]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/page_ext.c
Merge tag 'sched_ext-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[thirdparty/linux.git] / mm / page_ext.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
eefa864b
JK
2#include <linux/mm.h>
3#include <linux/mmzone.h>
57c8a661 4#include <linux/memblock.h>
eefa864b
JK
5#include <linux/page_ext.h>
6#include <linux/memory.h>
7#include <linux/vmalloc.h>
8#include <linux/kmemleak.h>
48c96a36 9#include <linux/page_owner.h>
33c3fc71 10#include <linux/page_idle.h>
df4e817b 11#include <linux/page_table_check.h>
b1d5488a 12#include <linux/rcupdate.h>
dcfe378c 13#include <linux/pgalloc_tag.h>
eefa864b
JK
14
15/*
16 * struct page extension
17 *
18 * This is the feature to manage memory for extended data per page.
19 *
20 * Until now, we must modify struct page itself to store extra data per page.
21 * This requires rebuilding the kernel and it is really time consuming process.
22 * And, sometimes, rebuild is impossible due to third party module dependency.
23 * At last, enlarging struct page could cause un-wanted system behaviour change.
24 *
25 * This feature is intended to overcome above mentioned problems. This feature
26 * allocates memory for extended data per page in certain place rather than
27 * the struct page itself. This memory can be accessed by the accessor
28 * functions provided by this code. During the boot process, it checks whether
29 * allocation of huge chunk of memory is needed or not. If not, it avoids
30 * allocating memory at all. With this advantage, we can include this feature
31 * into the kernel in default and can avoid rebuild and solve related problems.
32 *
33 * To help these things to work well, there are two callbacks for clients. One
34 * is the need callback which is mandatory if user wants to avoid useless
35 * memory allocation at boot-time. The other is optional, init callback, which
36 * is used to do proper initialization after memory is allocated.
37 *
38 * The need callback is used to decide whether extended memory allocation is
39 * needed or not. Sometimes users want to deactivate some features in this
8958b249 40 * boot and extra memory would be unnecessary. In this case, to avoid
eefa864b
JK
41 * allocating huge chunk of memory, each clients represent their need of
42 * extra memory through the need callback. If one of the need callbacks
43 * returns true, it means that someone needs extra memory so that
44 * page extension core should allocates memory for page extension. If
45 * none of need callbacks return true, memory isn't needed at all in this boot
46 * and page extension core can skip to allocate memory. As result,
47 * none of memory is wasted.
48 *
980ac167
JK
49 * When need callback returns true, page_ext checks if there is a request for
50 * extra memory through size in struct page_ext_operations. If it is non-zero,
51 * extra space is allocated for each page_ext entry and offset is returned to
52 * user through offset in struct page_ext_operations.
53 *
eefa864b
JK
54 * The init callback is used to do proper initialization after page extension
55 * is completely initialized. In sparse memory system, extra memory is
56 * allocated some time later than memmap is allocated. In other words, lifetime
57 * of memory for page extension isn't same with memmap for struct page.
58 * Therefore, clients can't store extra data until page extension is
59 * initialized, even if pages are allocated and used freely. This could
60 * cause inadequate state of extra data per page, so, to prevent it, client
61 * can utilize this callback to initialize the state of it correctly.
