continue;
3843
3844 if (!node_dirty_ok(zone->zone_pgdat)) {
3845 last_pgdat_dirty_limit = zone->zone_pgdat;
3846 continue;
3847 }
3848 }
7fb1d9fc 3849
6bb15450
MG
3850 if (no_fallback && nr_online_nodes > 1 &&
3851 zone != ac->preferred_zoneref->zone) {
3852 int local_nid;
3853
3854 /*
3855 * If moving to a remote node, retry but allow
3856 * fragmenting fallbacks. Locality is more important
3857 * than fragmentation avoidance.
3858 */
3859 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3860 if (zone_to_nid(zone) != local_nid) {
3861 alloc_flags &= ~ALLOC_NOFRAGMENT;
3862 goto retry;
3863 }
3864 }
3865
a9214443 3866 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3867 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3868 ac->highest_zoneidx, alloc_flags,
3869 gfp_mask)) {
fa5e084e
MG
3870 int ret;
3871
c9e97a19
PT
3872#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3873 /*
3874 * Watermark failed for this zone, but see if we can
3875 * grow this zone if it contains deferred pages.
3876 */
3877 if (static_branch_unlikely(&deferred_pages)) {
3878 if (_deferred_grow_zone(zone, order))
3879 goto try_this_zone;
3880 }
3881#endif
5dab2911
MG
3882 /* Checked here to keep the fast path fast */
3883 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3884 if (alloc_flags & ALLOC_NO_WATERMARKS)
3885 goto try_this_zone;
3886
a5f5f91d 3887 if (node_reclaim_mode == 0 ||
c33d6c06 3888 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3889 continue;
3890
a5f5f91d 3891 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3892 switch (ret) {
a5f5f91d 3893 case NODE_RECLAIM_NOSCAN:
fa5e084e 3894 /* did not scan */
cd38b115 3895 continue;
a5f5f91d 3896 case NODE_RECLAIM_FULL:
fa5e084e 3897 /* scanned but unreclaimable */
cd38b115 3898 continue;
fa5e084e
MG
3899 default:
3900 /* did we reclaim enough */
fed2719e 3901 if (zone_watermark_ok(zone, order, mark,
97a225e6 3902 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3903 goto try_this_zone;
3904
fed2719e 3905 continue;
0798e519 3906 }
7fb1d9fc
RS
3907 }
3908
fa5e084e 3909try_this_zone:
066b2393 3910 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3911 gfp_mask, alloc_flags, ac->migratetype);
75379191 3912 if (page) {
479f854a 3913 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3914
3915 /*
3916 * If this is a high-order atomic allocation then check
3917 * if the pageblock should be reserved for the future
3918 */
3919 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3920 reserve_highatomic_pageblock(page, zone, order);
3921
75379191 3922 return page;
c9e97a19
PT
3923 } else {
3924#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3925 /* Try again if zone has deferred pages */
3926 if (static_branch_unlikely(&deferred_pages)) {
3927 if (_deferred_grow_zone(zone, order))
3928 goto try_this_zone;
3929 }
3930#endif
75379191 3931 }
54a6eb5c 3932 }
9276b1bc 3933
6bb15450
MG
3934 /*
3935 * It's possible on a UMA machine to get through all zones that are
3936 * fragmented. If avoiding fragmentation, reset and try again.
3937 */
3938 if (no_fallback) {
3939 alloc_flags &= ~ALLOC_NOFRAGMENT;
3940 goto retry;
3941 }
3942
4ffeaf35 3943 return NULL;
753ee728
MH
3944}
3945
9af744d7 3946static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3947{
a238ab5b 3948 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3949
3950 /*
3951 * This documents exceptions given to allocations in certain
3952 * contexts that are allowed to allocate outside current's set
3953 * of allowed nodes.
3954 */
3955 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3956 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3957 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3958 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3959 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3960 filter &= ~SHOW_MEM_FILTER_NODES;
3961
9af744d7 3962 show_mem(filter, nodemask);
aa187507
MH
3963}
3964
a8e99259 3965void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3966{
3967 struct va_format vaf;
3968 va_list args;
1be334e5 3969 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3970
0f7896f1 3971 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3972 return;
3973
7877cdcc
MH
3974 va_start(args, fmt);
3975 vaf.fmt = fmt;
3976 vaf.va = &args;
ef8444ea 3977 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3978 current->comm, &vaf, gfp_mask, &gfp_mask,
3979 nodemask_pr_args(nodemask));
7877cdcc 3980 va_end(args);
3ee9a4f0 3981
a8e99259 3982 cpuset_print_current_mems_allowed();
ef8444ea 3983 pr_cont("\n");
a238ab5b 3984 dump_stack();
685dbf6f 3985 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3986}
3987
6c18ba7a
MH
3988static inline struct page *
3989__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3990 unsigned int alloc_flags,
3991 const struct alloc_context *ac)
3992{
3993 struct page *page;
3994
3995 page = get_page_from_freelist(gfp_mask, order,
3996 alloc_flags|ALLOC_CPUSET, ac);
3997 /*
3998 * fallback to ignore cpuset restriction if our nodes
3999 * are depleted
4000 */
4001 if (!page)
4002 page = get_page_from_freelist(gfp_mask, order,
4003 alloc_flags, ac);
4004
4005 return page;
4006}
4007
11e33f6a
MG
4008static inline struct page *
4009__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4010 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4011{
6e0fc46d
DR
4012 struct oom_control oc = {
4013 .zonelist = ac->zonelist,
4014 .nodemask = ac->nodemask,
2a966b77 4015 .memcg = NULL,
6e0fc46d
DR
4016 .gfp_mask = gfp_mask,
4017 .order = order,
6e0fc46d 4018 };
11e33f6a
MG
4019 struct page *page;
4020
9879de73
JW
4021 *did_some_progress = 0;
4022
9879de73 4023 /*
dc56401f
JW
4024 * Acquire the oom lock. If that fails, somebody else is
4025 * making progress for us.
9879de73 4026 */
dc56401f 4027 if (!mutex_trylock(&oom_lock)) {
9879de73 4028 *did_some_progress = 1;
11e33f6a 4029 schedule_timeout_uninterruptible(1);
1da177e4
LT
4030 return NULL;
4031 }
6b1de916 4032
11e33f6a
MG
4033 /*
4034 * Go through the zonelist yet one more time, keep very high watermark
4035 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4036 * we're still under heavy pressure. But make sure that this reclaim
4037 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4038 * allocation which will never fail due to oom_lock already held.
11e33f6a 4039 */
e746bf73
TH
4040 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4041 ~__GFP_DIRECT_RECLAIM, order,
4042 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4043 if (page)
11e33f6a
MG
4044 goto out;
4045
06ad276a
MH
4046 /* Coredumps can quickly deplete all memory reserves */
4047 if (current->flags & PF_DUMPCORE)
4048 goto out;
4049 /* The OOM killer will not help higher order allocs */
4050 if (order > PAGE_ALLOC_COSTLY_ORDER)
4051 goto out;
dcda9b04
MH
4052 /*
4053 * We have already exhausted all our reclaim opportunities without any
4054 * success so it is time to admit defeat. We will skip the OOM killer
4055 * because it is very likely that the caller has a more reasonable
4056 * fallback than shooting a random task.
cfb4a541
MN
4057 *
4058 * The OOM killer may not free memory on a specific node.
dcda9b04 4059 */
cfb4a541 4060 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4061 goto out;
06ad276a 4062 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4063 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4064 goto out;
4065 if (pm_suspended_storage())
4066 goto out;
4067 /*
4068 * XXX: GFP_NOFS allocations should rather fail than rely on
4069 * other request to make a forward progress.
4070 * We are in an unfortunate situation where out_of_memory cannot
4071 * do much for this context but let's try it to at least get
4072 * access to memory reserved if the current task is killed (see
4073 * out_of_memory). Once filesystems are ready to handle allocation
4074 * failures more gracefully we should just bail out here.
4075 */
4076
3c2c6488 4077 /* Exhausted what can be done so it's blame time */
5020e285 4078 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4079 *did_some_progress = 1;
5020e285 4080
6c18ba7a
MH
4081 /*
4082 * Help non-failing allocations by giving them access to memory
4083 * reserves
4084 */
4085 if (gfp_mask & __GFP_NOFAIL)
4086 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4087 ALLOC_NO_WATERMARKS, ac);
5020e285 4088 }
11e33f6a 4089out:
dc56401f 4090 mutex_unlock(&oom_lock);
11e33f6a
MG
4091 return page;
4092}
4093
33c2d214
MH
4094/*
4095 * Maximum number of compaction retries wit a progress before OOM
4096 * killer is consider as the only way to move forward.
4097 */
4098#define MAX_COMPACT_RETRIES 16
4099
56de7263
MG
4100#ifdef CONFIG_COMPACTION
4101/* Try memory compaction for high-order allocations before reclaim */
4102static struct page *
4103__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4104 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4105 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4106{
5e1f0f09 4107 struct page *page = NULL;
eb414681 4108 unsigned long pflags;
499118e9 4109 unsigned int noreclaim_flag;
53853e2d
VB
4110
4111 if (!order)
66199712 4112 return NULL;
66199712 4113
eb414681 4114 psi_memstall_enter(&pflags);
499118e9 4115 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4116
c5d01d0d 4117 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4118 prio, &page);
eb414681 4119
499118e9 4120 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4121 psi_memstall_leave(&pflags);
56de7263 4122
98dd3b48
VB
4123 /*
4124 * At least in one zone compaction wasn't deferred or skipped, so let's
4125 * count a compaction stall
4126 */
4127 count_vm_event(COMPACTSTALL);
8fb74b9f 4128
5e1f0f09
MG
4129 /* Prep a captured page if available */
4130 if (page)
4131 prep_new_page(page, order, gfp_mask, alloc_flags);
4132
4133 /* Try get a page from the freelist if available */
4134 if (!page)
4135 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4136
98dd3b48
VB
4137 if (page) {
4138 struct zone *zone = page_zone(page);
53853e2d 4139
98dd3b48
VB
4140 zone->compact_blockskip_flush = false;
4141 compaction_defer_reset(zone, order, true);
4142 count_vm_event(COMPACTSUCCESS);
4143 return page;
4144 }
56de7263 4145
98dd3b48
VB
4146 /*
4147 * It's bad if compaction run occurs and fails. The most likely reason
4148 * is that pages exist, but not enough to satisfy watermarks.
4149 */
4150 count_vm_event(COMPACTFAIL);
66199712 4151
98dd3b48 4152 cond_resched();
56de7263
MG
4153
4154 return NULL;
4155}
33c2d214 4156
3250845d
VB
4157static inline bool
4158should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4159 enum compact_result compact_result,
4160 enum compact_priority *compact_priority,
d9436498 4161 int *compaction_retries)
3250845d
VB
4162{
4163 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4164 int min_priority;
65190cff
MH
4165 bool ret = false;
4166 int retries = *compaction_retries;
4167 enum compact_priority priority = *compact_priority;
3250845d
VB
4168
4169 if (!order)
4170 return false;
4171
d9436498
VB
4172 if (compaction_made_progress(compact_result))
4173 (*compaction_retries)++;
4174
3250845d
VB
4175 /*
4176 * compaction considers all the zone as desperately out of memory
4177 * so it doesn't really make much sense to retry except when the
4178 * failure could be caused by insufficient priority
4179 */
d9436498
VB
4180 if (compaction_failed(compact_result))
4181 goto check_priority;
3250845d 4182
49433085
VB
4183 /*
4184 * compaction was skipped because there are not enough order-0 pages
4185 * to work with, so we retry only if it looks like reclaim can help.
4186 */
4187 if (compaction_needs_reclaim(compact_result)) {
4188 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4189 goto out;
4190 }
4191
3250845d
VB
4192 /*
4193 * make sure the compaction wasn't deferred or didn't bail out early
4194 * due to locks contention before we declare that we should give up.
49433085
VB
4195 * But the next retry should use a higher priority if allowed, so
4196 * we don't just keep bailing out endlessly.
3250845d 4197 */
65190cff 4198 if (compaction_withdrawn(compact_result)) {
49433085 4199 goto check_priority;
65190cff 4200 }
3250845d
VB
4201
4202 /*
dcda9b04 4203 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4204 * costly ones because they are de facto nofail and invoke OOM
4205 * killer to move on while costly can fail and users are ready
4206 * to cope with that. 1/4 retries is rather arbitrary but we
4207 * would need much more detailed feedback from compaction to
4208 * make a better decision.
4209 */
4210 if (order > PAGE_ALLOC_COSTLY_ORDER)
4211 max_retries /= 4;
65190cff
MH
4212 if (*compaction_retries <= max_retries) {
4213 ret = true;
4214 goto out;
4215 }
3250845d 4216
d9436498
VB
4217 /*
4218 * Make sure there are attempts at the highest priority if we exhausted
4219 * all retries or failed at the lower priorities.
4220 */
4221check_priority:
c2033b00
VB
4222 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4223 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4224
c2033b00 4225 if (*compact_priority > min_priority) {
d9436498
VB
4226 (*compact_priority)--;
4227 *compaction_retries = 0;
65190cff 4228 ret = true;
d9436498 4229 }
65190cff
MH
4230out:
4231 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4232 return ret;
3250845d 4233}
56de7263
MG
4234#else
4235static inline struct page *
4236__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4237 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4238 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4239{
33c2d214 4240 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4241 return NULL;
4242}
33c2d214
MH
4243
4244static inline bool
86a294a8
MH
4245should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4246 enum compact_result compact_result,
a5508cd8 4247 enum compact_priority *compact_priority,
d9436498 4248 int *compaction_retries)
33c2d214 4249{
31e49bfd
MH
4250 struct zone *zone;
4251 struct zoneref *z;
4252
4253 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4254 return false;
4255
4256 /*
4257 * There are setups with compaction disabled which would prefer to loop
4258 * inside the allocator rather than hit the oom killer prematurely.
4259 * Let's give them a good hope and keep retrying while the order-0
4260 * watermarks are OK.
4261 */
97a225e6
JK
4262 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4263 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4264 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4265 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4266 return true;
4267 }
33c2d214
MH
4268 return false;
4269}
3250845d 4270#endif /* CONFIG_COMPACTION */
56de7263 4271
d92a8cfc 4272#ifdef CONFIG_LOCKDEP
93781325 4273static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4274 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4275
f920e413 4276static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4277{
d92a8cfc
PZ
4278 /* no reclaim without waiting on it */
4279 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4280 return false;
4281
4282 /* this guy won't enter reclaim */
2e517d68 4283 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4284 return false;
4285
d92a8cfc
PZ
4286 if (gfp_mask & __GFP_NOLOCKDEP)
4287 return false;
4288
4289 return true;
4290}
4291
93781325
OS
4292void __fs_reclaim_acquire(void)
4293{
4294 lock_map_acquire(&__fs_reclaim_map);
4295}
4296
4297void __fs_reclaim_release(void)
4298{
4299 lock_map_release(&__fs_reclaim_map);
4300}
4301
d92a8cfc
PZ
4302void fs_reclaim_acquire(gfp_t gfp_mask)
4303{
f920e413
SV
4304 gfp_mask = current_gfp_context(gfp_mask);
4305
4306 if (__need_reclaim(gfp_mask)) {
4307 if (gfp_mask & __GFP_FS)
4308 __fs_reclaim_acquire();
4309
4310#ifdef CONFIG_MMU_NOTIFIER
4311 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4312 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4313#endif
4314
4315 }
d92a8cfc
PZ
4316}
4317EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4318
4319void fs_reclaim_release(gfp_t gfp_mask)
4320{
f920e413
SV
4321 gfp_mask = current_gfp_context(gfp_mask);
4322
4323 if (__need_reclaim(gfp_mask)) {
4324 if (gfp_mask & __GFP_FS)
4325 __fs_reclaim_release();
4326 }
d92a8cfc
PZ
4327}
4328EXPORT_SYMBOL_GPL(fs_reclaim_release);
4329#endif
4330
bba90710 4331/* Perform direct synchronous page reclaim */
2187e17b 4332static unsigned long
a9263751
VB
4333__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4334 const struct alloc_context *ac)
11e33f6a 4335{
499118e9 4336 unsigned int noreclaim_flag;
2187e17b 4337 unsigned long pflags, progress;
11e33f6a
MG
4338
4339 cond_resched();
4340
4341 /* We now go into synchronous reclaim */
4342 cpuset_memory_pressure_bump();
eb414681 4343 psi_memstall_enter(&pflags);
d92a8cfc 4344 fs_reclaim_acquire(gfp_mask);
93781325 4345 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4346
a9263751
VB
4347 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4348 ac->nodemask);
11e33f6a 4349
499118e9 4350 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4351 fs_reclaim_release(gfp_mask);
eb414681 4352 psi_memstall_leave(&pflags);
11e33f6a
MG
4353
4354 cond_resched();
4355
bba90710
MS
4356 return progress;
4357}
4358
4359/* The really slow allocator path where we enter direct reclaim */
4360static inline struct page *
4361__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4362 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4363 unsigned long *did_some_progress)
bba90710
MS
4364{
4365 struct page *page = NULL;
4366 bool drained = false;
4367
a9263751 4368 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4369 if (unlikely(!(*did_some_progress)))
4370 return NULL;
11e33f6a 4371
9ee493ce 4372retry:
31a6c190 4373 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4374
4375 /*
4376 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4377 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4378 * Shrink them and try again
9ee493ce
MG
4379 */
4380 if (!page && !drained) {
29fac03b 4381 unreserve_highatomic_pageblock(ac, false);
93481ff0 4382 drain_all_pages(NULL);
9ee493ce
MG
4383 drained = true;
4384 goto retry;
4385 }
4386
11e33f6a
MG
4387 return page;
4388}
4389
5ecd9d40
DR
4390static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4391 const struct alloc_context *ac)
3a025760
JW
4392{
4393 struct zoneref *z;
4394 struct zone *zone;
e1a55637 4395 pg_data_t *last_pgdat = NULL;
97a225e6 4396 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4397
97a225e6 4398 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4399 ac->nodemask) {
e1a55637 4400 if (last_pgdat != zone->zone_pgdat)
97a225e6 4401 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4402 last_pgdat = zone->zone_pgdat;
4403 }
3a025760
JW
4404}
4405
c603844b 4406static inline unsigned int
341ce06f
PZ
4407gfp_to_alloc_flags(gfp_t gfp_mask)
4408{
c603844b 4409 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4410
736838e9
MN
4411 /*
4412 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4413 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4414 * to save two branches.
4415 */
e6223a3b 4416 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4417 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4418
341ce06f
PZ
4419 /*
4420 * The caller may dip into page reserves a bit more if the caller
4421 * cannot run direct reclaim, or if the caller has realtime scheduling
4422 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4423 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4424 */
736838e9
MN
4425 alloc_flags |= (__force int)
4426 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4427
d0164adc 4428 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4429 /*
b104a35d
DR
4430 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4431 * if it can't schedule.
5c3240d9 4432 */
b104a35d 4433 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4434 alloc_flags |= ALLOC_HARDER;
523b9458 4435 /*
b104a35d 4436 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4437 * comment for __cpuset_node_allowed().
523b9458 4438 */
341ce06f 4439 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4440 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4441 alloc_flags |= ALLOC_HARDER;
4442
8510e69c
JK
4443 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4444
341ce06f
PZ
4445 return alloc_flags;
4446}
4447
cd04ae1e 4448static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4449{
cd04ae1e
MH
4450 if (!tsk_is_oom_victim(tsk))
4451 return false;
4452
4453 /*
4454 * !MMU doesn't have oom reaper so give access to memory reserves
4455 * only to the thread with TIF_MEMDIE set
4456 */
4457 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4458 return false;
4459
cd04ae1e
MH
4460 return true;
4461}
4462
4463/*
4464 * Distinguish requests which really need access to full memory
4465 * reserves from oom victims which can live with a portion of it
4466 */
4467static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4468{
4469 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4470 return 0;
31a6c190 4471 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4472 return ALLOC_NO_WATERMARKS;
31a6c190 4473 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4474 return ALLOC_NO_WATERMARKS;
4475 if (!in_interrupt()) {
4476 if (current->flags & PF_MEMALLOC)
4477 return ALLOC_NO_WATERMARKS;
4478 else if (oom_reserves_allowed(current))
4479 return ALLOC_OOM;
4480 }
31a6c190 4481
cd04ae1e
MH
4482 return 0;
4483}
4484
4485bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4486{
4487 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4488}
4489
0a0337e0
MH
4490/*
4491 * Checks whether it makes sense to retry the reclaim to make a forward progress
4492 * for the given allocation request.
