]> git.ipfire.org Git - people/arne_f/kernel.git/blame - mm/shmem.c
Linux 4.14.89
[people/arne_f/kernel.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
174cd4b1 32#include <linux/sched/signal.h>
b95f1b31 33#include <linux/export.h>
853ac43a 34#include <linux/swap.h>
e2e40f2c 35#include <linux/uio.h>
f3f0e1d2 36#include <linux/khugepaged.h>
749df87b 37#include <linux/hugetlb.h>
853ac43a 38
95cc09d6
AA
39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
853ac43a
MM
41static struct vfsmount *shm_mnt;
42
43#ifdef CONFIG_SHMEM
1da177e4
LT
44/*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
39f0247d 50#include <linux/xattr.h>
a5694255 51#include <linux/exportfs.h>
1c7c474c 52#include <linux/posix_acl.h>
feda821e 53#include <linux/posix_acl_xattr.h>
1da177e4 54#include <linux/mman.h>
1da177e4
LT
55#include <linux/string.h>
56#include <linux/slab.h>
57#include <linux/backing-dev.h>
58#include <linux/shmem_fs.h>
1da177e4 59#include <linux/writeback.h>
1da177e4 60#include <linux/blkdev.h>
bda97eab 61#include <linux/pagevec.h>
41ffe5d5 62#include <linux/percpu_counter.h>
83e4fa9c 63#include <linux/falloc.h>
708e3508 64#include <linux/splice.h>
1da177e4
LT
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
b00dc3ad 69#include <linux/ctype.h>
304dbdb7 70#include <linux/migrate.h>
c1f60a5a 71#include <linux/highmem.h>
680d794b 72#include <linux/seq_file.h>
92562927 73#include <linux/magic.h>
9183df25 74#include <linux/syscalls.h>
40e041a2 75#include <linux/fcntl.h>
9183df25 76#include <uapi/linux/memfd.h>
cfda0526 77#include <linux/userfaultfd_k.h>
4c27fe4c 78#include <linux/rmap.h>
2b4db796 79#include <linux/uuid.h>
304dbdb7 80
7c0f6ba6 81#include <linux/uaccess.h>
1da177e4
LT
82#include <asm/pgtable.h>
83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d
HD
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
b76db735 108#ifdef CONFIG_TMPFS
680d794b 109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
b76db735 118#endif
680d794b 119
bde05d1c
HD
120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
68da9f05 123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 124 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
68da9f05 127
f3f0e1d2 128int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 129 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
130{
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 133}
1da177e4 134
1da177e4
LT
135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136{
137 return sb->s_fs_info;
138}
139
140/*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146static inline int shmem_acct_size(unsigned long flags, loff_t size)
147{
0b0a0806 148 return (flags & VM_NORESERVE) ?
191c5424 149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
150}
151
152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153{
0b0a0806 154 if (!(flags & VM_NORESERVE))
1da177e4
LT
155 vm_unacct_memory(VM_ACCT(size));
156}
157
77142517
KK
158static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
160{
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 }
168 return 0;
169}
170
1da177e4
LT
171/*
172 * ... whereas tmpfs objects are accounted incrementally as
75edd345 173 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 */
800d8c63 177static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 178{
800d8c63
KS
179 if (!(flags & VM_NORESERVE))
180 return 0;
181
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
184}
185
186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187{
0b0a0806 188 if (flags & VM_NORESERVE)
09cbfeaf 189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
190}
191
0f079694
MR
192static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193{
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197 if (shmem_acct_block(info->flags, pages))
198 return false;
199
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
205 }
206
207 return true;
208
209unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
212}
213
214static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215{
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
222}
223
759b9775 224static const struct super_operations shmem_ops;
f5e54d6e 225static const struct address_space_operations shmem_aops;
15ad7cdc 226static const struct file_operations shmem_file_operations;
92e1d5be
AV
227static const struct inode_operations shmem_inode_operations;
228static const struct inode_operations shmem_dir_inode_operations;
229static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 230static const struct vm_operations_struct shmem_vm_ops;
779750d2 231static struct file_system_type shmem_fs_type;
1da177e4 232
b0506e48
MR
233bool vma_is_shmem(struct vm_area_struct *vma)
234{
235 return vma->vm_ops == &shmem_vm_ops;
236}
237
1da177e4 238static LIST_HEAD(shmem_swaplist);
cb5f7b9a 239static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 240
5b04c689
PE
241static int shmem_reserve_inode(struct super_block *sb)
242{
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
249 }
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
252 }
253 return 0;
254}
255
256static void shmem_free_inode(struct super_block *sb)
257{
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
263 }
264}
265
46711810 266/**
41ffe5d5 267 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
268 * @inode: inode to recalc
269 *
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
272 *
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275 *
276 * It has to be called with the spinlock held.
277 */
278static void shmem_recalc_inode(struct inode *inode)
279{
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
282
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
54af6042 286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 287 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
288 }
289}
290
800d8c63
KS
291bool shmem_charge(struct inode *inode, long pages)
292{
293 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 294 unsigned long flags;
800d8c63 295
0f079694 296 if (!shmem_inode_acct_block(inode, pages))
800d8c63 297 return false;
b1cc94ab 298
98f1ae16
HD
299 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
300 inode->i_mapping->nrpages += pages;
301
4595ef88 302 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
303 info->alloced += pages;
304 inode->i_blocks += pages * BLOCKS_PER_PAGE;
305 shmem_recalc_inode(inode);
4595ef88 306 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 307
800d8c63
KS
308 return true;
309}
310
311void shmem_uncharge(struct inode *inode, long pages)
312{
313 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 314 unsigned long flags;
800d8c63 315
98f1ae16
HD
316 /* nrpages adjustment done by __delete_from_page_cache() or caller */
317
4595ef88 318 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
319 info->alloced -= pages;
320 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
321 shmem_recalc_inode(inode);
4595ef88 322 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 323
0f079694 324 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
325}
326
7a5d0fbb
HD
327/*
328 * Replace item expected in radix tree by a new item, while holding tree lock.
329 */
330static int shmem_radix_tree_replace(struct address_space *mapping,
331 pgoff_t index, void *expected, void *replacement)
332{
f7942430 333 struct radix_tree_node *node;
7a5d0fbb 334 void **pslot;
6dbaf22c 335 void *item;
7a5d0fbb
HD
336
337 VM_BUG_ON(!expected);
6dbaf22c 338 VM_BUG_ON(!replacement);
f7942430
JW
339 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
340 if (!item)
6dbaf22c 341 return -ENOENT;
7a5d0fbb
HD
342 if (item != expected)
343 return -ENOENT;
4d693d08
JW
344 __radix_tree_replace(&mapping->page_tree, node, pslot,
345 replacement, NULL, NULL);
7a5d0fbb
HD
346 return 0;
347}
348
d1899228
HD
349/*
350 * Sometimes, before we decide whether to proceed or to fail, we must check
351 * that an entry was not already brought back from swap by a racing thread.
352 *
353 * Checking page is not enough: by the time a SwapCache page is locked, it
354 * might be reused, and again be SwapCache, using the same swap as before.
355 */
356static bool shmem_confirm_swap(struct address_space *mapping,
357 pgoff_t index, swp_entry_t swap)
358{
359 void *item;
360
361 rcu_read_lock();
362 item = radix_tree_lookup(&mapping->page_tree, index);
363 rcu_read_unlock();
364 return item == swp_to_radix_entry(swap);
365}
366
5a6e75f8
KS
367/*
368 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
369 *
370 * SHMEM_HUGE_NEVER:
371 * disables huge pages for the mount;
372 * SHMEM_HUGE_ALWAYS:
373 * enables huge pages for the mount;
374 * SHMEM_HUGE_WITHIN_SIZE:
375 * only allocate huge pages if the page will be fully within i_size,
376 * also respect fadvise()/madvise() hints;
377 * SHMEM_HUGE_ADVISE:
378 * only allocate huge pages if requested with fadvise()/madvise();
379 */
380
381#define SHMEM_HUGE_NEVER 0
382#define SHMEM_HUGE_ALWAYS 1
383#define SHMEM_HUGE_WITHIN_SIZE 2
384#define SHMEM_HUGE_ADVISE 3
385
386/*
387 * Special values.
388 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
389 *
390 * SHMEM_HUGE_DENY:
391 * disables huge on shm_mnt and all mounts, for emergency use;
392 * SHMEM_HUGE_FORCE:
393 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
394 *
395 */
396#define SHMEM_HUGE_DENY (-1)
397#define SHMEM_HUGE_FORCE (-2)
398
e496cf3d 399#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
400/* ifdef here to avoid bloating shmem.o when not necessary */
401
402int shmem_huge __read_mostly;
403
f1f5929c 404#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
405static int shmem_parse_huge(const char *str)
406{
407 if (!strcmp(str, "never"))
408 return SHMEM_HUGE_NEVER;
409 if (!strcmp(str, "always"))
410 return SHMEM_HUGE_ALWAYS;
411 if (!strcmp(str, "within_size"))
412 return SHMEM_HUGE_WITHIN_SIZE;
413 if (!strcmp(str, "advise"))
414 return SHMEM_HUGE_ADVISE;
415 if (!strcmp(str, "deny"))
416 return SHMEM_HUGE_DENY;
417 if (!strcmp(str, "force"))
418 return SHMEM_HUGE_FORCE;
419 return -EINVAL;
420}
421
422static const char *shmem_format_huge(int huge)
423{
424 switch (huge) {
425 case SHMEM_HUGE_NEVER:
426 return "never";
427 case SHMEM_HUGE_ALWAYS:
428 return "always";
429 case SHMEM_HUGE_WITHIN_SIZE:
430 return "within_size";
431 case SHMEM_HUGE_ADVISE:
432 return "advise";
433 case SHMEM_HUGE_DENY:
434 return "deny";
435 case SHMEM_HUGE_FORCE:
436 return "force";
437 default:
438 VM_BUG_ON(1);
439 return "bad_val";
440 }
441}
f1f5929c 442#endif
5a6e75f8 443
779750d2
KS
444static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
445 struct shrink_control *sc, unsigned long nr_to_split)
446{
447 LIST_HEAD(list), *pos, *next;
253fd0f0 448 LIST_HEAD(to_remove);
779750d2
KS
449 struct inode *inode;
450 struct shmem_inode_info *info;
451 struct page *page;
452 unsigned long batch = sc ? sc->nr_to_scan : 128;
453 int removed = 0, split = 0;
454
455 if (list_empty(&sbinfo->shrinklist))
456 return SHRINK_STOP;
457
458 spin_lock(&sbinfo->shrinklist_lock);
459 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
460 info = list_entry(pos, struct shmem_inode_info, shrinklist);
461
462 /* pin the inode */
463 inode = igrab(&info->vfs_inode);
464
465 /* inode is about to be evicted */
466 if (!inode) {
467 list_del_init(&info->shrinklist);
468 removed++;
469 goto next;
470 }
471
472 /* Check if there's anything to gain */
473 if (round_up(inode->i_size, PAGE_SIZE) ==
474 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 475 list_move(&info->shrinklist, &to_remove);
779750d2 476 removed++;
779750d2
KS
477 goto next;
478 }
479
480 list_move(&info->shrinklist, &list);
481next:
482 if (!--batch)
483 break;
484 }
485 spin_unlock(&sbinfo->shrinklist_lock);
486
253fd0f0
KS
487 list_for_each_safe(pos, next, &to_remove) {
488 info = list_entry(pos, struct shmem_inode_info, shrinklist);
489 inode = &info->vfs_inode;
490 list_del_init(&info->shrinklist);
491 iput(inode);
492 }
493
779750d2
KS
494 list_for_each_safe(pos, next, &list) {
495 int ret;
496
497 info = list_entry(pos, struct shmem_inode_info, shrinklist);
498 inode = &info->vfs_inode;
499
f5dad040
KS
500 if (nr_to_split && split >= nr_to_split)
501 goto leave;
779750d2 502
f5dad040 503 page = find_get_page(inode->i_mapping,
779750d2
KS
504 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
505 if (!page)
506 goto drop;
507
f5dad040 508 /* No huge page at the end of the file: nothing to split */
779750d2 509 if (!PageTransHuge(page)) {
779750d2
KS
510 put_page(page);
511 goto drop;
512 }
513
f5dad040
KS
514 /*
515 * Leave the inode on the list if we failed to lock
516 * the page at this time.
517 *
518 * Waiting for the lock may lead to deadlock in the
519 * reclaim path.
520 */
521 if (!trylock_page(page)) {
522 put_page(page);
523 goto leave;
524 }
525
779750d2
KS
526 ret = split_huge_page(page);
527 unlock_page(page);
528 put_page(page);
529
f5dad040
KS
530 /* If split failed leave the inode on the list */
531 if (ret)
532 goto leave;
779750d2
KS
533
534 split++;
535drop:
536 list_del_init(&info->shrinklist);
537 removed++;
f5dad040 538leave:
779750d2
KS
539 iput(inode);
540 }
541
542 spin_lock(&sbinfo->shrinklist_lock);
543 list_splice_tail(&list, &sbinfo->shrinklist);
544 sbinfo->shrinklist_len -= removed;
545 spin_unlock(&sbinfo->shrinklist_lock);
546
547 return split;
548}
549
550static long shmem_unused_huge_scan(struct super_block *sb,
551 struct shrink_control *sc)
552{
553 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
554
555 if (!READ_ONCE(sbinfo->shrinklist_len))
556 return SHRINK_STOP;
557
558 return shmem_unused_huge_shrink(sbinfo, sc, 0);
559}
560
561static long shmem_unused_huge_count(struct super_block *sb,
562 struct shrink_control *sc)
563{
564 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
565 return READ_ONCE(sbinfo->shrinklist_len);
566}
e496cf3d 567#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
568
569#define shmem_huge SHMEM_HUGE_DENY
570
779750d2
KS
571static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
572 struct shrink_control *sc, unsigned long nr_to_split)
573{
574 return 0;
575}
e496cf3d 576#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 577
46f65ec1
HD
578/*
579 * Like add_to_page_cache_locked, but error if expected item has gone.
580 */
581static int shmem_add_to_page_cache(struct page *page,
582 struct address_space *mapping,
fed400a1 583 pgoff_t index, void *expected)
46f65ec1 584{
800d8c63 585 int error, nr = hpage_nr_pages(page);
46f65ec1 586
800d8c63
KS
587 VM_BUG_ON_PAGE(PageTail(page), page);
588 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
589 VM_BUG_ON_PAGE(!PageLocked(page), page);
590 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 591 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 592
800d8c63 593 page_ref_add(page, nr);
b065b432
HD
594 page->mapping = mapping;
595 page->index = index;
596
597 spin_lock_irq(&mapping->tree_lock);
800d8c63
KS
598 if (PageTransHuge(page)) {
599 void __rcu **results;
600 pgoff_t idx;
601 int i;
602
603 error = 0;
604 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
605 &results, &idx, index, 1) &&
606 idx < index + HPAGE_PMD_NR) {
607 error = -EEXIST;
608 }
609
610 if (!error) {
611 for (i = 0; i < HPAGE_PMD_NR; i++) {
612 error = radix_tree_insert(&mapping->page_tree,
613 index + i, page + i);
614 VM_BUG_ON(error);
615 }
616 count_vm_event(THP_FILE_ALLOC);
617 }
618 } else if (!expected) {
b065b432 619 error = radix_tree_insert(&mapping->page_tree, index, page);
800d8c63 620 } else {
b065b432
HD
621 error = shmem_radix_tree_replace(mapping, index, expected,
622 page);
800d8c63
KS
623 }
624
46f65ec1 625 if (!error) {
800d8c63
KS
626 mapping->nrpages += nr;
627 if (PageTransHuge(page))
11fb9989
MG
628 __inc_node_page_state(page, NR_SHMEM_THPS);
629 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
630 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b065b432
HD
631 spin_unlock_irq(&mapping->tree_lock);
632 } else {
633 page->mapping = NULL;
634 spin_unlock_irq(&mapping->tree_lock);
800d8c63 635 page_ref_sub(page, nr);
46f65ec1 636 }
46f65ec1
HD
637 return error;
638}
639
6922c0c7
HD
640/*
641 * Like delete_from_page_cache, but substitutes swap for page.
642 */
643static void shmem_delete_from_page_cache(struct page *page, void *radswap)
644{
645 struct address_space *mapping = page->mapping;
646 int error;
647
800d8c63
KS
648 VM_BUG_ON_PAGE(PageCompound(page), page);
649
6922c0c7
HD
650 spin_lock_irq(&mapping->tree_lock);
651 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
652 page->mapping = NULL;
653 mapping->nrpages--;
11fb9989
MG
654 __dec_node_page_state(page, NR_FILE_PAGES);
655 __dec_node_page_state(page, NR_SHMEM);
6922c0c7 656 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 657 put_page(page);
6922c0c7
HD
658 BUG_ON(error);
659}
660
7a5d0fbb
HD
661/*
662 * Remove swap entry from radix tree, free the swap and its page cache.
663 */
664static int shmem_free_swap(struct address_space *mapping,
665 pgoff_t index, void *radswap)
666{
6dbaf22c 667 void *old;
7a5d0fbb
HD
668
669 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 670 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 671 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
672 if (old != radswap)
673 return -ENOENT;
674 free_swap_and_cache(radix_to_swp_entry(radswap));
675 return 0;
7a5d0fbb
HD
676}
677
6a15a370
VB
678/*
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 680 * given offsets are swapped out.
