]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/shmem.c
Merge tag 'ceph-for-5.3-rc1' of git://github.com/ceph/ceph-client
[thirdparty/linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
853ac43a 40
95cc09d6
AA
41#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
42
853ac43a
MM
43static struct vfsmount *shm_mnt;
44
45#ifdef CONFIG_SHMEM
1da177e4
LT
46/*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
39f0247d 52#include <linux/xattr.h>
a5694255 53#include <linux/exportfs.h>
1c7c474c 54#include <linux/posix_acl.h>
feda821e 55#include <linux/posix_acl_xattr.h>
1da177e4 56#include <linux/mman.h>
1da177e4
LT
57#include <linux/string.h>
58#include <linux/slab.h>
59#include <linux/backing-dev.h>
60#include <linux/shmem_fs.h>
1da177e4 61#include <linux/writeback.h>
1da177e4 62#include <linux/blkdev.h>
bda97eab 63#include <linux/pagevec.h>
41ffe5d5 64#include <linux/percpu_counter.h>
83e4fa9c 65#include <linux/falloc.h>
708e3508 66#include <linux/splice.h>
1da177e4
LT
67#include <linux/security.h>
68#include <linux/swapops.h>
69#include <linux/mempolicy.h>
70#include <linux/namei.h>
b00dc3ad 71#include <linux/ctype.h>
304dbdb7 72#include <linux/migrate.h>
c1f60a5a 73#include <linux/highmem.h>
680d794b 74#include <linux/seq_file.h>
92562927 75#include <linux/magic.h>
9183df25 76#include <linux/syscalls.h>
40e041a2 77#include <linux/fcntl.h>
9183df25 78#include <uapi/linux/memfd.h>
cfda0526 79#include <linux/userfaultfd_k.h>
4c27fe4c 80#include <linux/rmap.h>
2b4db796 81#include <linux/uuid.h>
304dbdb7 82
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4
LT
84#include <asm/pgtable.h>
85
dd56b046
MG
86#include "internal.h"
87
09cbfeaf
KS
88#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 90
1da177e4
LT
91/* Pretend that each entry is of this size in directory's i_size */
92#define BOGO_DIRENT_SIZE 20
93
69f07ec9
HD
94/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95#define SHORT_SYMLINK_LEN 128
96
1aac1400 97/*
f00cdc6d
HD
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
101 */
102struct shmem_falloc {
8e205f77 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108};
109
b76db735 110#ifdef CONFIG_TMPFS
680d794b
AM
111static unsigned long shmem_default_max_blocks(void)
112{
ca79b0c2 113 return totalram_pages() / 2;
680d794b
AM
114}
115
116static unsigned long shmem_default_max_inodes(void)
117{
ca79b0c2
AK
118 unsigned long nr_pages = totalram_pages();
119
120 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 121}
b76db735 122#endif
680d794b 123
bde05d1c
HD
124static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 struct shmem_inode_info *info, pgoff_t index);
c5bf121e
VRP
127static int shmem_swapin_page(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp,
129 gfp_t gfp, struct vm_area_struct *vma,
130 vm_fault_t *fault_type);
68da9f05 131static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 132 struct page **pagep, enum sgp_type sgp,
cfda0526 133 gfp_t gfp, struct vm_area_struct *vma,
2b740303 134 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 135
f3f0e1d2 136int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 137 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
138{
139 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 140 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 141}
1da177e4 142
1da177e4
LT
143static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
144{
145 return sb->s_fs_info;
146}
147
148/*
149 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
150 * for shared memory and for shared anonymous (/dev/zero) mappings
151 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
152 * consistent with the pre-accounting of private mappings ...
153 */
154static inline int shmem_acct_size(unsigned long flags, loff_t size)
155{
0b0a0806 156 return (flags & VM_NORESERVE) ?
191c5424 157 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
158}
159
160static inline void shmem_unacct_size(unsigned long flags, loff_t size)
161{
0b0a0806 162 if (!(flags & VM_NORESERVE))
1da177e4
LT
163 vm_unacct_memory(VM_ACCT(size));
164}
165
77142517
KK
166static inline int shmem_reacct_size(unsigned long flags,
167 loff_t oldsize, loff_t newsize)
168{
169 if (!(flags & VM_NORESERVE)) {
170 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
171 return security_vm_enough_memory_mm(current->mm,
172 VM_ACCT(newsize) - VM_ACCT(oldsize));
173 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
174 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
175 }
176 return 0;
177}
178
1da177e4
LT
179/*
180 * ... whereas tmpfs objects are accounted incrementally as
75edd345 181 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
182 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
183 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
184 */
800d8c63 185static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 186{
800d8c63
KS
187 if (!(flags & VM_NORESERVE))
188 return 0;
189
190 return security_vm_enough_memory_mm(current->mm,
191 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
192}
193
194static inline void shmem_unacct_blocks(unsigned long flags, long pages)
195{
0b0a0806 196 if (flags & VM_NORESERVE)
09cbfeaf 197 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
198}
199
0f079694
MR
200static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
201{
202 struct shmem_inode_info *info = SHMEM_I(inode);
203 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
204
205 if (shmem_acct_block(info->flags, pages))
206 return false;
207
208 if (sbinfo->max_blocks) {
209 if (percpu_counter_compare(&sbinfo->used_blocks,
210 sbinfo->max_blocks - pages) > 0)
211 goto unacct;
212 percpu_counter_add(&sbinfo->used_blocks, pages);
213 }
214
215 return true;
216
217unacct:
218 shmem_unacct_blocks(info->flags, pages);
219 return false;
220}
221
222static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
223{
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226
227 if (sbinfo->max_blocks)
228 percpu_counter_sub(&sbinfo->used_blocks, pages);
229 shmem_unacct_blocks(info->flags, pages);
230}
231
759b9775 232static const struct super_operations shmem_ops;
f5e54d6e 233static const struct address_space_operations shmem_aops;
15ad7cdc 234static const struct file_operations shmem_file_operations;
92e1d5be
AV
235static const struct inode_operations shmem_inode_operations;
236static const struct inode_operations shmem_dir_inode_operations;
237static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 238static const struct vm_operations_struct shmem_vm_ops;
779750d2 239static struct file_system_type shmem_fs_type;
1da177e4 240
b0506e48
MR
241bool vma_is_shmem(struct vm_area_struct *vma)
242{
243 return vma->vm_ops == &shmem_vm_ops;
244}
245
1da177e4 246static LIST_HEAD(shmem_swaplist);
cb5f7b9a 247static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 248
5b04c689
PE
249static int shmem_reserve_inode(struct super_block *sb)
250{
251 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
252 if (sbinfo->max_inodes) {
253 spin_lock(&sbinfo->stat_lock);
254 if (!sbinfo->free_inodes) {
255 spin_unlock(&sbinfo->stat_lock);
256 return -ENOSPC;
257 }
258 sbinfo->free_inodes--;
259 spin_unlock(&sbinfo->stat_lock);
260 }
261 return 0;
262}
263
264static void shmem_free_inode(struct super_block *sb)
265{
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 sbinfo->free_inodes++;
270 spin_unlock(&sbinfo->stat_lock);
271 }
272}
273
46711810 274/**
41ffe5d5 275 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
276 * @inode: inode to recalc
277 *
278 * We have to calculate the free blocks since the mm can drop
279 * undirtied hole pages behind our back.
280 *
281 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
282 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
283 *
284 * It has to be called with the spinlock held.
285 */
286static void shmem_recalc_inode(struct inode *inode)
287{
288 struct shmem_inode_info *info = SHMEM_I(inode);
289 long freed;
290
291 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
292 if (freed > 0) {
293 info->alloced -= freed;
54af6042 294 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 295 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
296 }
297}
298
800d8c63
KS
299bool shmem_charge(struct inode *inode, long pages)
300{
301 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 302 unsigned long flags;
800d8c63 303
0f079694 304 if (!shmem_inode_acct_block(inode, pages))
800d8c63 305 return false;
b1cc94ab 306
aaa52e34
HD
307 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
308 inode->i_mapping->nrpages += pages;
309
4595ef88 310 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
311 info->alloced += pages;
312 inode->i_blocks += pages * BLOCKS_PER_PAGE;
313 shmem_recalc_inode(inode);
4595ef88 314 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 315
800d8c63
KS
316 return true;
317}
318
319void shmem_uncharge(struct inode *inode, long pages)
320{
321 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 322 unsigned long flags;
800d8c63 323
aaa52e34
HD
324 /* nrpages adjustment done by __delete_from_page_cache() or caller */
325
4595ef88 326 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
327 info->alloced -= pages;
328 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
329 shmem_recalc_inode(inode);
4595ef88 330 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 331
0f079694 332 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
333}
334
7a5d0fbb 335/*
62f945b6 336 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 337 */
62f945b6 338static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
339 pgoff_t index, void *expected, void *replacement)
340{
62f945b6 341 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 342 void *item;
7a5d0fbb
HD
343
344 VM_BUG_ON(!expected);
6dbaf22c 345 VM_BUG_ON(!replacement);
62f945b6 346 item = xas_load(&xas);
7a5d0fbb
HD
347 if (item != expected)
348 return -ENOENT;
62f945b6 349 xas_store(&xas, replacement);
7a5d0fbb
HD
350 return 0;
351}
352
d1899228
HD
353/*
354 * Sometimes, before we decide whether to proceed or to fail, we must check
355 * that an entry was not already brought back from swap by a racing thread.
356 *
357 * Checking page is not enough: by the time a SwapCache page is locked, it
358 * might be reused, and again be SwapCache, using the same swap as before.
359 */
360static bool shmem_confirm_swap(struct address_space *mapping,
361 pgoff_t index, swp_entry_t swap)
362{
a12831bf 363 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
364}
365
5a6e75f8
KS
366/*
367 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
368 *
369 * SHMEM_HUGE_NEVER:
370 * disables huge pages for the mount;
371 * SHMEM_HUGE_ALWAYS:
372 * enables huge pages for the mount;
373 * SHMEM_HUGE_WITHIN_SIZE:
374 * only allocate huge pages if the page will be fully within i_size,
375 * also respect fadvise()/madvise() hints;
376 * SHMEM_HUGE_ADVISE:
377 * only allocate huge pages if requested with fadvise()/madvise();
378 */
379
380#define SHMEM_HUGE_NEVER 0
381#define SHMEM_HUGE_ALWAYS 1
382#define SHMEM_HUGE_WITHIN_SIZE 2
383#define SHMEM_HUGE_ADVISE 3
384
385/*
386 * Special values.
387 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
388 *
389 * SHMEM_HUGE_DENY:
390 * disables huge on shm_mnt and all mounts, for emergency use;
391 * SHMEM_HUGE_FORCE:
392 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
393 *
394 */
395#define SHMEM_HUGE_DENY (-1)
396#define SHMEM_HUGE_FORCE (-2)
397
e496cf3d 398#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
399/* ifdef here to avoid bloating shmem.o when not necessary */
400
5b9c98f3 401static int shmem_huge __read_mostly;
5a6e75f8 402
e5f2249a 403#if defined(CONFIG_SYSFS)
5a6e75f8
KS
404static int shmem_parse_huge(const char *str)
405{
406 if (!strcmp(str, "never"))
407 return SHMEM_HUGE_NEVER;
408 if (!strcmp(str, "always"))
409 return SHMEM_HUGE_ALWAYS;
410 if (!strcmp(str, "within_size"))
411 return SHMEM_HUGE_WITHIN_SIZE;
412 if (!strcmp(str, "advise"))
413 return SHMEM_HUGE_ADVISE;
414 if (!strcmp(str, "deny"))
415 return SHMEM_HUGE_DENY;
416 if (!strcmp(str, "force"))
417 return SHMEM_HUGE_FORCE;
418 return -EINVAL;
419}
e5f2249a 420#endif
5a6e75f8 421
e5f2249a 422#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
423static const char *shmem_format_huge(int huge)
424{
425 switch (huge) {
426 case SHMEM_HUGE_NEVER:
427 return "never";
428 case SHMEM_HUGE_ALWAYS:
429 return "always";
430 case SHMEM_HUGE_WITHIN_SIZE:
431 return "within_size";
432 case SHMEM_HUGE_ADVISE:
433 return "advise";
434 case SHMEM_HUGE_DENY:
435 return "deny";
436 case SHMEM_HUGE_FORCE:
437 return "force";
438 default:
439 VM_BUG_ON(1);
440 return "bad_val";
441 }
442}
f1f5929c 443#endif
5a6e75f8 444
779750d2
KS
445static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
446 struct shrink_control *sc, unsigned long nr_to_split)
447{
448 LIST_HEAD(list), *pos, *next;
253fd0f0 449 LIST_HEAD(to_remove);
779750d2
KS
450 struct inode *inode;
451 struct shmem_inode_info *info;
452 struct page *page;
453 unsigned long batch = sc ? sc->nr_to_scan : 128;
454 int removed = 0, split = 0;
455
456 if (list_empty(&sbinfo->shrinklist))
457 return SHRINK_STOP;
458
459 spin_lock(&sbinfo->shrinklist_lock);
460 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
461 info = list_entry(pos, struct shmem_inode_info, shrinklist);
462
463 /* pin the inode */
464 inode = igrab(&info->vfs_inode);
465
466 /* inode is about to be evicted */
467 if (!inode) {
468 list_del_init(&info->shrinklist);
469 removed++;
470 goto next;
471 }
472
473 /* Check if there's anything to gain */
474 if (round_up(inode->i_size, PAGE_SIZE) ==
475 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 476 list_move(&info->shrinklist, &to_remove);
779750d2 477 removed++;
779750d2
KS
478 goto next;
479 }
480
481 list_move(&info->shrinklist, &list);
482next:
483 if (!--batch)
484 break;
485 }
486 spin_unlock(&sbinfo->shrinklist_lock);
487
253fd0f0
KS
488 list_for_each_safe(pos, next, &to_remove) {
489 info = list_entry(pos, struct shmem_inode_info, shrinklist);
490 inode = &info->vfs_inode;
491 list_del_init(&info->shrinklist);
492 iput(inode);
493 }
494
779750d2
KS
495 list_for_each_safe(pos, next, &list) {
496 int ret;
497
498 info = list_entry(pos, struct shmem_inode_info, shrinklist);
499 inode = &info->vfs_inode;
500
b3cd54b2
KS
501 if (nr_to_split && split >= nr_to_split)
502 goto leave;
779750d2 503
b3cd54b2 504 page = find_get_page(inode->i_mapping,
779750d2
KS
505 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
506 if (!page)
507 goto drop;
508
b3cd54b2 509 /* No huge page at the end of the file: nothing to split */
779750d2 510 if (!PageTransHuge(page)) {
779750d2
KS
511 put_page(page);
512 goto drop;
513 }
514
b3cd54b2
KS
515 /*
516 * Leave the inode on the list if we failed to lock
517 * the page at this time.
518 *
519 * Waiting for the lock may lead to deadlock in the
520 * reclaim path.
521 */
522 if (!trylock_page(page)) {
523 put_page(page);
524 goto leave;
525 }
526
779750d2
KS
527 ret = split_huge_page(page);
528 unlock_page(page);
529 put_page(page);
530
b3cd54b2
KS
531 /* If split failed leave the inode on the list */
532 if (ret)
533 goto leave;
779750d2
KS
534
535 split++;
536drop:
537 list_del_init(&info->shrinklist);
538 removed++;
b3cd54b2 539leave:
779750d2
KS
540 iput(inode);
541 }
542
543 spin_lock(&sbinfo->shrinklist_lock);
544 list_splice_tail(&list, &sbinfo->shrinklist);
545 sbinfo->shrinklist_len -= removed;
546 spin_unlock(&sbinfo->shrinklist_lock);
547
548 return split;
549}
550
551static long shmem_unused_huge_scan(struct super_block *sb,
552 struct shrink_control *sc)
553{
554 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
555
556 if (!READ_ONCE(sbinfo->shrinklist_len))
557 return SHRINK_STOP;
558
559 return shmem_unused_huge_shrink(sbinfo, sc, 0);
560}
561
562static long shmem_unused_huge_count(struct super_block *sb,
563 struct shrink_control *sc)
564{
565 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
566 return READ_ONCE(sbinfo->shrinklist_len);
567}
e496cf3d 568#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
569
570#define shmem_huge SHMEM_HUGE_DENY
571
779750d2
KS
572static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
573 struct shrink_control *sc, unsigned long nr_to_split)
574{
575 return 0;
576}
e496cf3d 577#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 578
89fdcd26
YS
579static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
580{
581 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
582 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
583 shmem_huge != SHMEM_HUGE_DENY)
584 return true;
585 return false;
586}
587
46f65ec1
HD
588/*
589 * Like add_to_page_cache_locked, but error if expected item has gone.
