]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/shmem.c
mm/vmstat.c: skip NR_TLB_REMOTE_FLUSH* properly
[thirdparty/kernel/stable.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
174cd4b1 32#include <linux/sched/signal.h>
b95f1b31 33#include <linux/export.h>
853ac43a 34#include <linux/swap.h>
e2e40f2c 35#include <linux/uio.h>
f3f0e1d2 36#include <linux/khugepaged.h>
749df87b 37#include <linux/hugetlb.h>
853ac43a 38
95cc09d6
AA
39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
853ac43a
MM
41static struct vfsmount *shm_mnt;
42
43#ifdef CONFIG_SHMEM
1da177e4
LT
44/*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
39f0247d 50#include <linux/xattr.h>
a5694255 51#include <linux/exportfs.h>
1c7c474c 52#include <linux/posix_acl.h>
feda821e 53#include <linux/posix_acl_xattr.h>
1da177e4 54#include <linux/mman.h>
1da177e4
LT
55#include <linux/string.h>
56#include <linux/slab.h>
57#include <linux/backing-dev.h>
58#include <linux/shmem_fs.h>
1da177e4 59#include <linux/writeback.h>
1da177e4 60#include <linux/blkdev.h>
bda97eab 61#include <linux/pagevec.h>
41ffe5d5 62#include <linux/percpu_counter.h>
83e4fa9c 63#include <linux/falloc.h>
708e3508 64#include <linux/splice.h>
1da177e4
LT
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
b00dc3ad 69#include <linux/ctype.h>
304dbdb7 70#include <linux/migrate.h>
c1f60a5a 71#include <linux/highmem.h>
680d794b 72#include <linux/seq_file.h>
92562927 73#include <linux/magic.h>
9183df25 74#include <linux/syscalls.h>
40e041a2 75#include <linux/fcntl.h>
9183df25 76#include <uapi/linux/memfd.h>
cfda0526 77#include <linux/userfaultfd_k.h>
4c27fe4c 78#include <linux/rmap.h>
2b4db796 79#include <linux/uuid.h>
304dbdb7 80
7c0f6ba6 81#include <linux/uaccess.h>
1da177e4
LT
82#include <asm/pgtable.h>
83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d
HD
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
b76db735 108#ifdef CONFIG_TMPFS
680d794b
AM
109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
b76db735 118#endif
680d794b 119
bde05d1c
HD
120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
68da9f05 123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 124 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
68da9f05 127
f3f0e1d2 128int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 129 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
130{
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 133}
1da177e4 134
1da177e4
LT
135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136{
137 return sb->s_fs_info;
138}
139
140/*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146static inline int shmem_acct_size(unsigned long flags, loff_t size)
147{
0b0a0806 148 return (flags & VM_NORESERVE) ?
191c5424 149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
150}
151
152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153{
0b0a0806 154 if (!(flags & VM_NORESERVE))
1da177e4
LT
155 vm_unacct_memory(VM_ACCT(size));
156}
157
77142517
KK
158static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
160{
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 }
168 return 0;
169}
170
1da177e4
LT
171/*
172 * ... whereas tmpfs objects are accounted incrementally as
75edd345 173 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 */
800d8c63 177static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 178{
800d8c63
KS
179 if (!(flags & VM_NORESERVE))
180 return 0;
181
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
184}
185
186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187{
0b0a0806 188 if (flags & VM_NORESERVE)
09cbfeaf 189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
190}
191
0f079694
MR
192static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193{
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197 if (shmem_acct_block(info->flags, pages))
198 return false;
199
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
205 }
206
207 return true;
208
209unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
212}
213
214static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215{
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
222}
223
759b9775 224static const struct super_operations shmem_ops;
f5e54d6e 225static const struct address_space_operations shmem_aops;
15ad7cdc 226static const struct file_operations shmem_file_operations;
92e1d5be
AV
227static const struct inode_operations shmem_inode_operations;
228static const struct inode_operations shmem_dir_inode_operations;
229static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 230static const struct vm_operations_struct shmem_vm_ops;
779750d2 231static struct file_system_type shmem_fs_type;
1da177e4 232
b0506e48
MR
233bool vma_is_shmem(struct vm_area_struct *vma)
234{
235 return vma->vm_ops == &shmem_vm_ops;
236}
237
1da177e4 238static LIST_HEAD(shmem_swaplist);
cb5f7b9a 239static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 240
5b04c689
PE
241static int shmem_reserve_inode(struct super_block *sb)
242{
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
249 }
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
252 }
253 return 0;
254}
255
256static void shmem_free_inode(struct super_block *sb)
257{
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
263 }
264}
265
46711810 266/**
41ffe5d5 267 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
268 * @inode: inode to recalc
269 *
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
272 *
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275 *
276 * It has to be called with the spinlock held.
277 */
278static void shmem_recalc_inode(struct inode *inode)
279{
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
282
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
54af6042 286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 287 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
288 }
289}
290
800d8c63
KS
291bool shmem_charge(struct inode *inode, long pages)
292{
293 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 294 unsigned long flags;
800d8c63 295
0f079694 296 if (!shmem_inode_acct_block(inode, pages))
800d8c63 297 return false;
b1cc94ab 298
4595ef88 299 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
300 info->alloced += pages;
301 inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 shmem_recalc_inode(inode);
4595ef88 303 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
304 inode->i_mapping->nrpages += pages;
305
800d8c63
KS
306 return true;
307}
308
309void shmem_uncharge(struct inode *inode, long pages)
310{
311 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 312 unsigned long flags;
800d8c63 313
4595ef88 314 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
315 info->alloced -= pages;
316 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 shmem_recalc_inode(inode);
4595ef88 318 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 319
0f079694 320 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
321}
322
7a5d0fbb
HD
323/*
324 * Replace item expected in radix tree by a new item, while holding tree lock.
325 */
326static int shmem_radix_tree_replace(struct address_space *mapping,
327 pgoff_t index, void *expected, void *replacement)
328{
f7942430 329 struct radix_tree_node *node;
7a5d0fbb 330 void **pslot;
6dbaf22c 331 void *item;
7a5d0fbb
HD
332
333 VM_BUG_ON(!expected);
6dbaf22c 334 VM_BUG_ON(!replacement);
f7942430
JW
335 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
336 if (!item)
6dbaf22c 337 return -ENOENT;
7a5d0fbb
HD
338 if (item != expected)
339 return -ENOENT;
4d693d08
JW
340 __radix_tree_replace(&mapping->page_tree, node, pslot,
341 replacement, NULL, NULL);
7a5d0fbb
HD
342 return 0;
343}
344
d1899228
HD
345/*
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
348 *
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
351 */
352static bool shmem_confirm_swap(struct address_space *mapping,
353 pgoff_t index, swp_entry_t swap)
354{
355 void *item;
356
357 rcu_read_lock();
358 item = radix_tree_lookup(&mapping->page_tree, index);
359 rcu_read_unlock();
360 return item == swp_to_radix_entry(swap);
361}
362
5a6e75f8
KS
363/*
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365 *
366 * SHMEM_HUGE_NEVER:
367 * disables huge pages for the mount;
368 * SHMEM_HUGE_ALWAYS:
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
373 * SHMEM_HUGE_ADVISE:
374 * only allocate huge pages if requested with fadvise()/madvise();
375 */
376
377#define SHMEM_HUGE_NEVER 0
378#define SHMEM_HUGE_ALWAYS 1
379#define SHMEM_HUGE_WITHIN_SIZE 2
380#define SHMEM_HUGE_ADVISE 3
381
382/*
383 * Special values.
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385 *
386 * SHMEM_HUGE_DENY:
387 * disables huge on shm_mnt and all mounts, for emergency use;
388 * SHMEM_HUGE_FORCE:
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390 *
391 */
392#define SHMEM_HUGE_DENY (-1)
393#define SHMEM_HUGE_FORCE (-2)
394
e496cf3d 395#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
396/* ifdef here to avoid bloating shmem.o when not necessary */
397
398int shmem_huge __read_mostly;
399
f1f5929c 400#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
401static int shmem_parse_huge(const char *str)
402{
403 if (!strcmp(str, "never"))
404 return SHMEM_HUGE_NEVER;
405 if (!strcmp(str, "always"))
406 return SHMEM_HUGE_ALWAYS;
407 if (!strcmp(str, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE;
409 if (!strcmp(str, "advise"))
410 return SHMEM_HUGE_ADVISE;
411 if (!strcmp(str, "deny"))
412 return SHMEM_HUGE_DENY;
413 if (!strcmp(str, "force"))
414 return SHMEM_HUGE_FORCE;
415 return -EINVAL;
416}
417
418static const char *shmem_format_huge(int huge)
419{
420 switch (huge) {
421 case SHMEM_HUGE_NEVER:
422 return "never";
423 case SHMEM_HUGE_ALWAYS:
424 return "always";
425 case SHMEM_HUGE_WITHIN_SIZE:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE:
428 return "advise";
429 case SHMEM_HUGE_DENY:
430 return "deny";
431 case SHMEM_HUGE_FORCE:
432 return "force";
433 default:
434 VM_BUG_ON(1);
435 return "bad_val";
436 }
437}
f1f5929c 438#endif
5a6e75f8 439
779750d2
KS
440static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 struct shrink_control *sc, unsigned long nr_to_split)
442{
443 LIST_HEAD(list), *pos, *next;
253fd0f0 444 LIST_HEAD(to_remove);
779750d2
KS
445 struct inode *inode;
446 struct shmem_inode_info *info;
447 struct page *page;
448 unsigned long batch = sc ? sc->nr_to_scan : 128;
449 int removed = 0, split = 0;
450
451 if (list_empty(&sbinfo->shrinklist))
452 return SHRINK_STOP;
453
454 spin_lock(&sbinfo->shrinklist_lock);
455 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
457
458 /* pin the inode */
459 inode = igrab(&info->vfs_inode);
460
461 /* inode is about to be evicted */
462 if (!inode) {
463 list_del_init(&info->shrinklist);
464 removed++;
465 goto next;
466 }
467
468 /* Check if there's anything to gain */
469 if (round_up(inode->i_size, PAGE_SIZE) ==
470 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 471 list_move(&info->shrinklist, &to_remove);
779750d2 472 removed++;
779750d2
KS
473 goto next;
474 }
475
476 list_move(&info->shrinklist, &list);
477next:
478 if (!--batch)
479 break;
480 }
481 spin_unlock(&sbinfo->shrinklist_lock);
482
253fd0f0
KS
483 list_for_each_safe(pos, next, &to_remove) {
484 info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 inode = &info->vfs_inode;
486 list_del_init(&info->shrinklist);
487 iput(inode);
488 }
489
779750d2
KS
490 list_for_each_safe(pos, next, &list) {
491 int ret;
492
493 info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 inode = &info->vfs_inode;
495
f5dad040
KS
496 if (nr_to_split && split >= nr_to_split)
497 goto leave;
779750d2 498
f5dad040 499 page = find_get_page(inode->i_mapping,
779750d2
KS
500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 if (!page)
502 goto drop;
503
f5dad040 504 /* No huge page at the end of the file: nothing to split */
779750d2 505 if (!PageTransHuge(page)) {
779750d2
KS
506 put_page(page);
507 goto drop;
508 }
509
f5dad040
KS
510 /*
511 * Leave the inode on the list if we failed to lock
512 * the page at this time.
513 *
514 * Waiting for the lock may lead to deadlock in the
515 * reclaim path.
516 */
517 if (!trylock_page(page)) {
518 put_page(page);
519 goto leave;
520 }
521
779750d2
KS
522 ret = split_huge_page(page);
523 unlock_page(page);
524 put_page(page);
525
f5dad040
KS
526 /* If split failed leave the inode on the list */
527 if (ret)
528 goto leave;
779750d2
KS
529
530 split++;
531drop:
532 list_del_init(&info->shrinklist);
533 removed++;
f5dad040 534leave:
779750d2
KS
535 iput(inode);
536 }
537
538 spin_lock(&sbinfo->shrinklist_lock);
539 list_splice_tail(&list, &sbinfo->shrinklist);
540 sbinfo->shrinklist_len -= removed;
541 spin_unlock(&sbinfo->shrinklist_lock);
542
543 return split;
544}
545
546static long shmem_unused_huge_scan(struct super_block *sb,
547 struct shrink_control *sc)
548{
549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
550
551 if (!READ_ONCE(sbinfo->shrinklist_len))
552 return SHRINK_STOP;
553
554 return shmem_unused_huge_shrink(sbinfo, sc, 0);
555}
556
557static long shmem_unused_huge_count(struct super_block *sb,
558 struct shrink_control *sc)
559{
560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 return READ_ONCE(sbinfo->shrinklist_len);
562}
e496cf3d 563#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
564
565#define shmem_huge SHMEM_HUGE_DENY
566
779750d2
KS
567static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 struct shrink_control *sc, unsigned long nr_to_split)
569{
570 return 0;
571}
e496cf3d 572#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 573
46f65ec1
HD
574/*
575 * Like add_to_page_cache_locked, but error if expected item has gone.
576 */
577static int shmem_add_to_page_cache(struct page *page,
578 struct address_space *mapping,
fed400a1 579 pgoff_t index, void *expected)
46f65ec1 580{
800d8c63 581 int error, nr = hpage_nr_pages(page);
46f65ec1 582
800d8c63
KS
583 VM_BUG_ON_PAGE(PageTail(page), page);
584 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
585 VM_BUG_ON_PAGE(!PageLocked(page), page);
586 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 587 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 588
800d8c63 589 page_ref_add(page, nr);
b065b432
HD
590 page->mapping = mapping;
591 page->index = index;
592
593 spin_lock_irq(&mapping->tree_lock);
800d8c63
KS
594 if (PageTransHuge(page)) {
595 void __rcu **results;
596 pgoff_t idx;
597 int i;
598
599 error = 0;
600 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
601 &results, &idx, index, 1) &&
602 idx < index + HPAGE_PMD_NR) {
603 error = -EEXIST;
604 }
605
606 if (!error) {
607 for (i = 0; i < HPAGE_PMD_NR; i++) {
608 error = radix_tree_insert(&mapping->page_tree,
609 index + i, page + i);
610 VM_BUG_ON(error);
611 }
612 count_vm_event(THP_FILE_ALLOC);
613 }
614 } else if (!expected) {
b065b432 615 error = radix_tree_insert(&mapping->page_tree, index, page);
800d8c63 616 } else {
b065b432
HD
617 error = shmem_radix_tree_replace(mapping, index, expected,
618 page);
800d8c63
KS
619 }
620
46f65ec1 621 if (!error) {
800d8c63
KS
622 mapping->nrpages += nr;
623 if (PageTransHuge(page))
11fb9989
MG
624 __inc_node_page_state(page, NR_SHMEM_THPS);
625 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
626 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b065b432
HD
627 spin_unlock_irq(&mapping->tree_lock);
628 } else {
629 page->mapping = NULL;
630 spin_unlock_irq(&mapping->tree_lock);
800d8c63 631 page_ref_sub(page, nr);
46f65ec1 632 }
46f65ec1
HD
633 return error;
634}
635
6922c0c7
HD
636/*
637 * Like delete_from_page_cache, but substitutes swap for page.
638 */
639static void shmem_delete_from_page_cache(struct page *page, void *radswap)
640{
641 struct address_space *mapping = page->mapping;
642 int error;
643
800d8c63
KS
644 VM_BUG_ON_PAGE(PageCompound(page), page);
645
6922c0c7
HD
646 spin_lock_irq(&mapping->tree_lock);
647 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
648 page->mapping = NULL;
649 mapping->nrpages--;
11fb9989
MG
650 __dec_node_page_state(page, NR_FILE_PAGES);
651 __dec_node_page_state(page, NR_SHMEM);
6922c0c7 652 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 653 put_page(page);
6922c0c7
HD
654 BUG_ON(error);
655}
656
7a5d0fbb
HD
657/*
658 * Remove swap entry from radix tree, free the swap and its page cache.
659 */
660static int shmem_free_swap(struct address_space *mapping,
661 pgoff_t index, void *radswap)
662{
6dbaf22c 663 void *old;
7a5d0fbb
HD
664
665 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 666 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 667 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
668 if (old != radswap)
669 return -ENOENT;
670 free_swap_and_cache(radix_to_swp_entry(radswap));
671 return 0;
7a5d0fbb
HD
672}
673
6a15a370
VB
674/*
675 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 676 * given offsets are swapped out.
6a15a370
VB
677 *
678 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
679 * as long as the inode doesn't go away and racy results are not a problem.