6a15a370
VB
681 *
682 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
684 */
48131e03
VB
685unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686 pgoff_t start, pgoff_t end)
6a15a370 687{
6a15a370
VB
688 struct radix_tree_iter iter;
689 void **slot;
690 struct page *page;
48131e03 691 unsigned long swapped = 0;
6a15a370
VB
692
693 rcu_read_lock();
694
6a15a370
VB
695 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
696 if (iter.index >= end)
697 break;
698
699 page = radix_tree_deref_slot(slot);
700
2cf938aa
MW
701 if (radix_tree_deref_retry(page)) {
702 slot = radix_tree_iter_retry(&iter);
703 continue;
704 }
6a15a370
VB
705
706 if (radix_tree_exceptional_entry(page))
707 swapped++;
708
709 if (need_resched()) {
148deab2 710 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 711 cond_resched_rcu();
6a15a370
VB
712 }
713 }
714
715 rcu_read_unlock();
716
717 return swapped << PAGE_SHIFT;
718}
719
48131e03
VB
720/*
721 * Determine (in bytes) how many of the shmem object's pages mapped by the
722 * given vma is swapped out.
723 *
724 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
725 * as long as the inode doesn't go away and racy results are not a problem.
726 */
727unsigned long shmem_swap_usage(struct vm_area_struct *vma)
728{
729 struct inode *inode = file_inode(vma->vm_file);
730 struct shmem_inode_info *info = SHMEM_I(inode);
731 struct address_space *mapping = inode->i_mapping;
732 unsigned long swapped;
733
734 /* Be careful as we don't hold info->lock */
735 swapped = READ_ONCE(info->swapped);
736
737 /*
738 * The easier cases are when the shmem object has nothing in swap, or
739 * the vma maps it whole. Then we can simply use the stats that we
740 * already track.
741 */
742 if (!swapped)
743 return 0;
744
745 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
746 return swapped << PAGE_SHIFT;
747
748 /* Here comes the more involved part */
749 return shmem_partial_swap_usage(mapping,
750 linear_page_index(vma, vma->vm_start),
751 linear_page_index(vma, vma->vm_end));
752}
753
24513264
HD
754/*
755 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
756 */
757void shmem_unlock_mapping(struct address_space *mapping)
758{
759 struct pagevec pvec;
760 pgoff_t indices[PAGEVEC_SIZE];
761 pgoff_t index = 0;
762
763 pagevec_init(&pvec, 0);
764 /*
765 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
766 */
767 while (!mapping_unevictable(mapping)) {
768 /*
769 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
770 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
771 */
0cd6144a
JW
772 pvec.nr = find_get_entries(mapping, index,
773 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
774 if (!pvec.nr)
775 break;
776 index = indices[pvec.nr - 1] + 1;
0cd6144a 777 pagevec_remove_exceptionals(&pvec);
24513264
HD
778 check_move_unevictable_pages(pvec.pages, pvec.nr);
779 pagevec_release(&pvec);
780 cond_resched();
781 }
7a5d0fbb
HD
782}
783
784/*
785 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 786 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 787 */
1635f6a7
HD
788static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
789 bool unfalloc)
1da177e4 790{
285b2c4f 791 struct address_space *mapping = inode->i_mapping;
1da177e4 792 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
793 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
794 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
795 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
796 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 797 struct pagevec pvec;
7a5d0fbb
HD
798 pgoff_t indices[PAGEVEC_SIZE];
799 long nr_swaps_freed = 0;
285b2c4f 800 pgoff_t index;
bda97eab
HD
801 int i;
802
83e4fa9c
HD
803 if (lend == -1)
804 end = -1; /* unsigned, so actually very big */
bda97eab
HD
805
806 pagevec_init(&pvec, 0);
807 index = start;
83e4fa9c 808 while (index < end) {
0cd6144a
JW
809 pvec.nr = find_get_entries(mapping, index,
810 min(end - index, (pgoff_t)PAGEVEC_SIZE),
811 pvec.pages, indices);
7a5d0fbb
HD
812 if (!pvec.nr)
813 break;
bda97eab
HD
814 for (i = 0; i < pagevec_count(&pvec); i++) {
815 struct page *page = pvec.pages[i];
816
7a5d0fbb 817 index = indices[i];
83e4fa9c 818 if (index >= end)
bda97eab
HD
819 break;
820
7a5d0fbb 821 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
822 if (unfalloc)
823 continue;
7a5d0fbb
HD
824 nr_swaps_freed += !shmem_free_swap(mapping,
825 index, page);
bda97eab 826 continue;
7a5d0fbb
HD
827 }
828
800d8c63
KS
829 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
830
7a5d0fbb 831 if (!trylock_page(page))
bda97eab 832 continue;
800d8c63
KS
833
834 if (PageTransTail(page)) {
835 /* Middle of THP: zero out the page */
836 clear_highpage(page);
837 unlock_page(page);
838 continue;
839 } else if (PageTransHuge(page)) {
840 if (index == round_down(end, HPAGE_PMD_NR)) {
841 /*
842 * Range ends in the middle of THP:
843 * zero out the page
844 */
845 clear_highpage(page);
846 unlock_page(page);
847 continue;
848 }
849 index += HPAGE_PMD_NR - 1;
850 i += HPAGE_PMD_NR - 1;
851 }
852
1635f6a7 853 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
854 VM_BUG_ON_PAGE(PageTail(page), page);
855 if (page_mapping(page) == mapping) {
309381fe 856 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
857 truncate_inode_page(mapping, page);
858 }
bda97eab 859 }
bda97eab
HD
860 unlock_page(page);
861 }
0cd6144a 862 pagevec_remove_exceptionals(&pvec);
24513264 863 pagevec_release(&pvec);
bda97eab
HD
864 cond_resched();
865 index++;
866 }
1da177e4 867
83e4fa9c 868 if (partial_start) {
bda97eab 869 struct page *page = NULL;
9e18eb29 870 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 871 if (page) {
09cbfeaf 872 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
873 if (start > end) {
874 top = partial_end;
875 partial_end = 0;
876 }
877 zero_user_segment(page, partial_start, top);
878 set_page_dirty(page);
879 unlock_page(page);
09cbfeaf 880 put_page(page);
83e4fa9c
HD
881 }
882 }
883 if (partial_end) {
884 struct page *page = NULL;
9e18eb29 885 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
886 if (page) {
887 zero_user_segment(page, 0, partial_end);
bda97eab
HD
888 set_page_dirty(page);
889 unlock_page(page);
09cbfeaf 890 put_page(page);
bda97eab
HD
891 }
892 }
83e4fa9c
HD
893 if (start >= end)
894 return;
bda97eab
HD
895
896 index = start;
b1a36650 897 while (index < end) {
bda97eab 898 cond_resched();
0cd6144a
JW
899
900 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 901 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 902 pvec.pages, indices);
7a5d0fbb 903 if (!pvec.nr) {
b1a36650
HD
904 /* If all gone or hole-punch or unfalloc, we're done */
905 if (index == start || end != -1)
bda97eab 906 break;
b1a36650 907 /* But if truncating, restart to make sure all gone */
bda97eab
HD
908 index = start;
909 continue;
910 }
bda97eab
HD
911 for (i = 0; i < pagevec_count(&pvec); i++) {
912 struct page *page = pvec.pages[i];
913
7a5d0fbb 914 index = indices[i];
83e4fa9c 915 if (index >= end)
bda97eab
HD
916 break;
917
7a5d0fbb 918 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
919 if (unfalloc)
920 continue;
b1a36650
HD
921 if (shmem_free_swap(mapping, index, page)) {
922 /* Swap was replaced by page: retry */
923 index--;
924 break;
925 }
926 nr_swaps_freed++;
7a5d0fbb
HD
927 continue;
928 }
929
bda97eab 930 lock_page(page);
800d8c63
KS
931
932 if (PageTransTail(page)) {
933 /* Middle of THP: zero out the page */
934 clear_highpage(page);
935 unlock_page(page);
936 /*
937 * Partial thp truncate due 'start' in middle
938 * of THP: don't need to look on these pages
939 * again on !pvec.nr restart.
940 */
941 if (index != round_down(end, HPAGE_PMD_NR))
942 start++;
943 continue;
944 } else if (PageTransHuge(page)) {
945 if (index == round_down(end, HPAGE_PMD_NR)) {
946 /*
947 * Range ends in the middle of THP:
948 * zero out the page
949 */
950 clear_highpage(page);
951 unlock_page(page);
952 continue;
953 }
954 index += HPAGE_PMD_NR - 1;
955 i += HPAGE_PMD_NR - 1;
956 }
957
1635f6a7 958 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
959 VM_BUG_ON_PAGE(PageTail(page), page);
960 if (page_mapping(page) == mapping) {
309381fe 961 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 962 truncate_inode_page(mapping, page);
b1a36650
HD
963 } else {
964 /* Page was replaced by swap: retry */
965 unlock_page(page);
966 index--;
967 break;
1635f6a7 968 }
7a5d0fbb 969 }
bda97eab
HD
970 unlock_page(page);
971 }
0cd6144a 972 pagevec_remove_exceptionals(&pvec);
24513264 973 pagevec_release(&pvec);
bda97eab
HD
974 index++;
975 }
94c1e62d 976
4595ef88 977 spin_lock_irq(&info->lock);
7a5d0fbb 978 info->swapped -= nr_swaps_freed;
1da177e4 979 shmem_recalc_inode(inode);
4595ef88 980 spin_unlock_irq(&info->lock);
1635f6a7 981}
1da177e4 982
1635f6a7
HD
983void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
984{
985 shmem_undo_range(inode, lstart, lend, false);
078cd827 986 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 987}
94c1e62d 988EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 989
a528d35e
DH
990static int shmem_getattr(const struct path *path, struct kstat *stat,
991 u32 request_mask, unsigned int query_flags)
44a30220 992{
a528d35e 993 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
994 struct shmem_inode_info *info = SHMEM_I(inode);
995
d0424c42 996 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 997 spin_lock_irq(&info->lock);
d0424c42 998 shmem_recalc_inode(inode);
4595ef88 999 spin_unlock_irq(&info->lock);
d0424c42 1000 }
44a30220 1001 generic_fillattr(inode, stat);
44a30220
YZ
1002 return 0;
1003}
1004
94c1e62d 1005static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1006{
75c3cfa8 1007 struct inode *inode = d_inode(dentry);
40e041a2 1008 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1009 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1010 int error;
1011
31051c85 1012 error = setattr_prepare(dentry, attr);
db78b877
CH
1013 if (error)
1014 return error;
1015
94c1e62d
HD
1016 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017 loff_t oldsize = inode->i_size;
1018 loff_t newsize = attr->ia_size;
3889e6e7 1019
40e041a2
DH
1020 /* protected by i_mutex */
1021 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023 return -EPERM;
1024
94c1e62d 1025 if (newsize != oldsize) {
77142517
KK
1026 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027 oldsize, newsize);
1028 if (error)
1029 return error;
94c1e62d 1030 i_size_write(inode, newsize);
078cd827 1031 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1032 }
afa2db2f 1033 if (newsize <= oldsize) {
94c1e62d 1034 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1035 if (oldsize > holebegin)
1036 unmap_mapping_range(inode->i_mapping,
1037 holebegin, 0, 1);
1038 if (info->alloced)
1039 shmem_truncate_range(inode,
1040 newsize, (loff_t)-1);
94c1e62d 1041 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1042 if (oldsize > holebegin)
1043 unmap_mapping_range(inode->i_mapping,
1044 holebegin, 0, 1);
779750d2
KS
1045
1046 /*
1047 * Part of the huge page can be beyond i_size: subject
1048 * to shrink under memory pressure.
1049 */
1050 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1051 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1052 /*
1053 * _careful to defend against unlocked access to
1054 * ->shrink_list in shmem_unused_huge_shrink()
1055 */
1056 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1057 list_add_tail(&info->shrinklist,
1058 &sbinfo->shrinklist);
1059 sbinfo->shrinklist_len++;
1060 }
1061 spin_unlock(&sbinfo->shrinklist_lock);
1062 }
94c1e62d 1063 }
1da177e4
LT
1064 }
1065
db78b877 1066 setattr_copy(inode, attr);
db78b877 1067 if (attr->ia_valid & ATTR_MODE)
feda821e 1068 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1069 return error;
1070}
1071
1f895f75 1072static void shmem_evict_inode(struct inode *inode)
1da177e4 1073{
1da177e4 1074 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1075 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1076
3889e6e7 1077 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1078 shmem_unacct_size(info->flags, inode->i_size);
1079 inode->i_size = 0;
3889e6e7 1080 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1081 if (!list_empty(&info->shrinklist)) {
1082 spin_lock(&sbinfo->shrinklist_lock);
1083 if (!list_empty(&info->shrinklist)) {
1084 list_del_init(&info->shrinklist);
1085 sbinfo->shrinklist_len--;
1086 }
1087 spin_unlock(&sbinfo->shrinklist_lock);
1088 }
1da177e4 1089 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1090 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1091 list_del_init(&info->swaplist);
cb5f7b9a 1092 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1093 }
3ed47db3 1094 }
b09e0fa4 1095
38f38657 1096 simple_xattrs_free(&info->xattrs);
0f3c42f5 1097 WARN_ON(inode->i_blocks);
5b04c689 1098 shmem_free_inode(inode->i_sb);
dbd5768f 1099 clear_inode(inode);
1da177e4
LT
1100}
1101
478922e2
MW
1102static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1103{
1104 struct radix_tree_iter iter;
1105 void **slot;
1106 unsigned long found = -1;
1107 unsigned int checked = 0;
1108
1109 rcu_read_lock();
1110 radix_tree_for_each_slot(slot, root, &iter, 0) {
1111 if (*slot == item) {
1112 found = iter.index;
1113 break;
1114 }
1115 checked++;
1116 if ((checked % 4096) != 0)
1117 continue;
1118 slot = radix_tree_iter_resume(slot, &iter);
1119 cond_resched_rcu();
1120 }
1121
1122 rcu_read_unlock();
1123 return found;
1124}
1125
46f65ec1
HD
1126/*
1127 * If swap found in inode, free it and move page from swapcache to filecache.
1128 */
41ffe5d5 1129static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1130 swp_entry_t swap, struct page **pagep)
1da177e4 1131{
285b2c4f 1132 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1133 void *radswap;
41ffe5d5 1134 pgoff_t index;
bde05d1c
HD
1135 gfp_t gfp;
1136 int error = 0;
1da177e4 1137
46f65ec1 1138 radswap = swp_to_radix_entry(swap);
478922e2 1139 index = find_swap_entry(&mapping->page_tree, radswap);
46f65ec1 1140 if (index == -1)
00501b53 1141 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1142
1b1b32f2
HD
1143 /*
1144 * Move _head_ to start search for next from here.
1f895f75 1145 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1146 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1147 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1148 */
1149 if (shmem_swaplist.next != &info->swaplist)
1150 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1151
bde05d1c
HD
1152 gfp = mapping_gfp_mask(mapping);
1153 if (shmem_should_replace_page(*pagep, gfp)) {
1154 mutex_unlock(&shmem_swaplist_mutex);
1155 error = shmem_replace_page(pagep, gfp, info, index);
1156 mutex_lock(&shmem_swaplist_mutex);
1157 /*
1158 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1159 * allocation, but the inode might have been freed while we
1160 * dropped it: although a racing shmem_evict_inode() cannot
1161 * complete without emptying the radix_tree, our page lock
1162 * on this swapcache page is not enough to prevent that -
1163 * free_swap_and_cache() of our swap entry will only
1164 * trylock_page(), removing swap from radix_tree whatever.
1165 *
1166 * We must not proceed to shmem_add_to_page_cache() if the
1167 * inode has been freed, but of course we cannot rely on
1168 * inode or mapping or info to check that. However, we can
1169 * safely check if our swap entry is still in use (and here
1170 * it can't have got reused for another page): if it's still
1171 * in use, then the inode cannot have been freed yet, and we
1172 * can safely proceed (if it's no longer in use, that tells
1173 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1174 */
1175 if (!page_swapcount(*pagep))
1176 error = -ENOENT;
1177 }
1178
d13d1443 1179 /*
778dd893
HD
1180 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1181 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1182 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1183 */
bde05d1c
HD
1184 if (!error)
1185 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1186 radswap);
48f170fb 1187 if (error != -ENOMEM) {
46f65ec1
HD
1188 /*
1189 * Truncation and eviction use free_swap_and_cache(), which
1190 * only does trylock page: if we raced, best clean up here.
1191 */
bde05d1c
HD
1192 delete_from_swap_cache(*pagep);
1193 set_page_dirty(*pagep);
46f65ec1 1194 if (!error) {
4595ef88 1195 spin_lock_irq(&info->lock);
46f65ec1 1196 info->swapped--;
4595ef88 1197 spin_unlock_irq(&info->lock);
46f65ec1
HD
1198 swap_free(swap);
1199 }
1da177e4 1200 }
2e0e26c7 1201 return error;
1da177e4
LT
1202}
1203
1204/*
46f65ec1 1205 * Search through swapped inodes to find and replace swap by page.
