]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/shmem.c
shmem: Convert shmem_radix_tree_replace to XArray
[thirdparty/linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
853ac43a 39
95cc09d6
AA
40#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41
853ac43a
MM
42static struct vfsmount *shm_mnt;
43
44#ifdef CONFIG_SHMEM
1da177e4
LT
45/*
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
49 */
50
39f0247d 51#include <linux/xattr.h>
a5694255 52#include <linux/exportfs.h>
1c7c474c 53#include <linux/posix_acl.h>
feda821e 54#include <linux/posix_acl_xattr.h>
1da177e4 55#include <linux/mman.h>
1da177e4
LT
56#include <linux/string.h>
57#include <linux/slab.h>
58#include <linux/backing-dev.h>
59#include <linux/shmem_fs.h>
1da177e4 60#include <linux/writeback.h>
1da177e4 61#include <linux/blkdev.h>
bda97eab 62#include <linux/pagevec.h>
41ffe5d5 63#include <linux/percpu_counter.h>
83e4fa9c 64#include <linux/falloc.h>
708e3508 65#include <linux/splice.h>
1da177e4
LT
66#include <linux/security.h>
67#include <linux/swapops.h>
68#include <linux/mempolicy.h>
69#include <linux/namei.h>
b00dc3ad 70#include <linux/ctype.h>
304dbdb7 71#include <linux/migrate.h>
c1f60a5a 72#include <linux/highmem.h>
680d794b 73#include <linux/seq_file.h>
92562927 74#include <linux/magic.h>
9183df25 75#include <linux/syscalls.h>
40e041a2 76#include <linux/fcntl.h>
9183df25 77#include <uapi/linux/memfd.h>
cfda0526 78#include <linux/userfaultfd_k.h>
4c27fe4c 79#include <linux/rmap.h>
2b4db796 80#include <linux/uuid.h>
304dbdb7 81
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/pgtable.h>
84
dd56b046
MG
85#include "internal.h"
86
09cbfeaf
KS
87#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 89
1da177e4
LT
90/* Pretend that each entry is of this size in directory's i_size */
91#define BOGO_DIRENT_SIZE 20
92
69f07ec9
HD
93/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94#define SHORT_SYMLINK_LEN 128
95
1aac1400 96/*
f00cdc6d
HD
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_mutex making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
100 */
101struct shmem_falloc {
8e205f77 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
103 pgoff_t start; /* start of range currently being fallocated */
104 pgoff_t next; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
107};
108
b76db735 109#ifdef CONFIG_TMPFS
680d794b
AM
110static unsigned long shmem_default_max_blocks(void)
111{
112 return totalram_pages / 2;
113}
114
115static unsigned long shmem_default_max_inodes(void)
116{
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118}
b76db735 119#endif
680d794b 120
bde05d1c
HD
121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
68da9f05 124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 125 struct page **pagep, enum sgp_type sgp,
cfda0526 126 gfp_t gfp, struct vm_area_struct *vma,
2b740303 127 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 128
f3f0e1d2 129int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 130 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
131{
132 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 133 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 134}
1da177e4 135
1da177e4
LT
136static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137{
138 return sb->s_fs_info;
139}
140
141/*
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
146 */
147static inline int shmem_acct_size(unsigned long flags, loff_t size)
148{
0b0a0806 149 return (flags & VM_NORESERVE) ?