491d79ae
JW
4493 *
4494 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4495 * without success, or when we couldn't even meet the watermark if we
4496 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4497 *
4498 * Returns true if a retry is viable or false to enter the oom path.
4499 */
4500static inline bool
4501should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4502 struct alloc_context *ac, int alloc_flags,
423b452e 4503 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4504{
4505 struct zone *zone;
4506 struct zoneref *z;
15f570bf 4507 bool ret = false;
0a0337e0 4508
423b452e
VB
4509 /*
4510 * Costly allocations might have made a progress but this doesn't mean
4511 * their order will become available due to high fragmentation so
4512 * always increment the no progress counter for them
4513 */
4514 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4515 *no_progress_loops = 0;
4516 else
4517 (*no_progress_loops)++;
4518
0a0337e0
MH
4519 /*
4520 * Make sure we converge to OOM if we cannot make any progress
4521 * several times in the row.
4522 */
04c8716f
MK
4523 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4524 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4525 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4526 }
0a0337e0 4527
bca67592
MG
4528 /*
4529 * Keep reclaiming pages while there is a chance this will lead
4530 * somewhere. If none of the target zones can satisfy our allocation
4531 * request even if all reclaimable pages are considered then we are
4532 * screwed and have to go OOM.
0a0337e0 4533 */
97a225e6
JK
4534 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4535 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4536 unsigned long available;
ede37713 4537 unsigned long reclaimable;
d379f01d
MH
4538 unsigned long min_wmark = min_wmark_pages(zone);
4539 bool wmark;
0a0337e0 4540
5a1c84b4 4541 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4542 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4543
4544 /*
491d79ae
JW
4545 * Would the allocation succeed if we reclaimed all
4546 * reclaimable pages?
0a0337e0 4547 */
d379f01d 4548 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4549 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4550 trace_reclaim_retry_zone(z, order, reclaimable,
4551 available, min_wmark, *no_progress_loops, wmark);
4552 if (wmark) {
ede37713
MH
4553 /*
4554 * If we didn't make any progress and have a lot of
4555 * dirty + writeback pages then we should wait for
4556 * an IO to complete to slow down the reclaim and
4557 * prevent from pre mature OOM
4558 */
4559 if (!did_some_progress) {
11fb9989 4560 unsigned long write_pending;
ede37713 4561
5a1c84b4
MG
4562 write_pending = zone_page_state_snapshot(zone,
4563 NR_ZONE_WRITE_PENDING);
ede37713 4564
11fb9989 4565 if (2 * write_pending > reclaimable) {
ede37713
MH
4566 congestion_wait(BLK_RW_ASYNC, HZ/10);
4567 return true;
4568 }
4569 }
5a1c84b4 4570
15f570bf
MH
4571 ret = true;
4572 goto out;
0a0337e0
MH
4573 }
4574 }
4575
15f570bf
MH
4576out:
4577 /*
4578 * Memory allocation/reclaim might be called from a WQ context and the
4579 * current implementation of the WQ concurrency control doesn't
4580 * recognize that a particular WQ is congested if the worker thread is
4581 * looping without ever sleeping. Therefore we have to do a short sleep
4582 * here rather than calling cond_resched().
4583 */
4584 if (current->flags & PF_WQ_WORKER)
4585 schedule_timeout_uninterruptible(1);
4586 else
4587 cond_resched();
4588 return ret;
0a0337e0
MH
4589}
4590
902b6281
VB
4591static inline bool
4592check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4593{
4594 /*
4595 * It's possible that cpuset's mems_allowed and the nodemask from
4596 * mempolicy don't intersect. This should be normally dealt with by
4597 * policy_nodemask(), but it's possible to race with cpuset update in
4598 * such a way the check therein was true, and then it became false
4599 * before we got our cpuset_mems_cookie here.
4600 * This assumes that for all allocations, ac->nodemask can come only
4601 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4602 * when it does not intersect with the cpuset restrictions) or the
4603 * caller can deal with a violated nodemask.
4604 */
4605 if (cpusets_enabled() && ac->nodemask &&
4606 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4607 ac->nodemask = NULL;
4608 return true;
4609 }
4610
4611 /*
4612 * When updating a task's mems_allowed or mempolicy nodemask, it is
4613 * possible to race with parallel threads in such a way that our
4614 * allocation can fail while the mask is being updated. If we are about
4615 * to fail, check if the cpuset changed during allocation and if so,
4616 * retry.
4617 */
4618 if (read_mems_allowed_retry(cpuset_mems_cookie))
4619 return true;
4620
4621 return false;
4622}
4623
11e33f6a
MG
4624static inline struct page *
4625__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4626 struct alloc_context *ac)
11e33f6a 4627{
d0164adc 4628 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4629 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4630 struct page *page = NULL;
c603844b 4631 unsigned int alloc_flags;
11e33f6a 4632 unsigned long did_some_progress;
5ce9bfef 4633 enum compact_priority compact_priority;
c5d01d0d 4634 enum compact_result compact_result;
5ce9bfef
VB
4635 int compaction_retries;
4636 int no_progress_loops;
5ce9bfef 4637 unsigned int cpuset_mems_cookie;
cd04ae1e 4638 int reserve_flags;
1da177e4 4639
d0164adc
MG
4640 /*
4641 * We also sanity check to catch abuse of atomic reserves being used by
4642 * callers that are not in atomic context.
4643 */
4644 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4645 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4646 gfp_mask &= ~__GFP_ATOMIC;
4647
5ce9bfef
VB
4648retry_cpuset:
4649 compaction_retries = 0;
4650 no_progress_loops = 0;
4651 compact_priority = DEF_COMPACT_PRIORITY;
4652 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4653
4654 /*
4655 * The fast path uses conservative alloc_flags to succeed only until
4656 * kswapd needs to be woken up, and to avoid the cost of setting up
4657 * alloc_flags precisely. So we do that now.
4658 */
4659 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4660
e47483bc
VB
4661 /*
4662 * We need to recalculate the starting point for the zonelist iterator
4663 * because we might have used different nodemask in the fast path, or
4664 * there was a cpuset modification and we are retrying - otherwise we
4665 * could end up iterating over non-eligible zones endlessly.
4666 */
4667 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4668 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4669 if (!ac->preferred_zoneref->zone)
4670 goto nopage;
4671
0a79cdad 4672 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4673 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4674
4675 /*
4676 * The adjusted alloc_flags might result in immediate success, so try
4677 * that first
4678 */
4679 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4680 if (page)
4681 goto got_pg;
4682
a8161d1e
VB
4683 /*
4684 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4685 * that we have enough base pages and don't need to reclaim. For non-
4686 * movable high-order allocations, do that as well, as compaction will
4687 * try prevent permanent fragmentation by migrating from blocks of the
4688 * same migratetype.
4689 * Don't try this for allocations that are allowed to ignore
4690 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4691 */
282722b0
VB
4692 if (can_direct_reclaim &&
4693 (costly_order ||
4694 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4695 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4696 page = __alloc_pages_direct_compact(gfp_mask, order,
4697 alloc_flags, ac,
a5508cd8 4698 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4699 &compact_result);
4700 if (page)
4701 goto got_pg;
4702
cc638f32
VB
4703 /*
4704 * Checks for costly allocations with __GFP_NORETRY, which
4705 * includes some THP page fault allocations
4706 */
4707 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4708 /*
4709 * If allocating entire pageblock(s) and compaction
4710 * failed because all zones are below low watermarks
4711 * or is prohibited because it recently failed at this
3f36d866
DR
4712 * order, fail immediately unless the allocator has
4713 * requested compaction and reclaim retry.
b39d0ee2
DR
4714 *
4715 * Reclaim is
4716 * - potentially very expensive because zones are far
4717 * below their low watermarks or this is part of very
4718 * bursty high order allocations,
4719 * - not guaranteed to help because isolate_freepages()
4720 * may not iterate over freed pages as part of its
4721 * linear scan, and
4722 * - unlikely to make entire pageblocks free on its
4723 * own.
4724 */
4725 if (compact_result == COMPACT_SKIPPED ||
4726 compact_result == COMPACT_DEFERRED)
4727 goto nopage;
a8161d1e 4728
a8161d1e 4729 /*
3eb2771b
VB
4730 * Looks like reclaim/compaction is worth trying, but
4731 * sync compaction could be very expensive, so keep
25160354 4732 * using async compaction.
a8161d1e 4733 */
a5508cd8 4734 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4735 }
4736 }
23771235 4737
31a6c190 4738retry:
23771235 4739 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4740 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4741 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4742
cd04ae1e
MH
4743 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4744 if (reserve_flags)
8510e69c 4745 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4746
e46e7b77 4747 /*
d6a24df0
VB
4748 * Reset the nodemask and zonelist iterators if memory policies can be
4749 * ignored. These allocations are high priority and system rather than
4750 * user oriented.
e46e7b77 4751 */
cd04ae1e 4752 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4753 ac->nodemask = NULL;
e46e7b77 4754 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4755 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4756 }
4757
23771235 4758 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4759 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4760 if (page)
4761 goto got_pg;
1da177e4 4762
d0164adc 4763 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4764 if (!can_direct_reclaim)
1da177e4
LT
4765 goto nopage;
4766
9a67f648
MH
4767 /* Avoid recursion of direct reclaim */
4768 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4769 goto nopage;
4770
a8161d1e
VB
4771 /* Try direct reclaim and then allocating */
4772 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4773 &did_some_progress);
4774 if (page)
4775 goto got_pg;
4776
4777 /* Try direct compaction and then allocating */
a9263751 4778 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4779 compact_priority, &compact_result);
56de7263
MG
4780 if (page)
4781 goto got_pg;
75f30861 4782
9083905a
JW
4783 /* Do not loop if specifically requested */
4784 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4785 goto nopage;
9083905a 4786
0a0337e0
MH
4787 /*
4788 * Do not retry costly high order allocations unless they are
dcda9b04 4789 * __GFP_RETRY_MAYFAIL
0a0337e0 4790 */
dcda9b04 4791 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4792 goto nopage;
0a0337e0 4793
0a0337e0 4794 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4795 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4796 goto retry;
4797
33c2d214
MH
4798 /*
4799 * It doesn't make any sense to retry for the compaction if the order-0
4800 * reclaim is not able to make any progress because the current
4801 * implementation of the compaction depends on the sufficient amount
4802 * of free memory (see __compaction_suitable)
4803 */
4804 if (did_some_progress > 0 &&
86a294a8 4805 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4806 compact_result, &compact_priority,
d9436498 4807 &compaction_retries))
33c2d214
MH
4808 goto retry;
4809
902b6281
VB
4810
4811 /* Deal with possible cpuset update races before we start OOM killing */
4812 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4813 goto retry_cpuset;
4814
9083905a
JW
4815 /* Reclaim has failed us, start killing things */
4816 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4817 if (page)
4818 goto got_pg;
4819
9a67f648 4820 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4821 if (tsk_is_oom_victim(current) &&
8510e69c 4822 (alloc_flags & ALLOC_OOM ||
c288983d 4823 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4824 goto nopage;
4825
9083905a 4826 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4827 if (did_some_progress) {
4828 no_progress_loops = 0;
9083905a 4829 goto retry;
0a0337e0 4830 }
9083905a 4831
1da177e4 4832nopage:
902b6281
VB
4833 /* Deal with possible cpuset update races before we fail */
4834 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4835 goto retry_cpuset;
4836
9a67f648
MH
4837 /*
4838 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4839 * we always retry
4840 */
4841 if (gfp_mask & __GFP_NOFAIL) {
4842 /*
4843 * All existing users of the __GFP_NOFAIL are blockable, so warn
4844 * of any new users that actually require GFP_NOWAIT
4845 */
4846 if (WARN_ON_ONCE(!can_direct_reclaim))
4847 goto fail;
4848
4849 /*
4850 * PF_MEMALLOC request from this context is rather bizarre
4851 * because we cannot reclaim anything and only can loop waiting
4852 * for somebody to do a work for us
4853 */
4854 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4855
4856 /*
4857 * non failing costly orders are a hard requirement which we
4858 * are not prepared for much so let's warn about these users
4859 * so that we can identify them and convert them to something
4860 * else.
4861 */
4862 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4863
6c18ba7a
MH
4864 /*
4865 * Help non-failing allocations by giving them access to memory
4866 * reserves but do not use ALLOC_NO_WATERMARKS because this
4867 * could deplete whole memory reserves which would just make
4868 * the situation worse
4869 */
4870 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4871 if (page)
4872 goto got_pg;
4873
9a67f648
MH
4874 cond_resched();
4875 goto retry;
4876 }
4877fail:
a8e99259 4878 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4879 "page allocation failure: order:%u", order);
1da177e4 4880got_pg:
072bb0aa 4881 return page;
1da177e4 4882}
11e33f6a 4883
9cd75558 4884static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4885 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4886 struct alloc_context *ac, gfp_t *alloc_mask,
4887 unsigned int *alloc_flags)
11e33f6a 4888{
97a225e6 4889 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4890 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4891 ac->nodemask = nodemask;
01c0bfe0 4892 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4893
682a3385 4894 if (cpusets_enabled()) {
9cd75558 4895 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4896 /*
4897 * When we are in the interrupt context, it is irrelevant
4898 * to the current task context. It means that any node ok.
4899 */
4900 if (!in_interrupt() && !ac->nodemask)
9cd75558 4901 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4902 else
4903 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4904 }
4905
d92a8cfc
PZ
4906 fs_reclaim_acquire(gfp_mask);
4907 fs_reclaim_release(gfp_mask);
11e33f6a 4908
d0164adc 4909 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4910
4911 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4912 return false;
11e33f6a 4913
8510e69c 4914 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4915
c9ab0c4f 4916 /* Dirty zone balancing only done in the fast path */
9cd75558 4917 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4918
e46e7b77
MG
4919 /*
4920 * The preferred zone is used for statistics but crucially it is
4921 * also used as the starting point for the zonelist iterator. It
4922 * may get reset for allocations that ignore memory policies.
4923 */
9cd75558 4924 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4925 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4926
4927 return true;
9cd75558
MG
4928}
4929
4930/*
4931 * This is the 'heart' of the zoned buddy allocator.
4932 */
4933struct page *
04ec6264
VB
4934__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4935 nodemask_t *nodemask)
9cd75558
MG
4936{
4937 struct page *page;
4938 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4939 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4940 struct alloc_context ac = { };
4941
c63ae43b
MH
4942 /*
4943 * There are several places where we assume that the order value is sane
4944 * so bail out early if the request is out of bound.
4945 */
4946 if (unlikely(order >= MAX_ORDER)) {
4947 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4948 return NULL;
4949 }
4950
9cd75558 4951 gfp_mask &= gfp_allowed_mask;
f19360f0 4952 alloc_mask = gfp_mask;
04ec6264 4953 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4954 return NULL;
4955
6bb15450
MG
4956 /*
4957 * Forbid the first pass from falling back to types that fragment
4958 * memory until all local zones are considered.
4959 */
0a79cdad 4960 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4961
5117f45d 4962 /* First allocation attempt */
a9263751 4963 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4964 if (likely(page))
4965 goto out;
11e33f6a 4966
4fcb0971 4967 /*
7dea19f9
MH
4968 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4969 * resp. GFP_NOIO which has to be inherited for all allocation requests
4970 * from a particular context which has been marked by
4971 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4972 */
7dea19f9 4973 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4974 ac.spread_dirty_pages = false;
23f086f9 4975
4741526b
MG
4976 /*
4977 * Restore the original nodemask if it was potentially replaced with
4978 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4979 */
97ce86f9 4980 ac.nodemask = nodemask;
16096c25 4981
4fcb0971 4982 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4983
4fcb0971 4984out:
c4159a75 4985 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4986 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4987 __free_pages(page, order);
4988 page = NULL;
4949148a
VD
4989 }
4990
4fcb0971
MG
4991 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4992
11e33f6a 4993 return page;
1da177e4 4994}
d239171e 4995EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4996
4997/*
9ea9a680
MH
4998 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4999 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5000 * you need to access high mem.
1da177e4 5001 */
920c7a5d 5002unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5003{
945a1113
AM
5004 struct page *page;
5005
9ea9a680 5006 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5007 if (!page)
5008 return 0;
5009 return (unsigned long) page_address(page);
5010}
1da177e4
LT
5011EXPORT_SYMBOL(__get_free_pages);
5012
920c7a5d 5013unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5014{
945a1113 5015 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5016}
1da177e4
LT
5017EXPORT_SYMBOL(get_zeroed_page);
5018
742aa7fb 5019static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 5020{
742aa7fb
AL
5021 if (order == 0) /* Via pcp? */
5022 free_unref_page(page);
5023 else
7fef431b 5024 __free_pages_ok(page, order, FPI_NONE);
1da177e4
LT
5025}
5026
742aa7fb
AL
5027void __free_pages(struct page *page, unsigned int order)
5028{
5029 if (put_page_testzero(page))
5030 free_the_page(page, order);
e320d301
MWO
5031 else if (!PageHead(page))
5032 while (order-- > 0)
5033 free_the_page(page + (1 << order), order);
742aa7fb 5034}
1da177e4
LT
5035EXPORT_SYMBOL(__free_pages);
5036
920c7a5d 5037void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5038{
5039 if (addr != 0) {
725d704e 5040 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5041 __free_pages(virt_to_page((void *)addr), order);
5042 }
5043}
5044
5045EXPORT_SYMBOL(free_pages);
5046
b63ae8ca
AD
5047/*
5048 * Page Fragment:
5049 * An arbitrary-length arbitrary-offset area of memory which resides
5050 * within a 0 or higher order page. Multiple fragments within that page
5051 * are individually refcounted, in the page's reference counter.
5052 *
5053 * The page_frag functions below provide a simple allocation framework for
5054 * page fragments. This is used by the network stack and network device
5055 * drivers to provide a backing region of memory for use as either an
5056 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5057 */
2976db80
AD
5058static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5059 gfp_t gfp_mask)
b63ae8ca
AD
5060{
5061 struct page *page = NULL;
5062 gfp_t gfp = gfp_mask;
5063
5064#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5065 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5066 __GFP_NOMEMALLOC;
5067 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5068 PAGE_FRAG_CACHE_MAX_ORDER);
5069 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5070#endif
5071 if (unlikely(!page))
5072 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5073
5074 nc->va = page ? page_address(page) : NULL;
5075
5076 return page;
5077}
5078
2976db80 5079void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5080{
5081 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5082
742aa7fb
AL
5083 if (page_ref_sub_and_test(page, count))
5084 free_the_page(page, compound_order(page));
44fdffd7 5085}
2976db80 5086EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5087
8c2dd3e4
AD
5088void *page_frag_alloc(struct page_frag_cache *nc,
5089 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
5090{
5091 unsigned int size = PAGE_SIZE;
5092 struct page *page;
5093 int offset;
5094
5095 if (unlikely(!nc->va)) {
5096refill:
2976db80 5097 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5098 if (!page)
5099 return NULL;
5100
5101#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5102 /* if size can vary use size else just use PAGE_SIZE */
5103 size = nc->size;
5104#endif
5105 /* Even if we own the page, we do not use atomic_set().
5106 * This would break get_page_unless_zero() users.
5107 */
86447726 5108 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5109
5110 /* reset page count bias and offset to start of new frag */
2f064f34 5111 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5112 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5113 nc->offset = size;
5114 }
5115
5116 offset = nc->offset - fragsz;
5117 if (unlikely(offset < 0)) {
5118 page = virt_to_page(nc->va);
5119
fe896d18 5120 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5121 goto refill;
5122
d8c19014
DZ
5123 if (unlikely(nc->pfmemalloc)) {
5124 free_the_page(page, compound_order(page));
5125 goto refill;
5126 }
5127
b63ae8ca
AD
5128#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5129 /* if size can vary use size else just use PAGE_SIZE */
5130 size = nc->size;
5131#endif
5132 /* OK, page count is 0, we can safely set it */
86447726 5133 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5134
5135 /* reset page count bias and offset to start of new frag */
86447726 5136 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5137 offset = size - fragsz;
5138 }
5139
5140 nc->pagecnt_bias--;
5141 nc->offset = offset;
5142
5143 return nc->va + offset;
5144}
8c2dd3e4 5145EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5146
5147/*
5148 * Frees a page fragment allocated out of either a compound or order 0 page.