1da177e4 1206 */
41ffe5d5 1207int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1208{
41ffe5d5 1209 struct list_head *this, *next;
1da177e4 1210 struct shmem_inode_info *info;
00501b53 1211 struct mem_cgroup *memcg;
bde05d1c
HD
1212 int error = 0;
1213
1214 /*
1215 * There's a faint possibility that swap page was replaced before
0142ef6c 1216 * caller locked it: caller will come back later with the right page.
bde05d1c 1217 */
0142ef6c 1218 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1219 goto out;
778dd893
HD
1220
1221 /*
1222 * Charge page using GFP_KERNEL while we can wait, before taking
1223 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1224 * Charged back to the user (not to caller) when swap account is used.
778dd893 1225 */
f627c2f5
KS
1226 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1227 false);
778dd893
HD
1228 if (error)
1229 goto out;
46f65ec1 1230 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1231 error = -EAGAIN;
1da177e4 1232
cb5f7b9a 1233 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1234 list_for_each_safe(this, next, &shmem_swaplist) {
1235 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1236 if (info->swapped)
00501b53 1237 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1238 else
1239 list_del_init(&info->swaplist);
cb5f7b9a 1240 cond_resched();
00501b53 1241 if (error != -EAGAIN)
778dd893 1242 break;
00501b53 1243 /* found nothing in this: move on to search the next */
1da177e4 1244 }
cb5f7b9a 1245 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1246
00501b53
JW
1247 if (error) {
1248 if (error != -ENOMEM)
1249 error = 0;
f627c2f5 1250 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1251 } else
f627c2f5 1252 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1253out:
aaa46865 1254 unlock_page(page);
09cbfeaf 1255 put_page(page);
778dd893 1256 return error;
1da177e4
LT
1257}
1258
1259/*
1260 * Move the page from the page cache to the swap cache.
1261 */
1262static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1263{
1264 struct shmem_inode_info *info;
1da177e4 1265 struct address_space *mapping;
1da177e4 1266 struct inode *inode;
6922c0c7
HD
1267 swp_entry_t swap;
1268 pgoff_t index;
1da177e4 1269
800d8c63 1270 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1271 BUG_ON(!PageLocked(page));
1da177e4
LT
1272 mapping = page->mapping;
1273 index = page->index;
1274 inode = mapping->host;
1275 info = SHMEM_I(inode);
1276 if (info->flags & VM_LOCKED)
1277 goto redirty;
d9fe526a 1278 if (!total_swap_pages)
1da177e4
LT
1279 goto redirty;
1280
d9fe526a 1281 /*
97b713ba
CH
1282 * Our capabilities prevent regular writeback or sync from ever calling
1283 * shmem_writepage; but a stacking filesystem might use ->writepage of
1284 * its underlying filesystem, in which case tmpfs should write out to
1285 * swap only in response to memory pressure, and not for the writeback
1286 * threads or sync.
d9fe526a 1287 */
48f170fb
HD
1288 if (!wbc->for_reclaim) {
1289 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1290 goto redirty;
1291 }
1635f6a7
HD
1292
1293 /*
1294 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1295 * value into swapfile.c, the only way we can correctly account for a
1296 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1297 *
1298 * That's okay for a page already fallocated earlier, but if we have
1299 * not yet completed the fallocation, then (a) we want to keep track
1300 * of this page in case we have to undo it, and (b) it may not be a
1301 * good idea to continue anyway, once we're pushing into swap. So
1302 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1303 */
1304 if (!PageUptodate(page)) {
1aac1400
HD
1305 if (inode->i_private) {
1306 struct shmem_falloc *shmem_falloc;
1307 spin_lock(&inode->i_lock);
1308 shmem_falloc = inode->i_private;
1309 if (shmem_falloc &&
8e205f77 1310 !shmem_falloc->waitq &&
1aac1400
HD
1311 index >= shmem_falloc->start &&
1312 index < shmem_falloc->next)
1313 shmem_falloc->nr_unswapped++;
1314 else
1315 shmem_falloc = NULL;
1316 spin_unlock(&inode->i_lock);
1317 if (shmem_falloc)
1318 goto redirty;
1319 }
1635f6a7
HD
1320 clear_highpage(page);
1321 flush_dcache_page(page);
1322 SetPageUptodate(page);
1323 }
1324
38d8b4e6 1325 swap = get_swap_page(page);
48f170fb
HD
1326 if (!swap.val)
1327 goto redirty;
d9fe526a 1328
37e84351
VD
1329 if (mem_cgroup_try_charge_swap(page, swap))
1330 goto free_swap;
1331
b1dea800
HD
1332 /*
1333 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1334 * if it's not already there. Do it now before the page is
1335 * moved to swap cache, when its pagelock no longer protects
b1dea800 1336 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1337 * we've incremented swapped, because shmem_unuse_inode() will
1338 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1339 */
48f170fb
HD
1340 mutex_lock(&shmem_swaplist_mutex);
1341 if (list_empty(&info->swaplist))
1342 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1343
48f170fb 1344 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1345 spin_lock_irq(&info->lock);
6922c0c7 1346 shmem_recalc_inode(inode);
267a4c76 1347 info->swapped++;
4595ef88 1348 spin_unlock_irq(&info->lock);
6922c0c7 1349
267a4c76
HD
1350 swap_shmem_alloc(swap);
1351 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1352
6922c0c7 1353 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1354 BUG_ON(page_mapped(page));
9fab5619 1355 swap_writepage(page, wbc);
1da177e4
LT
1356 return 0;
1357 }
1358
6922c0c7 1359 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1360free_swap:
75f6d6d2 1361 put_swap_page(page, swap);
1da177e4
LT
1362redirty:
1363 set_page_dirty(page);
d9fe526a
HD
1364 if (wbc->for_reclaim)
1365 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1366 unlock_page(page);
1367 return 0;
1da177e4
LT
1368}
1369
75edd345 1370#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1371static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1372{
095f1fc4 1373 char buffer[64];
680d794b 1374
71fe804b 1375 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1376 return; /* show nothing */
680d794b 1377
a7a88b23 1378 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1379
1380 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1381}
71fe804b
LS
1382
1383static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1384{
1385 struct mempolicy *mpol = NULL;
1386 if (sbinfo->mpol) {
1387 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1388 mpol = sbinfo->mpol;
1389 mpol_get(mpol);
1390 spin_unlock(&sbinfo->stat_lock);
1391 }
1392 return mpol;
1393}
75edd345
HD
1394#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1395static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1396{
1397}
1398static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1399{
1400 return NULL;
1401}
1402#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1403#ifndef CONFIG_NUMA
1404#define vm_policy vm_private_data
1405#endif
680d794b 1406
800d8c63
KS
1407static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1408 struct shmem_inode_info *info, pgoff_t index)
1409{
1410 /* Create a pseudo vma that just contains the policy */
1411 vma->vm_start = 0;
1412 /* Bias interleave by inode number to distribute better across nodes */
1413 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1414 vma->vm_ops = NULL;
1415 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1416}
1417
1418static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1419{
1420 /* Drop reference taken by mpol_shared_policy_lookup() */
1421 mpol_cond_put(vma->vm_policy);
1422}
1423
41ffe5d5
HD
1424static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1425 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1426{
1da177e4 1427 struct vm_area_struct pvma;
18a2f371 1428 struct page *page;
52cd3b07 1429
800d8c63 1430 shmem_pseudo_vma_init(&pvma, info, index);
18a2f371 1431 page = swapin_readahead(swap, gfp, &pvma, 0);
800d8c63 1432 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1433
800d8c63
KS
1434 return page;
1435}
1436
1437static struct page *shmem_alloc_hugepage(gfp_t gfp,
1438 struct shmem_inode_info *info, pgoff_t index)
1439{
1440 struct vm_area_struct pvma;
1441 struct inode *inode = &info->vfs_inode;
1442 struct address_space *mapping = inode->i_mapping;
4620a06e 1443 pgoff_t idx, hindex;
800d8c63
KS
1444 void __rcu **results;
1445 struct page *page;
1446
e496cf3d 1447 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1448 return NULL;
1449
4620a06e 1450 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63
KS
1451 rcu_read_lock();
1452 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1453 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1454 rcu_read_unlock();
1455 return NULL;
1456 }
1457 rcu_read_unlock();
18a2f371 1458
800d8c63
KS
1459 shmem_pseudo_vma_init(&pvma, info, hindex);
1460 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1461 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1462 shmem_pseudo_vma_destroy(&pvma);
1463 if (page)
1464 prep_transhuge_page(page);
18a2f371 1465 return page;
1da177e4
LT
1466}
1467
02098fea 1468static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1469 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1470{
1471 struct vm_area_struct pvma;
18a2f371 1472 struct page *page;
1da177e4 1473
800d8c63
KS
1474 shmem_pseudo_vma_init(&pvma, info, index);
1475 page = alloc_page_vma(gfp, &pvma, 0);
1476 shmem_pseudo_vma_destroy(&pvma);
1477
1478 return page;
1479}
1480
1481static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1482 struct inode *inode,
800d8c63
KS
1483 pgoff_t index, bool huge)
1484{
0f079694 1485 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1486 struct page *page;
1487 int nr;
1488 int err = -ENOSPC;
52cd3b07 1489
e496cf3d 1490 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1491 huge = false;
1492 nr = huge ? HPAGE_PMD_NR : 1;
1493
0f079694 1494 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1495 goto failed;
800d8c63
KS
1496
1497 if (huge)
1498 page = shmem_alloc_hugepage(gfp, info, index);
1499 else
1500 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1501 if (page) {
1502 __SetPageLocked(page);
1503 __SetPageSwapBacked(page);
800d8c63 1504 return page;
75edd345 1505 }
18a2f371 1506
800d8c63 1507 err = -ENOMEM;
0f079694 1508 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1509failed:
1510 return ERR_PTR(err);
1da177e4 1511}
71fe804b 1512
bde05d1c
HD
1513/*
1514 * When a page is moved from swapcache to shmem filecache (either by the
1515 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1516 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1517 * ignorance of the mapping it belongs to. If that mapping has special
1518 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1519 * we may need to copy to a suitable page before moving to filecache.
1520 *
1521 * In a future release, this may well be extended to respect cpuset and
1522 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1523 * but for now it is a simple matter of zone.
1524 */
1525static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1526{
1527 return page_zonenum(page) > gfp_zone(gfp);
1528}
1529
1530static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1531 struct shmem_inode_info *info, pgoff_t index)
1532{
1533 struct page *oldpage, *newpage;
1534 struct address_space *swap_mapping;
7c1ba1a1 1535 swp_entry_t entry;
bde05d1c
HD
1536 pgoff_t swap_index;
1537 int error;
1538
1539 oldpage = *pagep;
7c1ba1a1
YZ
1540 entry.val = page_private(oldpage);
1541 swap_index = swp_offset(entry);
bde05d1c
HD
1542 swap_mapping = page_mapping(oldpage);
1543
1544 /*
1545 * We have arrived here because our zones are constrained, so don't
1546 * limit chance of success by further cpuset and node constraints.
1547 */
1548 gfp &= ~GFP_CONSTRAINT_MASK;
1549 newpage = shmem_alloc_page(gfp, info, index);
1550 if (!newpage)
1551 return -ENOMEM;
bde05d1c 1552
09cbfeaf 1553 get_page(newpage);
bde05d1c 1554 copy_highpage(newpage, oldpage);
0142ef6c 1555 flush_dcache_page(newpage);
bde05d1c 1556
9956edf3
HD
1557 __SetPageLocked(newpage);
1558 __SetPageSwapBacked(newpage);
bde05d1c 1559 SetPageUptodate(newpage);
7c1ba1a1 1560 set_page_private(newpage, entry.val);
bde05d1c
HD
1561 SetPageSwapCache(newpage);
1562
1563 /*
1564 * Our caller will very soon move newpage out of swapcache, but it's
1565 * a nice clean interface for us to replace oldpage by newpage there.
1566 */
1567 spin_lock_irq(&swap_mapping->tree_lock);
1568 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1569 newpage);
0142ef6c 1570 if (!error) {
11fb9989
MG
1571 __inc_node_page_state(newpage, NR_FILE_PAGES);
1572 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1573 }
bde05d1c 1574 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1575
0142ef6c
HD
1576 if (unlikely(error)) {
1577 /*
1578 * Is this possible? I think not, now that our callers check
1579 * both PageSwapCache and page_private after getting page lock;
1580 * but be defensive. Reverse old to newpage for clear and free.
1581 */
1582 oldpage = newpage;
1583 } else {
6a93ca8f 1584 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1585 lru_cache_add_anon(newpage);
1586 *pagep = newpage;
1587 }
bde05d1c
HD
1588
1589 ClearPageSwapCache(oldpage);
1590 set_page_private(oldpage, 0);
1591
1592 unlock_page(oldpage);
09cbfeaf
KS
1593 put_page(oldpage);
1594 put_page(oldpage);
0142ef6c 1595 return error;
bde05d1c
HD
1596}
1597
1da177e4 1598/*
68da9f05 1599 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1600 *
1601 * If we allocate a new one we do not mark it dirty. That's up to the
1602 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1603 * entry since a page cannot live in both the swap and page cache.
1604 *
1605 * fault_mm and fault_type are only supplied by shmem_fault:
1606 * otherwise they are NULL.
1da177e4 1607 */
41ffe5d5 1608static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1609 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1610 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1611{
1612 struct address_space *mapping = inode->i_mapping;
23f919d4 1613 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1614 struct shmem_sb_info *sbinfo;
9e18eb29 1615 struct mm_struct *charge_mm;
00501b53 1616 struct mem_cgroup *memcg;
27ab7006 1617 struct page *page;
1da177e4 1618 swp_entry_t swap;
657e3038 1619 enum sgp_type sgp_huge = sgp;
800d8c63 1620 pgoff_t hindex = index;
1da177e4 1621 int error;
54af6042 1622 int once = 0;
1635f6a7 1623 int alloced = 0;
1da177e4 1624
09cbfeaf 1625 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1626 return -EFBIG;
657e3038
KS
1627 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1628 sgp = SGP_CACHE;
1da177e4 1629repeat:
54af6042 1630 swap.val = 0;
0cd6144a 1631 page = find_lock_entry(mapping, index);
54af6042
HD
1632 if (radix_tree_exceptional_entry(page)) {
1633 swap = radix_to_swp_entry(page);
1634 page = NULL;
1635 }
1636
75edd345 1637 if (sgp <= SGP_CACHE &&
09cbfeaf 1638 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1639 error = -EINVAL;
267a4c76 1640 goto unlock;
54af6042
HD
1641 }
1642
66d2f4d2
HD
1643 if (page && sgp == SGP_WRITE)
1644 mark_page_accessed(page);
1645
1635f6a7
HD
1646 /* fallocated page? */
1647 if (page && !PageUptodate(page)) {
1648 if (sgp != SGP_READ)
1649 goto clear;
1650 unlock_page(page);
09cbfeaf 1651 put_page(page);
1635f6a7
HD
1652 page = NULL;
1653 }
54af6042 1654 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1655 *pagep = page;
1656 return 0;
27ab7006
HD
1657 }
1658
1659 /*
54af6042
HD
1660 * Fast cache lookup did not find it:
1661 * bring it back from swap or allocate.
27ab7006 1662 */
54af6042 1663 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1664 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1665
1da177e4
LT
1666 if (swap.val) {
1667 /* Look it up and read it in.. */
ec560175 1668 page = lookup_swap_cache(swap, NULL, 0);
27ab7006 1669 if (!page) {
9e18eb29
ALC
1670 /* Or update major stats only when swapin succeeds?? */
1671 if (fault_type) {
68da9f05 1672 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1673 count_vm_event(PGMAJFAULT);
2262185c 1674 count_memcg_event_mm(charge_mm, PGMAJFAULT);
9e18eb29
ALC
1675 }
1676 /* Here we actually start the io */
41ffe5d5 1677 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1678 if (!page) {
54af6042
HD
1679 error = -ENOMEM;
1680 goto failed;
1da177e4 1681 }
1da177e4
LT
1682 }
1683
1684 /* We have to do this with page locked to prevent races */
54af6042 1685 lock_page(page);
0142ef6c 1686 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1687 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1688 error = -EEXIST; /* try again */
d1899228 1689 goto unlock;
bde05d1c 1690 }
27ab7006 1691 if (!PageUptodate(page)) {
1da177e4 1692 error = -EIO;
54af6042 1693 goto failed;
1da177e4 1694 }
54af6042
HD
1695 wait_on_page_writeback(page);
1696
bde05d1c
HD
1697 if (shmem_should_replace_page(page, gfp)) {
1698 error = shmem_replace_page(&page, gfp, info, index);
1699 if (error)
1700 goto failed;
1da177e4 1701 }
27ab7006 1702
9e18eb29 1703 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1704 false);
d1899228 1705 if (!error) {
aa3b1895 1706 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1707 swp_to_radix_entry(swap));
215c02bc
HD
1708 /*
1709 * We already confirmed swap under page lock, and make
1710 * no memory allocation here, so usually no possibility
1711 * of error; but free_swap_and_cache() only trylocks a
1712 * page, so it is just possible that the entry has been
1713 * truncated or holepunched since swap was confirmed.
1714 * shmem_undo_range() will have done some of the
1715 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1716 * the rest.
215c02bc
HD
1717 * Reset swap.val? No, leave it so "failed" goes back to
1718 * "repeat": reading a hole and writing should succeed.