680 */
48131e03
VB
681unsigned long shmem_partial_swap_usage(struct address_space *mapping,
682 pgoff_t start, pgoff_t end)
6a15a370 683{
6a15a370
VB
684 struct radix_tree_iter iter;
685 void **slot;
686 struct page *page;
48131e03 687 unsigned long swapped = 0;
6a15a370
VB
688
689 rcu_read_lock();
690
6a15a370
VB
691 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
692 if (iter.index >= end)
693 break;
694
695 page = radix_tree_deref_slot(slot);
696
2cf938aa
MW
697 if (radix_tree_deref_retry(page)) {
698 slot = radix_tree_iter_retry(&iter);
699 continue;
700 }
6a15a370
VB
701
702 if (radix_tree_exceptional_entry(page))
703 swapped++;
704
705 if (need_resched()) {
148deab2 706 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 707 cond_resched_rcu();
6a15a370
VB
708 }
709 }
710
711 rcu_read_unlock();
712
713 return swapped << PAGE_SHIFT;
714}
715
48131e03
VB
716/*
717 * Determine (in bytes) how many of the shmem object's pages mapped by the
718 * given vma is swapped out.
719 *
720 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
721 * as long as the inode doesn't go away and racy results are not a problem.
722 */
723unsigned long shmem_swap_usage(struct vm_area_struct *vma)
724{
725 struct inode *inode = file_inode(vma->vm_file);
726 struct shmem_inode_info *info = SHMEM_I(inode);
727 struct address_space *mapping = inode->i_mapping;
728 unsigned long swapped;
729
730 /* Be careful as we don't hold info->lock */
731 swapped = READ_ONCE(info->swapped);
732
733 /*
734 * The easier cases are when the shmem object has nothing in swap, or
735 * the vma maps it whole. Then we can simply use the stats that we
736 * already track.
737 */
738 if (!swapped)
739 return 0;
740
741 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
742 return swapped << PAGE_SHIFT;
743
744 /* Here comes the more involved part */
745 return shmem_partial_swap_usage(mapping,
746 linear_page_index(vma, vma->vm_start),
747 linear_page_index(vma, vma->vm_end));
748}
749
24513264
HD
750/*
751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
752 */
753void shmem_unlock_mapping(struct address_space *mapping)
754{
755 struct pagevec pvec;
756 pgoff_t indices[PAGEVEC_SIZE];
757 pgoff_t index = 0;
758
759 pagevec_init(&pvec, 0);
760 /*
761 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
762 */
763 while (!mapping_unevictable(mapping)) {
764 /*
765 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
766 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
767 */
0cd6144a
JW
768 pvec.nr = find_get_entries(mapping, index,
769 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
770 if (!pvec.nr)
771 break;
772 index = indices[pvec.nr - 1] + 1;
0cd6144a 773 pagevec_remove_exceptionals(&pvec);
24513264
HD
774 check_move_unevictable_pages(pvec.pages, pvec.nr);
775 pagevec_release(&pvec);
776 cond_resched();
777 }
7a5d0fbb
HD
778}
779
780/*
781 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 783 */
1635f6a7
HD
784static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
785 bool unfalloc)
1da177e4 786{
285b2c4f 787 struct address_space *mapping = inode->i_mapping;
1da177e4 788 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
789 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
790 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
791 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
792 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 793 struct pagevec pvec;
7a5d0fbb
HD
794 pgoff_t indices[PAGEVEC_SIZE];
795 long nr_swaps_freed = 0;
285b2c4f 796 pgoff_t index;
bda97eab
HD
797 int i;
798
83e4fa9c
HD
799 if (lend == -1)
800 end = -1; /* unsigned, so actually very big */
bda97eab
HD
801
802 pagevec_init(&pvec, 0);
803 index = start;
83e4fa9c 804 while (index < end) {
0cd6144a
JW
805 pvec.nr = find_get_entries(mapping, index,
806 min(end - index, (pgoff_t)PAGEVEC_SIZE),
807 pvec.pages, indices);
7a5d0fbb
HD
808 if (!pvec.nr)
809 break;
bda97eab
HD
810 for (i = 0; i < pagevec_count(&pvec); i++) {
811 struct page *page = pvec.pages[i];
812
7a5d0fbb 813 index = indices[i];
83e4fa9c 814 if (index >= end)
bda97eab
HD
815 break;
816
7a5d0fbb 817 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
818 if (unfalloc)
819 continue;
7a5d0fbb
HD
820 nr_swaps_freed += !shmem_free_swap(mapping,
821 index, page);
bda97eab 822 continue;
7a5d0fbb
HD
823 }
824
800d8c63
KS
825 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
826
7a5d0fbb 827 if (!trylock_page(page))
bda97eab 828 continue;
800d8c63
KS
829
830 if (PageTransTail(page)) {
831 /* Middle of THP: zero out the page */
832 clear_highpage(page);
833 unlock_page(page);
834 continue;
835 } else if (PageTransHuge(page)) {
836 if (index == round_down(end, HPAGE_PMD_NR)) {
837 /*
838 * Range ends in the middle of THP:
839 * zero out the page
840 */
841 clear_highpage(page);
842 unlock_page(page);
843 continue;
844 }
845 index += HPAGE_PMD_NR - 1;
846 i += HPAGE_PMD_NR - 1;
847 }
848
1635f6a7 849 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
850 VM_BUG_ON_PAGE(PageTail(page), page);
851 if (page_mapping(page) == mapping) {
309381fe 852 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
853 truncate_inode_page(mapping, page);
854 }
bda97eab 855 }
bda97eab
HD
856 unlock_page(page);
857 }
0cd6144a 858 pagevec_remove_exceptionals(&pvec);
24513264 859 pagevec_release(&pvec);
bda97eab
HD
860 cond_resched();
861 index++;
862 }
1da177e4 863
83e4fa9c 864 if (partial_start) {
bda97eab 865 struct page *page = NULL;
9e18eb29 866 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 867 if (page) {
09cbfeaf 868 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
869 if (start > end) {
870 top = partial_end;
871 partial_end = 0;
872 }
873 zero_user_segment(page, partial_start, top);
874 set_page_dirty(page);
875 unlock_page(page);
09cbfeaf 876 put_page(page);
83e4fa9c
HD
877 }
878 }
879 if (partial_end) {
880 struct page *page = NULL;
9e18eb29 881 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
882 if (page) {
883 zero_user_segment(page, 0, partial_end);
bda97eab
HD
884 set_page_dirty(page);
885 unlock_page(page);
09cbfeaf 886 put_page(page);
bda97eab
HD
887 }
888 }
83e4fa9c
HD
889 if (start >= end)
890 return;
bda97eab
HD
891
892 index = start;
b1a36650 893 while (index < end) {
bda97eab 894 cond_resched();
0cd6144a
JW
895
896 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 897 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 898 pvec.pages, indices);
7a5d0fbb 899 if (!pvec.nr) {
b1a36650
HD
900 /* If all gone or hole-punch or unfalloc, we're done */
901 if (index == start || end != -1)
bda97eab 902 break;
b1a36650 903 /* But if truncating, restart to make sure all gone */
bda97eab
HD
904 index = start;
905 continue;
906 }
bda97eab
HD
907 for (i = 0; i < pagevec_count(&pvec); i++) {
908 struct page *page = pvec.pages[i];
909
7a5d0fbb 910 index = indices[i];
83e4fa9c 911 if (index >= end)
bda97eab
HD
912 break;
913
7a5d0fbb 914 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
915 if (unfalloc)
916 continue;
b1a36650
HD
917 if (shmem_free_swap(mapping, index, page)) {
918 /* Swap was replaced by page: retry */
919 index--;
920 break;
921 }
922 nr_swaps_freed++;
7a5d0fbb
HD
923 continue;
924 }
925
bda97eab 926 lock_page(page);
800d8c63
KS
927
928 if (PageTransTail(page)) {
929 /* Middle of THP: zero out the page */
930 clear_highpage(page);
931 unlock_page(page);
932 /*
933 * Partial thp truncate due 'start' in middle
934 * of THP: don't need to look on these pages
935 * again on !pvec.nr restart.
936 */
937 if (index != round_down(end, HPAGE_PMD_NR))
938 start++;
939 continue;
940 } else if (PageTransHuge(page)) {
941 if (index == round_down(end, HPAGE_PMD_NR)) {
942 /*
943 * Range ends in the middle of THP:
944 * zero out the page
945 */
946 clear_highpage(page);
947 unlock_page(page);
948 continue;
949 }
950 index += HPAGE_PMD_NR - 1;
951 i += HPAGE_PMD_NR - 1;
952 }
953
1635f6a7 954 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
955 VM_BUG_ON_PAGE(PageTail(page), page);
956 if (page_mapping(page) == mapping) {
309381fe 957 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 958 truncate_inode_page(mapping, page);
b1a36650
HD
959 } else {
960 /* Page was replaced by swap: retry */
961 unlock_page(page);
962 index--;
963 break;
1635f6a7 964 }
7a5d0fbb 965 }
bda97eab
HD
966 unlock_page(page);
967 }
0cd6144a 968 pagevec_remove_exceptionals(&pvec);
24513264 969 pagevec_release(&pvec);
bda97eab
HD
970 index++;
971 }
94c1e62d 972
4595ef88 973 spin_lock_irq(&info->lock);
7a5d0fbb 974 info->swapped -= nr_swaps_freed;
1da177e4 975 shmem_recalc_inode(inode);
4595ef88 976 spin_unlock_irq(&info->lock);
1635f6a7 977}
1da177e4 978
1635f6a7
HD
979void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
980{
981 shmem_undo_range(inode, lstart, lend, false);
078cd827 982 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 983}
94c1e62d 984EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 985
a528d35e
DH
986static int shmem_getattr(const struct path *path, struct kstat *stat,
987 u32 request_mask, unsigned int query_flags)
44a30220 988{
a528d35e 989 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
990 struct shmem_inode_info *info = SHMEM_I(inode);
991
d0424c42 992 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 993 spin_lock_irq(&info->lock);
d0424c42 994 shmem_recalc_inode(inode);
4595ef88 995 spin_unlock_irq(&info->lock);
d0424c42 996 }
44a30220 997 generic_fillattr(inode, stat);
44a30220
YZ
998 return 0;
999}
1000
94c1e62d 1001static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1002{
75c3cfa8 1003 struct inode *inode = d_inode(dentry);
40e041a2 1004 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1005 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1006 int error;
1007
31051c85 1008 error = setattr_prepare(dentry, attr);
db78b877
CH
1009 if (error)
1010 return error;
1011
94c1e62d
HD
1012 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1013 loff_t oldsize = inode->i_size;
1014 loff_t newsize = attr->ia_size;
3889e6e7 1015
40e041a2
DR
1016 /* protected by i_mutex */
1017 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1018 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1019 return -EPERM;
1020
94c1e62d 1021 if (newsize != oldsize) {
77142517
KK
1022 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1023 oldsize, newsize);
1024 if (error)
1025 return error;
94c1e62d 1026 i_size_write(inode, newsize);
078cd827 1027 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1028 }
afa2db2f 1029 if (newsize <= oldsize) {
94c1e62d 1030 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1031 if (oldsize > holebegin)
1032 unmap_mapping_range(inode->i_mapping,
1033 holebegin, 0, 1);
1034 if (info->alloced)
1035 shmem_truncate_range(inode,
1036 newsize, (loff_t)-1);
94c1e62d 1037 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1038 if (oldsize > holebegin)
1039 unmap_mapping_range(inode->i_mapping,
1040 holebegin, 0, 1);
779750d2
KS
1041
1042 /*
1043 * Part of the huge page can be beyond i_size: subject
1044 * to shrink under memory pressure.
1045 */
1046 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1047 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1048 /*
1049 * _careful to defend against unlocked access to
1050 * ->shrink_list in shmem_unused_huge_shrink()
1051 */
1052 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1053 list_add_tail(&info->shrinklist,
1054 &sbinfo->shrinklist);
1055 sbinfo->shrinklist_len++;
1056 }
1057 spin_unlock(&sbinfo->shrinklist_lock);
1058 }
94c1e62d 1059 }
1da177e4
LT
1060 }
1061
db78b877 1062 setattr_copy(inode, attr);
db78b877 1063 if (attr->ia_valid & ATTR_MODE)
feda821e 1064 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1065 return error;
1066}
1067
1f895f75 1068static void shmem_evict_inode(struct inode *inode)
1da177e4 1069{
1da177e4 1070 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1071 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1072
3889e6e7 1073 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1074 shmem_unacct_size(info->flags, inode->i_size);
1075 inode->i_size = 0;
3889e6e7 1076 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1077 if (!list_empty(&info->shrinklist)) {
1078 spin_lock(&sbinfo->shrinklist_lock);
1079 if (!list_empty(&info->shrinklist)) {
1080 list_del_init(&info->shrinklist);
1081 sbinfo->shrinklist_len--;
1082 }
1083 spin_unlock(&sbinfo->shrinklist_lock);
1084 }
1da177e4 1085 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1086 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1087 list_del_init(&info->swaplist);
cb5f7b9a 1088 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1089 }
3ed47db3 1090 }
b09e0fa4 1091
38f38657 1092 simple_xattrs_free(&info->xattrs);
0f3c42f5 1093 WARN_ON(inode->i_blocks);
5b04c689 1094 shmem_free_inode(inode->i_sb);
dbd5768f 1095 clear_inode(inode);
1da177e4
LT
1096}
1097
478922e2
MW
1098static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1099{
1100 struct radix_tree_iter iter;
1101 void **slot;
1102 unsigned long found = -1;
1103 unsigned int checked = 0;
1104
1105 rcu_read_lock();
1106 radix_tree_for_each_slot(slot, root, &iter, 0) {
1107 if (*slot == item) {
1108 found = iter.index;
1109 break;
1110 }
1111 checked++;
1112 if ((checked % 4096) != 0)
1113 continue;
1114 slot = radix_tree_iter_resume(slot, &iter);
1115 cond_resched_rcu();
1116 }
1117
1118 rcu_read_unlock();
1119 return found;
1120}
1121
46f65ec1
HD
1122/*
1123 * If swap found in inode, free it and move page from swapcache to filecache.
1124 */
41ffe5d5 1125static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1126 swp_entry_t swap, struct page **pagep)
1da177e4 1127{
285b2c4f 1128 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1129 void *radswap;
41ffe5d5 1130 pgoff_t index;
bde05d1c
HD
1131 gfp_t gfp;
1132 int error = 0;
1da177e4 1133
46f65ec1 1134 radswap = swp_to_radix_entry(swap);
478922e2 1135 index = find_swap_entry(&mapping->page_tree, radswap);
46f65ec1 1136 if (index == -1)
00501b53 1137 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1138
1b1b32f2
HD
1139 /*
1140 * Move _head_ to start search for next from here.
1f895f75 1141 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1142 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1143 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1144 */
1145 if (shmem_swaplist.next != &info->swaplist)
1146 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1147
bde05d1c
HD
1148 gfp = mapping_gfp_mask(mapping);
1149 if (shmem_should_replace_page(*pagep, gfp)) {
1150 mutex_unlock(&shmem_swaplist_mutex);
1151 error = shmem_replace_page(pagep, gfp, info, index);
1152 mutex_lock(&shmem_swaplist_mutex);
1153 /*
1154 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1155 * allocation, but the inode might have been freed while we
1156 * dropped it: although a racing shmem_evict_inode() cannot
1157 * complete without emptying the radix_tree, our page lock
1158 * on this swapcache page is not enough to prevent that -
1159 * free_swap_and_cache() of our swap entry will only
1160 * trylock_page(), removing swap from radix_tree whatever.
1161 *
1162 * We must not proceed to shmem_add_to_page_cache() if the
1163 * inode has been freed, but of course we cannot rely on
1164 * inode or mapping or info to check that. However, we can
1165 * safely check if our swap entry is still in use (and here
1166 * it can't have got reused for another page): if it's still
1167 * in use, then the inode cannot have been freed yet, and we
1168 * can safely proceed (if it's no longer in use, that tells
1169 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1170 */
1171 if (!page_swapcount(*pagep))
1172 error = -ENOENT;
1173 }
1174
d13d1443 1175 /*
778dd893
HD
1176 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1177 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1178 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1179 */
bde05d1c
HD
1180 if (!error)
1181 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1182 radswap);
48f170fb 1183 if (error != -ENOMEM) {
46f65ec1
HD
1184 /*
1185 * Truncation and eviction use free_swap_and_cache(), which
1186 * only does trylock page: if we raced, best clean up here.
1187 */
bde05d1c
HD
1188 delete_from_swap_cache(*pagep);
1189 set_page_dirty(*pagep);
46f65ec1 1190 if (!error) {
4595ef88 1191 spin_lock_irq(&info->lock);
46f65ec1 1192 info->swapped--;
4595ef88 1193 spin_unlock_irq(&info->lock);
46f65ec1
HD
1194 swap_free(swap);
1195 }
1da177e4 1196 }
2e0e26c7 1197 return error;
1da177e4
LT
1198}
1199
1200/*
46f65ec1 1201 * Search through swapped inodes to find and replace swap by page.
1da177e4 1202 */
41ffe5d5 1203int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1204{
41ffe5d5 1205 struct list_head *this, *next;
1da177e4 1206 struct shmem_inode_info *info;
00501b53 1207 struct mem_cgroup *memcg;
bde05d1c
HD
1208 int error = 0;
1209
1210 /*
1211 * There's a faint possibility that swap page was replaced before
0142ef6c 1212 * caller locked it: caller will come back later with the right page.
bde05d1c 1213 */
0142ef6c 1214 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1215 goto out;
778dd893
HD
1216
1217 /*
1218 * Charge page using GFP_KERNEL while we can wait, before taking
1219 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1220 * Charged back to the user (not to caller) when swap account is used.