62 */
63
b1d5488a
CTK
64#ifdef CONFIG_SPARSEMEM
65#define PAGE_EXT_INVALID (0x1)
66#endif
67
1c676e0d
SP
68#if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
69static bool need_page_idle(void)
70{
71 return true;
72}
cab0a7c1 73static struct page_ext_operations page_idle_ops __initdata = {
1c676e0d 74 .need = need_page_idle,
6189eb82 75 .need_shared_flags = true,
1c676e0d
SP
76};
77#endif
78
cab0a7c1 79static struct page_ext_operations *page_ext_ops[] __initdata = {
48c96a36
JK
80#ifdef CONFIG_PAGE_OWNER
81 &page_owner_ops,
82#endif
1c676e0d 83#if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
33c3fc71
VD
84 &page_idle_ops,
85#endif
dcfe378c
SB
86#ifdef CONFIG_MEM_ALLOC_PROFILING
87 &page_alloc_tagging_ops,
88#endif
df4e817b
PT
89#ifdef CONFIG_PAGE_TABLE_CHECK
90 &page_table_check_ops,
91#endif
eefa864b
JK
92};
93
6189eb82 94unsigned long page_ext_size;
5556cfe8 95
eefa864b
JK
96static unsigned long total_usage;
97
26865a1b
SB
98#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
99/*
100 * To ensure correct allocation tagging for pages, page_ext should be available
101 * before the first page allocation. Otherwise early task stacks will be
102 * allocated before page_ext initialization and missing tags will be flagged.
103 */
104bool early_page_ext __meminitdata = true;
105#else
7ec7096b 106bool early_page_ext __meminitdata;
26865a1b 107#endif
c4f20f14
LZ
108static int __init setup_early_page_ext(char *str)
109{
110 early_page_ext = true;
111 return 0;
112}
113early_param("early_page_ext", setup_early_page_ext);
114
eefa864b
JK
115static bool __init invoke_need_callbacks(void)
116{
117 int i;
118 int entries = ARRAY_SIZE(page_ext_ops);
980ac167 119 bool need = false;
eefa864b
JK
120
121 for (i = 0; i < entries; i++) {
6189eb82
PT
122 if (page_ext_ops[i]->need()) {
123 if (page_ext_ops[i]->need_shared_flags) {
124 page_ext_size = sizeof(struct page_ext);
125 break;
126 }
127 }
128 }
129
130 for (i = 0; i < entries; i++) {
131 if (page_ext_ops[i]->need()) {
5556cfe8
VB
132 page_ext_ops[i]->offset = page_ext_size;
133 page_ext_size += page_ext_ops[i]->size;
980ac167
JK
134 need = true;
135 }
eefa864b
JK
136 }
137
980ac167 138 return need;
eefa864b
JK
139}
140
141static void __init invoke_init_callbacks(void)
142{
143 int i;
144 int entries = ARRAY_SIZE(page_ext_ops);
145
146 for (i = 0; i < entries; i++) {
147 if (page_ext_ops[i]->init)
148 page_ext_ops[i]->init();
149 }
150}
151
980ac167
JK
152static inline struct page_ext *get_entry(void *base, unsigned long index)
153{
5556cfe8 154 return base + page_ext_size * index;
980ac167
JK
155}
156
eb0da7f6
KS
157#ifndef CONFIG_SPARSEMEM
158void __init page_ext_init_flatmem_late(void)
b1d5488a 159{
eb0da7f6 160 invoke_init_callbacks();
b1d5488a 161}
eefa864b
JK
162
163void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
164{
165 pgdat->node_page_ext = NULL;
166}
167
b1d5488a 168static struct page_ext *lookup_page_ext(const struct page *page)
eefa864b
JK
169{
170 unsigned long pfn = page_to_pfn(page);
0b06bb3f 171 unsigned long index;
eefa864b
JK
172 struct page_ext *base;
173
b1d5488a 174 WARN_ON_ONCE(!rcu_read_lock_held());
eefa864b 175 base = NODE_DATA(page_to_nid(page))->node_page_ext;
eefa864b
JK
176 /*
177 * The sanity checks the page allocator does upon freeing a
178 * page can reach here before the page_ext arrays are
179 * allocated when feeding a range of pages to the allocator
180 * for the first time during bootup or memory hotplug.