1719 */
00501b53 1720 if (error) {
f627c2f5 1721 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1722 delete_from_swap_cache(page);
00501b53 1723 }
d1899228 1724 }
54af6042
HD
1725 if (error)
1726 goto failed;
1727
f627c2f5 1728 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1729
4595ef88 1730 spin_lock_irq(&info->lock);
285b2c4f 1731 info->swapped--;
54af6042 1732 shmem_recalc_inode(inode);
4595ef88 1733 spin_unlock_irq(&info->lock);
54af6042 1734
66d2f4d2
HD
1735 if (sgp == SGP_WRITE)
1736 mark_page_accessed(page);
1737
54af6042 1738 delete_from_swap_cache(page);
27ab7006
HD
1739 set_page_dirty(page);
1740 swap_free(swap);
1741
54af6042 1742 } else {
cfda0526
MR
1743 if (vma && userfaultfd_missing(vma)) {
1744 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1745 return 0;
1746 }
1747
800d8c63
KS
1748 /* shmem_symlink() */
1749 if (mapping->a_ops != &shmem_aops)
1750 goto alloc_nohuge;
657e3038 1751 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1752 goto alloc_nohuge;
1753 if (shmem_huge == SHMEM_HUGE_FORCE)
1754 goto alloc_huge;
1755 switch (sbinfo->huge) {
1756 loff_t i_size;
1757 pgoff_t off;
1758 case SHMEM_HUGE_NEVER:
1759 goto alloc_nohuge;
1760 case SHMEM_HUGE_WITHIN_SIZE:
1761 off = round_up(index, HPAGE_PMD_NR);
1762 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1763 if (i_size >= HPAGE_PMD_SIZE &&
1764 i_size >> PAGE_SHIFT >= off)
1765 goto alloc_huge;
1766 /* fallthrough */
1767 case SHMEM_HUGE_ADVISE:
657e3038
KS
1768 if (sgp_huge == SGP_HUGE)
1769 goto alloc_huge;
1770 /* TODO: implement fadvise() hints */
800d8c63 1771 goto alloc_nohuge;
54af6042 1772 }
1da177e4 1773
800d8c63 1774alloc_huge:
0f079694 1775 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
800d8c63 1776 if (IS_ERR(page)) {
0f079694 1777alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
800d8c63 1778 index, false);
1da177e4 1779 }
800d8c63 1780 if (IS_ERR(page)) {
779750d2 1781 int retry = 5;
800d8c63
KS
1782 error = PTR_ERR(page);
1783 page = NULL;
779750d2
KS
1784 if (error != -ENOSPC)
1785 goto failed;
1786 /*
1787 * Try to reclaim some spece by splitting a huge page
1788 * beyond i_size on the filesystem.
1789 */
1790 while (retry--) {
1791 int ret;
1792 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1793 if (ret == SHRINK_STOP)
1794 break;
1795 if (ret)
1796 goto alloc_nohuge;
1797 }
800d8c63
KS
1798 goto failed;
1799 }
1800
1801 if (PageTransHuge(page))
1802 hindex = round_down(index, HPAGE_PMD_NR);
1803 else
1804 hindex = index;
1805
66d2f4d2 1806 if (sgp == SGP_WRITE)
eb39d618 1807 __SetPageReferenced(page);
66d2f4d2 1808
9e18eb29 1809 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1810 PageTransHuge(page));
54af6042 1811 if (error)
800d8c63
KS
1812 goto unacct;
1813 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1814 compound_order(page));
b065b432 1815 if (!error) {
800d8c63 1816 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1817 NULL);
b065b432
HD
1818 radix_tree_preload_end();
1819 }
1820 if (error) {
800d8c63
KS
1821 mem_cgroup_cancel_charge(page, memcg,
1822 PageTransHuge(page));
1823 goto unacct;
b065b432 1824 }
800d8c63
KS
1825 mem_cgroup_commit_charge(page, memcg, false,
1826 PageTransHuge(page));
54af6042
HD
1827 lru_cache_add_anon(page);
1828
4595ef88 1829 spin_lock_irq(&info->lock);
800d8c63
KS
1830 info->alloced += 1 << compound_order(page);
1831 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1832 shmem_recalc_inode(inode);
4595ef88 1833 spin_unlock_irq(&info->lock);
1635f6a7 1834 alloced = true;
54af6042 1835
779750d2
KS
1836 if (PageTransHuge(page) &&
1837 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1838 hindex + HPAGE_PMD_NR - 1) {
1839 /*
1840 * Part of the huge page is beyond i_size: subject
1841 * to shrink under memory pressure.
1842 */
1843 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1844 /*
1845 * _careful to defend against unlocked access to
1846 * ->shrink_list in shmem_unused_huge_shrink()
1847 */
1848 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1849 list_add_tail(&info->shrinklist,
1850 &sbinfo->shrinklist);
1851 sbinfo->shrinklist_len++;
1852 }
1853 spin_unlock(&sbinfo->shrinklist_lock);
1854 }
1855
ec9516fb 1856 /*
1635f6a7
HD
1857 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1858 */
1859 if (sgp == SGP_FALLOC)
1860 sgp = SGP_WRITE;
1861clear:
1862 /*
1863 * Let SGP_WRITE caller clear ends if write does not fill page;
1864 * but SGP_FALLOC on a page fallocated earlier must initialize
1865 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1866 */
800d8c63
KS
1867 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1868 struct page *head = compound_head(page);
1869 int i;
1870
1871 for (i = 0; i < (1 << compound_order(head)); i++) {
1872 clear_highpage(head + i);
1873 flush_dcache_page(head + i);
1874 }
1875 SetPageUptodate(head);
ec9516fb 1876 }
1da177e4 1877 }
bde05d1c 1878
54af6042 1879 /* Perhaps the file has been truncated since we checked */
75edd345 1880 if (sgp <= SGP_CACHE &&
09cbfeaf 1881 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1882 if (alloced) {
1883 ClearPageDirty(page);
1884 delete_from_page_cache(page);
4595ef88 1885 spin_lock_irq(&info->lock);
267a4c76 1886 shmem_recalc_inode(inode);
4595ef88 1887 spin_unlock_irq(&info->lock);
267a4c76 1888 }
54af6042 1889 error = -EINVAL;
267a4c76 1890 goto unlock;
e83c32e8 1891 }
800d8c63 1892 *pagep = page + index - hindex;
54af6042 1893 return 0;
1da177e4 1894
59a16ead 1895 /*
54af6042 1896 * Error recovery.
59a16ead 1897 */
54af6042 1898unacct:
0f079694 1899 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
800d8c63
KS
1900
1901 if (PageTransHuge(page)) {
1902 unlock_page(page);
1903 put_page(page);
1904 goto alloc_nohuge;
1905 }
54af6042 1906failed:
267a4c76 1907 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1908 error = -EEXIST;
1909unlock:
27ab7006 1910 if (page) {
54af6042 1911 unlock_page(page);
09cbfeaf 1912 put_page(page);
54af6042
HD
1913 }
1914 if (error == -ENOSPC && !once++) {
4595ef88 1915 spin_lock_irq(&info->lock);
54af6042 1916 shmem_recalc_inode(inode);
4595ef88 1917 spin_unlock_irq(&info->lock);
27ab7006 1918 goto repeat;
ff36b801 1919 }
d1899228 1920 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1921 goto repeat;
1922 return error;
1da177e4
LT
1923}
1924
10d20bd2
LT
1925/*
1926 * This is like autoremove_wake_function, but it removes the wait queue
1927 * entry unconditionally - even if something else had already woken the
1928 * target.
1929 */
ac6424b9 1930static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1931{
1932 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1933 list_del_init(&wait->entry);
10d20bd2
LT
1934 return ret;
1935}
1936
11bac800 1937static int shmem_fault(struct vm_fault *vmf)
1da177e4 1938{
11bac800 1939 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1940 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1941 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1942 enum sgp_type sgp;
1da177e4 1943 int error;
68da9f05 1944 int ret = VM_FAULT_LOCKED;
1da177e4 1945
f00cdc6d
HD
1946 /*
1947 * Trinity finds that probing a hole which tmpfs is punching can
1948 * prevent the hole-punch from ever completing: which in turn
1949 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1950 * faulting pages into the hole while it's being punched. Although
1951 * shmem_undo_range() does remove the additions, it may be unable to
1952 * keep up, as each new page needs its own unmap_mapping_range() call,
1953 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1954 *
1955 * It does not matter if we sometimes reach this check just before the
1956 * hole-punch begins, so that one fault then races with the punch:
1957 * we just need to make racing faults a rare case.
1958 *
1959 * The implementation below would be much simpler if we just used a
1960 * standard mutex or completion: but we cannot take i_mutex in fault,
1961 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1962 */
1963 if (unlikely(inode->i_private)) {
1964 struct shmem_falloc *shmem_falloc;
1965
1966 spin_lock(&inode->i_lock);
1967 shmem_falloc = inode->i_private;
8e205f77
HD
1968 if (shmem_falloc &&
1969 shmem_falloc->waitq &&
1970 vmf->pgoff >= shmem_falloc->start &&
1971 vmf->pgoff < shmem_falloc->next) {
1972 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1973 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1974
1975 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1976 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1977 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1978 /* It's polite to up mmap_sem if we can */
f00cdc6d 1979 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1980 ret = VM_FAULT_RETRY;
f00cdc6d 1981 }
8e205f77
HD
1982
1983 shmem_falloc_waitq = shmem_falloc->waitq;
1984 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1985 TASK_UNINTERRUPTIBLE);
1986 spin_unlock(&inode->i_lock);
1987 schedule();
1988
1989 /*
1990 * shmem_falloc_waitq points into the shmem_fallocate()
1991 * stack of the hole-punching task: shmem_falloc_waitq
1992 * is usually invalid by the time we reach here, but
1993 * finish_wait() does not dereference it in that case;
1994 * though i_lock needed lest racing with wake_up_all().
1995 */
1996 spin_lock(&inode->i_lock);
1997 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1998 spin_unlock(&inode->i_lock);
1999 return ret;
f00cdc6d 2000 }
8e205f77 2001 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2002 }
2003
657e3038 2004 sgp = SGP_CACHE;
18600332
MH
2005
2006 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2007 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2008 sgp = SGP_NOHUGE;
18600332
MH
2009 else if (vma->vm_flags & VM_HUGEPAGE)
2010 sgp = SGP_HUGE;
657e3038
KS
2011
2012 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2013 gfp, vma, vmf, &ret);
d0217ac0
NP
2014 if (error)
2015 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 2016 return ret;
1da177e4
LT
2017}
2018
c01d5b30
HD
2019unsigned long shmem_get_unmapped_area(struct file *file,
2020 unsigned long uaddr, unsigned long len,
2021 unsigned long pgoff, unsigned long flags)
2022{
2023 unsigned long (*get_area)(struct file *,
2024 unsigned long, unsigned long, unsigned long, unsigned long);
2025 unsigned long addr;
2026 unsigned long offset;
2027 unsigned long inflated_len;
2028 unsigned long inflated_addr;
2029 unsigned long inflated_offset;
2030
2031 if (len > TASK_SIZE)
2032 return -ENOMEM;
2033
2034 get_area = current->mm->get_unmapped_area;
2035 addr = get_area(file, uaddr, len, pgoff, flags);
2036
e496cf3d 2037 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2038 return addr;
2039 if (IS_ERR_VALUE(addr))
2040 return addr;
2041 if (addr & ~PAGE_MASK)
2042 return addr;
2043 if (addr > TASK_SIZE - len)
2044 return addr;
2045
2046 if (shmem_huge == SHMEM_HUGE_DENY)
2047 return addr;
2048 if (len < HPAGE_PMD_SIZE)
2049 return addr;
2050 if (flags & MAP_FIXED)
2051 return addr;
2052 /*
2053 * Our priority is to support MAP_SHARED mapped hugely;
2054 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2055 * But if caller specified an address hint, respect that as before.
2056 */
2057 if (uaddr)
2058 return addr;
2059
2060 if (shmem_huge != SHMEM_HUGE_FORCE) {
2061 struct super_block *sb;
2062
2063 if (file) {
2064 VM_BUG_ON(file->f_op != &shmem_file_operations);
2065 sb = file_inode(file)->i_sb;
2066 } else {
2067 /*
2068 * Called directly from mm/mmap.c, or drivers/char/mem.c
2069 * for "/dev/zero", to create a shared anonymous object.
2070 */
2071 if (IS_ERR(shm_mnt))
2072 return addr;
2073 sb = shm_mnt->mnt_sb;
2074 }
3089bf61 2075 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2076 return addr;
2077 }
2078
2079 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2080 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2081 return addr;
2082 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2083 return addr;
2084
2085 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2086 if (inflated_len > TASK_SIZE)
2087 return addr;
2088 if (inflated_len < len)
2089 return addr;
2090
2091 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2092 if (IS_ERR_VALUE(inflated_addr))
2093 return addr;
2094 if (inflated_addr & ~PAGE_MASK)
2095 return addr;
2096
2097 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2098 inflated_addr += offset - inflated_offset;
2099 if (inflated_offset > offset)
2100 inflated_addr += HPAGE_PMD_SIZE;
2101
2102 if (inflated_addr > TASK_SIZE - len)
2103 return addr;
2104 return inflated_addr;
2105}
2106
1da177e4 2107#ifdef CONFIG_NUMA
41ffe5d5 2108static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2109{
496ad9aa 2110 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2111 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2112}
2113
d8dc74f2
AB
2114static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2115 unsigned long addr)
1da177e4 2116{
496ad9aa 2117 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2118 pgoff_t index;
1da177e4 2119
41ffe5d5
HD
2120 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2121 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2122}
2123#endif
2124
2125int shmem_lock(struct file *file, int lock, struct user_struct *user)
2126{
496ad9aa 2127 struct inode *inode = file_inode(file);
1da177e4
LT
2128 struct shmem_inode_info *info = SHMEM_I(inode);
2129 int retval = -ENOMEM;
2130
4595ef88 2131 spin_lock_irq(&info->lock);
1da177e4
LT
2132 if (lock && !(info->flags & VM_LOCKED)) {
2133 if (!user_shm_lock(inode->i_size, user))
2134 goto out_nomem;
2135 info->flags |= VM_LOCKED;
89e004ea 2136 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2137 }
2138 if (!lock && (info->flags & VM_LOCKED) && user) {
2139 user_shm_unlock(inode->i_size, user);
2140 info->flags &= ~VM_LOCKED;
89e004ea 2141 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2142 }
2143 retval = 0;
89e004ea 2144
1da177e4 2145out_nomem:
4595ef88 2146 spin_unlock_irq(&info->lock);
1da177e4
LT
2147 return retval;
2148}
2149
9b83a6a8 2150static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2151{
2152 file_accessed(file);
2153 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2154 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2155 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2156 (vma->vm_end & HPAGE_PMD_MASK)) {
2157 khugepaged_enter(vma, vma->vm_flags);
2158 }
1da177e4
LT
2159 return 0;
2160}
2161
454abafe 2162static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2163 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2164{
2165 struct inode *inode;
2166 struct shmem_inode_info *info;
2167 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2168
5b04c689
PE
2169 if (shmem_reserve_inode(sb))
2170 return NULL;
1da177e4
LT
2171
2172 inode = new_inode(sb);
2173 if (inode) {
85fe4025 2174 inode->i_ino = get_next_ino();
454abafe 2175 inode_init_owner(inode, dir, mode);
1da177e4 2176 inode->i_blocks = 0;
078cd827 2177 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2178 inode->i_generation = get_seconds();
1da177e4
LT
2179 info = SHMEM_I(inode);
2180 memset(info, 0, (char *)inode - (char *)info);
2181 spin_lock_init(&info->lock);
40e041a2 2182 info->seals = F_SEAL_SEAL;
0b0a0806 2183 info->flags = flags & VM_NORESERVE;
779750d2 2184 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2185 INIT_LIST_HEAD(&info->swaplist);
38f38657 2186 simple_xattrs_init(&info->xattrs);
72c04902 2187 cache_no_acl(inode);
1da177e4
LT
2188
2189 switch (mode & S_IFMT) {
2190 default:
39f0247d 2191 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2192 init_special_inode(inode, mode, dev);
2193 break;
2194 case S_IFREG:
14fcc23f 2195 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2196 inode->i_op = &shmem_inode_operations;
2197 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2198 mpol_shared_policy_init(&info->policy,
2199 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2200 break;
2201 case S_IFDIR:
d8c76e6f 2202 inc_nlink(inode);
1da177e4
LT
2203 /* Some things misbehave if size == 0 on a directory */
2204 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2205 inode->i_op = &shmem_dir_inode_operations;
2206 inode->i_fop = &simple_dir_operations;
2207 break;
2208 case S_IFLNK:
2209 /*
2210 * Must not load anything in the rbtree,
2211 * mpol_free_shared_policy will not be called.