5149 */
8c2dd3e4 5150void page_frag_free(void *addr)
b63ae8ca
AD
5151{
5152 struct page *page = virt_to_head_page(addr);
5153
742aa7fb
AL
5154 if (unlikely(put_page_testzero(page)))
5155 free_the_page(page, compound_order(page));
b63ae8ca 5156}
8c2dd3e4 5157EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5158
d00181b9
KS
5159static void *make_alloc_exact(unsigned long addr, unsigned int order,
5160 size_t size)
ee85c2e1
AK
5161{
5162 if (addr) {
5163 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5164 unsigned long used = addr + PAGE_ALIGN(size);
5165
5166 split_page(virt_to_page((void *)addr), order);
5167 while (used < alloc_end) {
5168 free_page(used);
5169 used += PAGE_SIZE;
5170 }
5171 }
5172 return (void *)addr;
5173}
5174
2be0ffe2
TT
5175/**
5176 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5177 * @size: the number of bytes to allocate
63931eb9 5178 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5179 *
5180 * This function is similar to alloc_pages(), except that it allocates the
5181 * minimum number of pages to satisfy the request. alloc_pages() can only
5182 * allocate memory in power-of-two pages.
5183 *
5184 * This function is also limited by MAX_ORDER.
5185 *
5186 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5187 *
5188 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5189 */
5190void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5191{
5192 unsigned int order = get_order(size);
5193 unsigned long addr;
5194
63931eb9
VB
5195 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5196 gfp_mask &= ~__GFP_COMP;
5197
2be0ffe2 5198 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5199 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5200}
5201EXPORT_SYMBOL(alloc_pages_exact);
5202
ee85c2e1
AK
5203/**
5204 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5205 * pages on a node.
b5e6ab58 5206 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5207 * @size: the number of bytes to allocate
63931eb9 5208 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5209 *
5210 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5211 * back.
a862f68a
MR
5212 *
5213 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5214 */
e1931811 5215void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5216{
d00181b9 5217 unsigned int order = get_order(size);
63931eb9
VB
5218 struct page *p;
5219
5220 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5221 gfp_mask &= ~__GFP_COMP;
5222
5223 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5224 if (!p)
5225 return NULL;
5226 return make_alloc_exact((unsigned long)page_address(p), order, size);
5227}
ee85c2e1 5228
2be0ffe2
TT
5229/**
5230 * free_pages_exact - release memory allocated via alloc_pages_exact()
5231 * @virt: the value returned by alloc_pages_exact.
5232 * @size: size of allocation, same value as passed to alloc_pages_exact().
5233 *
5234 * Release the memory allocated by a previous call to alloc_pages_exact.
5235 */
5236void free_pages_exact(void *virt, size_t size)
5237{
5238 unsigned long addr = (unsigned long)virt;
5239 unsigned long end = addr + PAGE_ALIGN(size);
5240
5241 while (addr < end) {
5242 free_page(addr);
5243 addr += PAGE_SIZE;
5244 }
5245}
5246EXPORT_SYMBOL(free_pages_exact);
5247
e0fb5815
ZY
5248/**
5249 * nr_free_zone_pages - count number of pages beyond high watermark
5250 * @offset: The zone index of the highest zone
5251 *
a862f68a 5252 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5253 * high watermark within all zones at or below a given zone index. For each
5254 * zone, the number of pages is calculated as:
0e056eb5
MCC
5255 *
5256 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5257 *
5258 * Return: number of pages beyond high watermark.
e0fb5815 5259 */
ebec3862 5260static unsigned long nr_free_zone_pages(int offset)
1da177e4 5261{
dd1a239f 5262 struct zoneref *z;
54a6eb5c
MG
5263 struct zone *zone;
5264
e310fd43 5265 /* Just pick one node, since fallback list is circular */
ebec3862 5266 unsigned long sum = 0;
1da177e4 5267
0e88460d 5268 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5269
54a6eb5c 5270 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5271 unsigned long size = zone_managed_pages(zone);
41858966 5272 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5273 if (size > high)
5274 sum += size - high;
1da177e4
LT
5275 }
5276
5277 return sum;
5278}
5279
e0fb5815
ZY
5280/**
5281 * nr_free_buffer_pages - count number of pages beyond high watermark
5282 *
5283 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5284 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5285 *
5286 * Return: number of pages beyond high watermark within ZONE_DMA and
5287 * ZONE_NORMAL.
1da177e4 5288 */
ebec3862 5289unsigned long nr_free_buffer_pages(void)
1da177e4 5290{
af4ca457 5291 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5292}
c2f1a551 5293EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5294
08e0f6a9 5295static inline void show_node(struct zone *zone)
1da177e4 5296{
e5adfffc 5297 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5298 printk("Node %d ", zone_to_nid(zone));
1da177e4 5299}
1da177e4 5300
d02bd27b
IR
5301long si_mem_available(void)
5302{
5303 long available;
5304 unsigned long pagecache;
5305 unsigned long wmark_low = 0;
5306 unsigned long pages[NR_LRU_LISTS];
b29940c1 5307 unsigned long reclaimable;
d02bd27b
IR
5308 struct zone *zone;
5309 int lru;
5310
5311 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5312 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5313
5314 for_each_zone(zone)
a9214443 5315 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5316
5317 /*
5318 * Estimate the amount of memory available for userspace allocations,
5319 * without causing swapping.
5320 */
c41f012a 5321 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5322
5323 /*
5324 * Not all the page cache can be freed, otherwise the system will
5325 * start swapping. Assume at least half of the page cache, or the
5326 * low watermark worth of cache, needs to stay.
5327 */
5328 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5329 pagecache -= min(pagecache / 2, wmark_low);
5330 available += pagecache;
5331
5332 /*
b29940c1
VB
5333 * Part of the reclaimable slab and other kernel memory consists of
5334 * items that are in use, and cannot be freed. Cap this estimate at the
5335 * low watermark.
d02bd27b 5336 */
d42f3245
RG
5337 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5338 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5339 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5340
d02bd27b
IR
5341 if (available < 0)
5342 available = 0;
5343 return available;
5344}
5345EXPORT_SYMBOL_GPL(si_mem_available);
5346
1da177e4
LT
5347void si_meminfo(struct sysinfo *val)
5348{
ca79b0c2 5349 val->totalram = totalram_pages();
11fb9989 5350 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5351 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5352 val->bufferram = nr_blockdev_pages();
ca79b0c2 5353 val->totalhigh = totalhigh_pages();
1da177e4 5354 val->freehigh = nr_free_highpages();
1da177e4
LT
5355 val->mem_unit = PAGE_SIZE;
5356}
5357
5358EXPORT_SYMBOL(si_meminfo);
5359
5360#ifdef CONFIG_NUMA
5361void si_meminfo_node(struct sysinfo *val, int nid)
5362{
cdd91a77
JL
5363 int zone_type; /* needs to be signed */
5364 unsigned long managed_pages = 0;
fc2bd799
JK
5365 unsigned long managed_highpages = 0;
5366 unsigned long free_highpages = 0;
1da177e4
LT
5367 pg_data_t *pgdat = NODE_DATA(nid);
5368
cdd91a77 5369 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5370 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5371 val->totalram = managed_pages;
11fb9989 5372 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5373 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5374#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5375 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5376 struct zone *zone = &pgdat->node_zones[zone_type];
5377
5378 if (is_highmem(zone)) {
9705bea5 5379 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5380 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5381 }
5382 }
5383 val->totalhigh = managed_highpages;
5384 val->freehigh = free_highpages;
98d2b0eb 5385#else
fc2bd799
JK
5386 val->totalhigh = managed_highpages;
5387 val->freehigh = free_highpages;
98d2b0eb 5388#endif
1da177e4
LT
5389 val->mem_unit = PAGE_SIZE;
5390}
5391#endif
5392
ddd588b5 5393/*
7bf02ea2
DR
5394 * Determine whether the node should be displayed or not, depending on whether
5395 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5396 */
9af744d7 5397static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5398{
ddd588b5 5399 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5400 return false;
ddd588b5 5401
9af744d7
MH
5402 /*
5403 * no node mask - aka implicit memory numa policy. Do not bother with
5404 * the synchronization - read_mems_allowed_begin - because we do not
5405 * have to be precise here.
5406 */
5407 if (!nodemask)
5408 nodemask = &cpuset_current_mems_allowed;
5409
5410 return !node_isset(nid, *nodemask);
ddd588b5
DR
5411}
5412
1da177e4
LT
5413#define K(x) ((x) << (PAGE_SHIFT-10))
5414
377e4f16
RV
5415static void show_migration_types(unsigned char type)
5416{
5417 static const char types[MIGRATE_TYPES] = {
5418 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5419 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5420 [MIGRATE_RECLAIMABLE] = 'E',
5421 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5422#ifdef CONFIG_CMA
5423 [MIGRATE_CMA] = 'C',
5424#endif
194159fb 5425#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5426 [MIGRATE_ISOLATE] = 'I',
194159fb 5427#endif
377e4f16
RV
5428 };
5429 char tmp[MIGRATE_TYPES + 1];
5430 char *p = tmp;
5431 int i;
5432
5433 for (i = 0; i < MIGRATE_TYPES; i++) {
5434 if (type & (1 << i))
5435 *p++ = types[i];
5436 }
5437
5438 *p = '\0';
1f84a18f 5439 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5440}
5441
1da177e4
LT
5442/*
5443 * Show free area list (used inside shift_scroll-lock stuff)
5444 * We also calculate the percentage fragmentation. We do this by counting the
5445 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5446 *
5447 * Bits in @filter:
5448 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5449 * cpuset.
1da177e4 5450 */
9af744d7 5451void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5452{
d1bfcdb8 5453 unsigned long free_pcp = 0;
c7241913 5454 int cpu;
1da177e4 5455 struct zone *zone;
599d0c95 5456 pg_data_t *pgdat;
1da177e4 5457
ee99c71c 5458 for_each_populated_zone(zone) {
9af744d7 5459 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5460 continue;
d1bfcdb8 5461
761b0677
KK
5462 for_each_online_cpu(cpu)
5463 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5464 }
5465
a731286d
KM
5466 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5467 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5468 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5469 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5470 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5471 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5472 global_node_page_state(NR_ACTIVE_ANON),
5473 global_node_page_state(NR_INACTIVE_ANON),
5474 global_node_page_state(NR_ISOLATED_ANON),
5475 global_node_page_state(NR_ACTIVE_FILE),
5476 global_node_page_state(NR_INACTIVE_FILE),
5477 global_node_page_state(NR_ISOLATED_FILE),
5478 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5479 global_node_page_state(NR_FILE_DIRTY),
5480 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5481 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5482 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5483 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5484 global_node_page_state(NR_SHMEM),
f0c0c115 5485 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5486 global_zone_page_state(NR_BOUNCE),
5487 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5488 free_pcp,
c41f012a 5489 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5490
599d0c95 5491 for_each_online_pgdat(pgdat) {
9af744d7 5492 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5493 continue;
5494
599d0c95
MG
5495 printk("Node %d"
5496 " active_anon:%lukB"
5497 " inactive_anon:%lukB"
5498 " active_file:%lukB"
5499 " inactive_file:%lukB"
5500 " unevictable:%lukB"
5501 " isolated(anon):%lukB"
5502 " isolated(file):%lukB"
50658e2e 5503 " mapped:%lukB"
11fb9989
MG
5504 " dirty:%lukB"
5505 " writeback:%lukB"
5506 " shmem:%lukB"
5507#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5508 " shmem_thp: %lukB"
5509 " shmem_pmdmapped: %lukB"
5510 " anon_thp: %lukB"
5511#endif
5512 " writeback_tmp:%lukB"
991e7673
SB
5513 " kernel_stack:%lukB"
5514#ifdef CONFIG_SHADOW_CALL_STACK
5515 " shadow_call_stack:%lukB"
5516#endif
f0c0c115 5517 " pagetables:%lukB"
599d0c95
MG
5518 " all_unreclaimable? %s"
5519 "\n",
5520 pgdat->node_id,
5521 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5522 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5523 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5524 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5525 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5526 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5527 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5528 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5529 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5530 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5531 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5532#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5533 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5534 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5535 * HPAGE_PMD_NR),
5536 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5537#endif
11fb9989 5538 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5539 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5540#ifdef CONFIG_SHADOW_CALL_STACK
5541 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5542#endif
f0c0c115 5543 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5544 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5545 "yes" : "no");
599d0c95
MG
5546 }
5547
ee99c71c 5548 for_each_populated_zone(zone) {
1da177e4
LT
5549 int i;
5550
9af744d7 5551 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5552 continue;
d1bfcdb8
KK
5553
5554 free_pcp = 0;
5555 for_each_online_cpu(cpu)
5556 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5557
1da177e4 5558 show_node(zone);
1f84a18f
JP
5559 printk(KERN_CONT
5560 "%s"
1da177e4
LT
5561 " free:%lukB"
5562 " min:%lukB"
5563 " low:%lukB"
5564 " high:%lukB"
e47b346a 5565 " reserved_highatomic:%luKB"
71c799f4
MK
5566 " active_anon:%lukB"
5567 " inactive_anon:%lukB"
5568 " active_file:%lukB"
5569 " inactive_file:%lukB"
5570 " unevictable:%lukB"
5a1c84b4 5571 " writepending:%lukB"
1da177e4 5572 " present:%lukB"
9feedc9d 5573 " managed:%lukB"
4a0aa73f 5574 " mlocked:%lukB"
4a0aa73f 5575 " bounce:%lukB"
d1bfcdb8
KK
5576 " free_pcp:%lukB"
5577 " local_pcp:%ukB"
d1ce749a 5578 " free_cma:%lukB"
1da177e4
LT
5579 "\n",
5580 zone->name,
88f5acf8 5581 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5582 K(min_wmark_pages(zone)),
5583 K(low_wmark_pages(zone)),
5584 K(high_wmark_pages(zone)),
e47b346a 5585 K(zone->nr_reserved_highatomic),
71c799f4
MK
5586 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5587 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5588 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5589 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5590 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5591 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5592 K(zone->present_pages),
9705bea5 5593 K(zone_managed_pages(zone)),
4a0aa73f 5594 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5595 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5596 K(free_pcp),
5597 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5598 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5599 printk("lowmem_reserve[]:");
5600 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5601 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5602 printk(KERN_CONT "\n");
1da177e4
LT
5603 }
5604
ee99c71c 5605 for_each_populated_zone(zone) {
d00181b9
KS
5606 unsigned int order;
5607 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5608 unsigned char types[MAX_ORDER];
1da177e4 5609
9af744d7 5610 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5611 continue;
1da177e4 5612 show_node(zone);
1f84a18f 5613 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5614
5615 spin_lock_irqsave(&zone->lock, flags);
5616 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5617 struct free_area *area = &zone->free_area[order];
5618 int type;
5619
5620 nr[order] = area->nr_free;
8f9de51a 5621 total += nr[order] << order;
377e4f16
RV
5622
5623 types[order] = 0;
5624 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5625 if (!free_area_empty(area, type))
377e4f16
RV
5626 types[order] |= 1 << type;
5627 }
1da177e4
LT
5628 }
5629 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5630 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5631 printk(KERN_CONT "%lu*%lukB ",
5632 nr[order], K(1UL) << order);
377e4f16
RV
5633 if (nr[order])
5634 show_migration_types(types[order]);
5635 }
1f84a18f 5636 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5637 }
5638
949f7ec5
DR
5639 hugetlb_show_meminfo();
5640
11fb9989 5641 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5642
1da177e4
LT
5643 show_swap_cache_info();
5644}
5645
19770b32
MG
5646static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5647{
5648 zoneref->zone = zone;
5649 zoneref->zone_idx = zone_idx(zone);
5650}
5651
1da177e4
LT
5652/*
5653 * Builds allocation fallback zone lists.
1a93205b
CL
5654 *
5655 * Add all populated zones of a node to the zonelist.
1da177e4 5656 */
9d3be21b 5657static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5658{
1a93205b 5659 struct zone *zone;
bc732f1d 5660 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5661 int nr_zones = 0;
02a68a5e
CL
5662
5663 do {
2f6726e5 5664 zone_type--;
070f8032 5665 zone = pgdat->node_zones + zone_type;
6aa303de 5666 if (managed_zone(zone)) {
9d3be21b 5667 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5668 check_highest_zone(zone_type);
1da177e4 5669 }
2f6726e5 5670 } while (zone_type);
bc732f1d 5671
070f8032 5672 return nr_zones;
1da177e4
LT
5673}
5674
5675#ifdef CONFIG_NUMA
f0c0b2b8
KH
5676
5677static int __parse_numa_zonelist_order(char *s)
5678{
c9bff3ee
MH
5679 /*
5680 * We used to support different zonlists modes but they turned
5681 * out to be just not useful. Let's keep the warning in place
5682 * if somebody still use the cmd line parameter so that we do
5683 * not fail it silently
5684 */
5685 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5686 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5687 return -EINVAL;
5688 }
5689 return 0;
5690}
5691
c9bff3ee
MH
5692char numa_zonelist_order[] = "Node";
5693
f0c0b2b8
KH
5694/*
5695 * sysctl handler for numa_zonelist_order
5696 */
cccad5b9 5697int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5698 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5699{
32927393
CH
5700 if (write)
5701 return __parse_numa_zonelist_order(buffer);
5702 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5703}
5704
5705
62bc62a8 5706#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5707static int node_load[MAX_NUMNODES];
5708
1da177e4 5709/**
4dc3b16b 5710 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5711 * @node: node whose fallback list we're appending
5712 * @used_node_mask: nodemask_t of already used nodes
5713 *
5714 * We use a number of factors to determine which is the next node that should
5715 * appear on a given node's fallback list. The node should not have appeared
5716 * already in @node's fallback list, and it should be the next closest node
5717 * according to the distance array (which contains arbitrary distance values
5718 * from each node to each node in the system), and should also prefer nodes
5719 * with no CPUs, since presumably they'll have very little allocation pressure
5720 * on them otherwise.
a862f68a
MR
5721 *
5722 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5723 */
f0c0b2b8 5724static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5725{
4cf808eb 5726 int n, val;
1da177e4 5727 int min_val = INT_MAX;
00ef2d2f 5728 int best_node = NUMA_NO_NODE;
1da177e4 5729
4cf808eb
LT
5730 /* Use the local node if we haven't already */
5731 if (!node_isset(node, *used_node_mask)) {
5732 node_set(node, *used_node_mask);
5733 return node;
5734 }
1da177e4 5735
4b0ef1fe 5736 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5737
5738 /* Don't want a node to appear more than once */
5739 if (node_isset(n, *used_node_mask))
5740 continue;
5741
1da177e4
LT
5742 /* Use the distance array to find the distance */
5743 val = node_distance(node, n);
5744
4cf808eb
LT
5745 /* Penalize nodes under us ("prefer the next node") */
5746 val += (n < node);
5747
1da177e4 5748 /* Give preference to headless and unused nodes */
b630749f 5749 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5750 val += PENALTY_FOR_NODE_WITH_CPUS;
5751
5752 /* Slight preference for less loaded node */
5753 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5754 val += node_load[n];
5755
5756 if (val < min_val) {
5757 min_val = val;
5758 best_node = n;
5759 }
5760 }
5761
5762 if (best_node >= 0)
5763 node_set(best_node, *used_node_mask);
5764
5765 return best_node;
5766}
5767
f0c0b2b8
KH
5768
5769/*
5770 * Build zonelists ordered by node and zones within node.
5771 * This results in maximum locality--normal zone overflows into local
5772 * DMA zone, if any--but risks exhausting DMA zone.
5773 */
9d3be21b
MH
5774static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5775 unsigned nr_nodes)
1da177e4 5776{
9d3be21b
MH
5777 struct zoneref *zonerefs;
5778 int i;
5779
5780 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5781
5782 for (i = 0; i < nr_nodes; i++) {
5783 int nr_zones;
5784
5785 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5786
9d3be21b
MH
5787 nr_zones = build_zonerefs_node(node, zonerefs);
5788 zonerefs += nr_zones;
5789 }
5790 zonerefs->zone = NULL;
5791 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5792}
5793
523b9458
CL
5794/*
5795 * Build gfp_thisnode zonelists
5796 */
5797static void build_thisnode_zonelists(pg_data_t *pgdat)
5798{
9d3be21b
MH
5799 struct zoneref *zonerefs;
5800 int nr_zones;
523b9458 5801
9d3be21b
MH
5802 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5803 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5804 zonerefs += nr_zones;
5805 zonerefs->zone = NULL;
5806 zonerefs->zone_idx = 0;
523b9458
CL
5807}
5808
f0c0b2b8
KH
5809/*
5810 * Build zonelists ordered by zone and nodes within zones.
