]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/percpu.c
percpu: modify base_addr to be region specific
[thirdparty/kernel/stable.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
9c015162 7 * This file is released under the GPLv2 license.
fbf59bc9 8 *
9c015162
DZF
9 * The percpu allocator handles both static and dynamic areas. Percpu
10 * areas are allocated in chunks which are divided into units. There is
11 * a 1-to-1 mapping for units to possible cpus. These units are grouped
12 * based on NUMA properties of the machine.
fbf59bc9
TH
13 *
14 * c0 c1 c2
15 * ------------------- ------------------- ------------
16 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
17 * ------------------- ...... ------------------- .... ------------
18 *
9c015162
DZF
19 * Allocation is done by offsets into a unit's address space. Ie., an
20 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
21 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
22 * and even sparse. Access is handled by configuring percpu base
23 * registers according to the cpu to unit mappings and offsetting the
24 * base address using pcpu_unit_size.
25 *
26 * There is special consideration for the first chunk which must handle
27 * the static percpu variables in the kernel image as allocation services
28 * are not online yet. In short, the first chunk is structure like so:
29 *
30 * <Static | [Reserved] | Dynamic>
31 *
32 * The static data is copied from the original section managed by the
33 * linker. The reserved section, if non-zero, primarily manages static
34 * percpu variables from kernel modules. Finally, the dynamic section
35 * takes care of normal allocations.
fbf59bc9
TH
36 *
37 * Allocation state in each chunk is kept using an array of integers
38 * on chunk->map. A positive value in the map represents a free
39 * region and negative allocated. Allocation inside a chunk is done
40 * by scanning this map sequentially and serving the first matching
41 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
42 * Chunks can be determined from the address using the index field
43 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9 44 *
9c015162
DZF
45 * These chunks are organized into lists according to free_size and
46 * tries to allocate from the fullest chunk first. Each chunk maintains
47 * a maximum contiguous area size hint which is guaranteed to be equal
48 * to or larger than the maximum contiguous area in the chunk. This
49 * helps prevent the allocator from iterating over chunks unnecessarily.
50 *
4091fb95 51 * To use this allocator, arch code should do the following:
fbf59bc9 52 *
fbf59bc9 53 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
54 * regular address to percpu pointer and back if they need to be
55 * different from the default
fbf59bc9 56 *
8d408b4b
TH
57 * - use pcpu_setup_first_chunk() during percpu area initialization to
58 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
59 */
60
870d4b12
JP
61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
fbf59bc9
TH
63#include <linux/bitmap.h>
64#include <linux/bootmem.h>
fd1e8a1f 65#include <linux/err.h>
fbf59bc9 66#include <linux/list.h>
a530b795 67#include <linux/log2.h>
fbf59bc9
TH
68#include <linux/mm.h>
69#include <linux/module.h>
70#include <linux/mutex.h>
71#include <linux/percpu.h>
72#include <linux/pfn.h>
fbf59bc9 73#include <linux/slab.h>
ccea34b5 74#include <linux/spinlock.h>
fbf59bc9 75#include <linux/vmalloc.h>
a56dbddf 76#include <linux/workqueue.h>
f528f0b8 77#include <linux/kmemleak.h>
fbf59bc9
TH
78
79#include <asm/cacheflush.h>
e0100983 80#include <asm/sections.h>
fbf59bc9 81#include <asm/tlbflush.h>
3b034b0d 82#include <asm/io.h>
fbf59bc9 83
df95e795
DZ
84#define CREATE_TRACE_POINTS
85#include <trace/events/percpu.h>
86
8fa3ed80
DZ
87#include "percpu-internal.h"
88
fbf59bc9
TH
89#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
90#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
9c824b6a
TH
91#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
92#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
1a4d7607
TH
93#define PCPU_EMPTY_POP_PAGES_LOW 2
94#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 95
bbddff05 96#ifdef CONFIG_SMP
e0100983
TH
97/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
98#ifndef __addr_to_pcpu_ptr
99#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
100 (void __percpu *)((unsigned long)(addr) - \
101 (unsigned long)pcpu_base_addr + \
102 (unsigned long)__per_cpu_start)
e0100983
TH
103#endif
104#ifndef __pcpu_ptr_to_addr
105#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
106 (void __force *)((unsigned long)(ptr) + \
107 (unsigned long)pcpu_base_addr - \
108 (unsigned long)__per_cpu_start)
e0100983 109#endif
bbddff05
TH
110#else /* CONFIG_SMP */
111/* on UP, it's always identity mapped */
112#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
113#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
114#endif /* CONFIG_SMP */
e0100983 115
1328710b
DM
116static int pcpu_unit_pages __ro_after_init;
117static int pcpu_unit_size __ro_after_init;
118static int pcpu_nr_units __ro_after_init;
119static int pcpu_atom_size __ro_after_init;
8fa3ed80 120int pcpu_nr_slots __ro_after_init;
1328710b 121static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 122
a855b84c 123/* cpus with the lowest and highest unit addresses */
1328710b
DM
124static unsigned int pcpu_low_unit_cpu __ro_after_init;
125static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 126
fbf59bc9 127/* the address of the first chunk which starts with the kernel static area */
1328710b 128void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
129EXPORT_SYMBOL_GPL(pcpu_base_addr);
130
1328710b
DM
131static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
132const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 133
6563297c 134/* group information, used for vm allocation */
1328710b
DM
135static int pcpu_nr_groups __ro_after_init;
136static const unsigned long *pcpu_group_offsets __ro_after_init;
137static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 138
ae9e6bc9
TH
139/*
140 * The first chunk which always exists. Note that unlike other
141 * chunks, this one can be allocated and mapped in several different
142 * ways and thus often doesn't live in the vmalloc area.
143 */
8fa3ed80 144struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
145
146/*
147 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
148 * chunk and serves it for reserved allocations. When the reserved
149 * region doesn't exist, the following variable is NULL.
ae9e6bc9 150 */
8fa3ed80 151struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 152
8fa3ed80 153DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 154static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 155
8fa3ed80 156struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 157
4f996e23
TH
158/* chunks which need their map areas extended, protected by pcpu_lock */
159static LIST_HEAD(pcpu_map_extend_chunks);
160
b539b87f
TH
161/*
162 * The number of empty populated pages, protected by pcpu_lock. The
163 * reserved chunk doesn't contribute to the count.
164 */
6b9b6f39 165int pcpu_nr_empty_pop_pages;
b539b87f 166
1a4d7607
TH
167/*
168 * Balance work is used to populate or destroy chunks asynchronously. We
169 * try to keep the number of populated free pages between
170 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
171 * empty chunk.
172 */
fe6bd8c3
TH
173static void pcpu_balance_workfn(struct work_struct *work);
174static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
175static bool pcpu_async_enabled __read_mostly;
176static bool pcpu_atomic_alloc_failed;
177
178static void pcpu_schedule_balance_work(void)
179{
180 if (pcpu_async_enabled)
181 schedule_work(&pcpu_balance_work);
182}
a56dbddf 183
c0ebfdc3
DZF
184/**
185 * pcpu_addr_in_first_chunk - address check for first chunk's dynamic region
186 * @addr: percpu address of interest
187 *
188 * The first chunk is considered to be the dynamic region of the first chunk.
189 * While the true first chunk is composed of the static, dynamic, and
190 * reserved regions, it is the chunk that serves the dynamic region that is
191 * circulated in the chunk slots.
192 *
193 * The reserved chunk has a separate check and the static region addresses
194 * should never be passed into the percpu allocator.
195 *
196 * RETURNS:
197 * True if the address is in the dynamic region of the first chunk.
198 */
020ec653
TH
199static bool pcpu_addr_in_first_chunk(void *addr)
200{
c0ebfdc3
DZF
201 void *start_addr = pcpu_first_chunk->base_addr +
202 pcpu_first_chunk->start_offset;
203 void *end_addr = pcpu_first_chunk->base_addr +
204 pcpu_first_chunk->nr_pages * PAGE_SIZE -
205 pcpu_first_chunk->end_offset;
020ec653 206
c0ebfdc3 207 return addr >= start_addr && addr < end_addr;
020ec653
TH
208}
209
c0ebfdc3
DZF
210/**
211 * pcpu_addr_in_reserved_chunk - address check for reserved region
212 *
213 * The reserved region is a part of the first chunk and primarily serves
214 * static percpu variables from kernel modules.
215 *
216 * RETURNS:
217 * True if the address is in the reserved region.
218 */
020ec653
TH
219static bool pcpu_addr_in_reserved_chunk(void *addr)
220{
c0ebfdc3
DZF
221 void *start_addr, *end_addr;
222
223 if (!pcpu_reserved_chunk)
224 return false;
020ec653 225
c0ebfdc3
DZF
226 start_addr = pcpu_reserved_chunk->base_addr +
227 pcpu_reserved_chunk->start_offset;
228 end_addr = pcpu_reserved_chunk->base_addr +
229 pcpu_reserved_chunk->nr_pages * PAGE_SIZE -
230 pcpu_reserved_chunk->end_offset;
231
232 return addr >= start_addr && addr < end_addr;
020ec653
TH
233}
234
d9b55eeb 235static int __pcpu_size_to_slot(int size)
fbf59bc9 236{
cae3aeb8 237 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
238 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
239}
240
d9b55eeb
TH
241static int pcpu_size_to_slot(int size)
242{
243 if (size == pcpu_unit_size)
244 return pcpu_nr_slots - 1;
245 return __pcpu_size_to_slot(size);
246}
247
fbf59bc9
TH
248static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
249{
250 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
251 return 0;
252
253 return pcpu_size_to_slot(chunk->free_size);
254}
255
88999a89
TH
256/* set the pointer to a chunk in a page struct */
257static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
258{
259 page->index = (unsigned long)pcpu;
260}
261
262/* obtain pointer to a chunk from a page struct */
263static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
264{
265 return (struct pcpu_chunk *)page->index;
266}
267
268static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 269{
2f39e637 270 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
271}
272
c0ebfdc3
DZF
273static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
274{
275 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
276}
277
9983b6f0
TH
278static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
279 unsigned int cpu, int page_idx)
fbf59bc9 280{
c0ebfdc3
DZF
281 return (unsigned long)chunk->base_addr +
282 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
283}
284
88999a89
TH
285static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
286 int *rs, int *re, int end)
ce3141a2
TH
287{
288 *rs = find_next_zero_bit(chunk->populated, end, *rs);
289 *re = find_next_bit(chunk->populated, end, *rs + 1);
290}
291
88999a89
TH
292static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
293 int *rs, int *re, int end)
ce3141a2
TH
294{
295 *rs = find_next_bit(chunk->populated, end, *rs);
296 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
297}
298
299/*
300 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 301 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
302 * be integer variables and will be set to start and end page index of
303 * the current region.