2212 */
71fe804b 2213 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2214 break;
2215 }
6447b34f
JFG
2216
2217 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2218 } else
2219 shmem_free_inode(sb);
1da177e4
LT
2220 return inode;
2221}
2222
0cd6144a
JW
2223bool shmem_mapping(struct address_space *mapping)
2224{
f8005451 2225 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2226}
2227
8d103963
MR
2228static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2229 pmd_t *dst_pmd,
2230 struct vm_area_struct *dst_vma,
2231 unsigned long dst_addr,
2232 unsigned long src_addr,
2233 bool zeropage,
2234 struct page **pagep)
4c27fe4c
MR
2235{
2236 struct inode *inode = file_inode(dst_vma->vm_file);
2237 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2238 struct address_space *mapping = inode->i_mapping;
2239 gfp_t gfp = mapping_gfp_mask(mapping);
2240 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2241 struct mem_cgroup *memcg;
2242 spinlock_t *ptl;
2243 void *page_kaddr;
2244 struct page *page;
2245 pte_t _dst_pte, *dst_pte;
2246 int ret;
af3edb30 2247 pgoff_t offset, max_off;
4c27fe4c 2248
cb658a45 2249 ret = -ENOMEM;
0f079694 2250 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2251 goto out;
4c27fe4c 2252
cb658a45 2253 if (!*pagep) {
4c27fe4c
MR
2254 page = shmem_alloc_page(gfp, info, pgoff);
2255 if (!page)
0f079694 2256 goto out_unacct_blocks;
4c27fe4c 2257
8d103963
MR
2258 if (!zeropage) { /* mcopy_atomic */
2259 page_kaddr = kmap_atomic(page);
2260 ret = copy_from_user(page_kaddr,
2261 (const void __user *)src_addr,
2262 PAGE_SIZE);
2263 kunmap_atomic(page_kaddr);
2264
2265 /* fallback to copy_from_user outside mmap_sem */
2266 if (unlikely(ret)) {
2267 *pagep = page;
2268 shmem_inode_unacct_blocks(inode, 1);
2269 /* don't free the page */
82c5a8c0 2270 return -ENOENT;
8d103963
MR
2271 }
2272 } else { /* mfill_zeropage_atomic */
2273 clear_highpage(page);
4c27fe4c
MR
2274 }
2275 } else {
2276 page = *pagep;
2277 *pagep = NULL;
2278 }
2279
9cc90c66
AA
2280 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2281 __SetPageLocked(page);
2282 __SetPageSwapBacked(page);
a425d358 2283 __SetPageUptodate(page);
9cc90c66 2284
af3edb30
AA
2285 ret = -EFAULT;
2286 offset = linear_page_index(dst_vma, dst_addr);
2287 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2288 if (unlikely(offset >= max_off))
2289 goto out_release;
2290
4c27fe4c
MR
2291 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2292 if (ret)
2293 goto out_release;
2294
2295 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2296 if (!ret) {
2297 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2298 radix_tree_preload_end();
2299 }
2300 if (ret)
2301 goto out_release_uncharge;
2302
2303 mem_cgroup_commit_charge(page, memcg, false, false);
2304
2305 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2306 if (dst_vma->vm_flags & VM_WRITE)
2307 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
46466e23
AA
2308 else {
2309 /*
2310 * We don't set the pte dirty if the vma has no
2311 * VM_WRITE permission, so mark the page dirty or it
2312 * could be freed from under us. We could do it
2313 * unconditionally before unlock_page(), but doing it
2314 * only if VM_WRITE is not set is faster.
2315 */
2316 set_page_dirty(page);
2317 }
4c27fe4c 2318
4c27fe4c 2319 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
af3edb30
AA
2320
2321 ret = -EFAULT;
2322 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2323 if (unlikely(offset >= max_off))
2324 goto out_release_uncharge_unlock;
2325
2326 ret = -EEXIST;
4c27fe4c
MR
2327 if (!pte_none(*dst_pte))
2328 goto out_release_uncharge_unlock;
2329
4c27fe4c
MR
2330 lru_cache_add_anon(page);
2331
2332 spin_lock(&info->lock);
2333 info->alloced++;
2334 inode->i_blocks += BLOCKS_PER_PAGE;
2335 shmem_recalc_inode(inode);
2336 spin_unlock(&info->lock);
2337
2338 inc_mm_counter(dst_mm, mm_counter_file(page));
2339 page_add_file_rmap(page, false);
2340 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2341
2342 /* No need to invalidate - it was non-present before */
2343 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4c27fe4c 2344 pte_unmap_unlock(dst_pte, ptl);
af3edb30 2345 unlock_page(page);
4c27fe4c
MR
2346 ret = 0;
2347out:
2348 return ret;
2349out_release_uncharge_unlock:
2350 pte_unmap_unlock(dst_pte, ptl);
46466e23 2351 ClearPageDirty(page);
af3edb30 2352 delete_from_page_cache(page);
4c27fe4c
MR
2353out_release_uncharge:
2354 mem_cgroup_cancel_charge(page, memcg, false);
2355out_release:
9cc90c66 2356 unlock_page(page);
4c27fe4c 2357 put_page(page);
4c27fe4c 2358out_unacct_blocks:
0f079694 2359 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2360 goto out;
2361}
2362
8d103963
MR
2363int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2364 pmd_t *dst_pmd,
2365 struct vm_area_struct *dst_vma,
2366 unsigned long dst_addr,
2367 unsigned long src_addr,
2368 struct page **pagep)
2369{
2370 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2371 dst_addr, src_addr, false, pagep);
2372}
2373
2374int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2375 pmd_t *dst_pmd,
2376 struct vm_area_struct *dst_vma,
2377 unsigned long dst_addr)
2378{
2379 struct page *page = NULL;
2380
2381 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2382 dst_addr, 0, true, &page);
2383}
2384
1da177e4 2385#ifdef CONFIG_TMPFS
92e1d5be 2386static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2387static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2388
6d9d88d0
JS
2389#ifdef CONFIG_TMPFS_XATTR
2390static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2391#else
2392#define shmem_initxattrs NULL
2393#endif
2394
1da177e4 2395static int
800d15a5
NP
2396shmem_write_begin(struct file *file, struct address_space *mapping,
2397 loff_t pos, unsigned len, unsigned flags,
2398 struct page **pagep, void **fsdata)
1da177e4 2399{
800d15a5 2400 struct inode *inode = mapping->host;
40e041a2 2401 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2402 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2403
2404 /* i_mutex is held by caller */
3f472cc9 2405 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DH
2406 if (info->seals & F_SEAL_WRITE)
2407 return -EPERM;
2408 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2409 return -EPERM;
2410 }
2411
9e18eb29 2412 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2413}
2414
2415static int
2416shmem_write_end(struct file *file, struct address_space *mapping,
2417 loff_t pos, unsigned len, unsigned copied,
2418 struct page *page, void *fsdata)
2419{
2420 struct inode *inode = mapping->host;
2421
d3602444
HD
2422 if (pos + copied > inode->i_size)
2423 i_size_write(inode, pos + copied);
2424
ec9516fb 2425 if (!PageUptodate(page)) {
800d8c63
KS
2426 struct page *head = compound_head(page);
2427 if (PageTransCompound(page)) {
2428 int i;
2429
2430 for (i = 0; i < HPAGE_PMD_NR; i++) {
2431 if (head + i == page)
2432 continue;
2433 clear_highpage(head + i);
2434 flush_dcache_page(head + i);
2435 }
2436 }
09cbfeaf
KS
2437 if (copied < PAGE_SIZE) {
2438 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2439 zero_user_segments(page, 0, from,
09cbfeaf 2440 from + copied, PAGE_SIZE);
ec9516fb 2441 }
800d8c63 2442 SetPageUptodate(head);
ec9516fb 2443 }
800d15a5 2444 set_page_dirty(page);
6746aff7 2445 unlock_page(page);
09cbfeaf 2446 put_page(page);
800d15a5 2447
800d15a5 2448 return copied;
1da177e4
LT
2449}
2450
2ba5bbed 2451static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2452{
6e58e79d
AV
2453 struct file *file = iocb->ki_filp;
2454 struct inode *inode = file_inode(file);
1da177e4 2455 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2456 pgoff_t index;
2457 unsigned long offset;
a0ee5ec5 2458 enum sgp_type sgp = SGP_READ;
f7c1d074 2459 int error = 0;
cb66a7a1 2460 ssize_t retval = 0;
6e58e79d 2461 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2462
2463 /*
2464 * Might this read be for a stacking filesystem? Then when reading
2465 * holes of a sparse file, we actually need to allocate those pages,
2466 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2467 */
777eda2c 2468 if (!iter_is_iovec(to))
75edd345 2469 sgp = SGP_CACHE;
1da177e4 2470
09cbfeaf
KS
2471 index = *ppos >> PAGE_SHIFT;
2472 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2473
2474 for (;;) {
2475 struct page *page = NULL;
41ffe5d5
HD
2476 pgoff_t end_index;
2477 unsigned long nr, ret;
1da177e4
LT
2478 loff_t i_size = i_size_read(inode);
2479
09cbfeaf 2480 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2481 if (index > end_index)
2482 break;
2483 if (index == end_index) {
09cbfeaf 2484 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2485 if (nr <= offset)
2486 break;
2487 }
2488
9e18eb29 2489 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2490 if (error) {
2491 if (error == -EINVAL)
2492 error = 0;
1da177e4
LT
2493 break;
2494 }
75edd345
HD
2495 if (page) {
2496 if (sgp == SGP_CACHE)
2497 set_page_dirty(page);
d3602444 2498 unlock_page(page);
75edd345 2499 }
1da177e4
LT
2500
2501 /*
2502 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2503 * are called without i_mutex protection against truncate
1da177e4 2504 */
09cbfeaf 2505 nr = PAGE_SIZE;
1da177e4 2506 i_size = i_size_read(inode);
09cbfeaf 2507 end_index = i_size >> PAGE_SHIFT;
1da177e4 2508 if (index == end_index) {
09cbfeaf 2509 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2510 if (nr <= offset) {
2511 if (page)
09cbfeaf 2512 put_page(page);
1da177e4
LT
2513 break;
2514 }
2515 }
2516 nr -= offset;
2517
2518 if (page) {
2519 /*
2520 * If users can be writing to this page using arbitrary
2521 * virtual addresses, take care about potential aliasing
2522 * before reading the page on the kernel side.
2523 */
2524 if (mapping_writably_mapped(mapping))
2525 flush_dcache_page(page);
2526 /*
2527 * Mark the page accessed if we read the beginning.
2528 */
2529 if (!offset)
2530 mark_page_accessed(page);
b5810039 2531 } else {
1da177e4 2532 page = ZERO_PAGE(0);
09cbfeaf 2533 get_page(page);
b5810039 2534 }
1da177e4
LT
2535
2536 /*
2537 * Ok, we have the page, and it's up-to-date, so
2538 * now we can copy it to user space...
1da177e4 2539 */
2ba5bbed 2540 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2541 retval += ret;
1da177e4 2542 offset += ret;
09cbfeaf
KS
2543 index += offset >> PAGE_SHIFT;
2544 offset &= ~PAGE_MASK;
1da177e4 2545
09cbfeaf 2546 put_page(page);
2ba5bbed 2547 if (!iov_iter_count(to))
1da177e4 2548 break;
6e58e79d
AV
2549 if (ret < nr) {
2550 error = -EFAULT;
2551 break;
2552 }
1da177e4
LT
2553 cond_resched();
2554 }
2555
09cbfeaf 2556 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2557 file_accessed(file);
2558 return retval ? retval : error;
1da177e4
LT
2559}
2560
220f2ac9
HD
2561/*
2562 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2563 */
2564static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2565 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2566{
2567 struct page *page;
2568 struct pagevec pvec;
2569 pgoff_t indices[PAGEVEC_SIZE];
2570 bool done = false;
2571 int i;
2572
2573 pagevec_init(&pvec, 0);
2574 pvec.nr = 1; /* start small: we may be there already */
2575 while (!done) {
0cd6144a 2576 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2577 pvec.nr, pvec.pages, indices);
2578 if (!pvec.nr) {
965c8e59 2579 if (whence == SEEK_DATA)
220f2ac9
HD
2580 index = end;
2581 break;
2582 }
2583 for (i = 0; i < pvec.nr; i++, index++) {
2584 if (index < indices[i]) {
965c8e59 2585 if (whence == SEEK_HOLE) {
220f2ac9
HD
2586 done = true;
2587 break;
2588 }
2589 index = indices[i];
2590 }
2591 page = pvec.pages[i];
2592 if (page && !radix_tree_exceptional_entry(page)) {
2593 if (!PageUptodate(page))
2594 page = NULL;
2595 }
2596 if (index >= end ||
965c8e59
AM
2597 (page && whence == SEEK_DATA) ||
2598 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2599 done = true;
2600 break;
2601 }
2602 }
0cd6144a 2603 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2604 pagevec_release(&pvec);
2605 pvec.nr = PAGEVEC_SIZE;
2606 cond_resched();
2607 }
2608 return index;
2609}
2610
965c8e59 2611static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2612{
2613 struct address_space *mapping = file->f_mapping;
2614 struct inode *inode = mapping->host;
2615 pgoff_t start, end;
2616 loff_t new_offset;
2617
965c8e59
AM
2618 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2619 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2620 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2621 inode_lock(inode);
220f2ac9
HD
2622 /* We're holding i_mutex so we can access i_size directly */
2623
a84c872c 2624 if (offset < 0 || offset >= inode->i_size)
220f2ac9
HD
2625 offset = -ENXIO;
2626 else {
09cbfeaf
KS
2627 start = offset >> PAGE_SHIFT;
2628 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2629 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2630 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2631 if (new_offset > offset) {
2632 if (new_offset < inode->i_size)
2633 offset = new_offset;
965c8e59 2634 else if (whence == SEEK_DATA)
220f2ac9
HD
2635 offset = -ENXIO;
2636 else
2637 offset = inode->i_size;
2638 }
2639 }
2640
387aae6f
HD
2641 if (offset >= 0)
2642 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2643 inode_unlock(inode);
220f2ac9
HD
2644 return offset;
2645}
2646
05f65b5c
DH
2647/*
2648 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2649 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2650 */
2651#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2652#define LAST_SCAN 4 /* about 150ms max */
2653
2654static void shmem_tag_pins(struct address_space *mapping)
2655{
2656 struct radix_tree_iter iter;
2657 void **slot;
2658 pgoff_t start;
2659 struct page *page;
2660
2661 lru_add_drain();
2662 start = 0;
2663 rcu_read_lock();
2664
05f65b5c
DH
2665 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2666 page = radix_tree_deref_slot(slot);
2667 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2668 if (radix_tree_deref_retry(page)) {
2669 slot = radix_tree_iter_retry(&iter);
2670 continue;
2671 }
05f65b5c
DH
2672 } else if (page_count(page) - page_mapcount(page) > 1) {
2673 spin_lock_irq(&mapping->tree_lock);
2674 radix_tree_tag_set(&mapping->page_tree, iter.index,
2675 SHMEM_TAG_PINNED);
2676 spin_unlock_irq(&mapping->tree_lock);
2677 }
2678
2679 if (need_resched()) {
148deab2 2680 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2681 cond_resched_rcu();
05f65b5c
DH
2682 }
2683 }
2684 rcu_read_unlock();
2685}
2686
2687/*
2688 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2689 * via get_user_pages(), drivers might have some pending I/O without any active
2690 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2691 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2692 * them to be dropped.
2693 * The caller must guarantee that no new user will acquire writable references
2694 * to those pages to avoid races.
2695 */
40e041a2
DH
2696static int shmem_wait_for_pins(struct address_space *mapping)
2697{
05f65b5c
DH
2698 struct radix_tree_iter iter;
2699 void **slot;
2700 pgoff_t start;
2701 struct page *page;
2702 int error, scan;
2703
2704 shmem_tag_pins(mapping);
2705
2706 error = 0;
2707 for (scan = 0; scan <= LAST_SCAN; scan++) {
2708 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2709 break;
2710
2711 if (!scan)
2712 lru_add_drain_all();
2713 else if (schedule_timeout_killable((HZ << scan) / 200))
2714 scan = LAST_SCAN;
2715
2716 start = 0;
2717 rcu_read_lock();
05f65b5c
DH
2718 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2719 start, SHMEM_TAG_PINNED) {
2720
2721 page = radix_tree_deref_slot(slot);
2722 if (radix_tree_exception(page)) {
2cf938aa
MW
2723 if (radix_tree_deref_retry(page)) {
2724 slot = radix_tree_iter_retry(&iter);
2725 continue;
2726 }
05f65b5c
DH
2727
2728 page = NULL;
2729 }
2730
2731 if (page &&
2732 page_count(page) - page_mapcount(page) != 1) {
2733 if (scan < LAST_SCAN)
2734 goto continue_resched;
2735
2736 /*
2737 * On the last scan, we clean up all those tags
2738 * we inserted; but make a note that we still
2739 * found pages pinned.
2740 */
2741 error = -EBUSY;
2742 }
2743
2744 spin_lock_irq(&mapping->tree_lock);
2745 radix_tree_tag_clear(&mapping->page_tree,
2746 iter.index, SHMEM_TAG_PINNED);
2747 spin_unlock_irq(&mapping->tree_lock);
2748continue_resched:
2749 if (need_resched()) {
148deab2 2750 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2751 cond_resched_rcu();
05f65b5c
DH
2752 }
2753 }
2754 rcu_read_unlock();
2755 }
2756
2757 return error;
40e041a2
DH
2758}
2759
2760#define F_ALL_SEALS (F_SEAL_SEAL | \
2761 F_SEAL_SHRINK | \
2762 F_SEAL_GROW | \
2763 F_SEAL_WRITE)
2764
2765int shmem_add_seals(struct file *file, unsigned int seals)
2766{
2767 struct inode *inode = file_inode(file);
2768 struct shmem_inode_info *info = SHMEM_I(inode);
2769 int error;
2770
2771 /*
2772 * SEALING
2773 * Sealing allows multiple parties to share a shmem-file but restrict
2774 * access to a specific subset of file operations. Seals can only be
2775 * added, but never removed. This way, mutually untrusted parties can
2776 * share common memory regions with a well-defined policy. A malicious
2777 * peer can thus never perform unwanted operations on a shared object.