5811 * This results in conserving DMA zone[s] until all Normal memory is
5812 * exhausted, but results in overflowing to remote node while memory
5813 * may still exist in local DMA zone.
5814 */
f0c0b2b8 5815
f0c0b2b8
KH
5816static void build_zonelists(pg_data_t *pgdat)
5817{
9d3be21b
MH
5818 static int node_order[MAX_NUMNODES];
5819 int node, load, nr_nodes = 0;
d0ddf49b 5820 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5821 int local_node, prev_node;
1da177e4
LT
5822
5823 /* NUMA-aware ordering of nodes */
5824 local_node = pgdat->node_id;
62bc62a8 5825 load = nr_online_nodes;
1da177e4 5826 prev_node = local_node;
f0c0b2b8 5827
f0c0b2b8 5828 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5829 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5830 /*
5831 * We don't want to pressure a particular node.
5832 * So adding penalty to the first node in same
5833 * distance group to make it round-robin.
5834 */
957f822a
DR
5835 if (node_distance(local_node, node) !=
5836 node_distance(local_node, prev_node))
f0c0b2b8
KH
5837 node_load[node] = load;
5838
9d3be21b 5839 node_order[nr_nodes++] = node;
1da177e4
LT
5840 prev_node = node;
5841 load--;
1da177e4 5842 }
523b9458 5843
9d3be21b 5844 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5845 build_thisnode_zonelists(pgdat);
1da177e4
LT
5846}
5847
7aac7898
LS
5848#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5849/*
5850 * Return node id of node used for "local" allocations.
5851 * I.e., first node id of first zone in arg node's generic zonelist.
5852 * Used for initializing percpu 'numa_mem', which is used primarily
5853 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5854 */
5855int local_memory_node(int node)
5856{
c33d6c06 5857 struct zoneref *z;
7aac7898 5858
c33d6c06 5859 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5860 gfp_zone(GFP_KERNEL),
c33d6c06 5861 NULL);
c1093b74 5862 return zone_to_nid(z->zone);
7aac7898
LS
5863}
5864#endif
f0c0b2b8 5865
6423aa81
JK
5866static void setup_min_unmapped_ratio(void);
5867static void setup_min_slab_ratio(void);
1da177e4
LT
5868#else /* CONFIG_NUMA */
5869
f0c0b2b8 5870static void build_zonelists(pg_data_t *pgdat)
1da177e4 5871{
19655d34 5872 int node, local_node;
9d3be21b
MH
5873 struct zoneref *zonerefs;
5874 int nr_zones;
1da177e4
LT
5875
5876 local_node = pgdat->node_id;
1da177e4 5877
9d3be21b
MH
5878 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5879 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5880 zonerefs += nr_zones;
1da177e4 5881
54a6eb5c
MG
5882 /*
5883 * Now we build the zonelist so that it contains the zones
5884 * of all the other nodes.
5885 * We don't want to pressure a particular node, so when
5886 * building the zones for node N, we make sure that the
5887 * zones coming right after the local ones are those from
5888 * node N+1 (modulo N)
5889 */
5890 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5891 if (!node_online(node))
5892 continue;
9d3be21b
MH
5893 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5894 zonerefs += nr_zones;
1da177e4 5895 }
54a6eb5c
MG
5896 for (node = 0; node < local_node; node++) {
5897 if (!node_online(node))
5898 continue;
9d3be21b
MH
5899 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5900 zonerefs += nr_zones;
54a6eb5c
MG
5901 }
5902
9d3be21b
MH
5903 zonerefs->zone = NULL;
5904 zonerefs->zone_idx = 0;
1da177e4
LT
5905}
5906
5907#endif /* CONFIG_NUMA */
5908
99dcc3e5
CL
5909/*
5910 * Boot pageset table. One per cpu which is going to be used for all
5911 * zones and all nodes. The parameters will be set in such a way
5912 * that an item put on a list will immediately be handed over to
5913 * the buddy list. This is safe since pageset manipulation is done
5914 * with interrupts disabled.
5915 *
5916 * The boot_pagesets must be kept even after bootup is complete for
5917 * unused processors and/or zones. They do play a role for bootstrapping
5918 * hotplugged processors.
5919 *
5920 * zoneinfo_show() and maybe other functions do
5921 * not check if the processor is online before following the pageset pointer.
5922 * Other parts of the kernel may not check if the zone is available.
5923 */
5924static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5925static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5926static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5927
11cd8638 5928static void __build_all_zonelists(void *data)
1da177e4 5929{
6811378e 5930 int nid;
afb6ebb3 5931 int __maybe_unused cpu;
9adb62a5 5932 pg_data_t *self = data;
b93e0f32
MH
5933 static DEFINE_SPINLOCK(lock);
5934
5935 spin_lock(&lock);
9276b1bc 5936
7f9cfb31
BL
5937#ifdef CONFIG_NUMA
5938 memset(node_load, 0, sizeof(node_load));
5939#endif
9adb62a5 5940
c1152583
WY
5941 /*
5942 * This node is hotadded and no memory is yet present. So just
5943 * building zonelists is fine - no need to touch other nodes.
5944 */
9adb62a5
JL
5945 if (self && !node_online(self->node_id)) {
5946 build_zonelists(self);
c1152583
WY
5947 } else {
5948 for_each_online_node(nid) {
5949 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5950
c1152583
WY
5951 build_zonelists(pgdat);
5952 }
99dcc3e5 5953
7aac7898
LS
5954#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5955 /*
5956 * We now know the "local memory node" for each node--
5957 * i.e., the node of the first zone in the generic zonelist.
5958 * Set up numa_mem percpu variable for on-line cpus. During
5959 * boot, only the boot cpu should be on-line; we'll init the
5960 * secondary cpus' numa_mem as they come on-line. During
5961 * node/memory hotplug, we'll fixup all on-line cpus.
5962 */
d9c9a0b9 5963 for_each_online_cpu(cpu)
7aac7898 5964 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5965#endif
d9c9a0b9 5966 }
b93e0f32
MH
5967
5968 spin_unlock(&lock);
6811378e
YG
5969}
5970
061f67bc
RV
5971static noinline void __init
5972build_all_zonelists_init(void)
5973{
afb6ebb3
MH
5974 int cpu;
5975
061f67bc 5976 __build_all_zonelists(NULL);
afb6ebb3
MH
5977
5978 /*
5979 * Initialize the boot_pagesets that are going to be used
5980 * for bootstrapping processors. The real pagesets for
5981 * each zone will be allocated later when the per cpu
5982 * allocator is available.
5983 *
5984 * boot_pagesets are used also for bootstrapping offline
5985 * cpus if the system is already booted because the pagesets
5986 * are needed to initialize allocators on a specific cpu too.
5987 * F.e. the percpu allocator needs the page allocator which
5988 * needs the percpu allocator in order to allocate its pagesets
5989 * (a chicken-egg dilemma).
5990 */
5991 for_each_possible_cpu(cpu)
5992 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5993
061f67bc
RV
5994 mminit_verify_zonelist();
5995 cpuset_init_current_mems_allowed();
5996}
5997
4eaf3f64 5998/*
4eaf3f64 5999 * unless system_state == SYSTEM_BOOTING.
061f67bc 6000 *
72675e13 6001 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6002 * [protected by SYSTEM_BOOTING].
4eaf3f64 6003 */
72675e13 6004void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6005{
0a18e607
DH
6006 unsigned long vm_total_pages;
6007
6811378e 6008 if (system_state == SYSTEM_BOOTING) {
061f67bc 6009 build_all_zonelists_init();
6811378e 6010 } else {
11cd8638 6011 __build_all_zonelists(pgdat);
6811378e
YG
6012 /* cpuset refresh routine should be here */
6013 }
56b9413b
DH
6014 /* Get the number of free pages beyond high watermark in all zones. */
6015 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6016 /*
6017 * Disable grouping by mobility if the number of pages in the
6018 * system is too low to allow the mechanism to work. It would be
6019 * more accurate, but expensive to check per-zone. This check is
6020 * made on memory-hotadd so a system can start with mobility
6021 * disabled and enable it later
6022 */
d9c23400 6023 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6024 page_group_by_mobility_disabled = 1;
6025 else
6026 page_group_by_mobility_disabled = 0;
6027
ce0725f7 6028 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6029 nr_online_nodes,
756a025f
JP
6030 page_group_by_mobility_disabled ? "off" : "on",
6031 vm_total_pages);
f0c0b2b8 6032#ifdef CONFIG_NUMA
f88dfff5 6033 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6034#endif
1da177e4
LT
6035}
6036
a9a9e77f
PT
6037/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6038static bool __meminit
6039overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6040{
a9a9e77f
PT
6041 static struct memblock_region *r;
6042
6043 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6044 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6045 for_each_mem_region(r) {
a9a9e77f
PT
6046 if (*pfn < memblock_region_memory_end_pfn(r))
6047 break;
6048 }
6049 }
6050 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6051 memblock_is_mirror(r)) {
6052 *pfn = memblock_region_memory_end_pfn(r);
6053 return true;
6054 }
6055 }
a9a9e77f
PT
6056 return false;
6057}
6058
1da177e4
LT
6059/*
6060 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6061 * up by memblock_free_all() once the early boot process is
1da177e4 6062 * done. Non-atomic initialization, single-pass.
d882c006
DH
6063 *
6064 * All aligned pageblocks are initialized to the specified migratetype
6065 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6066 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6067 */
c09b4240 6068void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
d882c006
DH
6069 unsigned long start_pfn,
6070 enum meminit_context context,
6071 struct vmem_altmap *altmap, int migratetype)
1da177e4 6072{
a9a9e77f 6073 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6074 struct page *page;
1da177e4 6075
22b31eec
HD
6076 if (highest_memmap_pfn < end_pfn - 1)
6077 highest_memmap_pfn = end_pfn - 1;
6078
966cf44f 6079#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6080 /*
6081 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6082 * memory. We limit the total number of pages to initialize to just
6083 * those that might contain the memory mapping. We will defer the
6084 * ZONE_DEVICE page initialization until after we have released
6085 * the hotplug lock.
4b94ffdc 6086 */
966cf44f
AD
6087 if (zone == ZONE_DEVICE) {
6088 if (!altmap)
6089 return;
6090
6091 if (start_pfn == altmap->base_pfn)
6092 start_pfn += altmap->reserve;
6093 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6094 }
6095#endif
4b94ffdc 6096
948c436e 6097 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6098 /*
b72d0ffb
AM
6099 * There can be holes in boot-time mem_map[]s handed to this
6100 * function. They do not exist on hotplugged memory.
a2f3aa02 6101 */
c1d0da83 6102 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6103 if (overlap_memmap_init(zone, &pfn))
6104 continue;
6105 if (defer_init(nid, pfn, end_pfn))
6106 break;
a2f3aa02 6107 }
ac5d2539 6108
d0dc12e8
PT
6109 page = pfn_to_page(pfn);
6110 __init_single_page(page, pfn, zone, nid);
c1d0da83 6111 if (context == MEMINIT_HOTPLUG)
d483da5b 6112 __SetPageReserved(page);
d0dc12e8 6113
ac5d2539 6114 /*
d882c006
DH
6115 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6116 * such that unmovable allocations won't be scattered all
6117 * over the place during system boot.
ac5d2539 6118 */
4eb29bd9 6119 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6120 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6121 cond_resched();
ac5d2539 6122 }
948c436e 6123 pfn++;
1da177e4
LT
6124 }
6125}
6126
966cf44f
AD
6127#ifdef CONFIG_ZONE_DEVICE
6128void __ref memmap_init_zone_device(struct zone *zone,
6129 unsigned long start_pfn,
1f8d75c1 6130 unsigned long nr_pages,
966cf44f
AD
6131 struct dev_pagemap *pgmap)
6132{
1f8d75c1 6133 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6134 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6135 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6136 unsigned long zone_idx = zone_idx(zone);
6137 unsigned long start = jiffies;
6138 int nid = pgdat->node_id;
6139
46d945ae 6140 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6141 return;
6142
6143 /*
6144 * The call to memmap_init_zone should have already taken care
6145 * of the pages reserved for the memmap, so we can just jump to
6146 * the end of that region and start processing the device pages.
6147 */
514caf23 6148 if (altmap) {
966cf44f 6149 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6150 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6151 }
6152
6153 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6154 struct page *page = pfn_to_page(pfn);
6155
6156 __init_single_page(page, pfn, zone_idx, nid);
6157
6158 /*
6159 * Mark page reserved as it will need to wait for onlining
6160 * phase for it to be fully associated with a zone.
6161 *
6162 * We can use the non-atomic __set_bit operation for setting
6163 * the flag as we are still initializing the pages.
6164 */
6165 __SetPageReserved(page);
6166
6167 /*
8a164fef
CH
6168 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6169 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6170 * ever freed or placed on a driver-private list.
966cf44f
AD
6171 */
6172 page->pgmap = pgmap;
8a164fef 6173 page->zone_device_data = NULL;
966cf44f
AD
6174
6175 /*
6176 * Mark the block movable so that blocks are reserved for
6177 * movable at startup. This will force kernel allocations
6178 * to reserve their blocks rather than leaking throughout
6179 * the address space during boot when many long-lived
6180 * kernel allocations are made.
6181 *
c1d0da83 6182 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6183 * because this is done early in section_activate()
966cf44f 6184 */
4eb29bd9 6185 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6186 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6187 cond_resched();
6188 }
6189 }
6190
fdc029b1 6191 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6192 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6193}
6194
6195#endif
1e548deb 6196static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6197{
7aeb09f9 6198 unsigned int order, t;
b2a0ac88
MG
6199 for_each_migratetype_order(order, t) {
6200 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6201 zone->free_area[order].nr_free = 0;
6202 }
6203}
6204
dfb3ccd0 6205void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6206 unsigned long zone,
6207 unsigned long range_start_pfn)
dfb3ccd0 6208{
73a6e474
BH
6209 unsigned long start_pfn, end_pfn;
6210 unsigned long range_end_pfn = range_start_pfn + size;
6211 int i;
6212
6213 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6214 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6215 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6216
6217 if (end_pfn > start_pfn) {
6218 size = end_pfn - start_pfn;
6219 memmap_init_zone(size, nid, zone, start_pfn,
d882c006 6220 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
73a6e474
BH
6221 }
6222 }
dfb3ccd0 6223}
1da177e4 6224
7cd2b0a3 6225static int zone_batchsize(struct zone *zone)
e7c8d5c9 6226{
3a6be87f 6227#ifdef CONFIG_MMU
e7c8d5c9
CL
6228 int batch;
6229
6230 /*
6231 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6232 * size of the zone.
e7c8d5c9 6233 */
9705bea5 6234 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6235 /* But no more than a meg. */
6236 if (batch * PAGE_SIZE > 1024 * 1024)
6237 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6238 batch /= 4; /* We effectively *= 4 below */
6239 if (batch < 1)
6240 batch = 1;
6241
6242 /*
0ceaacc9
NP
6243 * Clamp the batch to a 2^n - 1 value. Having a power
6244 * of 2 value was found to be more likely to have
6245 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6246 *
0ceaacc9
NP
6247 * For example if 2 tasks are alternately allocating
6248 * batches of pages, one task can end up with a lot
6249 * of pages of one half of the possible page colors
6250 * and the other with pages of the other colors.
e7c8d5c9 6251 */
9155203a 6252 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6253
e7c8d5c9 6254 return batch;
3a6be87f
DH
6255
6256#else
6257 /* The deferral and batching of frees should be suppressed under NOMMU
6258 * conditions.
6259 *
6260 * The problem is that NOMMU needs to be able to allocate large chunks
6261 * of contiguous memory as there's no hardware page translation to
6262 * assemble apparent contiguous memory from discontiguous pages.
6263 *
6264 * Queueing large contiguous runs of pages for batching, however,
6265 * causes the pages to actually be freed in smaller chunks. As there
6266 * can be a significant delay between the individual batches being
6267 * recycled, this leads to the once large chunks of space being
6268 * fragmented and becoming unavailable for high-order allocations.
6269 */
6270 return 0;
6271#endif
e7c8d5c9
CL
6272}
6273
8d7a8fa9
CS
6274/*
6275 * pcp->high and pcp->batch values are related and dependent on one another:
6276 * ->batch must never be higher then ->high.
6277 * The following function updates them in a safe manner without read side
6278 * locking.
6279 *
6280 * Any new users of pcp->batch and pcp->high should ensure they can cope with
047b9967 6281 * those fields changing asynchronously (acording to the above rule).
8d7a8fa9
CS
6282 *
6283 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6284 * outside of boot time (or some other assurance that no concurrent updaters
6285 * exist).
6286 */
6287static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6288 unsigned long batch)
6289{
6290 /* start with a fail safe value for batch */
6291 pcp->batch = 1;
6292 smp_wmb();
6293
6294 /* Update high, then batch, in order */
6295 pcp->high = high;
6296 smp_wmb();
6297
6298 pcp->batch = batch;
6299}
6300
3664033c 6301/* a companion to pageset_set_high() */
4008bab7
CS
6302static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6303{
8d7a8fa9 6304 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6305}
6306
88c90dbc 6307static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6308{
6309 struct per_cpu_pages *pcp;
5f8dcc21 6310 int migratetype;
2caaad41 6311
1c6fe946
MD
6312 memset(p, 0, sizeof(*p));
6313
3dfa5721 6314 pcp = &p->pcp;
5f8dcc21
MG
6315 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6316 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6317}
6318
88c90dbc
CS
6319static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6320{
6321 pageset_init(p);
6322 pageset_set_batch(p, batch);
6323}
6324
8ad4b1fb 6325/*
3664033c 6326 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6327 * to the value high for the pageset p.
6328 */
3664033c 6329static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6330 unsigned long high)
6331{
8d7a8fa9
CS
6332 unsigned long batch = max(1UL, high / 4);
6333 if ((high / 4) > (PAGE_SHIFT * 8))
6334 batch = PAGE_SHIFT * 8;
8ad4b1fb 6335
8d7a8fa9 6336 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6337}
6338
7cd2b0a3
DR
6339static void pageset_set_high_and_batch(struct zone *zone,
6340 struct per_cpu_pageset *pcp)
56cef2b8 6341{
56cef2b8 6342 if (percpu_pagelist_fraction)
3664033c 6343 pageset_set_high(pcp,
9705bea5 6344 (zone_managed_pages(zone) /
56cef2b8
CS
6345 percpu_pagelist_fraction));
6346 else
6347 pageset_set_batch(pcp, zone_batchsize(zone));
6348}
6349
169f6c19
CS
6350static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6351{
6352 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6353
6354 pageset_init(pcp);
6355 pageset_set_high_and_batch(zone, pcp);
6356}
6357
72675e13 6358void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6359{
6360 int cpu;
319774e2 6361 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6362 for_each_possible_cpu(cpu)
6363 zone_pageset_init(zone, cpu);
319774e2
WF
6364}
6365
2caaad41 6366/*
99dcc3e5
CL
6367 * Allocate per cpu pagesets and initialize them.
6368 * Before this call only boot pagesets were available.
e7c8d5c9 6369 */
99dcc3e5 6370void __init setup_per_cpu_pageset(void)
e7c8d5c9 6371{
b4911ea2 6372 struct pglist_data *pgdat;
99dcc3e5 6373 struct zone *zone;
b418a0f9 6374 int __maybe_unused cpu;
e7c8d5c9 6375
319774e2
WF
6376 for_each_populated_zone(zone)
6377 setup_zone_pageset(zone);
b4911ea2 6378
b418a0f9
SD
6379#ifdef CONFIG_NUMA
6380 /*
6381 * Unpopulated zones continue using the boot pagesets.
6382 * The numa stats for these pagesets need to be reset.
6383 * Otherwise, they will end up skewing the stats of
6384 * the nodes these zones are associated with.