304 */
305#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
306 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
307 (rs) < (re); \
308 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
309
310#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
311 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
312 (rs) < (re); \
313 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
314
fbf59bc9 315/**
90459ce0 316 * pcpu_mem_zalloc - allocate memory
1880d93b 317 * @size: bytes to allocate
fbf59bc9 318 *
1880d93b 319 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 320 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 321 * memory is always zeroed.
fbf59bc9 322 *
ccea34b5
TH
323 * CONTEXT:
324 * Does GFP_KERNEL allocation.
325 *
fbf59bc9 326 * RETURNS:
1880d93b 327 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 328 */
90459ce0 329static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 330{
099a19d9
TH
331 if (WARN_ON_ONCE(!slab_is_available()))
332 return NULL;
333
1880d93b
TH
334 if (size <= PAGE_SIZE)
335 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
336 else
337 return vzalloc(size);
1880d93b 338}
fbf59bc9 339
1880d93b
TH
340/**
341 * pcpu_mem_free - free memory
342 * @ptr: memory to free
1880d93b 343 *
90459ce0 344 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 345 */
1d5cfdb0 346static void pcpu_mem_free(void *ptr)
1880d93b 347{
1d5cfdb0 348 kvfree(ptr);
fbf59bc9
TH
349}
350
b539b87f
TH
351/**
352 * pcpu_count_occupied_pages - count the number of pages an area occupies
353 * @chunk: chunk of interest
354 * @i: index of the area in question
355 *
356 * Count the number of pages chunk's @i'th area occupies. When the area's
357 * start and/or end address isn't aligned to page boundary, the straddled
358 * page is included in the count iff the rest of the page is free.
359 */
360static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
361{
362 int off = chunk->map[i] & ~1;
363 int end = chunk->map[i + 1] & ~1;
364
365 if (!PAGE_ALIGNED(off) && i > 0) {
366 int prev = chunk->map[i - 1];
367
368 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
369 off = round_down(off, PAGE_SIZE);
370 }
371
372 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
373 int next = chunk->map[i + 1];
374 int nend = chunk->map[i + 2] & ~1;
375
376 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
377 end = round_up(end, PAGE_SIZE);
378 }
379
380 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
381}
382
fbf59bc9
TH
383/**
384 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
385 * @chunk: chunk of interest
386 * @oslot: the previous slot it was on
387 *
388 * This function is called after an allocation or free changed @chunk.
389 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
390 * moved to the slot. Note that the reserved chunk is never put on
391 * chunk slots.
ccea34b5
TH
392 *
393 * CONTEXT:
394 * pcpu_lock.
fbf59bc9
TH
395 */
396static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
397{
398 int nslot = pcpu_chunk_slot(chunk);
399
edcb4639 400 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
401 if (oslot < nslot)
402 list_move(&chunk->list, &pcpu_slot[nslot]);
403 else
404 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
405 }
406}
407
9f7dcf22 408/**
833af842
TH
409 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
410 * @chunk: chunk of interest
9c824b6a 411 * @is_atomic: the allocation context
9f7dcf22 412 *
9c824b6a
TH
413 * Determine whether area map of @chunk needs to be extended. If
414 * @is_atomic, only the amount necessary for a new allocation is
415 * considered; however, async extension is scheduled if the left amount is
416 * low. If !@is_atomic, it aims for more empty space. Combined, this
417 * ensures that the map is likely to have enough available space to
418 * accomodate atomic allocations which can't extend maps directly.
9f7dcf22 419 *
ccea34b5 420 * CONTEXT:
833af842 421 * pcpu_lock.
ccea34b5 422 *
9f7dcf22 423 * RETURNS:
833af842
TH
424 * New target map allocation length if extension is necessary, 0
425 * otherwise.
9f7dcf22 426 */
9c824b6a 427static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
9f7dcf22 428{
9c824b6a
TH
429 int margin, new_alloc;
430
4f996e23
TH
431 lockdep_assert_held(&pcpu_lock);
432
9c824b6a
TH
433 if (is_atomic) {
434 margin = 3;
9f7dcf22 435
9c824b6a 436 if (chunk->map_alloc <
4f996e23
TH
437 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
438 if (list_empty(&chunk->map_extend_list)) {
439 list_add_tail(&chunk->map_extend_list,
440 &pcpu_map_extend_chunks);
441 pcpu_schedule_balance_work();
442 }
443 }
9c824b6a
TH
444 } else {
445 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
446 }
447
448 if (chunk->map_alloc >= chunk->map_used + margin)
9f7dcf22
TH
449 return 0;
450
451 new_alloc = PCPU_DFL_MAP_ALLOC;
9c824b6a 452 while (new_alloc < chunk->map_used + margin)
9f7dcf22
TH
453 new_alloc *= 2;
454
833af842
TH
455 return new_alloc;
456}
457
458/**
459 * pcpu_extend_area_map - extend area map of a chunk
460 * @chunk: chunk of interest
461 * @new_alloc: new target allocation length of the area map
462 *
463 * Extend area map of @chunk to have @new_alloc entries.
464 *
465 * CONTEXT:
466 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
467 *
468 * RETURNS:
469 * 0 on success, -errno on failure.
470 */
471static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
472{
473 int *old = NULL, *new = NULL;
474 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
475 unsigned long flags;
476
6710e594
TH
477 lockdep_assert_held(&pcpu_alloc_mutex);
478
90459ce0 479 new = pcpu_mem_zalloc(new_size);
833af842 480 if (!new)
9f7dcf22 481 return -ENOMEM;
ccea34b5 482
833af842
TH
483 /* acquire pcpu_lock and switch to new area map */
484 spin_lock_irqsave(&pcpu_lock, flags);
485
486 if (new_alloc <= chunk->map_alloc)
487 goto out_unlock;
9f7dcf22 488
833af842 489 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
490 old = chunk->map;
491
492 memcpy(new, old, old_size);
9f7dcf22 493
9f7dcf22
TH
494 chunk->map_alloc = new_alloc;
495 chunk->map = new;
833af842
TH
496 new = NULL;
497
498out_unlock:
499 spin_unlock_irqrestore(&pcpu_lock, flags);
500
501 /*
502 * pcpu_mem_free() might end up calling vfree() which uses
503 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
504 */
1d5cfdb0
TH
505 pcpu_mem_free(old);
506 pcpu_mem_free(new);
833af842 507
9f7dcf22
TH
508 return 0;
509}
510
a16037c8
TH
511/**
512 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
513 * @chunk: chunk the candidate area belongs to
514 * @off: the offset to the start of the candidate area
515 * @this_size: the size of the candidate area
516 * @size: the size of the target allocation
517 * @align: the alignment of the target allocation
518 * @pop_only: only allocate from already populated region
519 *
520 * We're trying to allocate @size bytes aligned at @align. @chunk's area
521 * at @off sized @this_size is a candidate. This function determines
522 * whether the target allocation fits in the candidate area and returns the
523 * number of bytes to pad after @off. If the target area doesn't fit, -1
524 * is returned.
525 *
526 * If @pop_only is %true, this function only considers the already
527 * populated part of the candidate area.
528 */
529static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
530 int size, int align, bool pop_only)
531{
532 int cand_off = off;
533
534 while (true) {
535 int head = ALIGN(cand_off, align) - off;
536 int page_start, page_end, rs, re;
537
538 if (this_size < head + size)
539 return -1;
540
541 if (!pop_only)
542 return head;
543
544 /*
545 * If the first unpopulated page is beyond the end of the
546 * allocation, the whole allocation is populated;
547 * otherwise, retry from the end of the unpopulated area.
548 */
549 page_start = PFN_DOWN(head + off);
550 page_end = PFN_UP(head + off + size);
551
552 rs = page_start;
553 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
554 if (rs >= page_end)
555 return head;
556 cand_off = re * PAGE_SIZE;
557 }
558}
559
fbf59bc9
TH
560/**
561 * pcpu_alloc_area - allocate area from a pcpu_chunk
562 * @chunk: chunk of interest
cae3aeb8 563 * @size: wanted size in bytes
fbf59bc9 564 * @align: wanted align
a16037c8 565 * @pop_only: allocate only from the populated area
b539b87f 566 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
567 *
568 * Try to allocate @size bytes area aligned at @align from @chunk.
569 * Note that this function only allocates the offset. It doesn't
570 * populate or map the area.
571 *
9f7dcf22
TH
572 * @chunk->map must have at least two free slots.
573 *
ccea34b5
TH
574 * CONTEXT:
575 * pcpu_lock.
576 *
fbf59bc9 577 * RETURNS:
9f7dcf22
TH
578 * Allocated offset in @chunk on success, -1 if no matching area is
579 * found.
fbf59bc9 580 */
a16037c8 581static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
b539b87f 582 bool pop_only, int *occ_pages_p)
fbf59bc9
TH
583{
584 int oslot = pcpu_chunk_slot(chunk);
585 int max_contig = 0;
586 int i, off;
3d331ad7 587 bool seen_free = false;
723ad1d9 588 int *p;
fbf59bc9 589
3d331ad7 590 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 591 int head, tail;
723ad1d9
AV
592 int this_size;
593
594 off = *p;
595 if (off & 1)
596 continue;
fbf59bc9 597
723ad1d9 598 this_size = (p[1] & ~1) - off;
a16037c8
TH
599
600 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
601 pop_only);
602 if (head < 0) {
3d331ad7
AV
603 if (!seen_free) {
604 chunk->first_free = i;
605 seen_free = true;
606 }
723ad1d9 607 max_contig = max(this_size, max_contig);
fbf59bc9
TH
608 continue;
609 }
610
611 /*
612 * If head is small or the previous block is free,
613 * merge'em. Note that 'small' is defined as smaller
614 * than sizeof(int), which is very small but isn't too
615 * uncommon for percpu allocations.