191c5424 150 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
151}
152
153static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154{
0b0a0806 155 if (!(flags & VM_NORESERVE))
1da177e4
LT
156 vm_unacct_memory(VM_ACCT(size));
157}
158
77142517
KK
159static inline int shmem_reacct_size(unsigned long flags,
160 loff_t oldsize, loff_t newsize)
161{
162 if (!(flags & VM_NORESERVE)) {
163 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164 return security_vm_enough_memory_mm(current->mm,
165 VM_ACCT(newsize) - VM_ACCT(oldsize));
166 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 }
169 return 0;
170}
171
1da177e4
LT
172/*
173 * ... whereas tmpfs objects are accounted incrementally as
75edd345 174 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177 */
800d8c63 178static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 179{
800d8c63
KS
180 if (!(flags & VM_NORESERVE))
181 return 0;
182
183 return security_vm_enough_memory_mm(current->mm,
184 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
185}
186
187static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188{
0b0a0806 189 if (flags & VM_NORESERVE)
09cbfeaf 190 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
191}
192
0f079694
MR
193static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194{
195 struct shmem_inode_info *info = SHMEM_I(inode);
196 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197
198 if (shmem_acct_block(info->flags, pages))
199 return false;
200
201 if (sbinfo->max_blocks) {
202 if (percpu_counter_compare(&sbinfo->used_blocks,
203 sbinfo->max_blocks - pages) > 0)
204 goto unacct;
205 percpu_counter_add(&sbinfo->used_blocks, pages);
206 }
207
208 return true;
209
210unacct:
211 shmem_unacct_blocks(info->flags, pages);
212 return false;
213}
214
215static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216{
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (sbinfo->max_blocks)
221 percpu_counter_sub(&sbinfo->used_blocks, pages);
222 shmem_unacct_blocks(info->flags, pages);
223}
224
759b9775 225static const struct super_operations shmem_ops;
f5e54d6e 226static const struct address_space_operations shmem_aops;
15ad7cdc 227static const struct file_operations shmem_file_operations;
92e1d5be
AV
228static const struct inode_operations shmem_inode_operations;
229static const struct inode_operations shmem_dir_inode_operations;
230static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 231static const struct vm_operations_struct shmem_vm_ops;
779750d2 232static struct file_system_type shmem_fs_type;
1da177e4 233
b0506e48
MR
234bool vma_is_shmem(struct vm_area_struct *vma)
235{
236 return vma->vm_ops == &shmem_vm_ops;
237}
238
1da177e4 239static LIST_HEAD(shmem_swaplist);
cb5f7b9a 240static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 241
5b04c689
PE
242static int shmem_reserve_inode(struct super_block *sb)
243{
244 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245 if (sbinfo->max_inodes) {
246 spin_lock(&sbinfo->stat_lock);
247 if (!sbinfo->free_inodes) {
248 spin_unlock(&sbinfo->stat_lock);
249 return -ENOSPC;
250 }
251 sbinfo->free_inodes--;
252 spin_unlock(&sbinfo->stat_lock);
253 }
254 return 0;
255}
256
257static void shmem_free_inode(struct super_block *sb)
258{
259 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260 if (sbinfo->max_inodes) {
261 spin_lock(&sbinfo->stat_lock);
262 sbinfo->free_inodes++;
263 spin_unlock(&sbinfo->stat_lock);
264 }
265}
266
46711810 267/**
41ffe5d5 268 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
269 * @inode: inode to recalc
270 *
271 * We have to calculate the free blocks since the mm can drop
272 * undirtied hole pages behind our back.
273 *
274 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276 *
277 * It has to be called with the spinlock held.
278 */
279static void shmem_recalc_inode(struct inode *inode)
280{
281 struct shmem_inode_info *info = SHMEM_I(inode);
282 long freed;
283
284 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285 if (freed > 0) {
286 info->alloced -= freed;
54af6042 287 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 288 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
289 }
290}
291
800d8c63
KS
292bool shmem_charge(struct inode *inode, long pages)
293{
294 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 295 unsigned long flags;
800d8c63 296
0f079694 297 if (!shmem_inode_acct_block(inode, pages))
800d8c63 298 return false;
b1cc94ab 299
4595ef88 300 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
301 info->alloced += pages;
302 inode->i_blocks += pages * BLOCKS_PER_PAGE;
303 shmem_recalc_inode(inode);
4595ef88 304 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
305 inode->i_mapping->nrpages += pages;
306
800d8c63
KS
307 return true;
308}
309
310void shmem_uncharge(struct inode *inode, long pages)
311{
312 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 313 unsigned long flags;
800d8c63 314
4595ef88 315 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
316 info->alloced -= pages;
317 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
318 shmem_recalc_inode(inode);
4595ef88 319 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 320
0f079694 321 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
322}
323
7a5d0fbb 324/*
62f945b6 325 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 326 */
62f945b6 327static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
328 pgoff_t index, void *expected, void *replacement)
329{
62f945b6 330 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 331 void *item;
7a5d0fbb
HD
332
333 VM_BUG_ON(!expected);
6dbaf22c 334 VM_BUG_ON(!replacement);
62f945b6 335 item = xas_load(&xas);
7a5d0fbb
HD
336 if (item != expected)
337 return -ENOENT;
62f945b6 338 xas_store(&xas, replacement);
7a5d0fbb
HD
339 return 0;
340}
341
d1899228
HD
342/*
343 * Sometimes, before we decide whether to proceed or to fail, we must check
344 * that an entry was not already brought back from swap by a racing thread.