778dd893 1221 */
f627c2f5
KS
1222 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1223 false);
778dd893
HD
1224 if (error)
1225 goto out;
46f65ec1 1226 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1227 error = -EAGAIN;
1da177e4 1228
cb5f7b9a 1229 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1230 list_for_each_safe(this, next, &shmem_swaplist) {
1231 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1232 if (info->swapped)
00501b53 1233 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1234 else
1235 list_del_init(&info->swaplist);
cb5f7b9a 1236 cond_resched();
00501b53 1237 if (error != -EAGAIN)
778dd893 1238 break;
00501b53 1239 /* found nothing in this: move on to search the next */
1da177e4 1240 }
cb5f7b9a 1241 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1242
00501b53
JW
1243 if (error) {
1244 if (error != -ENOMEM)
1245 error = 0;
f627c2f5 1246 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1247 } else
f627c2f5 1248 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1249out:
aaa46865 1250 unlock_page(page);
09cbfeaf 1251 put_page(page);
778dd893 1252 return error;
1da177e4
LT
1253}
1254
1255/*
1256 * Move the page from the page cache to the swap cache.
1257 */
1258static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1259{
1260 struct shmem_inode_info *info;
1da177e4 1261 struct address_space *mapping;
1da177e4 1262 struct inode *inode;
6922c0c7
HD
1263 swp_entry_t swap;
1264 pgoff_t index;
1da177e4 1265
800d8c63 1266 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1267 BUG_ON(!PageLocked(page));
1da177e4
LT
1268 mapping = page->mapping;
1269 index = page->index;
1270 inode = mapping->host;
1271 info = SHMEM_I(inode);
1272 if (info->flags & VM_LOCKED)
1273 goto redirty;
d9fe526a 1274 if (!total_swap_pages)
1da177e4
LT
1275 goto redirty;
1276
d9fe526a 1277 /*
97b713ba
CH
1278 * Our capabilities prevent regular writeback or sync from ever calling
1279 * shmem_writepage; but a stacking filesystem might use ->writepage of
1280 * its underlying filesystem, in which case tmpfs should write out to
1281 * swap only in response to memory pressure, and not for the writeback
1282 * threads or sync.
d9fe526a 1283 */
48f170fb
HD
1284 if (!wbc->for_reclaim) {
1285 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1286 goto redirty;
1287 }
1635f6a7
HD
1288
1289 /*
1290 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1291 * value into swapfile.c, the only way we can correctly account for a
1292 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1293 *
1294 * That's okay for a page already fallocated earlier, but if we have
1295 * not yet completed the fallocation, then (a) we want to keep track
1296 * of this page in case we have to undo it, and (b) it may not be a
1297 * good idea to continue anyway, once we're pushing into swap. So
1298 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1299 */
1300 if (!PageUptodate(page)) {
1aac1400
HD
1301 if (inode->i_private) {
1302 struct shmem_falloc *shmem_falloc;
1303 spin_lock(&inode->i_lock);
1304 shmem_falloc = inode->i_private;
1305 if (shmem_falloc &&
8e205f77 1306 !shmem_falloc->waitq &&
1aac1400
HD
1307 index >= shmem_falloc->start &&
1308 index < shmem_falloc->next)
1309 shmem_falloc->nr_unswapped++;
1310 else
1311 shmem_falloc = NULL;
1312 spin_unlock(&inode->i_lock);
1313 if (shmem_falloc)
1314 goto redirty;
1315 }
1635f6a7
HD
1316 clear_highpage(page);
1317 flush_dcache_page(page);
1318 SetPageUptodate(page);
1319 }
1320
38d8b4e6 1321 swap = get_swap_page(page);
48f170fb
HD
1322 if (!swap.val)
1323 goto redirty;
d9fe526a 1324
37e84351
VD
1325 if (mem_cgroup_try_charge_swap(page, swap))
1326 goto free_swap;
1327
b1dea800
HD
1328 /*
1329 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1330 * if it's not already there. Do it now before the page is
1331 * moved to swap cache, when its pagelock no longer protects
b1dea800 1332 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1333 * we've incremented swapped, because shmem_unuse_inode() will
1334 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1335 */
48f170fb
HD
1336 mutex_lock(&shmem_swaplist_mutex);
1337 if (list_empty(&info->swaplist))
1338 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1339
48f170fb 1340 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1341 spin_lock_irq(&info->lock);
6922c0c7 1342 shmem_recalc_inode(inode);
267a4c76 1343 info->swapped++;
4595ef88 1344 spin_unlock_irq(&info->lock);
6922c0c7 1345
267a4c76
HD
1346 swap_shmem_alloc(swap);
1347 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1348
6922c0c7 1349 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1350 BUG_ON(page_mapped(page));
9fab5619 1351 swap_writepage(page, wbc);
1da177e4
LT
1352 return 0;
1353 }
1354
6922c0c7 1355 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1356free_swap:
75f6d6d2 1357 put_swap_page(page, swap);
1da177e4
LT
1358redirty:
1359 set_page_dirty(page);
d9fe526a
HD
1360 if (wbc->for_reclaim)
1361 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1362 unlock_page(page);
1363 return 0;
1da177e4
LT
1364}
1365
75edd345 1366#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1367static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1368{
095f1fc4 1369 char buffer[64];
680d794b 1370
71fe804b 1371 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1372 return; /* show nothing */
680d794b 1373
a7a88b23 1374 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1375
1376 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1377}
71fe804b
LS
1378
1379static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380{
1381 struct mempolicy *mpol = NULL;
1382 if (sbinfo->mpol) {
1383 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1384 mpol = sbinfo->mpol;
1385 mpol_get(mpol);
1386 spin_unlock(&sbinfo->stat_lock);
1387 }
1388 return mpol;
1389}
75edd345
HD
1390#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1392{
1393}
1394static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1395{
1396 return NULL;
1397}
1398#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1399#ifndef CONFIG_NUMA
1400#define vm_policy vm_private_data
1401#endif
680d794b 1402
800d8c63
KS
1403static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1404 struct shmem_inode_info *info, pgoff_t index)
1405{
1406 /* Create a pseudo vma that just contains the policy */
1407 vma->vm_start = 0;
1408 /* Bias interleave by inode number to distribute better across nodes */
1409 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1410 vma->vm_ops = NULL;
1411 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1412}
1413
1414static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1415{
1416 /* Drop reference taken by mpol_shared_policy_lookup() */
1417 mpol_cond_put(vma->vm_policy);
1418}
1419
41ffe5d5
HD
1420static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1421 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1422{
1da177e4 1423 struct vm_area_struct pvma;
18a2f371 1424 struct page *page;
52cd3b07 1425
800d8c63 1426 shmem_pseudo_vma_init(&pvma, info, index);
18a2f371 1427 page = swapin_readahead(swap, gfp, &pvma, 0);
800d8c63 1428 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1429
800d8c63
KS
1430 return page;
1431}
1432
1433static struct page *shmem_alloc_hugepage(gfp_t gfp,
1434 struct shmem_inode_info *info, pgoff_t index)
1435{
1436 struct vm_area_struct pvma;
1437 struct inode *inode = &info->vfs_inode;
1438 struct address_space *mapping = inode->i_mapping;
4620a06e 1439 pgoff_t idx, hindex;
800d8c63
KS
1440 void __rcu **results;
1441 struct page *page;
1442
e496cf3d 1443 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1444 return NULL;
1445
4620a06e 1446 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63
KS
1447 rcu_read_lock();
1448 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1449 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1450 rcu_read_unlock();
1451 return NULL;
1452 }
1453 rcu_read_unlock();
18a2f371 1454
800d8c63
KS
1455 shmem_pseudo_vma_init(&pvma, info, hindex);
1456 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1457 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1458 shmem_pseudo_vma_destroy(&pvma);
1459 if (page)
1460 prep_transhuge_page(page);
18a2f371 1461 return page;
1da177e4
LT
1462}
1463
02098fea 1464static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1465 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1466{
1467 struct vm_area_struct pvma;
18a2f371 1468 struct page *page;
1da177e4 1469
800d8c63
KS
1470 shmem_pseudo_vma_init(&pvma, info, index);
1471 page = alloc_page_vma(gfp, &pvma, 0);
1472 shmem_pseudo_vma_destroy(&pvma);
1473
1474 return page;
1475}
1476
1477static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1478 struct inode *inode,
800d8c63
KS
1479 pgoff_t index, bool huge)
1480{
0f079694 1481 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1482 struct page *page;
1483 int nr;
1484 int err = -ENOSPC;
52cd3b07 1485
e496cf3d 1486 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1487 huge = false;
1488 nr = huge ? HPAGE_PMD_NR : 1;
1489
0f079694 1490 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1491 goto failed;
800d8c63
KS
1492
1493 if (huge)
1494 page = shmem_alloc_hugepage(gfp, info, index);
1495 else
1496 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1497 if (page) {
1498 __SetPageLocked(page);
1499 __SetPageSwapBacked(page);
800d8c63 1500 return page;
75edd345 1501 }
18a2f371 1502
800d8c63 1503 err = -ENOMEM;
0f079694 1504 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1505failed:
1506 return ERR_PTR(err);
1da177e4 1507}
71fe804b 1508
bde05d1c
HD
1509/*
1510 * When a page is moved from swapcache to shmem filecache (either by the
1511 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1512 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1513 * ignorance of the mapping it belongs to. If that mapping has special
1514 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1515 * we may need to copy to a suitable page before moving to filecache.
1516 *
1517 * In a future release, this may well be extended to respect cpuset and
1518 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1519 * but for now it is a simple matter of zone.
1520 */
1521static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1522{
1523 return page_zonenum(page) > gfp_zone(gfp);
1524}
1525
1526static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1527 struct shmem_inode_info *info, pgoff_t index)
1528{
1529 struct page *oldpage, *newpage;
1530 struct address_space *swap_mapping;
1531 pgoff_t swap_index;
1532 int error;
1533
1534 oldpage = *pagep;
1535 swap_index = page_private(oldpage);
1536 swap_mapping = page_mapping(oldpage);
1537
1538 /*
1539 * We have arrived here because our zones are constrained, so don't
1540 * limit chance of success by further cpuset and node constraints.
1541 */
1542 gfp &= ~GFP_CONSTRAINT_MASK;
1543 newpage = shmem_alloc_page(gfp, info, index);
1544 if (!newpage)
1545 return -ENOMEM;
bde05d1c 1546
09cbfeaf 1547 get_page(newpage);
bde05d1c 1548 copy_highpage(newpage, oldpage);
0142ef6c 1549 flush_dcache_page(newpage);
bde05d1c 1550
9956edf3
HD
1551 __SetPageLocked(newpage);
1552 __SetPageSwapBacked(newpage);
bde05d1c 1553 SetPageUptodate(newpage);
bde05d1c 1554 set_page_private(newpage, swap_index);
bde05d1c
HD
1555 SetPageSwapCache(newpage);
1556
1557 /*
1558 * Our caller will very soon move newpage out of swapcache, but it's
1559 * a nice clean interface for us to replace oldpage by newpage there.
1560 */
1561 spin_lock_irq(&swap_mapping->tree_lock);
1562 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1563 newpage);
0142ef6c 1564 if (!error) {
11fb9989
MG
1565 __inc_node_page_state(newpage, NR_FILE_PAGES);
1566 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1567 }
bde05d1c 1568 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1569
0142ef6c
HD
1570 if (unlikely(error)) {
1571 /*
1572 * Is this possible? I think not, now that our callers check
1573 * both PageSwapCache and page_private after getting page lock;
1574 * but be defensive. Reverse old to newpage for clear and free.
1575 */
1576 oldpage = newpage;
1577 } else {
6a93ca8f 1578 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1579 lru_cache_add_anon(newpage);
1580 *pagep = newpage;
1581 }
bde05d1c
HD
1582
1583 ClearPageSwapCache(oldpage);
1584 set_page_private(oldpage, 0);
1585
1586 unlock_page(oldpage);
09cbfeaf
KS
1587 put_page(oldpage);
1588 put_page(oldpage);
0142ef6c 1589 return error;
bde05d1c
HD
1590}
1591
1da177e4 1592/*
68da9f05 1593 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1594 *
1595 * If we allocate a new one we do not mark it dirty. That's up to the
1596 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1597 * entry since a page cannot live in both the swap and page cache.
1598 *
1599 * fault_mm and fault_type are only supplied by shmem_fault:
1600 * otherwise they are NULL.
1da177e4 1601 */
41ffe5d5 1602static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1603 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1604 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1605{
1606 struct address_space *mapping = inode->i_mapping;
23f919d4 1607 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1608 struct shmem_sb_info *sbinfo;
9e18eb29 1609 struct mm_struct *charge_mm;
00501b53 1610 struct mem_cgroup *memcg;
27ab7006 1611 struct page *page;
1da177e4 1612 swp_entry_t swap;
657e3038 1613 enum sgp_type sgp_huge = sgp;
800d8c63 1614 pgoff_t hindex = index;
1da177e4 1615 int error;
54af6042 1616 int once = 0;
1635f6a7 1617 int alloced = 0;
1da177e4 1618
09cbfeaf 1619 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1620 return -EFBIG;
657e3038
KS
1621 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1622 sgp = SGP_CACHE;
1da177e4 1623repeat:
54af6042 1624 swap.val = 0;
0cd6144a 1625 page = find_lock_entry(mapping, index);
54af6042
HD
1626 if (radix_tree_exceptional_entry(page)) {
1627 swap = radix_to_swp_entry(page);
1628 page = NULL;
1629 }
1630
75edd345 1631 if (sgp <= SGP_CACHE &&
09cbfeaf 1632 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1633 error = -EINVAL;
267a4c76 1634 goto unlock;
54af6042
HD
1635 }
1636
66d2f4d2
HD
1637 if (page && sgp == SGP_WRITE)
1638 mark_page_accessed(page);
1639
1635f6a7
HD
1640 /* fallocated page? */
1641 if (page && !PageUptodate(page)) {
1642 if (sgp != SGP_READ)
1643 goto clear;
1644 unlock_page(page);
09cbfeaf 1645 put_page(page);
1635f6a7
HD
1646 page = NULL;
1647 }
54af6042 1648 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1649 *pagep = page;
1650 return 0;
27ab7006
HD
1651 }
1652
1653 /*
54af6042
HD
1654 * Fast cache lookup did not find it:
1655 * bring it back from swap or allocate.
27ab7006 1656 */
54af6042 1657 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1658 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1659
1da177e4
LT
1660 if (swap.val) {
1661 /* Look it up and read it in.. */
ec560175 1662 page = lookup_swap_cache(swap, NULL, 0);
27ab7006 1663 if (!page) {
9e18eb29
ALC
1664 /* Or update major stats only when swapin succeeds?? */
1665 if (fault_type) {
68da9f05 1666 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1667 count_vm_event(PGMAJFAULT);
2262185c 1668 count_memcg_event_mm(charge_mm, PGMAJFAULT);
9e18eb29
ALC
1669 }
1670 /* Here we actually start the io */
41ffe5d5 1671 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1672 if (!page) {
54af6042
HD
1673 error = -ENOMEM;
1674 goto failed;
1da177e4 1675 }
1da177e4
LT
1676 }
1677
1678 /* We have to do this with page locked to prevent races */
54af6042 1679 lock_page(page);
0142ef6c 1680 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1681 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1682 error = -EEXIST; /* try again */
d1899228 1683 goto unlock;
bde05d1c 1684 }
27ab7006 1685 if (!PageUptodate(page)) {
1da177e4 1686 error = -EIO;
54af6042 1687 goto failed;
1da177e4 1688 }
54af6042
HD
1689 wait_on_page_writeback(page);
1690
bde05d1c
HD
1691 if (shmem_should_replace_page(page, gfp)) {
1692 error = shmem_replace_page(&page, gfp, info, index);
1693 if (error)
1694 goto failed;
1da177e4 1695 }
27ab7006 1696
9e18eb29 1697 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1698 false);
d1899228 1699 if (!error) {
aa3b1895 1700 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1701 swp_to_radix_entry(swap));
215c02bc
HD
1702 /*
1703 * We already confirmed swap under page lock, and make
1704 * no memory allocation here, so usually no possibility
1705 * of error; but free_swap_and_cache() only trylocks a
1706 * page, so it is just possible that the entry has been
1707 * truncated or holepunched since swap was confirmed.
1708 * shmem_undo_range() will have done some of the
1709 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1710 * the rest.
215c02bc
HD
1711 * Reset swap.val? No, leave it so "failed" goes back to
1712 * "repeat": reading a hole and writing should succeed.