590 */
591static int shmem_add_to_page_cache(struct page *page,
592 struct address_space *mapping,
552446a4 593 pgoff_t index, void *expected, gfp_t gfp)
46f65ec1 594{
552446a4
MW
595 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
596 unsigned long i = 0;
597 unsigned long nr = 1UL << compound_order(page);
46f65ec1 598
800d8c63
KS
599 VM_BUG_ON_PAGE(PageTail(page), page);
600 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
601 VM_BUG_ON_PAGE(!PageLocked(page), page);
602 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 603 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 604
800d8c63 605 page_ref_add(page, nr);
b065b432
HD
606 page->mapping = mapping;
607 page->index = index;
608
552446a4
MW
609 do {
610 void *entry;
611 xas_lock_irq(&xas);
612 entry = xas_find_conflict(&xas);
613 if (entry != expected)
614 xas_set_err(&xas, -EEXIST);
615 xas_create_range(&xas);
616 if (xas_error(&xas))
617 goto unlock;
618next:
69bf4b6b 619 xas_store(&xas, page + i);
552446a4
MW
620 if (++i < nr) {
621 xas_next(&xas);
622 goto next;
800d8c63 623 }
552446a4 624 if (PageTransHuge(page)) {
800d8c63 625 count_vm_event(THP_FILE_ALLOC);
552446a4 626 __inc_node_page_state(page, NR_SHMEM_THPS);
800d8c63 627 }
800d8c63 628 mapping->nrpages += nr;
11fb9989
MG
629 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
630 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
552446a4
MW
631unlock:
632 xas_unlock_irq(&xas);
633 } while (xas_nomem(&xas, gfp));
634
635 if (xas_error(&xas)) {
b065b432 636 page->mapping = NULL;
800d8c63 637 page_ref_sub(page, nr);
552446a4 638 return xas_error(&xas);
46f65ec1 639 }
552446a4
MW
640
641 return 0;
46f65ec1
HD
642}
643
6922c0c7
HD
644/*
645 * Like delete_from_page_cache, but substitutes swap for page.
646 */
647static void shmem_delete_from_page_cache(struct page *page, void *radswap)
648{
649 struct address_space *mapping = page->mapping;
650 int error;
651
800d8c63
KS
652 VM_BUG_ON_PAGE(PageCompound(page), page);
653
b93b0163 654 xa_lock_irq(&mapping->i_pages);
62f945b6 655 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
656 page->mapping = NULL;
657 mapping->nrpages--;
11fb9989
MG
658 __dec_node_page_state(page, NR_FILE_PAGES);
659 __dec_node_page_state(page, NR_SHMEM);
b93b0163 660 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 661 put_page(page);
6922c0c7
HD
662 BUG_ON(error);
663}
664
7a5d0fbb 665/*
c121d3bb 666 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
667 */
668static int shmem_free_swap(struct address_space *mapping,
669 pgoff_t index, void *radswap)
670{
6dbaf22c 671 void *old;
7a5d0fbb 672
55f3f7ea 673 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
674 if (old != radswap)
675 return -ENOENT;
676 free_swap_and_cache(radix_to_swp_entry(radswap));
677 return 0;
7a5d0fbb
HD
678}
679
6a15a370
VB
680/*
681 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 682 * given offsets are swapped out.
6a15a370 683 *
b93b0163 684 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
685 * as long as the inode doesn't go away and racy results are not a problem.
686 */
48131e03
VB
687unsigned long shmem_partial_swap_usage(struct address_space *mapping,
688 pgoff_t start, pgoff_t end)
6a15a370 689{
7ae3424f 690 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 691 struct page *page;
48131e03 692 unsigned long swapped = 0;
6a15a370
VB
693
694 rcu_read_lock();
7ae3424f
MW
695 xas_for_each(&xas, page, end - 1) {
696 if (xas_retry(&xas, page))
2cf938aa 697 continue;
3159f943 698 if (xa_is_value(page))
6a15a370
VB
699 swapped++;
700
701 if (need_resched()) {
7ae3424f 702 xas_pause(&xas);
6a15a370 703 cond_resched_rcu();
6a15a370
VB
704 }
705 }
706
707 rcu_read_unlock();
708
709 return swapped << PAGE_SHIFT;
710}
711
48131e03
VB
712/*
713 * Determine (in bytes) how many of the shmem object's pages mapped by the
714 * given vma is swapped out.
715 *
b93b0163 716 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
717 * as long as the inode doesn't go away and racy results are not a problem.
718 */
719unsigned long shmem_swap_usage(struct vm_area_struct *vma)
720{
721 struct inode *inode = file_inode(vma->vm_file);
722 struct shmem_inode_info *info = SHMEM_I(inode);
723 struct address_space *mapping = inode->i_mapping;
724 unsigned long swapped;
725
726 /* Be careful as we don't hold info->lock */
727 swapped = READ_ONCE(info->swapped);
728
729 /*
730 * The easier cases are when the shmem object has nothing in swap, or
731 * the vma maps it whole. Then we can simply use the stats that we
732 * already track.
733 */
734 if (!swapped)
735 return 0;
736
737 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
738 return swapped << PAGE_SHIFT;
739
740 /* Here comes the more involved part */
741 return shmem_partial_swap_usage(mapping,
742 linear_page_index(vma, vma->vm_start),
743 linear_page_index(vma, vma->vm_end));
744}
745
24513264
HD
746/*
747 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
748 */
749void shmem_unlock_mapping(struct address_space *mapping)
750{
751 struct pagevec pvec;
752 pgoff_t indices[PAGEVEC_SIZE];
753 pgoff_t index = 0;
754
86679820 755 pagevec_init(&pvec);
24513264
HD
756 /*
757 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
758 */
759 while (!mapping_unevictable(mapping)) {
760 /*
761 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
762 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
763 */
0cd6144a
JW
764 pvec.nr = find_get_entries(mapping, index,
765 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
766 if (!pvec.nr)
767 break;
768 index = indices[pvec.nr - 1] + 1;
0cd6144a 769 pagevec_remove_exceptionals(&pvec);
64e3d12f 770 check_move_unevictable_pages(&pvec);
24513264
HD
771 pagevec_release(&pvec);
772 cond_resched();
773 }
7a5d0fbb
HD
774}
775
776/*
7f4446ee 777 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 778 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 779 */
1635f6a7
HD
780static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
781 bool unfalloc)
1da177e4 782{
285b2c4f 783 struct address_space *mapping = inode->i_mapping;
1da177e4 784 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
785 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
786 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
787 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
788 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 789 struct pagevec pvec;
7a5d0fbb
HD
790 pgoff_t indices[PAGEVEC_SIZE];
791 long nr_swaps_freed = 0;
285b2c4f 792 pgoff_t index;
bda97eab
HD
793 int i;
794
83e4fa9c
HD
795 if (lend == -1)
796 end = -1; /* unsigned, so actually very big */
bda97eab 797
86679820 798 pagevec_init(&pvec);
bda97eab 799 index = start;
83e4fa9c 800 while (index < end) {
0cd6144a
JW
801 pvec.nr = find_get_entries(mapping, index,
802 min(end - index, (pgoff_t)PAGEVEC_SIZE),
803 pvec.pages, indices);
7a5d0fbb
HD
804 if (!pvec.nr)
805 break;
bda97eab
HD
806 for (i = 0; i < pagevec_count(&pvec); i++) {
807 struct page *page = pvec.pages[i];
808
7a5d0fbb 809 index = indices[i];
83e4fa9c 810 if (index >= end)
bda97eab
HD
811 break;
812
3159f943 813 if (xa_is_value(page)) {
1635f6a7
HD
814 if (unfalloc)
815 continue;
7a5d0fbb
HD
816 nr_swaps_freed += !shmem_free_swap(mapping,
817 index, page);
bda97eab 818 continue;
7a5d0fbb
HD
819 }
820
800d8c63
KS
821 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
822
7a5d0fbb 823 if (!trylock_page(page))
bda97eab 824 continue;
800d8c63
KS
825
826 if (PageTransTail(page)) {
827 /* Middle of THP: zero out the page */
828 clear_highpage(page);
829 unlock_page(page);
830 continue;
831 } else if (PageTransHuge(page)) {
832 if (index == round_down(end, HPAGE_PMD_NR)) {
833 /*
834 * Range ends in the middle of THP:
835 * zero out the page
836 */
837 clear_highpage(page);
838 unlock_page(page);
839 continue;
840 }
841 index += HPAGE_PMD_NR - 1;
842 i += HPAGE_PMD_NR - 1;
843 }
844
1635f6a7 845 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
846 VM_BUG_ON_PAGE(PageTail(page), page);
847 if (page_mapping(page) == mapping) {
309381fe 848 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
849 truncate_inode_page(mapping, page);
850 }
bda97eab 851 }
bda97eab
HD
852 unlock_page(page);
853 }
0cd6144a 854 pagevec_remove_exceptionals(&pvec);
24513264 855 pagevec_release(&pvec);
bda97eab
HD
856 cond_resched();
857 index++;
858 }
1da177e4 859
83e4fa9c 860 if (partial_start) {
bda97eab 861 struct page *page = NULL;
9e18eb29 862 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 863 if (page) {
09cbfeaf 864 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
865 if (start > end) {
866 top = partial_end;
867 partial_end = 0;
868 }
869 zero_user_segment(page, partial_start, top);
870 set_page_dirty(page);
871 unlock_page(page);
09cbfeaf 872 put_page(page);
83e4fa9c
HD
873 }
874 }
875 if (partial_end) {
876 struct page *page = NULL;
9e18eb29 877 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
878 if (page) {
879 zero_user_segment(page, 0, partial_end);
bda97eab
HD
880 set_page_dirty(page);
881 unlock_page(page);
09cbfeaf 882 put_page(page);
bda97eab
HD
883 }
884 }
83e4fa9c
HD
885 if (start >= end)
886 return;
bda97eab
HD
887
888 index = start;
b1a36650 889 while (index < end) {
bda97eab 890 cond_resched();
0cd6144a
JW
891
892 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 893 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 894 pvec.pages, indices);
7a5d0fbb 895 if (!pvec.nr) {
b1a36650
HD
896 /* If all gone or hole-punch or unfalloc, we're done */
897 if (index == start || end != -1)
bda97eab 898 break;
b1a36650 899 /* But if truncating, restart to make sure all gone */
bda97eab
HD
900 index = start;
901 continue;
902 }
bda97eab
HD
903 for (i = 0; i < pagevec_count(&pvec); i++) {
904 struct page *page = pvec.pages[i];
905
7a5d0fbb 906 index = indices[i];
83e4fa9c 907 if (index >= end)
bda97eab
HD
908 break;
909
3159f943 910 if (xa_is_value(page)) {
1635f6a7
HD
911 if (unfalloc)
912 continue;
b1a36650
HD
913 if (shmem_free_swap(mapping, index, page)) {
914 /* Swap was replaced by page: retry */
915 index--;
916 break;
917 }
918 nr_swaps_freed++;
7a5d0fbb
HD
919 continue;
920 }
921
bda97eab 922 lock_page(page);
800d8c63
KS
923
924 if (PageTransTail(page)) {
925 /* Middle of THP: zero out the page */
926 clear_highpage(page);
927 unlock_page(page);
928 /*
929 * Partial thp truncate due 'start' in middle
930 * of THP: don't need to look on these pages
931 * again on !pvec.nr restart.
932 */
933 if (index != round_down(end, HPAGE_PMD_NR))
934 start++;
935 continue;
936 } else if (PageTransHuge(page)) {
937 if (index == round_down(end, HPAGE_PMD_NR)) {
938 /*
939 * Range ends in the middle of THP:
940 * zero out the page
941 */
942 clear_highpage(page);
943 unlock_page(page);
944 continue;
945 }
946 index += HPAGE_PMD_NR - 1;
947 i += HPAGE_PMD_NR - 1;
948 }
949
1635f6a7 950 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
951 VM_BUG_ON_PAGE(PageTail(page), page);
952 if (page_mapping(page) == mapping) {
309381fe 953 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 954 truncate_inode_page(mapping, page);
b1a36650
HD
955 } else {
956 /* Page was replaced by swap: retry */
957 unlock_page(page);
958 index--;
959 break;
1635f6a7 960 }
7a5d0fbb 961 }
bda97eab
HD
962 unlock_page(page);
963 }
0cd6144a 964 pagevec_remove_exceptionals(&pvec);
24513264 965 pagevec_release(&pvec);
bda97eab
HD
966 index++;
967 }
94c1e62d 968
4595ef88 969 spin_lock_irq(&info->lock);
7a5d0fbb 970 info->swapped -= nr_swaps_freed;
1da177e4 971 shmem_recalc_inode(inode);
4595ef88 972 spin_unlock_irq(&info->lock);
1635f6a7 973}
1da177e4 974
1635f6a7
HD
975void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
976{
977 shmem_undo_range(inode, lstart, lend, false);
078cd827 978 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 979}
94c1e62d 980EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 981
a528d35e
DH
982static int shmem_getattr(const struct path *path, struct kstat *stat,
983 u32 request_mask, unsigned int query_flags)
44a30220 984{
a528d35e 985 struct inode *inode = path->dentry->d_inode;
44a30220 986 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 987 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 988
d0424c42 989 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 990 spin_lock_irq(&info->lock);
d0424c42 991 shmem_recalc_inode(inode);
4595ef88 992 spin_unlock_irq(&info->lock);
d0424c42 993 }
44a30220 994 generic_fillattr(inode, stat);
89fdcd26
YS
995
996 if (is_huge_enabled(sb_info))
997 stat->blksize = HPAGE_PMD_SIZE;
998
44a30220
YZ
999 return 0;
1000}
1001
94c1e62d 1002static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1003{
75c3cfa8 1004 struct inode *inode = d_inode(dentry);
40e041a2 1005 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1006 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1007 int error;
1008
31051c85 1009 error = setattr_prepare(dentry, attr);
db78b877
CH
1010 if (error)
1011 return error;
1012
94c1e62d
HD
1013 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1014 loff_t oldsize = inode->i_size;
1015 loff_t newsize = attr->ia_size;
3889e6e7 1016
40e041a2
DR
1017 /* protected by i_mutex */
1018 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1019 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1020 return -EPERM;
1021
94c1e62d 1022 if (newsize != oldsize) {
77142517
KK
1023 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1024 oldsize, newsize);
1025 if (error)
1026 return error;
94c1e62d 1027 i_size_write(inode, newsize);
078cd827 1028 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1029 }
afa2db2f 1030 if (newsize <= oldsize) {
94c1e62d 1031 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1032 if (oldsize > holebegin)
1033 unmap_mapping_range(inode->i_mapping,
1034 holebegin, 0, 1);
1035 if (info->alloced)
1036 shmem_truncate_range(inode,
1037 newsize, (loff_t)-1);
94c1e62d 1038 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1039 if (oldsize > holebegin)
1040 unmap_mapping_range(inode->i_mapping,
1041 holebegin, 0, 1);
779750d2
KS
1042
1043 /*
1044 * Part of the huge page can be beyond i_size: subject
1045 * to shrink under memory pressure.