345 *
346 * Checking page is not enough: by the time a SwapCache page is locked, it
347 * might be reused, and again be SwapCache, using the same swap as before.
348 */
349static bool shmem_confirm_swap(struct address_space *mapping,
350 pgoff_t index, swp_entry_t swap)
351{
352 void *item;
353
354 rcu_read_lock();
b93b0163 355 item = radix_tree_lookup(&mapping->i_pages, index);
d1899228
HD
356 rcu_read_unlock();
357 return item == swp_to_radix_entry(swap);
358}
359
5a6e75f8
KS
360/*
361 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
362 *
363 * SHMEM_HUGE_NEVER:
364 * disables huge pages for the mount;
365 * SHMEM_HUGE_ALWAYS:
366 * enables huge pages for the mount;
367 * SHMEM_HUGE_WITHIN_SIZE:
368 * only allocate huge pages if the page will be fully within i_size,
369 * also respect fadvise()/madvise() hints;
370 * SHMEM_HUGE_ADVISE:
371 * only allocate huge pages if requested with fadvise()/madvise();
372 */
373
374#define SHMEM_HUGE_NEVER 0
375#define SHMEM_HUGE_ALWAYS 1
376#define SHMEM_HUGE_WITHIN_SIZE 2
377#define SHMEM_HUGE_ADVISE 3
378
379/*
380 * Special values.
381 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
382 *
383 * SHMEM_HUGE_DENY:
384 * disables huge on shm_mnt and all mounts, for emergency use;
385 * SHMEM_HUGE_FORCE:
386 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
387 *
388 */
389#define SHMEM_HUGE_DENY (-1)
390#define SHMEM_HUGE_FORCE (-2)
391
e496cf3d 392#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
393/* ifdef here to avoid bloating shmem.o when not necessary */
394
5b9c98f3 395static int shmem_huge __read_mostly;
5a6e75f8 396
f1f5929c 397#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
398static int shmem_parse_huge(const char *str)
399{
400 if (!strcmp(str, "never"))
401 return SHMEM_HUGE_NEVER;
402 if (!strcmp(str, "always"))
403 return SHMEM_HUGE_ALWAYS;
404 if (!strcmp(str, "within_size"))
405 return SHMEM_HUGE_WITHIN_SIZE;
406 if (!strcmp(str, "advise"))
407 return SHMEM_HUGE_ADVISE;
408 if (!strcmp(str, "deny"))
409 return SHMEM_HUGE_DENY;
410 if (!strcmp(str, "force"))
411 return SHMEM_HUGE_FORCE;
412 return -EINVAL;
413}
414
415static const char *shmem_format_huge(int huge)
416{
417 switch (huge) {
418 case SHMEM_HUGE_NEVER:
419 return "never";
420 case SHMEM_HUGE_ALWAYS:
421 return "always";
422 case SHMEM_HUGE_WITHIN_SIZE:
423 return "within_size";
424 case SHMEM_HUGE_ADVISE:
425 return "advise";
426 case SHMEM_HUGE_DENY:
427 return "deny";
428 case SHMEM_HUGE_FORCE:
429 return "force";
430 default:
431 VM_BUG_ON(1);
432 return "bad_val";
433 }
434}
f1f5929c 435#endif
5a6e75f8 436
779750d2
KS
437static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
438 struct shrink_control *sc, unsigned long nr_to_split)
439{
440 LIST_HEAD(list), *pos, *next;
253fd0f0 441 LIST_HEAD(to_remove);
779750d2
KS
442 struct inode *inode;
443 struct shmem_inode_info *info;
444 struct page *page;
445 unsigned long batch = sc ? sc->nr_to_scan : 128;
446 int removed = 0, split = 0;
447
448 if (list_empty(&sbinfo->shrinklist))
449 return SHRINK_STOP;
450
451 spin_lock(&sbinfo->shrinklist_lock);
452 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
453 info = list_entry(pos, struct shmem_inode_info, shrinklist);
454
455 /* pin the inode */
456 inode = igrab(&info->vfs_inode);
457
458 /* inode is about to be evicted */