616 */
723ad1d9 617 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 618 *p = off += head;
723ad1d9 619 if (p[-1] & 1)
fbf59bc9 620 chunk->free_size -= head;
21ddfd38
JZ
621 else
622 max_contig = max(*p - p[-1], max_contig);
723ad1d9 623 this_size -= head;
fbf59bc9
TH
624 head = 0;
625 }
626
627 /* if tail is small, just keep it around */
723ad1d9
AV
628 tail = this_size - head - size;
629 if (tail < sizeof(int)) {
fbf59bc9 630 tail = 0;
723ad1d9
AV
631 size = this_size - head;
632 }
fbf59bc9
TH
633
634 /* split if warranted */
635 if (head || tail) {
706c16f2
AV
636 int nr_extra = !!head + !!tail;
637
638 /* insert new subblocks */
723ad1d9 639 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
640 sizeof(chunk->map[0]) * (chunk->map_used - i));
641 chunk->map_used += nr_extra;
642
fbf59bc9 643 if (head) {
3d331ad7
AV
644 if (!seen_free) {
645 chunk->first_free = i;
646 seen_free = true;
647 }
723ad1d9
AV
648 *++p = off += head;
649 ++i;
706c16f2
AV
650 max_contig = max(head, max_contig);
651 }
652 if (tail) {
723ad1d9 653 p[1] = off + size;
706c16f2 654 max_contig = max(tail, max_contig);
fbf59bc9 655 }
fbf59bc9
TH
656 }
657
3d331ad7
AV
658 if (!seen_free)
659 chunk->first_free = i + 1;
660
fbf59bc9 661 /* update hint and mark allocated */
723ad1d9 662 if (i + 1 == chunk->map_used)
fbf59bc9
TH
663 chunk->contig_hint = max_contig; /* fully scanned */
664 else
665 chunk->contig_hint = max(chunk->contig_hint,
666 max_contig);
667
723ad1d9
AV
668 chunk->free_size -= size;
669 *p |= 1;
fbf59bc9 670
b539b87f 671 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
fbf59bc9
TH
672 pcpu_chunk_relocate(chunk, oslot);
673 return off;
674 }
675
676 chunk->contig_hint = max_contig; /* fully scanned */
677 pcpu_chunk_relocate(chunk, oslot);
678
9f7dcf22
TH
679 /* tell the upper layer that this chunk has no matching area */
680 return -1;
fbf59bc9
TH
681}
682
683/**
684 * pcpu_free_area - free area to a pcpu_chunk
685 * @chunk: chunk of interest
686 * @freeme: offset of area to free
b539b87f 687 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
688 *
689 * Free area starting from @freeme to @chunk. Note that this function
690 * only modifies the allocation map. It doesn't depopulate or unmap
691 * the area.
ccea34b5
TH
692 *
693 * CONTEXT:
694 * pcpu_lock.
fbf59bc9 695 */
b539b87f
TH
696static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
697 int *occ_pages_p)
fbf59bc9
TH
698{
699 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
700 int off = 0;
701 unsigned i, j;
702 int to_free = 0;
703 int *p;
704
5ccd30e4 705 lockdep_assert_held(&pcpu_lock);
30a5b536 706 pcpu_stats_area_dealloc(chunk);
5ccd30e4 707
723ad1d9
AV
708 freeme |= 1; /* we are searching for <given offset, in use> pair */
709
710 i = 0;
711 j = chunk->map_used;
712 while (i != j) {
713 unsigned k = (i + j) / 2;
714 off = chunk->map[k];
715 if (off < freeme)
716 i = k + 1;
717 else if (off > freeme)
718 j = k;
719 else
720 i = j = k;
721 }
fbf59bc9 722 BUG_ON(off != freeme);
fbf59bc9 723
3d331ad7
AV
724 if (i < chunk->first_free)
725 chunk->first_free = i;
726
723ad1d9
AV
727 p = chunk->map + i;
728 *p = off &= ~1;
729 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 730
b539b87f
TH
731 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
732
723ad1d9
AV
733 /* merge with next? */
734 if (!(p[1] & 1))
735 to_free++;
fbf59bc9 736 /* merge with previous? */
723ad1d9
AV
737 if (i > 0 && !(p[-1] & 1)) {
738 to_free++;
fbf59bc9 739 i--;
723ad1d9 740 p--;
fbf59bc9 741 }
723ad1d9
AV
742 if (to_free) {
743 chunk->map_used -= to_free;
744 memmove(p + 1, p + 1 + to_free,
745 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
746 }
747
723ad1d9 748 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
749 pcpu_chunk_relocate(chunk, oslot);
750}
751
c0ebfdc3 752static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
10edf5b0
DZF
753 int map_size,
754 int *map,
755 int init_map_size)
756{
757 struct pcpu_chunk *chunk;
c0ebfdc3
DZF
758 unsigned long aligned_addr;
759 int start_offset, region_size;
760
761 /* region calculations */
762 aligned_addr = tmp_addr & PAGE_MASK;
763
764 start_offset = tmp_addr - aligned_addr;
6b9d7c8e
DZF
765
766 region_size = PFN_ALIGN(start_offset + map_size);
10edf5b0 767
c0ebfdc3 768 /* allocate chunk */
10edf5b0 769 chunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
c0ebfdc3 770
10edf5b0
DZF
771 INIT_LIST_HEAD(&chunk->list);
772 INIT_LIST_HEAD(&chunk->map_extend_list);
c0ebfdc3
DZF
773
774 chunk->base_addr = (void *)aligned_addr;
10edf5b0 775 chunk->start_offset = start_offset;
6b9d7c8e 776 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3
DZF
777
778 chunk->nr_pages = pcpu_unit_pages;
779
10edf5b0
DZF
780 chunk->map = map;
781 chunk->map_alloc = init_map_size;
782
783 /* manage populated page bitmap */
784 chunk->immutable = true;
785 bitmap_fill(chunk->populated, pcpu_unit_pages);
786 chunk->nr_populated = pcpu_unit_pages;
787
788 chunk->contig_hint = chunk->free_size = map_size;
c0ebfdc3
DZF
789
790 if (chunk->start_offset) {
791 /* hide the beginning of the bitmap */
792 chunk->map[0] = 1;
793 chunk->map[1] = chunk->start_offset;
794 chunk->map_used = 1;
795 }
796
797 /* set chunk's free region */
798 chunk->map[++chunk->map_used] =
799 (chunk->start_offset + chunk->free_size) | 1;
10edf5b0 800
6b9d7c8e
DZF
801 if (chunk->end_offset) {
802 /* hide the end of the bitmap */
803 chunk->map[++chunk->map_used] = region_size | 1;
804 }
805
10edf5b0
DZF
806 return chunk;
807}
808
6081089f
TH
809static struct pcpu_chunk *pcpu_alloc_chunk(void)
810{
811 struct pcpu_chunk *chunk;
812
90459ce0 813 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
814 if (!chunk)
815 return NULL;
816
90459ce0
BL
817 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
818 sizeof(chunk->map[0]));
6081089f 819 if (!chunk->map) {
1d5cfdb0 820 pcpu_mem_free(chunk);
6081089f
TH
821 return NULL;
822 }
823
824 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
825 chunk->map[0] = 0;
826 chunk->map[1] = pcpu_unit_size | 1;
827 chunk->map_used = 1;
6081089f
TH
828
829 INIT_LIST_HEAD(&chunk->list);
4f996e23 830 INIT_LIST_HEAD(&chunk->map_extend_list);
6081089f
TH
831 chunk->free_size = pcpu_unit_size;
832 chunk->contig_hint = pcpu_unit_size;
833
c0ebfdc3
DZF
834 chunk->nr_pages = pcpu_unit_pages;
835
6081089f
TH
836 return chunk;
837}
838
839static void pcpu_free_chunk(struct pcpu_chunk *chunk)
840{
841 if (!chunk)
842 return;
1d5cfdb0
TH
843 pcpu_mem_free(chunk->map);
844 pcpu_mem_free(chunk);
6081089f
TH
845}
846
b539b87f
TH
847/**
848 * pcpu_chunk_populated - post-population bookkeeping
849 * @chunk: pcpu_chunk which got populated
850 * @page_start: the start page
851 * @page_end: the end page
852 *
853 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
854 * the bookkeeping information accordingly. Must be called after each
855 * successful population.
856 */
857static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
858 int page_start, int page_end)
859{
860 int nr = page_end - page_start;
861
862 lockdep_assert_held(&pcpu_lock);
863
864 bitmap_set(chunk->populated, page_start, nr);
865 chunk->nr_populated += nr;
866 pcpu_nr_empty_pop_pages += nr;
867}
868
869/**
870 * pcpu_chunk_depopulated - post-depopulation bookkeeping
871 * @chunk: pcpu_chunk which got depopulated
872 * @page_start: the start page
873 * @page_end: the end page
874 *
875 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
876 * Update the bookkeeping information accordingly. Must be called after
877 * each successful depopulation.
878 */
879static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
880 int page_start, int page_end)
881{
882 int nr = page_end - page_start;
883
884 lockdep_assert_held(&pcpu_lock);
885
886 bitmap_clear(chunk->populated, page_start, nr);
887 chunk->nr_populated -= nr;
888 pcpu_nr_empty_pop_pages -= nr;
889}
890
9f645532
TH
891/*
892 * Chunk management implementation.
893 *
894 * To allow different implementations, chunk alloc/free and
895 * [de]population are implemented in a separate file which is pulled
896 * into this file and compiled together. The following functions
897 * should be implemented.
898 *
899 * pcpu_populate_chunk - populate the specified range of a chunk
900 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
901 * pcpu_create_chunk - create a new chunk
902 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
903 * pcpu_addr_to_page - translate address to physical address
904 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 905 */
9f645532
TH
906static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
907static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
908static struct pcpu_chunk *pcpu_create_chunk(void);
909static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
910static struct page *pcpu_addr_to_page(void *addr);
911static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 912
b0c9778b
TH
913#ifdef CONFIG_NEED_PER_CPU_KM
914#include "percpu-km.c"
915#else
9f645532 916#include "percpu-vm.c"
b0c9778b 917#endif
fbf59bc9 918
88999a89
TH
919/**
920 * pcpu_chunk_addr_search - determine chunk containing specified address
921 * @addr: address for which the chunk needs to be determined.
922 *
c0ebfdc3
DZF
923 * This is an internal function that handles all but static allocations.
924 * Static percpu address values should never be passed into the allocator.
925 *
88999a89
TH
926 * RETURNS:
927 * The address of the found chunk.
