]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/rmap.c
huge_memory: convert unmap_page() to unmap_folio()
[thirdparty/linux.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
9608703e 23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
c1e8d7c6 24 * mm->mmap_lock
730633f0
JK
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
e621900a
MWO
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
730633f0 36 * i_pages lock (widely used)
e809c3fe 37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
730633f0
JK
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 44 *
9608703e 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
9b679320 46 * ->tasklist_lock
6a46079c 47 * pte map lock
c0d0381a
MK
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
1da177e4
LT
53 */
54
55#include <linux/mm.h>
6e84f315 56#include <linux/sched/mm.h>
29930025 57#include <linux/sched/task.h>
1da177e4
LT
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
5ad64688 63#include <linux/ksm.h>
1da177e4
LT
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
b95f1b31 66#include <linux/export.h>
8a9f3ccd 67#include <linux/memcontrol.h>
cddb8a5c 68#include <linux/mmu_notifier.h>
64cdd548 69#include <linux/migrate.h>
0fe6e20b 70#include <linux/hugetlb.h>
444f84fd 71#include <linux/huge_mm.h>
ef5d437f 72#include <linux/backing-dev.h>
33c3fc71 73#include <linux/page_idle.h>
a5430dda 74#include <linux/memremap.h>
bce73e48 75#include <linux/userfaultfd_k.h>
999dad82 76#include <linux/mm_inline.h>
1da177e4
LT
77
78#include <asm/tlbflush.h>
79
4cc79b33 80#define CREATE_TRACE_POINTS
72b252ae 81#include <trace/events/tlb.h>
4cc79b33 82#include <trace/events/migrate.h>
72b252ae 83
b291f000
NP
84#include "internal.h"
85
fdd2e5f8 86static struct kmem_cache *anon_vma_cachep;
5beb4930 87static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
88
89static inline struct anon_vma *anon_vma_alloc(void)
90{
01d8b20d
PZ
91 struct anon_vma *anon_vma;
92
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 if (anon_vma) {
95 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
96 anon_vma->degree = 1; /* Reference for first vma */
97 anon_vma->parent = anon_vma;
01d8b20d
PZ
98 /*
99 * Initialise the anon_vma root to point to itself. If called
100 * from fork, the root will be reset to the parents anon_vma.
101 */
102 anon_vma->root = anon_vma;
103 }
104
105 return anon_vma;
fdd2e5f8
AB
106}
107
01d8b20d 108static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 109{
01d8b20d 110 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
111
112 /*
2f031c6f 113 * Synchronize against folio_lock_anon_vma_read() such that
88c22088
PZ
114 * we can safely hold the lock without the anon_vma getting
115 * freed.
116 *
117 * Relies on the full mb implied by the atomic_dec_and_test() from
118 * put_anon_vma() against the acquire barrier implied by
2f031c6f 119 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
88c22088 120 *
2f031c6f 121 * folio_lock_anon_vma_read() VS put_anon_vma()
4fc3f1d6 122 * down_read_trylock() atomic_dec_and_test()
88c22088 123 * LOCK MB
4fc3f1d6 124 * atomic_read() rwsem_is_locked()
88c22088
PZ
125 *
126 * LOCK should suffice since the actual taking of the lock must
127 * happen _before_ what follows.
128 */
7f39dda9 129 might_sleep();
5a505085 130 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 131 anon_vma_lock_write(anon_vma);
08b52706 132 anon_vma_unlock_write(anon_vma);
88c22088
PZ
133 }
134
fdd2e5f8
AB
135 kmem_cache_free(anon_vma_cachep, anon_vma);
136}
1da177e4 137
dd34739c 138static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 139{
dd34739c 140 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
141}
142
e574b5fd 143static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
144{
145 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
146}
147
6583a843
KC
148static void anon_vma_chain_link(struct vm_area_struct *vma,
149 struct anon_vma_chain *avc,
150 struct anon_vma *anon_vma)
151{
152 avc->vma = vma;
153 avc->anon_vma = anon_vma;
154 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 155 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
156}
157
d9d332e0 158/**
d5a187da 159 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
160 * @vma: the memory region in question
161 *
162 * This makes sure the memory mapping described by 'vma' has
163 * an 'anon_vma' attached to it, so that we can associate the
164 * anonymous pages mapped into it with that anon_vma.
165 *
d5a187da
VB
166 * The common case will be that we already have one, which
167 * is handled inline by anon_vma_prepare(). But if
23a0790a 168 * not we either need to find an adjacent mapping that we
d9d332e0
LT
169 * can re-use the anon_vma from (very common when the only
170 * reason for splitting a vma has been mprotect()), or we
171 * allocate a new one.
172 *
173 * Anon-vma allocations are very subtle, because we may have
2f031c6f 174 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
aaf1f990 175 * and that may actually touch the rwsem even in the newly
d9d332e0
LT
176 * allocated vma (it depends on RCU to make sure that the
177 * anon_vma isn't actually destroyed).
178 *
179 * As a result, we need to do proper anon_vma locking even
180 * for the new allocation. At the same time, we do not want
181 * to do any locking for the common case of already having
182 * an anon_vma.
183 *
c1e8d7c6 184 * This must be called with the mmap_lock held for reading.
d9d332e0 185 */
d5a187da 186int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 187{
d5a187da
VB
188 struct mm_struct *mm = vma->vm_mm;
189 struct anon_vma *anon_vma, *allocated;
5beb4930 190 struct anon_vma_chain *avc;
1da177e4
LT
191
192 might_sleep();
1da177e4 193
d5a187da
VB
194 avc = anon_vma_chain_alloc(GFP_KERNEL);
195 if (!avc)
196 goto out_enomem;
197
198 anon_vma = find_mergeable_anon_vma(vma);
199 allocated = NULL;
200 if (!anon_vma) {
201 anon_vma = anon_vma_alloc();
202 if (unlikely(!anon_vma))
203 goto out_enomem_free_avc;
204 allocated = anon_vma;
205 }
5beb4930 206
d5a187da
VB
207 anon_vma_lock_write(anon_vma);
208 /* page_table_lock to protect against threads */
209 spin_lock(&mm->page_table_lock);
210 if (likely(!vma->anon_vma)) {
211 vma->anon_vma = anon_vma;
212 anon_vma_chain_link(vma, avc, anon_vma);
213 /* vma reference or self-parent link for new root */
214 anon_vma->degree++;
d9d332e0 215 allocated = NULL;
d5a187da
VB
216 avc = NULL;
217 }
218 spin_unlock(&mm->page_table_lock);
219 anon_vma_unlock_write(anon_vma);
1da177e4 220
d5a187da
VB
221 if (unlikely(allocated))
222 put_anon_vma(allocated);
223 if (unlikely(avc))
224 anon_vma_chain_free(avc);
31f2b0eb 225
1da177e4 226 return 0;
5beb4930
RR
227
228 out_enomem_free_avc:
229 anon_vma_chain_free(avc);
230 out_enomem:
231 return -ENOMEM;
1da177e4
LT
232}
233
bb4aa396
LT
234/*
235 * This is a useful helper function for locking the anon_vma root as
236 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
237 * have the same vma.
238 *
239 * Such anon_vma's should have the same root, so you'd expect to see
240 * just a single mutex_lock for the whole traversal.
241 */
242static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
243{
244 struct anon_vma *new_root = anon_vma->root;
245 if (new_root != root) {
246 if (WARN_ON_ONCE(root))
5a505085 247 up_write(&root->rwsem);
bb4aa396 248 root = new_root;
5a505085 249 down_write(&root->rwsem);
bb4aa396
LT
250 }
251 return root;
252}
253
254static inline void unlock_anon_vma_root(struct anon_vma *root)
255{
256 if (root)
5a505085 257 up_write(&root->rwsem);
bb4aa396
LT
258}
259
5beb4930
RR
260/*
261 * Attach the anon_vmas from src to dst.
262 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 263 *
cb152a1a 264 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
47b390d2
WY
265 * anon_vma_fork(). The first three want an exact copy of src, while the last
266 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
267 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
268 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
269 *
270 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
271 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
272 * This prevents degradation of anon_vma hierarchy to endless linear chain in
273 * case of constantly forking task. On the other hand, an anon_vma with more
274 * than one child isn't reused even if there was no alive vma, thus rmap
275 * walker has a good chance of avoiding scanning the whole hierarchy when it
276 * searches where page is mapped.
5beb4930
RR
277 */
278int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 279{
5beb4930 280 struct anon_vma_chain *avc, *pavc;
bb4aa396 281 struct anon_vma *root = NULL;
5beb4930 282
646d87b4 283 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
284 struct anon_vma *anon_vma;
285
dd34739c
LT
286 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
287 if (unlikely(!avc)) {
288 unlock_anon_vma_root(root);
289 root = NULL;
290 avc = anon_vma_chain_alloc(GFP_KERNEL);
291 if (!avc)
292 goto enomem_failure;
293 }
bb4aa396
LT
294 anon_vma = pavc->anon_vma;
295 root = lock_anon_vma_root(root, anon_vma);
296 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
297
298 /*
299 * Reuse existing anon_vma if its degree lower than two,
300 * that means it has no vma and only one anon_vma child.
301 *
dd062302 302 * Do not choose parent anon_vma, otherwise first child
7a3ef208
KK
303 * will always reuse it. Root anon_vma is never reused:
304 * it has self-parent reference and at least one child.
305 */
47b390d2
WY
306 if (!dst->anon_vma && src->anon_vma &&
307 anon_vma != src->anon_vma && anon_vma->degree < 2)
7a3ef208 308 dst->anon_vma = anon_vma;
5beb4930 309 }
7a3ef208
KK
310 if (dst->anon_vma)
311 dst->anon_vma->degree++;
bb4aa396 312 unlock_anon_vma_root(root);
5beb4930 313 return 0;
1da177e4 314
5beb4930 315 enomem_failure:
3fe89b3e
LY
316 /*
317 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
318 * decremented in unlink_anon_vmas().
319 * We can safely do this because callers of anon_vma_clone() don't care
320 * about dst->anon_vma if anon_vma_clone() failed.
321 */
322 dst->anon_vma = NULL;
5beb4930
RR
323 unlink_anon_vmas(dst);
324 return -ENOMEM;
1da177e4
LT
325}
326
5beb4930
RR
327/*
328 * Attach vma to its own anon_vma, as well as to the anon_vmas that
329 * the corresponding VMA in the parent process is attached to.
330 * Returns 0 on success, non-zero on failure.
331 */
332int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 333{
5beb4930
RR
334 struct anon_vma_chain *avc;
335 struct anon_vma *anon_vma;
c4ea95d7 336 int error;
1da177e4 337
5beb4930
RR
338 /* Don't bother if the parent process has no anon_vma here. */
339 if (!pvma->anon_vma)
340 return 0;
341
7a3ef208
KK
342 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
343 vma->anon_vma = NULL;
344
5beb4930
RR
345 /*
346 * First, attach the new VMA to the parent VMA's anon_vmas,
347 * so rmap can find non-COWed pages in child processes.
348 */
c4ea95d7
DF
349 error = anon_vma_clone(vma, pvma);
350 if (error)
351 return error;
5beb4930 352
7a3ef208
KK
353 /* An existing anon_vma has been reused, all done then. */
354 if (vma->anon_vma)
355 return 0;
356
5beb4930
RR
357 /* Then add our own anon_vma. */
358 anon_vma = anon_vma_alloc();
359 if (!anon_vma)
360 goto out_error;
dd34739c 361 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
362 if (!avc)
363 goto out_error_free_anon_vma;
5c341ee1
RR
364
365 /*
aaf1f990 366 * The root anon_vma's rwsem is the lock actually used when we
5c341ee1
RR
367 * lock any of the anon_vmas in this anon_vma tree.