459 if (!inode) {
460 list_del_init(&info->shrinklist);
461 removed++;
462 goto next;
463 }
464
465 /* Check if there's anything to gain */
466 if (round_up(inode->i_size, PAGE_SIZE) ==
467 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 468 list_move(&info->shrinklist, &to_remove);
779750d2 469 removed++;
779750d2
KS
470 goto next;
471 }
472
473 list_move(&info->shrinklist, &list);
474next:
475 if (!--batch)
476 break;
477 }
478 spin_unlock(&sbinfo->shrinklist_lock);
479
253fd0f0
KS
480 list_for_each_safe(pos, next, &to_remove) {
481 info = list_entry(pos, struct shmem_inode_info, shrinklist);
482 inode = &info->vfs_inode;
483 list_del_init(&info->shrinklist);
484 iput(inode);
485 }
486
779750d2
KS
487 list_for_each_safe(pos, next, &list) {
488 int ret;
489
490 info = list_entry(pos, struct shmem_inode_info, shrinklist);
491 inode = &info->vfs_inode;
492
b3cd54b2
KS
493 if (nr_to_split && split >= nr_to_split)
494 goto leave;
779750d2 495
b3cd54b2 496 page = find_get_page(inode->i_mapping,
779750d2
KS
497 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
498 if (!page)
499 goto drop;
500
b3cd54b2 501 /* No huge page at the end of the file: nothing to split */
779750d2 502 if (!PageTransHuge(page)) {
779750d2
KS
503 put_page(page);
504 goto drop;
505 }
506
b3cd54b2
KS
507 /*
508 * Leave the inode on the list if we failed to lock
509 * the page at this time.
510 *
511 * Waiting for the lock may lead to deadlock in the
512 * reclaim path.
513 */
514 if (!trylock_page(page)) {
515 put_page(page);
516 goto leave;
517 }
518
779750d2
KS
519 ret = split_huge_page(page);
520 unlock_page(page);
521 put_page(page);
522
b3cd54b2
KS
523 /* If split failed leave the inode on the list */
524 if (ret)
525 goto leave;
779750d2
KS
526
527 split++;
528drop:
529 list_del_init(&info->shrinklist);
530 removed++;
b3cd54b2 531leave:
779750d2
KS
532 iput(inode);
533 }
534
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_splice_tail(&list, &sbinfo->shrinklist);
537 sbinfo->shrinklist_len -= removed;
538 spin_unlock(&sbinfo->shrinklist_lock);
539
540 return split;
541}
542
543static long shmem_unused_huge_scan(struct super_block *sb,
544 struct shrink_control *sc)
545{
546 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
547
548 if (!READ_ONCE(sbinfo->shrinklist_len))
549 return SHRINK_STOP;
550
551 return shmem_unused_huge_shrink(sbinfo, sc, 0);
552}
553
554static long shmem_unused_huge_count(struct super_block *sb,
555 struct shrink_control *sc)
556{
557 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
558 return READ_ONCE(sbinfo->shrinklist_len);
559}
e496cf3d 560#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
561
562#define shmem_huge SHMEM_HUGE_DENY
563
779750d2
KS
564static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
565 struct shrink_control *sc, unsigned long nr_to_split)
566{
567 return 0;
568}
e496cf3d 569#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 570
89fdcd26
YS
571static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
572{
573 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
574 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
575 shmem_huge != SHMEM_HUGE_DENY)
576 return true;
577 return false;
578}
579
46f65ec1
HD
580/*
581 * Like add_to_page_cache_locked, but error if expected item has gone.