928 */
929static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
930{
c0ebfdc3
DZF
931 /* is it in the dynamic region (first chunk)? */
932 if (pcpu_addr_in_first_chunk(addr))
88999a89 933 return pcpu_first_chunk;
c0ebfdc3
DZF
934
935 /* is it in the reserved region? */
936 if (pcpu_addr_in_reserved_chunk(addr))
937 return pcpu_reserved_chunk;
88999a89
TH
938
939 /*
940 * The address is relative to unit0 which might be unused and
941 * thus unmapped. Offset the address to the unit space of the
942 * current processor before looking it up in the vmalloc
943 * space. Note that any possible cpu id can be used here, so
944 * there's no need to worry about preemption or cpu hotplug.
945 */
946 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 947 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
948}
949
fbf59bc9 950/**
edcb4639 951 * pcpu_alloc - the percpu allocator
cae3aeb8 952 * @size: size of area to allocate in bytes
fbf59bc9 953 * @align: alignment of area (max PAGE_SIZE)
edcb4639 954 * @reserved: allocate from the reserved chunk if available
5835d96e 955 * @gfp: allocation flags
fbf59bc9 956 *
5835d96e
TH
957 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
958 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
959 *
960 * RETURNS:
961 * Percpu pointer to the allocated area on success, NULL on failure.
962 */
5835d96e
TH
963static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
964 gfp_t gfp)
fbf59bc9 965{
f2badb0c 966 static int warn_limit = 10;
fbf59bc9 967 struct pcpu_chunk *chunk;
f2badb0c 968 const char *err;
6ae833c7 969 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
b539b87f 970 int occ_pages = 0;
b38d08f3 971 int slot, off, new_alloc, cpu, ret;
403a91b1 972 unsigned long flags;
f528f0b8 973 void __percpu *ptr;
fbf59bc9 974
723ad1d9
AV
975 /*
976 * We want the lowest bit of offset available for in-use/free
2f69fa82 977 * indicator, so force >= 16bit alignment and make size even.
723ad1d9
AV
978 */
979 if (unlikely(align < 2))
980 align = 2;
981
fb009e3a 982 size = ALIGN(size, 2);
2f69fa82 983
3ca45a46 984 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
985 !is_power_of_2(align))) {
756a025f
JP
986 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
987 size, align);
fbf59bc9
TH
988 return NULL;
989 }
990
6710e594
TH
991 if (!is_atomic)
992 mutex_lock(&pcpu_alloc_mutex);
993
403a91b1 994 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 995
edcb4639
TH
996 /* serve reserved allocations from the reserved chunk if available */
997 if (reserved && pcpu_reserved_chunk) {
998 chunk = pcpu_reserved_chunk;
833af842
TH
999
1000 if (size > chunk->contig_hint) {
1001 err = "alloc from reserved chunk failed";
ccea34b5 1002 goto fail_unlock;
f2badb0c 1003 }
833af842 1004
9c824b6a 1005 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
833af842 1006 spin_unlock_irqrestore(&pcpu_lock, flags);
5835d96e
TH
1007 if (is_atomic ||
1008 pcpu_extend_area_map(chunk, new_alloc) < 0) {
833af842 1009 err = "failed to extend area map of reserved chunk";
b38d08f3 1010 goto fail;
833af842
TH
1011 }
1012 spin_lock_irqsave(&pcpu_lock, flags);
1013 }
1014
b539b87f
TH
1015 off = pcpu_alloc_area(chunk, size, align, is_atomic,
1016 &occ_pages);
edcb4639
TH
1017 if (off >= 0)
1018 goto area_found;
833af842 1019
f2badb0c 1020 err = "alloc from reserved chunk failed";
ccea34b5 1021 goto fail_unlock;
edcb4639
TH
1022 }
1023
ccea34b5 1024restart:
edcb4639 1025 /* search through normal chunks */
fbf59bc9
TH
1026 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1027 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1028 if (size > chunk->contig_hint)
1029 continue;
ccea34b5 1030
9c824b6a 1031 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
833af842 1032 if (new_alloc) {
5835d96e
TH
1033 if (is_atomic)
1034 continue;
833af842
TH
1035 spin_unlock_irqrestore(&pcpu_lock, flags);
1036 if (pcpu_extend_area_map(chunk,
1037 new_alloc) < 0) {
1038 err = "failed to extend area map";
b38d08f3 1039 goto fail;
833af842
TH
1040 }
1041 spin_lock_irqsave(&pcpu_lock, flags);
1042 /*
1043 * pcpu_lock has been dropped, need to
1044 * restart cpu_slot list walking.
1045 */
1046 goto restart;
ccea34b5
TH
1047 }
1048
b539b87f
TH
1049 off = pcpu_alloc_area(chunk, size, align, is_atomic,
1050 &occ_pages);
fbf59bc9
TH
1051 if (off >= 0)
1052 goto area_found;
fbf59bc9
TH
1053 }
1054 }
1055
403a91b1 1056 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1057
b38d08f3
TH
1058 /*
1059 * No space left. Create a new chunk. We don't want multiple
1060 * tasks to create chunks simultaneously. Serialize and create iff
1061 * there's still no empty chunk after grabbing the mutex.
1062 */
11df02bf
DZ
1063 if (is_atomic) {
1064 err = "atomic alloc failed, no space left";
5835d96e 1065 goto fail;
11df02bf 1066 }
5835d96e 1067
b38d08f3
TH
1068 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1069 chunk = pcpu_create_chunk();
1070 if (!chunk) {
1071 err = "failed to allocate new chunk";
1072 goto fail;
1073 }
1074
1075 spin_lock_irqsave(&pcpu_lock, flags);
1076 pcpu_chunk_relocate(chunk, -1);
1077 } else {
1078 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1079 }
ccea34b5 1080
ccea34b5 1081 goto restart;
fbf59bc9
TH
1082
1083area_found:
30a5b536 1084 pcpu_stats_area_alloc(chunk, size);
403a91b1 1085 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1086
dca49645 1087 /* populate if not all pages are already there */
5835d96e 1088 if (!is_atomic) {
e04d3208 1089 int page_start, page_end, rs, re;
dca49645 1090
e04d3208
TH
1091 page_start = PFN_DOWN(off);
1092 page_end = PFN_UP(off + size);
b38d08f3 1093
e04d3208
TH
1094 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1095 WARN_ON(chunk->immutable);
1096
1097 ret = pcpu_populate_chunk(chunk, rs, re);
1098
1099 spin_lock_irqsave(&pcpu_lock, flags);
1100 if (ret) {
b539b87f 1101 pcpu_free_area(chunk, off, &occ_pages);
e04d3208
TH
1102 err = "failed to populate";
1103 goto fail_unlock;
1104 }
b539b87f 1105 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1106 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1107 }
fbf59bc9 1108
e04d3208
TH
1109 mutex_unlock(&pcpu_alloc_mutex);
1110 }
ccea34b5 1111
320661b0
TE
1112 if (chunk != pcpu_reserved_chunk) {
1113 spin_lock_irqsave(&pcpu_lock, flags);
b539b87f 1114 pcpu_nr_empty_pop_pages -= occ_pages;
320661b0
TE
1115 spin_unlock_irqrestore(&pcpu_lock, flags);
1116 }
b539b87f 1117
1a4d7607
TH
1118 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1119 pcpu_schedule_balance_work();
1120
dca49645
TH
1121 /* clear the areas and return address relative to base address */
1122 for_each_possible_cpu(cpu)
1123 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1124
f528f0b8 1125 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1126 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1127
1128 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1129 chunk->base_addr, off, ptr);
1130
f528f0b8 1131 return ptr;
ccea34b5
TH
1132
1133fail_unlock:
403a91b1 1134 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1135fail:
df95e795
DZ
1136 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1137
5835d96e 1138 if (!is_atomic && warn_limit) {
870d4b12 1139 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1140 size, align, is_atomic, err);
f2badb0c
TH
1141 dump_stack();
1142 if (!--warn_limit)
870d4b12 1143 pr_info("limit reached, disable warning\n");
f2badb0c 1144 }
1a4d7607
TH
1145 if (is_atomic) {
1146 /* see the flag handling in pcpu_blance_workfn() */
1147 pcpu_atomic_alloc_failed = true;
1148 pcpu_schedule_balance_work();
6710e594
TH
1149 } else {
1150 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1151 }
ccea34b5 1152 return NULL;
fbf59bc9 1153}
edcb4639
TH
1154
1155/**
5835d96e 1156 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1157 * @size: size of area to allocate in bytes
1158 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1159 * @gfp: allocation flags
edcb4639 1160 *
5835d96e
TH
1161 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1162 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1163 * be called from any context but is a lot more likely to fail.
ccea34b5 1164 *
edcb4639
TH
1165 * RETURNS:
1166 * Percpu pointer to the allocated area on success, NULL on failure.
1167 */
5835d96e
TH
1168void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1169{
1170 return pcpu_alloc(size, align, false, gfp);
1171}
1172EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1173
1174/**
1175 * __alloc_percpu - allocate dynamic percpu area
1176 * @size: size of area to allocate in bytes
1177 * @align: alignment of area (max PAGE_SIZE)
1178 *
1179 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1180 */
43cf38eb 1181void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1182{
5835d96e 1183 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1184}
fbf59bc9
TH
1185EXPORT_SYMBOL_GPL(__alloc_percpu);
1186
edcb4639
TH
1187/**
1188 * __alloc_reserved_percpu - allocate reserved percpu area
1189 * @size: size of area to allocate in bytes
1190 * @align: alignment of area (max PAGE_SIZE)
1191 *
9329ba97
TH
1192 * Allocate zero-filled percpu area of @size bytes aligned at @align
1193 * from reserved percpu area if arch has set it up; otherwise,
1194 * allocation is served from the same dynamic area. Might sleep.
1195 * Might trigger writeouts.
edcb4639 1196 *
ccea34b5
TH
1197 * CONTEXT:
1198 * Does GFP_KERNEL allocation.
1199 *
edcb4639
TH
1200 * RETURNS:
1201 * Percpu pointer to the allocated area on success, NULL on failure.
1202 */
43cf38eb 1203void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1204{
5835d96e 1205 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1206}
1207
a56dbddf 1208/**
1a4d7607 1209 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1210 * @work: unused
1211 *
1212 * Reclaim all fully free chunks except for the first one.
1213 */
fe6bd8c3 1214static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1215{
fe6bd8c3
TH
1216 LIST_HEAD(to_free);
1217 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1218 struct pcpu_chunk *chunk, *next;
1a4d7607 1219 int slot, nr_to_pop, ret;
a56dbddf 1220
1a4d7607
TH
1221 /*
1222 * There's no reason to keep around multiple unused chunks and VM
1223 * areas can be scarce. Destroy all free chunks except for one.