368 */
369 anon_vma->root = pvma->anon_vma->root;
7a3ef208 370 anon_vma->parent = pvma->anon_vma;
76545066 371 /*
01d8b20d
PZ
372 * With refcounts, an anon_vma can stay around longer than the
373 * process it belongs to. The root anon_vma needs to be pinned until
374 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
375 */
376 get_anon_vma(anon_vma->root);
5beb4930
RR
377 /* Mark this anon_vma as the one where our new (COWed) pages go. */
378 vma->anon_vma = anon_vma;
4fc3f1d6 379 anon_vma_lock_write(anon_vma);
5c341ee1 380 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 381 anon_vma->parent->degree++;
08b52706 382 anon_vma_unlock_write(anon_vma);
5beb4930
RR
383
384 return 0;
385
386 out_error_free_anon_vma:
01d8b20d 387 put_anon_vma(anon_vma);
5beb4930 388 out_error:
4946d54c 389 unlink_anon_vmas(vma);
5beb4930 390 return -ENOMEM;
1da177e4
LT
391}
392
5beb4930
RR
393void unlink_anon_vmas(struct vm_area_struct *vma)
394{
395 struct anon_vma_chain *avc, *next;
eee2acba 396 struct anon_vma *root = NULL;
5beb4930 397
5c341ee1
RR
398 /*
399 * Unlink each anon_vma chained to the VMA. This list is ordered
400 * from newest to oldest, ensuring the root anon_vma gets freed last.
401 */
5beb4930 402 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
403 struct anon_vma *anon_vma = avc->anon_vma;
404
405 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 406 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
407
408 /*
409 * Leave empty anon_vmas on the list - we'll need
410 * to free them outside the lock.
411 */
f808c13f 412 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 413 anon_vma->parent->degree--;
eee2acba 414 continue;
7a3ef208 415 }
eee2acba
PZ
416
417 list_del(&avc->same_vma);
418 anon_vma_chain_free(avc);
419 }
ee8ab190 420 if (vma->anon_vma) {
7a3ef208 421 vma->anon_vma->degree--;
ee8ab190
LX
422
423 /*
424 * vma would still be needed after unlink, and anon_vma will be prepared
425 * when handle fault.
426 */
427 vma->anon_vma = NULL;
428 }
eee2acba
PZ
429 unlock_anon_vma_root(root);
430
431 /*
432 * Iterate the list once more, it now only contains empty and unlinked
433 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 434 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
435 */
436 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
437 struct anon_vma *anon_vma = avc->anon_vma;
438
e4c5800a 439 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
440 put_anon_vma(anon_vma);
441
5beb4930
RR
442 list_del(&avc->same_vma);
443 anon_vma_chain_free(avc);
444 }
445}
446
51cc5068 447static void anon_vma_ctor(void *data)
1da177e4 448{
a35afb83 449 struct anon_vma *anon_vma = data;
1da177e4 450
5a505085 451 init_rwsem(&anon_vma->rwsem);
83813267 452 atomic_set(&anon_vma->refcount, 0);
f808c13f 453 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
454}
455
456void __init anon_vma_init(void)
457{
458 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 459 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
460 anon_vma_ctor);
461 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
462 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
463}
464
465/*
6111e4ca
PZ
466 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
467 *
468 * Since there is no serialization what so ever against page_remove_rmap()
ad8a20cf
ML
469 * the best this function can do is return a refcount increased anon_vma
470 * that might have been relevant to this page.
6111e4ca
PZ
471 *
472 * The page might have been remapped to a different anon_vma or the anon_vma
473 * returned may already be freed (and even reused).
474 *
bc658c96
PZ
475 * In case it was remapped to a different anon_vma, the new anon_vma will be a
476 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
477 * ensure that any anon_vma obtained from the page will still be valid for as
478 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
479 *
6111e4ca
PZ
480 * All users of this function must be very careful when walking the anon_vma
481 * chain and verify that the page in question is indeed mapped in it
482 * [ something equivalent to page_mapped_in_vma() ].
483 *
091e4299
MC
484 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
485 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
486 * if there is a mapcount, we can dereference the anon_vma after observing
487 * those.
1da177e4 488 */
746b18d4 489struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 490{
746b18d4 491 struct anon_vma *anon_vma = NULL;
1da177e4
LT
492 unsigned long anon_mapping;
493
494 rcu_read_lock();
4db0c3c2 495 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 496 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
497 goto out;
498 if (!page_mapped(page))
499 goto out;
500
501 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
502 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
503 anon_vma = NULL;
504 goto out;
505 }
f1819427
HD
506
507 /*
508 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
509 * freed. But if it has been unmapped, we have no security against the
510 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 511 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 512 * above cannot corrupt).
f1819427 513 */
746b18d4 514 if (!page_mapped(page)) {
7f39dda9 515 rcu_read_unlock();
746b18d4 516 put_anon_vma(anon_vma);
7f39dda9 517 return NULL;
746b18d4 518 }
1da177e4
LT
519out:
520 rcu_read_unlock();
746b18d4
PZ
521
522 return anon_vma;
523}
524
88c22088
PZ
525/*
526 * Similar to page_get_anon_vma() except it locks the anon_vma.
527 *
528 * Its a little more complex as it tries to keep the fast path to a single
529 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
6d4675e6
MK
530 * reference like with page_get_anon_vma() and then block on the mutex
531 * on !rwc->try_lock case.
88c22088 532 */
6d4675e6
MK
533struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
534 struct rmap_walk_control *rwc)
746b18d4 535{
88c22088 536 struct anon_vma *anon_vma = NULL;
eee0f252 537 struct anon_vma *root_anon_vma;
88c22088 538 unsigned long anon_mapping;
746b18d4 539
88c22088 540 rcu_read_lock();
9595d769 541 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
88c22088
PZ
542 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
543 goto out;
9595d769 544 if (!folio_mapped(folio))
88c22088
PZ
545 goto out;
546
547 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 548 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 549 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 550 /*
9595d769 551 * If the folio is still mapped, then this anon_vma is still
eee0f252 552 * its anon_vma, and holding the mutex ensures that it will
bc658c96 553 * not go away, see anon_vma_free().
88c22088 554 */
9595d769 555 if (!folio_mapped(folio)) {
4fc3f1d6 556 up_read(&root_anon_vma->rwsem);
88c22088
PZ
557 anon_vma = NULL;
558 }
559 goto out;
560 }
746b18d4 561
6d4675e6
MK
562 if (rwc && rwc->try_lock) {
563 anon_vma = NULL;
564 rwc->contended = true;
565 goto out;
566 }
567
88c22088
PZ
568 /* trylock failed, we got to sleep */
569 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
570 anon_vma = NULL;
571 goto out;
572 }
573
9595d769 574 if (!folio_mapped(folio)) {
7f39dda9 575 rcu_read_unlock();
88c22088 576 put_anon_vma(anon_vma);
7f39dda9 577 return NULL;
88c22088
PZ
578 }
579
580 /* we pinned the anon_vma, its safe to sleep */
581 rcu_read_unlock();
4fc3f1d6 582 anon_vma_lock_read(anon_vma);
88c22088
PZ
583
584 if (atomic_dec_and_test(&anon_vma->refcount)) {
585 /*
586 * Oops, we held the last refcount, release the lock
587 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 588 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 589 */
4fc3f1d6 590 anon_vma_unlock_read(anon_vma);
88c22088
PZ
591 __put_anon_vma(anon_vma);
592 anon_vma = NULL;
593 }
594
595 return anon_vma;
596
597out:
598 rcu_read_unlock();
746b18d4 599 return anon_vma;
34bbd704
ON
600}
601
4fc3f1d6 602void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 603{
4fc3f1d6 604 anon_vma_unlock_read(anon_vma);
1da177e4
LT
605}
606
72b252ae 607#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
608/*
609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610 * important if a PTE was dirty when it was unmapped that it's flushed
611 * before any IO is initiated on the page to prevent lost writes. Similarly,
612 * it must be flushed before freeing to prevent data leakage.
613 */
614void try_to_unmap_flush(void)
615{
616 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
617
618 if (!tlb_ubc->flush_required)
619 return;
620
e73ad5ff 621 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 622 tlb_ubc->flush_required = false;
d950c947 623 tlb_ubc->writable = false;
72b252ae
MG
624}
625
d950c947
MG
626/* Flush iff there are potentially writable TLB entries that can race with IO */
627void try_to_unmap_flush_dirty(void)
628{
629 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630
631 if (tlb_ubc->writable)
632 try_to_unmap_flush();
633}
634
5ee2fa2f
HY
635/*
636 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638 */
639#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
640#define TLB_FLUSH_BATCH_PENDING_MASK \
641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642#define TLB_FLUSH_BATCH_PENDING_LARGE \
643 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
644
c7ab0d2f 645static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
646{
647 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
5ee2fa2f 648 int batch, nbatch;
72b252ae 649
e73ad5ff 650 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 651 tlb_ubc->flush_required = true;
d950c947 652
3ea27719
MG
653 /*
654 * Ensure compiler does not re-order the setting of tlb_flush_batched
655 * before the PTE is cleared.
656 */
657 barrier();
5ee2fa2f
HY
658 batch = atomic_read(&mm->tlb_flush_batched);
659retry:
660 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
661 /*
662 * Prevent `pending' from catching up with `flushed' because of
663 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
664 * `pending' becomes large.
665 */
666 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
667 if (nbatch != batch) {
668 batch = nbatch;
669 goto retry;
670 }
671 } else {
672 atomic_inc(&mm->tlb_flush_batched);
673 }
3ea27719 674
d950c947
MG
675 /*
676 * If the PTE was dirty then it's best to assume it's writable. The
677 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
678 * before the page is queued for IO.
679 */
680 if (writable)
681 tlb_ubc->writable = true;
72b252ae
MG
682}
683
684/*
685 * Returns true if the TLB flush should be deferred to the end of a batch of
686 * unmap operations to reduce IPIs.
687 */
688static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
689{
690 bool should_defer = false;
691
692 if (!(flags & TTU_BATCH_FLUSH))
693 return false;
694
695 /* If remote CPUs need to be flushed then defer batch the flush */
696 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
697 should_defer = true;
698 put_cpu();
699
700 return should_defer;
701}
3ea27719
MG
702
703/*
704 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
705 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
706 * operation such as mprotect or munmap to race between reclaim unmapping
707 * the page and flushing the page. If this race occurs, it potentially allows
708 * access to data via a stale TLB entry. Tracking all mm's that have TLB
709 * batching in flight would be expensive during reclaim so instead track
710 * whether TLB batching occurred in the past and if so then do a flush here
711 * if required. This will cost one additional flush per reclaim cycle paid
712 * by the first operation at risk such as mprotect and mumap.
713 *
714 * This must be called under the PTL so that an access to tlb_flush_batched
715 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
716 * via the PTL.
717 */
718void flush_tlb_batched_pending(struct mm_struct *mm)
719{
5ee2fa2f
HY
720 int batch = atomic_read(&mm->tlb_flush_batched);
721 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
722 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
3ea27719 723
5ee2fa2f
HY
724 if (pending != flushed) {
725 flush_tlb_mm(mm);
3ea27719 726 /*
5ee2fa2f
HY
727 * If the new TLB flushing is pending during flushing, leave
728 * mm->tlb_flush_batched as is, to avoid losing flushing.
3ea27719 729 */
5ee2fa2f
HY
730 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
731 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
3ea27719
MG
732 }
733}
72b252ae 734#else
c7ab0d2f 735static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
736{
737}
738
739static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
740{
741 return false;
742}
743#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
744
1da177e4 745/*
bf89c8c8 746 * At what user virtual address is page expected in vma?
ab941e0f 747 * Caller should check the page is actually part of the vma.