1046 */
1047 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1048 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1049 /*
1050 * _careful to defend against unlocked access to
1051 * ->shrink_list in shmem_unused_huge_shrink()
1052 */
1053 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1054 list_add_tail(&info->shrinklist,
1055 &sbinfo->shrinklist);
1056 sbinfo->shrinklist_len++;
1057 }
1058 spin_unlock(&sbinfo->shrinklist_lock);
1059 }
94c1e62d 1060 }
1da177e4
LT
1061 }
1062
db78b877 1063 setattr_copy(inode, attr);
db78b877 1064 if (attr->ia_valid & ATTR_MODE)
feda821e 1065 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1066 return error;
1067}
1068
1f895f75 1069static void shmem_evict_inode(struct inode *inode)
1da177e4 1070{
1da177e4 1071 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1072 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1073
3889e6e7 1074 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1075 shmem_unacct_size(info->flags, inode->i_size);
1076 inode->i_size = 0;
3889e6e7 1077 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1078 if (!list_empty(&info->shrinklist)) {
1079 spin_lock(&sbinfo->shrinklist_lock);
1080 if (!list_empty(&info->shrinklist)) {
1081 list_del_init(&info->shrinklist);
1082 sbinfo->shrinklist_len--;
1083 }
1084 spin_unlock(&sbinfo->shrinklist_lock);
1085 }
af53d3e9
HD
1086 while (!list_empty(&info->swaplist)) {
1087 /* Wait while shmem_unuse() is scanning this inode... */
1088 wait_var_event(&info->stop_eviction,
1089 !atomic_read(&info->stop_eviction));
cb5f7b9a 1090 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1091 /* ...but beware of the race if we peeked too early */
1092 if (!atomic_read(&info->stop_eviction))
1093 list_del_init(&info->swaplist);
cb5f7b9a 1094 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1095 }
3ed47db3 1096 }
b09e0fa4 1097
38f38657 1098 simple_xattrs_free(&info->xattrs);
0f3c42f5 1099 WARN_ON(inode->i_blocks);
5b04c689 1100 shmem_free_inode(inode->i_sb);
dbd5768f 1101 clear_inode(inode);
1da177e4
LT
1102}
1103
b56a2d8a
VRP
1104extern struct swap_info_struct *swap_info[];
1105
1106static int shmem_find_swap_entries(struct address_space *mapping,
1107 pgoff_t start, unsigned int nr_entries,
1108 struct page **entries, pgoff_t *indices,
87039546 1109 unsigned int type, bool frontswap)
478922e2 1110{
b56a2d8a
VRP
1111 XA_STATE(xas, &mapping->i_pages, start);
1112 struct page *page;
87039546 1113 swp_entry_t entry;
b56a2d8a
VRP
1114 unsigned int ret = 0;
1115
1116 if (!nr_entries)
1117 return 0;
478922e2
MW
1118
1119 rcu_read_lock();
b56a2d8a
VRP
1120 xas_for_each(&xas, page, ULONG_MAX) {
1121 if (xas_retry(&xas, page))
5b9c98f3 1122 continue;
b56a2d8a
VRP
1123
1124 if (!xa_is_value(page))
478922e2 1125 continue;
b56a2d8a 1126
87039546
HD
1127 entry = radix_to_swp_entry(page);
1128 if (swp_type(entry) != type)
1129 continue;
1130 if (frontswap &&
1131 !frontswap_test(swap_info[type], swp_offset(entry)))
1132 continue;
b56a2d8a
VRP
1133
1134 indices[ret] = xas.xa_index;
1135 entries[ret] = page;
1136
1137 if (need_resched()) {
1138 xas_pause(&xas);
1139 cond_resched_rcu();
1140 }
1141 if (++ret == nr_entries)
1142 break;
478922e2 1143 }
478922e2 1144 rcu_read_unlock();
e21a2955 1145
b56a2d8a 1146 return ret;
478922e2
MW
1147}
1148
46f65ec1 1149/*
b56a2d8a
VRP
1150 * Move the swapped pages for an inode to page cache. Returns the count
1151 * of pages swapped in, or the error in case of failure.
46f65ec1 1152 */
b56a2d8a
VRP
1153static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1154 pgoff_t *indices)
1da177e4 1155{
b56a2d8a
VRP
1156 int i = 0;
1157 int ret = 0;
bde05d1c 1158 int error = 0;
b56a2d8a 1159 struct address_space *mapping = inode->i_mapping;
1da177e4 1160
b56a2d8a
VRP
1161 for (i = 0; i < pvec.nr; i++) {
1162 struct page *page = pvec.pages[i];
2e0e26c7 1163
b56a2d8a
VRP
1164 if (!xa_is_value(page))
1165 continue;
1166 error = shmem_swapin_page(inode, indices[i],
1167 &page, SGP_CACHE,
1168 mapping_gfp_mask(mapping),
1169 NULL, NULL);
1170 if (error == 0) {
1171 unlock_page(page);
1172 put_page(page);
1173 ret++;
1174 }
1175 if (error == -ENOMEM)
1176 break;
1177 error = 0;
bde05d1c 1178 }
b56a2d8a
VRP
1179 return error ? error : ret;
1180}
bde05d1c 1181
b56a2d8a
VRP
1182/*
1183 * If swap found in inode, free it and move page from swapcache to filecache.
1184 */
1185static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1186 bool frontswap, unsigned long *fs_pages_to_unuse)
1187{
1188 struct address_space *mapping = inode->i_mapping;
1189 pgoff_t start = 0;
1190 struct pagevec pvec;
1191 pgoff_t indices[PAGEVEC_SIZE];
1192 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1193 int ret = 0;
1194
1195 pagevec_init(&pvec);
1196 do {
1197 unsigned int nr_entries = PAGEVEC_SIZE;
1198
1199 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1200 nr_entries = *fs_pages_to_unuse;
1201
1202 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1203 pvec.pages, indices,
87039546 1204 type, frontswap);
b56a2d8a
VRP
1205 if (pvec.nr == 0) {
1206 ret = 0;
1207 break;
46f65ec1 1208 }
b56a2d8a
VRP
1209
1210 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1211 if (ret < 0)
1212 break;
1213
1214 if (frontswap_partial) {
1215 *fs_pages_to_unuse -= ret;
1216 if (*fs_pages_to_unuse == 0) {
1217 ret = FRONTSWAP_PAGES_UNUSED;
1218 break;
1219 }
1220 }
1221
1222 start = indices[pvec.nr - 1];
1223 } while (true);
1224
1225 return ret;
1da177e4
LT
1226}
1227
1228/*
b56a2d8a
VRP
1229 * Read all the shared memory data that resides in the swap
1230 * device 'type' back into memory, so the swap device can be
1231 * unused.
1da177e4 1232 */
b56a2d8a
VRP
1233int shmem_unuse(unsigned int type, bool frontswap,
1234 unsigned long *fs_pages_to_unuse)
1da177e4 1235{
b56a2d8a 1236 struct shmem_inode_info *info, *next;
bde05d1c
HD
1237 int error = 0;
1238
b56a2d8a
VRP
1239 if (list_empty(&shmem_swaplist))
1240 return 0;
1241
1242 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1243 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1244 if (!info->swapped) {
6922c0c7 1245 list_del_init(&info->swaplist);
b56a2d8a
VRP
1246 continue;
1247 }
af53d3e9
HD
1248 /*
1249 * Drop the swaplist mutex while searching the inode for swap;
1250 * but before doing so, make sure shmem_evict_inode() will not
1251 * remove placeholder inode from swaplist, nor let it be freed
1252 * (igrab() would protect from unlink, but not from unmount).
1253 */
1254 atomic_inc(&info->stop_eviction);
b56a2d8a 1255 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1256
af53d3e9 1257 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1258 fs_pages_to_unuse);
cb5f7b9a 1259 cond_resched();
b56a2d8a
VRP
1260
1261 mutex_lock(&shmem_swaplist_mutex);
1262 next = list_next_entry(info, swaplist);
1263 if (!info->swapped)
1264 list_del_init(&info->swaplist);
af53d3e9
HD
1265 if (atomic_dec_and_test(&info->stop_eviction))
1266 wake_up_var(&info->stop_eviction);
b56a2d8a 1267 if (error)
778dd893 1268 break;
1da177e4 1269 }
cb5f7b9a 1270 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1271
778dd893 1272 return error;
1da177e4
LT
1273}
1274
1275/*
1276 * Move the page from the page cache to the swap cache.
1277 */
1278static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1279{
1280 struct shmem_inode_info *info;
1da177e4 1281 struct address_space *mapping;
1da177e4 1282 struct inode *inode;
6922c0c7
HD
1283 swp_entry_t swap;
1284 pgoff_t index;
1da177e4 1285
800d8c63 1286 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1287 BUG_ON(!PageLocked(page));
1da177e4
LT
1288 mapping = page->mapping;
1289 index = page->index;
1290 inode = mapping->host;
1291 info = SHMEM_I(inode);
1292 if (info->flags & VM_LOCKED)
1293 goto redirty;
d9fe526a 1294 if (!total_swap_pages)
1da177e4
LT
1295 goto redirty;
1296
d9fe526a 1297 /*
97b713ba
CH
1298 * Our capabilities prevent regular writeback or sync from ever calling
1299 * shmem_writepage; but a stacking filesystem might use ->writepage of
1300 * its underlying filesystem, in which case tmpfs should write out to
1301 * swap only in response to memory pressure, and not for the writeback
1302 * threads or sync.
d9fe526a 1303 */
48f170fb
HD
1304 if (!wbc->for_reclaim) {
1305 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1306 goto redirty;
1307 }
1635f6a7
HD
1308
1309 /*
1310 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1311 * value into swapfile.c, the only way we can correctly account for a
1312 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1313 *
1314 * That's okay for a page already fallocated earlier, but if we have
1315 * not yet completed the fallocation, then (a) we want to keep track
1316 * of this page in case we have to undo it, and (b) it may not be a
1317 * good idea to continue anyway, once we're pushing into swap. So
1318 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1319 */
1320 if (!PageUptodate(page)) {
1aac1400
HD
1321 if (inode->i_private) {
1322 struct shmem_falloc *shmem_falloc;
1323 spin_lock(&inode->i_lock);
1324 shmem_falloc = inode->i_private;
1325 if (shmem_falloc &&
8e205f77 1326 !shmem_falloc->waitq &&
1aac1400
HD
1327 index >= shmem_falloc->start &&
1328 index < shmem_falloc->next)
1329 shmem_falloc->nr_unswapped++;
1330 else
1331 shmem_falloc = NULL;
1332 spin_unlock(&inode->i_lock);
1333 if (shmem_falloc)
1334 goto redirty;
1335 }
1635f6a7
HD
1336 clear_highpage(page);
1337 flush_dcache_page(page);
1338 SetPageUptodate(page);
1339 }
1340
38d8b4e6 1341 swap = get_swap_page(page);
48f170fb
HD
1342 if (!swap.val)
1343 goto redirty;
d9fe526a 1344
b1dea800
HD
1345 /*
1346 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1347 * if it's not already there. Do it now before the page is
1348 * moved to swap cache, when its pagelock no longer protects
b1dea800 1349 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1350 * we've incremented swapped, because shmem_unuse_inode() will
1351 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1352 */
48f170fb
HD
1353 mutex_lock(&shmem_swaplist_mutex);
1354 if (list_empty(&info->swaplist))
b56a2d8a 1355 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1356
48f170fb 1357 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1358 spin_lock_irq(&info->lock);
6922c0c7 1359 shmem_recalc_inode(inode);
267a4c76 1360 info->swapped++;
4595ef88 1361 spin_unlock_irq(&info->lock);
6922c0c7 1362
267a4c76
HD
1363 swap_shmem_alloc(swap);
1364 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1365
6922c0c7 1366 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1367 BUG_ON(page_mapped(page));
9fab5619 1368 swap_writepage(page, wbc);
1da177e4
LT
1369 return 0;
1370 }
1371
6922c0c7 1372 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1373 put_swap_page(page, swap);
1da177e4
LT
1374redirty:
1375 set_page_dirty(page);
d9fe526a
HD
1376 if (wbc->for_reclaim)
1377 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1378 unlock_page(page);
1379 return 0;
1da177e4
LT
1380}
1381
75edd345 1382#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1383static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1384{
095f1fc4 1385 char buffer[64];
680d794b 1386
71fe804b 1387 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1388 return; /* show nothing */
680d794b 1389
a7a88b23 1390 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1391
1392 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1393}
71fe804b
LS
1394
1395static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1396{
1397 struct mempolicy *mpol = NULL;
1398 if (sbinfo->mpol) {
1399 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1400 mpol = sbinfo->mpol;
1401 mpol_get(mpol);
1402 spin_unlock(&sbinfo->stat_lock);
1403 }
1404 return mpol;
1405}
75edd345
HD
1406#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1407static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1408{
1409}
1410static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411{
1412 return NULL;
1413}
1414#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1415#ifndef CONFIG_NUMA
1416#define vm_policy vm_private_data
1417#endif
680d794b 1418
800d8c63
KS
1419static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1420 struct shmem_inode_info *info, pgoff_t index)
1421{
1422 /* Create a pseudo vma that just contains the policy */
2c4541e2 1423 vma_init(vma, NULL);
800d8c63
KS
1424 /* Bias interleave by inode number to distribute better across nodes */
1425 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1426 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1427}
1428
1429static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1430{
1431 /* Drop reference taken by mpol_shared_policy_lookup() */
1432 mpol_cond_put(vma->vm_policy);
1433}
1434
41ffe5d5
HD
1435static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1436 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1437{
1da177e4 1438 struct vm_area_struct pvma;
18a2f371 1439 struct page *page;
e9e9b7ec 1440 struct vm_fault vmf;
52cd3b07 1441
800d8c63 1442 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec
MK
1443 vmf.vma = &pvma;
1444 vmf.address = 0;
1445 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1446 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1447
800d8c63
KS
1448 return page;
1449}
1450
1451static struct page *shmem_alloc_hugepage(gfp_t gfp,
1452 struct shmem_inode_info *info, pgoff_t index)
1453{
1454 struct vm_area_struct pvma;
7b8d046f
MW
1455 struct address_space *mapping = info->vfs_inode.i_mapping;
1456 pgoff_t hindex;
800d8c63
KS
1457 struct page *page;
1458
e496cf3d 1459 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1460 return NULL;
1461
4620a06e 1462 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1463 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1464 XA_PRESENT))
800d8c63 1465 return NULL;
18a2f371 1466
800d8c63
KS
1467 shmem_pseudo_vma_init(&pvma, info, hindex);
1468 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
356ff8a9 1469 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
800d8c63
KS
1470 shmem_pseudo_vma_destroy(&pvma);
1471 if (page)
1472 prep_transhuge_page(page);
18a2f371 1473 return page;
1da177e4
LT
1474}
1475
02098fea 1476static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1477 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1478{
1479 struct vm_area_struct pvma;
18a2f371 1480 struct page *page;
1da177e4 1481
800d8c63
KS
1482 shmem_pseudo_vma_init(&pvma, info, index);
1483 page = alloc_page_vma(gfp, &pvma, 0);
1484 shmem_pseudo_vma_destroy(&pvma);
1485
1486 return page;
1487}
1488
1489static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1490 struct inode *inode,
800d8c63
KS
1491 pgoff_t index, bool huge)
1492{
0f079694 1493 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1494 struct page *page;
1495 int nr;
1496 int err = -ENOSPC;
52cd3b07 1497
e496cf3d 1498 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1499 huge = false;
1500 nr = huge ? HPAGE_PMD_NR : 1;
1501
0f079694 1502 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1503 goto failed;
800d8c63
KS
1504
1505 if (huge)
1506 page = shmem_alloc_hugepage(gfp, info, index);
1507 else
1508 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1509 if (page) {
1510 __SetPageLocked(page);
1511 __SetPageSwapBacked(page);
800d8c63 1512 return page;
75edd345 1513 }
18a2f371 1514
800d8c63 1515 err = -ENOMEM;
0f079694 1516 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1517failed:
1518 return ERR_PTR(err);
1da177e4 1519}
71fe804b 1520
bde05d1c
HD
1521/*
1522 * When a page is moved from swapcache to shmem filecache (either by the
1523 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1524 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1525 * ignorance of the mapping it belongs to. If that mapping has special
1526 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1527 * we may need to copy to a suitable page before moving to filecache.
1528 *
1529 * In a future release, this may well be extended to respect cpuset and
1530 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1531 * but for now it is a simple matter of zone.
1532 */
1533static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1534{
1535 return page_zonenum(page) > gfp_zone(gfp);
1536}
1537
1538static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1539 struct shmem_inode_info *info, pgoff_t index)
1540{
1541 struct page *oldpage, *newpage;
1542 struct address_space *swap_mapping;
c1cb20d4 1543 swp_entry_t entry;
bde05d1c
HD
1544 pgoff_t swap_index;
1545 int error;
1546
1547 oldpage = *pagep;
c1cb20d4
YZ
1548 entry.val = page_private(oldpage);
1549 swap_index = swp_offset(entry);
bde05d1c
HD
1550 swap_mapping = page_mapping(oldpage);
1551
1552 /*
1553 * We have arrived here because our zones are constrained, so don't
1554 * limit chance of success by further cpuset and node constraints.
1555 */
1556 gfp &= ~GFP_CONSTRAINT_MASK;
1557 newpage = shmem_alloc_page(gfp, info, index);
1558 if (!newpage)
1559 return -ENOMEM;
bde05d1c 1560
09cbfeaf 1561 get_page(newpage);
bde05d1c 1562 copy_highpage(newpage, oldpage);
0142ef6c 1563 flush_dcache_page(newpage);
bde05d1c 1564
9956edf3
HD
1565 __SetPageLocked(newpage);
1566 __SetPageSwapBacked(newpage);
bde05d1c 1567 SetPageUptodate(newpage);
c1cb20d4 1568 set_page_private(newpage, entry.val);
bde05d1c
HD
1569 SetPageSwapCache(newpage);
1570
1571 /*
1572 * Our caller will very soon move newpage out of swapcache, but it's
1573 * a nice clean interface for us to replace oldpage by newpage there.
1574 */
b93b0163 1575 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1576 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1577 if (!error) {
11fb9989
MG
1578 __inc_node_page_state(newpage, NR_FILE_PAGES);
1579 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1580 }
b93b0163 1581 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1582
0142ef6c
HD
1583 if (unlikely(error)) {
1584 /*
1585 * Is this possible? I think not, now that our callers check
1586 * both PageSwapCache and page_private after getting page lock;
1587 * but be defensive. Reverse old to newpage for clear and free.