6385 */
6386 for_each_possible_cpu(cpu) {
6387 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6388 memset(pcp->vm_numa_stat_diff, 0,
6389 sizeof(pcp->vm_numa_stat_diff));
6390 }
6391#endif
6392
b4911ea2
MG
6393 for_each_online_pgdat(pgdat)
6394 pgdat->per_cpu_nodestats =
6395 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6396}
6397
c09b4240 6398static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6399{
99dcc3e5
CL
6400 /*
6401 * per cpu subsystem is not up at this point. The following code
6402 * relies on the ability of the linker to provide the
6403 * offset of a (static) per cpu variable into the per cpu area.
6404 */
6405 zone->pageset = &boot_pageset;
ed8ece2e 6406
b38a8725 6407 if (populated_zone(zone))
99dcc3e5
CL
6408 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6409 zone->name, zone->present_pages,
6410 zone_batchsize(zone));
ed8ece2e
DH
6411}
6412
dc0bbf3b 6413void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6414 unsigned long zone_start_pfn,
b171e409 6415 unsigned long size)
ed8ece2e
DH
6416{
6417 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6418 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6419
8f416836
WY
6420 if (zone_idx > pgdat->nr_zones)
6421 pgdat->nr_zones = zone_idx;
ed8ece2e 6422
ed8ece2e
DH
6423 zone->zone_start_pfn = zone_start_pfn;
6424
708614e6
MG
6425 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6426 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6427 pgdat->node_id,
6428 (unsigned long)zone_idx(zone),
6429 zone_start_pfn, (zone_start_pfn + size));
6430
1e548deb 6431 zone_init_free_lists(zone);
9dcb8b68 6432 zone->initialized = 1;
ed8ece2e
DH
6433}
6434
c713216d
MG
6435/**
6436 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6437 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6438 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6439 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6440 *
6441 * It returns the start and end page frame of a node based on information
7d018176 6442 * provided by memblock_set_node(). If called for a node
c713216d 6443 * with no available memory, a warning is printed and the start and end
88ca3b94 6444 * PFNs will be 0.
c713216d 6445 */
bbe5d993 6446void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6447 unsigned long *start_pfn, unsigned long *end_pfn)
6448{
c13291a5 6449 unsigned long this_start_pfn, this_end_pfn;
c713216d 6450 int i;
c13291a5 6451
c713216d
MG
6452 *start_pfn = -1UL;
6453 *end_pfn = 0;
6454
c13291a5
TH
6455 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6456 *start_pfn = min(*start_pfn, this_start_pfn);
6457 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6458 }
6459
633c0666 6460 if (*start_pfn == -1UL)
c713216d 6461 *start_pfn = 0;
c713216d
MG
6462}
6463
2a1e274a
MG
6464/*
6465 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6466 * assumption is made that zones within a node are ordered in monotonic
6467 * increasing memory addresses so that the "highest" populated zone is used
6468 */
b69a7288 6469static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6470{
6471 int zone_index;
6472 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6473 if (zone_index == ZONE_MOVABLE)
6474 continue;
6475
6476 if (arch_zone_highest_possible_pfn[zone_index] >
6477 arch_zone_lowest_possible_pfn[zone_index])
6478 break;
6479 }
6480
6481 VM_BUG_ON(zone_index == -1);
6482 movable_zone = zone_index;
6483}
6484
6485/*
6486 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6487 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6488 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6489 * in each node depending on the size of each node and how evenly kernelcore
6490 * is distributed. This helper function adjusts the zone ranges
6491 * provided by the architecture for a given node by using the end of the
6492 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6493 * zones within a node are in order of monotonic increases memory addresses
6494 */
bbe5d993 6495static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6496 unsigned long zone_type,
6497 unsigned long node_start_pfn,
6498 unsigned long node_end_pfn,
6499 unsigned long *zone_start_pfn,
6500 unsigned long *zone_end_pfn)
6501{
6502 /* Only adjust if ZONE_MOVABLE is on this node */
6503 if (zone_movable_pfn[nid]) {
6504 /* Size ZONE_MOVABLE */
6505 if (zone_type == ZONE_MOVABLE) {
6506 *zone_start_pfn = zone_movable_pfn[nid];
6507 *zone_end_pfn = min(node_end_pfn,
6508 arch_zone_highest_possible_pfn[movable_zone]);
6509
e506b996
XQ
6510 /* Adjust for ZONE_MOVABLE starting within this range */
6511 } else if (!mirrored_kernelcore &&
6512 *zone_start_pfn < zone_movable_pfn[nid] &&
6513 *zone_end_pfn > zone_movable_pfn[nid]) {
6514 *zone_end_pfn = zone_movable_pfn[nid];
6515
2a1e274a
MG
6516 /* Check if this whole range is within ZONE_MOVABLE */
6517 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6518 *zone_start_pfn = *zone_end_pfn;
6519 }
6520}
6521
c713216d
MG
6522/*
6523 * Return the number of pages a zone spans in a node, including holes
6524 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6525 */
bbe5d993 6526static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6527 unsigned long zone_type,
7960aedd
ZY
6528 unsigned long node_start_pfn,
6529 unsigned long node_end_pfn,
d91749c1 6530 unsigned long *zone_start_pfn,
854e8848 6531 unsigned long *zone_end_pfn)
c713216d 6532{
299c83dc
LF
6533 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6534 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6535 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6536 if (!node_start_pfn && !node_end_pfn)
6537 return 0;
6538
7960aedd 6539 /* Get the start and end of the zone */
299c83dc
LF
6540 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6541 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6542 adjust_zone_range_for_zone_movable(nid, zone_type,
6543 node_start_pfn, node_end_pfn,
d91749c1 6544 zone_start_pfn, zone_end_pfn);
c713216d
MG
6545
6546 /* Check that this node has pages within the zone's required range */
d91749c1 6547 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6548 return 0;
6549
6550 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6551 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6552 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6553
6554 /* Return the spanned pages */
d91749c1 6555 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6556}
6557
6558/*
6559 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6560 * then all holes in the requested range will be accounted for.
c713216d 6561 */
bbe5d993 6562unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6563 unsigned long range_start_pfn,
6564 unsigned long range_end_pfn)
6565{
96e907d1
TH
6566 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6567 unsigned long start_pfn, end_pfn;
6568 int i;
c713216d 6569
96e907d1
TH
6570 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6571 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6572 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6573 nr_absent -= end_pfn - start_pfn;
c713216d 6574 }
96e907d1 6575 return nr_absent;
c713216d
MG
6576}
6577
6578/**
6579 * absent_pages_in_range - Return number of page frames in holes within a range
6580 * @start_pfn: The start PFN to start searching for holes
6581 * @end_pfn: The end PFN to stop searching for holes
6582 *
a862f68a 6583 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6584 */
6585unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6586 unsigned long end_pfn)
6587{
6588 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6589}
6590
6591/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6592static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6593 unsigned long zone_type,
7960aedd 6594 unsigned long node_start_pfn,
854e8848 6595 unsigned long node_end_pfn)
c713216d 6596{
96e907d1
TH
6597 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6598 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6599 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6600 unsigned long nr_absent;
9c7cd687 6601
b5685e92 6602 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6603 if (!node_start_pfn && !node_end_pfn)
6604 return 0;
6605
96e907d1
TH
6606 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6607 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6608
2a1e274a
MG
6609 adjust_zone_range_for_zone_movable(nid, zone_type,
6610 node_start_pfn, node_end_pfn,
6611 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6612 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6613
6614 /*
6615 * ZONE_MOVABLE handling.
6616 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6617 * and vice versa.
6618 */
e506b996
XQ
6619 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6620 unsigned long start_pfn, end_pfn;
6621 struct memblock_region *r;
6622
cc6de168 6623 for_each_mem_region(r) {
e506b996
XQ
6624 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6625 zone_start_pfn, zone_end_pfn);
6626 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6627 zone_start_pfn, zone_end_pfn);
6628
6629 if (zone_type == ZONE_MOVABLE &&
6630 memblock_is_mirror(r))
6631 nr_absent += end_pfn - start_pfn;
6632
6633 if (zone_type == ZONE_NORMAL &&
6634 !memblock_is_mirror(r))
6635 nr_absent += end_pfn - start_pfn;
342332e6
TI
6636 }
6637 }
6638
6639 return nr_absent;
c713216d 6640}
0e0b864e 6641
bbe5d993 6642static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6643 unsigned long node_start_pfn,
854e8848 6644 unsigned long node_end_pfn)
c713216d 6645{
febd5949 6646 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6647 enum zone_type i;
6648
febd5949
GZ
6649 for (i = 0; i < MAX_NR_ZONES; i++) {
6650 struct zone *zone = pgdat->node_zones + i;
d91749c1 6651 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6652 unsigned long spanned, absent;
febd5949 6653 unsigned long size, real_size;
c713216d 6654
854e8848
MR
6655 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6656 node_start_pfn,
6657 node_end_pfn,
6658 &zone_start_pfn,
6659 &zone_end_pfn);
6660 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6661 node_start_pfn,
6662 node_end_pfn);
3f08a302
MR
6663
6664 size = spanned;
6665 real_size = size - absent;
6666
d91749c1
TI
6667 if (size)
6668 zone->zone_start_pfn = zone_start_pfn;
6669 else
6670 zone->zone_start_pfn = 0;
febd5949
GZ
6671 zone->spanned_pages = size;
6672 zone->present_pages = real_size;
6673
6674 totalpages += size;
6675 realtotalpages += real_size;
6676 }
6677
6678 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6679 pgdat->node_present_pages = realtotalpages;
6680 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6681 realtotalpages);
6682}
6683
835c134e
MG
6684#ifndef CONFIG_SPARSEMEM
6685/*
6686 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6687 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6688 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6689 * round what is now in bits to nearest long in bits, then return it in
6690 * bytes.
6691 */
7c45512d 6692static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6693{
6694 unsigned long usemapsize;
6695
7c45512d 6696 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6697 usemapsize = roundup(zonesize, pageblock_nr_pages);
6698 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6699 usemapsize *= NR_PAGEBLOCK_BITS;
6700 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6701
6702 return usemapsize / 8;
6703}
6704
7cc2a959 6705static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6706 struct zone *zone,
6707 unsigned long zone_start_pfn,
6708 unsigned long zonesize)
835c134e 6709{
7c45512d 6710 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6711 zone->pageblock_flags = NULL;
23a7052a 6712 if (usemapsize) {
6782832e 6713 zone->pageblock_flags =
26fb3dae
MR
6714 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6715 pgdat->node_id);
23a7052a
MR
6716 if (!zone->pageblock_flags)
6717 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6718 usemapsize, zone->name, pgdat->node_id);
6719 }
835c134e
MG
6720}
6721#else
7c45512d
LT
6722static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6723 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6724#endif /* CONFIG_SPARSEMEM */
6725
d9c23400 6726#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6727
d9c23400 6728/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6729void __init set_pageblock_order(void)
d9c23400 6730{
955c1cd7
AM
6731 unsigned int order;
6732
d9c23400
MG
6733 /* Check that pageblock_nr_pages has not already been setup */
6734 if (pageblock_order)
6735 return;
6736
955c1cd7
AM
6737 if (HPAGE_SHIFT > PAGE_SHIFT)
6738 order = HUGETLB_PAGE_ORDER;
6739 else
6740 order = MAX_ORDER - 1;
6741
d9c23400
MG
6742 /*
6743 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6744 * This value may be variable depending on boot parameters on IA64 and
6745 * powerpc.
d9c23400
MG
6746 */
6747 pageblock_order = order;
6748}
6749#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6750
ba72cb8c
MG
6751/*
6752 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6753 * is unused as pageblock_order is set at compile-time. See
6754 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6755 * the kernel config
ba72cb8c 6756 */
03e85f9d 6757void __init set_pageblock_order(void)
ba72cb8c 6758{
ba72cb8c 6759}
d9c23400
MG
6760
6761#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6762
03e85f9d 6763static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6764 unsigned long present_pages)
01cefaef
JL
6765{
6766 unsigned long pages = spanned_pages;
6767
6768 /*
6769 * Provide a more accurate estimation if there are holes within
6770 * the zone and SPARSEMEM is in use. If there are holes within the
6771 * zone, each populated memory region may cost us one or two extra
6772 * memmap pages due to alignment because memmap pages for each
89d790ab 6773 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6774 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6775 */
6776 if (spanned_pages > present_pages + (present_pages >> 4) &&
6777 IS_ENABLED(CONFIG_SPARSEMEM))
6778 pages = present_pages;
6779
6780 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6781}
6782
ace1db39
OS
6783#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6784static void pgdat_init_split_queue(struct pglist_data *pgdat)
6785{
364c1eeb
YS
6786 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6787
6788 spin_lock_init(&ds_queue->split_queue_lock);
6789 INIT_LIST_HEAD(&ds_queue->split_queue);
6790 ds_queue->split_queue_len = 0;
ace1db39
OS
6791}
6792#else
6793static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6794#endif
6795
6796#ifdef CONFIG_COMPACTION
6797static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6798{
6799 init_waitqueue_head(&pgdat->kcompactd_wait);
6800}
6801#else
6802static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6803#endif
6804
03e85f9d 6805static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6806{
208d54e5 6807 pgdat_resize_init(pgdat);
ace1db39 6808
ace1db39
OS
6809 pgdat_init_split_queue(pgdat);
6810 pgdat_init_kcompactd(pgdat);
6811
1da177e4 6812 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6813 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6814
eefa864b 6815 pgdat_page_ext_init(pgdat);
a52633d8 6816 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6817 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6818}
6819
6820static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6821 unsigned long remaining_pages)
6822{
9705bea5 6823 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6824 zone_set_nid(zone, nid);
6825 zone->name = zone_names[idx];
6826 zone->zone_pgdat = NODE_DATA(nid);
6827 spin_lock_init(&zone->lock);
6828 zone_seqlock_init(zone);
6829 zone_pcp_init(zone);
6830}
6831
6832/*
6833 * Set up the zone data structures
6834 * - init pgdat internals
6835 * - init all zones belonging to this node
6836 *
6837 * NOTE: this function is only called during memory hotplug
6838 */
6839#ifdef CONFIG_MEMORY_HOTPLUG
6840void __ref free_area_init_core_hotplug(int nid)
6841{
6842 enum zone_type z;
6843 pg_data_t *pgdat = NODE_DATA(nid);
6844
6845 pgdat_init_internals(pgdat);
6846 for (z = 0; z < MAX_NR_ZONES; z++)
6847 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6848}
6849#endif
6850
6851/*
6852 * Set up the zone data structures:
6853 * - mark all pages reserved
6854 * - mark all memory queues empty
6855 * - clear the memory bitmaps
6856 *
6857 * NOTE: pgdat should get zeroed by caller.
6858 * NOTE: this function is only called during early init.
6859 */
6860static void __init free_area_init_core(struct pglist_data *pgdat)
6861{
6862 enum zone_type j;
6863 int nid = pgdat->node_id;
5f63b720 6864
03e85f9d 6865 pgdat_init_internals(pgdat);
385386cf
JW
6866 pgdat->per_cpu_nodestats = &boot_nodestats;
6867
1da177e4
LT
6868 for (j = 0; j < MAX_NR_ZONES; j++) {
6869 struct zone *zone = pgdat->node_zones + j;
e6943859 6870 unsigned long size, freesize, memmap_pages;
d91749c1 6871 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6872
febd5949 6873 size = zone->spanned_pages;
e6943859 6874 freesize = zone->present_pages;
1da177e4 6875
0e0b864e 6876 /*
9feedc9d 6877 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6878 * is used by this zone for memmap. This affects the watermark
6879 * and per-cpu initialisations
6880 */
e6943859 6881 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6882 if (!is_highmem_idx(j)) {
6883 if (freesize >= memmap_pages) {
6884 freesize -= memmap_pages;
6885 if (memmap_pages)
6886 printk(KERN_DEBUG
6887 " %s zone: %lu pages used for memmap\n",
6888 zone_names[j], memmap_pages);
6889 } else
1170532b 6890 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6891 zone_names[j], memmap_pages, freesize);
6892 }
0e0b864e 6893
6267276f 6894 /* Account for reserved pages */
9feedc9d
JL
6895 if (j == 0 && freesize > dma_reserve) {
6896 freesize -= dma_reserve;
d903ef9f 6897 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6898 zone_names[0], dma_reserve);
0e0b864e
MG
6899 }
6900
98d2b0eb 6901 if (!is_highmem_idx(j))
9feedc9d 6902 nr_kernel_pages += freesize;
01cefaef
JL
6903 /* Charge for highmem memmap if there are enough kernel pages */
6904 else if (nr_kernel_pages > memmap_pages * 2)
6905 nr_kernel_pages -= memmap_pages;
9feedc9d 6906 nr_all_pages += freesize;
1da177e4 6907
9feedc9d
JL
6908 /*
6909 * Set an approximate value for lowmem here, it will be adjusted
6910 * when the bootmem allocator frees pages into the buddy system.
6911 * And all highmem pages will be managed by the buddy system.
6912 */
03e85f9d 6913 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6914
d883c6cf 6915 if (!size)
1da177e4
LT
6916 continue;
6917
955c1cd7 6918 set_pageblock_order();
d883c6cf
JK
6919 setup_usemap(pgdat, zone, zone_start_pfn, size);
6920 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6921 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6922 }
6923}
6924
0cd842f9 6925#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6926static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6927{
b0aeba74 6928 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6929 unsigned long __maybe_unused offset = 0;
6930
1da177e4
LT
6931 /* Skip empty nodes */
6932 if (!pgdat->node_spanned_pages)
6933 return;
6934
b0aeba74
TL
6935 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6936 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6937 /* ia64 gets its own node_mem_map, before this, without bootmem */
6938 if (!pgdat->node_mem_map) {
b0aeba74 6939 unsigned long size, end;
d41dee36
AW
6940 struct page *map;
6941
e984bb43
BP
6942 /*
6943 * The zone's endpoints aren't required to be MAX_ORDER
6944 * aligned but the node_mem_map endpoints must be in order
6945 * for the buddy allocator to function correctly.
6946 */
108bcc96 6947 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6948 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6949 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6950 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6951 pgdat->node_id);
23a7052a
MR
6952 if (!map)
6953 panic("Failed to allocate %ld bytes for node %d memory map\n",
6954 size, pgdat->node_id);
a1c34a3b 6955 pgdat->node_mem_map = map + offset;
1da177e4 6956 }
0cd842f9
OS
6957 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6958 __func__, pgdat->node_id, (unsigned long)pgdat,
6959 (unsigned long)pgdat->node_mem_map);
12d810c1 6960#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6961 /*
6962 * With no DISCONTIG, the global mem_map is just set as node 0's
6963 */
c713216d 6964 if (pgdat == NODE_DATA(0)) {
1da177e4 6965 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6966 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6967 mem_map -= offset;
c713216d 6968 }
1da177e4
LT
6969#endif
6970}
0cd842f9
OS
6971#else
6972static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6973#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6974
0188dc98
OS
6975#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6976static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6977{
0188dc98
OS
6978 pgdat->first_deferred_pfn = ULONG_MAX;
6979}
6980#else
6981static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6982#endif
6983
854e8848 6984static void __init free_area_init_node(int nid)
1da177e4 6985{
9109fb7b 6986 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6987 unsigned long start_pfn = 0;
6988 unsigned long end_pfn = 0;
9109fb7b 6989
88fdf75d 6990 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 6991 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 6992
854e8848 6993 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 6994
1da177e4 6995 pgdat->node_id = nid;
854e8848 6996 pgdat->node_start_pfn = start_pfn;
75ef7184 6997 pgdat->per_cpu_nodestats = NULL;
854e8848 6998
8d29e18a 6999 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7000 (u64)start_pfn << PAGE_SHIFT,
7001 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7002 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7003
7004 alloc_node_mem_map(pgdat);
0188dc98 7005 pgdat_set_deferred_range(pgdat);
1da177e4 7006
7f3eb55b 7007 free_area_init_core(pgdat);
1da177e4
LT
7008}
7009
bc9331a1 7010void __init free_area_init_memoryless_node(int nid)
3f08a302 7011{
854e8848 7012 free_area_init_node(nid);
3f08a302
MR
7013}
7014
aca52c39 7015#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 7016/*
4b094b78
DH
7017 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7018 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 7019 */
4b094b78 7020static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
7021{
7022 unsigned long pfn;
7023 u64 pgcnt = 0;
7024
7025 for (pfn = spfn; pfn < epfn; pfn++) {
7026 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7027 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7028 + pageblock_nr_pages - 1;
7029 continue;
7030 }
4b094b78
DH
7031 /*
7032 * Use a fake node/zone (0) for now. Some of these pages
7033 * (in memblock.reserved but not in memblock.memory) will
7034 * get re-initialized via reserve_bootmem_region() later.