1da177e4
LT
748 */
749unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
750{
e05b3453
MWO
751 struct folio *folio = page_folio(page);
752 if (folio_test_anon(folio)) {
753 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
4829b906
HD
754 /*
755 * Note: swapoff's unuse_vma() is more efficient with this
756 * check, and needs it to match anon_vma when KSM is active.
757 */
758 if (!vma->anon_vma || !page__anon_vma ||
759 vma->anon_vma->root != page__anon_vma->root)
21d0d443 760 return -EFAULT;
31657170
JW
761 } else if (!vma->vm_file) {
762 return -EFAULT;
e05b3453 763 } else if (vma->vm_file->f_mapping != folio->mapping) {
1da177e4 764 return -EFAULT;
31657170 765 }
494334e4
HD
766
767 return vma_address(page, vma);
1da177e4
LT
768}
769
50722804
ZK
770/*
771 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
772 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
773 * represents.
774 */
6219049a
BL
775pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
776{
777 pgd_t *pgd;
c2febafc 778 p4d_t *p4d;
6219049a
BL
779 pud_t *pud;
780 pmd_t *pmd = NULL;
781
782 pgd = pgd_offset(mm, address);
783 if (!pgd_present(*pgd))
784 goto out;
785
c2febafc
KS
786 p4d = p4d_offset(pgd, address);
787 if (!p4d_present(*p4d))
788 goto out;
789
790 pud = pud_offset(p4d, address);
6219049a
BL
791 if (!pud_present(*pud))
792 goto out;
793
794 pmd = pmd_offset(pud, address);
6219049a
BL
795out:
796 return pmd;
797}
798
b3ac0413 799struct folio_referenced_arg {
8749cfea
VD
800 int mapcount;
801 int referenced;
802 unsigned long vm_flags;
803 struct mem_cgroup *memcg;
804};
805/*
b3ac0413 806 * arg: folio_referenced_arg will be passed
8749cfea 807 */
2f031c6f
MWO
808static bool folio_referenced_one(struct folio *folio,
809 struct vm_area_struct *vma, unsigned long address, void *arg)
8749cfea 810{
b3ac0413
MWO
811 struct folio_referenced_arg *pra = arg;
812 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
8749cfea
VD
813 int referenced = 0;
814
8eaedede
KS
815 while (page_vma_mapped_walk(&pvmw)) {
816 address = pvmw.address;
b20ce5e0 817
47d4f3ee 818 if ((vma->vm_flags & VM_LOCKED) &&
b3ac0413 819 (!folio_test_large(folio) || !pvmw.pte)) {
47d4f3ee 820 /* Restore the mlock which got missed */
b3ac0413 821 mlock_vma_folio(folio, vma, !pvmw.pte);
8eaedede
KS
822 page_vma_mapped_walk_done(&pvmw);
823 pra->vm_flags |= VM_LOCKED;
e4b82222 824 return false; /* To break the loop */
8eaedede 825 }
71e3aac0 826
8eaedede 827 if (pvmw.pte) {
018ee47f
YZ
828 if (lru_gen_enabled() && pte_young(*pvmw.pte) &&
829 !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))) {
830 lru_gen_look_around(&pvmw);
831 referenced++;
832 }
833
8eaedede
KS
834 if (ptep_clear_flush_young_notify(vma, address,
835 pvmw.pte)) {
836 /*
837 * Don't treat a reference through
838 * a sequentially read mapping as such.
b3ac0413 839 * If the folio has been used in another mapping,
8eaedede
KS
840 * we will catch it; if this other mapping is
841 * already gone, the unmap path will have set
b3ac0413 842 * the referenced flag or activated the folio.
8eaedede
KS
843 */
844 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
845 referenced++;
846 }
847 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
848 if (pmdp_clear_flush_young_notify(vma, address,
849 pvmw.pmd))
8749cfea 850 referenced++;
8eaedede 851 } else {
b3ac0413 852 /* unexpected pmd-mapped folio? */
8eaedede 853 WARN_ON_ONCE(1);
8749cfea 854 }
8eaedede
KS
855
856 pra->mapcount--;
b20ce5e0 857 }
b20ce5e0 858
33c3fc71 859 if (referenced)
b3ac0413
MWO
860 folio_clear_idle(folio);
861 if (folio_test_clear_young(folio))
33c3fc71
VD
862 referenced++;
863
9f32624b
JK
864 if (referenced) {
865 pra->referenced++;
47d4f3ee 866 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
1da177e4 867 }
34bbd704 868
9f32624b 869 if (!pra->mapcount)
e4b82222 870 return false; /* To break the loop */
9f32624b 871
e4b82222 872 return true;
1da177e4
LT
873}
874
b3ac0413 875static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 876{
b3ac0413 877 struct folio_referenced_arg *pra = arg;
9f32624b 878 struct mem_cgroup *memcg = pra->memcg;
1da177e4 879
9f32624b
JK
880 if (!mm_match_cgroup(vma->vm_mm, memcg))
881 return true;
1da177e4 882
9f32624b 883 return false;
1da177e4
LT
884}
885
886/**
b3ac0413
MWO
887 * folio_referenced() - Test if the folio was referenced.
888 * @folio: The folio to test.
889 * @is_locked: Caller holds lock on the folio.
72835c86 890 * @memcg: target memory cgroup
b3ac0413 891 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
1da177e4 892 *
b3ac0413
MWO
893 * Quick test_and_clear_referenced for all mappings of a folio,
894 *
6d4675e6
MK
895 * Return: The number of mappings which referenced the folio. Return -1 if
896 * the function bailed out due to rmap lock contention.
1da177e4 897 */
b3ac0413
MWO
898int folio_referenced(struct folio *folio, int is_locked,
899 struct mem_cgroup *memcg, unsigned long *vm_flags)
1da177e4 900{
5ad64688 901 int we_locked = 0;
b3ac0413
MWO
902 struct folio_referenced_arg pra = {
903 .mapcount = folio_mapcount(folio),
9f32624b
JK
904 .memcg = memcg,
905 };
906 struct rmap_walk_control rwc = {
b3ac0413 907 .rmap_one = folio_referenced_one,
9f32624b 908 .arg = (void *)&pra,
2f031c6f 909 .anon_lock = folio_lock_anon_vma_read,
6d4675e6 910 .try_lock = true,
9f32624b 911 };
1da177e4 912
6fe6b7e3 913 *vm_flags = 0;
059d8442 914 if (!pra.mapcount)
9f32624b
JK
915 return 0;
916
b3ac0413 917 if (!folio_raw_mapping(folio))
9f32624b
JK
918 return 0;
919
b3ac0413
MWO
920 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
921 we_locked = folio_trylock(folio);
9f32624b
JK
922 if (!we_locked)
923 return 1;
1da177e4 924 }
9f32624b
JK
925
926 /*
927 * If we are reclaiming on behalf of a cgroup, skip
928 * counting on behalf of references from different
929 * cgroups
930 */
931 if (memcg) {
b3ac0413 932 rwc.invalid_vma = invalid_folio_referenced_vma;
9f32624b
JK
933 }
934
2f031c6f 935 rmap_walk(folio, &rwc);
9f32624b
JK
936 *vm_flags = pra.vm_flags;
937
938 if (we_locked)
b3ac0413 939 folio_unlock(folio);
9f32624b 940
6d4675e6 941 return rwc.contended ? -1 : pra.referenced;
1da177e4
LT
942}
943
6a8e0596 944static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
d08b3851 945{
6a8e0596
MS
946 int cleaned = 0;
947 struct vm_area_struct *vma = pvmw->vma;
ac46d4f3 948 struct mmu_notifier_range range;
6a8e0596 949 unsigned long address = pvmw->address;
d08b3851 950
369ea824
JG
951 /*
952 * We have to assume the worse case ie pmd for invalidation. Note that
e83c09a2 953 * the folio can not be freed from this function.
369ea824 954 */
7269f999
JG
955 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
956 0, vma, vma->vm_mm, address,
6a8e0596 957 vma_address_end(pvmw));
ac46d4f3 958 mmu_notifier_invalidate_range_start(&range);
369ea824 959
6a8e0596 960 while (page_vma_mapped_walk(pvmw)) {
f27176cf 961 int ret = 0;
369ea824 962
6a8e0596
MS
963 address = pvmw->address;
964 if (pvmw->pte) {
f27176cf 965 pte_t entry;
6a8e0596 966 pte_t *pte = pvmw->pte;
f27176cf
KS
967
968 if (!pte_dirty(*pte) && !pte_write(*pte))
969 continue;
970
785373b4
LT
971 flush_cache_page(vma, address, pte_pfn(*pte));
972 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
973 entry = pte_wrprotect(entry);
974 entry = pte_mkclean(entry);
785373b4 975 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
976 ret = 1;
977 } else {
396bcc52 978#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6a8e0596 979 pmd_t *pmd = pvmw->pmd;
f27176cf
KS
980 pmd_t entry;
981
982 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
983 continue;
984
7f9c9b60
MS
985 flush_cache_range(vma, address,
986 address + HPAGE_PMD_SIZE);
024eee0e 987 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
988 entry = pmd_wrprotect(entry);
989 entry = pmd_mkclean(entry);
785373b4 990 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
991 ret = 1;
992#else
e83c09a2 993 /* unexpected pmd-mapped folio? */
f27176cf
KS
994 WARN_ON_ONCE(1);
995#endif
996 }
d08b3851 997
0f10851e
JG
998 /*
999 * No need to call mmu_notifier_invalidate_range() as we are
1000 * downgrading page table protection not changing it to point
1001 * to a new page.
1002 *
ee65728e 1003 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1004 */
1005 if (ret)
6a8e0596 1006 cleaned++;
c2fda5fe 1007 }
d08b3851 1008
ac46d4f3 1009 mmu_notifier_invalidate_range_end(&range);
369ea824 1010
6a8e0596
MS
1011 return cleaned;
1012}
1013
1014static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1015 unsigned long address, void *arg)
1016{
1017 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1018 int *cleaned = arg;
1019
1020 *cleaned += page_vma_mkclean_one(&pvmw);
1021
e4b82222 1022 return true;
d08b3851
PZ
1023}
1024
9853a407 1025static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1026{
9853a407 1027 if (vma->vm_flags & VM_SHARED)
871beb8c 1028 return false;
d08b3851 1029
871beb8c 1030 return true;
d08b3851
PZ
1031}
1032
d9c08e22 1033int folio_mkclean(struct folio *folio)
d08b3851 1034{
9853a407
JK
1035 int cleaned = 0;
1036 struct address_space *mapping;
1037 struct rmap_walk_control rwc = {
1038 .arg = (void *)&cleaned,
1039 .rmap_one = page_mkclean_one,
1040 .invalid_vma = invalid_mkclean_vma,
1041 };
d08b3851 1042
d9c08e22 1043 BUG_ON(!folio_test_locked(folio));
d08b3851 1044
d9c08e22 1045 if (!folio_mapped(folio))
9853a407
JK
1046 return 0;
1047
d9c08e22 1048 mapping = folio_mapping(folio);
9853a407
JK
1049 if (!mapping)
1050 return 0;
1051
2f031c6f 1052 rmap_walk(folio, &rwc);
d08b3851 1053
9853a407 1054 return cleaned;
d08b3851 1055}
d9c08e22 1056EXPORT_SYMBOL_GPL(folio_mkclean);
d08b3851 1057
6a8e0596
MS
1058/**
1059 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1060 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1061 * within the @vma of shared mappings. And since clean PTEs
1062 * should also be readonly, write protects them too.
1063 * @pfn: start pfn.