582 */
583static int shmem_add_to_page_cache(struct page *page,
584 struct address_space *mapping,
fed400a1 585 pgoff_t index, void *expected)
46f65ec1 586{
800d8c63 587 int error, nr = hpage_nr_pages(page);
46f65ec1 588
800d8c63
KS
589 VM_BUG_ON_PAGE(PageTail(page), page);
590 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
591 VM_BUG_ON_PAGE(!PageLocked(page), page);
592 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 593 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 594
800d8c63 595 page_ref_add(page, nr);
b065b432
HD
596 page->mapping = mapping;
597 page->index = index;
598
b93b0163 599 xa_lock_irq(&mapping->i_pages);
800d8c63
KS
600 if (PageTransHuge(page)) {
601 void __rcu **results;
602 pgoff_t idx;
603 int i;
604
605 error = 0;
b93b0163 606 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
800d8c63
KS
607 &results, &idx, index, 1) &&
608 idx < index + HPAGE_PMD_NR) {
609 error = -EEXIST;
610 }
611
612 if (!error) {
613 for (i = 0; i < HPAGE_PMD_NR; i++) {
b93b0163 614 error = radix_tree_insert(&mapping->i_pages,
800d8c63
KS
615 index + i, page + i);
616 VM_BUG_ON(error);
617 }
618 count_vm_event(THP_FILE_ALLOC);
619 }
620 } else if (!expected) {
b93b0163 621 error = radix_tree_insert(&mapping->i_pages, index, page);
800d8c63 622 } else {
62f945b6 623 error = shmem_replace_entry(mapping, index, expected, page);
800d8c63
KS
624 }
625
46f65ec1 626 if (!error) {
800d8c63
KS
627 mapping->nrpages += nr;
628 if (PageTransHuge(page))
11fb9989
MG
629 __inc_node_page_state(page, NR_SHMEM_THPS);
630 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
631 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b93b0163 632 xa_unlock_irq(&mapping->i_pages);
b065b432
HD
633 } else {
634 page->mapping = NULL;
b93b0163 635 xa_unlock_irq(&mapping->i_pages);
800d8c63 636 page_ref_sub(page, nr);
46f65ec1 637 }
46f65ec1
HD
638 return error;
639}
640
6922c0c7
HD
641/*
642 * Like delete_from_page_cache, but substitutes swap for page.
643 */
644static void shmem_delete_from_page_cache(struct page *page, void *radswap)
645{
646 struct address_space *mapping = page->mapping;
647 int error;
648
800d8c63
KS
649 VM_BUG_ON_PAGE(PageCompound(page), page);
650
b93b0163 651 xa_lock_irq(&mapping->i_pages);
62f945b6 652 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
653 page->mapping = NULL;
654 mapping->nrpages--;
11fb9989
MG
655 __dec_node_page_state(page, NR_FILE_PAGES);
656 __dec_node_page_state(page, NR_SHMEM);
b93b0163 657 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 658 put_page(page);
6922c0c7
HD
659 BUG_ON(error);
660}
661
7a5d0fbb
HD
662/*
663 * Remove swap entry from radix tree, free the swap and its page cache.
664 */
665static int shmem_free_swap(struct address_space *mapping,
666 pgoff_t index, void *radswap)
667{
6dbaf22c 668 void *old;
7a5d0fbb 669
b93b0163
MW
670 xa_lock_irq(&mapping->i_pages);
671 old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
672 xa_unlock_irq(&mapping->i_pages);
6dbaf22c
JW
673 if (old != radswap)
674 return -ENOENT;
675 free_swap_and_cache(radix_to_swp_entry(radswap));
676 return 0;
7a5d0fbb
HD
677}
678
6a15a370
VB
679/*
680 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 681 * given offsets are swapped out.
6a15a370 682 *
b93b0163 683 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
684 * as long as the inode doesn't go away and racy results are not a problem.
685 */
48131e03
VB
686unsigned long shmem_partial_swap_usage(struct address_space *mapping,
687 pgoff_t start, pgoff_t end)
6a15a370 688{
6a15a370 689 struct radix_tree_iter iter;
5b9c98f3 690 void __rcu **slot;
6a15a370 691 struct page *page;
48131e03 692 unsigned long swapped = 0;
6a15a370
VB
693
694 rcu_read_lock();
695
b93b0163 696 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
6a15a370
VB
697 if (iter.index >= end)
698 break;
699
700 page = radix_tree_deref_slot(slot);
701
2cf938aa
MW
702 if (radix_tree_deref_retry(page)) {
703 slot = radix_tree_iter_retry(&iter);
704 continue;
705 }
6a15a370 706
3159f943 707 if (xa_is_value(page))
6a15a370
VB
708 swapped++;
709
710 if (need_resched()) {
148deab2 711 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 712 cond_resched_rcu();
6a15a370
VB
713 }
714 }
715
716 rcu_read_unlock();
717
718 return swapped << PAGE_SHIFT;
719}
720
48131e03
VB
721/*
722 * Determine (in bytes) how many of the shmem object's pages mapped by the
723 * given vma is swapped out.
724 *
b93b0163 725 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
726 * as long as the inode doesn't go away and racy results are not a problem.
727 */
728unsigned long shmem_swap_usage(struct vm_area_struct *vma)
729{
730 struct inode *inode = file_inode(vma->vm_file);
731 struct shmem_inode_info *info = SHMEM_I(inode);
732 struct address_space *mapping = inode->i_mapping;
733 unsigned long swapped;
734
735 /* Be careful as we don't hold info->lock */
736 swapped = READ_ONCE(info->swapped);
737
738 /*
739 * The easier cases are when the shmem object has nothing in swap, or
740 * the vma maps it whole. Then we can simply use the stats that we
741 * already track.