1713 */
00501b53 1714 if (error) {
f627c2f5 1715 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1716 delete_from_swap_cache(page);
00501b53 1717 }
d1899228 1718 }
54af6042
HD
1719 if (error)
1720 goto failed;
1721
f627c2f5 1722 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1723
4595ef88 1724 spin_lock_irq(&info->lock);
285b2c4f 1725 info->swapped--;
54af6042 1726 shmem_recalc_inode(inode);
4595ef88 1727 spin_unlock_irq(&info->lock);
54af6042 1728
66d2f4d2
HD
1729 if (sgp == SGP_WRITE)
1730 mark_page_accessed(page);
1731
54af6042 1732 delete_from_swap_cache(page);
27ab7006
HD
1733 set_page_dirty(page);
1734 swap_free(swap);
1735
54af6042 1736 } else {
cfda0526
MR
1737 if (vma && userfaultfd_missing(vma)) {
1738 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1739 return 0;
1740 }
1741
800d8c63
KS
1742 /* shmem_symlink() */
1743 if (mapping->a_ops != &shmem_aops)
1744 goto alloc_nohuge;
657e3038 1745 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1746 goto alloc_nohuge;
1747 if (shmem_huge == SHMEM_HUGE_FORCE)
1748 goto alloc_huge;
1749 switch (sbinfo->huge) {
1750 loff_t i_size;
1751 pgoff_t off;
1752 case SHMEM_HUGE_NEVER:
1753 goto alloc_nohuge;
1754 case SHMEM_HUGE_WITHIN_SIZE:
1755 off = round_up(index, HPAGE_PMD_NR);
1756 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1757 if (i_size >= HPAGE_PMD_SIZE &&
1758 i_size >> PAGE_SHIFT >= off)
1759 goto alloc_huge;
1760 /* fallthrough */
1761 case SHMEM_HUGE_ADVISE:
657e3038
KS
1762 if (sgp_huge == SGP_HUGE)
1763 goto alloc_huge;
1764 /* TODO: implement fadvise() hints */
800d8c63 1765 goto alloc_nohuge;
54af6042 1766 }
1da177e4 1767
800d8c63 1768alloc_huge:
0f079694 1769 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
800d8c63 1770 if (IS_ERR(page)) {
0f079694 1771alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
800d8c63 1772 index, false);
1da177e4 1773 }
800d8c63 1774 if (IS_ERR(page)) {
779750d2 1775 int retry = 5;
800d8c63
KS
1776 error = PTR_ERR(page);
1777 page = NULL;
779750d2
KS
1778 if (error != -ENOSPC)
1779 goto failed;
1780 /*
1781 * Try to reclaim some spece by splitting a huge page
1782 * beyond i_size on the filesystem.
1783 */
1784 while (retry--) {
1785 int ret;
1786 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1787 if (ret == SHRINK_STOP)
1788 break;
1789 if (ret)
1790 goto alloc_nohuge;
1791 }
800d8c63
KS
1792 goto failed;
1793 }
1794
1795 if (PageTransHuge(page))
1796 hindex = round_down(index, HPAGE_PMD_NR);
1797 else
1798 hindex = index;
1799
66d2f4d2 1800 if (sgp == SGP_WRITE)
eb39d618 1801 __SetPageReferenced(page);
66d2f4d2 1802
9e18eb29 1803 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1804 PageTransHuge(page));
54af6042 1805 if (error)
800d8c63
KS
1806 goto unacct;
1807 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1808 compound_order(page));
b065b432 1809 if (!error) {
800d8c63 1810 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1811 NULL);
b065b432
HD
1812 radix_tree_preload_end();
1813 }
1814 if (error) {
800d8c63
KS
1815 mem_cgroup_cancel_charge(page, memcg,
1816 PageTransHuge(page));
1817 goto unacct;
b065b432 1818 }
800d8c63
KS
1819 mem_cgroup_commit_charge(page, memcg, false,
1820 PageTransHuge(page));
54af6042
HD
1821 lru_cache_add_anon(page);
1822
4595ef88 1823 spin_lock_irq(&info->lock);
800d8c63
KS
1824 info->alloced += 1 << compound_order(page);
1825 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1826 shmem_recalc_inode(inode);
4595ef88 1827 spin_unlock_irq(&info->lock);
1635f6a7 1828 alloced = true;
54af6042 1829
779750d2
KS
1830 if (PageTransHuge(page) &&
1831 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1832 hindex + HPAGE_PMD_NR - 1) {
1833 /*
1834 * Part of the huge page is beyond i_size: subject
1835 * to shrink under memory pressure.
1836 */
1837 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1838 /*
1839 * _careful to defend against unlocked access to
1840 * ->shrink_list in shmem_unused_huge_shrink()
1841 */
1842 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1843 list_add_tail(&info->shrinklist,
1844 &sbinfo->shrinklist);
1845 sbinfo->shrinklist_len++;
1846 }
1847 spin_unlock(&sbinfo->shrinklist_lock);
1848 }
1849
ec9516fb 1850 /*
1635f6a7
HD
1851 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1852 */
1853 if (sgp == SGP_FALLOC)
1854 sgp = SGP_WRITE;
1855clear:
1856 /*
1857 * Let SGP_WRITE caller clear ends if write does not fill page;
1858 * but SGP_FALLOC on a page fallocated earlier must initialize
1859 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1860 */
800d8c63
KS
1861 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1862 struct page *head = compound_head(page);
1863 int i;
1864
1865 for (i = 0; i < (1 << compound_order(head)); i++) {
1866 clear_highpage(head + i);
1867 flush_dcache_page(head + i);
1868 }
1869 SetPageUptodate(head);
ec9516fb 1870 }
1da177e4 1871 }
bde05d1c 1872
54af6042 1873 /* Perhaps the file has been truncated since we checked */
75edd345 1874 if (sgp <= SGP_CACHE &&
09cbfeaf 1875 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1876 if (alloced) {
1877 ClearPageDirty(page);
1878 delete_from_page_cache(page);
4595ef88 1879 spin_lock_irq(&info->lock);
267a4c76 1880 shmem_recalc_inode(inode);
4595ef88 1881 spin_unlock_irq(&info->lock);
267a4c76 1882 }
54af6042 1883 error = -EINVAL;
267a4c76 1884 goto unlock;
e83c32e8 1885 }
800d8c63 1886 *pagep = page + index - hindex;
54af6042 1887 return 0;
1da177e4 1888
59a16ead 1889 /*
54af6042 1890 * Error recovery.
59a16ead 1891 */
54af6042 1892unacct:
0f079694 1893 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
800d8c63
KS
1894
1895 if (PageTransHuge(page)) {
1896 unlock_page(page);
1897 put_page(page);
1898 goto alloc_nohuge;
1899 }
54af6042 1900failed:
267a4c76 1901 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1902 error = -EEXIST;
1903unlock:
27ab7006 1904 if (page) {
54af6042 1905 unlock_page(page);
09cbfeaf 1906 put_page(page);
54af6042
HD
1907 }
1908 if (error == -ENOSPC && !once++) {
4595ef88 1909 spin_lock_irq(&info->lock);
54af6042 1910 shmem_recalc_inode(inode);
4595ef88 1911 spin_unlock_irq(&info->lock);
27ab7006 1912 goto repeat;
ff36b801 1913 }
d1899228 1914 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1915 goto repeat;
1916 return error;
1da177e4
LT
1917}
1918
10d20bd2
LT
1919/*
1920 * This is like autoremove_wake_function, but it removes the wait queue
1921 * entry unconditionally - even if something else had already woken the
1922 * target.
1923 */
ac6424b9 1924static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1925{
1926 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1927 list_del_init(&wait->entry);
10d20bd2
LT
1928 return ret;
1929}
1930
11bac800 1931static int shmem_fault(struct vm_fault *vmf)
1da177e4 1932{
11bac800 1933 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1934 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1935 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1936 enum sgp_type sgp;
1da177e4 1937 int error;
68da9f05 1938 int ret = VM_FAULT_LOCKED;
1da177e4 1939
f00cdc6d
HD
1940 /*
1941 * Trinity finds that probing a hole which tmpfs is punching can
1942 * prevent the hole-punch from ever completing: which in turn
1943 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1944 * faulting pages into the hole while it's being punched. Although
1945 * shmem_undo_range() does remove the additions, it may be unable to
1946 * keep up, as each new page needs its own unmap_mapping_range() call,
1947 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1948 *
1949 * It does not matter if we sometimes reach this check just before the
1950 * hole-punch begins, so that one fault then races with the punch:
1951 * we just need to make racing faults a rare case.
1952 *
1953 * The implementation below would be much simpler if we just used a
1954 * standard mutex or completion: but we cannot take i_mutex in fault,
1955 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1956 */
1957 if (unlikely(inode->i_private)) {
1958 struct shmem_falloc *shmem_falloc;
1959
1960 spin_lock(&inode->i_lock);
1961 shmem_falloc = inode->i_private;
8e205f77
HD
1962 if (shmem_falloc &&
1963 shmem_falloc->waitq &&
1964 vmf->pgoff >= shmem_falloc->start &&
1965 vmf->pgoff < shmem_falloc->next) {
1966 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1967 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1968
1969 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1970 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1971 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1972 /* It's polite to up mmap_sem if we can */
f00cdc6d 1973 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1974 ret = VM_FAULT_RETRY;
f00cdc6d 1975 }
8e205f77
HD
1976
1977 shmem_falloc_waitq = shmem_falloc->waitq;
1978 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1979 TASK_UNINTERRUPTIBLE);
1980 spin_unlock(&inode->i_lock);
1981 schedule();
1982
1983 /*
1984 * shmem_falloc_waitq points into the shmem_fallocate()
1985 * stack of the hole-punching task: shmem_falloc_waitq
1986 * is usually invalid by the time we reach here, but
1987 * finish_wait() does not dereference it in that case;
1988 * though i_lock needed lest racing with wake_up_all().
1989 */
1990 spin_lock(&inode->i_lock);
1991 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1992 spin_unlock(&inode->i_lock);
1993 return ret;
f00cdc6d 1994 }
8e205f77 1995 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1996 }
1997
657e3038 1998 sgp = SGP_CACHE;
18600332
MH
1999
2000 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2001 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2002 sgp = SGP_NOHUGE;
18600332
MH
2003 else if (vma->vm_flags & VM_HUGEPAGE)
2004 sgp = SGP_HUGE;
657e3038
KS
2005
2006 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2007 gfp, vma, vmf, &ret);
d0217ac0
NP
2008 if (error)
2009 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 2010 return ret;
1da177e4
LT
2011}
2012
c01d5b30
HD
2013unsigned long shmem_get_unmapped_area(struct file *file,
2014 unsigned long uaddr, unsigned long len,
2015 unsigned long pgoff, unsigned long flags)
2016{
2017 unsigned long (*get_area)(struct file *,
2018 unsigned long, unsigned long, unsigned long, unsigned long);
2019 unsigned long addr;
2020 unsigned long offset;
2021 unsigned long inflated_len;
2022 unsigned long inflated_addr;
2023 unsigned long inflated_offset;
2024
2025 if (len > TASK_SIZE)
2026 return -ENOMEM;
2027
2028 get_area = current->mm->get_unmapped_area;
2029 addr = get_area(file, uaddr, len, pgoff, flags);
2030
e496cf3d 2031 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2032 return addr;
2033 if (IS_ERR_VALUE(addr))
2034 return addr;
2035 if (addr & ~PAGE_MASK)
2036 return addr;
2037 if (addr > TASK_SIZE - len)
2038 return addr;
2039
2040 if (shmem_huge == SHMEM_HUGE_DENY)
2041 return addr;
2042 if (len < HPAGE_PMD_SIZE)
2043 return addr;
2044 if (flags & MAP_FIXED)
2045 return addr;
2046 /*
2047 * Our priority is to support MAP_SHARED mapped hugely;
2048 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2049 * But if caller specified an address hint, respect that as before.
2050 */
2051 if (uaddr)
2052 return addr;
2053
2054 if (shmem_huge != SHMEM_HUGE_FORCE) {
2055 struct super_block *sb;
2056
2057 if (file) {
2058 VM_BUG_ON(file->f_op != &shmem_file_operations);
2059 sb = file_inode(file)->i_sb;
2060 } else {
2061 /*
2062 * Called directly from mm/mmap.c, or drivers/char/mem.c
2063 * for "/dev/zero", to create a shared anonymous object.
2064 */
2065 if (IS_ERR(shm_mnt))
2066 return addr;
2067 sb = shm_mnt->mnt_sb;
2068 }
3089bf61 2069 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2070 return addr;
2071 }
2072
2073 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2074 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2075 return addr;
2076 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2077 return addr;
2078
2079 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2080 if (inflated_len > TASK_SIZE)
2081 return addr;
2082 if (inflated_len < len)
2083 return addr;
2084
2085 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2086 if (IS_ERR_VALUE(inflated_addr))
2087 return addr;
2088 if (inflated_addr & ~PAGE_MASK)
2089 return addr;
2090
2091 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2092 inflated_addr += offset - inflated_offset;
2093 if (inflated_offset > offset)
2094 inflated_addr += HPAGE_PMD_SIZE;
2095
2096 if (inflated_addr > TASK_SIZE - len)
2097 return addr;
2098 return inflated_addr;
2099}
2100
1da177e4 2101#ifdef CONFIG_NUMA
41ffe5d5 2102static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2103{
496ad9aa 2104 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2105 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2106}
2107
d8dc74f2
AB
2108static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2109 unsigned long addr)
1da177e4 2110{
496ad9aa 2111 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2112 pgoff_t index;
1da177e4 2113
41ffe5d5
HD
2114 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2115 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2116}
2117#endif
2118
2119int shmem_lock(struct file *file, int lock, struct user_struct *user)
2120{
496ad9aa 2121 struct inode *inode = file_inode(file);
1da177e4
LT
2122 struct shmem_inode_info *info = SHMEM_I(inode);
2123 int retval = -ENOMEM;
2124
4595ef88 2125 spin_lock_irq(&info->lock);
1da177e4
LT
2126 if (lock && !(info->flags & VM_LOCKED)) {
2127 if (!user_shm_lock(inode->i_size, user))
2128 goto out_nomem;
2129 info->flags |= VM_LOCKED;
89e004ea 2130 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2131 }
2132 if (!lock && (info->flags & VM_LOCKED) && user) {
2133 user_shm_unlock(inode->i_size, user);
2134 info->flags &= ~VM_LOCKED;
89e004ea 2135 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2136 }
2137 retval = 0;
89e004ea 2138
1da177e4 2139out_nomem:
4595ef88 2140 spin_unlock_irq(&info->lock);
1da177e4
LT
2141 return retval;
2142}
2143
9b83a6a8 2144static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2145{
2146 file_accessed(file);
2147 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2148 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2149 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2150 (vma->vm_end & HPAGE_PMD_MASK)) {
2151 khugepaged_enter(vma, vma->vm_flags);
2152 }
1da177e4
LT
2153 return 0;
2154}
2155
454abafe 2156static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2157 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2158{
2159 struct inode *inode;
2160 struct shmem_inode_info *info;
2161 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2162
5b04c689
PE
2163 if (shmem_reserve_inode(sb))
2164 return NULL;
1da177e4
LT
2165
2166 inode = new_inode(sb);
2167 if (inode) {
85fe4025 2168 inode->i_ino = get_next_ino();
454abafe 2169 inode_init_owner(inode, dir, mode);
1da177e4 2170 inode->i_blocks = 0;
078cd827 2171 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2172 inode->i_generation = get_seconds();
1da177e4
LT
2173 info = SHMEM_I(inode);
2174 memset(info, 0, (char *)inode - (char *)info);
2175 spin_lock_init(&info->lock);
40e041a2 2176 info->seals = F_SEAL_SEAL;
0b0a0806 2177 info->flags = flags & VM_NORESERVE;
779750d2 2178 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2179 INIT_LIST_HEAD(&info->swaplist);
38f38657 2180 simple_xattrs_init(&info->xattrs);
72c04902 2181 cache_no_acl(inode);
1da177e4
LT
2182
2183 switch (mode & S_IFMT) {
2184 default:
39f0247d 2185 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2186 init_special_inode(inode, mode, dev);
2187 break;
2188 case S_IFREG:
14fcc23f 2189 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2190 inode->i_op = &shmem_inode_operations;
2191 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2192 mpol_shared_policy_init(&info->policy,
2193 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2194 break;
2195 case S_IFDIR:
d8c76e6f 2196 inc_nlink(inode);
1da177e4
LT
2197 /* Some things misbehave if size == 0 on a directory */
2198 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2199 inode->i_op = &shmem_dir_inode_operations;
2200 inode->i_fop = &simple_dir_operations;
2201 break;
2202 case S_IFLNK:
2203 /*
2204 * Must not load anything in the rbtree,
2205 * mpol_free_shared_policy will not be called.