181 */
182 if (unlikely(!base))
183 return NULL;
0b06bb3f 184 index = pfn - round_down(node_start_pfn(page_to_nid(page)),
eefa864b 185 MAX_ORDER_NR_PAGES);
980ac167 186 return get_entry(base, index);
eefa864b
JK
187}
188
189static int __init alloc_node_page_ext(int nid)
190{
191 struct page_ext *base;
192 unsigned long table_size;
193 unsigned long nr_pages;
194
195 nr_pages = NODE_DATA(nid)->node_spanned_pages;
196 if (!nr_pages)
197 return 0;
198
199 /*
200 * Need extra space if node range is not aligned with
201 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
202 * checks buddy's status, range could be out of exact node range.
203 */
204 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
205 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
206 nr_pages += MAX_ORDER_NR_PAGES;
207
5556cfe8 208 table_size = page_ext_size * nr_pages;
eefa864b 209
26fb3dae 210 base = memblock_alloc_try_nid(
eefa864b 211 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
97ad1087 212 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
eefa864b
JK
213 if (!base)
214 return -ENOMEM;
215 NODE_DATA(nid)->node_page_ext = base;
216 total_usage += table_size;
9d857311 217 memmap_boot_pages_add(DIV_ROUND_UP(table_size, PAGE_SIZE));
eefa864b
JK
218 return 0;
219}
220
221void __init page_ext_init_flatmem(void)
222{
223
224 int nid, fail;
225
226 if (!invoke_need_callbacks())
227 return;
228
229 for_each_online_node(nid) {
230 fail = alloc_node_page_ext(nid);
231 if (fail)
232 goto fail;
233 }
234 pr_info("allocated %ld bytes of page_ext\n", total_usage);
eefa864b
JK
235 return;
236
237fail:
238 pr_crit("allocation of page_ext failed.\n");
239 panic("Out of memory");
240}
241
d1fea155 242#else /* CONFIG_SPARSEMEM */
b1d5488a
CTK
243static bool page_ext_invalid(struct page_ext *page_ext)
244{
245 return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
246}
eefa864b 247
b1d5488a 248static struct page_ext *lookup_page_ext(const struct page *page)
eefa864b
JK
249{
250 unsigned long pfn = page_to_pfn(page);
251 struct mem_section *section = __pfn_to_section(pfn);
b1d5488a
CTK
252 struct page_ext *page_ext = READ_ONCE(section->page_ext);
253
254 WARN_ON_ONCE(!rcu_read_lock_held());
eefa864b
JK
255 /*
256 * The sanity checks the page allocator does upon freeing a
257 * page can reach here before the page_ext arrays are
258 * allocated when feeding a range of pages to the allocator
259 * for the first time during bootup or memory hotplug.
260 */
b1d5488a 261 if (page_ext_invalid(page_ext))
eefa864b 262 return NULL;
b1d5488a 263 return get_entry(page_ext, pfn);
eefa864b
JK
264}
265
266static void *__meminit alloc_page_ext(size_t size, int nid)
267{
268 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
269 void *addr = NULL;
270
271 addr = alloc_pages_exact_nid(nid, size, flags);
15995a35 272 if (addr)
eefa864b 273 kmemleak_alloc(addr, size, 1, flags);
15995a35
SP
274 else
275 addr = vzalloc_node(size, nid);
eefa864b 276
9d857311
PT
277 if (addr)
278 memmap_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
eefa864b
JK
279
280 return addr;
281}
282
283static int __meminit init_section_page_ext(unsigned long pfn, int nid)
284{
285 struct mem_section *section;
286 struct page_ext *base;
287 unsigned long table_size;
288
289 section = __pfn_to_section(pfn);
290
291 if (section->page_ext)
292 return 0;
293
5556cfe8 294 table_size = page_ext_size * PAGES_PER_SECTION;
eefa864b
JK
295 base = alloc_page_ext(table_size, nid);
296
297 /*
298 * The value stored in section->page_ext is (base - pfn)
299 * and it does not point to the memory block allocated above,
300 * causing kmemleak false positives.
301 */
302 kmemleak_not_leak(base);
303
304 if (!base) {
305 pr_err("page ext allocation failure\n");
306 return -ENOMEM;
307 }
308
309 /*
310 * The passed "pfn" may not be aligned to SECTION. For the calculation
311 * we need to apply a mask.