2778 *
2779 * Seals are only supported on special shmem-files and always affect
2780 * the whole underlying inode. Once a seal is set, it may prevent some
2781 * kinds of access to the file. Currently, the following seals are
2782 * defined:
2783 * SEAL_SEAL: Prevent further seals from being set on this file
2784 * SEAL_SHRINK: Prevent the file from shrinking
2785 * SEAL_GROW: Prevent the file from growing
2786 * SEAL_WRITE: Prevent write access to the file
2787 *
2788 * As we don't require any trust relationship between two parties, we
2789 * must prevent seals from being removed. Therefore, sealing a file
2790 * only adds a given set of seals to the file, it never touches
2791 * existing seals. Furthermore, the "setting seals"-operation can be
2792 * sealed itself, which basically prevents any further seal from being
2793 * added.
2794 *
2795 * Semantics of sealing are only defined on volatile files. Only
2796 * anonymous shmem files support sealing. More importantly, seals are
2797 * never written to disk. Therefore, there's no plan to support it on
2798 * other file types.
2799 */
2800
2801 if (file->f_op != &shmem_file_operations)
2802 return -EINVAL;
2803 if (!(file->f_mode & FMODE_WRITE))
2804 return -EPERM;
2805 if (seals & ~(unsigned int)F_ALL_SEALS)
2806 return -EINVAL;
2807
5955102c 2808 inode_lock(inode);
40e041a2
DH
2809
2810 if (info->seals & F_SEAL_SEAL) {
2811 error = -EPERM;
2812 goto unlock;
2813 }
2814
2815 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2816 error = mapping_deny_writable(file->f_mapping);
2817 if (error)
2818 goto unlock;
2819
2820 error = shmem_wait_for_pins(file->f_mapping);
2821 if (error) {
2822 mapping_allow_writable(file->f_mapping);
2823 goto unlock;
2824 }
2825 }
2826
2827 info->seals |= seals;
2828 error = 0;
2829
2830unlock:
5955102c 2831 inode_unlock(inode);
40e041a2
DH
2832 return error;
2833}
2834EXPORT_SYMBOL_GPL(shmem_add_seals);
2835
2836int shmem_get_seals(struct file *file)
2837{
2838 if (file->f_op != &shmem_file_operations)
2839 return -EINVAL;
2840
2841 return SHMEM_I(file_inode(file))->seals;
2842}
2843EXPORT_SYMBOL_GPL(shmem_get_seals);
2844
2845long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2846{
2847 long error;
2848
2849 switch (cmd) {
2850 case F_ADD_SEALS:
2851 /* disallow upper 32bit */
2852 if (arg > UINT_MAX)
2853 return -EINVAL;
2854
2855 error = shmem_add_seals(file, arg);
2856 break;
2857 case F_GET_SEALS:
2858 error = shmem_get_seals(file);
2859 break;
2860 default:
2861 error = -EINVAL;
2862 break;
2863 }
2864
2865 return error;
2866}
2867
83e4fa9c
HD
2868static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2869 loff_t len)
2870{
496ad9aa 2871 struct inode *inode = file_inode(file);
e2d12e22 2872 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2873 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2874 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2875 pgoff_t start, index, end;
2876 int error;
83e4fa9c 2877
13ace4d0
HD
2878 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2879 return -EOPNOTSUPP;
2880
5955102c 2881 inode_lock(inode);
83e4fa9c
HD
2882
2883 if (mode & FALLOC_FL_PUNCH_HOLE) {
2884 struct address_space *mapping = file->f_mapping;
2885 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2886 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2887 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2888
40e041a2
DH
2889 /* protected by i_mutex */
2890 if (info->seals & F_SEAL_WRITE) {
2891 error = -EPERM;
2892 goto out;
2893 }
2894
8e205f77 2895 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2896 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2897 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2898 spin_lock(&inode->i_lock);
2899 inode->i_private = &shmem_falloc;
2900 spin_unlock(&inode->i_lock);
2901
83e4fa9c
HD
2902 if ((u64)unmap_end > (u64)unmap_start)
2903 unmap_mapping_range(mapping, unmap_start,
2904 1 + unmap_end - unmap_start, 0);
2905 shmem_truncate_range(inode, offset, offset + len - 1);
2906 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2907
2908 spin_lock(&inode->i_lock);
2909 inode->i_private = NULL;
2910 wake_up_all(&shmem_falloc_waitq);
2055da97 2911 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2912 spin_unlock(&inode->i_lock);
83e4fa9c 2913 error = 0;
8e205f77 2914 goto out;
e2d12e22
HD
2915 }
2916
2917 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2918 error = inode_newsize_ok(inode, offset + len);
2919 if (error)
2920 goto out;
2921
40e041a2
DH
2922 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2923 error = -EPERM;
2924 goto out;
2925 }
2926
09cbfeaf
KS
2927 start = offset >> PAGE_SHIFT;
2928 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2929 /* Try to avoid a swapstorm if len is impossible to satisfy */
2930 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2931 error = -ENOSPC;
2932 goto out;
83e4fa9c
HD
2933 }
2934
8e205f77 2935 shmem_falloc.waitq = NULL;
1aac1400
HD
2936 shmem_falloc.start = start;
2937 shmem_falloc.next = start;
2938 shmem_falloc.nr_falloced = 0;
2939 shmem_falloc.nr_unswapped = 0;
2940 spin_lock(&inode->i_lock);
2941 inode->i_private = &shmem_falloc;
2942 spin_unlock(&inode->i_lock);
2943
e2d12e22
HD
2944 for (index = start; index < end; index++) {
2945 struct page *page;
2946
2947 /*
2948 * Good, the fallocate(2) manpage permits EINTR: we may have
2949 * been interrupted because we are using up too much memory.
2950 */
2951 if (signal_pending(current))
2952 error = -EINTR;
1aac1400
HD
2953 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2954 error = -ENOMEM;
e2d12e22 2955 else
9e18eb29 2956 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2957 if (error) {
1635f6a7 2958 /* Remove the !PageUptodate pages we added */
7f556567
HD
2959 if (index > start) {
2960 shmem_undo_range(inode,
2961 (loff_t)start << PAGE_SHIFT,
2962 ((loff_t)index << PAGE_SHIFT) - 1, true);
2963 }
1aac1400 2964 goto undone;
e2d12e22
HD
2965 }
2966
1aac1400
HD
2967 /*
2968 * Inform shmem_writepage() how far we have reached.
2969 * No need for lock or barrier: we have the page lock.
2970 */
2971 shmem_falloc.next++;
2972 if (!PageUptodate(page))
2973 shmem_falloc.nr_falloced++;
2974
e2d12e22 2975 /*
1635f6a7
HD
2976 * If !PageUptodate, leave it that way so that freeable pages
2977 * can be recognized if we need to rollback on error later.
2978 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2979 * than free the pages we are allocating (and SGP_CACHE pages
2980 * might still be clean: we now need to mark those dirty too).
2981 */
2982 set_page_dirty(page);
2983 unlock_page(page);
09cbfeaf 2984 put_page(page);
e2d12e22
HD
2985 cond_resched();
2986 }
2987
2988 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2989 i_size_write(inode, offset + len);
078cd827 2990 inode->i_ctime = current_time(inode);
1aac1400
HD
2991undone:
2992 spin_lock(&inode->i_lock);
2993 inode->i_private = NULL;
2994 spin_unlock(&inode->i_lock);
e2d12e22 2995out:
5955102c 2996 inode_unlock(inode);
83e4fa9c
HD
2997 return error;
2998}
2999
726c3342 3000static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 3001{
726c3342 3002 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
3003
3004 buf->f_type = TMPFS_MAGIC;
09cbfeaf 3005 buf->f_bsize = PAGE_SIZE;
1da177e4 3006 buf->f_namelen = NAME_MAX;
0edd73b3 3007 if (sbinfo->max_blocks) {
1da177e4 3008 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
3009 buf->f_bavail =
3010 buf->f_bfree = sbinfo->max_blocks -
3011 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
3012 }
3013 if (sbinfo->max_inodes) {
1da177e4
LT
3014 buf->f_files = sbinfo->max_inodes;
3015 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
3016 }
3017 /* else leave those fields 0 like simple_statfs */
3018 return 0;
3019}
3020
3021/*
3022 * File creation. Allocate an inode, and we're done..
3023 */
3024static int
1a67aafb 3025shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 3026{
0b0a0806 3027 struct inode *inode;
1da177e4
LT
3028 int error = -ENOSPC;
3029
454abafe 3030 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 3031 if (inode) {
feda821e
CH
3032 error = simple_acl_create(dir, inode);
3033 if (error)
3034 goto out_iput;
2a7dba39 3035 error = security_inode_init_security(inode, dir,
9d8f13ba 3036 &dentry->d_name,
6d9d88d0 3037 shmem_initxattrs, NULL);
feda821e
CH
3038 if (error && error != -EOPNOTSUPP)
3039 goto out_iput;
37ec43cd 3040
718deb6b 3041 error = 0;
1da177e4 3042 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3043 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3044 d_instantiate(dentry, inode);
3045 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
3046 }
3047 return error;
feda821e
CH
3048out_iput:
3049 iput(inode);
3050 return error;
1da177e4
LT
3051}
3052
60545d0d
AV
3053static int
3054shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3055{
3056 struct inode *inode;
3057 int error = -ENOSPC;
3058
3059 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3060 if (inode) {
3061 error = security_inode_init_security(inode, dir,
3062 NULL,
3063 shmem_initxattrs, NULL);
feda821e
CH
3064 if (error && error != -EOPNOTSUPP)
3065 goto out_iput;
3066 error = simple_acl_create(dir, inode);
3067 if (error)
3068 goto out_iput;
60545d0d
AV
3069 d_tmpfile(dentry, inode);
3070 }
3071 return error;
feda821e
CH
3072out_iput:
3073 iput(inode);
3074 return error;
60545d0d
AV
3075}
3076
18bb1db3 3077static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
3078{
3079 int error;
3080
3081 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3082 return error;
d8c76e6f 3083 inc_nlink(dir);
1da177e4
LT
3084 return 0;
3085}
3086
4acdaf27 3087static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 3088 bool excl)
1da177e4
LT
3089{
3090 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3091}
3092
3093/*
3094 * Link a file..
3095 */
3096static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3097{
75c3cfa8 3098 struct inode *inode = d_inode(old_dentry);
5b04c689 3099 int ret;
1da177e4
LT
3100
3101 /*
3102 * No ordinary (disk based) filesystem counts links as inodes;
3103 * but each new link needs a new dentry, pinning lowmem, and
3104 * tmpfs dentries cannot be pruned until they are unlinked.
3105 */
5b04c689
PE
3106 ret = shmem_reserve_inode(inode->i_sb);
3107 if (ret)
3108 goto out;
1da177e4
LT
3109
3110 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3111 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3112 inc_nlink(inode);
7de9c6ee 3113 ihold(inode); /* New dentry reference */
1da177e4
LT
3114 dget(dentry); /* Extra pinning count for the created dentry */
3115 d_instantiate(dentry, inode);
5b04c689
PE
3116out:
3117 return ret;
1da177e4
LT
3118}
3119
3120static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3121{
75c3cfa8 3122 struct inode *inode = d_inode(dentry);
1da177e4 3123
5b04c689
PE
3124 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3125 shmem_free_inode(inode->i_sb);
1da177e4
LT
3126
3127 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3128 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3129 drop_nlink(inode);
1da177e4
LT
3130 dput(dentry); /* Undo the count from "create" - this does all the work */
3131 return 0;
3132}
3133
3134static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3135{
3136 if (!simple_empty(dentry))
3137 return -ENOTEMPTY;
3138
75c3cfa8 3139 drop_nlink(d_inode(dentry));
9a53c3a7 3140 drop_nlink(dir);
1da177e4
LT
3141 return shmem_unlink(dir, dentry);
3142}
3143
37456771
MS
3144static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3145{
e36cb0b8
DH
3146 bool old_is_dir = d_is_dir(old_dentry);
3147 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3148
3149 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3150 if (old_is_dir) {
3151 drop_nlink(old_dir);
3152 inc_nlink(new_dir);
3153 } else {
3154 drop_nlink(new_dir);
3155 inc_nlink(old_dir);
3156 }
3157 }
3158 old_dir->i_ctime = old_dir->i_mtime =
3159 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3160 d_inode(old_dentry)->i_ctime =
078cd827 3161 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3162
3163 return 0;
3164}
3165
46fdb794
MS
3166static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3167{
3168 struct dentry *whiteout;
3169 int error;
3170
3171 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3172 if (!whiteout)
3173 return -ENOMEM;
3174
3175 error = shmem_mknod(old_dir, whiteout,
3176 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3177 dput(whiteout);
3178 if (error)
3179 return error;
3180
3181 /*
3182 * Cheat and hash the whiteout while the old dentry is still in
3183 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3184 *
3185 * d_lookup() will consistently find one of them at this point,
3186 * not sure which one, but that isn't even important.
3187 */
3188 d_rehash(whiteout);
3189 return 0;
3190}
3191
1da177e4
LT
3192/*
3193 * The VFS layer already does all the dentry stuff for rename,
3194 * we just have to decrement the usage count for the target if
3195 * it exists so that the VFS layer correctly free's it when it
3196 * gets overwritten.
3197 */
3b69ff51 3198static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3199{
75c3cfa8 3200 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3201 int they_are_dirs = S_ISDIR(inode->i_mode);
3202
46fdb794 3203 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3204 return -EINVAL;
3205
37456771
MS
3206 if (flags & RENAME_EXCHANGE)
3207 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3208
1da177e4
LT
3209 if (!simple_empty(new_dentry))
3210 return -ENOTEMPTY;
3211
46fdb794
MS
3212 if (flags & RENAME_WHITEOUT) {
3213 int error;
3214
3215 error = shmem_whiteout(old_dir, old_dentry);
3216 if (error)
3217 return error;
3218 }
3219
75c3cfa8 3220 if (d_really_is_positive(new_dentry)) {
1da177e4 3221 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3222 if (they_are_dirs) {
75c3cfa8 3223 drop_nlink(d_inode(new_dentry));
9a53c3a7 3224 drop_nlink(old_dir);
b928095b 3225 }
1da177e4 3226 } else if (they_are_dirs) {
9a53c3a7 3227 drop_nlink(old_dir);
d8c76e6f 3228 inc_nlink(new_dir);
1da177e4
LT
3229 }
3230
3231 old_dir->i_size -= BOGO_DIRENT_SIZE;
3232 new_dir->i_size += BOGO_DIRENT_SIZE;
3233 old_dir->i_ctime = old_dir->i_mtime =
3234 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3235 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3236 return 0;
3237}
3238
3239static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3240{
3241 int error;
3242 int len;
3243 struct inode *inode;
9276aad6 3244 struct page *page;
1da177e4
LT
3245 struct shmem_inode_info *info;
3246
3247 len = strlen(symname) + 1;
09cbfeaf 3248 if (len > PAGE_SIZE)
1da177e4
LT
3249 return -ENAMETOOLONG;
3250
454abafe 3251 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3252 if (!inode)
3253 return -ENOSPC;
3254
9d8f13ba 3255 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3256 shmem_initxattrs, NULL);
570bc1c2
SS
3257 if (error) {
3258 if (error != -EOPNOTSUPP) {
3259 iput(inode);
3260 return error;
3261 }
3262 error = 0;
3263 }
3264
1da177e4
LT
3265 info = SHMEM_I(inode);
3266 inode->i_size = len-1;
69f07ec9 3267 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3268 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3269 if (!inode->i_link) {
69f07ec9
HD
3270 iput(inode);
3271 return -ENOMEM;
3272 }
3273 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3274 } else {
e8ecde25 3275 inode_nohighmem(inode);
9e18eb29 3276 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3277 if (error) {
3278 iput(inode);
3279 return error;
3280 }
14fcc23f 3281 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3282 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3283 memcpy(page_address(page), symname, len);
ec9516fb 3284 SetPageUptodate(page);
1da177e4 3285 set_page_dirty(page);
6746aff7 3286 unlock_page(page);
09cbfeaf 3287 put_page(page);
1da177e4 3288 }
1da177e4 3289 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3290 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3291 d_instantiate(dentry, inode);
3292 dget(dentry);
3293 return 0;
3294}
3295
fceef393 3296static void shmem_put_link(void *arg)
1da177e4 3297{
fceef393
AV
3298 mark_page_accessed(arg);
3299 put_page(arg);
1da177e4
LT
3300}
3301
6b255391 3302static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3303 struct inode *inode,
3304 struct delayed_call *done)
1da177e4 3305{
1da177e4 3306 struct page *page = NULL;
6b255391 3307 int error;
6a6c9904
AV
3308 if (!dentry) {
3309 page = find_get_page(inode->i_mapping, 0);
3310 if (!page)
3311 return ERR_PTR(-ECHILD);
3312 if (!PageUptodate(page)) {
3313 put_page(page);
3314 return ERR_PTR(-ECHILD);
3315 }
3316 } else {
9e18eb29 3317 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3318 if (error)
3319 return ERR_PTR(error);
3320 unlock_page(page);
3321 }
fceef393 3322 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3323 return page_address(page);
1da177e4
LT
3324}
3325
b09e0fa4 3326#ifdef CONFIG_TMPFS_XATTR
46711810 3327/*
b09e0fa4
EP
3328 * Superblocks without xattr inode operations may get some security.* xattr
3329 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3330 * like ACLs, we also need to implement the security.* handlers at
3331 * filesystem level, though.