2206 */
71fe804b 2207 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2208 break;
2209 }
6447b34f
JFG
2210
2211 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2212 } else
2213 shmem_free_inode(sb);
1da177e4
LT
2214 return inode;
2215}
2216
0cd6144a
JW
2217bool shmem_mapping(struct address_space *mapping)
2218{
f8005451 2219 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2220}
2221
8d103963
MR
2222static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2223 pmd_t *dst_pmd,
2224 struct vm_area_struct *dst_vma,
2225 unsigned long dst_addr,
2226 unsigned long src_addr,
2227 bool zeropage,
2228 struct page **pagep)
4c27fe4c
MR
2229{
2230 struct inode *inode = file_inode(dst_vma->vm_file);
2231 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2232 struct address_space *mapping = inode->i_mapping;
2233 gfp_t gfp = mapping_gfp_mask(mapping);
2234 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2235 struct mem_cgroup *memcg;
2236 spinlock_t *ptl;
2237 void *page_kaddr;
2238 struct page *page;
2239 pte_t _dst_pte, *dst_pte;
2240 int ret;
2241
cb658a45 2242 ret = -ENOMEM;
0f079694 2243 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2244 goto out;
4c27fe4c 2245
cb658a45 2246 if (!*pagep) {
4c27fe4c
MR
2247 page = shmem_alloc_page(gfp, info, pgoff);
2248 if (!page)
0f079694 2249 goto out_unacct_blocks;
4c27fe4c 2250
8d103963
MR
2251 if (!zeropage) { /* mcopy_atomic */
2252 page_kaddr = kmap_atomic(page);
2253 ret = copy_from_user(page_kaddr,
2254 (const void __user *)src_addr,
2255 PAGE_SIZE);
2256 kunmap_atomic(page_kaddr);
2257
2258 /* fallback to copy_from_user outside mmap_sem */
2259 if (unlikely(ret)) {
2260 *pagep = page;
2261 shmem_inode_unacct_blocks(inode, 1);
2262 /* don't free the page */
2263 return -EFAULT;
2264 }
2265 } else { /* mfill_zeropage_atomic */
2266 clear_highpage(page);
4c27fe4c
MR
2267 }
2268 } else {
2269 page = *pagep;
2270 *pagep = NULL;
2271 }
2272
9cc90c66
AA
2273 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2274 __SetPageLocked(page);
2275 __SetPageSwapBacked(page);
a425d358 2276 __SetPageUptodate(page);
9cc90c66 2277
4c27fe4c
MR
2278 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2279 if (ret)
2280 goto out_release;
2281
2282 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2283 if (!ret) {
2284 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2285 radix_tree_preload_end();
2286 }
2287 if (ret)
2288 goto out_release_uncharge;
2289
2290 mem_cgroup_commit_charge(page, memcg, false, false);
2291
2292 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2293 if (dst_vma->vm_flags & VM_WRITE)
2294 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2295
2296 ret = -EEXIST;
2297 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2298 if (!pte_none(*dst_pte))
2299 goto out_release_uncharge_unlock;
2300
4c27fe4c
MR
2301 lru_cache_add_anon(page);
2302
2303 spin_lock(&info->lock);
2304 info->alloced++;
2305 inode->i_blocks += BLOCKS_PER_PAGE;
2306 shmem_recalc_inode(inode);
2307 spin_unlock(&info->lock);
2308
2309 inc_mm_counter(dst_mm, mm_counter_file(page));
2310 page_add_file_rmap(page, false);
2311 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2312
2313 /* No need to invalidate - it was non-present before */
2314 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2315 unlock_page(page);
2316 pte_unmap_unlock(dst_pte, ptl);
2317 ret = 0;
2318out:
2319 return ret;
2320out_release_uncharge_unlock:
2321 pte_unmap_unlock(dst_pte, ptl);
2322out_release_uncharge:
2323 mem_cgroup_cancel_charge(page, memcg, false);
2324out_release:
9cc90c66 2325 unlock_page(page);
4c27fe4c 2326 put_page(page);
4c27fe4c 2327out_unacct_blocks:
0f079694 2328 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2329 goto out;
2330}
2331
8d103963
MR
2332int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2333 pmd_t *dst_pmd,
2334 struct vm_area_struct *dst_vma,
2335 unsigned long dst_addr,
2336 unsigned long src_addr,
2337 struct page **pagep)
2338{
2339 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2340 dst_addr, src_addr, false, pagep);
2341}
2342
2343int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2344 pmd_t *dst_pmd,
2345 struct vm_area_struct *dst_vma,
2346 unsigned long dst_addr)
2347{
2348 struct page *page = NULL;
2349
2350 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2351 dst_addr, 0, true, &page);
2352}
2353
1da177e4 2354#ifdef CONFIG_TMPFS
92e1d5be 2355static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2356static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2357
6d9d88d0
JS
2358#ifdef CONFIG_TMPFS_XATTR
2359static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2360#else
2361#define shmem_initxattrs NULL
2362#endif
2363
1da177e4 2364static int
800d15a5
NP
2365shmem_write_begin(struct file *file, struct address_space *mapping,
2366 loff_t pos, unsigned len, unsigned flags,
2367 struct page **pagep, void **fsdata)
1da177e4 2368{
800d15a5 2369 struct inode *inode = mapping->host;
40e041a2 2370 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2371 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DR
2372
2373 /* i_mutex is held by caller */
3f472cc9 2374 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DR
2375 if (info->seals & F_SEAL_WRITE)
2376 return -EPERM;
2377 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2378 return -EPERM;
2379 }
2380
9e18eb29 2381 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2382}
2383
2384static int
2385shmem_write_end(struct file *file, struct address_space *mapping,
2386 loff_t pos, unsigned len, unsigned copied,
2387 struct page *page, void *fsdata)
2388{
2389 struct inode *inode = mapping->host;
2390
d3602444
HD
2391 if (pos + copied > inode->i_size)
2392 i_size_write(inode, pos + copied);
2393
ec9516fb 2394 if (!PageUptodate(page)) {
800d8c63
KS
2395 struct page *head = compound_head(page);
2396 if (PageTransCompound(page)) {
2397 int i;
2398
2399 for (i = 0; i < HPAGE_PMD_NR; i++) {
2400 if (head + i == page)
2401 continue;
2402 clear_highpage(head + i);
2403 flush_dcache_page(head + i);
2404 }
2405 }
09cbfeaf
KS
2406 if (copied < PAGE_SIZE) {
2407 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2408 zero_user_segments(page, 0, from,
09cbfeaf 2409 from + copied, PAGE_SIZE);
ec9516fb 2410 }
800d8c63 2411 SetPageUptodate(head);
ec9516fb 2412 }
800d15a5 2413 set_page_dirty(page);
6746aff7 2414 unlock_page(page);
09cbfeaf 2415 put_page(page);
800d15a5 2416
800d15a5 2417 return copied;
1da177e4
LT
2418}
2419
2ba5bbed 2420static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2421{
6e58e79d
AV
2422 struct file *file = iocb->ki_filp;
2423 struct inode *inode = file_inode(file);
1da177e4 2424 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2425 pgoff_t index;
2426 unsigned long offset;
a0ee5ec5 2427 enum sgp_type sgp = SGP_READ;
f7c1d074 2428 int error = 0;
cb66a7a1 2429 ssize_t retval = 0;
6e58e79d 2430 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2431
2432 /*
2433 * Might this read be for a stacking filesystem? Then when reading
2434 * holes of a sparse file, we actually need to allocate those pages,
2435 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2436 */
777eda2c 2437 if (!iter_is_iovec(to))
75edd345 2438 sgp = SGP_CACHE;
1da177e4 2439
09cbfeaf
KS
2440 index = *ppos >> PAGE_SHIFT;
2441 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2442
2443 for (;;) {
2444 struct page *page = NULL;
41ffe5d5
HD
2445 pgoff_t end_index;
2446 unsigned long nr, ret;
1da177e4
LT
2447 loff_t i_size = i_size_read(inode);
2448
09cbfeaf 2449 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2450 if (index > end_index)
2451 break;
2452 if (index == end_index) {
09cbfeaf 2453 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2454 if (nr <= offset)
2455 break;
2456 }
2457
9e18eb29 2458 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2459 if (error) {
2460 if (error == -EINVAL)
2461 error = 0;
1da177e4
LT
2462 break;
2463 }
75edd345
HD
2464 if (page) {
2465 if (sgp == SGP_CACHE)
2466 set_page_dirty(page);
d3602444 2467 unlock_page(page);
75edd345 2468 }
1da177e4
LT
2469
2470 /*
2471 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2472 * are called without i_mutex protection against truncate
1da177e4 2473 */
09cbfeaf 2474 nr = PAGE_SIZE;
1da177e4 2475 i_size = i_size_read(inode);
09cbfeaf 2476 end_index = i_size >> PAGE_SHIFT;
1da177e4 2477 if (index == end_index) {
09cbfeaf 2478 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2479 if (nr <= offset) {
2480 if (page)
09cbfeaf 2481 put_page(page);
1da177e4
LT
2482 break;
2483 }
2484 }
2485 nr -= offset;
2486
2487 if (page) {
2488 /*
2489 * If users can be writing to this page using arbitrary
2490 * virtual addresses, take care about potential aliasing
2491 * before reading the page on the kernel side.
2492 */
2493 if (mapping_writably_mapped(mapping))
2494 flush_dcache_page(page);
2495 /*
2496 * Mark the page accessed if we read the beginning.
2497 */
2498 if (!offset)
2499 mark_page_accessed(page);
b5810039 2500 } else {
1da177e4 2501 page = ZERO_PAGE(0);
09cbfeaf 2502 get_page(page);
b5810039 2503 }
1da177e4
LT
2504
2505 /*
2506 * Ok, we have the page, and it's up-to-date, so
2507 * now we can copy it to user space...
1da177e4 2508 */
2ba5bbed 2509 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2510 retval += ret;
1da177e4 2511 offset += ret;
09cbfeaf
KS
2512 index += offset >> PAGE_SHIFT;
2513 offset &= ~PAGE_MASK;
1da177e4 2514
09cbfeaf 2515 put_page(page);
2ba5bbed 2516 if (!iov_iter_count(to))
1da177e4 2517 break;
6e58e79d
AV
2518 if (ret < nr) {
2519 error = -EFAULT;
2520 break;
2521 }
1da177e4
LT
2522 cond_resched();
2523 }
2524
09cbfeaf 2525 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2526 file_accessed(file);
2527 return retval ? retval : error;
1da177e4
LT
2528}
2529
220f2ac9
HD
2530/*
2531 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2532 */
2533static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2534 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2535{
2536 struct page *page;
2537 struct pagevec pvec;
2538 pgoff_t indices[PAGEVEC_SIZE];
2539 bool done = false;
2540 int i;
2541
2542 pagevec_init(&pvec, 0);
2543 pvec.nr = 1; /* start small: we may be there already */
2544 while (!done) {
0cd6144a 2545 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2546 pvec.nr, pvec.pages, indices);
2547 if (!pvec.nr) {
965c8e59 2548 if (whence == SEEK_DATA)
220f2ac9
HD
2549 index = end;
2550 break;
2551 }
2552 for (i = 0; i < pvec.nr; i++, index++) {
2553 if (index < indices[i]) {
965c8e59 2554 if (whence == SEEK_HOLE) {
220f2ac9
HD
2555 done = true;
2556 break;
2557 }
2558 index = indices[i];
2559 }
2560 page = pvec.pages[i];
2561 if (page && !radix_tree_exceptional_entry(page)) {
2562 if (!PageUptodate(page))
2563 page = NULL;
2564 }
2565 if (index >= end ||
965c8e59
AM
2566 (page && whence == SEEK_DATA) ||
2567 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2568 done = true;
2569 break;
2570 }
2571 }
0cd6144a 2572 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2573 pagevec_release(&pvec);
2574 pvec.nr = PAGEVEC_SIZE;
2575 cond_resched();
2576 }
2577 return index;
2578}
2579
965c8e59 2580static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2581{
2582 struct address_space *mapping = file->f_mapping;
2583 struct inode *inode = mapping->host;
2584 pgoff_t start, end;
2585 loff_t new_offset;
2586
965c8e59
AM
2587 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2588 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2589 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2590 inode_lock(inode);
220f2ac9
HD
2591 /* We're holding i_mutex so we can access i_size directly */
2592
2593 if (offset < 0)
2594 offset = -EINVAL;
2595 else if (offset >= inode->i_size)
2596 offset = -ENXIO;
2597 else {
09cbfeaf
KS
2598 start = offset >> PAGE_SHIFT;
2599 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2600 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2601 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2602 if (new_offset > offset) {
2603 if (new_offset < inode->i_size)
2604 offset = new_offset;
965c8e59 2605 else if (whence == SEEK_DATA)
220f2ac9
HD
2606 offset = -ENXIO;
2607 else
2608 offset = inode->i_size;
2609 }
2610 }
2611
387aae6f
HD
2612 if (offset >= 0)
2613 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2614 inode_unlock(inode);
220f2ac9
HD
2615 return offset;
2616}
2617
05f65b5c
DR
2618/*
2619 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2620 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2621 */
2622#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2623#define LAST_SCAN 4 /* about 150ms max */
2624
2625static void shmem_tag_pins(struct address_space *mapping)
2626{
2627 struct radix_tree_iter iter;
2628 void **slot;
2629 pgoff_t start;
2630 struct page *page;
2631
2632 lru_add_drain();
2633 start = 0;
2634 rcu_read_lock();
2635
05f65b5c
DR
2636 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2637 page = radix_tree_deref_slot(slot);
2638 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2639 if (radix_tree_deref_retry(page)) {
2640 slot = radix_tree_iter_retry(&iter);
2641 continue;
2642 }
05f65b5c
DR
2643 } else if (page_count(page) - page_mapcount(page) > 1) {
2644 spin_lock_irq(&mapping->tree_lock);
2645 radix_tree_tag_set(&mapping->page_tree, iter.index,
2646 SHMEM_TAG_PINNED);
2647 spin_unlock_irq(&mapping->tree_lock);
2648 }
2649
2650 if (need_resched()) {
148deab2 2651 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2652 cond_resched_rcu();
05f65b5c
DR
2653 }
2654 }
2655 rcu_read_unlock();
2656}
2657
2658/*
2659 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2660 * via get_user_pages(), drivers might have some pending I/O without any active
2661 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2662 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2663 * them to be dropped.
2664 * The caller must guarantee that no new user will acquire writable references
2665 * to those pages to avoid races.
2666 */
40e041a2
DR
2667static int shmem_wait_for_pins(struct address_space *mapping)
2668{
05f65b5c
DR
2669 struct radix_tree_iter iter;
2670 void **slot;
2671 pgoff_t start;
2672 struct page *page;
2673 int error, scan;
2674
2675 shmem_tag_pins(mapping);
2676
2677 error = 0;
2678 for (scan = 0; scan <= LAST_SCAN; scan++) {
2679 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2680 break;
2681
2682 if (!scan)
2683 lru_add_drain_all();
2684 else if (schedule_timeout_killable((HZ << scan) / 200))
2685 scan = LAST_SCAN;
2686
2687 start = 0;
2688 rcu_read_lock();
05f65b5c
DR
2689 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2690 start, SHMEM_TAG_PINNED) {
2691
2692 page = radix_tree_deref_slot(slot);
2693 if (radix_tree_exception(page)) {
2cf938aa
MW
2694 if (radix_tree_deref_retry(page)) {
2695 slot = radix_tree_iter_retry(&iter);
2696 continue;
2697 }
05f65b5c
DR
2698
2699 page = NULL;
2700 }
2701
2702 if (page &&
2703 page_count(page) - page_mapcount(page) != 1) {
2704 if (scan < LAST_SCAN)
2705 goto continue_resched;
2706
2707 /*
2708 * On the last scan, we clean up all those tags
2709 * we inserted; but make a note that we still
2710 * found pages pinned.
2711 */
2712 error = -EBUSY;
2713 }
2714
2715 spin_lock_irq(&mapping->tree_lock);
2716 radix_tree_tag_clear(&mapping->page_tree,
2717 iter.index, SHMEM_TAG_PINNED);
2718 spin_unlock_irq(&mapping->tree_lock);
2719continue_resched:
2720 if (need_resched()) {
148deab2 2721 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2722 cond_resched_rcu();
05f65b5c
DR
2723 }
2724 }
2725 rcu_read_unlock();
2726 }
2727
2728 return error;
40e041a2
DR
2729}
2730
2731#define F_ALL_SEALS (F_SEAL_SEAL | \
2732 F_SEAL_SHRINK | \
2733 F_SEAL_GROW | \
2734 F_SEAL_WRITE)
2735
2736int shmem_add_seals(struct file *file, unsigned int seals)
2737{
2738 struct inode *inode = file_inode(file);
2739 struct shmem_inode_info *info = SHMEM_I(inode);
2740 int error;
2741
2742 /*
2743 * SEALING
2744 * Sealing allows multiple parties to share a shmem-file but restrict
2745 * access to a specific subset of file operations. Seals can only be
2746 * added, but never removed. This way, mutually untrusted parties can
2747 * share common memory regions with a well-defined policy. A malicious
2748 * peer can thus never perform unwanted operations on a shared object.