312 */
313 pfn &= PAGE_SECTION_MASK;
5556cfe8 314 section->page_ext = (void *)base - page_ext_size * pfn;
eefa864b
JK
315 total_usage += table_size;
316 return 0;
317}
76af6a05 318
eefa864b
JK
319static void free_page_ext(void *addr)
320{
15995a35
SP
321 size_t table_size;
322 struct page *page;
15995a35
SP
323
324 table_size = page_ext_size * PAGES_PER_SECTION;
9d857311 325 memmap_pages_add(-1L * (DIV_ROUND_UP(table_size, PAGE_SIZE)));
15995a35 326
eefa864b
JK
327 if (is_vmalloc_addr(addr)) {
328 vfree(addr);
329 } else {
15995a35 330 page = virt_to_page(addr);
eefa864b 331 BUG_ON(PageReserved(page));
0c815854 332 kmemleak_free(addr);
eefa864b
JK
333 free_pages_exact(addr, table_size);
334 }
335}
336
337static void __free_page_ext(unsigned long pfn)
338{
339 struct mem_section *ms;
340 struct page_ext *base;
341
342 ms = __pfn_to_section(pfn);
343 if (!ms || !ms->page_ext)
344 return;
b1d5488a
CTK
345
346 base = READ_ONCE(ms->page_ext);
347 /*
348 * page_ext here can be valid while doing the roll back
349 * operation in online_page_ext().
350 */
351 if (page_ext_invalid(base))
352 base = (void *)base - PAGE_EXT_INVALID;
353 WRITE_ONCE(ms->page_ext, NULL);
354
355 base = get_entry(base, pfn);
eefa864b 356 free_page_ext(base);
b1d5488a
CTK
357}
358
359static void __invalidate_page_ext(unsigned long pfn)
360{
361 struct mem_section *ms;
362 void *val;
363
364 ms = __pfn_to_section(pfn);
365 if (!ms || !ms->page_ext)
366 return;
367 val = (void *)ms->page_ext + PAGE_EXT_INVALID;
368 WRITE_ONCE(ms->page_ext, val);
eefa864b
JK
369}
370
371static int __meminit online_page_ext(unsigned long start_pfn,
372 unsigned long nr_pages,
373 int nid)
374{
375 unsigned long start, end, pfn;
376 int fail = 0;
377
378 start = SECTION_ALIGN_DOWN(start_pfn);
379 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
380
98fa15f3 381 if (nid == NUMA_NO_NODE) {
eefa864b
JK
382 /*
383 * In this case, "nid" already exists and contains valid memory.
384 * "start_pfn" passed to us is a pfn which is an arg for
385 * online__pages(), and start_pfn should exist.
386 */
387 nid = pfn_to_nid(start_pfn);
30a51400 388 VM_BUG_ON(!node_online(nid));
eefa864b
JK
389 }
390
dccacf8d 391 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
eefa864b 392 fail = init_section_page_ext(pfn, nid);
eefa864b
JK
393 if (!fail)
394 return 0;
395
396 /* rollback */
3c09be5a 397 end = pfn - PAGES_PER_SECTION;
eefa864b
JK
398 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
399 __free_page_ext(pfn);
400
401 return -ENOMEM;
402}
403
063ff7cd 404static void __meminit offline_page_ext(unsigned long start_pfn,
7b5a0b66 405 unsigned long nr_pages)
eefa864b
JK
406{
407 unsigned long start, end, pfn;
408
409 start = SECTION_ALIGN_DOWN(start_pfn);
410 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
411
b1d5488a
CTK
412 /*
413 * Freeing of page_ext is done in 3 steps to avoid
414 * use-after-free of it:
415 * 1) Traverse all the sections and mark their page_ext
416 * as invalid.
417 * 2) Wait for all the existing users of page_ext who
418 * started before invalidation to finish.