3332 */
3333
6d9d88d0
JS
3334/*
3335 * Callback for security_inode_init_security() for acquiring xattrs.
3336 */
3337static int shmem_initxattrs(struct inode *inode,
3338 const struct xattr *xattr_array,
3339 void *fs_info)
3340{
3341 struct shmem_inode_info *info = SHMEM_I(inode);
3342 const struct xattr *xattr;
38f38657 3343 struct simple_xattr *new_xattr;
6d9d88d0
JS
3344 size_t len;
3345
3346 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3347 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3348 if (!new_xattr)
3349 return -ENOMEM;
3350
3351 len = strlen(xattr->name) + 1;
3352 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3353 GFP_KERNEL);
3354 if (!new_xattr->name) {
3355 kfree(new_xattr);
3356 return -ENOMEM;
3357 }
3358
3359 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3360 XATTR_SECURITY_PREFIX_LEN);
3361 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3362 xattr->name, len);
3363
38f38657 3364 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3365 }
3366
3367 return 0;
3368}
3369
aa7c5241 3370static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3371 struct dentry *unused, struct inode *inode,
3372 const char *name, void *buffer, size_t size)
b09e0fa4 3373{
b296821a 3374 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3375
aa7c5241 3376 name = xattr_full_name(handler, name);
38f38657 3377 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3378}
3379
aa7c5241 3380static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3381 struct dentry *unused, struct inode *inode,
3382 const char *name, const void *value,
3383 size_t size, int flags)
b09e0fa4 3384{
59301226 3385 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3386
aa7c5241 3387 name = xattr_full_name(handler, name);
38f38657 3388 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3389}
3390
aa7c5241
AG
3391static const struct xattr_handler shmem_security_xattr_handler = {
3392 .prefix = XATTR_SECURITY_PREFIX,
3393 .get = shmem_xattr_handler_get,
3394 .set = shmem_xattr_handler_set,
3395};
b09e0fa4 3396
aa7c5241
AG
3397static const struct xattr_handler shmem_trusted_xattr_handler = {
3398 .prefix = XATTR_TRUSTED_PREFIX,
3399 .get = shmem_xattr_handler_get,
3400 .set = shmem_xattr_handler_set,
3401};
b09e0fa4 3402
aa7c5241
AG
3403static const struct xattr_handler *shmem_xattr_handlers[] = {
3404#ifdef CONFIG_TMPFS_POSIX_ACL
3405 &posix_acl_access_xattr_handler,
3406 &posix_acl_default_xattr_handler,
3407#endif
3408 &shmem_security_xattr_handler,
3409 &shmem_trusted_xattr_handler,
3410 NULL
3411};
b09e0fa4
EP
3412
3413static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3414{
75c3cfa8 3415 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3416 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3417}
3418#endif /* CONFIG_TMPFS_XATTR */
3419
69f07ec9 3420static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3421 .get_link = simple_get_link,
b09e0fa4 3422#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3423 .listxattr = shmem_listxattr,
b09e0fa4
EP
3424#endif
3425};
3426
3427static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3428 .get_link = shmem_get_link,
b09e0fa4 3429#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3430 .listxattr = shmem_listxattr,
39f0247d 3431#endif
b09e0fa4 3432};
39f0247d 3433
91828a40
DG
3434static struct dentry *shmem_get_parent(struct dentry *child)
3435{
3436 return ERR_PTR(-ESTALE);
3437}
3438
3439static int shmem_match(struct inode *ino, void *vfh)
3440{
3441 __u32 *fh = vfh;
3442 __u64 inum = fh[2];
3443 inum = (inum << 32) | fh[1];
3444 return ino->i_ino == inum && fh[0] == ino->i_generation;
3445}
3446
480b116c
CH
3447static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3448 struct fid *fid, int fh_len, int fh_type)
91828a40 3449{
91828a40 3450 struct inode *inode;
480b116c 3451 struct dentry *dentry = NULL;
35c2a7f4 3452 u64 inum;
480b116c
CH
3453
3454 if (fh_len < 3)
3455 return NULL;
91828a40 3456
35c2a7f4
HD
3457 inum = fid->raw[2];
3458 inum = (inum << 32) | fid->raw[1];
3459
480b116c
CH
3460 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3461 shmem_match, fid->raw);
91828a40 3462 if (inode) {
480b116c 3463 dentry = d_find_alias(inode);
91828a40
DG
3464 iput(inode);
3465 }
3466
480b116c 3467 return dentry;
91828a40
DG
3468}
3469
b0b0382b
AV
3470static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3471 struct inode *parent)
91828a40 3472{
5fe0c237
AK
3473 if (*len < 3) {
3474 *len = 3;
94e07a75 3475 return FILEID_INVALID;
5fe0c237 3476 }
91828a40 3477
1d3382cb 3478 if (inode_unhashed(inode)) {
91828a40
DG
3479 /* Unfortunately insert_inode_hash is not idempotent,
3480 * so as we hash inodes here rather than at creation
3481 * time, we need a lock to ensure we only try
3482 * to do it once
3483 */
3484 static DEFINE_SPINLOCK(lock);
3485 spin_lock(&lock);
1d3382cb 3486 if (inode_unhashed(inode))
91828a40
DG
3487 __insert_inode_hash(inode,
3488 inode->i_ino + inode->i_generation);
3489 spin_unlock(&lock);
3490 }
3491
3492 fh[0] = inode->i_generation;
3493 fh[1] = inode->i_ino;
3494 fh[2] = ((__u64)inode->i_ino) >> 32;
3495
3496 *len = 3;
3497 return 1;
3498}
3499
39655164 3500static const struct export_operations shmem_export_ops = {
91828a40 3501 .get_parent = shmem_get_parent,
91828a40 3502 .encode_fh = shmem_encode_fh,
480b116c 3503 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3504};
3505
680d794b 3506static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3507 bool remount)
1da177e4
LT
3508{
3509 char *this_char, *value, *rest;
49cd0a5c 3510 struct mempolicy *mpol = NULL;
8751e039
EB
3511 uid_t uid;
3512 gid_t gid;
1da177e4 3513
b00dc3ad
HD
3514 while (options != NULL) {
3515 this_char = options;
3516 for (;;) {
3517 /*
3518 * NUL-terminate this option: unfortunately,
3519 * mount options form a comma-separated list,
3520 * but mpol's nodelist may also contain commas.
3521 */
3522 options = strchr(options, ',');
3523 if (options == NULL)
3524 break;
3525 options++;
3526 if (!isdigit(*options)) {
3527 options[-1] = '\0';
3528 break;
3529 }
3530 }
1da177e4
LT
3531 if (!*this_char)
3532 continue;
3533 if ((value = strchr(this_char,'=')) != NULL) {
3534 *value++ = 0;
3535 } else {
1170532b
JP
3536 pr_err("tmpfs: No value for mount option '%s'\n",
3537 this_char);
49cd0a5c 3538 goto error;
1da177e4
LT
3539 }
3540
3541 if (!strcmp(this_char,"size")) {
3542 unsigned long long size;
3543 size = memparse(value,&rest);
3544 if (*rest == '%') {
3545 size <<= PAGE_SHIFT;
3546 size *= totalram_pages;
3547 do_div(size, 100);
3548 rest++;
3549 }
3550 if (*rest)
3551 goto bad_val;
680d794b 3552 sbinfo->max_blocks =
09cbfeaf 3553 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3554 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3555 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3556 if (*rest)
3557 goto bad_val;
3558 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3559 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3560 if (*rest)
3561 goto bad_val;
3562 } else if (!strcmp(this_char,"mode")) {
680d794b 3563 if (remount)
1da177e4 3564 continue;
680d794b 3565 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3566 if (*rest)
3567 goto bad_val;
3568 } else if (!strcmp(this_char,"uid")) {
680d794b 3569 if (remount)
1da177e4 3570 continue;
8751e039 3571 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3572 if (*rest)
3573 goto bad_val;
8751e039
EB
3574 sbinfo->uid = make_kuid(current_user_ns(), uid);
3575 if (!uid_valid(sbinfo->uid))
3576 goto bad_val;
1da177e4 3577 } else if (!strcmp(this_char,"gid")) {
680d794b 3578 if (remount)
1da177e4 3579 continue;
8751e039 3580 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3581 if (*rest)
3582 goto bad_val;
8751e039
EB
3583 sbinfo->gid = make_kgid(current_user_ns(), gid);
3584 if (!gid_valid(sbinfo->gid))
3585 goto bad_val;
e496cf3d 3586#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3587 } else if (!strcmp(this_char, "huge")) {
3588 int huge;
3589 huge = shmem_parse_huge(value);
3590 if (huge < 0)
3591 goto bad_val;
3592 if (!has_transparent_hugepage() &&
3593 huge != SHMEM_HUGE_NEVER)
3594 goto bad_val;
3595 sbinfo->huge = huge;
3596#endif
3597#ifdef CONFIG_NUMA
7339ff83 3598 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3599 mpol_put(mpol);
3600 mpol = NULL;
3601 if (mpol_parse_str(value, &mpol))
7339ff83 3602 goto bad_val;
5a6e75f8 3603#endif
1da177e4 3604 } else {
1170532b 3605 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3606 goto error;
1da177e4
LT
3607 }
3608 }
49cd0a5c 3609 sbinfo->mpol = mpol;
1da177e4
LT
3610 return 0;
3611
3612bad_val:
1170532b 3613 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3614 value, this_char);
49cd0a5c
GT
3615error:
3616 mpol_put(mpol);
1da177e4
LT
3617 return 1;
3618
3619}
3620
3621static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3622{
3623 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3624 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3625 unsigned long inodes;
3626 int error = -EINVAL;
3627
5f00110f 3628 config.mpol = NULL;
680d794b 3629 if (shmem_parse_options(data, &config, true))
0edd73b3 3630 return error;
1da177e4 3631
0edd73b3 3632 spin_lock(&sbinfo->stat_lock);
0edd73b3 3633 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3634 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3635 goto out;
680d794b 3636 if (config.max_inodes < inodes)
0edd73b3
HD
3637 goto out;
3638 /*
54af6042 3639 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3640 * but we must separately disallow unlimited->limited, because
3641 * in that case we have no record of how much is already in use.
3642 */
680d794b 3643 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3644 goto out;
680d794b 3645 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3646 goto out;
3647
3648 error = 0;
5a6e75f8 3649 sbinfo->huge = config.huge;
680d794b 3650 sbinfo->max_blocks = config.max_blocks;
680d794b 3651 sbinfo->max_inodes = config.max_inodes;
3652 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3653
5f00110f
GT
3654 /*
3655 * Preserve previous mempolicy unless mpol remount option was specified.
3656 */
3657 if (config.mpol) {
3658 mpol_put(sbinfo->mpol);
3659 sbinfo->mpol = config.mpol; /* transfers initial ref */
3660 }
0edd73b3
HD
3661out:
3662 spin_unlock(&sbinfo->stat_lock);
3663 return error;
1da177e4 3664}
680d794b 3665
34c80b1d 3666static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3667{
34c80b1d 3668 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3669
3670 if (sbinfo->max_blocks != shmem_default_max_blocks())
3671 seq_printf(seq, ",size=%luk",
09cbfeaf 3672 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3673 if (sbinfo->max_inodes != shmem_default_max_inodes())
3674 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3675 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3676 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3677 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3678 seq_printf(seq, ",uid=%u",
3679 from_kuid_munged(&init_user_ns, sbinfo->uid));
3680 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3681 seq_printf(seq, ",gid=%u",
3682 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3683#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3684 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3685 if (sbinfo->huge)
3686 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3687#endif
71fe804b 3688 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3689 return 0;
3690}
9183df25
DH
3691
3692#define MFD_NAME_PREFIX "memfd:"
3693#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3694#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3695
749df87b 3696#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
9183df25
DH
3697
3698SYSCALL_DEFINE2(memfd_create,
3699 const char __user *, uname,
3700 unsigned int, flags)
3701{
3702 struct shmem_inode_info *info;
3703 struct file *file;
3704 int fd, error;
3705 char *name;
3706 long len;
3707
749df87b
MK
3708 if (!(flags & MFD_HUGETLB)) {
3709 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3710 return -EINVAL;
3711 } else {
3712 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3713 if (flags & MFD_ALLOW_SEALING)
3714 return -EINVAL;
3715 /* Allow huge page size encoding in flags. */
3716 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3717 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3718 return -EINVAL;
3719 }
9183df25
DH
3720
3721 /* length includes terminating zero */
3722 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3723 if (len <= 0)
3724 return -EFAULT;
3725 if (len > MFD_NAME_MAX_LEN + 1)
3726 return -EINVAL;
3727
0ee931c4 3728 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
9183df25
DH
3729 if (!name)
3730 return -ENOMEM;
3731
3732 strcpy(name, MFD_NAME_PREFIX);
3733 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3734 error = -EFAULT;
3735 goto err_name;
3736 }
3737
3738 /* terminating-zero may have changed after strnlen_user() returned */
3739 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3740 error = -EFAULT;
3741 goto err_name;
3742 }
3743
3744 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3745 if (fd < 0) {
3746 error = fd;
3747 goto err_name;
3748 }
3749
749df87b
MK
3750 if (flags & MFD_HUGETLB) {
3751 struct user_struct *user = NULL;
3752
3753 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3754 HUGETLB_ANONHUGE_INODE,
3755 (flags >> MFD_HUGE_SHIFT) &
3756 MFD_HUGE_MASK);
3757 } else
3758 file = shmem_file_setup(name, 0, VM_NORESERVE);
9183df25
DH
3759 if (IS_ERR(file)) {
3760 error = PTR_ERR(file);
3761 goto err_fd;
3762 }
9183df25
DH
3763 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3764 file->f_flags |= O_RDWR | O_LARGEFILE;
749df87b
MK
3765
3766 if (flags & MFD_ALLOW_SEALING) {
3767 /*
3768 * flags check at beginning of function ensures
3769 * this is not a hugetlbfs (MFD_HUGETLB) file.
3770 */
3771 info = SHMEM_I(file_inode(file));
9183df25 3772 info->seals &= ~F_SEAL_SEAL;
749df87b 3773 }
9183df25
DH
3774
3775 fd_install(fd, file);
3776 kfree(name);
3777 return fd;
3778
3779err_fd:
3780 put_unused_fd(fd);
3781err_name:
3782 kfree(name);
3783 return error;
3784}
3785
680d794b 3786#endif /* CONFIG_TMPFS */
1da177e4
LT
3787
3788static void shmem_put_super(struct super_block *sb)
3789{
602586a8
HD
3790 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3791
3792 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3793 mpol_put(sbinfo->mpol);
602586a8 3794 kfree(sbinfo);
1da177e4
LT
3795 sb->s_fs_info = NULL;
3796}
3797
2b2af54a 3798int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3799{
3800 struct inode *inode;
0edd73b3 3801 struct shmem_sb_info *sbinfo;
680d794b 3802 int err = -ENOMEM;
3803
3804 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3805 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3806 L1_CACHE_BYTES), GFP_KERNEL);
3807 if (!sbinfo)
3808 return -ENOMEM;
3809
680d794b 3810 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3811 sbinfo->uid = current_fsuid();
3812 sbinfo->gid = current_fsgid();
680d794b 3813 sb->s_fs_info = sbinfo;
1da177e4 3814
0edd73b3 3815#ifdef CONFIG_TMPFS
1da177e4
LT
3816 /*
3817 * Per default we only allow half of the physical ram per
3818 * tmpfs instance, limiting inodes to one per page of lowmem;
3819 * but the internal instance is left unlimited.