2749 *
2750 * Seals are only supported on special shmem-files and always affect
2751 * the whole underlying inode. Once a seal is set, it may prevent some
2752 * kinds of access to the file. Currently, the following seals are
2753 * defined:
2754 * SEAL_SEAL: Prevent further seals from being set on this file
2755 * SEAL_SHRINK: Prevent the file from shrinking
2756 * SEAL_GROW: Prevent the file from growing
2757 * SEAL_WRITE: Prevent write access to the file
2758 *
2759 * As we don't require any trust relationship between two parties, we
2760 * must prevent seals from being removed. Therefore, sealing a file
2761 * only adds a given set of seals to the file, it never touches
2762 * existing seals. Furthermore, the "setting seals"-operation can be
2763 * sealed itself, which basically prevents any further seal from being
2764 * added.
2765 *
2766 * Semantics of sealing are only defined on volatile files. Only
2767 * anonymous shmem files support sealing. More importantly, seals are
2768 * never written to disk. Therefore, there's no plan to support it on
2769 * other file types.
2770 */
2771
2772 if (file->f_op != &shmem_file_operations)
2773 return -EINVAL;
2774 if (!(file->f_mode & FMODE_WRITE))
2775 return -EPERM;
2776 if (seals & ~(unsigned int)F_ALL_SEALS)
2777 return -EINVAL;
2778
5955102c 2779 inode_lock(inode);
40e041a2
DR
2780
2781 if (info->seals & F_SEAL_SEAL) {
2782 error = -EPERM;
2783 goto unlock;
2784 }
2785
2786 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2787 error = mapping_deny_writable(file->f_mapping);
2788 if (error)
2789 goto unlock;
2790
2791 error = shmem_wait_for_pins(file->f_mapping);
2792 if (error) {
2793 mapping_allow_writable(file->f_mapping);
2794 goto unlock;
2795 }
2796 }
2797
2798 info->seals |= seals;
2799 error = 0;
2800
2801unlock:
5955102c 2802 inode_unlock(inode);
40e041a2
DR
2803 return error;
2804}
2805EXPORT_SYMBOL_GPL(shmem_add_seals);
2806
2807int shmem_get_seals(struct file *file)
2808{
2809 if (file->f_op != &shmem_file_operations)
2810 return -EINVAL;
2811
2812 return SHMEM_I(file_inode(file))->seals;
2813}
2814EXPORT_SYMBOL_GPL(shmem_get_seals);
2815
2816long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2817{
2818 long error;
2819
2820 switch (cmd) {
2821 case F_ADD_SEALS:
2822 /* disallow upper 32bit */
2823 if (arg > UINT_MAX)
2824 return -EINVAL;
2825
2826 error = shmem_add_seals(file, arg);
2827 break;
2828 case F_GET_SEALS:
2829 error = shmem_get_seals(file);
2830 break;
2831 default:
2832 error = -EINVAL;
2833 break;
2834 }
2835
2836 return error;
2837}
2838
83e4fa9c
HD
2839static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2840 loff_t len)
2841{
496ad9aa 2842 struct inode *inode = file_inode(file);
e2d12e22 2843 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2844 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2845 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2846 pgoff_t start, index, end;
2847 int error;
83e4fa9c 2848
13ace4d0
HD
2849 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2850 return -EOPNOTSUPP;
2851
5955102c 2852 inode_lock(inode);
83e4fa9c
HD
2853
2854 if (mode & FALLOC_FL_PUNCH_HOLE) {
2855 struct address_space *mapping = file->f_mapping;
2856 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2857 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2858 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2859
40e041a2
DR
2860 /* protected by i_mutex */
2861 if (info->seals & F_SEAL_WRITE) {
2862 error = -EPERM;
2863 goto out;
2864 }
2865
8e205f77 2866 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2867 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2868 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2869 spin_lock(&inode->i_lock);
2870 inode->i_private = &shmem_falloc;
2871 spin_unlock(&inode->i_lock);
2872
83e4fa9c
HD
2873 if ((u64)unmap_end > (u64)unmap_start)
2874 unmap_mapping_range(mapping, unmap_start,
2875 1 + unmap_end - unmap_start, 0);
2876 shmem_truncate_range(inode, offset, offset + len - 1);
2877 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2878
2879 spin_lock(&inode->i_lock);
2880 inode->i_private = NULL;
2881 wake_up_all(&shmem_falloc_waitq);
2055da97 2882 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2883 spin_unlock(&inode->i_lock);
83e4fa9c 2884 error = 0;
8e205f77 2885 goto out;
e2d12e22
HD
2886 }
2887
2888 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2889 error = inode_newsize_ok(inode, offset + len);
2890 if (error)
2891 goto out;
2892
40e041a2
DR
2893 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2894 error = -EPERM;
2895 goto out;
2896 }
2897
09cbfeaf
KS
2898 start = offset >> PAGE_SHIFT;
2899 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2900 /* Try to avoid a swapstorm if len is impossible to satisfy */
2901 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2902 error = -ENOSPC;
2903 goto out;
83e4fa9c
HD
2904 }
2905
8e205f77 2906 shmem_falloc.waitq = NULL;
1aac1400
HD
2907 shmem_falloc.start = start;
2908 shmem_falloc.next = start;
2909 shmem_falloc.nr_falloced = 0;
2910 shmem_falloc.nr_unswapped = 0;
2911 spin_lock(&inode->i_lock);
2912 inode->i_private = &shmem_falloc;
2913 spin_unlock(&inode->i_lock);
2914
e2d12e22
HD
2915 for (index = start; index < end; index++) {
2916 struct page *page;
2917
2918 /*
2919 * Good, the fallocate(2) manpage permits EINTR: we may have
2920 * been interrupted because we are using up too much memory.
2921 */
2922 if (signal_pending(current))
2923 error = -EINTR;
1aac1400
HD
2924 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2925 error = -ENOMEM;
e2d12e22 2926 else
9e18eb29 2927 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2928 if (error) {
1635f6a7 2929 /* Remove the !PageUptodate pages we added */
7f556567
HD
2930 if (index > start) {
2931 shmem_undo_range(inode,
2932 (loff_t)start << PAGE_SHIFT,
2933 ((loff_t)index << PAGE_SHIFT) - 1, true);
2934 }
1aac1400 2935 goto undone;
e2d12e22
HD
2936 }
2937
1aac1400
HD
2938 /*
2939 * Inform shmem_writepage() how far we have reached.
2940 * No need for lock or barrier: we have the page lock.
2941 */
2942 shmem_falloc.next++;
2943 if (!PageUptodate(page))
2944 shmem_falloc.nr_falloced++;
2945
e2d12e22 2946 /*
1635f6a7
HD
2947 * If !PageUptodate, leave it that way so that freeable pages
2948 * can be recognized if we need to rollback on error later.
2949 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2950 * than free the pages we are allocating (and SGP_CACHE pages
2951 * might still be clean: we now need to mark those dirty too).
2952 */
2953 set_page_dirty(page);
2954 unlock_page(page);
09cbfeaf 2955 put_page(page);
e2d12e22
HD
2956 cond_resched();
2957 }
2958
2959 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2960 i_size_write(inode, offset + len);
078cd827 2961 inode->i_ctime = current_time(inode);
1aac1400
HD
2962undone:
2963 spin_lock(&inode->i_lock);
2964 inode->i_private = NULL;
2965 spin_unlock(&inode->i_lock);
e2d12e22 2966out:
5955102c 2967 inode_unlock(inode);
83e4fa9c
HD
2968 return error;
2969}
2970
726c3342 2971static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2972{
726c3342 2973 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2974
2975 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2976 buf->f_bsize = PAGE_SIZE;
1da177e4 2977 buf->f_namelen = NAME_MAX;
0edd73b3 2978 if (sbinfo->max_blocks) {
1da177e4 2979 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2980 buf->f_bavail =
2981 buf->f_bfree = sbinfo->max_blocks -
2982 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2983 }
2984 if (sbinfo->max_inodes) {
1da177e4
LT
2985 buf->f_files = sbinfo->max_inodes;
2986 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2987 }
2988 /* else leave those fields 0 like simple_statfs */
2989 return 0;
2990}
2991
2992/*
2993 * File creation. Allocate an inode, and we're done..
2994 */
2995static int
1a67aafb 2996shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2997{
0b0a0806 2998 struct inode *inode;
1da177e4
LT
2999 int error = -ENOSPC;
3000
454abafe 3001 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 3002 if (inode) {
feda821e
CH
3003 error = simple_acl_create(dir, inode);
3004 if (error)
3005 goto out_iput;
2a7dba39 3006 error = security_inode_init_security(inode, dir,
9d8f13ba 3007 &dentry->d_name,
6d9d88d0 3008 shmem_initxattrs, NULL);
feda821e
CH
3009 if (error && error != -EOPNOTSUPP)
3010 goto out_iput;
37ec43cd 3011
718deb6b 3012 error = 0;
1da177e4 3013 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3014 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3015 d_instantiate(dentry, inode);
3016 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
3017 }
3018 return error;
feda821e
CH
3019out_iput:
3020 iput(inode);
3021 return error;
1da177e4
LT
3022}
3023
60545d0d
AV
3024static int
3025shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3026{
3027 struct inode *inode;
3028 int error = -ENOSPC;
3029
3030 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3031 if (inode) {
3032 error = security_inode_init_security(inode, dir,
3033 NULL,
3034 shmem_initxattrs, NULL);
feda821e
CH
3035 if (error && error != -EOPNOTSUPP)
3036 goto out_iput;
3037 error = simple_acl_create(dir, inode);
3038 if (error)
3039 goto out_iput;
60545d0d
AV
3040 d_tmpfile(dentry, inode);
3041 }
3042 return error;
feda821e
CH
3043out_iput:
3044 iput(inode);
3045 return error;
60545d0d
AV
3046}
3047
18bb1db3 3048static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
3049{
3050 int error;
3051
3052 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3053 return error;
d8c76e6f 3054 inc_nlink(dir);
1da177e4
LT
3055 return 0;
3056}
3057
4acdaf27 3058static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 3059 bool excl)
1da177e4
LT
3060{
3061 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3062}
3063
3064/*
3065 * Link a file..
3066 */
3067static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3068{
75c3cfa8 3069 struct inode *inode = d_inode(old_dentry);
5b04c689 3070 int ret;
1da177e4
LT
3071
3072 /*
3073 * No ordinary (disk based) filesystem counts links as inodes;
3074 * but each new link needs a new dentry, pinning lowmem, and
3075 * tmpfs dentries cannot be pruned until they are unlinked.
3076 */
5b04c689
PE
3077 ret = shmem_reserve_inode(inode->i_sb);
3078 if (ret)
3079 goto out;
1da177e4
LT
3080
3081 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3082 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3083 inc_nlink(inode);
7de9c6ee 3084 ihold(inode); /* New dentry reference */
1da177e4
LT
3085 dget(dentry); /* Extra pinning count for the created dentry */
3086 d_instantiate(dentry, inode);
5b04c689
PE
3087out:
3088 return ret;
1da177e4
LT
3089}
3090
3091static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3092{
75c3cfa8 3093 struct inode *inode = d_inode(dentry);
1da177e4 3094
5b04c689
PE
3095 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3096 shmem_free_inode(inode->i_sb);
1da177e4
LT
3097
3098 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3099 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3100 drop_nlink(inode);
1da177e4
LT
3101 dput(dentry); /* Undo the count from "create" - this does all the work */
3102 return 0;
3103}
3104
3105static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3106{
3107 if (!simple_empty(dentry))
3108 return -ENOTEMPTY;
3109
75c3cfa8 3110 drop_nlink(d_inode(dentry));
9a53c3a7 3111 drop_nlink(dir);
1da177e4
LT
3112 return shmem_unlink(dir, dentry);
3113}
3114
37456771
MS
3115static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3116{
e36cb0b8
DH
3117 bool old_is_dir = d_is_dir(old_dentry);
3118 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3119
3120 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3121 if (old_is_dir) {
3122 drop_nlink(old_dir);
3123 inc_nlink(new_dir);
3124 } else {
3125 drop_nlink(new_dir);
3126 inc_nlink(old_dir);
3127 }
3128 }
3129 old_dir->i_ctime = old_dir->i_mtime =
3130 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3131 d_inode(old_dentry)->i_ctime =
078cd827 3132 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3133
3134 return 0;
3135}
3136
46fdb794
MS
3137static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3138{
3139 struct dentry *whiteout;
3140 int error;
3141
3142 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3143 if (!whiteout)
3144 return -ENOMEM;
3145
3146 error = shmem_mknod(old_dir, whiteout,
3147 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3148 dput(whiteout);
3149 if (error)
3150 return error;
3151
3152 /*
3153 * Cheat and hash the whiteout while the old dentry is still in
3154 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3155 *
3156 * d_lookup() will consistently find one of them at this point,
3157 * not sure which one, but that isn't even important.
3158 */
3159 d_rehash(whiteout);
3160 return 0;
3161}
3162
1da177e4
LT
3163/*
3164 * The VFS layer already does all the dentry stuff for rename,
3165 * we just have to decrement the usage count for the target if
3166 * it exists so that the VFS layer correctly free's it when it
3167 * gets overwritten.
3168 */
3b69ff51 3169static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3170{
75c3cfa8 3171 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3172 int they_are_dirs = S_ISDIR(inode->i_mode);
3173
46fdb794 3174 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3175 return -EINVAL;
3176
37456771
MS
3177 if (flags & RENAME_EXCHANGE)
3178 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3179
1da177e4
LT
3180 if (!simple_empty(new_dentry))
3181 return -ENOTEMPTY;
3182
46fdb794
MS
3183 if (flags & RENAME_WHITEOUT) {
3184 int error;
3185
3186 error = shmem_whiteout(old_dir, old_dentry);
3187 if (error)
3188 return error;
3189 }
3190
75c3cfa8 3191 if (d_really_is_positive(new_dentry)) {
1da177e4 3192 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3193 if (they_are_dirs) {
75c3cfa8 3194 drop_nlink(d_inode(new_dentry));
9a53c3a7 3195 drop_nlink(old_dir);
b928095b 3196 }
1da177e4 3197 } else if (they_are_dirs) {
9a53c3a7 3198 drop_nlink(old_dir);
d8c76e6f 3199 inc_nlink(new_dir);
1da177e4
LT
3200 }
3201
3202 old_dir->i_size -= BOGO_DIRENT_SIZE;
3203 new_dir->i_size += BOGO_DIRENT_SIZE;
3204 old_dir->i_ctime = old_dir->i_mtime =
3205 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3206 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3207 return 0;
3208}
3209
3210static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3211{
3212 int error;
3213 int len;
3214 struct inode *inode;
9276aad6 3215 struct page *page;
1da177e4
LT
3216 struct shmem_inode_info *info;
3217
3218 len = strlen(symname) + 1;
09cbfeaf 3219 if (len > PAGE_SIZE)
1da177e4
LT
3220 return -ENAMETOOLONG;
3221
454abafe 3222 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3223 if (!inode)
3224 return -ENOSPC;
3225
9d8f13ba 3226 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3227 shmem_initxattrs, NULL);
570bc1c2
SS
3228 if (error) {
3229 if (error != -EOPNOTSUPP) {
3230 iput(inode);
3231 return error;
3232 }
3233 error = 0;
3234 }
3235
1da177e4
LT
3236 info = SHMEM_I(inode);
3237 inode->i_size = len-1;
69f07ec9 3238 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3239 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3240 if (!inode->i_link) {
69f07ec9
HD
3241 iput(inode);
3242 return -ENOMEM;
3243 }
3244 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3245 } else {
e8ecde25 3246 inode_nohighmem(inode);
9e18eb29 3247 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3248 if (error) {
3249 iput(inode);
3250 return error;
3251 }
14fcc23f 3252 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3253 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3254 memcpy(page_address(page), symname, len);
ec9516fb 3255 SetPageUptodate(page);
1da177e4 3256 set_page_dirty(page);
6746aff7 3257 unlock_page(page);
09cbfeaf 3258 put_page(page);
1da177e4 3259 }
1da177e4 3260 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3261 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3262 d_instantiate(dentry, inode);
3263 dget(dentry);
3264 return 0;
3265}
3266
fceef393 3267static void shmem_put_link(void *arg)
1da177e4 3268{
fceef393
AV
3269 mark_page_accessed(arg);
3270 put_page(arg);
1da177e4
LT
3271}
3272
6b255391 3273static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3274 struct inode *inode,
3275 struct delayed_call *done)
1da177e4 3276{
1da177e4 3277 struct page *page = NULL;
6b255391 3278 int error;
6a6c9904
AV
3279 if (!dentry) {
3280 page = find_get_page(inode->i_mapping, 0);
3281 if (!page)
3282 return ERR_PTR(-ECHILD);
3283 if (!PageUptodate(page)) {
3284 put_page(page);
3285 return ERR_PTR(-ECHILD);
3286 }
3287 } else {
9e18eb29 3288 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3289 if (error)
3290 return ERR_PTR(error);
3291 unlock_page(page);
3292 }
fceef393 3293 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3294 return page_address(page);
1da177e4
LT
3295}
3296
b09e0fa4 3297#ifdef CONFIG_TMPFS_XATTR
46711810 3298/*
b09e0fa4
EP
3299 * Superblocks without xattr inode operations may get some security.* xattr
3300 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3301 * like ACLs, we also need to implement the security.* handlers at
3302 * filesystem level, though.