1224 */
ccea34b5
TH
1225 mutex_lock(&pcpu_alloc_mutex);
1226 spin_lock_irq(&pcpu_lock);
a56dbddf 1227
fe6bd8c3 1228 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1229 WARN_ON(chunk->immutable);
1230
1231 /* spare the first one */
fe6bd8c3 1232 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1233 continue;
1234
4f996e23 1235 list_del_init(&chunk->map_extend_list);
fe6bd8c3 1236 list_move(&chunk->list, &to_free);
a56dbddf
TH
1237 }
1238
ccea34b5 1239 spin_unlock_irq(&pcpu_lock);
a56dbddf 1240
fe6bd8c3 1241 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1242 int rs, re;
dca49645 1243
a93ace48
TH
1244 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1245 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1246 spin_lock_irq(&pcpu_lock);
1247 pcpu_chunk_depopulated(chunk, rs, re);
1248 spin_unlock_irq(&pcpu_lock);
a93ace48 1249 }
6081089f 1250 pcpu_destroy_chunk(chunk);
a56dbddf 1251 }
971f3918 1252
4f996e23
TH
1253 /* service chunks which requested async area map extension */
1254 do {
1255 int new_alloc = 0;
1256
1257 spin_lock_irq(&pcpu_lock);
1258
1259 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1260 struct pcpu_chunk, map_extend_list);
1261 if (chunk) {
1262 list_del_init(&chunk->map_extend_list);
1263 new_alloc = pcpu_need_to_extend(chunk, false);
1264 }
1265
1266 spin_unlock_irq(&pcpu_lock);
1267
1268 if (new_alloc)
1269 pcpu_extend_area_map(chunk, new_alloc);
1270 } while (chunk);
1271
1a4d7607
TH
1272 /*
1273 * Ensure there are certain number of free populated pages for
1274 * atomic allocs. Fill up from the most packed so that atomic
1275 * allocs don't increase fragmentation. If atomic allocation
1276 * failed previously, always populate the maximum amount. This
1277 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1278 * failing indefinitely; however, large atomic allocs are not
1279 * something we support properly and can be highly unreliable and
1280 * inefficient.
1281 */
1282retry_pop:
1283 if (pcpu_atomic_alloc_failed) {
1284 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1285 /* best effort anyway, don't worry about synchronization */
1286 pcpu_atomic_alloc_failed = false;
1287 } else {
1288 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1289 pcpu_nr_empty_pop_pages,
1290 0, PCPU_EMPTY_POP_PAGES_HIGH);
1291 }
1292
1293 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1294 int nr_unpop = 0, rs, re;
1295
1296 if (!nr_to_pop)
1297 break;
1298
1299 spin_lock_irq(&pcpu_lock);
1300 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1301 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1302 if (nr_unpop)
1303 break;
1304 }
1305 spin_unlock_irq(&pcpu_lock);
1306
1307 if (!nr_unpop)
1308 continue;
1309
1310 /* @chunk can't go away while pcpu_alloc_mutex is held */
1311 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1312 int nr = min(re - rs, nr_to_pop);
1313
1314 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1315 if (!ret) {
1316 nr_to_pop -= nr;
1317 spin_lock_irq(&pcpu_lock);
1318 pcpu_chunk_populated(chunk, rs, rs + nr);
1319 spin_unlock_irq(&pcpu_lock);
1320 } else {
1321 nr_to_pop = 0;
1322 }
1323
1324 if (!nr_to_pop)
1325 break;
1326 }
1327 }
1328
1329 if (nr_to_pop) {
1330 /* ran out of chunks to populate, create a new one and retry */
1331 chunk = pcpu_create_chunk();
1332 if (chunk) {
1333 spin_lock_irq(&pcpu_lock);
1334 pcpu_chunk_relocate(chunk, -1);
1335 spin_unlock_irq(&pcpu_lock);
1336 goto retry_pop;
1337 }
1338 }
1339
971f3918 1340 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1341}
1342
1343/**
1344 * free_percpu - free percpu area
1345 * @ptr: pointer to area to free
1346 *
ccea34b5
TH
1347 * Free percpu area @ptr.
1348 *
1349 * CONTEXT:
1350 * Can be called from atomic context.
fbf59bc9 1351 */
43cf38eb 1352void free_percpu(void __percpu *ptr)
fbf59bc9 1353{
129182e5 1354 void *addr;
fbf59bc9 1355 struct pcpu_chunk *chunk;
ccea34b5 1356 unsigned long flags;
b539b87f 1357 int off, occ_pages;
fbf59bc9
TH
1358
1359 if (!ptr)
1360 return;
1361
f528f0b8
CM
1362 kmemleak_free_percpu(ptr);
1363
129182e5
AM
1364 addr = __pcpu_ptr_to_addr(ptr);
1365
ccea34b5 1366 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1367
1368 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1369 off = addr - chunk->base_addr;
fbf59bc9 1370
b539b87f
TH
1371 pcpu_free_area(chunk, off, &occ_pages);
1372
1373 if (chunk != pcpu_reserved_chunk)
1374 pcpu_nr_empty_pop_pages += occ_pages;
fbf59bc9 1375
a56dbddf 1376 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1377 if (chunk->free_size == pcpu_unit_size) {
1378 struct pcpu_chunk *pos;
1379
a56dbddf 1380 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1381 if (pos != chunk) {
1a4d7607 1382 pcpu_schedule_balance_work();
fbf59bc9
TH
1383 break;
1384 }
1385 }
1386
df95e795
DZ
1387 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1388
ccea34b5 1389 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1390}
1391EXPORT_SYMBOL_GPL(free_percpu);
1392
383776fa 1393bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1394{
bbddff05 1395#ifdef CONFIG_SMP
10fad5e4
TH
1396 const size_t static_size = __per_cpu_end - __per_cpu_start;
1397 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1398 unsigned int cpu;
1399
1400 for_each_possible_cpu(cpu) {
1401 void *start = per_cpu_ptr(base, cpu);
383776fa 1402 void *va = (void *)addr;
10fad5e4 1403
383776fa 1404 if (va >= start && va < start + static_size) {
8ce371f9 1405 if (can_addr) {
383776fa 1406 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1407 *can_addr += (unsigned long)
1408 per_cpu_ptr(base, get_boot_cpu_id());
1409 }
10fad5e4 1410 return true;
383776fa
TG
1411 }
1412 }
bbddff05
TH
1413#endif
1414 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1415 return false;
1416}
1417
383776fa
TG
1418/**
1419 * is_kernel_percpu_address - test whether address is from static percpu area
1420 * @addr: address to test
1421 *
1422 * Test whether @addr belongs to in-kernel static percpu area. Module
1423 * static percpu areas are not considered. For those, use
1424 * is_module_percpu_address().
1425 *
1426 * RETURNS:
1427 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1428 */
1429bool is_kernel_percpu_address(unsigned long addr)
1430{
1431 return __is_kernel_percpu_address(addr, NULL);
1432}
1433
3b034b0d
VG
1434/**
1435 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1436 * @addr: the address to be converted to physical address
1437 *
1438 * Given @addr which is dereferenceable address obtained via one of
1439 * percpu access macros, this function translates it into its physical
1440 * address. The caller is responsible for ensuring @addr stays valid
1441 * until this function finishes.
1442 *
67589c71
DY
1443 * percpu allocator has special setup for the first chunk, which currently
1444 * supports either embedding in linear address space or vmalloc mapping,
1445 * and, from the second one, the backing allocator (currently either vm or
1446 * km) provides translation.
1447 *
bffc4375 1448 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1449 * first chunk. But the current code reflects better how percpu allocator
1450 * actually works, and the verification can discover both bugs in percpu
1451 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1452 * code.
1453 *
3b034b0d
VG
1454 * RETURNS:
1455 * The physical address for @addr.
1456 */
1457phys_addr_t per_cpu_ptr_to_phys(void *addr)
1458{
9983b6f0
TH
1459 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1460 bool in_first_chunk = false;
a855b84c 1461 unsigned long first_low, first_high;
9983b6f0
TH
1462 unsigned int cpu;
1463
1464 /*
a855b84c 1465 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1466 * necessary but will speed up lookups of addresses which
1467 * aren't in the first chunk.
c0ebfdc3
DZF
1468 *
1469 * The address check is against full chunk sizes. pcpu_base_addr
1470 * points to the beginning of the first chunk including the
1471 * static region. Assumes good intent as the first chunk may
1472 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 1473 */
c0ebfdc3
DZF
1474 first_low = (unsigned long)pcpu_base_addr +
1475 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1476 first_high = (unsigned long)pcpu_base_addr +
1477 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
1478 if ((unsigned long)addr >= first_low &&
1479 (unsigned long)addr < first_high) {
9983b6f0
TH
1480 for_each_possible_cpu(cpu) {
1481 void *start = per_cpu_ptr(base, cpu);
1482
1483 if (addr >= start && addr < start + pcpu_unit_size) {
1484 in_first_chunk = true;
1485 break;
1486 }
1487 }
1488 }
1489
1490 if (in_first_chunk) {
eac522ef 1491 if (!is_vmalloc_addr(addr))
020ec653
TH
1492 return __pa(addr);
1493 else
9f57bd4d
ES
1494 return page_to_phys(vmalloc_to_page(addr)) +
1495 offset_in_page(addr);
020ec653 1496 } else
9f57bd4d
ES
1497 return page_to_phys(pcpu_addr_to_page(addr)) +
1498 offset_in_page(addr);
3b034b0d
VG
1499}
1500
fbf59bc9 1501/**
fd1e8a1f
TH
1502 * pcpu_alloc_alloc_info - allocate percpu allocation info
1503 * @nr_groups: the number of groups
1504 * @nr_units: the number of units
1505 *
1506 * Allocate ai which is large enough for @nr_groups groups containing
1507 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1508 * cpu_map array which is long enough for @nr_units and filled with
1509 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1510 * pointer of other groups.
1511 *
1512 * RETURNS:
1513 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1514 * failure.