1064 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1065 * @pgoff: page offset that the @pfn mapped with.
1066 * @vma: vma that @pfn mapped within.
1067 *
1068 * Returns the number of cleaned PTEs (including PMDs).
1069 */
1070int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1071 struct vm_area_struct *vma)
1072{
1073 struct page_vma_mapped_walk pvmw = {
1074 .pfn = pfn,
1075 .nr_pages = nr_pages,
1076 .pgoff = pgoff,
1077 .vma = vma,
1078 .flags = PVMW_SYNC,
1079 };
1080
1081 if (invalid_mkclean_vma(vma, NULL))
1082 return 0;
1083
1084 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1085 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1086
1087 return page_vma_mkclean_one(&pvmw);
1088}
1089
c44b6743
RR
1090/**
1091 * page_move_anon_rmap - move a page to our anon_vma
1092 * @page: the page to move to our anon_vma
1093 * @vma: the vma the page belongs to
c44b6743
RR
1094 *
1095 * When a page belongs exclusively to one process after a COW event,
1096 * that page can be moved into the anon_vma that belongs to just that
1097 * process, so the rmap code will not search the parent or sibling
1098 * processes.
1099 */
5a49973d 1100void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743 1101{
595af4c9
MWO
1102 void *anon_vma = vma->anon_vma;
1103 struct folio *folio = page_folio(page);
5a49973d 1104
595af4c9 1105 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
81d1b09c 1106 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743 1107
595af4c9 1108 anon_vma += PAGE_MAPPING_ANON;
414e2fb8
VD
1109 /*
1110 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
b3ac0413
MWO
1111 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1112 * folio_test_anon()) will not see one without the other.
414e2fb8 1113 */
595af4c9
MWO
1114 WRITE_ONCE(folio->mapping, anon_vma);
1115 SetPageAnonExclusive(page);
c44b6743
RR
1116}
1117
9617d95e 1118/**
4e1c1975 1119 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1120 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1121 * @vma: VM area to add page to.
1122 * @address: User virtual address of the mapping
e8a03feb 1123 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1124 */
1125static void __page_set_anon_rmap(struct page *page,
e8a03feb 1126 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1127{
e8a03feb 1128 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1129
e8a03feb 1130 BUG_ON(!anon_vma);
ea90002b 1131
4e1c1975 1132 if (PageAnon(page))
6c287605 1133 goto out;
4e1c1975 1134
ea90002b 1135 /*
e8a03feb
RR
1136 * If the page isn't exclusively mapped into this vma,
1137 * we must use the _oldest_ possible anon_vma for the
1138 * page mapping!
ea90002b 1139 */
4e1c1975 1140 if (!exclusive)
288468c3 1141 anon_vma = anon_vma->root;
9617d95e 1142
16f5e707
AS
1143 /*
1144 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1145 * Make sure the compiler doesn't split the stores of anon_vma and
1146 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1147 * could mistake the mapping for a struct address_space and crash.
1148 */
9617d95e 1149 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
16f5e707 1150 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
9617d95e 1151 page->index = linear_page_index(vma, address);
6c287605
DH
1152out:
1153 if (exclusive)
1154 SetPageAnonExclusive(page);
9617d95e
NP
1155}
1156
c97a9e10 1157/**
43d8eac4 1158 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1159 * @page: the page to add the mapping to
1160 * @vma: the vm area in which the mapping is added
1161 * @address: the user virtual address mapped
1162 */
1163static void __page_check_anon_rmap(struct page *page,
1164 struct vm_area_struct *vma, unsigned long address)
1165{
e05b3453 1166 struct folio *folio = page_folio(page);
c97a9e10
NP
1167 /*
1168 * The page's anon-rmap details (mapping and index) are guaranteed to
1169 * be set up correctly at this point.
1170 *
1171 * We have exclusion against page_add_anon_rmap because the caller
90aaca85 1172 * always holds the page locked.
c97a9e10
NP
1173 *
1174 * We have exclusion against page_add_new_anon_rmap because those pages
1175 * are initially only visible via the pagetables, and the pte is locked
1176 * over the call to page_add_new_anon_rmap.
1177 */
e05b3453
MWO
1178 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1179 folio);
30c46382
YS
1180 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1181 page);
c97a9e10
NP
1182}
1183
1da177e4
LT
1184/**
1185 * page_add_anon_rmap - add pte mapping to an anonymous page
1186 * @page: the page to add the mapping to
1187 * @vma: the vm area in which the mapping is added
1188 * @address: the user virtual address mapped
f1e2db12 1189 * @flags: the rmap flags
1da177e4 1190 *
5ad64688 1191 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1192 * the anon_vma case: to serialize mapping,index checking after setting,
1193 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1194 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1195 */
1196void page_add_anon_rmap(struct page *page,
14f9135d 1197 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1da177e4 1198{
53f9263b
KS
1199 bool compound = flags & RMAP_COMPOUND;
1200 bool first;
1201
be5d0a74
JW
1202 if (unlikely(PageKsm(page)))
1203 lock_page_memcg(page);
1204 else
1205 VM_BUG_ON_PAGE(!PageLocked(page), page);
1206
e9b61f19
KS
1207 if (compound) {
1208 atomic_t *mapcount;
53f9263b 1209 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1210 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1211 mapcount = compound_mapcount_ptr(page);
1212 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1213 } else {
1214 first = atomic_inc_and_test(&page->_mapcount);
1215 }
6c287605
DH
1216 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1217 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
53f9263b 1218
79134171 1219 if (first) {
6c357848 1220 int nr = compound ? thp_nr_pages(page) : 1;
bea04b07
JZ
1221 /*
1222 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1223 * these counters are not modified in interrupt context, and
1224 * pte lock(a spinlock) is held, which implies preemption
1225 * disabled.
1226 */
65c45377 1227 if (compound)
69473e5d 1228 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
be5d0a74 1229 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
79134171 1230 }
5ad64688 1231
cea86fe2 1232 if (unlikely(PageKsm(page)))
be5d0a74 1233 unlock_page_memcg(page);
53f9263b 1234
5dbe0af4 1235 /* address might be in next vma when migration races vma_adjust */
cea86fe2 1236 else if (first)
d281ee61 1237 __page_set_anon_rmap(page, vma, address,
14f9135d 1238 !!(flags & RMAP_EXCLUSIVE));
69029cd5 1239 else
c97a9e10 1240 __page_check_anon_rmap(page, vma, address);
cea86fe2
HD
1241
1242 mlock_vma_page(page, vma, compound);
1da177e4
LT
1243}
1244
43d8eac4 1245/**
40f2bbf7 1246 * page_add_new_anon_rmap - add mapping to a new anonymous page
9617d95e
NP
1247 * @page: the page to add the mapping to
1248 * @vma: the vm area in which the mapping is added
1249 * @address: the user virtual address mapped
40f2bbf7
DH
1250 *
1251 * If it's a compound page, it is accounted as a compound page. As the page
1252 * is new, it's assume to get mapped exclusively by a single process.
9617d95e
NP
1253 *
1254 * Same as page_add_anon_rmap but must only be called on *new* pages.
1255 * This means the inc-and-test can be bypassed.
c97a9e10 1256 * Page does not have to be locked.
9617d95e
NP
1257 */
1258void page_add_new_anon_rmap(struct page *page,
40f2bbf7 1259 struct vm_area_struct *vma, unsigned long address)
9617d95e 1260{
40f2bbf7 1261 const bool compound = PageCompound(page);
6c357848 1262 int nr = compound ? thp_nr_pages(page) : 1;
d281ee61 1263
81d1b09c 1264 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1265 __SetPageSwapBacked(page);
d281ee61
KS
1266 if (compound) {
1267 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1268 /* increment count (starts at -1) */
1269 atomic_set(compound_mapcount_ptr(page), 0);
5232c63f 1270 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1271
69473e5d 1272 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
53f9263b 1273 } else {
53f9263b
KS
1274 /* increment count (starts at -1) */
1275 atomic_set(&page->_mapcount, 0);
d281ee61 1276 }
be5d0a74 1277 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
e8a03feb 1278 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1279}
1280
1da177e4
LT
1281/**
1282 * page_add_file_rmap - add pte mapping to a file page
cea86fe2
HD
1283 * @page: the page to add the mapping to
1284 * @vma: the vm area in which the mapping is added
1285 * @compound: charge the page as compound or small page
1da177e4 1286 *
b8072f09 1287 * The caller needs to hold the pte lock.
1da177e4 1288 */
cea86fe2
HD
1289void page_add_file_rmap(struct page *page,
1290 struct vm_area_struct *vma, bool compound)
1da177e4 1291{
5d543f13 1292 int i, nr = 0;
dd78fedd
KS
1293
1294 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1295 lock_page_memcg(page);
dd78fedd 1296 if (compound && PageTransHuge(page)) {
a1528e21
MS
1297 int nr_pages = thp_nr_pages(page);
1298
5d543f13 1299 for (i = 0; i < nr_pages; i++) {
dd78fedd
KS
1300 if (atomic_inc_and_test(&page[i]._mapcount))
1301 nr++;
1302 }
1303 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1304 goto out;
bd55b0c2
HD
1305
1306 /*
1307 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1308 * but page lock is held by all page_add_file_rmap() compound
1309 * callers, and SetPageDoubleMap below warns if !PageLocked:
1310 * so here is a place that DoubleMap can be safely cleared.
1311 */
1312 VM_WARN_ON_ONCE(!PageLocked(page));
1313 if (nr == nr_pages && PageDoubleMap(page))
1314 ClearPageDoubleMap(page);
1315
99cb0dbd 1316 if (PageSwapBacked(page))
a1528e21
MS
1317 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1318 nr_pages);
99cb0dbd 1319 else
380780e7
MS
1320 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1321 nr_pages);
dd78fedd 1322 } else {
c8efc390
KS
1323 if (PageTransCompound(page) && page_mapping(page)) {
1324 VM_WARN_ON_ONCE(!PageLocked(page));
cea86fe2 1325 SetPageDoubleMap(compound_head(page));
9a73f61b 1326 }
5d543f13
HD
1327 if (atomic_inc_and_test(&page->_mapcount))
1328 nr++;
d69b042f 1329 }
dd78fedd 1330out:
5d543f13
HD
1331 if (nr)
1332 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
62cccb8c 1333 unlock_page_memcg(page);
cea86fe2
HD
1334
1335 mlock_vma_page(page, vma, compound);
1da177e4
LT
1336}
1337
dd78fedd 1338static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1339{
5d543f13 1340 int i, nr = 0;
dd78fedd 1341
57dea93a 1342 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
8186eb6a 1343
53f9263b
KS
1344 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1345 if (unlikely(PageHuge(page))) {
1346 /* hugetlb pages are always mapped with pmds */
1347 atomic_dec(compound_mapcount_ptr(page));
be5d0a74 1348 return;
53f9263b 1349 }
8186eb6a 1350
53f9263b 1351 /* page still mapped by someone else? */
dd78fedd 1352 if (compound && PageTransHuge(page)) {
a1528e21
MS
1353 int nr_pages = thp_nr_pages(page);
1354
5d543f13 1355 for (i = 0; i < nr_pages; i++) {
dd78fedd
KS
1356 if (atomic_add_negative(-1, &page[i]._mapcount))
1357 nr++;
1358 }
1359 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
5d543f13 1360 goto out;
99cb0dbd 1361 if (PageSwapBacked(page))
a1528e21
MS
1362 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1363 -nr_pages);
99cb0dbd 1364 else
380780e7
MS
1365 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1366 -nr_pages);
dd78fedd 1367 } else {
5d543f13
HD
1368 if (atomic_add_negative(-1, &page->_mapcount))
1369 nr++;
dd78fedd 1370 }
5d543f13
HD
1371out:
1372 if (nr)
1373 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1374}
1375
53f9263b
KS
1376static void page_remove_anon_compound_rmap(struct page *page)
1377{
1378 int i, nr;
1379
1380 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1381 return;
1382
1383 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1384 if (unlikely(PageHuge(page)))
1385 return;
1386
1387 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1388 return;
1389
69473e5d 1390 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
53f9263b
KS
1391
1392 if (TestClearPageDoubleMap(page)) {
1393 /*
1394 * Subpages can be mapped with PTEs too. Check how many of
f1fe80d4 1395 * them are still mapped.