7035 */
7036 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7037 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
7038 pgcnt++;
7039 }
7040
7041 return pgcnt;
7042}
7043
a4a3ede2
PT
7044/*
7045 * Only struct pages that are backed by physical memory are zeroed and
7046 * initialized by going through __init_single_page(). But, there are some
7047 * struct pages which are reserved in memblock allocator and their fields
7048 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 7049 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
7050 *
7051 * This function also addresses a similar issue where struct pages are left
7052 * uninitialized because the physical address range is not covered by
7053 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
7054 * layout is manually configured via memmap=, or when the highest physical
7055 * address (max_pfn) does not end on a section boundary.
a4a3ede2 7056 */
4b094b78 7057static void __init init_unavailable_mem(void)
a4a3ede2
PT
7058{
7059 phys_addr_t start, end;
a4a3ede2 7060 u64 i, pgcnt;
907ec5fc 7061 phys_addr_t next = 0;
a4a3ede2
PT
7062
7063 /*
907ec5fc 7064 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
7065 */
7066 pgcnt = 0;
6e245ad4 7067 for_each_mem_range(i, &start, &end) {
ec393a0f 7068 if (next < start)
4b094b78
DH
7069 pgcnt += init_unavailable_range(PFN_DOWN(next),
7070 PFN_UP(start));
907ec5fc
NH
7071 next = end;
7072 }
e822969c
DH
7073
7074 /*
7075 * Early sections always have a fully populated memmap for the whole
7076 * section - see pfn_valid(). If the last section has holes at the
7077 * end and that section is marked "online", the memmap will be
7078 * considered initialized. Make sure that memmap has a well defined
7079 * state.
7080 */
4b094b78
DH
7081 pgcnt += init_unavailable_range(PFN_DOWN(next),
7082 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7083
a4a3ede2
PT
7084 /*
7085 * Struct pages that do not have backing memory. This could be because
7086 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7087 */
7088 if (pgcnt)
907ec5fc 7089 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7090}
4b094b78
DH
7091#else
7092static inline void __init init_unavailable_mem(void)
7093{
7094}
aca52c39 7095#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7096
418508c1
MS
7097#if MAX_NUMNODES > 1
7098/*
7099 * Figure out the number of possible node ids.
7100 */
f9872caf 7101void __init setup_nr_node_ids(void)
418508c1 7102{
904a9553 7103 unsigned int highest;
418508c1 7104
904a9553 7105 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7106 nr_node_ids = highest + 1;
7107}
418508c1
MS
7108#endif
7109
1e01979c
TH
7110/**
7111 * node_map_pfn_alignment - determine the maximum internode alignment
7112 *
7113 * This function should be called after node map is populated and sorted.
7114 * It calculates the maximum power of two alignment which can distinguish
7115 * all the nodes.
7116 *
7117 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7118 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7119 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7120 * shifted, 1GiB is enough and this function will indicate so.
7121 *
7122 * This is used to test whether pfn -> nid mapping of the chosen memory
7123 * model has fine enough granularity to avoid incorrect mapping for the
7124 * populated node map.
7125 *
a862f68a 7126 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7127 * requirement (single node).
7128 */
7129unsigned long __init node_map_pfn_alignment(void)
7130{
7131 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7132 unsigned long start, end, mask;
98fa15f3 7133 int last_nid = NUMA_NO_NODE;
c13291a5 7134 int i, nid;
1e01979c 7135
c13291a5 7136 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7137 if (!start || last_nid < 0 || last_nid == nid) {
7138 last_nid = nid;
7139 last_end = end;
7140 continue;
7141 }
7142
7143 /*
7144 * Start with a mask granular enough to pin-point to the
7145 * start pfn and tick off bits one-by-one until it becomes
7146 * too coarse to separate the current node from the last.
7147 */
7148 mask = ~((1 << __ffs(start)) - 1);
7149 while (mask && last_end <= (start & (mask << 1)))
7150 mask <<= 1;
7151
7152 /* accumulate all internode masks */
7153 accl_mask |= mask;
7154 }
7155
7156 /* convert mask to number of pages */
7157 return ~accl_mask + 1;
7158}
7159
c713216d
MG
7160/**
7161 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7162 *
a862f68a 7163 * Return: the minimum PFN based on information provided via
7d018176 7164 * memblock_set_node().
c713216d
MG
7165 */
7166unsigned long __init find_min_pfn_with_active_regions(void)
7167{
8a1b25fe 7168 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7169}
7170
37b07e41
LS
7171/*
7172 * early_calculate_totalpages()
7173 * Sum pages in active regions for movable zone.
4b0ef1fe 7174 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7175 */
484f51f8 7176static unsigned long __init early_calculate_totalpages(void)
7e63efef 7177{
7e63efef 7178 unsigned long totalpages = 0;
c13291a5
TH
7179 unsigned long start_pfn, end_pfn;
7180 int i, nid;
7181
7182 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7183 unsigned long pages = end_pfn - start_pfn;
7e63efef 7184
37b07e41
LS
7185 totalpages += pages;
7186 if (pages)
4b0ef1fe 7187 node_set_state(nid, N_MEMORY);
37b07e41 7188 }
b8af2941 7189 return totalpages;
7e63efef
MG
7190}
7191
2a1e274a
MG
7192/*
7193 * Find the PFN the Movable zone begins in each node. Kernel memory
7194 * is spread evenly between nodes as long as the nodes have enough
7195 * memory. When they don't, some nodes will have more kernelcore than
7196 * others
7197 */
b224ef85 7198static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7199{
7200 int i, nid;
7201 unsigned long usable_startpfn;
7202 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7203 /* save the state before borrow the nodemask */
4b0ef1fe 7204 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7205 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7206 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7207 struct memblock_region *r;
b2f3eebe
TC
7208
7209 /* Need to find movable_zone earlier when movable_node is specified. */
7210 find_usable_zone_for_movable();
7211
7212 /*
7213 * If movable_node is specified, ignore kernelcore and movablecore
7214 * options.
7215 */
7216 if (movable_node_is_enabled()) {
cc6de168 7217 for_each_mem_region(r) {
136199f0 7218 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7219 continue;
7220
d622abf7 7221 nid = memblock_get_region_node(r);
b2f3eebe 7222
136199f0 7223 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7224 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7225 min(usable_startpfn, zone_movable_pfn[nid]) :
7226 usable_startpfn;
7227 }
7228
7229 goto out2;
7230 }
2a1e274a 7231
342332e6
TI
7232 /*
7233 * If kernelcore=mirror is specified, ignore movablecore option
7234 */
7235 if (mirrored_kernelcore) {
7236 bool mem_below_4gb_not_mirrored = false;
7237
cc6de168 7238 for_each_mem_region(r) {
342332e6
TI
7239 if (memblock_is_mirror(r))
7240 continue;
7241
d622abf7 7242 nid = memblock_get_region_node(r);
342332e6
TI
7243
7244 usable_startpfn = memblock_region_memory_base_pfn(r);
7245
7246 if (usable_startpfn < 0x100000) {
7247 mem_below_4gb_not_mirrored = true;
7248 continue;
7249 }
7250
7251 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7252 min(usable_startpfn, zone_movable_pfn[nid]) :
7253 usable_startpfn;
7254 }
7255
7256 if (mem_below_4gb_not_mirrored)
633bf2fe 7257 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7258
7259 goto out2;
7260 }
7261
7e63efef 7262 /*
a5c6d650
DR
7263 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7264 * amount of necessary memory.
7265 */
7266 if (required_kernelcore_percent)
7267 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7268 10000UL;
7269 if (required_movablecore_percent)
7270 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7271 10000UL;
7272
7273 /*
7274 * If movablecore= was specified, calculate what size of
7e63efef
MG
7275 * kernelcore that corresponds so that memory usable for
7276 * any allocation type is evenly spread. If both kernelcore
7277 * and movablecore are specified, then the value of kernelcore
7278 * will be used for required_kernelcore if it's greater than
7279 * what movablecore would have allowed.
7280 */
7281 if (required_movablecore) {
7e63efef
MG
7282 unsigned long corepages;
7283
7284 /*
7285 * Round-up so that ZONE_MOVABLE is at least as large as what
7286 * was requested by the user
7287 */
7288 required_movablecore =
7289 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7290 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7291 corepages = totalpages - required_movablecore;
7292
7293 required_kernelcore = max(required_kernelcore, corepages);
7294 }
7295
bde304bd
XQ
7296 /*
7297 * If kernelcore was not specified or kernelcore size is larger
7298 * than totalpages, there is no ZONE_MOVABLE.
7299 */
7300 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7301 goto out;
2a1e274a
MG
7302
7303 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7304 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7305
7306restart:
7307 /* Spread kernelcore memory as evenly as possible throughout nodes */
7308 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7309 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7310 unsigned long start_pfn, end_pfn;
7311
2a1e274a
MG
7312 /*
7313 * Recalculate kernelcore_node if the division per node
7314 * now exceeds what is necessary to satisfy the requested
7315 * amount of memory for the kernel
7316 */
7317 if (required_kernelcore < kernelcore_node)
7318 kernelcore_node = required_kernelcore / usable_nodes;
7319
7320 /*
7321 * As the map is walked, we track how much memory is usable
7322 * by the kernel using kernelcore_remaining. When it is
7323 * 0, the rest of the node is usable by ZONE_MOVABLE
7324 */
7325 kernelcore_remaining = kernelcore_node;
7326
7327 /* Go through each range of PFNs within this node */
c13291a5 7328 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7329 unsigned long size_pages;
7330
c13291a5 7331 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7332 if (start_pfn >= end_pfn)
7333 continue;
7334
7335 /* Account for what is only usable for kernelcore */
7336 if (start_pfn < usable_startpfn) {
7337 unsigned long kernel_pages;
7338 kernel_pages = min(end_pfn, usable_startpfn)
7339 - start_pfn;
7340
7341 kernelcore_remaining -= min(kernel_pages,
7342 kernelcore_remaining);
7343 required_kernelcore -= min(kernel_pages,
7344 required_kernelcore);
7345
7346 /* Continue if range is now fully accounted */
7347 if (end_pfn <= usable_startpfn) {
7348
7349 /*
7350 * Push zone_movable_pfn to the end so
7351 * that if we have to rebalance
7352 * kernelcore across nodes, we will
7353 * not double account here
7354 */
7355 zone_movable_pfn[nid] = end_pfn;
7356 continue;
7357 }
7358 start_pfn = usable_startpfn;
7359 }
7360
7361 /*
7362 * The usable PFN range for ZONE_MOVABLE is from
7363 * start_pfn->end_pfn. Calculate size_pages as the
7364 * number of pages used as kernelcore
7365 */
7366 size_pages = end_pfn - start_pfn;
7367 if (size_pages > kernelcore_remaining)
7368 size_pages = kernelcore_remaining;
7369 zone_movable_pfn[nid] = start_pfn + size_pages;
7370
7371 /*
7372 * Some kernelcore has been met, update counts and
7373 * break if the kernelcore for this node has been
b8af2941 7374 * satisfied
2a1e274a
MG
7375 */
7376 required_kernelcore -= min(required_kernelcore,
7377 size_pages);
7378 kernelcore_remaining -= size_pages;
7379 if (!kernelcore_remaining)
7380 break;
7381 }
7382 }
7383
7384 /*
7385 * If there is still required_kernelcore, we do another pass with one
7386 * less node in the count. This will push zone_movable_pfn[nid] further
7387 * along on the nodes that still have memory until kernelcore is
b8af2941 7388 * satisfied
2a1e274a
MG
7389 */
7390 usable_nodes--;
7391 if (usable_nodes && required_kernelcore > usable_nodes)
7392 goto restart;
7393
b2f3eebe 7394out2:
2a1e274a
MG
7395 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7396 for (nid = 0; nid < MAX_NUMNODES; nid++)
7397 zone_movable_pfn[nid] =
7398 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7399
20e6926d 7400out:
66918dcd 7401 /* restore the node_state */
4b0ef1fe 7402 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7403}
7404
4b0ef1fe
LJ
7405/* Any regular or high memory on that node ? */
7406static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7407{
37b07e41
LS
7408 enum zone_type zone_type;
7409
4b0ef1fe 7410 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7411 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7412 if (populated_zone(zone)) {
7b0e0c0e
OS
7413 if (IS_ENABLED(CONFIG_HIGHMEM))
7414 node_set_state(nid, N_HIGH_MEMORY);
7415 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7416 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7417 break;
7418 }
37b07e41 7419 }
37b07e41
LS
7420}
7421
51930df5
MR
7422/*
7423 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7424 * such cases we allow max_zone_pfn sorted in the descending order
7425 */
7426bool __weak arch_has_descending_max_zone_pfns(void)
7427{
7428 return false;
7429}
7430
c713216d 7431/**
9691a071 7432 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7433 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7434 *
7435 * This will call free_area_init_node() for each active node in the system.
7d018176 7436 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7437 * zone in each node and their holes is calculated. If the maximum PFN
7438 * between two adjacent zones match, it is assumed that the zone is empty.
7439 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7440 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7441 * starts where the previous one ended. For example, ZONE_DMA32 starts
7442 * at arch_max_dma_pfn.
7443 */
9691a071 7444void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7445{
c13291a5 7446 unsigned long start_pfn, end_pfn;
51930df5
MR
7447 int i, nid, zone;
7448 bool descending;
a6af2bc3 7449
c713216d
MG
7450 /* Record where the zone boundaries are */
7451 memset(arch_zone_lowest_possible_pfn, 0,
7452 sizeof(arch_zone_lowest_possible_pfn));
7453 memset(arch_zone_highest_possible_pfn, 0,
7454 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7455
7456 start_pfn = find_min_pfn_with_active_regions();
51930df5 7457 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7458
7459 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7460 if (descending)
7461 zone = MAX_NR_ZONES - i - 1;
7462 else
7463 zone = i;
7464
7465 if (zone == ZONE_MOVABLE)
2a1e274a 7466 continue;
90cae1fe 7467
51930df5
MR
7468 end_pfn = max(max_zone_pfn[zone], start_pfn);
7469 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7470 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7471
7472 start_pfn = end_pfn;
c713216d 7473 }
2a1e274a
MG
7474
7475 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7476 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7477 find_zone_movable_pfns_for_nodes();
c713216d 7478
c713216d 7479 /* Print out the zone ranges */
f88dfff5 7480 pr_info("Zone ranges:\n");
2a1e274a
MG
7481 for (i = 0; i < MAX_NR_ZONES; i++) {
7482 if (i == ZONE_MOVABLE)
7483 continue;
f88dfff5 7484 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7485 if (arch_zone_lowest_possible_pfn[i] ==
7486 arch_zone_highest_possible_pfn[i])
f88dfff5 7487 pr_cont("empty\n");
72f0ba02 7488 else
8d29e18a
JG
7489 pr_cont("[mem %#018Lx-%#018Lx]\n",
7490 (u64)arch_zone_lowest_possible_pfn[i]
7491 << PAGE_SHIFT,
7492 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7493 << PAGE_SHIFT) - 1);
2a1e274a
MG
7494 }
7495
7496 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7497 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7498 for (i = 0; i < MAX_NUMNODES; i++) {
7499 if (zone_movable_pfn[i])
8d29e18a
JG
7500 pr_info(" Node %d: %#018Lx\n", i,
7501 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7502 }
c713216d 7503
f46edbd1
DW
7504 /*
7505 * Print out the early node map, and initialize the
7506 * subsection-map relative to active online memory ranges to
7507 * enable future "sub-section" extensions of the memory map.
7508 */
f88dfff5 7509 pr_info("Early memory node ranges\n");
f46edbd1 7510 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7511 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7512 (u64)start_pfn << PAGE_SHIFT,
7513 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7514 subsection_map_init(start_pfn, end_pfn - start_pfn);
7515 }
c713216d
MG
7516
7517 /* Initialise every node */
708614e6 7518 mminit_verify_pageflags_layout();
8ef82866 7519 setup_nr_node_ids();
4b094b78 7520 init_unavailable_mem();
c713216d
MG
7521 for_each_online_node(nid) {
7522 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7523 free_area_init_node(nid);
37b07e41
LS
7524
7525 /* Any memory on that node */
7526 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7527 node_set_state(nid, N_MEMORY);
7528 check_for_memory(pgdat, nid);
c713216d
MG
7529 }
7530}
2a1e274a 7531
a5c6d650
DR
7532static int __init cmdline_parse_core(char *p, unsigned long *core,
7533 unsigned long *percent)
2a1e274a
MG
7534{
7535 unsigned long long coremem;
a5c6d650
DR
7536 char *endptr;
7537
2a1e274a
MG
7538 if (!p)
7539 return -EINVAL;
7540
a5c6d650
DR
7541 /* Value may be a percentage of total memory, otherwise bytes */
7542 coremem = simple_strtoull(p, &endptr, 0);
7543 if (*endptr == '%') {
7544 /* Paranoid check for percent values greater than 100 */
7545 WARN_ON(coremem > 100);
2a1e274a 7546
a5c6d650
DR
7547 *percent = coremem;
7548 } else {
7549 coremem = memparse(p, &p);
7550 /* Paranoid check that UL is enough for the coremem value */
7551 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7552
a5c6d650
DR
7553 *core = coremem >> PAGE_SHIFT;
7554 *percent = 0UL;
7555 }
2a1e274a
MG
7556 return 0;
7557}
ed7ed365 7558
7e63efef
MG
7559/*
7560 * kernelcore=size sets the amount of memory for use for allocations that
7561 * cannot be reclaimed or migrated.
7562 */
7563static int __init cmdline_parse_kernelcore(char *p)
7564{
342332e6
TI
7565 /* parse kernelcore=mirror */
7566 if (parse_option_str(p, "mirror")) {
7567 mirrored_kernelcore = true;
7568 return 0;
7569 }
7570
a5c6d650
DR
7571 return cmdline_parse_core(p, &required_kernelcore,
7572 &required_kernelcore_percent);
7e63efef
MG
7573}
7574
7575/*
7576 * movablecore=size sets the amount of memory for use for allocations that
7577 * can be reclaimed or migrated.
7578 */
7579static int __init cmdline_parse_movablecore(char *p)
7580{
a5c6d650
DR
7581 return cmdline_parse_core(p, &required_movablecore,
7582 &required_movablecore_percent);
7e63efef
MG
7583}
7584
ed7ed365 7585early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7586early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7587
c3d5f5f0
JL
7588void adjust_managed_page_count(struct page *page, long count)
7589{
9705bea5 7590 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7591 totalram_pages_add(count);
3dcc0571
JL
7592#ifdef CONFIG_HIGHMEM
7593 if (PageHighMem(page))
ca79b0c2 7594 totalhigh_pages_add(count);
3dcc0571 7595#endif
c3d5f5f0 7596}
3dcc0571 7597EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7598
e5cb113f 7599unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7600{
11199692
JL
7601 void *pos;
7602 unsigned long pages = 0;
69afade7 7603
11199692
JL
7604 start = (void *)PAGE_ALIGN((unsigned long)start);
7605 end = (void *)((unsigned long)end & PAGE_MASK);
7606 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7607 struct page *page = virt_to_page(pos);
7608 void *direct_map_addr;
7609
7610 /*
7611 * 'direct_map_addr' might be different from 'pos'
7612 * because some architectures' virt_to_page()
7613 * work with aliases. Getting the direct map
7614 * address ensures that we get a _writeable_
7615 * alias for the memset().
7616 */
7617 direct_map_addr = page_address(page);
dbe67df4 7618 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7619 memset(direct_map_addr, poison, PAGE_SIZE);
7620
7621 free_reserved_page(page);
69afade7
JL
7622 }
7623
7624 if (pages && s)
adb1fe9a
JP
7625 pr_info("Freeing %s memory: %ldK\n",
7626 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7627
7628 return pages;
7629}
7630
cfa11e08
JL
7631#ifdef CONFIG_HIGHMEM
7632void free_highmem_page(struct page *page)
7633{
7634 __free_reserved_page(page);
ca79b0c2 7635 totalram_pages_inc();
9705bea5 7636 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7637 totalhigh_pages_inc();
cfa11e08
JL
7638}
7639#endif
7640
7ee3d4e8
JL
7641
7642void __init mem_init_print_info(const char *str)
7643{
7644 unsigned long physpages, codesize, datasize, rosize, bss_size;
7645 unsigned long init_code_size, init_data_size;
7646
7647 physpages = get_num_physpages();
7648 codesize = _etext - _stext;
7649 datasize = _edata - _sdata;
7650 rosize = __end_rodata - __start_rodata;
7651 bss_size = __bss_stop - __bss_start;
7652 init_data_size = __init_end - __init_begin;
7653 init_code_size = _einittext - _sinittext;
7654
7655 /*
7656 * Detect special cases and adjust section sizes accordingly:
7657 * 1) .init.* may be embedded into .data sections
7658 * 2) .init.text.* may be out of [__init_begin, __init_end],
7659 * please refer to arch/tile/kernel/vmlinux.lds.S.