3303 */
3304
6d9d88d0
JS
3305/*
3306 * Callback for security_inode_init_security() for acquiring xattrs.
3307 */
3308static int shmem_initxattrs(struct inode *inode,
3309 const struct xattr *xattr_array,
3310 void *fs_info)
3311{
3312 struct shmem_inode_info *info = SHMEM_I(inode);
3313 const struct xattr *xattr;
38f38657 3314 struct simple_xattr *new_xattr;
6d9d88d0
JS
3315 size_t len;
3316
3317 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3318 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3319 if (!new_xattr)
3320 return -ENOMEM;
3321
3322 len = strlen(xattr->name) + 1;
3323 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3324 GFP_KERNEL);
3325 if (!new_xattr->name) {
3326 kfree(new_xattr);
3327 return -ENOMEM;
3328 }
3329
3330 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3331 XATTR_SECURITY_PREFIX_LEN);
3332 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3333 xattr->name, len);
3334
38f38657 3335 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3336 }
3337
3338 return 0;
3339}
3340
aa7c5241 3341static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3342 struct dentry *unused, struct inode *inode,
3343 const char *name, void *buffer, size_t size)
b09e0fa4 3344{
b296821a 3345 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3346
aa7c5241 3347 name = xattr_full_name(handler, name);
38f38657 3348 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3349}
3350
aa7c5241 3351static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3352 struct dentry *unused, struct inode *inode,
3353 const char *name, const void *value,
3354 size_t size, int flags)
b09e0fa4 3355{
59301226 3356 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3357
aa7c5241 3358 name = xattr_full_name(handler, name);
38f38657 3359 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3360}
3361
aa7c5241
AG
3362static const struct xattr_handler shmem_security_xattr_handler = {
3363 .prefix = XATTR_SECURITY_PREFIX,
3364 .get = shmem_xattr_handler_get,
3365 .set = shmem_xattr_handler_set,
3366};
b09e0fa4 3367
aa7c5241
AG
3368static const struct xattr_handler shmem_trusted_xattr_handler = {
3369 .prefix = XATTR_TRUSTED_PREFIX,
3370 .get = shmem_xattr_handler_get,
3371 .set = shmem_xattr_handler_set,
3372};
b09e0fa4 3373
aa7c5241
AG
3374static const struct xattr_handler *shmem_xattr_handlers[] = {
3375#ifdef CONFIG_TMPFS_POSIX_ACL
3376 &posix_acl_access_xattr_handler,
3377 &posix_acl_default_xattr_handler,
3378#endif
3379 &shmem_security_xattr_handler,
3380 &shmem_trusted_xattr_handler,
3381 NULL
3382};
b09e0fa4
EP
3383
3384static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3385{
75c3cfa8 3386 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3387 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3388}
3389#endif /* CONFIG_TMPFS_XATTR */
3390
69f07ec9 3391static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3392 .get_link = simple_get_link,
b09e0fa4 3393#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3394 .listxattr = shmem_listxattr,
b09e0fa4
EP
3395#endif
3396};
3397
3398static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3399 .get_link = shmem_get_link,
b09e0fa4 3400#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3401 .listxattr = shmem_listxattr,
39f0247d 3402#endif
b09e0fa4 3403};
39f0247d 3404
91828a40
DG
3405static struct dentry *shmem_get_parent(struct dentry *child)
3406{
3407 return ERR_PTR(-ESTALE);
3408}
3409
3410static int shmem_match(struct inode *ino, void *vfh)
3411{
3412 __u32 *fh = vfh;
3413 __u64 inum = fh[2];
3414 inum = (inum << 32) | fh[1];
3415 return ino->i_ino == inum && fh[0] == ino->i_generation;
3416}
3417
480b116c
CH
3418static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3419 struct fid *fid, int fh_len, int fh_type)
91828a40 3420{
91828a40 3421 struct inode *inode;
480b116c 3422 struct dentry *dentry = NULL;
35c2a7f4 3423 u64 inum;
480b116c
CH
3424
3425 if (fh_len < 3)
3426 return NULL;
91828a40 3427
35c2a7f4
HD
3428 inum = fid->raw[2];
3429 inum = (inum << 32) | fid->raw[1];
3430
480b116c
CH
3431 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3432 shmem_match, fid->raw);
91828a40 3433 if (inode) {
480b116c 3434 dentry = d_find_alias(inode);
91828a40
DG
3435 iput(inode);
3436 }
3437
480b116c 3438 return dentry;
91828a40
DG
3439}
3440
b0b0382b
AV
3441static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3442 struct inode *parent)
91828a40 3443{
5fe0c237
AK
3444 if (*len < 3) {
3445 *len = 3;
94e07a75 3446 return FILEID_INVALID;
5fe0c237 3447 }
91828a40 3448
1d3382cb 3449 if (inode_unhashed(inode)) {
91828a40
DG
3450 /* Unfortunately insert_inode_hash is not idempotent,
3451 * so as we hash inodes here rather than at creation
3452 * time, we need a lock to ensure we only try
3453 * to do it once
3454 */
3455 static DEFINE_SPINLOCK(lock);
3456 spin_lock(&lock);
1d3382cb 3457 if (inode_unhashed(inode))
91828a40
DG
3458 __insert_inode_hash(inode,
3459 inode->i_ino + inode->i_generation);
3460 spin_unlock(&lock);
3461 }
3462
3463 fh[0] = inode->i_generation;
3464 fh[1] = inode->i_ino;
3465 fh[2] = ((__u64)inode->i_ino) >> 32;
3466
3467 *len = 3;
3468 return 1;
3469}
3470
39655164 3471static const struct export_operations shmem_export_ops = {
91828a40 3472 .get_parent = shmem_get_parent,
91828a40 3473 .encode_fh = shmem_encode_fh,
480b116c 3474 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3475};
3476
680d794b
AM
3477static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3478 bool remount)
1da177e4
LT
3479{
3480 char *this_char, *value, *rest;
49cd0a5c 3481 struct mempolicy *mpol = NULL;
8751e039
EB
3482 uid_t uid;
3483 gid_t gid;
1da177e4 3484
b00dc3ad
HD
3485 while (options != NULL) {
3486 this_char = options;
3487 for (;;) {
3488 /*
3489 * NUL-terminate this option: unfortunately,
3490 * mount options form a comma-separated list,
3491 * but mpol's nodelist may also contain commas.
3492 */
3493 options = strchr(options, ',');
3494 if (options == NULL)
3495 break;
3496 options++;
3497 if (!isdigit(*options)) {
3498 options[-1] = '\0';
3499 break;
3500 }
3501 }
1da177e4
LT
3502 if (!*this_char)
3503 continue;
3504 if ((value = strchr(this_char,'=')) != NULL) {
3505 *value++ = 0;
3506 } else {
1170532b
JP
3507 pr_err("tmpfs: No value for mount option '%s'\n",
3508 this_char);
49cd0a5c 3509 goto error;
1da177e4
LT
3510 }
3511
3512 if (!strcmp(this_char,"size")) {
3513 unsigned long long size;
3514 size = memparse(value,&rest);
3515 if (*rest == '%') {
3516 size <<= PAGE_SHIFT;
3517 size *= totalram_pages;
3518 do_div(size, 100);
3519 rest++;
3520 }
3521 if (*rest)
3522 goto bad_val;
680d794b 3523 sbinfo->max_blocks =
09cbfeaf 3524 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3525 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3526 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3527 if (*rest)
3528 goto bad_val;
3529 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3530 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3531 if (*rest)
3532 goto bad_val;
3533 } else if (!strcmp(this_char,"mode")) {
680d794b 3534 if (remount)
1da177e4 3535 continue;
680d794b 3536 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3537 if (*rest)
3538 goto bad_val;
3539 } else if (!strcmp(this_char,"uid")) {
680d794b 3540 if (remount)
1da177e4 3541 continue;
8751e039 3542 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3543 if (*rest)
3544 goto bad_val;
8751e039
EB
3545 sbinfo->uid = make_kuid(current_user_ns(), uid);
3546 if (!uid_valid(sbinfo->uid))
3547 goto bad_val;
1da177e4 3548 } else if (!strcmp(this_char,"gid")) {
680d794b 3549 if (remount)
1da177e4 3550 continue;
8751e039 3551 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3552 if (*rest)
3553 goto bad_val;
8751e039
EB
3554 sbinfo->gid = make_kgid(current_user_ns(), gid);
3555 if (!gid_valid(sbinfo->gid))
3556 goto bad_val;
e496cf3d 3557#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3558 } else if (!strcmp(this_char, "huge")) {
3559 int huge;
3560 huge = shmem_parse_huge(value);
3561 if (huge < 0)
3562 goto bad_val;
3563 if (!has_transparent_hugepage() &&
3564 huge != SHMEM_HUGE_NEVER)
3565 goto bad_val;
3566 sbinfo->huge = huge;
3567#endif
3568#ifdef CONFIG_NUMA
7339ff83 3569 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3570 mpol_put(mpol);
3571 mpol = NULL;
3572 if (mpol_parse_str(value, &mpol))
7339ff83 3573 goto bad_val;
5a6e75f8 3574#endif
1da177e4 3575 } else {
1170532b 3576 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3577 goto error;
1da177e4
LT
3578 }
3579 }
49cd0a5c 3580 sbinfo->mpol = mpol;
1da177e4
LT
3581 return 0;
3582
3583bad_val:
1170532b 3584 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3585 value, this_char);
49cd0a5c
GT
3586error:
3587 mpol_put(mpol);
1da177e4
LT
3588 return 1;
3589
3590}
3591
3592static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3593{
3594 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3595 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3596 unsigned long inodes;
3597 int error = -EINVAL;
3598
5f00110f 3599 config.mpol = NULL;
680d794b 3600 if (shmem_parse_options(data, &config, true))
0edd73b3 3601 return error;
1da177e4 3602
0edd73b3 3603 spin_lock(&sbinfo->stat_lock);
0edd73b3 3604 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3605 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3606 goto out;
680d794b 3607 if (config.max_inodes < inodes)
0edd73b3
HD
3608 goto out;
3609 /*
54af6042 3610 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3611 * but we must separately disallow unlimited->limited, because
3612 * in that case we have no record of how much is already in use.
3613 */
680d794b 3614 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3615 goto out;
680d794b 3616 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3617 goto out;
3618
3619 error = 0;
5a6e75f8 3620 sbinfo->huge = config.huge;
680d794b 3621 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
3622 sbinfo->max_inodes = config.max_inodes;
3623 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3624
5f00110f
GT
3625 /*
3626 * Preserve previous mempolicy unless mpol remount option was specified.
3627 */
3628 if (config.mpol) {
3629 mpol_put(sbinfo->mpol);
3630 sbinfo->mpol = config.mpol; /* transfers initial ref */
3631 }
0edd73b3
HD
3632out:
3633 spin_unlock(&sbinfo->stat_lock);
3634 return error;
1da177e4 3635}
680d794b 3636
34c80b1d 3637static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3638{
34c80b1d 3639 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3640
3641 if (sbinfo->max_blocks != shmem_default_max_blocks())
3642 seq_printf(seq, ",size=%luk",
09cbfeaf 3643 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3644 if (sbinfo->max_inodes != shmem_default_max_inodes())
3645 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3646 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3647 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3648 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3649 seq_printf(seq, ",uid=%u",
3650 from_kuid_munged(&init_user_ns, sbinfo->uid));
3651 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3652 seq_printf(seq, ",gid=%u",
3653 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3654#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3655 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3656 if (sbinfo->huge)
3657 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3658#endif
71fe804b 3659 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3660 return 0;
3661}
9183df25
DR
3662
3663#define MFD_NAME_PREFIX "memfd:"
3664#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3665#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3666
749df87b 3667#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
9183df25
DR
3668
3669SYSCALL_DEFINE2(memfd_create,
3670 const char __user *, uname,
3671 unsigned int, flags)
3672{
3673 struct shmem_inode_info *info;
3674 struct file *file;
3675 int fd, error;
3676 char *name;
3677 long len;
3678
749df87b
MK
3679 if (!(flags & MFD_HUGETLB)) {
3680 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3681 return -EINVAL;
3682 } else {
3683 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3684 if (flags & MFD_ALLOW_SEALING)
3685 return -EINVAL;
3686 /* Allow huge page size encoding in flags. */
3687 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3688 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3689 return -EINVAL;
3690 }
9183df25
DR
3691
3692 /* length includes terminating zero */
3693 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3694 if (len <= 0)
3695 return -EFAULT;
3696 if (len > MFD_NAME_MAX_LEN + 1)
3697 return -EINVAL;
3698
0ee931c4 3699 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
9183df25
DR
3700 if (!name)
3701 return -ENOMEM;
3702
3703 strcpy(name, MFD_NAME_PREFIX);
3704 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3705 error = -EFAULT;
3706 goto err_name;
3707 }
3708
3709 /* terminating-zero may have changed after strnlen_user() returned */
3710 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3711 error = -EFAULT;
3712 goto err_name;
3713 }
3714
3715 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3716 if (fd < 0) {
3717 error = fd;
3718 goto err_name;
3719 }
3720
749df87b
MK
3721 if (flags & MFD_HUGETLB) {
3722 struct user_struct *user = NULL;
3723
3724 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3725 HUGETLB_ANONHUGE_INODE,
3726 (flags >> MFD_HUGE_SHIFT) &
3727 MFD_HUGE_MASK);
3728 } else
3729 file = shmem_file_setup(name, 0, VM_NORESERVE);
9183df25
DR
3730 if (IS_ERR(file)) {
3731 error = PTR_ERR(file);
3732 goto err_fd;
3733 }
9183df25
DR
3734 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3735 file->f_flags |= O_RDWR | O_LARGEFILE;
749df87b
MK
3736
3737 if (flags & MFD_ALLOW_SEALING) {
3738 /*
3739 * flags check at beginning of function ensures
3740 * this is not a hugetlbfs (MFD_HUGETLB) file.
3741 */
3742 info = SHMEM_I(file_inode(file));
9183df25 3743 info->seals &= ~F_SEAL_SEAL;
749df87b 3744 }
9183df25
DR
3745
3746 fd_install(fd, file);
3747 kfree(name);
3748 return fd;
3749
3750err_fd:
3751 put_unused_fd(fd);
3752err_name:
3753 kfree(name);
3754 return error;
3755}
3756
680d794b 3757#endif /* CONFIG_TMPFS */
1da177e4
LT
3758
3759static void shmem_put_super(struct super_block *sb)
3760{
602586a8
HD
3761 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3762
3763 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3764 mpol_put(sbinfo->mpol);
602586a8 3765 kfree(sbinfo);
1da177e4
LT
3766 sb->s_fs_info = NULL;
3767}
3768
2b2af54a 3769int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3770{
3771 struct inode *inode;
0edd73b3 3772 struct shmem_sb_info *sbinfo;
680d794b
AM
3773 int err = -ENOMEM;
3774
3775 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3776 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3777 L1_CACHE_BYTES), GFP_KERNEL);
3778 if (!sbinfo)
3779 return -ENOMEM;
3780
680d794b 3781 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3782 sbinfo->uid = current_fsuid();
3783 sbinfo->gid = current_fsgid();
680d794b 3784 sb->s_fs_info = sbinfo;
1da177e4 3785
0edd73b3 3786#ifdef CONFIG_TMPFS
1da177e4
LT
3787 /*
3788 * Per default we only allow half of the physical ram per
3789 * tmpfs instance, limiting inodes to one per page of lowmem;
3790 * but the internal instance is left unlimited.