1588 */
1589 oldpage = newpage;
1590 } else {
6a93ca8f 1591 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1592 lru_cache_add_anon(newpage);
1593 *pagep = newpage;
1594 }
bde05d1c
HD
1595
1596 ClearPageSwapCache(oldpage);
1597 set_page_private(oldpage, 0);
1598
1599 unlock_page(oldpage);
09cbfeaf
KS
1600 put_page(oldpage);
1601 put_page(oldpage);
0142ef6c 1602 return error;
bde05d1c
HD
1603}
1604
c5bf121e
VRP
1605/*
1606 * Swap in the page pointed to by *pagep.
1607 * Caller has to make sure that *pagep contains a valid swapped page.
1608 * Returns 0 and the page in pagep if success. On failure, returns the
1609 * the error code and NULL in *pagep.
1610 */
1611static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1612 struct page **pagep, enum sgp_type sgp,
1613 gfp_t gfp, struct vm_area_struct *vma,
1614 vm_fault_t *fault_type)
1615{
1616 struct address_space *mapping = inode->i_mapping;
1617 struct shmem_inode_info *info = SHMEM_I(inode);
1618 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1619 struct mem_cgroup *memcg;
1620 struct page *page;
1621 swp_entry_t swap;
1622 int error;
1623
1624 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1625 swap = radix_to_swp_entry(*pagep);
1626 *pagep = NULL;
1627
1628 /* Look it up and read it in.. */
1629 page = lookup_swap_cache(swap, NULL, 0);
1630 if (!page) {
1631 /* Or update major stats only when swapin succeeds?? */
1632 if (fault_type) {
1633 *fault_type |= VM_FAULT_MAJOR;
1634 count_vm_event(PGMAJFAULT);
1635 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1636 }
1637 /* Here we actually start the io */
1638 page = shmem_swapin(swap, gfp, info, index);
1639 if (!page) {
1640 error = -ENOMEM;
1641 goto failed;
1642 }
1643 }
1644
1645 /* We have to do this with page locked to prevent races */
1646 lock_page(page);
1647 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1648 !shmem_confirm_swap(mapping, index, swap)) {
1649 error = -EEXIST;
1650 goto unlock;
1651 }
1652 if (!PageUptodate(page)) {
1653 error = -EIO;
1654 goto failed;
1655 }
1656 wait_on_page_writeback(page);
1657
1658 if (shmem_should_replace_page(page, gfp)) {
1659 error = shmem_replace_page(&page, gfp, info, index);
1660 if (error)
1661 goto failed;
1662 }
1663
1664 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1665 false);
1666 if (!error) {
1667 error = shmem_add_to_page_cache(page, mapping, index,
1668 swp_to_radix_entry(swap), gfp);
1669 /*
1670 * We already confirmed swap under page lock, and make
1671 * no memory allocation here, so usually no possibility
1672 * of error; but free_swap_and_cache() only trylocks a
1673 * page, so it is just possible that the entry has been
1674 * truncated or holepunched since swap was confirmed.
1675 * shmem_undo_range() will have done some of the
1676 * unaccounting, now delete_from_swap_cache() will do
1677 * the rest.
1678 */
1679 if (error) {
1680 mem_cgroup_cancel_charge(page, memcg, false);
1681 delete_from_swap_cache(page);
1682 }
1683 }
1684 if (error)
1685 goto failed;
1686
1687 mem_cgroup_commit_charge(page, memcg, true, false);
1688
1689 spin_lock_irq(&info->lock);
1690 info->swapped--;
1691 shmem_recalc_inode(inode);
1692 spin_unlock_irq(&info->lock);
1693
1694 if (sgp == SGP_WRITE)
1695 mark_page_accessed(page);
1696
1697 delete_from_swap_cache(page);
1698 set_page_dirty(page);
1699 swap_free(swap);
1700
1701 *pagep = page;
1702 return 0;
1703failed:
1704 if (!shmem_confirm_swap(mapping, index, swap))
1705 error = -EEXIST;
1706unlock:
1707 if (page) {
1708 unlock_page(page);
1709 put_page(page);
1710 }
1711
1712 return error;
1713}
1714
1da177e4 1715/*
68da9f05 1716 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1717 *
1718 * If we allocate a new one we do not mark it dirty. That's up to the
1719 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1720 * entry since a page cannot live in both the swap and page cache.
1721 *
1722 * fault_mm and fault_type are only supplied by shmem_fault:
1723 * otherwise they are NULL.
1da177e4 1724 */
41ffe5d5 1725static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1726 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1727 struct vm_area_struct *vma, struct vm_fault *vmf,
1728 vm_fault_t *fault_type)
1da177e4
LT
1729{
1730 struct address_space *mapping = inode->i_mapping;
23f919d4 1731 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1732 struct shmem_sb_info *sbinfo;
9e18eb29 1733 struct mm_struct *charge_mm;
00501b53 1734 struct mem_cgroup *memcg;
27ab7006 1735 struct page *page;
657e3038 1736 enum sgp_type sgp_huge = sgp;
800d8c63 1737 pgoff_t hindex = index;
1da177e4 1738 int error;
54af6042 1739 int once = 0;
1635f6a7 1740 int alloced = 0;
1da177e4 1741
09cbfeaf 1742 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1743 return -EFBIG;
657e3038
KS
1744 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1745 sgp = SGP_CACHE;
1da177e4 1746repeat:
c5bf121e
VRP
1747 if (sgp <= SGP_CACHE &&
1748 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1749 return -EINVAL;
1750 }
1751
1752 sbinfo = SHMEM_SB(inode->i_sb);
1753 charge_mm = vma ? vma->vm_mm : current->mm;
1754
0cd6144a 1755 page = find_lock_entry(mapping, index);
3159f943 1756 if (xa_is_value(page)) {
c5bf121e
VRP
1757 error = shmem_swapin_page(inode, index, &page,
1758 sgp, gfp, vma, fault_type);
1759 if (error == -EEXIST)
1760 goto repeat;
54af6042 1761
c5bf121e
VRP
1762 *pagep = page;
1763 return error;
54af6042
HD
1764 }
1765
66d2f4d2
HD
1766 if (page && sgp == SGP_WRITE)
1767 mark_page_accessed(page);
1768
1635f6a7
HD
1769 /* fallocated page? */
1770 if (page && !PageUptodate(page)) {
1771 if (sgp != SGP_READ)
1772 goto clear;
1773 unlock_page(page);
09cbfeaf 1774 put_page(page);
1635f6a7
HD
1775 page = NULL;
1776 }
c5bf121e 1777 if (page || sgp == SGP_READ) {
54af6042
HD
1778 *pagep = page;
1779 return 0;
27ab7006
HD
1780 }
1781
1782 /*
54af6042
HD
1783 * Fast cache lookup did not find it:
1784 * bring it back from swap or allocate.
27ab7006 1785 */
54af6042 1786
c5bf121e
VRP
1787 if (vma && userfaultfd_missing(vma)) {
1788 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1789 return 0;
1790 }
cfda0526 1791
c5bf121e
VRP
1792 /* shmem_symlink() */
1793 if (mapping->a_ops != &shmem_aops)
1794 goto alloc_nohuge;
1795 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1796 goto alloc_nohuge;
1797 if (shmem_huge == SHMEM_HUGE_FORCE)
1798 goto alloc_huge;
1799 switch (sbinfo->huge) {
1800 loff_t i_size;
1801 pgoff_t off;
1802 case SHMEM_HUGE_NEVER:
1803 goto alloc_nohuge;
1804 case SHMEM_HUGE_WITHIN_SIZE:
1805 off = round_up(index, HPAGE_PMD_NR);
1806 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1807 if (i_size >= HPAGE_PMD_SIZE &&
1808 i_size >> PAGE_SHIFT >= off)
800d8c63 1809 goto alloc_huge;
c5bf121e
VRP
1810 /* fallthrough */
1811 case SHMEM_HUGE_ADVISE:
1812 if (sgp_huge == SGP_HUGE)
1813 goto alloc_huge;
1814 /* TODO: implement fadvise() hints */
1815 goto alloc_nohuge;
1816 }
1da177e4 1817
800d8c63 1818alloc_huge:
c5bf121e
VRP
1819 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1820 if (IS_ERR(page)) {
1821alloc_nohuge:
1822 page = shmem_alloc_and_acct_page(gfp, inode,
1823 index, false);
1824 }
1825 if (IS_ERR(page)) {
1826 int retry = 5;
800d8c63 1827
c5bf121e
VRP
1828 error = PTR_ERR(page);
1829 page = NULL;
1830 if (error != -ENOSPC)
1831 goto unlock;
1832 /*
1833 * Try to reclaim some space by splitting a huge page
1834 * beyond i_size on the filesystem.
1835 */
1836 while (retry--) {
1837 int ret;
66d2f4d2 1838
c5bf121e
VRP
1839 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1840 if (ret == SHRINK_STOP)
1841 break;
1842 if (ret)
1843 goto alloc_nohuge;
b065b432 1844 }
c5bf121e
VRP
1845 goto unlock;
1846 }
54af6042 1847
c5bf121e
VRP
1848 if (PageTransHuge(page))
1849 hindex = round_down(index, HPAGE_PMD_NR);
1850 else
1851 hindex = index;
54af6042 1852
c5bf121e
VRP
1853 if (sgp == SGP_WRITE)
1854 __SetPageReferenced(page);
1855
1856 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1857 PageTransHuge(page));
1858 if (error)
1859 goto unacct;
1860 error = shmem_add_to_page_cache(page, mapping, hindex,
1861 NULL, gfp & GFP_RECLAIM_MASK);
1862 if (error) {
1863 mem_cgroup_cancel_charge(page, memcg,
1864 PageTransHuge(page));
1865 goto unacct;
1866 }
1867 mem_cgroup_commit_charge(page, memcg, false,
1868 PageTransHuge(page));
1869 lru_cache_add_anon(page);
779750d2 1870
c5bf121e
VRP
1871 spin_lock_irq(&info->lock);
1872 info->alloced += 1 << compound_order(page);
1873 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1874 shmem_recalc_inode(inode);
1875 spin_unlock_irq(&info->lock);
1876 alloced = true;
1877
1878 if (PageTransHuge(page) &&
1879 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1880 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1881 /*
c5bf121e
VRP
1882 * Part of the huge page is beyond i_size: subject
1883 * to shrink under memory pressure.
1635f6a7 1884 */
c5bf121e 1885 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1886 /*
c5bf121e
VRP
1887 * _careful to defend against unlocked access to
1888 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1889 */
c5bf121e
VRP
1890 if (list_empty_careful(&info->shrinklist)) {
1891 list_add_tail(&info->shrinklist,
1892 &sbinfo->shrinklist);
1893 sbinfo->shrinklist_len++;
1894 }
1895 spin_unlock(&sbinfo->shrinklist_lock);
1896 }
800d8c63 1897
c5bf121e
VRP
1898 /*
1899 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1900 */
1901 if (sgp == SGP_FALLOC)
1902 sgp = SGP_WRITE;
1903clear:
1904 /*
1905 * Let SGP_WRITE caller clear ends if write does not fill page;
1906 * but SGP_FALLOC on a page fallocated earlier must initialize
1907 * it now, lest undo on failure cancel our earlier guarantee.
1908 */
1909 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1910 struct page *head = compound_head(page);
1911 int i;
1912
1913 for (i = 0; i < (1 << compound_order(head)); i++) {
1914 clear_highpage(head + i);
1915 flush_dcache_page(head + i);
ec9516fb 1916 }
c5bf121e 1917 SetPageUptodate(head);
1da177e4 1918 }
bde05d1c 1919
54af6042 1920 /* Perhaps the file has been truncated since we checked */
75edd345 1921 if (sgp <= SGP_CACHE &&
09cbfeaf 1922 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1923 if (alloced) {
1924 ClearPageDirty(page);
1925 delete_from_page_cache(page);
4595ef88 1926 spin_lock_irq(&info->lock);
267a4c76 1927 shmem_recalc_inode(inode);
4595ef88 1928 spin_unlock_irq(&info->lock);
267a4c76 1929 }
54af6042 1930 error = -EINVAL;
267a4c76 1931 goto unlock;
e83c32e8 1932 }
800d8c63 1933 *pagep = page + index - hindex;
54af6042 1934 return 0;
1da177e4 1935
59a16ead 1936 /*
54af6042 1937 * Error recovery.
59a16ead 1938 */
54af6042 1939unacct:
0f079694 1940 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
800d8c63
KS
1941
1942 if (PageTransHuge(page)) {
1943 unlock_page(page);
1944 put_page(page);
1945 goto alloc_nohuge;
1946 }
d1899228 1947unlock:
27ab7006 1948 if (page) {
54af6042 1949 unlock_page(page);
09cbfeaf 1950 put_page(page);
54af6042
HD
1951 }
1952 if (error == -ENOSPC && !once++) {
4595ef88 1953 spin_lock_irq(&info->lock);
54af6042 1954 shmem_recalc_inode(inode);
4595ef88 1955 spin_unlock_irq(&info->lock);
27ab7006 1956 goto repeat;
ff36b801 1957 }
7f4446ee 1958 if (error == -EEXIST)
54af6042
HD
1959 goto repeat;
1960 return error;
1da177e4
LT
1961}
1962
10d20bd2
LT
1963/*
1964 * This is like autoremove_wake_function, but it removes the wait queue
1965 * entry unconditionally - even if something else had already woken the
1966 * target.
1967 */
ac6424b9 1968static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1969{
1970 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1971 list_del_init(&wait->entry);
10d20bd2
LT
1972 return ret;
1973}
1974
20acce67 1975static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 1976{
11bac800 1977 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1978 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1979 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1980 enum sgp_type sgp;
20acce67
SJ
1981 int err;
1982 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 1983
f00cdc6d
HD
1984 /*
1985 * Trinity finds that probing a hole which tmpfs is punching can
1986 * prevent the hole-punch from ever completing: which in turn
1987 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1988 * faulting pages into the hole while it's being punched. Although
1989 * shmem_undo_range() does remove the additions, it may be unable to
1990 * keep up, as each new page needs its own unmap_mapping_range() call,
1991 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1992 *
1993 * It does not matter if we sometimes reach this check just before the
1994 * hole-punch begins, so that one fault then races with the punch:
1995 * we just need to make racing faults a rare case.
1996 *
1997 * The implementation below would be much simpler if we just used a
1998 * standard mutex or completion: but we cannot take i_mutex in fault,
1999 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2000 */
2001 if (unlikely(inode->i_private)) {
2002 struct shmem_falloc *shmem_falloc;
2003
2004 spin_lock(&inode->i_lock);
2005 shmem_falloc = inode->i_private;
8e205f77
HD
2006 if (shmem_falloc &&
2007 shmem_falloc->waitq &&
2008 vmf->pgoff >= shmem_falloc->start &&
2009 vmf->pgoff < shmem_falloc->next) {
2010 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2011 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2012
2013 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
2014 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
2015 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 2016 /* It's polite to up mmap_sem if we can */
f00cdc6d 2017 up_read(&vma->vm_mm->mmap_sem);
8e205f77 2018 ret = VM_FAULT_RETRY;
f00cdc6d 2019 }
8e205f77
HD
2020
2021 shmem_falloc_waitq = shmem_falloc->waitq;
2022 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2023 TASK_UNINTERRUPTIBLE);
2024 spin_unlock(&inode->i_lock);
2025 schedule();
2026
2027 /*
2028 * shmem_falloc_waitq points into the shmem_fallocate()
2029 * stack of the hole-punching task: shmem_falloc_waitq
2030 * is usually invalid by the time we reach here, but
2031 * finish_wait() does not dereference it in that case;
2032 * though i_lock needed lest racing with wake_up_all().