1515 */
1516struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1517 int nr_units)
1518{
1519 struct pcpu_alloc_info *ai;
1520 size_t base_size, ai_size;
1521 void *ptr;
1522 int unit;
1523
1524 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1525 __alignof__(ai->groups[0].cpu_map[0]));
1526 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1527
999c17e3 1528 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1529 if (!ptr)
1530 return NULL;
1531 ai = ptr;
1532 ptr += base_size;
1533
1534 ai->groups[0].cpu_map = ptr;
1535
1536 for (unit = 0; unit < nr_units; unit++)
1537 ai->groups[0].cpu_map[unit] = NR_CPUS;
1538
1539 ai->nr_groups = nr_groups;
1540 ai->__ai_size = PFN_ALIGN(ai_size);
1541
1542 return ai;
1543}
1544
1545/**
1546 * pcpu_free_alloc_info - free percpu allocation info
1547 * @ai: pcpu_alloc_info to free
1548 *
1549 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1550 */
1551void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1552{
999c17e3 1553 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1554}
1555
fd1e8a1f
TH
1556/**
1557 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1558 * @lvl: loglevel
1559 * @ai: allocation info to dump
1560 *
1561 * Print out information about @ai using loglevel @lvl.
1562 */
1563static void pcpu_dump_alloc_info(const char *lvl,
1564 const struct pcpu_alloc_info *ai)
033e48fb 1565{
fd1e8a1f 1566 int group_width = 1, cpu_width = 1, width;
033e48fb 1567 char empty_str[] = "--------";
fd1e8a1f
TH
1568 int alloc = 0, alloc_end = 0;
1569 int group, v;
1570 int upa, apl; /* units per alloc, allocs per line */
1571
1572 v = ai->nr_groups;
1573 while (v /= 10)
1574 group_width++;
033e48fb 1575
fd1e8a1f 1576 v = num_possible_cpus();
033e48fb 1577 while (v /= 10)
fd1e8a1f
TH
1578 cpu_width++;
1579 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1580
fd1e8a1f
TH
1581 upa = ai->alloc_size / ai->unit_size;
1582 width = upa * (cpu_width + 1) + group_width + 3;
1583 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1584
fd1e8a1f
TH
1585 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1586 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1587 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1588
fd1e8a1f
TH
1589 for (group = 0; group < ai->nr_groups; group++) {
1590 const struct pcpu_group_info *gi = &ai->groups[group];
1591 int unit = 0, unit_end = 0;
1592
1593 BUG_ON(gi->nr_units % upa);
1594 for (alloc_end += gi->nr_units / upa;
1595 alloc < alloc_end; alloc++) {
1596 if (!(alloc % apl)) {
1170532b 1597 pr_cont("\n");
fd1e8a1f
TH
1598 printk("%spcpu-alloc: ", lvl);
1599 }
1170532b 1600 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1601
1602 for (unit_end += upa; unit < unit_end; unit++)
1603 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1604 pr_cont("%0*d ",
1605 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1606 else
1170532b 1607 pr_cont("%s ", empty_str);
033e48fb 1608 }
033e48fb 1609 }
1170532b 1610 pr_cont("\n");
033e48fb 1611}
033e48fb 1612
fbf59bc9 1613/**
8d408b4b 1614 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1615 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1616 * @base_addr: mapped address
8d408b4b
TH
1617 *
1618 * Initialize the first percpu chunk which contains the kernel static
1619 * perpcu area. This function is to be called from arch percpu area
38a6be52 1620 * setup path.
8d408b4b 1621 *
fd1e8a1f
TH
1622 * @ai contains all information necessary to initialize the first
1623 * chunk and prime the dynamic percpu allocator.
1624 *
1625 * @ai->static_size is the size of static percpu area.
1626 *
1627 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1628 * reserve after the static area in the first chunk. This reserves
1629 * the first chunk such that it's available only through reserved
1630 * percpu allocation. This is primarily used to serve module percpu
1631 * static areas on architectures where the addressing model has
1632 * limited offset range for symbol relocations to guarantee module
1633 * percpu symbols fall inside the relocatable range.
1634 *
fd1e8a1f
TH
1635 * @ai->dyn_size determines the number of bytes available for dynamic
1636 * allocation in the first chunk. The area between @ai->static_size +
1637 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1638 *
fd1e8a1f
TH
1639 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1640 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1641 * @ai->dyn_size.
8d408b4b 1642 *
fd1e8a1f
TH
1643 * @ai->atom_size is the allocation atom size and used as alignment
1644 * for vm areas.
8d408b4b 1645 *
fd1e8a1f
TH
1646 * @ai->alloc_size is the allocation size and always multiple of
1647 * @ai->atom_size. This is larger than @ai->atom_size if
1648 * @ai->unit_size is larger than @ai->atom_size.
1649 *
1650 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1651 * percpu areas. Units which should be colocated are put into the
1652 * same group. Dynamic VM areas will be allocated according to these
1653 * groupings. If @ai->nr_groups is zero, a single group containing
1654 * all units is assumed.
8d408b4b 1655 *
38a6be52
TH
1656 * The caller should have mapped the first chunk at @base_addr and
1657 * copied static data to each unit.
fbf59bc9 1658 *
c0ebfdc3
DZF
1659 * The first chunk will always contain a static and a dynamic region.
1660 * However, the static region is not managed by any chunk. If the first
1661 * chunk also contains a reserved region, it is served by two chunks -
1662 * one for the reserved region and one for the dynamic region. They
1663 * share the same vm, but use offset regions in the area allocation map.
1664 * The chunk serving the dynamic region is circulated in the chunk slots
1665 * and available for dynamic allocation like any other chunk.
edcb4639 1666 *
fbf59bc9 1667 * RETURNS:
fb435d52 1668 * 0 on success, -errno on failure.
fbf59bc9 1669 */
fb435d52
TH
1670int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1671 void *base_addr)
fbf59bc9 1672{
099a19d9
TH
1673 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1674 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
b9c39442 1675 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
0c4169c3 1676 struct pcpu_chunk *chunk;
6563297c
TH
1677 unsigned long *group_offsets;
1678 size_t *group_sizes;
fb435d52 1679 unsigned long *unit_off;
fbf59bc9 1680 unsigned int cpu;
fd1e8a1f
TH
1681 int *unit_map;
1682 int group, unit, i;
c0ebfdc3
DZF
1683 int map_size;
1684 unsigned long tmp_addr;
fbf59bc9 1685
635b75fc
TH
1686#define PCPU_SETUP_BUG_ON(cond) do { \
1687 if (unlikely(cond)) { \
870d4b12
JP
1688 pr_emerg("failed to initialize, %s\n", #cond); \
1689 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 1690 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
1691 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1692 BUG(); \
1693 } \
1694} while (0)
1695
2f39e637 1696 /* sanity checks */
635b75fc 1697 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1698#ifdef CONFIG_SMP
635b75fc 1699 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 1700 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 1701#endif
635b75fc 1702 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 1703 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 1704 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 1705 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 1706 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1707 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 1708 PCPU_SETUP_BUG_ON(!ai->dyn_size);
9f645532 1709 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1710
6563297c 1711 /* process group information and build config tables accordingly */
999c17e3
SS
1712 group_offsets = memblock_virt_alloc(ai->nr_groups *
1713 sizeof(group_offsets[0]), 0);
1714 group_sizes = memblock_virt_alloc(ai->nr_groups *
1715 sizeof(group_sizes[0]), 0);
1716 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1717 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1718
fd1e8a1f 1719 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1720 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1721
1722 pcpu_low_unit_cpu = NR_CPUS;
1723 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1724
fd1e8a1f
TH
1725 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1726 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1727
6563297c
TH
1728 group_offsets[group] = gi->base_offset;
1729 group_sizes[group] = gi->nr_units * ai->unit_size;
1730
fd1e8a1f
TH
1731 for (i = 0; i < gi->nr_units; i++) {
1732 cpu = gi->cpu_map[i];
1733 if (cpu == NR_CPUS)
1734 continue;
8d408b4b 1735
9f295664 1736 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
1737 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1738 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1739
fd1e8a1f 1740 unit_map[cpu] = unit + i;
fb435d52
TH
1741 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1742
a855b84c
TH
1743 /* determine low/high unit_cpu */
1744 if (pcpu_low_unit_cpu == NR_CPUS ||
1745 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1746 pcpu_low_unit_cpu = cpu;
1747 if (pcpu_high_unit_cpu == NR_CPUS ||
1748 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1749 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1750 }
2f39e637 1751 }
fd1e8a1f
TH
1752 pcpu_nr_units = unit;
1753
1754 for_each_possible_cpu(cpu)
635b75fc
TH
1755 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1756
1757 /* we're done parsing the input, undefine BUG macro and dump config */
1758#undef PCPU_SETUP_BUG_ON
bcbea798 1759 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1760
6563297c
TH
1761 pcpu_nr_groups = ai->nr_groups;
1762 pcpu_group_offsets = group_offsets;
1763 pcpu_group_sizes = group_sizes;
fd1e8a1f 1764 pcpu_unit_map = unit_map;
fb435d52 1765 pcpu_unit_offsets = unit_off;
2f39e637
TH
1766
1767 /* determine basic parameters */
fd1e8a1f 1768 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1769 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1770 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1771 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1772 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1773
30a5b536
DZ
1774 pcpu_stats_save_ai(ai);
1775
d9b55eeb
TH
1776 /*
1777 * Allocate chunk slots. The additional last slot is for
1778 * empty chunks.
1779 */
1780 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1781 pcpu_slot = memblock_virt_alloc(
1782 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1783 for (i = 0; i < pcpu_nr_slots; i++)
1784 INIT_LIST_HEAD(&pcpu_slot[i]);
1785
edcb4639 1786 /*
c0ebfdc3
DZF
1787 * Initialize first chunk.