53f9263b 1396 */
5eaf35ab 1397 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
53f9263b
KS
1398 if (atomic_add_negative(-1, &page[i]._mapcount))
1399 nr++;
1400 }
f1fe80d4
KS
1401
1402 /*
1403 * Queue the page for deferred split if at least one small
1404 * page of the compound page is unmapped, but at least one
1405 * small page is still mapped.
1406 */
5eaf35ab 1407 if (nr && nr < thp_nr_pages(page))
f1fe80d4 1408 deferred_split_huge_page(page);
53f9263b 1409 } else {
5eaf35ab 1410 nr = thp_nr_pages(page);
53f9263b
KS
1411 }
1412
f1fe80d4 1413 if (nr)
be5d0a74 1414 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
53f9263b
KS
1415}
1416
1da177e4
LT
1417/**
1418 * page_remove_rmap - take down pte mapping from a page
d281ee61 1419 * @page: page to remove mapping from
cea86fe2 1420 * @vma: the vm area from which the mapping is removed
d281ee61 1421 * @compound: uncharge the page as compound or small page
1da177e4 1422 *
b8072f09 1423 * The caller needs to hold the pte lock.
1da177e4 1424 */
cea86fe2
HD
1425void page_remove_rmap(struct page *page,
1426 struct vm_area_struct *vma, bool compound)
1da177e4 1427{
be5d0a74 1428 lock_page_memcg(page);
89c06bd5 1429
be5d0a74
JW
1430 if (!PageAnon(page)) {
1431 page_remove_file_rmap(page, compound);
1432 goto out;
1433 }
1434
1435 if (compound) {
1436 page_remove_anon_compound_rmap(page);
1437 goto out;
1438 }
53f9263b 1439
b904dcfe
KM
1440 /* page still mapped by someone else? */
1441 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1442 goto out;
8186eb6a 1443
0fe6e20b 1444 /*
bea04b07
JZ
1445 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1446 * these counters are not modified in interrupt context, and
bea04b07 1447 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1448 */
be5d0a74 1449 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
8186eb6a 1450
9a982250
KS
1451 if (PageTransCompound(page))
1452 deferred_split_huge_page(compound_head(page));
1453
b904dcfe
KM
1454 /*
1455 * It would be tidy to reset the PageAnon mapping here,
1456 * but that might overwrite a racing page_add_anon_rmap
1457 * which increments mapcount after us but sets mapping
2d4894b5 1458 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1459 * and remember that it's only reliable while mapped.
1460 * Leaving it set also helps swapoff to reinstate ptes
1461 * faster for those pages still in swapcache.
1462 */
be5d0a74
JW
1463out:
1464 unlock_page_memcg(page);
cea86fe2
HD
1465
1466 munlock_vma_page(page, vma, compound);
1da177e4
LT
1467}
1468
1469/*
52629506 1470 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1471 */
2f031c6f 1472static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
52629506 1473 unsigned long address, void *arg)
1da177e4
LT
1474{
1475 struct mm_struct *mm = vma->vm_mm;
869f7ee6 1476 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1da177e4 1477 pte_t pteval;
c7ab0d2f 1478 struct page *subpage;
6c287605 1479 bool anon_exclusive, ret = true;
ac46d4f3 1480 struct mmu_notifier_range range;
4708f318 1481 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1da177e4 1482
732ed558
HD
1483 /*
1484 * When racing against e.g. zap_pte_range() on another cpu,
1485 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1fb08ac6 1486 * try_to_unmap() may return before page_mapped() has become false,
732ed558
HD
1487 * if page table locking is skipped: use TTU_SYNC to wait for that.
1488 */
1489 if (flags & TTU_SYNC)
1490 pvmw.flags = PVMW_SYNC;
1491
a98a2f0c 1492 if (flags & TTU_SPLIT_HUGE_PMD)
af28a988 1493 split_huge_pmd_address(vma, address, false, folio);
fec89c10 1494
369ea824 1495 /*
017b1660
MK
1496 * For THP, we have to assume the worse case ie pmd for invalidation.
1497 * For hugetlb, it could be much worse if we need to do pud
1498 * invalidation in the case of pmd sharing.
1499 *
869f7ee6
MWO
1500 * Note that the folio can not be freed in this function as call of
1501 * try_to_unmap() must hold a reference on the folio.
369ea824 1502 */
2aff7a47 1503 range.end = vma_address_end(&pvmw);
7269f999 1504 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
494334e4 1505 address, range.end);
869f7ee6 1506 if (folio_test_hugetlb(folio)) {
017b1660
MK
1507 /*
1508 * If sharing is possible, start and end will be adjusted
1509 * accordingly.
1510 */
ac46d4f3
JG
1511 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1512 &range.end);
017b1660 1513 }
ac46d4f3 1514 mmu_notifier_invalidate_range_start(&range);
369ea824 1515
c7ab0d2f 1516 while (page_vma_mapped_walk(&pvmw)) {
cea86fe2 1517 /* Unexpected PMD-mapped THP? */
869f7ee6 1518 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
cea86fe2 1519
c7ab0d2f 1520 /*
869f7ee6 1521 * If the folio is in an mlock()d vma, we must not swap it out.
c7ab0d2f 1522 */
efdb6720
HD
1523 if (!(flags & TTU_IGNORE_MLOCK) &&
1524 (vma->vm_flags & VM_LOCKED)) {
cea86fe2 1525 /* Restore the mlock which got missed */
869f7ee6 1526 mlock_vma_folio(folio, vma, false);
efdb6720
HD
1527 page_vma_mapped_walk_done(&pvmw);
1528 ret = false;
1529 break;
b87537d9 1530 }
c7ab0d2f 1531
869f7ee6
MWO
1532 subpage = folio_page(folio,
1533 pte_pfn(*pvmw.pte) - folio_pfn(folio));
785373b4 1534 address = pvmw.address;
6c287605
DH
1535 anon_exclusive = folio_test_anon(folio) &&
1536 PageAnonExclusive(subpage);
785373b4 1537
dfc7ab57 1538 if (folio_test_hugetlb(folio)) {
0506c31d
BW
1539 bool anon = folio_test_anon(folio);
1540
a00a8759
BW
1541 /*
1542 * The try_to_unmap() is only passed a hugetlb page
1543 * in the case where the hugetlb page is poisoned.
1544 */
1545 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
54205e9c
BW
1546 /*
1547 * huge_pmd_unshare may unmap an entire PMD page.
1548 * There is no way of knowing exactly which PMDs may
1549 * be cached for this mm, so we must flush them all.
1550 * start/end were already adjusted above to cover this
1551 * range.
1552 */
1553 flush_cache_range(vma, range.start, range.end);
1554
0506c31d
BW
1555 /*
1556 * To call huge_pmd_unshare, i_mmap_rwsem must be
1557 * held in write mode. Caller needs to explicitly
1558 * do this outside rmap routines.
1559 */
1560 VM_BUG_ON(!anon && !(flags & TTU_RMAP_LOCKED));
4ddb4d91 1561 if (!anon && huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
0506c31d
BW
1562 flush_tlb_range(vma, range.start, range.end);
1563 mmu_notifier_invalidate_range(mm, range.start,
1564 range.end);
1565
017b1660 1566 /*
0506c31d
BW
1567 * The ref count of the PMD page was dropped
1568 * which is part of the way map counting
1569 * is done for shared PMDs. Return 'true'
1570 * here. When there is no other sharing,
1571 * huge_pmd_unshare returns false and we will
1572 * unmap the actual page and drop map count
1573 * to zero.
017b1660 1574 */
0506c31d
BW
1575 page_vma_mapped_walk_done(&pvmw);
1576 break;
017b1660 1577 }
a00a8759 1578 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
54205e9c
BW
1579 } else {
1580 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
088b8aa5
DH
1581 /* Nuke the page table entry. */
1582 if (should_defer_flush(mm, flags)) {
a00a8759
BW
1583 /*
1584 * We clear the PTE but do not flush so potentially
1585 * a remote CPU could still be writing to the folio.
1586 * If the entry was previously clean then the
1587 * architecture must guarantee that a clear->dirty
1588 * transition on a cached TLB entry is written through
1589 * and traps if the PTE is unmapped.
1590 */
1591 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f 1592
a00a8759
BW
1593 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1594 } else {
1595 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1596 }
c7ab0d2f 1597 }
72b252ae 1598
999dad82
PX
1599 /*
1600 * Now the pte is cleared. If this pte was uffd-wp armed,
1601 * we may want to replace a none pte with a marker pte if
1602 * it's file-backed, so we don't lose the tracking info.
1603 */
1604 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1605
869f7ee6 1606 /* Set the dirty flag on the folio now the pte is gone. */
c7ab0d2f 1607 if (pte_dirty(pteval))
869f7ee6 1608 folio_mark_dirty(folio);
1da177e4 1609
c7ab0d2f
KS
1610 /* Update high watermark before we lower rss */
1611 update_hiwater_rss(mm);
1da177e4 1612
da358d5c 1613 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1614 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
869f7ee6
MWO
1615 if (folio_test_hugetlb(folio)) {
1616 hugetlb_count_sub(folio_nr_pages(folio), mm);
18f39629 1617 set_huge_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1618 } else {
869f7ee6 1619 dec_mm_counter(mm, mm_counter(&folio->page));
785373b4 1620 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1621 }
365e9c87 1622
bce73e48 1623 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1624 /*
1625 * The guest indicated that the page content is of no
1626 * interest anymore. Simply discard the pte, vmscan
1627 * will take care of the rest.
bce73e48
CB
1628 * A future reference will then fault in a new zero
1629 * page. When userfaultfd is active, we must not drop
1630 * this page though, as its main user (postcopy
1631 * migration) will not expect userfaults on already
1632 * copied pages.
c7ab0d2f 1633 */
869f7ee6 1634 dec_mm_counter(mm, mm_counter(&folio->page));
0f10851e
JG
1635 /* We have to invalidate as we cleared the pte */
1636 mmu_notifier_invalidate_range(mm, address,
1637 address + PAGE_SIZE);
869f7ee6 1638 } else if (folio_test_anon(folio)) {
c7ab0d2f
KS
1639 swp_entry_t entry = { .val = page_private(subpage) };
1640 pte_t swp_pte;
1641 /*
1642 * Store the swap location in the pte.
1643 * See handle_pte_fault() ...
1644 */
869f7ee6
MWO
1645 if (unlikely(folio_test_swapbacked(folio) !=
1646 folio_test_swapcache(folio))) {
eb94a878 1647 WARN_ON_ONCE(1);
83612a94 1648 ret = false;
369ea824 1649 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1650 mmu_notifier_invalidate_range(mm, address,
1651 address + PAGE_SIZE);
eb94a878
MK
1652 page_vma_mapped_walk_done(&pvmw);
1653 break;
1654 }
c7ab0d2f 1655
802a3a92 1656 /* MADV_FREE page check */
869f7ee6 1657 if (!folio_test_swapbacked(folio)) {
6c8e2a25
MFO
1658 int ref_count, map_count;
1659
1660 /*
1661 * Synchronize with gup_pte_range():
1662 * - clear PTE; barrier; read refcount
1663 * - inc refcount; barrier; read PTE
1664 */
1665 smp_mb();
1666
1667 ref_count = folio_ref_count(folio);
1668 map_count = folio_mapcount(folio);
1669
1670 /*
1671 * Order reads for page refcount and dirty flag
1672 * (see comments in __remove_mapping()).