2033 */
2034 spin_lock(&inode->i_lock);
2035 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2036 spin_unlock(&inode->i_lock);
2037 return ret;
f00cdc6d 2038 }
8e205f77 2039 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2040 }
2041
657e3038 2042 sgp = SGP_CACHE;
18600332
MH
2043
2044 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2045 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2046 sgp = SGP_NOHUGE;
18600332
MH
2047 else if (vma->vm_flags & VM_HUGEPAGE)
2048 sgp = SGP_HUGE;
657e3038 2049
20acce67 2050 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2051 gfp, vma, vmf, &ret);
20acce67
SJ
2052 if (err)
2053 return vmf_error(err);
68da9f05 2054 return ret;
1da177e4
LT
2055}
2056
c01d5b30
HD
2057unsigned long shmem_get_unmapped_area(struct file *file,
2058 unsigned long uaddr, unsigned long len,
2059 unsigned long pgoff, unsigned long flags)
2060{
2061 unsigned long (*get_area)(struct file *,
2062 unsigned long, unsigned long, unsigned long, unsigned long);
2063 unsigned long addr;
2064 unsigned long offset;
2065 unsigned long inflated_len;
2066 unsigned long inflated_addr;
2067 unsigned long inflated_offset;
2068
2069 if (len > TASK_SIZE)
2070 return -ENOMEM;
2071
2072 get_area = current->mm->get_unmapped_area;
2073 addr = get_area(file, uaddr, len, pgoff, flags);
2074
e496cf3d 2075 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2076 return addr;
2077 if (IS_ERR_VALUE(addr))
2078 return addr;
2079 if (addr & ~PAGE_MASK)
2080 return addr;
2081 if (addr > TASK_SIZE - len)
2082 return addr;
2083
2084 if (shmem_huge == SHMEM_HUGE_DENY)
2085 return addr;
2086 if (len < HPAGE_PMD_SIZE)
2087 return addr;
2088 if (flags & MAP_FIXED)
2089 return addr;
2090 /*
2091 * Our priority is to support MAP_SHARED mapped hugely;
2092 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2093 * But if caller specified an address hint, respect that as before.
2094 */
2095 if (uaddr)
2096 return addr;
2097
2098 if (shmem_huge != SHMEM_HUGE_FORCE) {
2099 struct super_block *sb;
2100
2101 if (file) {
2102 VM_BUG_ON(file->f_op != &shmem_file_operations);
2103 sb = file_inode(file)->i_sb;
2104 } else {
2105 /*
2106 * Called directly from mm/mmap.c, or drivers/char/mem.c
2107 * for "/dev/zero", to create a shared anonymous object.
2108 */
2109 if (IS_ERR(shm_mnt))
2110 return addr;
2111 sb = shm_mnt->mnt_sb;
2112 }
3089bf61 2113 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2114 return addr;
2115 }
2116
2117 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2118 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2119 return addr;
2120 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2121 return addr;
2122
2123 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2124 if (inflated_len > TASK_SIZE)
2125 return addr;
2126 if (inflated_len < len)
2127 return addr;
2128
2129 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2130 if (IS_ERR_VALUE(inflated_addr))
2131 return addr;
2132 if (inflated_addr & ~PAGE_MASK)
2133 return addr;
2134
2135 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2136 inflated_addr += offset - inflated_offset;
2137 if (inflated_offset > offset)
2138 inflated_addr += HPAGE_PMD_SIZE;
2139
2140 if (inflated_addr > TASK_SIZE - len)
2141 return addr;
2142 return inflated_addr;
2143}
2144
1da177e4 2145#ifdef CONFIG_NUMA
41ffe5d5 2146static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2147{
496ad9aa 2148 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2149 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2150}
2151
d8dc74f2
AB
2152static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2153 unsigned long addr)
1da177e4 2154{
496ad9aa 2155 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2156 pgoff_t index;
1da177e4 2157
41ffe5d5
HD
2158 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2159 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2160}
2161#endif
2162
2163int shmem_lock(struct file *file, int lock, struct user_struct *user)
2164{
496ad9aa 2165 struct inode *inode = file_inode(file);
1da177e4
LT
2166 struct shmem_inode_info *info = SHMEM_I(inode);
2167 int retval = -ENOMEM;
2168
4595ef88 2169 spin_lock_irq(&info->lock);
1da177e4
LT
2170 if (lock && !(info->flags & VM_LOCKED)) {
2171 if (!user_shm_lock(inode->i_size, user))
2172 goto out_nomem;
2173 info->flags |= VM_LOCKED;
89e004ea 2174 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2175 }
2176 if (!lock && (info->flags & VM_LOCKED) && user) {
2177 user_shm_unlock(inode->i_size, user);
2178 info->flags &= ~VM_LOCKED;
89e004ea 2179 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2180 }
2181 retval = 0;
89e004ea 2182
1da177e4 2183out_nomem:
4595ef88 2184 spin_unlock_irq(&info->lock);
1da177e4
LT
2185 return retval;
2186}
2187
9b83a6a8 2188static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2189{
ab3948f5
JFG
2190 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2191
2192 if (info->seals & F_SEAL_FUTURE_WRITE) {
2193 /*
2194 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2195 * "future write" seal active.
2196 */
2197 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2198 return -EPERM;
2199
2200 /*
2201 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2202 * read-only mapping, take care to not allow mprotect to revert
2203 * protections.
2204 */
2205 vma->vm_flags &= ~(VM_MAYWRITE);
2206 }
2207
1da177e4
LT
2208 file_accessed(file);
2209 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2210 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2211 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2212 (vma->vm_end & HPAGE_PMD_MASK)) {
2213 khugepaged_enter(vma, vma->vm_flags);
2214 }
1da177e4
LT
2215 return 0;
2216}
2217
454abafe 2218static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2219 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2220{
2221 struct inode *inode;
2222 struct shmem_inode_info *info;
2223 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2224
5b04c689
PE
2225 if (shmem_reserve_inode(sb))
2226 return NULL;
1da177e4
LT
2227
2228 inode = new_inode(sb);
2229 if (inode) {
85fe4025 2230 inode->i_ino = get_next_ino();
454abafe 2231 inode_init_owner(inode, dir, mode);
1da177e4 2232 inode->i_blocks = 0;
078cd827 2233 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2234 inode->i_generation = prandom_u32();
1da177e4
LT
2235 info = SHMEM_I(inode);
2236 memset(info, 0, (char *)inode - (char *)info);
2237 spin_lock_init(&info->lock);
af53d3e9 2238 atomic_set(&info->stop_eviction, 0);
40e041a2 2239 info->seals = F_SEAL_SEAL;
0b0a0806 2240 info->flags = flags & VM_NORESERVE;
779750d2 2241 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2242 INIT_LIST_HEAD(&info->swaplist);
38f38657 2243 simple_xattrs_init(&info->xattrs);
72c04902 2244 cache_no_acl(inode);
1da177e4
LT
2245
2246 switch (mode & S_IFMT) {
2247 default:
39f0247d 2248 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2249 init_special_inode(inode, mode, dev);
2250 break;
2251 case S_IFREG:
14fcc23f 2252 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2253 inode->i_op = &shmem_inode_operations;
2254 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2255 mpol_shared_policy_init(&info->policy,
2256 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2257 break;
2258 case S_IFDIR:
d8c76e6f 2259 inc_nlink(inode);
1da177e4
LT
2260 /* Some things misbehave if size == 0 on a directory */
2261 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2262 inode->i_op = &shmem_dir_inode_operations;
2263 inode->i_fop = &simple_dir_operations;
2264 break;
2265 case S_IFLNK:
2266 /*
2267 * Must not load anything in the rbtree,
2268 * mpol_free_shared_policy will not be called.
2269 */
71fe804b 2270 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2271 break;
2272 }
b45d71fb
JFG
2273
2274 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2275 } else
2276 shmem_free_inode(sb);
1da177e4
LT
2277 return inode;
2278}
2279
0cd6144a
JW
2280bool shmem_mapping(struct address_space *mapping)
2281{
f8005451 2282 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2283}
2284
8d103963
MR
2285static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2286 pmd_t *dst_pmd,
2287 struct vm_area_struct *dst_vma,
2288 unsigned long dst_addr,
2289 unsigned long src_addr,
2290 bool zeropage,
2291 struct page **pagep)
4c27fe4c
MR
2292{
2293 struct inode *inode = file_inode(dst_vma->vm_file);
2294 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2295 struct address_space *mapping = inode->i_mapping;
2296 gfp_t gfp = mapping_gfp_mask(mapping);
2297 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2298 struct mem_cgroup *memcg;
2299 spinlock_t *ptl;
2300 void *page_kaddr;
2301 struct page *page;
2302 pte_t _dst_pte, *dst_pte;
2303 int ret;
e2a50c1f 2304 pgoff_t offset, max_off;
4c27fe4c 2305
cb658a45 2306 ret = -ENOMEM;
0f079694 2307 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2308 goto out;
4c27fe4c 2309
cb658a45 2310 if (!*pagep) {
4c27fe4c
MR
2311 page = shmem_alloc_page(gfp, info, pgoff);
2312 if (!page)
0f079694 2313 goto out_unacct_blocks;
4c27fe4c 2314
8d103963
MR
2315 if (!zeropage) { /* mcopy_atomic */
2316 page_kaddr = kmap_atomic(page);
2317 ret = copy_from_user(page_kaddr,
2318 (const void __user *)src_addr,
2319 PAGE_SIZE);
2320 kunmap_atomic(page_kaddr);
2321
2322 /* fallback to copy_from_user outside mmap_sem */
2323 if (unlikely(ret)) {
2324 *pagep = page;
2325 shmem_inode_unacct_blocks(inode, 1);
2326 /* don't free the page */
9e368259 2327 return -ENOENT;
8d103963
MR
2328 }
2329 } else { /* mfill_zeropage_atomic */
2330 clear_highpage(page);
4c27fe4c
MR
2331 }
2332 } else {
2333 page = *pagep;
2334 *pagep = NULL;
2335 }
2336
9cc90c66
AA
2337 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2338 __SetPageLocked(page);
2339 __SetPageSwapBacked(page);
a425d358 2340 __SetPageUptodate(page);
9cc90c66 2341
e2a50c1f
AA
2342 ret = -EFAULT;
2343 offset = linear_page_index(dst_vma, dst_addr);
2344 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2345 if (unlikely(offset >= max_off))
2346 goto out_release;
2347
2cf85583 2348 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
4c27fe4c
MR
2349 if (ret)
2350 goto out_release;
2351
552446a4
MW
2352 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2353 gfp & GFP_RECLAIM_MASK);
4c27fe4c
MR
2354 if (ret)
2355 goto out_release_uncharge;
2356
2357 mem_cgroup_commit_charge(page, memcg, false, false);
2358
2359 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2360 if (dst_vma->vm_flags & VM_WRITE)
2361 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
dcf7fe9d
AA
2362 else {
2363 /*
2364 * We don't set the pte dirty if the vma has no
2365 * VM_WRITE permission, so mark the page dirty or it
2366 * could be freed from under us. We could do it
2367 * unconditionally before unlock_page(), but doing it
2368 * only if VM_WRITE is not set is faster.
2369 */
2370 set_page_dirty(page);
2371 }
4c27fe4c 2372
4c27fe4c 2373 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
e2a50c1f
AA
2374
2375 ret = -EFAULT;
2376 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2377 if (unlikely(offset >= max_off))
2378 goto out_release_uncharge_unlock;
2379
2380 ret = -EEXIST;
4c27fe4c
MR
2381 if (!pte_none(*dst_pte))
2382 goto out_release_uncharge_unlock;
2383
4c27fe4c
MR
2384 lru_cache_add_anon(page);
2385
2386 spin_lock(&info->lock);
2387 info->alloced++;
2388 inode->i_blocks += BLOCKS_PER_PAGE;
2389 shmem_recalc_inode(inode);
2390 spin_unlock(&info->lock);
2391
2392 inc_mm_counter(dst_mm, mm_counter_file(page));
2393 page_add_file_rmap(page, false);
2394 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2395
2396 /* No need to invalidate - it was non-present before */
2397 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4c27fe4c 2398 pte_unmap_unlock(dst_pte, ptl);
e2a50c1f 2399 unlock_page(page);
4c27fe4c
MR
2400 ret = 0;
2401out:
2402 return ret;
2403out_release_uncharge_unlock:
2404 pte_unmap_unlock(dst_pte, ptl);
dcf7fe9d 2405 ClearPageDirty(page);
e2a50c1f 2406 delete_from_page_cache(page);
4c27fe4c
MR
2407out_release_uncharge:
2408 mem_cgroup_cancel_charge(page, memcg, false);
2409out_release:
9cc90c66 2410 unlock_page(page);
4c27fe4c 2411 put_page(page);
4c27fe4c 2412out_unacct_blocks:
0f079694 2413 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2414 goto out;
2415}
2416
8d103963
MR
2417int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2418 pmd_t *dst_pmd,
2419 struct vm_area_struct *dst_vma,
2420 unsigned long dst_addr,
2421 unsigned long src_addr,
2422 struct page **pagep)
2423{
2424 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2425 dst_addr, src_addr, false, pagep);
2426}
2427
2428int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2429 pmd_t *dst_pmd,
2430 struct vm_area_struct *dst_vma,
2431 unsigned long dst_addr)
2432{
2433 struct page *page = NULL;
2434
2435 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2436 dst_addr, 0, true, &page);
2437}
2438
1da177e4 2439#ifdef CONFIG_TMPFS
92e1d5be 2440static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2441static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2442
6d9d88d0
JS
2443#ifdef CONFIG_TMPFS_XATTR
2444static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2445#else
2446#define shmem_initxattrs NULL
2447#endif
2448
1da177e4 2449static int
800d15a5
NP
2450shmem_write_begin(struct file *file, struct address_space *mapping,
2451 loff_t pos, unsigned len, unsigned flags,
2452 struct page **pagep, void **fsdata)
1da177e4 2453{
800d15a5 2454 struct inode *inode = mapping->host;
40e041a2 2455 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2456 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DR
2457
2458 /* i_mutex is held by caller */
ab3948f5
JFG
2459 if (unlikely(info->seals & (F_SEAL_GROW |
2460 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2461 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DR
2462 return -EPERM;
2463 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2464 return -EPERM;
2465 }
2466
9e18eb29 2467 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2468}
2469
2470static int
2471shmem_write_end(struct file *file, struct address_space *mapping,
2472 loff_t pos, unsigned len, unsigned copied,
2473 struct page *page, void *fsdata)
2474{
2475 struct inode *inode = mapping->host;
2476
d3602444
HD
2477 if (pos + copied > inode->i_size)
2478 i_size_write(inode, pos + copied);
2479
ec9516fb 2480 if (!PageUptodate(page)) {
800d8c63
KS
2481 struct page *head = compound_head(page);
2482 if (PageTransCompound(page)) {
2483 int i;
2484
2485 for (i = 0; i < HPAGE_PMD_NR; i++) {
2486 if (head + i == page)
2487 continue;
2488 clear_highpage(head + i);
2489 flush_dcache_page(head + i);
2490 }
2491 }
09cbfeaf
KS
2492 if (copied < PAGE_SIZE) {
2493 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2494 zero_user_segments(page, 0, from,
09cbfeaf 2495 from + copied, PAGE_SIZE);
ec9516fb 2496 }
800d8c63 2497 SetPageUptodate(head);
ec9516fb 2498 }
800d15a5 2499 set_page_dirty(page);
6746aff7 2500 unlock_page(page);
09cbfeaf 2501 put_page(page);
800d15a5 2502
800d15a5 2503 return copied;
1da177e4
LT
2504}
2505
2ba5bbed 2506static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2507{
6e58e79d
AV
2508 struct file *file = iocb->ki_filp;
2509 struct inode *inode = file_inode(file);
1da177e4 2510 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2511 pgoff_t index;
2512 unsigned long offset;
a0ee5ec5 2513 enum sgp_type sgp = SGP_READ;
f7c1d074 2514 int error = 0;
cb66a7a1 2515 ssize_t retval = 0;
6e58e79d 2516 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2517
2518 /*
2519 * Might this read be for a stacking filesystem? Then when reading
2520 * holes of a sparse file, we actually need to allocate those pages,
2521 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2522 */
777eda2c 2523 if (!iter_is_iovec(to))
75edd345 2524 sgp = SGP_CACHE;
1da177e4 2525
09cbfeaf
KS
2526 index = *ppos >> PAGE_SHIFT;
2527 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2528
2529 for (;;) {
2530 struct page *page = NULL;
41ffe5d5
HD
2531 pgoff_t end_index;
2532 unsigned long nr, ret;
1da177e4
LT
2533 loff_t i_size = i_size_read(inode);
2534
09cbfeaf 2535 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2536 if (index > end_index)
2537 break;
2538 if (index == end_index) {
09cbfeaf 2539 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2540 if (nr <= offset)
2541 break;
2542 }
2543
9e18eb29 2544 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2545 if (error) {
2546 if (error == -EINVAL)
2547 error = 0;
1da177e4
LT
2548 break;
2549 }
75edd345
HD
2550 if (page) {
2551 if (sgp == SGP_CACHE)
2552 set_page_dirty(page);
d3602444 2553 unlock_page(page);
75edd345 2554 }
1da177e4
LT
2555
2556 /*
2557 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2558 * are called without i_mutex protection against truncate
1da177e4 2559 */
09cbfeaf 2560 nr = PAGE_SIZE;
1da177e4 2561 i_size = i_size_read(inode);
09cbfeaf 2562 end_index = i_size >> PAGE_SHIFT;
1da177e4 2563 if (index == end_index) {
09cbfeaf 2564 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2565 if (nr <= offset) {
2566 if (page)
09cbfeaf 2567 put_page(page);
1da177e4
LT
2568 break;
2569 }
2570 }
2571 nr -= offset;
2572
2573 if (page) {
2574 /*
2575 * If users can be writing to this page using arbitrary
2576 * virtual addresses, take care about potential aliasing
2577 * before reading the page on the kernel side.