1788 * If the reserved_size is non-zero, this initializes the reserved
1789 * chunk. If the reserved_size is zero, the reserved chunk is NULL
1790 * and the dynamic region is initialized here. The first chunk,
1791 * pcpu_first_chunk, will always point to the chunk that serves
1792 * the dynamic region.
edcb4639 1793 */
c0ebfdc3 1794 tmp_addr = (unsigned long)base_addr + ai->static_size;
10edf5b0 1795 map_size = ai->reserved_size ?: ai->dyn_size;
c0ebfdc3 1796 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size, smap,
0c4169c3 1797 ARRAY_SIZE(smap));
61ace7fa 1798
edcb4639 1799 /* init dynamic chunk if necessary */
b9c39442 1800 if (ai->reserved_size) {
0c4169c3 1801 pcpu_reserved_chunk = chunk;
b9c39442 1802
c0ebfdc3
DZF
1803 tmp_addr = (unsigned long)base_addr + ai->static_size +
1804 ai->reserved_size;
10edf5b0 1805 map_size = ai->dyn_size;
c0ebfdc3 1806 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size, dmap,
0c4169c3 1807 ARRAY_SIZE(dmap));
edcb4639
TH
1808 }
1809
2441d15c 1810 /* link the first chunk in */
0c4169c3 1811 pcpu_first_chunk = chunk;
e2266705 1812 i = (pcpu_first_chunk->start_offset) ? 1 : 0;
b539b87f 1813 pcpu_nr_empty_pop_pages +=
e2266705 1814 pcpu_count_occupied_pages(pcpu_first_chunk, i);
ae9e6bc9 1815 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 1816
30a5b536 1817 pcpu_stats_chunk_alloc();
df95e795 1818 trace_percpu_create_chunk(base_addr);
30a5b536 1819
fbf59bc9 1820 /* we're done */
bba174f5 1821 pcpu_base_addr = base_addr;
fb435d52 1822 return 0;
fbf59bc9 1823}
66c3a757 1824
bbddff05
TH
1825#ifdef CONFIG_SMP
1826
17f3609c 1827const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1828 [PCPU_FC_AUTO] = "auto",
1829 [PCPU_FC_EMBED] = "embed",
1830 [PCPU_FC_PAGE] = "page",
f58dc01b 1831};
66c3a757 1832
f58dc01b 1833enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1834
f58dc01b
TH
1835static int __init percpu_alloc_setup(char *str)
1836{
5479c78a
CG
1837 if (!str)
1838 return -EINVAL;
1839
f58dc01b
TH
1840 if (0)
1841 /* nada */;
1842#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1843 else if (!strcmp(str, "embed"))
1844 pcpu_chosen_fc = PCPU_FC_EMBED;
1845#endif
1846#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1847 else if (!strcmp(str, "page"))
1848 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1849#endif
1850 else
870d4b12 1851 pr_warn("unknown allocator %s specified\n", str);
66c3a757 1852
f58dc01b 1853 return 0;
66c3a757 1854}
f58dc01b 1855early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1856
3c9a024f
TH
1857/*
1858 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1859 * Build it if needed by the arch config or the generic setup is going
1860 * to be used.
1861 */
08fc4580
TH
1862#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1863 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1864#define BUILD_EMBED_FIRST_CHUNK
1865#endif
1866
1867/* build pcpu_page_first_chunk() iff needed by the arch config */
1868#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1869#define BUILD_PAGE_FIRST_CHUNK
1870#endif
1871
1872/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1873#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1874/**
1875 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1876 * @reserved_size: the size of reserved percpu area in bytes
1877 * @dyn_size: minimum free size for dynamic allocation in bytes
1878 * @atom_size: allocation atom size
1879 * @cpu_distance_fn: callback to determine distance between cpus, optional
1880 *
1881 * This function determines grouping of units, their mappings to cpus
1882 * and other parameters considering needed percpu size, allocation
1883 * atom size and distances between CPUs.
1884 *
bffc4375 1885 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
1886 * LOCAL_DISTANCE both ways are grouped together and share space for
1887 * units in the same group. The returned configuration is guaranteed
1888 * to have CPUs on different nodes on different groups and >=75% usage
1889 * of allocated virtual address space.
1890 *
1891 * RETURNS:
1892 * On success, pointer to the new allocation_info is returned. On
1893 * failure, ERR_PTR value is returned.
1894 */
1895static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1896 size_t reserved_size, size_t dyn_size,
1897 size_t atom_size,
1898 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1899{
1900 static int group_map[NR_CPUS] __initdata;
1901 static int group_cnt[NR_CPUS] __initdata;
1902 const size_t static_size = __per_cpu_end - __per_cpu_start;
1903 int nr_groups = 1, nr_units = 0;
1904 size_t size_sum, min_unit_size, alloc_size;
1905 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1906 int last_allocs, group, unit;
1907 unsigned int cpu, tcpu;
1908 struct pcpu_alloc_info *ai;
1909 unsigned int *cpu_map;
1910
1911 /* this function may be called multiple times */
1912 memset(group_map, 0, sizeof(group_map));
1913 memset(group_cnt, 0, sizeof(group_cnt));
1914
1915 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1916 size_sum = PFN_ALIGN(static_size + reserved_size +
1917 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1918 dyn_size = size_sum - static_size - reserved_size;
1919
1920 /*
1921 * Determine min_unit_size, alloc_size and max_upa such that
1922 * alloc_size is multiple of atom_size and is the smallest
25985edc 1923 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1924 * or larger than min_unit_size.
1925 */
1926 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1927
9c015162 1928 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
1929 alloc_size = roundup(min_unit_size, atom_size);
1930 upa = alloc_size / min_unit_size;
f09f1243 1931 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1932 upa--;
1933 max_upa = upa;
1934
1935 /* group cpus according to their proximity */
1936 for_each_possible_cpu(cpu) {
1937 group = 0;
1938 next_group:
1939 for_each_possible_cpu(tcpu) {
1940 if (cpu == tcpu)
1941 break;
1942 if (group_map[tcpu] == group && cpu_distance_fn &&
1943 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1944 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1945 group++;
1946 nr_groups = max(nr_groups, group + 1);
1947 goto next_group;
1948 }
1949 }
1950 group_map[cpu] = group;
1951 group_cnt[group]++;
1952 }
1953
1954 /*
9c015162
DZF
1955 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
1956 * Expand the unit_size until we use >= 75% of the units allocated.
1957 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
1958 */
1959 last_allocs = INT_MAX;
1960 for (upa = max_upa; upa; upa--) {
1961 int allocs = 0, wasted = 0;
1962
f09f1243 1963 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
1964 continue;
1965
1966 for (group = 0; group < nr_groups; group++) {
1967 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1968 allocs += this_allocs;
1969 wasted += this_allocs * upa - group_cnt[group];
1970 }
1971
1972 /*
1973 * Don't accept if wastage is over 1/3. The
1974 * greater-than comparison ensures upa==1 always
1975 * passes the following check.
1976 */
1977 if (wasted > num_possible_cpus() / 3)
1978 continue;
1979
1980 /* and then don't consume more memory */
1981 if (allocs > last_allocs)
1982 break;
1983 last_allocs = allocs;
1984 best_upa = upa;
1985 }
1986 upa = best_upa;
1987
1988 /* allocate and fill alloc_info */
1989 for (group = 0; group < nr_groups; group++)
1990 nr_units += roundup(group_cnt[group], upa);
1991
1992 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1993 if (!ai)
1994 return ERR_PTR(-ENOMEM);
1995 cpu_map = ai->groups[0].cpu_map;
1996
1997 for (group = 0; group < nr_groups; group++) {
1998 ai->groups[group].cpu_map = cpu_map;
1999 cpu_map += roundup(group_cnt[group], upa);
2000 }
2001
2002 ai->static_size = static_size;
2003 ai->reserved_size = reserved_size;
2004 ai->dyn_size = dyn_size;
2005 ai->unit_size = alloc_size / upa;
2006 ai->atom_size = atom_size;
2007 ai->alloc_size = alloc_size;
2008
2009 for (group = 0, unit = 0; group_cnt[group]; group++) {
2010 struct pcpu_group_info *gi = &ai->groups[group];
2011
2012 /*
2013 * Initialize base_offset as if all groups are located
2014 * back-to-back. The caller should update this to
2015 * reflect actual allocation.
2016 */
2017 gi->base_offset = unit * ai->unit_size;
2018
2019 for_each_possible_cpu(cpu)
2020 if (group_map[cpu] == group)
2021 gi->cpu_map[gi->nr_units++] = cpu;
2022 gi->nr_units = roundup(gi->nr_units, upa);
2023 unit += gi->nr_units;
2024 }
2025 BUG_ON(unit != nr_units);
2026
2027 return ai;
2028}
2029#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2030
2031#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2032/**
2033 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2034 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2035 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2036 * @atom_size: allocation atom size
2037 * @cpu_distance_fn: callback to determine distance between cpus, optional
2038 * @alloc_fn: function to allocate percpu page
25985edc 2039 * @free_fn: function to free percpu page
66c3a757
TH
2040 *
2041 * This is a helper to ease setting up embedded first percpu chunk and
2042 * can be called where pcpu_setup_first_chunk() is expected.
2043 *
2044 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
2045 * by calling @alloc_fn and used as-is without being mapped into
2046 * vmalloc area. Allocations are always whole multiples of @atom_size
2047 * aligned to @atom_size.
2048 *
2049 * This enables the first chunk to piggy back on the linear physical
2050 * mapping which often uses larger page size. Please note that this
2051 * can result in very sparse cpu->unit mapping on NUMA machines thus
2052 * requiring large vmalloc address space. Don't use this allocator if
2053 * vmalloc space is not orders of magnitude larger than distances
2054 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 2055 *
4ba6ce25 2056 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
2057 *
2058 * If the needed size is smaller than the minimum or specified unit
c8826dd5 2059 * size, the leftover is returned using @free_fn.
66c3a757
TH
2060 *
2061 * RETURNS:
fb435d52 2062 * 0 on success, -errno on failure.
66c3a757 2063 */
4ba6ce25 2064int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
2065 size_t atom_size,
2066 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2067 pcpu_fc_alloc_fn_t alloc_fn,
2068 pcpu_fc_free_fn_t free_fn)
66c3a757 2069{
c8826dd5
TH
2070 void *base = (void *)ULONG_MAX;
2071 void **areas = NULL;
fd1e8a1f 2072 struct pcpu_alloc_info *ai;
93c76b6b 2073 size_t size_sum, areas_size;
2074 unsigned long max_distance;
9b739662 2075 int group, i, highest_group, rc;
66c3a757 2076
c8826dd5
TH
2077 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2078 cpu_distance_fn);
fd1e8a1f
TH
2079 if (IS_ERR(ai))
2080 return PTR_ERR(ai);
66c3a757 2081
fd1e8a1f 2082 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2083 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2084
999c17e3 2085 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 2086 if (!areas) {
fb435d52 2087 rc = -ENOMEM;
c8826dd5 2088 goto out_free;
fa8a7094 2089 }
66c3a757 2090
9b739662 2091 /* allocate, copy and determine base address & max_distance */
2092 highest_group = 0;
c8826dd5
TH
2093 for (group = 0; group < ai->nr_groups; group++) {
2094 struct pcpu_group_info *gi = &ai->groups[group];
2095 unsigned int cpu = NR_CPUS;
2096 void *ptr;
2097
2098 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2099 cpu = gi->cpu_map[i];
2100 BUG_ON(cpu == NR_CPUS);
2101
2102 /* allocate space for the whole group */
2103 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2104 if (!ptr) {
2105 rc = -ENOMEM;
2106 goto out_free_areas;
2107 }
f528f0b8
CM
2108 /* kmemleak tracks the percpu allocations separately */
2109 kmemleak_free(ptr);
c8826dd5 2110 areas[group] = ptr;
fd1e8a1f 2111
c8826dd5 2112 base = min(ptr, base);
9b739662 2113 if (ptr > areas[highest_group])
2114 highest_group = group;
2115 }
2116 max_distance = areas[highest_group] - base;
2117 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2118
2119 /* warn if maximum distance is further than 75% of vmalloc space */
2120 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2121 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2122 max_distance, VMALLOC_TOTAL);
2123#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2124 /* and fail if we have fallback */
2125 rc = -EINVAL;
2126 goto out_free_areas;
2127#endif
42b64281
TH
2128 }
2129
2130 /*
2131 * Copy data and free unused parts. This should happen after all
2132 * allocations are complete; otherwise, we may end up with
2133 * overlapping groups.