3791 */
ca4e0519 3792 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3793 sbinfo->max_blocks = shmem_default_max_blocks();
3794 sbinfo->max_inodes = shmem_default_max_inodes();
3795 if (shmem_parse_options(data, sbinfo, false)) {
3796 err = -EINVAL;
3797 goto failed;
3798 }
ca4e0519
AV
3799 } else {
3800 sb->s_flags |= MS_NOUSER;
1da177e4 3801 }
91828a40 3802 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3803 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3804#else
3805 sb->s_flags |= MS_NOUSER;
3806#endif
3807
0edd73b3 3808 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3809 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3810 goto failed;
680d794b 3811 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3812 spin_lock_init(&sbinfo->shrinklist_lock);
3813 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3814
285b2c4f 3815 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3816 sb->s_blocksize = PAGE_SIZE;
3817 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3818 sb->s_magic = TMPFS_MAGIC;
3819 sb->s_op = &shmem_ops;
cfd95a9c 3820 sb->s_time_gran = 1;
b09e0fa4 3821#ifdef CONFIG_TMPFS_XATTR
39f0247d 3822 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3823#endif
3824#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3825 sb->s_flags |= MS_POSIXACL;
3826#endif
2b4db796 3827 uuid_gen(&sb->s_uuid);
0edd73b3 3828
454abafe 3829 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3830 if (!inode)
3831 goto failed;
680d794b
AM
3832 inode->i_uid = sbinfo->uid;
3833 inode->i_gid = sbinfo->gid;
318ceed0
AV
3834 sb->s_root = d_make_root(inode);
3835 if (!sb->s_root)
48fde701 3836 goto failed;
1da177e4
LT
3837 return 0;
3838
1da177e4
LT
3839failed:
3840 shmem_put_super(sb);
3841 return err;
3842}
3843
fcc234f8 3844static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3845
3846static struct inode *shmem_alloc_inode(struct super_block *sb)
3847{
41ffe5d5
HD
3848 struct shmem_inode_info *info;
3849 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3850 if (!info)
1da177e4 3851 return NULL;
41ffe5d5 3852 return &info->vfs_inode;
1da177e4
LT
3853}
3854
41ffe5d5 3855static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3856{
3857 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3858 if (S_ISLNK(inode->i_mode))
3859 kfree(inode->i_link);
fa0d7e3d
NP
3860 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3861}
3862
1da177e4
LT
3863static void shmem_destroy_inode(struct inode *inode)
3864{
09208d15 3865 if (S_ISREG(inode->i_mode))
1da177e4 3866 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3867 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3868}
3869
41ffe5d5 3870static void shmem_init_inode(void *foo)
1da177e4 3871{
41ffe5d5
HD
3872 struct shmem_inode_info *info = foo;
3873 inode_init_once(&info->vfs_inode);
1da177e4
LT
3874}
3875
41ffe5d5 3876static int shmem_init_inodecache(void)
1da177e4
LT
3877{
3878 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3879 sizeof(struct shmem_inode_info),
5d097056 3880 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3881 return 0;
3882}
3883
41ffe5d5 3884static void shmem_destroy_inodecache(void)
1da177e4 3885{
1a1d92c1 3886 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3887}
3888
f5e54d6e 3889static const struct address_space_operations shmem_aops = {
1da177e4 3890 .writepage = shmem_writepage,
76719325 3891 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3892#ifdef CONFIG_TMPFS
800d15a5
NP
3893 .write_begin = shmem_write_begin,
3894 .write_end = shmem_write_end,
1da177e4 3895#endif
1c93923c 3896#ifdef CONFIG_MIGRATION
304dbdb7 3897 .migratepage = migrate_page,
1c93923c 3898#endif
aa261f54 3899 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3900};
3901
15ad7cdc 3902static const struct file_operations shmem_file_operations = {
1da177e4 3903 .mmap = shmem_mmap,
c01d5b30 3904 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3905#ifdef CONFIG_TMPFS
220f2ac9 3906 .llseek = shmem_file_llseek,
2ba5bbed 3907 .read_iter = shmem_file_read_iter,
8174202b 3908 .write_iter = generic_file_write_iter,
1b061d92 3909 .fsync = noop_fsync,
82c156f8 3910 .splice_read = generic_file_splice_read,
f6cb85d0 3911 .splice_write = iter_file_splice_write,
83e4fa9c 3912 .fallocate = shmem_fallocate,
1da177e4
LT
3913#endif
3914};
3915
92e1d5be 3916static const struct inode_operations shmem_inode_operations = {
44a30220 3917 .getattr = shmem_getattr,
94c1e62d 3918 .setattr = shmem_setattr,
b09e0fa4 3919#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3920 .listxattr = shmem_listxattr,
feda821e 3921 .set_acl = simple_set_acl,
b09e0fa4 3922#endif
1da177e4
LT
3923};
3924
92e1d5be 3925static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3926#ifdef CONFIG_TMPFS
3927 .create = shmem_create,
3928 .lookup = simple_lookup,
3929 .link = shmem_link,
3930 .unlink = shmem_unlink,
3931 .symlink = shmem_symlink,
3932 .mkdir = shmem_mkdir,
3933 .rmdir = shmem_rmdir,
3934 .mknod = shmem_mknod,
2773bf00 3935 .rename = shmem_rename2,
60545d0d 3936 .tmpfile = shmem_tmpfile,
1da177e4 3937#endif
b09e0fa4 3938#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3939 .listxattr = shmem_listxattr,
b09e0fa4 3940#endif
39f0247d 3941#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3942 .setattr = shmem_setattr,
feda821e 3943 .set_acl = simple_set_acl,
39f0247d
AG
3944#endif
3945};
3946
92e1d5be 3947static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3948#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3949 .listxattr = shmem_listxattr,
b09e0fa4 3950#endif
39f0247d 3951#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3952 .setattr = shmem_setattr,
feda821e 3953 .set_acl = simple_set_acl,
39f0247d 3954#endif
1da177e4
LT
3955};
3956
759b9775 3957static const struct super_operations shmem_ops = {
1da177e4
LT
3958 .alloc_inode = shmem_alloc_inode,
3959 .destroy_inode = shmem_destroy_inode,
3960#ifdef CONFIG_TMPFS
3961 .statfs = shmem_statfs,
3962 .remount_fs = shmem_remount_fs,
680d794b 3963 .show_options = shmem_show_options,
1da177e4 3964#endif
1f895f75 3965 .evict_inode = shmem_evict_inode,
1da177e4
LT
3966 .drop_inode = generic_delete_inode,
3967 .put_super = shmem_put_super,
779750d2
KS
3968#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3969 .nr_cached_objects = shmem_unused_huge_count,
3970 .free_cached_objects = shmem_unused_huge_scan,
3971#endif
1da177e4
LT
3972};
3973
f0f37e2f 3974static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3975 .fault = shmem_fault,
d7c17551 3976 .map_pages = filemap_map_pages,
1da177e4
LT
3977#ifdef CONFIG_NUMA
3978 .set_policy = shmem_set_policy,
3979 .get_policy = shmem_get_policy,
3980#endif
3981};
3982
3c26ff6e
AV
3983static struct dentry *shmem_mount(struct file_system_type *fs_type,
3984 int flags, const char *dev_name, void *data)
1da177e4 3985{
3c26ff6e 3986 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3987}
3988
41ffe5d5 3989static struct file_system_type shmem_fs_type = {
1da177e4
LT
3990 .owner = THIS_MODULE,
3991 .name = "tmpfs",
3c26ff6e 3992 .mount = shmem_mount,
1da177e4 3993 .kill_sb = kill_litter_super,
2b8576cb 3994 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3995};
1da177e4 3996
41ffe5d5 3997int __init shmem_init(void)
1da177e4
LT
3998{
3999 int error;
4000
16203a7a
RL
4001 /* If rootfs called this, don't re-init */
4002 if (shmem_inode_cachep)
4003 return 0;
4004
41ffe5d5 4005 error = shmem_init_inodecache();
1da177e4
LT
4006 if (error)
4007 goto out3;
4008
41ffe5d5 4009 error = register_filesystem(&shmem_fs_type);
1da177e4 4010 if (error) {
1170532b 4011 pr_err("Could not register tmpfs\n");
1da177e4
LT
4012 goto out2;
4013 }
95dc112a 4014
ca4e0519 4015 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
4016 if (IS_ERR(shm_mnt)) {
4017 error = PTR_ERR(shm_mnt);
1170532b 4018 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
4019 goto out1;
4020 }
5a6e75f8 4021
e496cf3d 4022#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 4023 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4024 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4025 else
4026 shmem_huge = 0; /* just in case it was patched */
4027#endif
1da177e4
LT
4028 return 0;
4029
4030out1:
41ffe5d5 4031 unregister_filesystem(&shmem_fs_type);
1da177e4 4032out2:
41ffe5d5 4033 shmem_destroy_inodecache();
1da177e4
LT
4034out3:
4035 shm_mnt = ERR_PTR(error);
4036 return error;
4037}
853ac43a 4038
e496cf3d 4039#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
4040static ssize_t shmem_enabled_show(struct kobject *kobj,
4041 struct kobj_attribute *attr, char *buf)
4042{
4043 int values[] = {
4044 SHMEM_HUGE_ALWAYS,
4045 SHMEM_HUGE_WITHIN_SIZE,
4046 SHMEM_HUGE_ADVISE,
4047 SHMEM_HUGE_NEVER,
4048 SHMEM_HUGE_DENY,
4049 SHMEM_HUGE_FORCE,
4050 };
4051 int i, count;
4052
4053 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4054 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4055
4056 count += sprintf(buf + count, fmt,
4057 shmem_format_huge(values[i]));
4058 }
4059 buf[count - 1] = '\n';
4060 return count;
4061}
4062
4063static ssize_t shmem_enabled_store(struct kobject *kobj,
4064 struct kobj_attribute *attr, const char *buf, size_t count)
4065{
4066 char tmp[16];
4067 int huge;
4068
4069 if (count + 1 > sizeof(tmp))
4070 return -EINVAL;
4071 memcpy(tmp, buf, count);
4072 tmp[count] = '\0';
4073 if (count && tmp[count - 1] == '\n')
4074 tmp[count - 1] = '\0';
4075
4076 huge = shmem_parse_huge(tmp);
4077 if (huge == -EINVAL)
4078 return -EINVAL;
4079 if (!has_transparent_hugepage() &&
4080 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4081 return -EINVAL;
4082
4083 shmem_huge = huge;
435c0b87 4084 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4085 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4086 return count;
4087}
4088
4089struct kobj_attribute shmem_enabled_attr =
4090 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 4091#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 4092
3b33719c 4093#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
4094bool shmem_huge_enabled(struct vm_area_struct *vma)
4095{
4096 struct inode *inode = file_inode(vma->vm_file);
4097 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4098 loff_t i_size;
4099 pgoff_t off;
4100
4101 if (shmem_huge == SHMEM_HUGE_FORCE)
4102 return true;
4103 if (shmem_huge == SHMEM_HUGE_DENY)
4104 return false;
4105 switch (sbinfo->huge) {
4106 case SHMEM_HUGE_NEVER:
4107 return false;
4108 case SHMEM_HUGE_ALWAYS:
4109 return true;
4110 case SHMEM_HUGE_WITHIN_SIZE:
4111 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4112 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4113 if (i_size >= HPAGE_PMD_SIZE &&
4114 i_size >> PAGE_SHIFT >= off)
4115 return true;
4116 case SHMEM_HUGE_ADVISE:
4117 /* TODO: implement fadvise() hints */
4118 return (vma->vm_flags & VM_HUGEPAGE);
4119 default:
4120 VM_BUG_ON(1);
4121 return false;
4122 }
4123}
3b33719c 4124#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 4125
853ac43a
MM
4126#else /* !CONFIG_SHMEM */
4127
4128/*
4129 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4130 *
4131 * This is intended for small system where the benefits of the full
4132 * shmem code (swap-backed and resource-limited) are outweighed by
4133 * their complexity. On systems without swap this code should be
4134 * effectively equivalent, but much lighter weight.
4135 */
4136
41ffe5d5 4137static struct file_system_type shmem_fs_type = {
853ac43a 4138 .name = "tmpfs",
3c26ff6e 4139 .mount = ramfs_mount,
853ac43a 4140 .kill_sb = kill_litter_super,
2b8576cb 4141 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4142};
4143
41ffe5d5 4144int __init shmem_init(void)
853ac43a 4145{
41ffe5d5 4146 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4147
41ffe5d5 4148 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4149 BUG_ON(IS_ERR(shm_mnt));
4150
4151 return 0;
4152}
4153
41ffe5d5 4154int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
4155{
4156 return 0;
4157}
4158
3f96b79a
HD
4159int shmem_lock(struct file *file, int lock, struct user_struct *user)
4160{
4161 return 0;
4162}
4163
24513264
HD
4164void shmem_unlock_mapping(struct address_space *mapping)
4165{
4166}
4167
c01d5b30
HD
4168#ifdef CONFIG_MMU
4169unsigned long shmem_get_unmapped_area(struct file *file,
4170 unsigned long addr, unsigned long len,
4171 unsigned long pgoff, unsigned long flags)
4172{
4173 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4174}
4175#endif
4176
41ffe5d5 4177void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4178{
41ffe5d5 4179 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4180}
4181EXPORT_SYMBOL_GPL(shmem_truncate_range);
4182
0b0a0806
HD
4183#define shmem_vm_ops generic_file_vm_ops
4184#define shmem_file_operations ramfs_file_operations
454abafe 4185#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4186#define shmem_acct_size(flags, size) 0
4187#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4188
4189#endif /* CONFIG_SHMEM */
4190
4191/* common code */
1da177e4 4192
19938e35 4193static const struct dentry_operations anon_ops = {
118b2302 4194 .d_dname = simple_dname
3451538a
AV
4195};
4196
c7277090
EP
4197static struct file *__shmem_file_setup(const char *name, loff_t size,
4198 unsigned long flags, unsigned int i_flags)
1da177e4 4199{
6b4d0b27 4200 struct file *res;
1da177e4 4201 struct inode *inode;
2c48b9c4 4202 struct path path;
3451538a 4203 struct super_block *sb;
1da177e4
LT
4204 struct qstr this;
4205
4206 if (IS_ERR(shm_mnt))
6b4d0b27 4207 return ERR_CAST(shm_mnt);
1da177e4 4208
285b2c4f 4209 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4210 return ERR_PTR(-EINVAL);
4211
4212 if (shmem_acct_size(flags, size))
4213 return ERR_PTR(-ENOMEM);
4214
6b4d0b27 4215 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4216 this.name = name;
4217 this.len = strlen(name);
4218 this.hash = 0; /* will go */
3451538a 4219 sb = shm_mnt->mnt_sb;
66ee4b88 4220 path.mnt = mntget(shm_mnt);
3451538a 4221 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4222 if (!path.dentry)
1da177e4 4223 goto put_memory;
3451538a 4224 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4225
6b4d0b27 4226 res = ERR_PTR(-ENOSPC);
3451538a 4227 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4228 if (!inode)
66ee4b88 4229 goto put_memory;
1da177e4 4230
c7277090 4231 inode->i_flags |= i_flags;
2c48b9c4 4232 d_instantiate(path.dentry, inode);
1da177e4 4233 inode->i_size = size;
6d6b77f1 4234 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4235 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4236 if (IS_ERR(res))
66ee4b88 4237 goto put_path;
4b42af81 4238
6b4d0b27 4239 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4240 &shmem_file_operations);
6b4d0b27 4241 if (IS_ERR(res))
66ee4b88 4242 goto put_path;
4b42af81 4243
6b4d0b27 4244 return res;
1da177e4 4245
1da177e4
LT
4246put_memory:
4247 shmem_unacct_size(flags, size);
66ee4b88
KK
4248put_path:
4249 path_put(&path);
6b4d0b27 4250 return res;
1da177e4 4251}
c7277090
EP
4252
4253/**
4254 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4255 * kernel internal. There will be NO LSM permission checks against the
4256 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4257 * higher layer. The users are the big_key and shm implementations. LSM
4258 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4259 * @name: name for dentry (to be seen in /proc/<pid>/maps
4260 * @size: size to be set for the file
4261 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4262 */
4263struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4264{
4265 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4266}
4267
4268/**
4269 * shmem_file_setup - get an unlinked file living in tmpfs
4270 * @name: name for dentry (to be seen in /proc/<pid>/maps
4271 * @size: size to be set for the file
4272 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4273 */
4274struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4275{
4276 return __shmem_file_setup(name, size, flags, 0);
4277}
395e0ddc 4278EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4279
46711810 4280/**
1da177e4 4281 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4282 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4283 */
4284int shmem_zero_setup(struct vm_area_struct *vma)
4285{
4286 struct file *file;
4287 loff_t size = vma->vm_end - vma->vm_start;
4288
66fc1303
HD
4289 /*
4290 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4291 * between XFS directory reading and selinux: since this file is only
4292 * accessible to the user through its mapping, use S_PRIVATE flag to
4293 * bypass file security, in the same way as shmem_kernel_file_setup().
4294 */
4295 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
4296 if (IS_ERR(file))
4297 return PTR_ERR(file);
4298
4299 if (vma->vm_file)
4300 fput(vma->vm_file);
4301 vma->vm_file = file;
4302 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4303
e496cf3d 4304 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4305 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4306 (vma->vm_end & HPAGE_PMD_MASK)) {
4307 khugepaged_enter(vma, vma->vm_flags);
4308 }
4309
1da177e4
LT
4310 return 0;
4311}
d9d90e5e
HD
4312
4313/**
4314 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4315 * @mapping: the page's address_space
4316 * @index: the page index
4317 * @gfp: the page allocator flags to use if allocating
4318 *
4319 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4320 * with any new page allocations done using the specified allocation flags.
4321 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4322 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4323 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4324 *
68da9f05
HD
4325 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4326 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4327 */
4328struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4329 pgoff_t index, gfp_t gfp)
4330{
68da9f05
HD
4331#ifdef CONFIG_SHMEM
4332 struct inode *inode = mapping->host;
9276aad6 4333 struct page *page;
68da9f05
HD
4334 int error;
4335
4336 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4337 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4338 gfp, NULL, NULL, NULL);
68da9f05
HD
4339 if (error)
4340 page = ERR_PTR(error);
4341 else
4342 unlock_page(page);
4343 return page;
4344#else
4345 /*
4346 * The tiny !SHMEM case uses ramfs without swap
4347 */
d9d90e5e 4348 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4349#endif
d9d90e5e
HD
4350}
4351EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);