1673 */
1674 smp_rmb();
1675
1676 /*
1677 * The only page refs must be one from isolation
1678 * plus the rmap(s) (dropped by discard:).
1679 */
1680 if (ref_count == 1 + map_count &&
1681 !folio_test_dirty(folio)) {
0f10851e
JG
1682 /* Invalidate as we cleared the pte */
1683 mmu_notifier_invalidate_range(mm,
1684 address, address + PAGE_SIZE);
802a3a92
SL
1685 dec_mm_counter(mm, MM_ANONPAGES);
1686 goto discard;
1687 }
1688
1689 /*
869f7ee6 1690 * If the folio was redirtied, it cannot be
802a3a92
SL
1691 * discarded. Remap the page to page table.
1692 */
785373b4 1693 set_pte_at(mm, address, pvmw.pte, pteval);
869f7ee6 1694 folio_set_swapbacked(folio);
e4b82222 1695 ret = false;
802a3a92
SL
1696 page_vma_mapped_walk_done(&pvmw);
1697 break;
c7ab0d2f 1698 }
854e9ed0 1699
c7ab0d2f 1700 if (swap_duplicate(entry) < 0) {
785373b4 1701 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1702 ret = false;
c7ab0d2f
KS
1703 page_vma_mapped_walk_done(&pvmw);
1704 break;
1705 }
ca827d55 1706 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
322842ea 1707 swap_free(entry);
ca827d55
KA
1708 set_pte_at(mm, address, pvmw.pte, pteval);
1709 ret = false;
1710 page_vma_mapped_walk_done(&pvmw);
1711 break;
1712 }
088b8aa5
DH
1713
1714 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
1715 if (anon_exclusive &&
1716 page_try_share_anon_rmap(subpage)) {
1717 swap_free(entry);
1718 set_pte_at(mm, address, pvmw.pte, pteval);
1719 ret = false;
1720 page_vma_mapped_walk_done(&pvmw);
1721 break;
1722 }
1723 /*
1493a191
DH
1724 * Note: We *don't* remember if the page was mapped
1725 * exclusively in the swap pte if the architecture
1726 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1727 * that case, swapin code has to re-determine that
1728 * manually and might detect the page as possibly
1729 * shared, for example, if there are other references on
1730 * the page or if the page is under writeback. We made
1731 * sure that there are no GUP pins on the page that
1732 * would rely on it, so for GUP pins this is fine.
6c287605 1733 */
c7ab0d2f
KS
1734 if (list_empty(&mm->mmlist)) {
1735 spin_lock(&mmlist_lock);
1736 if (list_empty(&mm->mmlist))
1737 list_add(&mm->mmlist, &init_mm.mmlist);
1738 spin_unlock(&mmlist_lock);
1739 }
854e9ed0 1740 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1741 inc_mm_counter(mm, MM_SWAPENTS);
1742 swp_pte = swp_entry_to_pte(entry);
1493a191
DH
1743 if (anon_exclusive)
1744 swp_pte = pte_swp_mkexclusive(swp_pte);
c7ab0d2f
KS
1745 if (pte_soft_dirty(pteval))
1746 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1747 if (pte_uffd_wp(pteval))
1748 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1749 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1750 /* Invalidate as we cleared the pte */
1751 mmu_notifier_invalidate_range(mm, address,
1752 address + PAGE_SIZE);
1753 } else {
1754 /*
869f7ee6
MWO
1755 * This is a locked file-backed folio,
1756 * so it cannot be removed from the page
1757 * cache and replaced by a new folio before
1758 * mmu_notifier_invalidate_range_end, so no
1759 * concurrent thread might update its page table
1760 * to point at a new folio while a device is
1761 * still using this folio.
0f10851e 1762 *
ee65728e 1763 * See Documentation/mm/mmu_notifier.rst
0f10851e 1764 */
869f7ee6 1765 dec_mm_counter(mm, mm_counter_file(&folio->page));
0f10851e 1766 }
854e9ed0 1767discard:
0f10851e
JG
1768 /*
1769 * No need to call mmu_notifier_invalidate_range() it has be
1770 * done above for all cases requiring it to happen under page
1771 * table lock before mmu_notifier_invalidate_range_end()
1772 *
ee65728e 1773 * See Documentation/mm/mmu_notifier.rst
0f10851e 1774 */
869f7ee6 1775 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
b7435507 1776 if (vma->vm_flags & VM_LOCKED)
adb11e78 1777 mlock_page_drain_local();
869f7ee6 1778 folio_put(folio);
c7ab0d2f 1779 }
369ea824 1780
ac46d4f3 1781 mmu_notifier_invalidate_range_end(&range);
369ea824 1782
caed0f48 1783 return ret;
1da177e4
LT
1784}
1785
52629506
JK
1786static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1787{
222100ee 1788 return vma_is_temporary_stack(vma);
52629506
JK
1789}
1790
2f031c6f 1791static int page_not_mapped(struct folio *folio)
52629506 1792{
2f031c6f 1793 return !folio_mapped(folio);
2a52bcbc 1794}
52629506 1795
1da177e4 1796/**
869f7ee6
MWO
1797 * try_to_unmap - Try to remove all page table mappings to a folio.
1798 * @folio: The folio to unmap.
14fa31b8 1799 * @flags: action and flags
1da177e4
LT
1800 *
1801 * Tries to remove all the page table entries which are mapping this
869f7ee6
MWO
1802 * folio. It is the caller's responsibility to check if the folio is
1803 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1da177e4 1804 *
869f7ee6 1805 * Context: Caller must hold the folio lock.
1da177e4 1806 */
869f7ee6 1807void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1da177e4 1808{
52629506
JK
1809 struct rmap_walk_control rwc = {
1810 .rmap_one = try_to_unmap_one,
802a3a92 1811 .arg = (void *)flags,
b7e188ec 1812 .done = page_not_mapped,
2f031c6f 1813 .anon_lock = folio_lock_anon_vma_read,
52629506 1814 };
1da177e4 1815
a98a2f0c 1816 if (flags & TTU_RMAP_LOCKED)
2f031c6f 1817 rmap_walk_locked(folio, &rwc);
a98a2f0c 1818 else
2f031c6f 1819 rmap_walk(folio, &rwc);
a98a2f0c
AP
1820}
1821
1822/*
1823 * @arg: enum ttu_flags will be passed to this argument.
1824 *
1825 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
64b586d1 1826 * containing migration entries.
a98a2f0c 1827 */
2f031c6f 1828static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
a98a2f0c
AP
1829 unsigned long address, void *arg)
1830{
1831 struct mm_struct *mm = vma->vm_mm;
4b8554c5 1832 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
a98a2f0c
AP
1833 pte_t pteval;
1834 struct page *subpage;
6c287605 1835 bool anon_exclusive, ret = true;
a98a2f0c
AP
1836 struct mmu_notifier_range range;
1837 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1838
a98a2f0c
AP
1839 /*
1840 * When racing against e.g. zap_pte_range() on another cpu,
1841 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1842 * try_to_migrate() may return before page_mapped() has become false,
1843 * if page table locking is skipped: use TTU_SYNC to wait for that.
1844 */
1845 if (flags & TTU_SYNC)
1846 pvmw.flags = PVMW_SYNC;
1847
1848 /*
1849 * unmap_page() in mm/huge_memory.c is the only user of migration with
1850 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1851 */
1852 if (flags & TTU_SPLIT_HUGE_PMD)
af28a988 1853 split_huge_pmd_address(vma, address, true, folio);
a98a2f0c
AP
1854
1855 /*
1856 * For THP, we have to assume the worse case ie pmd for invalidation.
1857 * For hugetlb, it could be much worse if we need to do pud
1858 * invalidation in the case of pmd sharing.
1859 *
1860 * Note that the page can not be free in this function as call of
1861 * try_to_unmap() must hold a reference on the page.
1862 */
2aff7a47 1863 range.end = vma_address_end(&pvmw);
a98a2f0c
AP
1864 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1865 address, range.end);
4b8554c5 1866 if (folio_test_hugetlb(folio)) {
a98a2f0c
AP
1867 /*
1868 * If sharing is possible, start and end will be adjusted
1869 * accordingly.
1870 */
1871 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1872 &range.end);
1873 }
1874 mmu_notifier_invalidate_range_start(&range);
1875
1876 while (page_vma_mapped_walk(&pvmw)) {
1877#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1878 /* PMD-mapped THP migration entry */
1879 if (!pvmw.pte) {
4b8554c5
MWO
1880 subpage = folio_page(folio,
1881 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1882 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1883 !folio_test_pmd_mappable(folio), folio);
a98a2f0c 1884
7f5abe60
DH
1885 if (set_pmd_migration_entry(&pvmw, subpage)) {
1886 ret = false;
1887 page_vma_mapped_walk_done(&pvmw);
1888 break;
1889 }
a98a2f0c
AP
1890 continue;
1891 }
1892#endif
1893
1894 /* Unexpected PMD-mapped THP? */
4b8554c5 1895 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
a98a2f0c 1896
1118234e
DH
1897 if (folio_is_zone_device(folio)) {
1898 /*
1899 * Our PTE is a non-present device exclusive entry and
1900 * calculating the subpage as for the common case would
1901 * result in an invalid pointer.
1902 *
1903 * Since only PAGE_SIZE pages can currently be
1904 * migrated, just set it to page. This will need to be
1905 * changed when hugepage migrations to device private
1906 * memory are supported.
1907 */
1908 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1909 subpage = &folio->page;
1910 } else {
1911 subpage = folio_page(folio,
1912 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1913 }
a98a2f0c 1914 address = pvmw.address;
6c287605
DH
1915 anon_exclusive = folio_test_anon(folio) &&
1916 PageAnonExclusive(subpage);
a98a2f0c 1917
dfc7ab57 1918 if (folio_test_hugetlb(folio)) {
0506c31d
BW
1919 bool anon = folio_test_anon(folio);
1920
54205e9c
BW
1921 /*
1922 * huge_pmd_unshare may unmap an entire PMD page.
1923 * There is no way of knowing exactly which PMDs may
1924 * be cached for this mm, so we must flush them all.
1925 * start/end were already adjusted above to cover this
1926 * range.
1927 */
1928 flush_cache_range(vma, range.start, range.end);
1929
0506c31d
BW
1930 /*
1931 * To call huge_pmd_unshare, i_mmap_rwsem must be
1932 * held in write mode. Caller needs to explicitly
1933 * do this outside rmap routines.