2134 */
2135 for (group = 0; group < ai->nr_groups; group++) {
2136 struct pcpu_group_info *gi = &ai->groups[group];
2137 void *ptr = areas[group];
c8826dd5
TH
2138
2139 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2140 if (gi->cpu_map[i] == NR_CPUS) {
2141 /* unused unit, free whole */
2142 free_fn(ptr, ai->unit_size);
2143 continue;
2144 }
2145 /* copy and return the unused part */
2146 memcpy(ptr, __per_cpu_load, ai->static_size);
2147 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2148 }
fa8a7094 2149 }
66c3a757 2150
c8826dd5 2151 /* base address is now known, determine group base offsets */
6ea529a2 2152 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2153 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2154 }
c8826dd5 2155
870d4b12 2156 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2157 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2158 ai->dyn_size, ai->unit_size);
d4b95f80 2159
fb435d52 2160 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2161 goto out_free;
2162
2163out_free_areas:
2164 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2165 if (areas[group])
2166 free_fn(areas[group],
2167 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2168out_free:
fd1e8a1f 2169 pcpu_free_alloc_info(ai);
c8826dd5 2170 if (areas)
999c17e3 2171 memblock_free_early(__pa(areas), areas_size);
fb435d52 2172 return rc;
d4b95f80 2173}
3c9a024f 2174#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2175
3c9a024f 2176#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2177/**
00ae4064 2178 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2179 * @reserved_size: the size of reserved percpu area in bytes
2180 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2181 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2182 * @populate_pte_fn: function to populate pte
2183 *
00ae4064
TH
2184 * This is a helper to ease setting up page-remapped first percpu
2185 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2186 *
2187 * This is the basic allocator. Static percpu area is allocated
2188 * page-by-page into vmalloc area.
2189 *
2190 * RETURNS:
fb435d52 2191 * 0 on success, -errno on failure.
d4b95f80 2192 */
fb435d52
TH
2193int __init pcpu_page_first_chunk(size_t reserved_size,
2194 pcpu_fc_alloc_fn_t alloc_fn,
2195 pcpu_fc_free_fn_t free_fn,
2196 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2197{
8f05a6a6 2198 static struct vm_struct vm;
fd1e8a1f 2199 struct pcpu_alloc_info *ai;
00ae4064 2200 char psize_str[16];
ce3141a2 2201 int unit_pages;
d4b95f80 2202 size_t pages_size;
ce3141a2 2203 struct page **pages;
fb435d52 2204 int unit, i, j, rc;
8f606604 2205 int upa;
2206 int nr_g0_units;
d4b95f80 2207
00ae4064
TH
2208 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2209
4ba6ce25 2210 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2211 if (IS_ERR(ai))
2212 return PTR_ERR(ai);
2213 BUG_ON(ai->nr_groups != 1);
8f606604 2214 upa = ai->alloc_size/ai->unit_size;
2215 nr_g0_units = roundup(num_possible_cpus(), upa);
2216 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2217 pcpu_free_alloc_info(ai);
2218 return -EINVAL;
2219 }
fd1e8a1f
TH
2220
2221 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2222
2223 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2224 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2225 sizeof(pages[0]));
999c17e3 2226 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2227
8f05a6a6 2228 /* allocate pages */
d4b95f80 2229 j = 0;
8f606604 2230 for (unit = 0; unit < num_possible_cpus(); unit++) {
2231 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2232 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2233 void *ptr;
2234
3cbc8565 2235 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2236 if (!ptr) {
870d4b12 2237 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2238 psize_str, cpu);
d4b95f80
TH
2239 goto enomem;
2240 }
f528f0b8
CM
2241 /* kmemleak tracks the percpu allocations separately */
2242 kmemleak_free(ptr);
ce3141a2 2243 pages[j++] = virt_to_page(ptr);
d4b95f80 2244 }
8f606604 2245 }
d4b95f80 2246
8f05a6a6
TH
2247 /* allocate vm area, map the pages and copy static data */
2248 vm.flags = VM_ALLOC;
fd1e8a1f 2249 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2250 vm_area_register_early(&vm, PAGE_SIZE);
2251
fd1e8a1f 2252 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2253 unsigned long unit_addr =
fd1e8a1f 2254 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2255
ce3141a2 2256 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2257 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2258
2259 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2260 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2261 unit_pages);
2262 if (rc < 0)
2263 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2264
8f05a6a6
TH
2265 /*
2266 * FIXME: Archs with virtual cache should flush local
2267 * cache for the linear mapping here - something
2268 * equivalent to flush_cache_vmap() on the local cpu.
2269 * flush_cache_vmap() can't be used as most supporting
2270 * data structures are not set up yet.
2271 */
2272
2273 /* copy static data */
fd1e8a1f 2274 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2275 }
2276
2277 /* we're ready, commit */
870d4b12 2278 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2279 unit_pages, psize_str, vm.addr, ai->static_size,
2280 ai->reserved_size, ai->dyn_size);
d4b95f80 2281
fb435d52 2282 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2283 goto out_free_ar;
2284
2285enomem:
2286 while (--j >= 0)
ce3141a2 2287 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2288 rc = -ENOMEM;
d4b95f80 2289out_free_ar:
999c17e3 2290 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2291 pcpu_free_alloc_info(ai);
fb435d52 2292 return rc;
d4b95f80 2293}
3c9a024f 2294#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2295
bbddff05 2296#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2297/*
bbddff05 2298 * Generic SMP percpu area setup.
e74e3962
TH
2299 *
2300 * The embedding helper is used because its behavior closely resembles
2301 * the original non-dynamic generic percpu area setup. This is
2302 * important because many archs have addressing restrictions and might
2303 * fail if the percpu area is located far away from the previous
2304 * location. As an added bonus, in non-NUMA cases, embedding is
2305 * generally a good idea TLB-wise because percpu area can piggy back
2306 * on the physical linear memory mapping which uses large page
2307 * mappings on applicable archs.
2308 */
e74e3962
TH
2309unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2310EXPORT_SYMBOL(__per_cpu_offset);
2311
c8826dd5
TH
2312static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2313 size_t align)
2314{
999c17e3
SS
2315 return memblock_virt_alloc_from_nopanic(
2316 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2317}
66c3a757 2318
c8826dd5
TH
2319static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2320{
999c17e3 2321 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2322}
2323
e74e3962
TH
2324void __init setup_per_cpu_areas(void)
2325{
e74e3962
TH
2326 unsigned long delta;
2327 unsigned int cpu;
fb435d52 2328 int rc;
e74e3962
TH
2329
2330 /*
2331 * Always reserve area for module percpu variables. That's
2332 * what the legacy allocator did.
2333 */
fb435d52 2334 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2335 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2336 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2337 if (rc < 0)
bbddff05 2338 panic("Failed to initialize percpu areas.");
e74e3962
TH
2339
2340 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2341 for_each_possible_cpu(cpu)
fb435d52 2342 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2343}
bbddff05
TH
2344#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2345
2346#else /* CONFIG_SMP */
2347
2348/*
2349 * UP percpu area setup.
2350 *
2351 * UP always uses km-based percpu allocator with identity mapping.
2352 * Static percpu variables are indistinguishable from the usual static
2353 * variables and don't require any special preparation.
2354 */
2355void __init setup_per_cpu_areas(void)
2356{
2357 const size_t unit_size =
2358 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2359 PERCPU_DYNAMIC_RESERVE));
2360 struct pcpu_alloc_info *ai;
2361 void *fc;
2362
2363 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2364 fc = memblock_virt_alloc_from_nopanic(unit_size,
2365 PAGE_SIZE,
2366 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2367 if (!ai || !fc)
2368 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2369 /* kmemleak tracks the percpu allocations separately */
2370 kmemleak_free(fc);
bbddff05
TH
2371
2372 ai->dyn_size = unit_size;
2373 ai->unit_size = unit_size;
2374 ai->atom_size = unit_size;
2375 ai->alloc_size = unit_size;
2376 ai->groups[0].nr_units = 1;
2377 ai->groups[0].cpu_map[0] = 0;
2378
2379 if (pcpu_setup_first_chunk(ai, fc) < 0)
2380 panic("Failed to initialize percpu areas.");
2381}
2382
2383#endif /* CONFIG_SMP */
099a19d9
TH
2384
2385/*
2386 * First and reserved chunks are initialized with temporary allocation
2387 * map in initdata so that they can be used before slab is online.
2388 * This function is called after slab is brought up and replaces those
2389 * with properly allocated maps.
2390 */
2391void __init percpu_init_late(void)
2392{
2393 struct pcpu_chunk *target_chunks[] =
2394 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2395 struct pcpu_chunk *chunk;
2396 unsigned long flags;
2397 int i;
2398
2399 for (i = 0; (chunk = target_chunks[i]); i++) {
2400 int *map;
2401 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2402
2403 BUILD_BUG_ON(size > PAGE_SIZE);
2404
90459ce0 2405 map = pcpu_mem_zalloc(size);
099a19d9
TH
2406 BUG_ON(!map);
2407
2408 spin_lock_irqsave(&pcpu_lock, flags);
2409 memcpy(map, chunk->map, size);
2410 chunk->map = map;
2411 spin_unlock_irqrestore(&pcpu_lock, flags);
2412 }
2413}
1a4d7607
TH
2414
2415/*
2416 * Percpu allocator is initialized early during boot when neither slab or
2417 * workqueue is available. Plug async management until everything is up
2418 * and running.
2419 */
2420static int __init percpu_enable_async(void)
2421{
2422 pcpu_async_enabled = true;
2423 return 0;
2424}
2425subsys_initcall(percpu_enable_async);