7660 * 3) .rodata.* may be embedded into .text or .data sections.
7661 */
7662#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7663 do { \
7664 if (start <= pos && pos < end && size > adj) \
7665 size -= adj; \
7666 } while (0)
7ee3d4e8
JL
7667
7668 adj_init_size(__init_begin, __init_end, init_data_size,
7669 _sinittext, init_code_size);
7670 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7671 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7672 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7673 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7674
7675#undef adj_init_size
7676
756a025f 7677 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7678#ifdef CONFIG_HIGHMEM
756a025f 7679 ", %luK highmem"
7ee3d4e8 7680#endif
756a025f
JP
7681 "%s%s)\n",
7682 nr_free_pages() << (PAGE_SHIFT - 10),
7683 physpages << (PAGE_SHIFT - 10),
7684 codesize >> 10, datasize >> 10, rosize >> 10,
7685 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7686 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7687 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7688#ifdef CONFIG_HIGHMEM
ca79b0c2 7689 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7690#endif
756a025f 7691 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7692}
7693
0e0b864e 7694/**
88ca3b94
RD
7695 * set_dma_reserve - set the specified number of pages reserved in the first zone
7696 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7697 *
013110a7 7698 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7699 * In the DMA zone, a significant percentage may be consumed by kernel image
7700 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7701 * function may optionally be used to account for unfreeable pages in the
7702 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7703 * smaller per-cpu batchsize.
0e0b864e
MG
7704 */
7705void __init set_dma_reserve(unsigned long new_dma_reserve)
7706{
7707 dma_reserve = new_dma_reserve;
7708}
7709
005fd4bb 7710static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7711{
1da177e4 7712
005fd4bb
SAS
7713 lru_add_drain_cpu(cpu);
7714 drain_pages(cpu);
9f8f2172 7715
005fd4bb
SAS
7716 /*
7717 * Spill the event counters of the dead processor
7718 * into the current processors event counters.
7719 * This artificially elevates the count of the current
7720 * processor.
7721 */
7722 vm_events_fold_cpu(cpu);
9f8f2172 7723
005fd4bb
SAS
7724 /*
7725 * Zero the differential counters of the dead processor
7726 * so that the vm statistics are consistent.
7727 *
7728 * This is only okay since the processor is dead and cannot
7729 * race with what we are doing.
7730 */
7731 cpu_vm_stats_fold(cpu);
7732 return 0;
1da177e4 7733}
1da177e4 7734
e03a5125
NP
7735#ifdef CONFIG_NUMA
7736int hashdist = HASHDIST_DEFAULT;
7737
7738static int __init set_hashdist(char *str)
7739{
7740 if (!str)
7741 return 0;
7742 hashdist = simple_strtoul(str, &str, 0);
7743 return 1;
7744}
7745__setup("hashdist=", set_hashdist);
7746#endif
7747
1da177e4
LT
7748void __init page_alloc_init(void)
7749{
005fd4bb
SAS
7750 int ret;
7751
e03a5125
NP
7752#ifdef CONFIG_NUMA
7753 if (num_node_state(N_MEMORY) == 1)
7754 hashdist = 0;
7755#endif
7756
005fd4bb
SAS
7757 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7758 "mm/page_alloc:dead", NULL,
7759 page_alloc_cpu_dead);
7760 WARN_ON(ret < 0);
1da177e4
LT
7761}
7762
cb45b0e9 7763/*
34b10060 7764 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7765 * or min_free_kbytes changes.
7766 */
7767static void calculate_totalreserve_pages(void)
7768{
7769 struct pglist_data *pgdat;
7770 unsigned long reserve_pages = 0;
2f6726e5 7771 enum zone_type i, j;
cb45b0e9
HA
7772
7773 for_each_online_pgdat(pgdat) {
281e3726
MG
7774
7775 pgdat->totalreserve_pages = 0;
7776
cb45b0e9
HA
7777 for (i = 0; i < MAX_NR_ZONES; i++) {
7778 struct zone *zone = pgdat->node_zones + i;
3484b2de 7779 long max = 0;
9705bea5 7780 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7781
7782 /* Find valid and maximum lowmem_reserve in the zone */
7783 for (j = i; j < MAX_NR_ZONES; j++) {
7784 if (zone->lowmem_reserve[j] > max)
7785 max = zone->lowmem_reserve[j];
7786 }
7787
41858966
MG
7788 /* we treat the high watermark as reserved pages. */
7789 max += high_wmark_pages(zone);
cb45b0e9 7790
3d6357de
AK
7791 if (max > managed_pages)
7792 max = managed_pages;
a8d01437 7793
281e3726 7794 pgdat->totalreserve_pages += max;
a8d01437 7795
cb45b0e9
HA
7796 reserve_pages += max;
7797 }
7798 }
7799 totalreserve_pages = reserve_pages;
7800}
7801
1da177e4
LT
7802/*
7803 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7804 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7805 * has a correct pages reserved value, so an adequate number of
7806 * pages are left in the zone after a successful __alloc_pages().
7807 */
7808static void setup_per_zone_lowmem_reserve(void)
7809{
7810 struct pglist_data *pgdat;
2f6726e5 7811 enum zone_type j, idx;
1da177e4 7812
ec936fc5 7813 for_each_online_pgdat(pgdat) {
1da177e4
LT
7814 for (j = 0; j < MAX_NR_ZONES; j++) {
7815 struct zone *zone = pgdat->node_zones + j;
9705bea5 7816 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7817
7818 zone->lowmem_reserve[j] = 0;
7819
2f6726e5
CL
7820 idx = j;
7821 while (idx) {
1da177e4
LT
7822 struct zone *lower_zone;
7823
2f6726e5 7824 idx--;
1da177e4 7825 lower_zone = pgdat->node_zones + idx;
d3cda233 7826
f6366156
BH
7827 if (!sysctl_lowmem_reserve_ratio[idx] ||
7828 !zone_managed_pages(lower_zone)) {
d3cda233 7829 lower_zone->lowmem_reserve[j] = 0;
f6366156 7830 continue;
d3cda233
JK
7831 } else {
7832 lower_zone->lowmem_reserve[j] =
7833 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7834 }
9705bea5 7835 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7836 }
7837 }
7838 }
cb45b0e9
HA
7839
7840 /* update totalreserve_pages */
7841 calculate_totalreserve_pages();
1da177e4
LT
7842}
7843
cfd3da1e 7844static void __setup_per_zone_wmarks(void)
1da177e4
LT
7845{
7846 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7847 unsigned long lowmem_pages = 0;
7848 struct zone *zone;
7849 unsigned long flags;
7850
7851 /* Calculate total number of !ZONE_HIGHMEM pages */
7852 for_each_zone(zone) {
7853 if (!is_highmem(zone))
9705bea5 7854 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7855 }
7856
7857 for_each_zone(zone) {
ac924c60
AM
7858 u64 tmp;
7859
1125b4e3 7860 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7861 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7862 do_div(tmp, lowmem_pages);
1da177e4
LT
7863 if (is_highmem(zone)) {
7864 /*
669ed175
NP
7865 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7866 * need highmem pages, so cap pages_min to a small
7867 * value here.
7868 *
41858966 7869 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7870 * deltas control async page reclaim, and so should
669ed175 7871 * not be capped for highmem.
1da177e4 7872 */
90ae8d67 7873 unsigned long min_pages;
1da177e4 7874
9705bea5 7875 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7876 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7877 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7878 } else {
669ed175
NP
7879 /*
7880 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7881 * proportionate to the zone's size.
7882 */
a9214443 7883 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7884 }
7885
795ae7a0
JW
7886 /*
7887 * Set the kswapd watermarks distance according to the
7888 * scale factor in proportion to available memory, but
7889 * ensure a minimum size on small systems.
7890 */
7891 tmp = max_t(u64, tmp >> 2,
9705bea5 7892 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7893 watermark_scale_factor, 10000));
7894
aa092591 7895 zone->watermark_boost = 0;
a9214443
MG
7896 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7897 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7898
1125b4e3 7899 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7900 }
cb45b0e9
HA
7901
7902 /* update totalreserve_pages */
7903 calculate_totalreserve_pages();
1da177e4
LT
7904}
7905
cfd3da1e
MG
7906/**
7907 * setup_per_zone_wmarks - called when min_free_kbytes changes
7908 * or when memory is hot-{added|removed}
7909 *
7910 * Ensures that the watermark[min,low,high] values for each zone are set
7911 * correctly with respect to min_free_kbytes.
7912 */
7913void setup_per_zone_wmarks(void)
7914{
b93e0f32
MH
7915 static DEFINE_SPINLOCK(lock);
7916
7917 spin_lock(&lock);
cfd3da1e 7918 __setup_per_zone_wmarks();
b93e0f32 7919 spin_unlock(&lock);
cfd3da1e
MG
7920}
7921
1da177e4
LT
7922/*
7923 * Initialise min_free_kbytes.
7924 *
7925 * For small machines we want it small (128k min). For large machines
8beeae86 7926 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7927 * bandwidth does not increase linearly with machine size. We use
7928 *
b8af2941 7929 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7930 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7931 *
7932 * which yields
7933 *
7934 * 16MB: 512k
7935 * 32MB: 724k
7936 * 64MB: 1024k
7937 * 128MB: 1448k
7938 * 256MB: 2048k
7939 * 512MB: 2896k
7940 * 1024MB: 4096k
7941 * 2048MB: 5792k
7942 * 4096MB: 8192k
7943 * 8192MB: 11584k
7944 * 16384MB: 16384k
7945 */
1b79acc9 7946int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7947{
7948 unsigned long lowmem_kbytes;
5f12733e 7949 int new_min_free_kbytes;
1da177e4
LT
7950
7951 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7952 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7953
7954 if (new_min_free_kbytes > user_min_free_kbytes) {
7955 min_free_kbytes = new_min_free_kbytes;
7956 if (min_free_kbytes < 128)
7957 min_free_kbytes = 128;
ee8eb9a5
JS
7958 if (min_free_kbytes > 262144)
7959 min_free_kbytes = 262144;
5f12733e
MH
7960 } else {
7961 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7962 new_min_free_kbytes, user_min_free_kbytes);
7963 }
bc75d33f 7964 setup_per_zone_wmarks();
a6cccdc3 7965 refresh_zone_stat_thresholds();
1da177e4 7966 setup_per_zone_lowmem_reserve();
6423aa81
JK
7967
7968#ifdef CONFIG_NUMA
7969 setup_min_unmapped_ratio();
7970 setup_min_slab_ratio();
7971#endif
7972
4aab2be0
VB
7973 khugepaged_min_free_kbytes_update();
7974
1da177e4
LT
7975 return 0;
7976}
e08d3fdf 7977postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
7978
7979/*
b8af2941 7980 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7981 * that we can call two helper functions whenever min_free_kbytes
7982 * changes.
7983 */
cccad5b9 7984int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 7985 void *buffer, size_t *length, loff_t *ppos)
1da177e4 7986{
da8c757b
HP
7987 int rc;
7988
7989 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7990 if (rc)
7991 return rc;
7992
5f12733e
MH
7993 if (write) {
7994 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7995 setup_per_zone_wmarks();
5f12733e 7996 }
1da177e4
LT
7997 return 0;
7998}
7999
795ae7a0 8000int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8001 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8002{
8003 int rc;
8004
8005 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8006 if (rc)
8007 return rc;
8008
8009 if (write)
8010 setup_per_zone_wmarks();
8011
8012 return 0;
8013}
8014
9614634f 8015#ifdef CONFIG_NUMA
6423aa81 8016static void setup_min_unmapped_ratio(void)
9614634f 8017{
6423aa81 8018 pg_data_t *pgdat;
9614634f 8019 struct zone *zone;
9614634f 8020
a5f5f91d 8021 for_each_online_pgdat(pgdat)
81cbcbc2 8022 pgdat->min_unmapped_pages = 0;
a5f5f91d 8023
9614634f 8024 for_each_zone(zone)
9705bea5
AK
8025 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8026 sysctl_min_unmapped_ratio) / 100;
9614634f 8027}
0ff38490 8028
6423aa81
JK
8029
8030int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8031 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8032{
0ff38490
CL
8033 int rc;
8034
8d65af78 8035 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8036 if (rc)
8037 return rc;
8038
6423aa81
JK
8039 setup_min_unmapped_ratio();
8040
8041 return 0;
8042}
8043
8044static void setup_min_slab_ratio(void)
8045{
8046 pg_data_t *pgdat;
8047 struct zone *zone;
8048
a5f5f91d
MG
8049 for_each_online_pgdat(pgdat)
8050 pgdat->min_slab_pages = 0;
8051
0ff38490 8052 for_each_zone(zone)
9705bea5
AK
8053 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8054 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8055}
8056
8057int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8058 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8059{
8060 int rc;
8061
8062 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8063 if (rc)
8064 return rc;
8065
8066 setup_min_slab_ratio();
8067
0ff38490
CL
8068 return 0;
8069}
9614634f
CL
8070#endif
8071
1da177e4
LT
8072/*
8073 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8074 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8075 * whenever sysctl_lowmem_reserve_ratio changes.
8076 *
8077 * The reserve ratio obviously has absolutely no relation with the
41858966 8078 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8079 * if in function of the boot time zone sizes.
8080 */
cccad5b9 8081int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8082 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8083{
86aaf255
BH
8084 int i;
8085
8d65af78 8086 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8087
8088 for (i = 0; i < MAX_NR_ZONES; i++) {
8089 if (sysctl_lowmem_reserve_ratio[i] < 1)
8090 sysctl_lowmem_reserve_ratio[i] = 0;
8091 }
8092
1da177e4
LT
8093 setup_per_zone_lowmem_reserve();
8094 return 0;
8095}
8096
cb1ef534
MG
8097static void __zone_pcp_update(struct zone *zone)
8098{
8099 unsigned int cpu;
8100
8101 for_each_possible_cpu(cpu)
8102 pageset_set_high_and_batch(zone,
8103 per_cpu_ptr(zone->pageset, cpu));
8104}
8105
8ad4b1fb
RS
8106/*
8107 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8108 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8109 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8110 */
cccad5b9 8111int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8112 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8113{
8114 struct zone *zone;
7cd2b0a3 8115 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8116 int ret;
8117
7cd2b0a3
DR
8118 mutex_lock(&pcp_batch_high_lock);
8119 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8120
8d65af78 8121 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8122 if (!write || ret < 0)
8123 goto out;
8124
8125 /* Sanity checking to avoid pcp imbalance */
8126 if (percpu_pagelist_fraction &&
8127 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8128 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8129 ret = -EINVAL;
8130 goto out;
8131 }
8132
8133 /* No change? */
8134 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8135 goto out;
c8e251fa 8136
cb1ef534
MG
8137 for_each_populated_zone(zone)
8138 __zone_pcp_update(zone);
7cd2b0a3 8139out:
c8e251fa 8140 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8141 return ret;
8ad4b1fb
RS
8142}
8143
f6f34b43
SD
8144#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8145/*
8146 * Returns the number of pages that arch has reserved but
8147 * is not known to alloc_large_system_hash().
8148 */
8149static unsigned long __init arch_reserved_kernel_pages(void)
8150{
8151 return 0;
8152}
8153#endif
8154
9017217b
PT
8155/*
8156 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8157 * machines. As memory size is increased the scale is also increased but at
8158 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8159 * quadruples the scale is increased by one, which means the size of hash table
8160 * only doubles, instead of quadrupling as well.
8161 * Because 32-bit systems cannot have large physical memory, where this scaling
8162 * makes sense, it is disabled on such platforms.
8163 */
8164#if __BITS_PER_LONG > 32
8165#define ADAPT_SCALE_BASE (64ul << 30)
8166#define ADAPT_SCALE_SHIFT 2
8167#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8168#endif
8169
1da177e4
LT
8170/*
8171 * allocate a large system hash table from bootmem
8172 * - it is assumed that the hash table must contain an exact power-of-2
8173 * quantity of entries
8174 * - limit is the number of hash buckets, not the total allocation size
8175 */
8176void *__init alloc_large_system_hash(const char *tablename,
8177 unsigned long bucketsize,
8178 unsigned long numentries,
8179 int scale,
8180 int flags,
8181 unsigned int *_hash_shift,
8182 unsigned int *_hash_mask,
31fe62b9
TB
8183 unsigned long low_limit,
8184 unsigned long high_limit)
1da177e4 8185{
31fe62b9 8186 unsigned long long max = high_limit;
1da177e4
LT
8187 unsigned long log2qty, size;
8188 void *table = NULL;
3749a8f0 8189 gfp_t gfp_flags;
ec11408a 8190 bool virt;
1da177e4
LT
8191
8192 /* allow the kernel cmdline to have a say */
8193 if (!numentries) {
8194 /* round applicable memory size up to nearest megabyte */
04903664 8195 numentries = nr_kernel_pages;
f6f34b43 8196 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8197
8198 /* It isn't necessary when PAGE_SIZE >= 1MB */
8199 if (PAGE_SHIFT < 20)
8200 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8201
9017217b
PT
8202#if __BITS_PER_LONG > 32
8203 if (!high_limit) {
8204 unsigned long adapt;
8205
8206 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8207 adapt <<= ADAPT_SCALE_SHIFT)
8208 scale++;
8209 }
8210#endif
8211
1da177e4
LT
8212 /* limit to 1 bucket per 2^scale bytes of low memory */
8213 if (scale > PAGE_SHIFT)
8214 numentries >>= (scale - PAGE_SHIFT);
8215 else
8216 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8217
8218 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8219 if (unlikely(flags & HASH_SMALL)) {
8220 /* Makes no sense without HASH_EARLY */
8221 WARN_ON(!(flags & HASH_EARLY));
8222 if (!(numentries >> *_hash_shift)) {
8223 numentries = 1UL << *_hash_shift;
8224 BUG_ON(!numentries);
8225 }
8226 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8227 numentries = PAGE_SIZE / bucketsize;
1da177e4 8228 }
6e692ed3 8229 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8230
8231 /* limit allocation size to 1/16 total memory by default */
8232 if (max == 0) {
8233 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8234 do_div(max, bucketsize);
8235 }
074b8517 8236 max = min(max, 0x80000000ULL);
1da177e4 8237
31fe62b9
TB
8238 if (numentries < low_limit)
8239 numentries = low_limit;
1da177e4
LT
8240 if (numentries > max)
8241 numentries = max;
8242
f0d1b0b3 8243 log2qty = ilog2(numentries);
1da177e4 8244
3749a8f0 8245 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8246 do {
ec11408a 8247 virt = false;
1da177e4 8248 size = bucketsize << log2qty;
ea1f5f37
PT
8249 if (flags & HASH_EARLY) {
8250 if (flags & HASH_ZERO)
26fb3dae 8251 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8252 else
7e1c4e27
MR
8253 table = memblock_alloc_raw(size,
8254 SMP_CACHE_BYTES);
ec11408a 8255 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8256 table = __vmalloc(size, gfp_flags);
ec11408a 8257 virt = true;
ea1f5f37 8258 } else {
1037b83b
ED
8259 /*
8260 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8261 * some pages at the end of hash table which
8262 * alloc_pages_exact() automatically does
1037b83b 8263 */
ec11408a
NP
8264 table = alloc_pages_exact(size, gfp_flags);
8265 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8266 }
8267 } while (!table && size > PAGE_SIZE && --log2qty);
8268
8269 if (!table)
8270 panic("Failed to allocate %s hash table\n", tablename);
8271
ec11408a
NP
8272 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8273 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8274 virt ? "vmalloc" : "linear");
1da177e4
LT
8275
8276 if (_hash_shift)
8277 *_hash_shift = log2qty;
8278 if (_hash_mask)
8279 *_hash_mask = (1 << log2qty) - 1;
8280
8281 return table;
8282}
a117e66e 8283
a5d76b54 8284/*
80934513 8285 * This function checks whether pageblock includes unmovable pages or not.