742 */
743 if (!swapped)
744 return 0;
745
746 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
747 return swapped << PAGE_SHIFT;
748
749 /* Here comes the more involved part */
750 return shmem_partial_swap_usage(mapping,
751 linear_page_index(vma, vma->vm_start),
752 linear_page_index(vma, vma->vm_end));
753}
754
24513264
HD
755/*
756 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
757 */
758void shmem_unlock_mapping(struct address_space *mapping)
759{
760 struct pagevec pvec;
761 pgoff_t indices[PAGEVEC_SIZE];
762 pgoff_t index = 0;
763
86679820 764 pagevec_init(&pvec);
24513264
HD
765 /*
766 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
767 */
768 while (!mapping_unevictable(mapping)) {
769 /*
770 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
771 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
772 */
0cd6144a
JW
773 pvec.nr = find_get_entries(mapping, index,
774 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
775 if (!pvec.nr)
776 break;
777 index = indices[pvec.nr - 1] + 1;
0cd6144a 778 pagevec_remove_exceptionals(&pvec);
24513264
HD
779 check_move_unevictable_pages(pvec.pages, pvec.nr);
780 pagevec_release(&pvec);
781 cond_resched();
782 }
7a5d0fbb
HD
783}
784
785/*
786 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 787 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 788 */
1635f6a7
HD
789static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
790 bool unfalloc)
1da177e4 791{
285b2c4f 792 struct address_space *mapping = inode->i_mapping;
1da177e4 793 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
794 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
795 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
796 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
797 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 798 struct pagevec pvec;
7a5d0fbb
HD
799 pgoff_t indices[PAGEVEC_SIZE];
800 long nr_swaps_freed = 0;
285b2c4f 801 pgoff_t index;
bda97eab
HD
802 int i;
803
83e4fa9c
HD
804 if (lend == -1)
805 end = -1; /* unsigned, so actually very big */
bda97eab 806
86679820 807 pagevec_init(&pvec);
bda97eab 808 index = start;
83e4fa9c 809 while (index < end) {
0cd6144a
JW
810 pvec.nr = find_get_entries(mapping, index,
811 min(end - index, (pgoff_t)PAGEVEC_SIZE),
812 pvec.pages, indices);
7a5d0fbb
HD
813 if (!pvec.nr)
814 break;
bda97eab
HD
815 for (i = 0; i < pagevec_count(&pvec); i++) {
816 struct page *page = pvec.pages[i];
817
7a5d0fbb 818 index = indices[i];
83e4fa9c 819 if (index >= end)
bda97eab
HD
820 break;
821
3159f943 822 if (xa_is_value(page)) {
1635f6a7
HD
823 if (unfalloc)
824 continue;
7a5d0fbb
HD
825 nr_swaps_freed += !shmem_free_swap(mapping,
826 index, page);
bda97eab 827 continue;
7a5d0fbb
HD
828 }
829
800d8c63
KS
830 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
831
7a5d0fbb 832 if (!trylock_page(page))
bda97eab 833 continue;
800d8c63
KS
834
835 if (PageTransTail(page)) {
836 /* Middle of THP: zero out the page */
837 clear_highpage(page);
838 unlock_page(page);
839 continue;
840 } else if (PageTransHuge(page)) {
841 if (index == round_down(end, HPAGE_PMD_NR)) {
842 /*
843 * Range ends in the middle of THP:
844 * zero out the page
845 */
846 clear_highpage(page);
847 unlock_page(page);
848 continue;
849 }
850 index += HPAGE_PMD_NR - 1;
851 i += HPAGE_PMD_NR - 1;
852 }
853
1635f6a7 854 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
855 VM_BUG_ON_PAGE(PageTail(page), page);
856 if (page_mapping(page) == mapping) {
309381fe 857 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
858 truncate_inode_page(mapping, page);
859 }
bda97eab 860 }
bda97eab
HD
861 unlock_page(page);
862 }
0cd6144a 863 pagevec_remove_exceptionals(&pvec);
24513264 864 pagevec_release(&pvec);
bda97eab
HD
865 cond_resched();
866 index++;
867 }
1da177e4 868
83e4fa9c 869 if (partial_start) {
bda97eab 870 struct page *page = NULL;