3820 */
ca4e0519 3821 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b 3822 sbinfo->max_blocks = shmem_default_max_blocks();
3823 sbinfo->max_inodes = shmem_default_max_inodes();
3824 if (shmem_parse_options(data, sbinfo, false)) {
3825 err = -EINVAL;
3826 goto failed;
3827 }
ca4e0519
AV
3828 } else {
3829 sb->s_flags |= MS_NOUSER;
1da177e4 3830 }
91828a40 3831 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3832 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3833#else
3834 sb->s_flags |= MS_NOUSER;
3835#endif
3836
0edd73b3 3837 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3838 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3839 goto failed;
680d794b 3840 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3841 spin_lock_init(&sbinfo->shrinklist_lock);
3842 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3843
285b2c4f 3844 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3845 sb->s_blocksize = PAGE_SIZE;
3846 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3847 sb->s_magic = TMPFS_MAGIC;
3848 sb->s_op = &shmem_ops;
cfd95a9c 3849 sb->s_time_gran = 1;
b09e0fa4 3850#ifdef CONFIG_TMPFS_XATTR
39f0247d 3851 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3852#endif
3853#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3854 sb->s_flags |= MS_POSIXACL;
3855#endif
2b4db796 3856 uuid_gen(&sb->s_uuid);
0edd73b3 3857
454abafe 3858 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3859 if (!inode)
3860 goto failed;
680d794b 3861 inode->i_uid = sbinfo->uid;
3862 inode->i_gid = sbinfo->gid;
318ceed0
AV
3863 sb->s_root = d_make_root(inode);
3864 if (!sb->s_root)
48fde701 3865 goto failed;
1da177e4
LT
3866 return 0;
3867
1da177e4
LT
3868failed:
3869 shmem_put_super(sb);
3870 return err;
3871}
3872
fcc234f8 3873static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3874
3875static struct inode *shmem_alloc_inode(struct super_block *sb)
3876{
41ffe5d5
HD
3877 struct shmem_inode_info *info;
3878 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3879 if (!info)
1da177e4 3880 return NULL;
41ffe5d5 3881 return &info->vfs_inode;
1da177e4
LT
3882}
3883
41ffe5d5 3884static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3885{
3886 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3887 if (S_ISLNK(inode->i_mode))
3888 kfree(inode->i_link);
fa0d7e3d
NP
3889 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3890}
3891
1da177e4
LT
3892static void shmem_destroy_inode(struct inode *inode)
3893{
09208d15 3894 if (S_ISREG(inode->i_mode))
1da177e4 3895 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3896 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3897}
3898
41ffe5d5 3899static void shmem_init_inode(void *foo)
1da177e4 3900{
41ffe5d5
HD
3901 struct shmem_inode_info *info = foo;
3902 inode_init_once(&info->vfs_inode);
1da177e4
LT
3903}
3904
41ffe5d5 3905static int shmem_init_inodecache(void)
1da177e4
LT
3906{
3907 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3908 sizeof(struct shmem_inode_info),
5d097056 3909 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3910 return 0;
3911}
3912
41ffe5d5 3913static void shmem_destroy_inodecache(void)
1da177e4 3914{
1a1d92c1 3915 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3916}
3917
f5e54d6e 3918static const struct address_space_operations shmem_aops = {
1da177e4 3919 .writepage = shmem_writepage,
76719325 3920 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3921#ifdef CONFIG_TMPFS
800d15a5
NP
3922 .write_begin = shmem_write_begin,
3923 .write_end = shmem_write_end,
1da177e4 3924#endif
1c93923c 3925#ifdef CONFIG_MIGRATION
304dbdb7 3926 .migratepage = migrate_page,
1c93923c 3927#endif
aa261f54 3928 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3929};
3930
15ad7cdc 3931static const struct file_operations shmem_file_operations = {
1da177e4 3932 .mmap = shmem_mmap,
c01d5b30 3933 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3934#ifdef CONFIG_TMPFS
220f2ac9 3935 .llseek = shmem_file_llseek,
2ba5bbed 3936 .read_iter = shmem_file_read_iter,
8174202b 3937 .write_iter = generic_file_write_iter,
1b061d92 3938 .fsync = noop_fsync,
82c156f8 3939 .splice_read = generic_file_splice_read,
f6cb85d0 3940 .splice_write = iter_file_splice_write,
83e4fa9c 3941 .fallocate = shmem_fallocate,
1da177e4
LT
3942#endif
3943};
3944
92e1d5be 3945static const struct inode_operations shmem_inode_operations = {
44a30220 3946 .getattr = shmem_getattr,
94c1e62d 3947 .setattr = shmem_setattr,
b09e0fa4 3948#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3949 .listxattr = shmem_listxattr,
feda821e 3950 .set_acl = simple_set_acl,
b09e0fa4 3951#endif
1da177e4
LT
3952};
3953
92e1d5be 3954static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3955#ifdef CONFIG_TMPFS
3956 .create = shmem_create,
3957 .lookup = simple_lookup,
3958 .link = shmem_link,
3959 .unlink = shmem_unlink,
3960 .symlink = shmem_symlink,
3961 .mkdir = shmem_mkdir,
3962 .rmdir = shmem_rmdir,
3963 .mknod = shmem_mknod,
2773bf00 3964 .rename = shmem_rename2,
60545d0d 3965 .tmpfile = shmem_tmpfile,
1da177e4 3966#endif
b09e0fa4 3967#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3968 .listxattr = shmem_listxattr,
b09e0fa4 3969#endif
39f0247d 3970#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3971 .setattr = shmem_setattr,
feda821e 3972 .set_acl = simple_set_acl,
39f0247d
AG
3973#endif
3974};
3975
92e1d5be 3976static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3977#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3978 .listxattr = shmem_listxattr,
b09e0fa4 3979#endif
39f0247d 3980#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3981 .setattr = shmem_setattr,
feda821e 3982 .set_acl = simple_set_acl,
39f0247d 3983#endif
1da177e4
LT
3984};
3985
759b9775 3986static const struct super_operations shmem_ops = {
1da177e4
LT
3987 .alloc_inode = shmem_alloc_inode,
3988 .destroy_inode = shmem_destroy_inode,
3989#ifdef CONFIG_TMPFS
3990 .statfs = shmem_statfs,
3991 .remount_fs = shmem_remount_fs,
680d794b 3992 .show_options = shmem_show_options,
1da177e4 3993#endif
1f895f75 3994 .evict_inode = shmem_evict_inode,
1da177e4
LT
3995 .drop_inode = generic_delete_inode,
3996 .put_super = shmem_put_super,
779750d2
KS
3997#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3998 .nr_cached_objects = shmem_unused_huge_count,
3999 .free_cached_objects = shmem_unused_huge_scan,
4000#endif
1da177e4
LT
4001};
4002
f0f37e2f 4003static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 4004 .fault = shmem_fault,
d7c17551 4005 .map_pages = filemap_map_pages,
1da177e4
LT
4006#ifdef CONFIG_NUMA
4007 .set_policy = shmem_set_policy,
4008 .get_policy = shmem_get_policy,
4009#endif
4010};
4011
3c26ff6e
AV
4012static struct dentry *shmem_mount(struct file_system_type *fs_type,
4013 int flags, const char *dev_name, void *data)
1da177e4 4014{
3c26ff6e 4015 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
4016}
4017
41ffe5d5 4018static struct file_system_type shmem_fs_type = {
1da177e4
LT
4019 .owner = THIS_MODULE,
4020 .name = "tmpfs",
3c26ff6e 4021 .mount = shmem_mount,
1da177e4 4022 .kill_sb = kill_litter_super,
2b8576cb 4023 .fs_flags = FS_USERNS_MOUNT,
1da177e4 4024};
1da177e4 4025
41ffe5d5 4026int __init shmem_init(void)
1da177e4
LT
4027{
4028 int error;
4029
16203a7a
RL
4030 /* If rootfs called this, don't re-init */
4031 if (shmem_inode_cachep)
4032 return 0;
4033
41ffe5d5 4034 error = shmem_init_inodecache();
1da177e4
LT
4035 if (error)
4036 goto out3;
4037
41ffe5d5 4038 error = register_filesystem(&shmem_fs_type);
1da177e4 4039 if (error) {
1170532b 4040 pr_err("Could not register tmpfs\n");
1da177e4
LT
4041 goto out2;
4042 }
95dc112a 4043
ca4e0519 4044 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
4045 if (IS_ERR(shm_mnt)) {
4046 error = PTR_ERR(shm_mnt);
1170532b 4047 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
4048 goto out1;
4049 }
5a6e75f8 4050
e496cf3d 4051#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 4052 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4053 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4054 else
4055 shmem_huge = 0; /* just in case it was patched */
4056#endif
1da177e4
LT
4057 return 0;
4058
4059out1:
41ffe5d5 4060 unregister_filesystem(&shmem_fs_type);
1da177e4 4061out2:
41ffe5d5 4062 shmem_destroy_inodecache();
1da177e4
LT
4063out3:
4064 shm_mnt = ERR_PTR(error);
4065 return error;
4066}
853ac43a 4067
e496cf3d 4068#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
4069static ssize_t shmem_enabled_show(struct kobject *kobj,
4070 struct kobj_attribute *attr, char *buf)
4071{
4072 int values[] = {
4073 SHMEM_HUGE_ALWAYS,
4074 SHMEM_HUGE_WITHIN_SIZE,
4075 SHMEM_HUGE_ADVISE,
4076 SHMEM_HUGE_NEVER,
4077 SHMEM_HUGE_DENY,
4078 SHMEM_HUGE_FORCE,
4079 };
4080 int i, count;
4081
4082 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4083 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4084
4085 count += sprintf(buf + count, fmt,
4086 shmem_format_huge(values[i]));
4087 }
4088 buf[count - 1] = '\n';
4089 return count;
4090}
4091
4092static ssize_t shmem_enabled_store(struct kobject *kobj,
4093 struct kobj_attribute *attr, const char *buf, size_t count)
4094{
4095 char tmp[16];
4096 int huge;
4097
4098 if (count + 1 > sizeof(tmp))
4099 return -EINVAL;
4100 memcpy(tmp, buf, count);
4101 tmp[count] = '\0';
4102 if (count && tmp[count - 1] == '\n')
4103 tmp[count - 1] = '\0';
4104
4105 huge = shmem_parse_huge(tmp);
4106 if (huge == -EINVAL)
4107 return -EINVAL;
4108 if (!has_transparent_hugepage() &&
4109 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4110 return -EINVAL;
4111
4112 shmem_huge = huge;
435c0b87 4113 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4114 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4115 return count;
4116}
4117
4118struct kobj_attribute shmem_enabled_attr =
4119 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 4120#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 4121
3b33719c 4122#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
4123bool shmem_huge_enabled(struct vm_area_struct *vma)
4124{
4125 struct inode *inode = file_inode(vma->vm_file);
4126 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4127 loff_t i_size;
4128 pgoff_t off;
4129
4130 if (shmem_huge == SHMEM_HUGE_FORCE)
4131 return true;
4132 if (shmem_huge == SHMEM_HUGE_DENY)
4133 return false;
4134 switch (sbinfo->huge) {
4135 case SHMEM_HUGE_NEVER:
4136 return false;
4137 case SHMEM_HUGE_ALWAYS:
4138 return true;
4139 case SHMEM_HUGE_WITHIN_SIZE:
4140 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4141 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4142 if (i_size >= HPAGE_PMD_SIZE &&
4143 i_size >> PAGE_SHIFT >= off)
4144 return true;
4145 case SHMEM_HUGE_ADVISE:
4146 /* TODO: implement fadvise() hints */
4147 return (vma->vm_flags & VM_HUGEPAGE);
4148 default:
4149 VM_BUG_ON(1);
4150 return false;
4151 }
4152}
3b33719c 4153#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 4154
853ac43a
MM
4155#else /* !CONFIG_SHMEM */
4156
4157/*
4158 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4159 *
4160 * This is intended for small system where the benefits of the full
4161 * shmem code (swap-backed and resource-limited) are outweighed by
4162 * their complexity. On systems without swap this code should be
4163 * effectively equivalent, but much lighter weight.
4164 */
4165
41ffe5d5 4166static struct file_system_type shmem_fs_type = {
853ac43a 4167 .name = "tmpfs",
3c26ff6e 4168 .mount = ramfs_mount,
853ac43a 4169 .kill_sb = kill_litter_super,
2b8576cb 4170 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4171};
4172
41ffe5d5 4173int __init shmem_init(void)
853ac43a 4174{
41ffe5d5 4175 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4176
41ffe5d5 4177 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4178 BUG_ON(IS_ERR(shm_mnt));
4179
4180 return 0;
4181}
4182
41ffe5d5 4183int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
4184{
4185 return 0;
4186}
4187
3f96b79a
HD
4188int shmem_lock(struct file *file, int lock, struct user_struct *user)
4189{
4190 return 0;
4191}
4192
24513264
HD
4193void shmem_unlock_mapping(struct address_space *mapping)
4194{
4195}
4196
c01d5b30
HD
4197#ifdef CONFIG_MMU
4198unsigned long shmem_get_unmapped_area(struct file *file,
4199 unsigned long addr, unsigned long len,
4200 unsigned long pgoff, unsigned long flags)
4201{
4202 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4203}
4204#endif
4205
41ffe5d5 4206void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4207{
41ffe5d5 4208 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4209}
4210EXPORT_SYMBOL_GPL(shmem_truncate_range);
4211
0b0a0806
HD
4212#define shmem_vm_ops generic_file_vm_ops
4213#define shmem_file_operations ramfs_file_operations
454abafe 4214#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4215#define shmem_acct_size(flags, size) 0
4216#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4217
4218#endif /* CONFIG_SHMEM */
4219
4220/* common code */
1da177e4 4221
19938e35 4222static const struct dentry_operations anon_ops = {
118b2302 4223 .d_dname = simple_dname
3451538a
AV
4224};
4225
c7277090
EP
4226static struct file *__shmem_file_setup(const char *name, loff_t size,
4227 unsigned long flags, unsigned int i_flags)
1da177e4 4228{
6b4d0b27 4229 struct file *res;
1da177e4 4230 struct inode *inode;
2c48b9c4 4231 struct path path;
3451538a 4232 struct super_block *sb;
1da177e4
LT
4233 struct qstr this;
4234
4235 if (IS_ERR(shm_mnt))
6b4d0b27 4236 return ERR_CAST(shm_mnt);
1da177e4 4237
285b2c4f 4238 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4239 return ERR_PTR(-EINVAL);
4240
4241 if (shmem_acct_size(flags, size))
4242 return ERR_PTR(-ENOMEM);
4243
6b4d0b27 4244 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4245 this.name = name;
4246 this.len = strlen(name);
4247 this.hash = 0; /* will go */
3451538a 4248 sb = shm_mnt->mnt_sb;
66ee4b88 4249 path.mnt = mntget(shm_mnt);
3451538a 4250 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4251 if (!path.dentry)
1da177e4 4252 goto put_memory;
3451538a 4253 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4254
6b4d0b27 4255 res = ERR_PTR(-ENOSPC);
3451538a 4256 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4257 if (!inode)
66ee4b88 4258 goto put_memory;
1da177e4 4259
c7277090 4260 inode->i_flags |= i_flags;
2c48b9c4 4261 d_instantiate(path.dentry, inode);
1da177e4 4262 inode->i_size = size;
6d6b77f1 4263 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4264 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4265 if (IS_ERR(res))
66ee4b88 4266 goto put_path;
4b42af81 4267
6b4d0b27 4268 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4269 &shmem_file_operations);
6b4d0b27 4270 if (IS_ERR(res))
66ee4b88 4271 goto put_path;
4b42af81 4272
6b4d0b27 4273 return res;
1da177e4 4274
1da177e4
LT
4275put_memory:
4276 shmem_unacct_size(flags, size);
66ee4b88
KK
4277put_path:
4278 path_put(&path);
6b4d0b27 4279 return res;
1da177e4 4280}
c7277090
EP
4281
4282/**
4283 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4284 * kernel internal. There will be NO LSM permission checks against the
4285 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4286 * higher layer. The users are the big_key and shm implementations. LSM
4287 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4288 * @name: name for dentry (to be seen in /proc/<pid>/maps
4289 * @size: size to be set for the file
4290 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4291 */
4292struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4293{
4294 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4295}
4296
4297/**
4298 * shmem_file_setup - get an unlinked file living in tmpfs
4299 * @name: name for dentry (to be seen in /proc/<pid>/maps
4300 * @size: size to be set for the file
4301 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4302 */
4303struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4304{
4305 return __shmem_file_setup(name, size, flags, 0);
4306}
395e0ddc 4307EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4308
46711810 4309/**
1da177e4 4310 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4311 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4312 */
4313int shmem_zero_setup(struct vm_area_struct *vma)
4314{
4315 struct file *file;
4316 loff_t size = vma->vm_end - vma->vm_start;
4317
66fc1303
HD
4318 /*
4319 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4320 * between XFS directory reading and selinux: since this file is only
4321 * accessible to the user through its mapping, use S_PRIVATE flag to
4322 * bypass file security, in the same way as shmem_kernel_file_setup().
4323 */
4324 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
4325 if (IS_ERR(file))
4326 return PTR_ERR(file);
4327
4328 if (vma->vm_file)
4329 fput(vma->vm_file);
4330 vma->vm_file = file;
4331 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4332
e496cf3d 4333 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4334 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4335 (vma->vm_end & HPAGE_PMD_MASK)) {
4336 khugepaged_enter(vma, vma->vm_flags);
4337 }
4338
1da177e4
LT
4339 return 0;
4340}
d9d90e5e
HD
4341
4342/**
4343 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4344 * @mapping: the page's address_space
4345 * @index: the page index
4346 * @gfp: the page allocator flags to use if allocating
4347 *
4348 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4349 * with any new page allocations done using the specified allocation flags.
4350 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4351 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4352 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4353 *
68da9f05
HD
4354 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4355 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4356 */
4357struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4358 pgoff_t index, gfp_t gfp)
4359{
68da9f05
HD
4360#ifdef CONFIG_SHMEM
4361 struct inode *inode = mapping->host;
9276aad6 4362 struct page *page;
68da9f05
HD
4363 int error;
4364
4365 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4366 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4367 gfp, NULL, NULL, NULL);
68da9f05
HD
4368 if (error)
4369 page = ERR_PTR(error);
4370 else
4371 unlock_page(page);
4372 return page;
4373#else
4374 /*
4375 * The tiny !SHMEM case uses ramfs without swap
4376 */
d9d90e5e 4377 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4378#endif
d9d90e5e
HD
4379}
4380EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);