2578 */
2579 if (mapping_writably_mapped(mapping))
2580 flush_dcache_page(page);
2581 /*
2582 * Mark the page accessed if we read the beginning.
2583 */
2584 if (!offset)
2585 mark_page_accessed(page);
b5810039 2586 } else {
1da177e4 2587 page = ZERO_PAGE(0);
09cbfeaf 2588 get_page(page);
b5810039 2589 }
1da177e4
LT
2590
2591 /*
2592 * Ok, we have the page, and it's up-to-date, so
2593 * now we can copy it to user space...
1da177e4 2594 */
2ba5bbed 2595 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2596 retval += ret;
1da177e4 2597 offset += ret;
09cbfeaf
KS
2598 index += offset >> PAGE_SHIFT;
2599 offset &= ~PAGE_MASK;
1da177e4 2600
09cbfeaf 2601 put_page(page);
2ba5bbed 2602 if (!iov_iter_count(to))
1da177e4 2603 break;
6e58e79d
AV
2604 if (ret < nr) {
2605 error = -EFAULT;
2606 break;
2607 }
1da177e4
LT
2608 cond_resched();
2609 }
2610
09cbfeaf 2611 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2612 file_accessed(file);
2613 return retval ? retval : error;
1da177e4
LT
2614}
2615
220f2ac9 2616/*
7f4446ee 2617 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
220f2ac9
HD
2618 */
2619static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2620 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2621{
2622 struct page *page;
2623 struct pagevec pvec;
2624 pgoff_t indices[PAGEVEC_SIZE];
2625 bool done = false;
2626 int i;
2627
86679820 2628 pagevec_init(&pvec);
220f2ac9
HD
2629 pvec.nr = 1; /* start small: we may be there already */
2630 while (!done) {
0cd6144a 2631 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2632 pvec.nr, pvec.pages, indices);
2633 if (!pvec.nr) {
965c8e59 2634 if (whence == SEEK_DATA)
220f2ac9
HD
2635 index = end;
2636 break;
2637 }
2638 for (i = 0; i < pvec.nr; i++, index++) {
2639 if (index < indices[i]) {
965c8e59 2640 if (whence == SEEK_HOLE) {
220f2ac9
HD
2641 done = true;
2642 break;
2643 }
2644 index = indices[i];
2645 }
2646 page = pvec.pages[i];
3159f943 2647 if (page && !xa_is_value(page)) {
220f2ac9
HD
2648 if (!PageUptodate(page))
2649 page = NULL;
2650 }
2651 if (index >= end ||
965c8e59
AM
2652 (page && whence == SEEK_DATA) ||
2653 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2654 done = true;
2655 break;
2656 }
2657 }
0cd6144a 2658 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2659 pagevec_release(&pvec);
2660 pvec.nr = PAGEVEC_SIZE;
2661 cond_resched();
2662 }
2663 return index;
2664}
2665
965c8e59 2666static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2667{
2668 struct address_space *mapping = file->f_mapping;
2669 struct inode *inode = mapping->host;
2670 pgoff_t start, end;
2671 loff_t new_offset;
2672
965c8e59
AM
2673 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2674 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2675 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2676 inode_lock(inode);
220f2ac9
HD
2677 /* We're holding i_mutex so we can access i_size directly */
2678
1a413646 2679 if (offset < 0 || offset >= inode->i_size)
220f2ac9
HD
2680 offset = -ENXIO;
2681 else {
09cbfeaf
KS
2682 start = offset >> PAGE_SHIFT;
2683 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2684 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2685 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2686 if (new_offset > offset) {
2687 if (new_offset < inode->i_size)
2688 offset = new_offset;
965c8e59 2689 else if (whence == SEEK_DATA)
220f2ac9
HD
2690 offset = -ENXIO;
2691 else
2692 offset = inode->i_size;
2693 }
2694 }
2695
387aae6f
HD
2696 if (offset >= 0)
2697 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2698 inode_unlock(inode);
220f2ac9
HD
2699 return offset;
2700}
2701
83e4fa9c
HD
2702static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2703 loff_t len)
2704{
496ad9aa 2705 struct inode *inode = file_inode(file);
e2d12e22 2706 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2707 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2708 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2709 pgoff_t start, index, end;
2710 int error;
83e4fa9c 2711
13ace4d0
HD
2712 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2713 return -EOPNOTSUPP;
2714
5955102c 2715 inode_lock(inode);
83e4fa9c
HD
2716
2717 if (mode & FALLOC_FL_PUNCH_HOLE) {
2718 struct address_space *mapping = file->f_mapping;
2719 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2720 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2721 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2722
40e041a2 2723 /* protected by i_mutex */
ab3948f5 2724 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DR
2725 error = -EPERM;
2726 goto out;
2727 }
2728
8e205f77 2729 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2730 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2731 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2732 spin_lock(&inode->i_lock);
2733 inode->i_private = &shmem_falloc;
2734 spin_unlock(&inode->i_lock);
2735
83e4fa9c
HD
2736 if ((u64)unmap_end > (u64)unmap_start)
2737 unmap_mapping_range(mapping, unmap_start,
2738 1 + unmap_end - unmap_start, 0);
2739 shmem_truncate_range(inode, offset, offset + len - 1);
2740 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2741
2742 spin_lock(&inode->i_lock);
2743 inode->i_private = NULL;
2744 wake_up_all(&shmem_falloc_waitq);
2055da97 2745 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2746 spin_unlock(&inode->i_lock);
83e4fa9c 2747 error = 0;
8e205f77 2748 goto out;
e2d12e22
HD
2749 }
2750
2751 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2752 error = inode_newsize_ok(inode, offset + len);
2753 if (error)
2754 goto out;
2755
40e041a2
DR
2756 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2757 error = -EPERM;
2758 goto out;
2759 }
2760
09cbfeaf
KS
2761 start = offset >> PAGE_SHIFT;
2762 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2763 /* Try to avoid a swapstorm if len is impossible to satisfy */
2764 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2765 error = -ENOSPC;
2766 goto out;
83e4fa9c
HD
2767 }
2768
8e205f77 2769 shmem_falloc.waitq = NULL;
1aac1400
HD
2770 shmem_falloc.start = start;
2771 shmem_falloc.next = start;
2772 shmem_falloc.nr_falloced = 0;
2773 shmem_falloc.nr_unswapped = 0;
2774 spin_lock(&inode->i_lock);
2775 inode->i_private = &shmem_falloc;
2776 spin_unlock(&inode->i_lock);
2777
e2d12e22
HD
2778 for (index = start; index < end; index++) {
2779 struct page *page;
2780
2781 /*
2782 * Good, the fallocate(2) manpage permits EINTR: we may have
2783 * been interrupted because we are using up too much memory.
2784 */
2785 if (signal_pending(current))
2786 error = -EINTR;
1aac1400
HD
2787 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2788 error = -ENOMEM;
e2d12e22 2789 else
9e18eb29 2790 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2791 if (error) {
1635f6a7 2792 /* Remove the !PageUptodate pages we added */
7f556567
HD
2793 if (index > start) {
2794 shmem_undo_range(inode,
2795 (loff_t)start << PAGE_SHIFT,
2796 ((loff_t)index << PAGE_SHIFT) - 1, true);
2797 }
1aac1400 2798 goto undone;
e2d12e22
HD
2799 }
2800
1aac1400
HD
2801 /*
2802 * Inform shmem_writepage() how far we have reached.
2803 * No need for lock or barrier: we have the page lock.
2804 */
2805 shmem_falloc.next++;
2806 if (!PageUptodate(page))
2807 shmem_falloc.nr_falloced++;
2808
e2d12e22 2809 /*
1635f6a7
HD
2810 * If !PageUptodate, leave it that way so that freeable pages
2811 * can be recognized if we need to rollback on error later.
2812 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2813 * than free the pages we are allocating (and SGP_CACHE pages
2814 * might still be clean: we now need to mark those dirty too).
2815 */
2816 set_page_dirty(page);
2817 unlock_page(page);
09cbfeaf 2818 put_page(page);
e2d12e22
HD
2819 cond_resched();
2820 }
2821
2822 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2823 i_size_write(inode, offset + len);
078cd827 2824 inode->i_ctime = current_time(inode);
1aac1400
HD
2825undone:
2826 spin_lock(&inode->i_lock);
2827 inode->i_private = NULL;
2828 spin_unlock(&inode->i_lock);
e2d12e22 2829out:
5955102c 2830 inode_unlock(inode);
83e4fa9c
HD
2831 return error;
2832}
2833
726c3342 2834static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2835{
726c3342 2836 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2837
2838 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2839 buf->f_bsize = PAGE_SIZE;
1da177e4 2840 buf->f_namelen = NAME_MAX;
0edd73b3 2841 if (sbinfo->max_blocks) {
1da177e4 2842 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2843 buf->f_bavail =
2844 buf->f_bfree = sbinfo->max_blocks -
2845 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2846 }
2847 if (sbinfo->max_inodes) {
1da177e4
LT
2848 buf->f_files = sbinfo->max_inodes;
2849 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2850 }
2851 /* else leave those fields 0 like simple_statfs */
2852 return 0;
2853}
2854
2855/*
2856 * File creation. Allocate an inode, and we're done..
2857 */
2858static int
1a67aafb 2859shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2860{
0b0a0806 2861 struct inode *inode;
1da177e4
LT
2862 int error = -ENOSPC;
2863
454abafe 2864 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2865 if (inode) {
feda821e
CH
2866 error = simple_acl_create(dir, inode);
2867 if (error)
2868 goto out_iput;
2a7dba39 2869 error = security_inode_init_security(inode, dir,
9d8f13ba 2870 &dentry->d_name,
6d9d88d0 2871 shmem_initxattrs, NULL);
feda821e
CH
2872 if (error && error != -EOPNOTSUPP)
2873 goto out_iput;
37ec43cd 2874
718deb6b 2875 error = 0;
1da177e4 2876 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2877 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2878 d_instantiate(dentry, inode);
2879 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2880 }
2881 return error;
feda821e
CH
2882out_iput:
2883 iput(inode);
2884 return error;
1da177e4
LT
2885}
2886
60545d0d
AV
2887static int
2888shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2889{
2890 struct inode *inode;
2891 int error = -ENOSPC;
2892
2893 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2894 if (inode) {
2895 error = security_inode_init_security(inode, dir,
2896 NULL,
2897 shmem_initxattrs, NULL);
feda821e
CH
2898 if (error && error != -EOPNOTSUPP)
2899 goto out_iput;
2900 error = simple_acl_create(dir, inode);
2901 if (error)
2902 goto out_iput;
60545d0d
AV
2903 d_tmpfile(dentry, inode);
2904 }
2905 return error;
feda821e
CH
2906out_iput:
2907 iput(inode);
2908 return error;
60545d0d
AV
2909}
2910
18bb1db3 2911static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2912{
2913 int error;
2914
2915 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2916 return error;
d8c76e6f 2917 inc_nlink(dir);
1da177e4
LT
2918 return 0;
2919}
2920
4acdaf27 2921static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2922 bool excl)
1da177e4
LT
2923{
2924 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2925}
2926
2927/*
2928 * Link a file..
2929 */
2930static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2931{
75c3cfa8 2932 struct inode *inode = d_inode(old_dentry);
29b00e60 2933 int ret = 0;
1da177e4
LT
2934
2935 /*
2936 * No ordinary (disk based) filesystem counts links as inodes;
2937 * but each new link needs a new dentry, pinning lowmem, and
2938 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2939 * But if an O_TMPFILE file is linked into the tmpfs, the
2940 * first link must skip that, to get the accounting right.
1da177e4 2941 */
1062af92
DW
2942 if (inode->i_nlink) {
2943 ret = shmem_reserve_inode(inode->i_sb);
2944 if (ret)
2945 goto out;
2946 }
1da177e4
LT
2947
2948 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2949 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2950 inc_nlink(inode);
7de9c6ee 2951 ihold(inode); /* New dentry reference */
1da177e4
LT
2952 dget(dentry); /* Extra pinning count for the created dentry */
2953 d_instantiate(dentry, inode);
5b04c689
PE
2954out:
2955 return ret;
1da177e4
LT
2956}
2957
2958static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2959{
75c3cfa8 2960 struct inode *inode = d_inode(dentry);
1da177e4 2961
5b04c689
PE
2962 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2963 shmem_free_inode(inode->i_sb);
1da177e4
LT
2964
2965 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2966 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2967 drop_nlink(inode);
1da177e4
LT
2968 dput(dentry); /* Undo the count from "create" - this does all the work */
2969 return 0;
2970}
2971
2972static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2973{
2974 if (!simple_empty(dentry))
2975 return -ENOTEMPTY;
2976
75c3cfa8 2977 drop_nlink(d_inode(dentry));
9a53c3a7 2978 drop_nlink(dir);
1da177e4
LT
2979 return shmem_unlink(dir, dentry);
2980}
2981
37456771
MS
2982static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2983{
e36cb0b8
DH
2984 bool old_is_dir = d_is_dir(old_dentry);
2985 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2986
2987 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2988 if (old_is_dir) {
2989 drop_nlink(old_dir);
2990 inc_nlink(new_dir);
2991 } else {
2992 drop_nlink(new_dir);
2993 inc_nlink(old_dir);
2994 }
2995 }
2996 old_dir->i_ctime = old_dir->i_mtime =
2997 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2998 d_inode(old_dentry)->i_ctime =
078cd827 2999 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3000
3001 return 0;
3002}
3003
46fdb794
MS
3004static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3005{
3006 struct dentry *whiteout;
3007 int error;
3008
3009 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3010 if (!whiteout)
3011 return -ENOMEM;
3012
3013 error = shmem_mknod(old_dir, whiteout,
3014 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3015 dput(whiteout);
3016 if (error)
3017 return error;
3018
3019 /*
3020 * Cheat and hash the whiteout while the old dentry is still in
3021 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3022 *
3023 * d_lookup() will consistently find one of them at this point,
3024 * not sure which one, but that isn't even important.
3025 */
3026 d_rehash(whiteout);
3027 return 0;
3028}
3029
1da177e4
LT
3030/*
3031 * The VFS layer already does all the dentry stuff for rename,
3032 * we just have to decrement the usage count for the target if
3033 * it exists so that the VFS layer correctly free's it when it
3034 * gets overwritten.
3035 */
3b69ff51 3036static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3037{
75c3cfa8 3038 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3039 int they_are_dirs = S_ISDIR(inode->i_mode);
3040
46fdb794 3041 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3042 return -EINVAL;
3043
37456771
MS
3044 if (flags & RENAME_EXCHANGE)
3045 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3046
1da177e4
LT
3047 if (!simple_empty(new_dentry))
3048 return -ENOTEMPTY;
3049
46fdb794
MS
3050 if (flags & RENAME_WHITEOUT) {
3051 int error;
3052
3053 error = shmem_whiteout(old_dir, old_dentry);
3054 if (error)
3055 return error;
3056 }
3057
75c3cfa8 3058 if (d_really_is_positive(new_dentry)) {
1da177e4 3059 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3060 if (they_are_dirs) {
75c3cfa8 3061 drop_nlink(d_inode(new_dentry));
9a53c3a7 3062 drop_nlink(old_dir);
b928095b 3063 }
1da177e4 3064 } else if (they_are_dirs) {
9a53c3a7 3065 drop_nlink(old_dir);
d8c76e6f 3066 inc_nlink(new_dir);
1da177e4
LT
3067 }
3068
3069 old_dir->i_size -= BOGO_DIRENT_SIZE;
3070 new_dir->i_size += BOGO_DIRENT_SIZE;
3071 old_dir->i_ctime = old_dir->i_mtime =
3072 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3073 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3074 return 0;
3075}
3076
3077static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3078{
3079 int error;
3080 int len;
3081 struct inode *inode;
9276aad6 3082 struct page *page;
1da177e4
LT
3083
3084 len = strlen(symname) + 1;
09cbfeaf 3085 if (len > PAGE_SIZE)
1da177e4
LT
3086 return -ENAMETOOLONG;
3087
0825a6f9
JP
3088 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3089 VM_NORESERVE);
1da177e4
LT
3090 if (!inode)
3091 return -ENOSPC;
3092
9d8f13ba 3093 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3094 shmem_initxattrs, NULL);
570bc1c2
SS
3095 if (error) {
3096 if (error != -EOPNOTSUPP) {
3097 iput(inode);
3098 return error;
3099 }
3100 error = 0;
3101 }
3102
1da177e4 3103 inode->i_size = len-1;
69f07ec9 3104 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3105 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3106 if (!inode->i_link) {
69f07ec9
HD
3107 iput(inode);
3108 return -ENOMEM;
3109 }
3110 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3111 } else {
e8ecde25 3112 inode_nohighmem(inode);
9e18eb29 3113 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3114 if (error) {
3115 iput(inode);
3116 return error;
3117 }
14fcc23f 3118 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3119 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3120 memcpy(page_address(page), symname, len);
ec9516fb 3121 SetPageUptodate(page);
1da177e4 3122 set_page_dirty(page);
6746aff7 3123 unlock_page(page);
09cbfeaf 3124 put_page(page);
1da177e4 3125 }
1da177e4 3126 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3127 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3128 d_instantiate(dentry, inode);
3129 dget(dentry);
3130 return 0;
3131}
3132
fceef393 3133static void shmem_put_link(void *arg)
1da177e4 3134{
fceef393
AV
3135 mark_page_accessed(arg);
3136 put_page(arg);
1da177e4
LT
3137}
3138
6b255391 3139static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3140 struct inode *inode,
3141 struct delayed_call *done)
1da177e4 3142{
1da177e4 3143 struct page *page = NULL;
6b255391 3144 int error;
6a6c9904
AV
3145 if (!dentry) {
3146 page = find_get_page(inode->i_mapping, 0);
3147 if (!page)
3148 return ERR_PTR(-ECHILD);
3149 if (!PageUptodate(page)) {
3150 put_page(page);
3151 return ERR_PTR(-ECHILD);
3152 }
3153 } else {
9e18eb29 3154 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3155 if (error)
3156 return ERR_PTR(error);
3157 unlock_page(page);
3158 }
fceef393 3159 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3160 return page_address(page);
1da177e4
LT
3161}
3162
b09e0fa4 3163#ifdef CONFIG_TMPFS_XATTR
46711810 3164/*
b09e0fa4
EP
3165 * Superblocks without xattr inode operations may get some security.* xattr
3166 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3167 * like ACLs, we also need to implement the security.* handlers at
3168 * filesystem level, though.