1934 */
1935 VM_BUG_ON(!anon && !(flags & TTU_RMAP_LOCKED));
4ddb4d91 1936 if (!anon && huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
0506c31d
BW
1937 flush_tlb_range(vma, range.start, range.end);
1938 mmu_notifier_invalidate_range(mm, range.start,
1939 range.end);
1940
a98a2f0c 1941 /*
0506c31d
BW
1942 * The ref count of the PMD page was dropped
1943 * which is part of the way map counting
1944 * is done for shared PMDs. Return 'true'
1945 * here. When there is no other sharing,
1946 * huge_pmd_unshare returns false and we will
1947 * unmap the actual page and drop map count
1948 * to zero.
a98a2f0c 1949 */
0506c31d
BW
1950 page_vma_mapped_walk_done(&pvmw);
1951 break;
a98a2f0c 1952 }
5d4af619
BW
1953
1954 /* Nuke the hugetlb page table entry */
1955 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
54205e9c
BW
1956 } else {
1957 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
5d4af619
BW
1958 /* Nuke the page table entry. */
1959 pteval = ptep_clear_flush(vma, address, pvmw.pte);
a98a2f0c
AP
1960 }
1961
4b8554c5 1962 /* Set the dirty flag on the folio now the pte is gone. */
a98a2f0c 1963 if (pte_dirty(pteval))
4b8554c5 1964 folio_mark_dirty(folio);
a98a2f0c
AP
1965
1966 /* Update high watermark before we lower rss */
1967 update_hiwater_rss(mm);
1968
f25cbb7a 1969 if (folio_is_device_private(folio)) {
4b8554c5 1970 unsigned long pfn = folio_pfn(folio);
a98a2f0c
AP
1971 swp_entry_t entry;
1972 pte_t swp_pte;
1973
6c287605
DH
1974 if (anon_exclusive)
1975 BUG_ON(page_try_share_anon_rmap(subpage));
1976
a98a2f0c
AP
1977 /*
1978 * Store the pfn of the page in a special migration
1979 * pte. do_swap_page() will wait until the migration
1980 * pte is removed and then restart fault handling.
1981 */
3d88705c
AP
1982 entry = pte_to_swp_entry(pteval);
1983 if (is_writable_device_private_entry(entry))
1984 entry = make_writable_migration_entry(pfn);
6c287605
DH
1985 else if (anon_exclusive)
1986 entry = make_readable_exclusive_migration_entry(pfn);
3d88705c
AP
1987 else
1988 entry = make_readable_migration_entry(pfn);
a98a2f0c
AP
1989 swp_pte = swp_entry_to_pte(entry);
1990
1991 /*
1992 * pteval maps a zone device page and is therefore
1993 * a swap pte.
1994 */
1995 if (pte_swp_soft_dirty(pteval))
1996 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1997 if (pte_swp_uffd_wp(pteval))
1998 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1999 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
4cc79b33
AK
2000 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2001 compound_order(&folio->page));
a98a2f0c
AP
2002 /*
2003 * No need to invalidate here it will synchronize on
2004 * against the special swap migration pte.
a98a2f0c 2005 */
da358d5c 2006 } else if (PageHWPoison(subpage)) {
a98a2f0c 2007 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
4b8554c5
MWO
2008 if (folio_test_hugetlb(folio)) {
2009 hugetlb_count_sub(folio_nr_pages(folio), mm);
18f39629 2010 set_huge_pte_at(mm, address, pvmw.pte, pteval);
a98a2f0c 2011 } else {
4b8554c5 2012 dec_mm_counter(mm, mm_counter(&folio->page));
a98a2f0c
AP
2013 set_pte_at(mm, address, pvmw.pte, pteval);
2014 }
2015
2016 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2017 /*
2018 * The guest indicated that the page content is of no
2019 * interest anymore. Simply discard the pte, vmscan
2020 * will take care of the rest.
2021 * A future reference will then fault in a new zero
2022 * page. When userfaultfd is active, we must not drop
2023 * this page though, as its main user (postcopy
2024 * migration) will not expect userfaults on already
2025 * copied pages.
2026 */
4b8554c5 2027 dec_mm_counter(mm, mm_counter(&folio->page));
a98a2f0c
AP
2028 /* We have to invalidate as we cleared the pte */
2029 mmu_notifier_invalidate_range(mm, address,
2030 address + PAGE_SIZE);
2031 } else {
2032 swp_entry_t entry;
2033 pte_t swp_pte;
2034
2035 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
5d4af619
BW
2036 if (folio_test_hugetlb(folio))
2037 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2038 else
2039 set_pte_at(mm, address, pvmw.pte, pteval);
a98a2f0c
AP
2040 ret = false;
2041 page_vma_mapped_walk_done(&pvmw);
2042 break;
2043 }
6c287605
DH
2044 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2045 !anon_exclusive, subpage);
088b8aa5
DH
2046
2047 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
2048 if (anon_exclusive &&
2049 page_try_share_anon_rmap(subpage)) {
5d4af619
BW
2050 if (folio_test_hugetlb(folio))
2051 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2052 else
2053 set_pte_at(mm, address, pvmw.pte, pteval);
6c287605
DH
2054 ret = false;
2055 page_vma_mapped_walk_done(&pvmw);
2056 break;
2057 }
a98a2f0c
AP
2058
2059 /*
2060 * Store the pfn of the page in a special migration
2061 * pte. do_swap_page() will wait until the migration
2062 * pte is removed and then restart fault handling.
2063 */
2064 if (pte_write(pteval))
2065 entry = make_writable_migration_entry(
2066 page_to_pfn(subpage));
6c287605
DH
2067 else if (anon_exclusive)
2068 entry = make_readable_exclusive_migration_entry(
2069 page_to_pfn(subpage));
a98a2f0c
AP
2070 else
2071 entry = make_readable_migration_entry(
2072 page_to_pfn(subpage));
2e346877
PX
2073 if (pte_young(pteval))
2074 entry = make_migration_entry_young(entry);
2075 if (pte_dirty(pteval))
2076 entry = make_migration_entry_dirty(entry);
a98a2f0c
AP
2077 swp_pte = swp_entry_to_pte(entry);
2078 if (pte_soft_dirty(pteval))
2079 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2080 if (pte_uffd_wp(pteval))
2081 swp_pte = pte_swp_mkuffd_wp(swp_pte);
5d4af619 2082 if (folio_test_hugetlb(folio))
18f39629 2083 set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
5d4af619
BW
2084 else
2085 set_pte_at(mm, address, pvmw.pte, swp_pte);
4cc79b33
AK
2086 trace_set_migration_pte(address, pte_val(swp_pte),
2087 compound_order(&folio->page));
a98a2f0c
AP
2088 /*
2089 * No need to invalidate here it will synchronize on
2090 * against the special swap migration pte.
2091 */
2092 }
2093
2094 /*
2095 * No need to call mmu_notifier_invalidate_range() it has be
2096 * done above for all cases requiring it to happen under page
2097 * table lock before mmu_notifier_invalidate_range_end()
2098 *
ee65728e 2099 * See Documentation/mm/mmu_notifier.rst
a98a2f0c 2100 */
4b8554c5 2101 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
b7435507 2102 if (vma->vm_flags & VM_LOCKED)
adb11e78 2103 mlock_page_drain_local();
4b8554c5 2104 folio_put(folio);
a98a2f0c
AP
2105 }
2106
2107 mmu_notifier_invalidate_range_end(&range);
2108
2109 return ret;
2110}
2111
2112/**
2113 * try_to_migrate - try to replace all page table mappings with swap entries
4b8554c5 2114 * @folio: the folio to replace page table entries for
a98a2f0c
AP
2115 * @flags: action and flags
2116 *
4b8554c5
MWO
2117 * Tries to remove all the page table entries which are mapping this folio and
2118 * replace them with special swap entries. Caller must hold the folio lock.
a98a2f0c 2119 */
4b8554c5 2120void try_to_migrate(struct folio *folio, enum ttu_flags flags)
a98a2f0c
AP
2121{
2122 struct rmap_walk_control rwc = {
2123 .rmap_one = try_to_migrate_one,
2124 .arg = (void *)flags,
2125 .done = page_not_mapped,
2f031c6f 2126 .anon_lock = folio_lock_anon_vma_read,
a98a2f0c
AP
2127 };
2128
2129 /*
2130 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2131 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2132 */
2133 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2134 TTU_SYNC)))
2135 return;
2136
f25cbb7a
AS
2137 if (folio_is_zone_device(folio) &&
2138 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
6c855fce
HD
2139 return;
2140
52629506
JK
2141 /*
2142 * During exec, a temporary VMA is setup and later moved.
2143 * The VMA is moved under the anon_vma lock but not the
2144 * page tables leading to a race where migration cannot
2145 * find the migration ptes. Rather than increasing the
2146 * locking requirements of exec(), migration skips
2147 * temporary VMAs until after exec() completes.
2148 */
4b8554c5 2149 if (!folio_test_ksm(folio) && folio_test_anon(folio))
52629506
JK
2150 rwc.invalid_vma = invalid_migration_vma;
2151
2a52bcbc 2152 if (flags & TTU_RMAP_LOCKED)
2f031c6f 2153 rmap_walk_locked(folio, &rwc);
2a52bcbc 2154 else
2f031c6f 2155 rmap_walk(folio, &rwc);
b291f000 2156}
e9995ef9 2157
b756a3b5
AP
2158#ifdef CONFIG_DEVICE_PRIVATE
2159struct make_exclusive_args {
2160 struct mm_struct *mm;
2161 unsigned long address;
2162 void *owner;
2163 bool valid;
2164};
2165
2f031c6f 2166static bool page_make_device_exclusive_one(struct folio *folio,
b756a3b5
AP
2167 struct vm_area_struct *vma, unsigned long address, void *priv)
2168{
2169 struct mm_struct *mm = vma->vm_mm;
0d251485 2170 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
b756a3b5
AP
2171 struct make_exclusive_args *args = priv;
2172 pte_t pteval;
2173 struct page *subpage;
2174 bool ret = true;
2175 struct mmu_notifier_range range;
2176 swp_entry_t entry;
2177 pte_t swp_pte;
2178
2179 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2180 vma->vm_mm, address, min(vma->vm_end,
0d251485
MWO
2181 address + folio_size(folio)),
2182 args->owner);
b756a3b5
AP
2183 mmu_notifier_invalidate_range_start(&range);
2184
2185 while (page_vma_mapped_walk(&pvmw)) {
2186 /* Unexpected PMD-mapped THP? */
0d251485 2187 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
b756a3b5
AP
2188
2189 if (!pte_present(*pvmw.pte)) {
2190 ret = false;
2191 page_vma_mapped_walk_done(&pvmw);
2192 break;
2193 }
2194
0d251485
MWO
2195 subpage = folio_page(folio,
2196 pte_pfn(*pvmw.pte) - folio_pfn(folio));
b756a3b5
AP
2197 address = pvmw.address;
2198
2199 /* Nuke the page table entry. */
2200 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2201 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2202
0d251485 2203 /* Set the dirty flag on the folio now the pte is gone. */
b756a3b5 2204 if (pte_dirty(pteval))
0d251485 2205 folio_mark_dirty(folio);
b756a3b5
AP
2206
2207 /*
2208 * Check that our target page is still mapped at the expected
2209 * address.
2210 */
2211 if (args->mm == mm && args->address == address &&
2212 pte_write(pteval))
2213 args->valid = true;
2214
2215 /*
2216 * Store the pfn of the page in a special migration
2217 * pte. do_swap_page() will wait until the migration
2218 * pte is removed and then restart fault handling.
2219 */
2220 if (pte_write(pteval))
2221 entry = make_writable_device_exclusive_entry(
2222 page_to_pfn(subpage));
2223 else
2224 entry = make_readable_device_exclusive_entry(
2225 page_to_pfn(subpage));
2226 swp_pte = swp_entry_to_pte(entry);
2227 if (pte_soft_dirty(pteval))
2228 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2229 if (pte_uffd_wp(pteval))
2230 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2231
2232 set_pte_at(mm, address, pvmw.pte, swp_pte);
2233
2234 /*
2235 * There is a reference on the page for the swap entry which has
2236 * been removed, so shouldn't take another.
2237 */
cea86fe2 2238 page_remove_rmap(subpage, vma, false);
b756a3b5
AP
2239 }
2240
2241 mmu_notifier_invalidate_range_end(&range);
2242
2243 return ret;
2244}
2245
2246/**
0d251485
MWO
2247 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2248 * @folio: The folio to replace page table entries for.
2249 * @mm: The mm_struct where the folio is expected to be mapped.