80934513 8286 *
b8af2941 8287 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8288 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8289 * check without lock_page also may miss some movable non-lru pages at
8290 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8291 *
8292 * Returns a page without holding a reference. If the caller wants to
047b9967 8293 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8294 * cannot get removed (e.g., via memory unplug) concurrently.
8295 *
a5d76b54 8296 */
4a55c047
QC
8297struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8298 int migratetype, int flags)
49ac8255 8299{
1a9f2191
QC
8300 unsigned long iter = 0;
8301 unsigned long pfn = page_to_pfn(page);
6a654e36 8302 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8303
1a9f2191
QC
8304 if (is_migrate_cma_page(page)) {
8305 /*
8306 * CMA allocations (alloc_contig_range) really need to mark
8307 * isolate CMA pageblocks even when they are not movable in fact
8308 * so consider them movable here.
8309 */
8310 if (is_migrate_cma(migratetype))
4a55c047 8311 return NULL;
1a9f2191 8312
3d680bdf 8313 return page;
1a9f2191 8314 }
4da2ce25 8315
6a654e36 8316 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8317 if (!pfn_valid_within(pfn + iter))
49ac8255 8318 continue;
29723fcc 8319
fe4c86c9 8320 page = pfn_to_page(pfn + iter);
c8721bbb 8321
c9c510dc
DH
8322 /*
8323 * Both, bootmem allocations and memory holes are marked
8324 * PG_reserved and are unmovable. We can even have unmovable
8325 * allocations inside ZONE_MOVABLE, for example when
8326 * specifying "movablecore".
8327 */
d7ab3672 8328 if (PageReserved(page))
3d680bdf 8329 return page;
d7ab3672 8330
9d789999
MH
8331 /*
8332 * If the zone is movable and we have ruled out all reserved
8333 * pages then it should be reasonably safe to assume the rest
8334 * is movable.
8335 */
8336 if (zone_idx(zone) == ZONE_MOVABLE)
8337 continue;
8338
c8721bbb
NH
8339 /*
8340 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8341 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8342 * We need not scan over tail pages because we don't
c8721bbb
NH
8343 * handle each tail page individually in migration.
8344 */
1da2f328 8345 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8346 struct page *head = compound_head(page);
8347 unsigned int skip_pages;
464c7ffb 8348
1da2f328
RR
8349 if (PageHuge(page)) {
8350 if (!hugepage_migration_supported(page_hstate(head)))
8351 return page;
8352 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8353 return page;
1da2f328 8354 }
464c7ffb 8355
d8c6546b 8356 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8357 iter += skip_pages - 1;
c8721bbb
NH
8358 continue;
8359 }
8360
97d255c8
MK
8361 /*
8362 * We can't use page_count without pin a page
8363 * because another CPU can free compound page.
8364 * This check already skips compound tails of THP
0139aa7b 8365 * because their page->_refcount is zero at all time.
97d255c8 8366 */
fe896d18 8367 if (!page_ref_count(page)) {
49ac8255 8368 if (PageBuddy(page))
ab130f91 8369 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8370 continue;
8371 }
97d255c8 8372
b023f468
WC
8373 /*
8374 * The HWPoisoned page may be not in buddy system, and
8375 * page_count() is not 0.
8376 */
756d25be 8377 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8378 continue;
8379
aa218795
DH
8380 /*
8381 * We treat all PageOffline() pages as movable when offlining
8382 * to give drivers a chance to decrement their reference count
8383 * in MEM_GOING_OFFLINE in order to indicate that these pages
8384 * can be offlined as there are no direct references anymore.
8385 * For actually unmovable PageOffline() where the driver does
8386 * not support this, we will fail later when trying to actually
8387 * move these pages that still have a reference count > 0.
8388 * (false negatives in this function only)
8389 */
8390 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8391 continue;
8392
fe4c86c9 8393 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8394 continue;
8395
49ac8255 8396 /*
6b4f7799
JW
8397 * If there are RECLAIMABLE pages, we need to check
8398 * it. But now, memory offline itself doesn't call
8399 * shrink_node_slabs() and it still to be fixed.
49ac8255 8400 */
3d680bdf 8401 return page;
49ac8255 8402 }
4a55c047 8403 return NULL;
49ac8255
KH
8404}
8405
8df995f6 8406#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8407static unsigned long pfn_max_align_down(unsigned long pfn)
8408{
8409 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8410 pageblock_nr_pages) - 1);
8411}
8412
8413static unsigned long pfn_max_align_up(unsigned long pfn)
8414{
8415 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8416 pageblock_nr_pages));
8417}
8418
041d3a8c 8419/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8420static int __alloc_contig_migrate_range(struct compact_control *cc,
8421 unsigned long start, unsigned long end)
041d3a8c
MN
8422{
8423 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8424 unsigned int nr_reclaimed;
041d3a8c
MN
8425 unsigned long pfn = start;
8426 unsigned int tries = 0;
8427 int ret = 0;
8b94e0b8
JK
8428 struct migration_target_control mtc = {
8429 .nid = zone_to_nid(cc->zone),
8430 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8431 };
041d3a8c 8432
be49a6e1 8433 migrate_prep();
041d3a8c 8434
bb13ffeb 8435 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8436 if (fatal_signal_pending(current)) {
8437 ret = -EINTR;
8438 break;
8439 }
8440
bb13ffeb
MG
8441 if (list_empty(&cc->migratepages)) {
8442 cc->nr_migratepages = 0;
edc2ca61 8443 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8444 if (!pfn) {
8445 ret = -EINTR;
8446 break;
8447 }
8448 tries = 0;
8449 } else if (++tries == 5) {
8450 ret = ret < 0 ? ret : -EBUSY;
8451 break;
8452 }
8453
beb51eaa
MK
8454 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8455 &cc->migratepages);
8456 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8457
8b94e0b8
JK
8458 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8459 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8460 }
2a6f5124
SP
8461 if (ret < 0) {
8462 putback_movable_pages(&cc->migratepages);
8463 return ret;
8464 }
8465 return 0;
041d3a8c
MN
8466}
8467
8468/**
8469 * alloc_contig_range() -- tries to allocate given range of pages
8470 * @start: start PFN to allocate
8471 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8472 * @migratetype: migratetype of the underlaying pageblocks (either
8473 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8474 * in range must have the same migratetype and it must
8475 * be either of the two.
ca96b625 8476 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8477 *
8478 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8479 * aligned. The PFN range must belong to a single zone.
041d3a8c 8480 *
2c7452a0
MK
8481 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8482 * pageblocks in the range. Once isolated, the pageblocks should not
8483 * be modified by others.
041d3a8c 8484 *
a862f68a 8485 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8486 * pages which PFN is in [start, end) are allocated for the caller and
8487 * need to be freed with free_contig_range().
8488 */
0815f3d8 8489int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8490 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8491{
041d3a8c 8492 unsigned long outer_start, outer_end;
d00181b9
KS
8493 unsigned int order;
8494 int ret = 0;
041d3a8c 8495
bb13ffeb
MG
8496 struct compact_control cc = {
8497 .nr_migratepages = 0,
8498 .order = -1,
8499 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8500 .mode = MIGRATE_SYNC,
bb13ffeb 8501 .ignore_skip_hint = true,
2583d671 8502 .no_set_skip_hint = true,
7dea19f9 8503 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8504 .alloc_contig = true,
bb13ffeb
MG
8505 };
8506 INIT_LIST_HEAD(&cc.migratepages);
8507
041d3a8c
MN
8508 /*
8509 * What we do here is we mark all pageblocks in range as
8510 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8511 * have different sizes, and due to the way page allocator
8512 * work, we align the range to biggest of the two pages so
8513 * that page allocator won't try to merge buddies from
8514 * different pageblocks and change MIGRATE_ISOLATE to some
8515 * other migration type.
8516 *
8517 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8518 * migrate the pages from an unaligned range (ie. pages that
8519 * we are interested in). This will put all the pages in
8520 * range back to page allocator as MIGRATE_ISOLATE.
8521 *
8522 * When this is done, we take the pages in range from page
8523 * allocator removing them from the buddy system. This way
8524 * page allocator will never consider using them.
8525 *
8526 * This lets us mark the pageblocks back as
8527 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8528 * aligned range but not in the unaligned, original range are
8529 * put back to page allocator so that buddy can use them.
8530 */
8531
8532 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8533 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8534 if (ret)
86a595f9 8535 return ret;
041d3a8c 8536
8ef5849f
JK
8537 /*
8538 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8539 * So, just fall through. test_pages_isolated() has a tracepoint
8540 * which will report the busy page.
8541 *
8542 * It is possible that busy pages could become available before
8543 * the call to test_pages_isolated, and the range will actually be
8544 * allocated. So, if we fall through be sure to clear ret so that
8545 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8546 */
bb13ffeb 8547 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8548 if (ret && ret != -EBUSY)
041d3a8c 8549 goto done;
63cd4489 8550 ret =0;
041d3a8c
MN
8551
8552 /*
8553 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8554 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8555 * more, all pages in [start, end) are free in page allocator.
8556 * What we are going to do is to allocate all pages from
8557 * [start, end) (that is remove them from page allocator).
8558 *
8559 * The only problem is that pages at the beginning and at the
8560 * end of interesting range may be not aligned with pages that
8561 * page allocator holds, ie. they can be part of higher order
8562 * pages. Because of this, we reserve the bigger range and
8563 * once this is done free the pages we are not interested in.
8564 *
8565 * We don't have to hold zone->lock here because the pages are
8566 * isolated thus they won't get removed from buddy.
8567 */
8568
8569 lru_add_drain_all();
041d3a8c
MN
8570
8571 order = 0;
8572 outer_start = start;
8573 while (!PageBuddy(pfn_to_page(outer_start))) {
8574 if (++order >= MAX_ORDER) {
8ef5849f
JK
8575 outer_start = start;
8576 break;
041d3a8c
MN
8577 }
8578 outer_start &= ~0UL << order;
8579 }
8580
8ef5849f 8581 if (outer_start != start) {
ab130f91 8582 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
8583
8584 /*
8585 * outer_start page could be small order buddy page and
8586 * it doesn't include start page. Adjust outer_start
8587 * in this case to report failed page properly
8588 * on tracepoint in test_pages_isolated()
8589 */
8590 if (outer_start + (1UL << order) <= start)
8591 outer_start = start;
8592 }
8593
041d3a8c 8594 /* Make sure the range is really isolated. */
756d25be 8595 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8596 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8597 __func__, outer_start, end);
041d3a8c
MN
8598 ret = -EBUSY;
8599 goto done;
8600 }
8601
49f223a9 8602 /* Grab isolated pages from freelists. */
bb13ffeb 8603 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8604 if (!outer_end) {
8605 ret = -EBUSY;
8606 goto done;
8607 }
8608
8609 /* Free head and tail (if any) */
8610 if (start != outer_start)
8611 free_contig_range(outer_start, start - outer_start);
8612 if (end != outer_end)
8613 free_contig_range(end, outer_end - end);
8614
8615done:
8616 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8617 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8618 return ret;
8619}
255f5985 8620EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8621
8622static int __alloc_contig_pages(unsigned long start_pfn,
8623 unsigned long nr_pages, gfp_t gfp_mask)
8624{
8625 unsigned long end_pfn = start_pfn + nr_pages;
8626
8627 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8628 gfp_mask);
8629}
8630
8631static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8632 unsigned long nr_pages)
8633{
8634 unsigned long i, end_pfn = start_pfn + nr_pages;
8635 struct page *page;
8636
8637 for (i = start_pfn; i < end_pfn; i++) {
8638 page = pfn_to_online_page(i);
8639 if (!page)
8640 return false;
8641
8642 if (page_zone(page) != z)
8643 return false;
8644
8645 if (PageReserved(page))
8646 return false;
8647
8648 if (page_count(page) > 0)
8649 return false;
8650
8651 if (PageHuge(page))
8652 return false;
8653 }
8654 return true;
8655}
8656
8657static bool zone_spans_last_pfn(const struct zone *zone,
8658 unsigned long start_pfn, unsigned long nr_pages)
8659{
8660 unsigned long last_pfn = start_pfn + nr_pages - 1;
8661
8662 return zone_spans_pfn(zone, last_pfn);
8663}
8664
8665/**
8666 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8667 * @nr_pages: Number of contiguous pages to allocate
8668 * @gfp_mask: GFP mask to limit search and used during compaction
8669 * @nid: Target node
8670 * @nodemask: Mask for other possible nodes
8671 *
8672 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8673 * on an applicable zonelist to find a contiguous pfn range which can then be
8674 * tried for allocation with alloc_contig_range(). This routine is intended
8675 * for allocation requests which can not be fulfilled with the buddy allocator.
8676 *
8677 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8678 * power of two then the alignment is guaranteed to be to the given nr_pages
8679 * (e.g. 1GB request would be aligned to 1GB).
8680 *
8681 * Allocated pages can be freed with free_contig_range() or by manually calling
8682 * __free_page() on each allocated page.
8683 *
8684 * Return: pointer to contiguous pages on success, or NULL if not successful.
8685 */
8686struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8687 int nid, nodemask_t *nodemask)
8688{
8689 unsigned long ret, pfn, flags;
8690 struct zonelist *zonelist;
8691 struct zone *zone;
8692 struct zoneref *z;
8693
8694 zonelist = node_zonelist(nid, gfp_mask);
8695 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8696 gfp_zone(gfp_mask), nodemask) {
8697 spin_lock_irqsave(&zone->lock, flags);
8698
8699 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8700 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8701 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8702 /*
8703 * We release the zone lock here because
8704 * alloc_contig_range() will also lock the zone
8705 * at some point. If there's an allocation
8706 * spinning on this lock, it may win the race
8707 * and cause alloc_contig_range() to fail...
8708 */
8709 spin_unlock_irqrestore(&zone->lock, flags);
8710 ret = __alloc_contig_pages(pfn, nr_pages,
8711 gfp_mask);
8712 if (!ret)
8713 return pfn_to_page(pfn);
8714 spin_lock_irqsave(&zone->lock, flags);
8715 }
8716 pfn += nr_pages;
8717 }
8718 spin_unlock_irqrestore(&zone->lock, flags);
8719 }
8720 return NULL;
8721}
4eb0716e 8722#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8723
4eb0716e 8724void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8725{
bcc2b02f
MS
8726 unsigned int count = 0;
8727
8728 for (; nr_pages--; pfn++) {
8729 struct page *page = pfn_to_page(pfn);
8730
8731 count += page_count(page) != 1;
8732 __free_page(page);
8733 }
8734 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8735}
255f5985 8736EXPORT_SYMBOL(free_contig_range);
041d3a8c 8737
0a647f38
CS
8738/*
8739 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8740 * page high values need to be recalulated.
8741 */
4ed7e022
JL
8742void __meminit zone_pcp_update(struct zone *zone)
8743{
c8e251fa 8744 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8745 __zone_pcp_update(zone);
c8e251fa 8746 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8747}
4ed7e022 8748
340175b7
JL
8749void zone_pcp_reset(struct zone *zone)
8750{
8751 unsigned long flags;
5a883813
MK
8752 int cpu;
8753 struct per_cpu_pageset *pset;
340175b7
JL
8754
8755 /* avoid races with drain_pages() */
8756 local_irq_save(flags);
8757 if (zone->pageset != &boot_pageset) {
5a883813
MK
8758 for_each_online_cpu(cpu) {
8759 pset = per_cpu_ptr(zone->pageset, cpu);
8760 drain_zonestat(zone, pset);
8761 }
340175b7
JL
8762 free_percpu(zone->pageset);
8763 zone->pageset = &boot_pageset;
8764 }
8765 local_irq_restore(flags);
8766}
8767
6dcd73d7 8768#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8769/*
257bea71
DH
8770 * All pages in the range must be in a single zone, must not contain holes,
8771 * must span full sections, and must be isolated before calling this function.
0c0e6195 8772 */
257bea71 8773void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 8774{
257bea71 8775 unsigned long pfn = start_pfn;
0c0e6195
KH
8776 struct page *page;
8777 struct zone *zone;
0ee5f4f3 8778 unsigned int order;
0c0e6195 8779 unsigned long flags;
5557c766 8780
2d070eab 8781 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8782 zone = page_zone(pfn_to_page(pfn));
8783 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 8784 while (pfn < end_pfn) {
0c0e6195 8785 page = pfn_to_page(pfn);
b023f468
WC
8786 /*
8787 * The HWPoisoned page may be not in buddy system, and
8788 * page_count() is not 0.
8789 */
8790 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8791 pfn++;
b023f468
WC
8792 continue;
8793 }
aa218795
DH
8794 /*
8795 * At this point all remaining PageOffline() pages have a
8796 * reference count of 0 and can simply be skipped.
8797 */
8798 if (PageOffline(page)) {
8799 BUG_ON(page_count(page));
8800 BUG_ON(PageBuddy(page));
8801 pfn++;
aa218795
DH
8802 continue;
8803 }
b023f468 8804
0c0e6195
KH
8805 BUG_ON(page_count(page));
8806 BUG_ON(!PageBuddy(page));
ab130f91 8807 order = buddy_order(page);
6ab01363 8808 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8809 pfn += (1 << order);
8810 }
8811 spin_unlock_irqrestore(&zone->lock, flags);
8812}
8813#endif
8d22ba1b 8814
8d22ba1b
WF
8815bool is_free_buddy_page(struct page *page)
8816{
8817 struct zone *zone = page_zone(page);
8818 unsigned long pfn = page_to_pfn(page);
8819 unsigned long flags;
7aeb09f9 8820 unsigned int order;
8d22ba1b
WF
8821
8822 spin_lock_irqsave(&zone->lock, flags);
8823 for (order = 0; order < MAX_ORDER; order++) {
8824 struct page *page_head = page - (pfn & ((1 << order) - 1));
8825
ab130f91 8826 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
8827 break;
8828 }
8829 spin_unlock_irqrestore(&zone->lock, flags);
8830
8831 return order < MAX_ORDER;
8832}
d4ae9916
NH
8833
8834#ifdef CONFIG_MEMORY_FAILURE
8835/*
06be6ff3
OS
8836 * Break down a higher-order page in sub-pages, and keep our target out of
8837 * buddy allocator.
d4ae9916 8838 */
06be6ff3
OS
8839static void break_down_buddy_pages(struct zone *zone, struct page *page,
8840 struct page *target, int low, int high,
8841 int migratetype)
8842{
8843 unsigned long size = 1 << high;
8844 struct page *current_buddy, *next_page;
8845
8846 while (high > low) {
8847 high--;
8848 size >>= 1;
8849
8850 if (target >= &page[size]) {
8851 next_page = page + size;
8852 current_buddy = page;
8853 } else {
8854 next_page = page;
8855 current_buddy = page + size;
8856 }
8857
8858 if (set_page_guard(zone, current_buddy, high, migratetype))
8859 continue;
8860
8861 if (current_buddy != target) {
8862 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 8863 set_buddy_order(current_buddy, high);
06be6ff3
OS
8864 page = next_page;
8865 }
8866 }
8867}
8868
8869/*
8870 * Take a page that will be marked as poisoned off the buddy allocator.
8871 */
8872bool take_page_off_buddy(struct page *page)
d4ae9916
NH
8873{
8874 struct zone *zone = page_zone(page);
8875 unsigned long pfn = page_to_pfn(page);
8876 unsigned long flags;
8877 unsigned int order;
06be6ff3 8878 bool ret = false;
d4ae9916
NH
8879
8880 spin_lock_irqsave(&zone->lock, flags);
8881 for (order = 0; order < MAX_ORDER; order++) {
8882 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 8883 int page_order = buddy_order(page_head);
d4ae9916 8884
ab130f91 8885 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
8886 unsigned long pfn_head = page_to_pfn(page_head);
8887 int migratetype = get_pfnblock_migratetype(page_head,
8888 pfn_head);
8889
ab130f91 8890 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 8891 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 8892 page_order, migratetype);
06be6ff3 8893 ret = true;
d4ae9916
NH
8894 break;
8895 }
06be6ff3
OS
8896 if (page_count(page_head) > 0)
8897 break;
d4ae9916
NH
8898 }
8899 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 8900 return ret;
d4ae9916
NH
8901}
8902#endif