3169 */
3170
6d9d88d0
JS
3171/*
3172 * Callback for security_inode_init_security() for acquiring xattrs.
3173 */
3174static int shmem_initxattrs(struct inode *inode,
3175 const struct xattr *xattr_array,
3176 void *fs_info)
3177{
3178 struct shmem_inode_info *info = SHMEM_I(inode);
3179 const struct xattr *xattr;
38f38657 3180 struct simple_xattr *new_xattr;
6d9d88d0
JS
3181 size_t len;
3182
3183 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3184 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3185 if (!new_xattr)
3186 return -ENOMEM;
3187
3188 len = strlen(xattr->name) + 1;
3189 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3190 GFP_KERNEL);
3191 if (!new_xattr->name) {
3192 kfree(new_xattr);
3193 return -ENOMEM;
3194 }
3195
3196 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3197 XATTR_SECURITY_PREFIX_LEN);
3198 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3199 xattr->name, len);
3200
38f38657 3201 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3202 }
3203
3204 return 0;
3205}
3206
aa7c5241 3207static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3208 struct dentry *unused, struct inode *inode,
3209 const char *name, void *buffer, size_t size)
b09e0fa4 3210{
b296821a 3211 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3212
aa7c5241 3213 name = xattr_full_name(handler, name);
38f38657 3214 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3215}
3216
aa7c5241 3217static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3218 struct dentry *unused, struct inode *inode,
3219 const char *name, const void *value,
3220 size_t size, int flags)
b09e0fa4 3221{
59301226 3222 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3223
aa7c5241 3224 name = xattr_full_name(handler, name);
38f38657 3225 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3226}
3227
aa7c5241
AG
3228static const struct xattr_handler shmem_security_xattr_handler = {
3229 .prefix = XATTR_SECURITY_PREFIX,
3230 .get = shmem_xattr_handler_get,
3231 .set = shmem_xattr_handler_set,
3232};
b09e0fa4 3233
aa7c5241
AG
3234static const struct xattr_handler shmem_trusted_xattr_handler = {
3235 .prefix = XATTR_TRUSTED_PREFIX,
3236 .get = shmem_xattr_handler_get,
3237 .set = shmem_xattr_handler_set,
3238};
b09e0fa4 3239
aa7c5241
AG
3240static const struct xattr_handler *shmem_xattr_handlers[] = {
3241#ifdef CONFIG_TMPFS_POSIX_ACL
3242 &posix_acl_access_xattr_handler,
3243 &posix_acl_default_xattr_handler,
3244#endif
3245 &shmem_security_xattr_handler,
3246 &shmem_trusted_xattr_handler,
3247 NULL
3248};
b09e0fa4
EP
3249
3250static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3251{
75c3cfa8 3252 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3253 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3254}
3255#endif /* CONFIG_TMPFS_XATTR */
3256
69f07ec9 3257static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3258 .get_link = simple_get_link,
b09e0fa4 3259#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3260 .listxattr = shmem_listxattr,
b09e0fa4
EP
3261#endif
3262};
3263
3264static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3265 .get_link = shmem_get_link,
b09e0fa4 3266#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3267 .listxattr = shmem_listxattr,
39f0247d 3268#endif
b09e0fa4 3269};
39f0247d 3270
91828a40
DG
3271static struct dentry *shmem_get_parent(struct dentry *child)
3272{
3273 return ERR_PTR(-ESTALE);
3274}
3275
3276static int shmem_match(struct inode *ino, void *vfh)
3277{
3278 __u32 *fh = vfh;
3279 __u64 inum = fh[2];
3280 inum = (inum << 32) | fh[1];
3281 return ino->i_ino == inum && fh[0] == ino->i_generation;
3282}
3283
12ba780d
AG
3284/* Find any alias of inode, but prefer a hashed alias */
3285static struct dentry *shmem_find_alias(struct inode *inode)
3286{
3287 struct dentry *alias = d_find_alias(inode);
3288
3289 return alias ?: d_find_any_alias(inode);
3290}
3291
3292
480b116c
CH
3293static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3294 struct fid *fid, int fh_len, int fh_type)
91828a40 3295{
91828a40 3296 struct inode *inode;
480b116c 3297 struct dentry *dentry = NULL;
35c2a7f4 3298 u64 inum;
480b116c
CH
3299
3300 if (fh_len < 3)
3301 return NULL;
91828a40 3302
35c2a7f4
HD
3303 inum = fid->raw[2];
3304 inum = (inum << 32) | fid->raw[1];
3305
480b116c
CH
3306 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3307 shmem_match, fid->raw);
91828a40 3308 if (inode) {
12ba780d 3309 dentry = shmem_find_alias(inode);
91828a40
DG
3310 iput(inode);
3311 }
3312
480b116c 3313 return dentry;
91828a40
DG
3314}
3315
b0b0382b
AV
3316static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3317 struct inode *parent)
91828a40 3318{
5fe0c237
AK
3319 if (*len < 3) {
3320 *len = 3;
94e07a75 3321 return FILEID_INVALID;
5fe0c237 3322 }
91828a40 3323
1d3382cb 3324 if (inode_unhashed(inode)) {
91828a40
DG
3325 /* Unfortunately insert_inode_hash is not idempotent,
3326 * so as we hash inodes here rather than at creation
3327 * time, we need a lock to ensure we only try
3328 * to do it once
3329 */
3330 static DEFINE_SPINLOCK(lock);
3331 spin_lock(&lock);
1d3382cb 3332 if (inode_unhashed(inode))
91828a40
DG
3333 __insert_inode_hash(inode,
3334 inode->i_ino + inode->i_generation);
3335 spin_unlock(&lock);
3336 }
3337
3338 fh[0] = inode->i_generation;
3339 fh[1] = inode->i_ino;
3340 fh[2] = ((__u64)inode->i_ino) >> 32;
3341
3342 *len = 3;
3343 return 1;
3344}
3345
39655164 3346static const struct export_operations shmem_export_ops = {
91828a40 3347 .get_parent = shmem_get_parent,
91828a40 3348 .encode_fh = shmem_encode_fh,
480b116c 3349 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3350};
3351
680d794b
AM
3352static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3353 bool remount)
1da177e4
LT
3354{
3355 char *this_char, *value, *rest;
49cd0a5c 3356 struct mempolicy *mpol = NULL;
8751e039
EB
3357 uid_t uid;
3358 gid_t gid;
1da177e4 3359
b00dc3ad
HD
3360 while (options != NULL) {
3361 this_char = options;
3362 for (;;) {
3363 /*
3364 * NUL-terminate this option: unfortunately,
3365 * mount options form a comma-separated list,
3366 * but mpol's nodelist may also contain commas.
3367 */
3368 options = strchr(options, ',');
3369 if (options == NULL)
3370 break;
3371 options++;
3372 if (!isdigit(*options)) {
3373 options[-1] = '\0';
3374 break;
3375 }
3376 }
1da177e4
LT
3377 if (!*this_char)
3378 continue;
3379 if ((value = strchr(this_char,'=')) != NULL) {
3380 *value++ = 0;
3381 } else {
1170532b
JP
3382 pr_err("tmpfs: No value for mount option '%s'\n",
3383 this_char);
49cd0a5c 3384 goto error;
1da177e4
LT
3385 }
3386
3387 if (!strcmp(this_char,"size")) {
3388 unsigned long long size;
3389 size = memparse(value,&rest);
3390 if (*rest == '%') {
3391 size <<= PAGE_SHIFT;
ca79b0c2 3392 size *= totalram_pages();
1da177e4
LT
3393 do_div(size, 100);
3394 rest++;
3395 }
3396 if (*rest)
3397 goto bad_val;
680d794b 3398 sbinfo->max_blocks =
09cbfeaf 3399 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3400 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3401 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3402 if (*rest)
3403 goto bad_val;
3404 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3405 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3406 if (*rest)
3407 goto bad_val;
3408 } else if (!strcmp(this_char,"mode")) {
680d794b 3409 if (remount)
1da177e4 3410 continue;
680d794b 3411 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3412 if (*rest)
3413 goto bad_val;
3414 } else if (!strcmp(this_char,"uid")) {
680d794b 3415 if (remount)
1da177e4 3416 continue;
8751e039 3417 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3418 if (*rest)
3419 goto bad_val;
8751e039
EB
3420 sbinfo->uid = make_kuid(current_user_ns(), uid);
3421 if (!uid_valid(sbinfo->uid))
3422 goto bad_val;
1da177e4 3423 } else if (!strcmp(this_char,"gid")) {
680d794b 3424 if (remount)
1da177e4 3425 continue;
8751e039 3426 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3427 if (*rest)
3428 goto bad_val;
8751e039
EB
3429 sbinfo->gid = make_kgid(current_user_ns(), gid);
3430 if (!gid_valid(sbinfo->gid))
3431 goto bad_val;
e496cf3d 3432#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3433 } else if (!strcmp(this_char, "huge")) {
3434 int huge;
3435 huge = shmem_parse_huge(value);
3436 if (huge < 0)
3437 goto bad_val;
3438 if (!has_transparent_hugepage() &&
3439 huge != SHMEM_HUGE_NEVER)
3440 goto bad_val;
3441 sbinfo->huge = huge;
3442#endif
3443#ifdef CONFIG_NUMA
7339ff83 3444 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3445 mpol_put(mpol);
3446 mpol = NULL;
3447 if (mpol_parse_str(value, &mpol))
7339ff83 3448 goto bad_val;
5a6e75f8 3449#endif
1da177e4 3450 } else {
1170532b 3451 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3452 goto error;
1da177e4
LT
3453 }
3454 }
49cd0a5c 3455 sbinfo->mpol = mpol;
1da177e4
LT
3456 return 0;
3457
3458bad_val:
1170532b 3459 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3460 value, this_char);
49cd0a5c
GT
3461error:
3462 mpol_put(mpol);
1da177e4
LT
3463 return 1;
3464
3465}
3466
3467static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3468{
3469 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3470 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3471 unsigned long inodes;
3472 int error = -EINVAL;
3473
5f00110f 3474 config.mpol = NULL;
680d794b 3475 if (shmem_parse_options(data, &config, true))
0edd73b3 3476 return error;
1da177e4 3477
0edd73b3 3478 spin_lock(&sbinfo->stat_lock);
0edd73b3 3479 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3480 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3481 goto out;
680d794b 3482 if (config.max_inodes < inodes)
0edd73b3
HD
3483 goto out;
3484 /*
54af6042 3485 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3486 * but we must separately disallow unlimited->limited, because
3487 * in that case we have no record of how much is already in use.
3488 */
680d794b 3489 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3490 goto out;
680d794b 3491 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3492 goto out;
3493
3494 error = 0;
5a6e75f8 3495 sbinfo->huge = config.huge;
680d794b 3496 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
3497 sbinfo->max_inodes = config.max_inodes;
3498 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3499
5f00110f
GT
3500 /*
3501 * Preserve previous mempolicy unless mpol remount option was specified.
3502 */
3503 if (config.mpol) {
3504 mpol_put(sbinfo->mpol);
3505 sbinfo->mpol = config.mpol; /* transfers initial ref */
3506 }
0edd73b3
HD
3507out:
3508 spin_unlock(&sbinfo->stat_lock);
3509 return error;
1da177e4 3510}
680d794b 3511
34c80b1d 3512static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3513{
34c80b1d 3514 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3515
3516 if (sbinfo->max_blocks != shmem_default_max_blocks())
3517 seq_printf(seq, ",size=%luk",
09cbfeaf 3518 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3519 if (sbinfo->max_inodes != shmem_default_max_inodes())
3520 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3521 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3522 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3523 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3524 seq_printf(seq, ",uid=%u",
3525 from_kuid_munged(&init_user_ns, sbinfo->uid));
3526 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3527 seq_printf(seq, ",gid=%u",
3528 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3529#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3530 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3531 if (sbinfo->huge)
3532 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3533#endif
71fe804b 3534 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3535 return 0;
3536}
9183df25 3537
680d794b 3538#endif /* CONFIG_TMPFS */
1da177e4
LT
3539
3540static void shmem_put_super(struct super_block *sb)
3541{
602586a8
HD
3542 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3543
3544 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3545 mpol_put(sbinfo->mpol);
602586a8 3546 kfree(sbinfo);
1da177e4
LT
3547 sb->s_fs_info = NULL;
3548}
3549
2b2af54a 3550int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3551{
3552 struct inode *inode;
0edd73b3 3553 struct shmem_sb_info *sbinfo;
680d794b
AM
3554 int err = -ENOMEM;
3555
3556 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3557 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3558 L1_CACHE_BYTES), GFP_KERNEL);
3559 if (!sbinfo)
3560 return -ENOMEM;
3561
0825a6f9 3562 sbinfo->mode = 0777 | S_ISVTX;
76aac0e9
DH
3563 sbinfo->uid = current_fsuid();
3564 sbinfo->gid = current_fsgid();
680d794b 3565 sb->s_fs_info = sbinfo;
1da177e4 3566
0edd73b3 3567#ifdef CONFIG_TMPFS
1da177e4
LT
3568 /*
3569 * Per default we only allow half of the physical ram per
3570 * tmpfs instance, limiting inodes to one per page of lowmem;
3571 * but the internal instance is left unlimited.