2250 * @address: Address where the folio is expected to be mapped.
b756a3b5
AP
2251 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2252 *
0d251485
MWO
2253 * Tries to remove all the page table entries which are mapping this
2254 * folio and replace them with special device exclusive swap entries to
2255 * grant a device exclusive access to the folio.
b756a3b5 2256 *
0d251485
MWO
2257 * Context: Caller must hold the folio lock.
2258 * Return: false if the page is still mapped, or if it could not be unmapped
b756a3b5
AP
2259 * from the expected address. Otherwise returns true (success).
2260 */
0d251485
MWO
2261static bool folio_make_device_exclusive(struct folio *folio,
2262 struct mm_struct *mm, unsigned long address, void *owner)
b756a3b5
AP
2263{
2264 struct make_exclusive_args args = {
2265 .mm = mm,
2266 .address = address,
2267 .owner = owner,
2268 .valid = false,
2269 };
2270 struct rmap_walk_control rwc = {
2271 .rmap_one = page_make_device_exclusive_one,
2272 .done = page_not_mapped,
2f031c6f 2273 .anon_lock = folio_lock_anon_vma_read,
b756a3b5
AP
2274 .arg = &args,
2275 };
2276
2277 /*
0d251485
MWO
2278 * Restrict to anonymous folios for now to avoid potential writeback
2279 * issues.
b756a3b5 2280 */
0d251485 2281 if (!folio_test_anon(folio))
b756a3b5
AP
2282 return false;
2283
2f031c6f 2284 rmap_walk(folio, &rwc);
b756a3b5 2285
0d251485 2286 return args.valid && !folio_mapcount(folio);
b756a3b5
AP
2287}
2288
2289/**
2290 * make_device_exclusive_range() - Mark a range for exclusive use by a device
dd062302 2291 * @mm: mm_struct of associated target process
b756a3b5
AP
2292 * @start: start of the region to mark for exclusive device access
2293 * @end: end address of region
2294 * @pages: returns the pages which were successfully marked for exclusive access
2295 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2296 *
2297 * Returns: number of pages found in the range by GUP. A page is marked for
2298 * exclusive access only if the page pointer is non-NULL.
2299 *
2300 * This function finds ptes mapping page(s) to the given address range, locks
2301 * them and replaces mappings with special swap entries preventing userspace CPU
2302 * access. On fault these entries are replaced with the original mapping after
2303 * calling MMU notifiers.
2304 *
2305 * A driver using this to program access from a device must use a mmu notifier
2306 * critical section to hold a device specific lock during programming. Once
2307 * programming is complete it should drop the page lock and reference after
2308 * which point CPU access to the page will revoke the exclusive access.
2309 */
2310int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2311 unsigned long end, struct page **pages,
2312 void *owner)
2313{
2314 long npages = (end - start) >> PAGE_SHIFT;
2315 long i;
2316
2317 npages = get_user_pages_remote(mm, start, npages,
2318 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2319 pages, NULL, NULL);
2320 if (npages < 0)
2321 return npages;
2322
2323 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
0d251485
MWO
2324 struct folio *folio = page_folio(pages[i]);
2325 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2326 folio_put(folio);
b756a3b5
AP
2327 pages[i] = NULL;
2328 continue;
2329 }
2330
0d251485
MWO
2331 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2332 folio_unlock(folio);
2333 folio_put(folio);
b756a3b5
AP
2334 pages[i] = NULL;
2335 }
2336 }
2337
2338 return npages;
2339}
2340EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2341#endif
2342
01d8b20d 2343void __put_anon_vma(struct anon_vma *anon_vma)
76545066 2344{
01d8b20d 2345 struct anon_vma *root = anon_vma->root;
76545066 2346
624483f3 2347 anon_vma_free(anon_vma);
01d8b20d
PZ
2348 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2349 anon_vma_free(root);
76545066 2350}
76545066 2351
2f031c6f 2352static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
6d4675e6 2353 struct rmap_walk_control *rwc)
faecd8dd
JK
2354{
2355 struct anon_vma *anon_vma;
2356
0dd1c7bb 2357 if (rwc->anon_lock)
6d4675e6 2358 return rwc->anon_lock(folio, rwc);
0dd1c7bb 2359
faecd8dd 2360 /*
2f031c6f 2361 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
faecd8dd 2362 * because that depends on page_mapped(); but not all its usages
c1e8d7c6 2363 * are holding mmap_lock. Users without mmap_lock are required to
faecd8dd
JK
2364 * take a reference count to prevent the anon_vma disappearing
2365 */
e05b3453 2366 anon_vma = folio_anon_vma(folio);
faecd8dd
JK
2367 if (!anon_vma)
2368 return NULL;
2369
6d4675e6
MK
2370 if (anon_vma_trylock_read(anon_vma))
2371 goto out;
2372
2373 if (rwc->try_lock) {
2374 anon_vma = NULL;
2375 rwc->contended = true;
2376 goto out;
2377 }
2378
faecd8dd 2379 anon_vma_lock_read(anon_vma);
6d4675e6 2380out:
faecd8dd
JK
2381 return anon_vma;
2382}
2383
e9995ef9 2384/*
e8351ac9
JK
2385 * rmap_walk_anon - do something to anonymous page using the object-based
2386 * rmap method
2387 * @page: the page to be handled
2388 * @rwc: control variable according to each walk type
2389 *
2390 * Find all the mappings of a page using the mapping pointer and the vma chains
2391 * contained in the anon_vma struct it points to.
e9995ef9 2392 */
84fbbe21 2393static void rmap_walk_anon(struct folio *folio,
6d4675e6 2394 struct rmap_walk_control *rwc, bool locked)
e9995ef9
HD
2395{
2396 struct anon_vma *anon_vma;
a8fa41ad 2397 pgoff_t pgoff_start, pgoff_end;
5beb4930 2398 struct anon_vma_chain *avc;
e9995ef9 2399
b9773199 2400 if (locked) {
e05b3453 2401 anon_vma = folio_anon_vma(folio);
b9773199 2402 /* anon_vma disappear under us? */
e05b3453 2403 VM_BUG_ON_FOLIO(!anon_vma, folio);
b9773199 2404 } else {
2f031c6f 2405 anon_vma = rmap_walk_anon_lock(folio, rwc);
b9773199 2406 }
e9995ef9 2407 if (!anon_vma)
1df631ae 2408 return;
faecd8dd 2409
2f031c6f
MWO
2410 pgoff_start = folio_pgoff(folio);
2411 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
a8fa41ad
KS
2412 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2413 pgoff_start, pgoff_end) {
5beb4930 2414 struct vm_area_struct *vma = avc->vma;
2f031c6f 2415 unsigned long address = vma_address(&folio->page, vma);
0dd1c7bb 2416
494334e4 2417 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2418 cond_resched();
2419
0dd1c7bb
JK
2420 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2421 continue;
2422
2f031c6f 2423 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
e9995ef9 2424 break;
2f031c6f 2425 if (rwc->done && rwc->done(folio))
0dd1c7bb 2426 break;
e9995ef9 2427 }
b9773199
KS
2428
2429 if (!locked)
2430 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2431}
2432
e8351ac9
JK
2433/*
2434 * rmap_walk_file - do something to file page using the object-based rmap method
2435 * @page: the page to be handled
2436 * @rwc: control variable according to each walk type
2437 *
2438 * Find all the mappings of a page using the mapping pointer and the vma chains
2439 * contained in the address_space struct it points to.
e8351ac9 2440 */
84fbbe21 2441static void rmap_walk_file(struct folio *folio,
6d4675e6 2442 struct rmap_walk_control *rwc, bool locked)
e9995ef9 2443{
2f031c6f 2444 struct address_space *mapping = folio_mapping(folio);
a8fa41ad 2445 pgoff_t pgoff_start, pgoff_end;
e9995ef9 2446 struct vm_area_struct *vma;
e9995ef9 2447
9f32624b
JK
2448 /*
2449 * The page lock not only makes sure that page->mapping cannot
2450 * suddenly be NULLified by truncation, it makes sure that the
2451 * structure at mapping cannot be freed and reused yet,
c8c06efa 2452 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 2453 */
2f031c6f 2454 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
9f32624b 2455
e9995ef9 2456 if (!mapping)
1df631ae 2457 return;
3dec0ba0 2458
2f031c6f
MWO
2459 pgoff_start = folio_pgoff(folio);
2460 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
6d4675e6
MK
2461 if (!locked) {
2462 if (i_mmap_trylock_read(mapping))
2463 goto lookup;
2464
2465 if (rwc->try_lock) {
2466 rwc->contended = true;
2467 return;
2468 }
2469
b9773199 2470 i_mmap_lock_read(mapping);
6d4675e6
MK
2471 }
2472lookup:
a8fa41ad
KS
2473 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2474 pgoff_start, pgoff_end) {
2f031c6f 2475 unsigned long address = vma_address(&folio->page, vma);
0dd1c7bb 2476
494334e4 2477 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2478 cond_resched();
2479
0dd1c7bb
JK
2480 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2481 continue;
2482
2f031c6f 2483 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
0dd1c7bb 2484 goto done;
2f031c6f 2485 if (rwc->done && rwc->done(folio))
0dd1c7bb 2486 goto done;
e9995ef9 2487 }
0dd1c7bb 2488
0dd1c7bb 2489done:
b9773199
KS
2490 if (!locked)
2491 i_mmap_unlock_read(mapping);
e9995ef9
HD
2492}
2493
6d4675e6 2494void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 2495{
2f031c6f
MWO
2496 if (unlikely(folio_test_ksm(folio)))
2497 rmap_walk_ksm(folio, rwc);
2498 else if (folio_test_anon(folio))
2499 rmap_walk_anon(folio, rwc, false);
b9773199 2500 else
2f031c6f 2501 rmap_walk_file(folio, rwc, false);
b9773199
KS
2502}
2503
2504/* Like rmap_walk, but caller holds relevant rmap lock */
6d4675e6 2505void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
b9773199
KS
2506{
2507 /* no ksm support for now */
2f031c6f
MWO
2508 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2509 if (folio_test_anon(folio))
2510 rmap_walk_anon(folio, rwc, true);
e9995ef9 2511 else
2f031c6f 2512 rmap_walk_file(folio, rwc, true);
e9995ef9 2513}
0fe6e20b 2514
e3390f67 2515#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 2516/*
451b9514 2517 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
2518 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2519 * and no lru code, because we handle hugepages differently from common pages.
28c5209d
DH
2520 *
2521 * RMAP_COMPOUND is ignored.
0fe6e20b 2522 */
28c5209d
DH
2523void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2524 unsigned long address, rmap_t flags)
0fe6e20b
NH
2525{
2526 struct anon_vma *anon_vma = vma->anon_vma;
2527 int first;
a850ea30
NH
2528
2529 BUG_ON(!PageLocked(page));
0fe6e20b 2530 BUG_ON(!anon_vma);
5dbe0af4 2531 /* address might be in next vma when migration races vma_adjust */
53f9263b 2532 first = atomic_inc_and_test(compound_mapcount_ptr(page));
6c287605
DH
2533 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2534 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
0fe6e20b 2535 if (first)
28c5209d
DH
2536 __page_set_anon_rmap(page, vma, address,
2537 !!(flags & RMAP_EXCLUSIVE));
0fe6e20b
NH
2538}
2539
2540void hugepage_add_new_anon_rmap(struct page *page,
2541 struct vm_area_struct *vma, unsigned long address)
2542{
2543 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 2544 atomic_set(compound_mapcount_ptr(page), 0);
5232c63f 2545 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 2546
451b9514 2547 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 2548}
e3390f67 2549#endif /* CONFIG_HUGETLB_PAGE */