419 * 3) Free the page_ext.
420 */
421 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
422 __invalidate_page_ext(pfn);
423
424 synchronize_rcu();
425
eefa864b
JK
426 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
427 __free_page_ext(pfn);
eefa864b
JK
428}
429
430static int __meminit page_ext_callback(struct notifier_block *self,
431 unsigned long action, void *arg)
432{
433 struct memory_notify *mn = arg;
434 int ret = 0;
435
436 switch (action) {
437 case MEM_GOING_ONLINE:
438 ret = online_page_ext(mn->start_pfn,
439 mn->nr_pages, mn->status_change_nid);
440 break;
441 case MEM_OFFLINE:
442 offline_page_ext(mn->start_pfn,
7b5a0b66 443 mn->nr_pages);
eefa864b
JK
444 break;
445 case MEM_CANCEL_ONLINE:
446 offline_page_ext(mn->start_pfn,
7b5a0b66 447 mn->nr_pages);
eefa864b
JK
448 break;
449 case MEM_GOING_OFFLINE:
450 break;
451 case MEM_ONLINE:
452 case MEM_CANCEL_OFFLINE:
453 break;
454 }
455
456 return notifier_from_errno(ret);
457}
458
eefa864b
JK
459void __init page_ext_init(void)
460{
461 unsigned long pfn;
462 int nid;
463
464 if (!invoke_need_callbacks())
465 return;
466
467 for_each_node_state(nid, N_MEMORY) {
468 unsigned long start_pfn, end_pfn;
469
470 start_pfn = node_start_pfn(nid);
471 end_pfn = node_end_pfn(nid);
472 /*
473 * start_pfn and end_pfn may not be aligned to SECTION and the
474 * page->flags of out of node pages are not initialized. So we
475 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
476 */
477 for (pfn = start_pfn; pfn < end_pfn;
478 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
479
480 if (!pfn_valid(pfn))
481 continue;
482 /*
483 * Nodes's pfns can be overlapping.
484 * We know some arch can have a nodes layout such as
485 * -------------pfn-------------->
486 * N0 | N1 | N2 | N0 | N1 | N2|....
487 */
2f1ee091 488 if (pfn_to_nid(pfn) != nid)
eefa864b
JK
489 continue;
490 if (init_section_page_ext(pfn, nid))
491 goto oom;
0fc542b7 492 cond_resched();
eefa864b
JK
493 }
494 }
1eeaa4fd 495 hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI);
eefa864b
JK
496 pr_info("allocated %ld bytes of page_ext\n", total_usage);
497 invoke_init_callbacks();
498 return;
499
500oom:
501 panic("Out of memory");
502}
503
504void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
505{
506}
507
508#endif
eb0da7f6
KS
509
510/**
511 * page_ext_get() - Get the extended information for a page.
512 * @page: The page we're interested in.
513 *
514 * Ensures that the page_ext will remain valid until page_ext_put()
515 * is called.
516 *
517 * Return: NULL if no page_ext exists for this page.
518 * Context: Any context. Caller may not sleep until they have called
519 * page_ext_put().
520 */
6e65aa55 521struct page_ext *page_ext_get(const struct page *page)
eb0da7f6
KS
522{
523 struct page_ext *page_ext;
524
525 rcu_read_lock();
526 page_ext = lookup_page_ext(page);
527 if (!page_ext) {
528 rcu_read_unlock();
529 return NULL;
530 }
531
532 return page_ext;
533}
534
535/**
536 * page_ext_put() - Working with page extended information is done.
537 * @page_ext: Page extended information received from page_ext_get().
538 *
539 * The page extended information of the page may not be valid after this
540 * function is called.
541 *
542 * Return: None.
543 * Context: Any context with corresponding page_ext_get() is called.
544 */
545void page_ext_put(struct page_ext *page_ext)
546{
547 if (unlikely(!page_ext))
548 return;
549
550 rcu_read_unlock();
551}