3572 */
1751e8a6 3573 if (!(sb->s_flags & SB_KERNMOUNT)) {
680d794b
AM
3574 sbinfo->max_blocks = shmem_default_max_blocks();
3575 sbinfo->max_inodes = shmem_default_max_inodes();
3576 if (shmem_parse_options(data, sbinfo, false)) {
3577 err = -EINVAL;
3578 goto failed;
3579 }
ca4e0519 3580 } else {
1751e8a6 3581 sb->s_flags |= SB_NOUSER;
1da177e4 3582 }
91828a40 3583 sb->s_export_op = &shmem_export_ops;
1751e8a6 3584 sb->s_flags |= SB_NOSEC;
1da177e4 3585#else
1751e8a6 3586 sb->s_flags |= SB_NOUSER;
1da177e4
LT
3587#endif
3588
0edd73b3 3589 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3590 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3591 goto failed;
680d794b 3592 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3593 spin_lock_init(&sbinfo->shrinklist_lock);
3594 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3595
285b2c4f 3596 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3597 sb->s_blocksize = PAGE_SIZE;
3598 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3599 sb->s_magic = TMPFS_MAGIC;
3600 sb->s_op = &shmem_ops;
cfd95a9c 3601 sb->s_time_gran = 1;
b09e0fa4 3602#ifdef CONFIG_TMPFS_XATTR
39f0247d 3603 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3604#endif
3605#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3606 sb->s_flags |= SB_POSIXACL;
39f0247d 3607#endif
2b4db796 3608 uuid_gen(&sb->s_uuid);
0edd73b3 3609
454abafe 3610 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3611 if (!inode)
3612 goto failed;
680d794b
AM
3613 inode->i_uid = sbinfo->uid;
3614 inode->i_gid = sbinfo->gid;
318ceed0
AV
3615 sb->s_root = d_make_root(inode);
3616 if (!sb->s_root)
48fde701 3617 goto failed;
1da177e4
LT
3618 return 0;
3619
1da177e4
LT
3620failed:
3621 shmem_put_super(sb);
3622 return err;
3623}
3624
fcc234f8 3625static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3626
3627static struct inode *shmem_alloc_inode(struct super_block *sb)
3628{
41ffe5d5
HD
3629 struct shmem_inode_info *info;
3630 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3631 if (!info)
1da177e4 3632 return NULL;
41ffe5d5 3633 return &info->vfs_inode;
1da177e4
LT
3634}
3635
74b1da56 3636static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3637{
84e710da
AV
3638 if (S_ISLNK(inode->i_mode))
3639 kfree(inode->i_link);
fa0d7e3d
NP
3640 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3641}
3642
1da177e4
LT
3643static void shmem_destroy_inode(struct inode *inode)
3644{
09208d15 3645 if (S_ISREG(inode->i_mode))
1da177e4 3646 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3647}
3648
41ffe5d5 3649static void shmem_init_inode(void *foo)
1da177e4 3650{
41ffe5d5
HD
3651 struct shmem_inode_info *info = foo;
3652 inode_init_once(&info->vfs_inode);
1da177e4
LT
3653}
3654
9a8ec03e 3655static void shmem_init_inodecache(void)
1da177e4
LT
3656{
3657 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3658 sizeof(struct shmem_inode_info),
5d097056 3659 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3660}
3661
41ffe5d5 3662static void shmem_destroy_inodecache(void)
1da177e4 3663{
1a1d92c1 3664 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3665}
3666
f5e54d6e 3667static const struct address_space_operations shmem_aops = {
1da177e4 3668 .writepage = shmem_writepage,
76719325 3669 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3670#ifdef CONFIG_TMPFS
800d15a5
NP
3671 .write_begin = shmem_write_begin,
3672 .write_end = shmem_write_end,
1da177e4 3673#endif
1c93923c 3674#ifdef CONFIG_MIGRATION
304dbdb7 3675 .migratepage = migrate_page,
1c93923c 3676#endif
aa261f54 3677 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3678};
3679
15ad7cdc 3680static const struct file_operations shmem_file_operations = {
1da177e4 3681 .mmap = shmem_mmap,
c01d5b30 3682 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3683#ifdef CONFIG_TMPFS
220f2ac9 3684 .llseek = shmem_file_llseek,
2ba5bbed 3685 .read_iter = shmem_file_read_iter,
8174202b 3686 .write_iter = generic_file_write_iter,
1b061d92 3687 .fsync = noop_fsync,
82c156f8 3688 .splice_read = generic_file_splice_read,
f6cb85d0 3689 .splice_write = iter_file_splice_write,
83e4fa9c 3690 .fallocate = shmem_fallocate,
1da177e4
LT
3691#endif
3692};
3693
92e1d5be 3694static const struct inode_operations shmem_inode_operations = {
44a30220 3695 .getattr = shmem_getattr,
94c1e62d 3696 .setattr = shmem_setattr,
b09e0fa4 3697#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3698 .listxattr = shmem_listxattr,
feda821e 3699 .set_acl = simple_set_acl,
b09e0fa4 3700#endif
1da177e4
LT
3701};
3702
92e1d5be 3703static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3704#ifdef CONFIG_TMPFS
3705 .create = shmem_create,
3706 .lookup = simple_lookup,
3707 .link = shmem_link,
3708 .unlink = shmem_unlink,
3709 .symlink = shmem_symlink,
3710 .mkdir = shmem_mkdir,
3711 .rmdir = shmem_rmdir,
3712 .mknod = shmem_mknod,
2773bf00 3713 .rename = shmem_rename2,
60545d0d 3714 .tmpfile = shmem_tmpfile,
1da177e4 3715#endif
b09e0fa4 3716#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3717 .listxattr = shmem_listxattr,
b09e0fa4 3718#endif
39f0247d 3719#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3720 .setattr = shmem_setattr,
feda821e 3721 .set_acl = simple_set_acl,
39f0247d
AG
3722#endif
3723};
3724
92e1d5be 3725static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3726#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3727 .listxattr = shmem_listxattr,
b09e0fa4 3728#endif
39f0247d 3729#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3730 .setattr = shmem_setattr,
feda821e 3731 .set_acl = simple_set_acl,
39f0247d 3732#endif
1da177e4
LT
3733};
3734
759b9775 3735static const struct super_operations shmem_ops = {
1da177e4 3736 .alloc_inode = shmem_alloc_inode,
74b1da56 3737 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3738 .destroy_inode = shmem_destroy_inode,
3739#ifdef CONFIG_TMPFS
3740 .statfs = shmem_statfs,
3741 .remount_fs = shmem_remount_fs,
680d794b 3742 .show_options = shmem_show_options,
1da177e4 3743#endif
1f895f75 3744 .evict_inode = shmem_evict_inode,
1da177e4
LT
3745 .drop_inode = generic_delete_inode,
3746 .put_super = shmem_put_super,
779750d2
KS
3747#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3748 .nr_cached_objects = shmem_unused_huge_count,
3749 .free_cached_objects = shmem_unused_huge_scan,
3750#endif
1da177e4
LT
3751};
3752
f0f37e2f 3753static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3754 .fault = shmem_fault,
d7c17551 3755 .map_pages = filemap_map_pages,
1da177e4
LT
3756#ifdef CONFIG_NUMA
3757 .set_policy = shmem_set_policy,
3758 .get_policy = shmem_get_policy,
3759#endif
3760};
3761
3c26ff6e
AV
3762static struct dentry *shmem_mount(struct file_system_type *fs_type,
3763 int flags, const char *dev_name, void *data)
1da177e4 3764{
3c26ff6e 3765 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3766}
3767
41ffe5d5 3768static struct file_system_type shmem_fs_type = {
1da177e4
LT
3769 .owner = THIS_MODULE,
3770 .name = "tmpfs",
3c26ff6e 3771 .mount = shmem_mount,
1da177e4 3772 .kill_sb = kill_litter_super,
2b8576cb 3773 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3774};
1da177e4 3775
41ffe5d5 3776int __init shmem_init(void)
1da177e4
LT
3777{
3778 int error;
3779
16203a7a
RL
3780 /* If rootfs called this, don't re-init */
3781 if (shmem_inode_cachep)
3782 return 0;
3783
9a8ec03e 3784 shmem_init_inodecache();
1da177e4 3785
41ffe5d5 3786 error = register_filesystem(&shmem_fs_type);
1da177e4 3787 if (error) {
1170532b 3788 pr_err("Could not register tmpfs\n");
1da177e4
LT
3789 goto out2;
3790 }
95dc112a 3791
ca4e0519 3792 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3793 if (IS_ERR(shm_mnt)) {
3794 error = PTR_ERR(shm_mnt);
1170532b 3795 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3796 goto out1;
3797 }
5a6e75f8 3798
e496cf3d 3799#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 3800 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3801 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3802 else
3803 shmem_huge = 0; /* just in case it was patched */
3804#endif
1da177e4
LT
3805 return 0;
3806
3807out1:
41ffe5d5 3808 unregister_filesystem(&shmem_fs_type);
1da177e4 3809out2:
41ffe5d5 3810 shmem_destroy_inodecache();
1da177e4
LT
3811 shm_mnt = ERR_PTR(error);
3812 return error;
3813}
853ac43a 3814
e496cf3d 3815#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3816static ssize_t shmem_enabled_show(struct kobject *kobj,
3817 struct kobj_attribute *attr, char *buf)
3818{
3819 int values[] = {
3820 SHMEM_HUGE_ALWAYS,
3821 SHMEM_HUGE_WITHIN_SIZE,
3822 SHMEM_HUGE_ADVISE,
3823 SHMEM_HUGE_NEVER,
3824 SHMEM_HUGE_DENY,
3825 SHMEM_HUGE_FORCE,
3826 };
3827 int i, count;
3828
3829 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3830 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3831
3832 count += sprintf(buf + count, fmt,
3833 shmem_format_huge(values[i]));
3834 }
3835 buf[count - 1] = '\n';
3836 return count;
3837}
3838
3839static ssize_t shmem_enabled_store(struct kobject *kobj,
3840 struct kobj_attribute *attr, const char *buf, size_t count)
3841{
3842 char tmp[16];
3843 int huge;
3844
3845 if (count + 1 > sizeof(tmp))
3846 return -EINVAL;
3847 memcpy(tmp, buf, count);
3848 tmp[count] = '\0';
3849 if (count && tmp[count - 1] == '\n')
3850 tmp[count - 1] = '\0';
3851
3852 huge = shmem_parse_huge(tmp);
3853 if (huge == -EINVAL)
3854 return -EINVAL;
3855 if (!has_transparent_hugepage() &&
3856 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3857 return -EINVAL;
3858
3859 shmem_huge = huge;
435c0b87 3860 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3861 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3862 return count;
3863}
3864
3865struct kobj_attribute shmem_enabled_attr =
3866 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 3867#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 3868
3b33719c 3869#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
3870bool shmem_huge_enabled(struct vm_area_struct *vma)
3871{
3872 struct inode *inode = file_inode(vma->vm_file);
3873 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3874 loff_t i_size;
3875 pgoff_t off;
3876
3877 if (shmem_huge == SHMEM_HUGE_FORCE)
3878 return true;
3879 if (shmem_huge == SHMEM_HUGE_DENY)
3880 return false;
3881 switch (sbinfo->huge) {
3882 case SHMEM_HUGE_NEVER:
3883 return false;
3884 case SHMEM_HUGE_ALWAYS:
3885 return true;
3886 case SHMEM_HUGE_WITHIN_SIZE:
3887 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3888 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3889 if (i_size >= HPAGE_PMD_SIZE &&
3890 i_size >> PAGE_SHIFT >= off)
3891 return true;
c8402871 3892 /* fall through */
f3f0e1d2
KS
3893 case SHMEM_HUGE_ADVISE:
3894 /* TODO: implement fadvise() hints */
3895 return (vma->vm_flags & VM_HUGEPAGE);
3896 default:
3897 VM_BUG_ON(1);
3898 return false;
3899 }
3900}
3b33719c 3901#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 3902
853ac43a
MM
3903#else /* !CONFIG_SHMEM */
3904
3905/*
3906 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3907 *
3908 * This is intended for small system where the benefits of the full
3909 * shmem code (swap-backed and resource-limited) are outweighed by
3910 * their complexity. On systems without swap this code should be
3911 * effectively equivalent, but much lighter weight.
3912 */
3913
41ffe5d5 3914static struct file_system_type shmem_fs_type = {
853ac43a 3915 .name = "tmpfs",
3c26ff6e 3916 .mount = ramfs_mount,
853ac43a 3917 .kill_sb = kill_litter_super,
2b8576cb 3918 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3919};
3920
41ffe5d5 3921int __init shmem_init(void)
853ac43a 3922{
41ffe5d5 3923 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3924
41ffe5d5 3925 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3926 BUG_ON(IS_ERR(shm_mnt));
3927
3928 return 0;
3929}
3930
b56a2d8a
VRP
3931int shmem_unuse(unsigned int type, bool frontswap,
3932 unsigned long *fs_pages_to_unuse)
853ac43a
MM
3933{
3934 return 0;
3935}
3936
3f96b79a
HD
3937int shmem_lock(struct file *file, int lock, struct user_struct *user)
3938{
3939 return 0;
3940}
3941
24513264
HD
3942void shmem_unlock_mapping(struct address_space *mapping)
3943{
3944}
3945
c01d5b30
HD
3946#ifdef CONFIG_MMU
3947unsigned long shmem_get_unmapped_area(struct file *file,
3948 unsigned long addr, unsigned long len,
3949 unsigned long pgoff, unsigned long flags)
3950{
3951 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3952}
3953#endif
3954
41ffe5d5 3955void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3956{
41ffe5d5 3957 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3958}
3959EXPORT_SYMBOL_GPL(shmem_truncate_range);
3960
0b0a0806
HD
3961#define shmem_vm_ops generic_file_vm_ops
3962#define shmem_file_operations ramfs_file_operations
454abafe 3963#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3964#define shmem_acct_size(flags, size) 0
3965#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3966
3967#endif /* CONFIG_SHMEM */
3968
3969/* common code */
1da177e4 3970
703321b6 3971static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 3972 unsigned long flags, unsigned int i_flags)
1da177e4 3973{
1da177e4 3974 struct inode *inode;
93dec2da 3975 struct file *res;
1da177e4 3976
703321b6
MA
3977 if (IS_ERR(mnt))
3978 return ERR_CAST(mnt);
1da177e4 3979
285b2c4f 3980 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3981 return ERR_PTR(-EINVAL);
3982
3983 if (shmem_acct_size(flags, size))
3984 return ERR_PTR(-ENOMEM);
3985
93dec2da
AV
3986 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3987 flags);
dac2d1f6
AV
3988 if (unlikely(!inode)) {
3989 shmem_unacct_size(flags, size);
3990 return ERR_PTR(-ENOSPC);
3991 }
c7277090 3992 inode->i_flags |= i_flags;
1da177e4 3993 inode->i_size = size;
6d6b77f1 3994 clear_nlink(inode); /* It is unlinked */
26567cdb 3995 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
3996 if (!IS_ERR(res))
3997 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3998 &shmem_file_operations);
26567cdb 3999 if (IS_ERR(res))
93dec2da 4000 iput(inode);
6b4d0b27 4001 return res;
1da177e4 4002}
c7277090
EP
4003
4004/**
4005 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4006 * kernel internal. There will be NO LSM permission checks against the
4007 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4008 * higher layer. The users are the big_key and shm implementations. LSM
4009 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4010 * @name: name for dentry (to be seen in /proc/<pid>/maps
4011 * @size: size to be set for the file
4012 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4013 */
4014struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4015{
703321b6 4016 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4017}
4018
4019/**
4020 * shmem_file_setup - get an unlinked file living in tmpfs
4021 * @name: name for dentry (to be seen in /proc/<pid>/maps
4022 * @size: size to be set for the file
4023 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4024 */
4025struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4026{
703321b6 4027 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4028}
395e0ddc 4029EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4030
703321b6
MA
4031/**
4032 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4033 * @mnt: the tmpfs mount where the file will be created
4034 * @name: name for dentry (to be seen in /proc/<pid>/maps
4035 * @size: size to be set for the file
4036 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4037 */
4038struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4039 loff_t size, unsigned long flags)
4040{
4041 return __shmem_file_setup(mnt, name, size, flags, 0);
4042}
4043EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4044
46711810 4045/**
1da177e4 4046 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4047 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4048 */
4049int shmem_zero_setup(struct vm_area_struct *vma)
4050{
4051 struct file *file;
4052 loff_t size = vma->vm_end - vma->vm_start;
4053
66fc1303
HD
4054 /*
4055 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4056 * between XFS directory reading and selinux: since this file is only
4057 * accessible to the user through its mapping, use S_PRIVATE flag to
4058 * bypass file security, in the same way as shmem_kernel_file_setup().
4059 */
703321b6 4060 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4061 if (IS_ERR(file))
4062 return PTR_ERR(file);
4063
4064 if (vma->vm_file)
4065 fput(vma->vm_file);
4066 vma->vm_file = file;
4067 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4068
e496cf3d 4069 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4070 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4071 (vma->vm_end & HPAGE_PMD_MASK)) {
4072 khugepaged_enter(vma, vma->vm_flags);
4073 }
4074
1da177e4
LT
4075 return 0;
4076}
d9d90e5e
HD
4077
4078/**
4079 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4080 * @mapping: the page's address_space
4081 * @index: the page index
4082 * @gfp: the page allocator flags to use if allocating
4083 *
4084 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4085 * with any new page allocations done using the specified allocation flags.
4086 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4087 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4088 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4089 *
68da9f05
HD
4090 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4091 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4092 */
4093struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4094 pgoff_t index, gfp_t gfp)
4095{
68da9f05
HD
4096#ifdef CONFIG_SHMEM
4097 struct inode *inode = mapping->host;
9276aad6 4098 struct page *page;
68da9f05
HD
4099 int error;
4100
4101 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4102 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4103 gfp, NULL, NULL, NULL);
68da9f05
HD
4104 if (error)
4105 page = ERR_PTR(error);
4106 else
4107 unlock_page(page);
4108 return page;
4109#else
4110 /*
4111 * The tiny !SHMEM case uses ramfs without swap
4112 */
d9d90e5e 4113 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4114#endif
d9d90e5e
HD
4115}
4116EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);