9e18eb29 871 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 872 if (page) {
09cbfeaf 873 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
874 if (start > end) {
875 top = partial_end;
876 partial_end = 0;
877 }
878 zero_user_segment(page, partial_start, top);
879 set_page_dirty(page);
880 unlock_page(page);
09cbfeaf 881 put_page(page);
83e4fa9c
HD
882 }
883 }
884 if (partial_end) {
885 struct page *page = NULL;
9e18eb29 886 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
887 if (page) {
888 zero_user_segment(page, 0, partial_end);
bda97eab
HD
889 set_page_dirty(page);
890 unlock_page(page);
09cbfeaf 891 put_page(page);
bda97eab
HD
892 }
893 }
83e4fa9c
HD
894 if (start >= end)
895 return;
bda97eab
HD
896
897 index = start;
b1a36650 898 while (index < end) {
bda97eab 899 cond_resched();
0cd6144a
JW
900
901 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 902 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 903 pvec.pages, indices);
7a5d0fbb 904 if (!pvec.nr) {
b1a36650
HD
905 /* If all gone or hole-punch or unfalloc, we're done */
906 if (index == start || end != -1)
bda97eab 907 break;
b1a36650 908 /* But if truncating, restart to make sure all gone */
bda97eab
HD
909 index = start;
910 continue;
911 }
bda97eab
HD
912 for (i = 0; i < pagevec_count(&pvec); i++) {
913 struct page *page = pvec.pages[i];
914
7a5d0fbb 915 index = indices[i];
83e4fa9c 916 if (index >= end)
bda97eab
HD
917 break;
918
3159f943 919 if (xa_is_value(page)) {
1635f6a7
HD
920 if (unfalloc)
921 continue;
b1a36650
HD
922 if (shmem_free_swap(mapping, index, page)) {
923 /* Swap was replaced by page: retry */
924 index--;
925 break;
926 }
927 nr_swaps_freed++;
7a5d0fbb
HD
928 continue;
929 }
930
bda97eab 931 lock_page(page);
800d8c63
KS
932
933 if (PageTransTail(page)) {
934 /* Middle of THP: zero out the page */
935 clear_highpage(page);
936 unlock_page(page);
937 /*
938 * Partial thp truncate due 'start' in middle
939 * of THP: don't need to look on these pages
940 * again on !pvec.nr restart.
941 */
942 if (index != round_down(end, HPAGE_PMD_NR))
943 start++;
944 continue;
945 } else if (PageTransHuge(page)) {
946 if (index == round_down(end, HPAGE_PMD_NR)) {
947 /*
948 * Range ends in the middle of THP:
949 * zero out the page
950 */
951 clear_highpage(page);
952 unlock_page(page);
953 continue;
954 }
955 index += HPAGE_PMD_NR - 1;
956 i += HPAGE_PMD_NR - 1;
957 }
958
1635f6a7 959 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
960 VM_BUG_ON_PAGE(PageTail(page), page);
961 if (page_mapping(page) == mapping) {
309381fe 962 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 963 truncate_inode_page(mapping, page);
b1a36650
HD
964 } else {
965 /* Page was replaced by swap: retry */
966 unlock_page(page);
967 index--;
968 break;
1635f6a7 969 }
7a5d0fbb 970 }
bda97eab
HD
971 unlock_page(page);
972 }
0cd6144a 973 pagevec_remove_exceptionals(&pvec);
24513264 974 pagevec_release(&pvec);
bda97eab
HD
975 index++;
976 }
94c1e62d 977
4595ef88 978 spin_lock_irq(&info->lock);
7a5d0fbb 979 info->swapped -= nr_swaps_freed;
1da177e4 980 shmem_recalc_inode(inode);
4595ef88 981 spin_unlock_irq(&info->lock);
1635f6a7 982}
1da177e4 983
1635f6a7
HD
984void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
985{
986 shmem_undo_range(inode, lstart, lend, false);
078cd827 987 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 988}
94c1e62d 989EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 990
a528d35e
DH
991static int shmem_getattr(const struct path *path, struct kstat *stat,
992 u32 request_mask, unsigned int query_flags)
44a30220 993{
a528d35e 994 struct inode *inode = path->dentry->d_inode;
44a30220 995 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 996 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 997
d0424c42 998 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 999 spin_lock_irq(&info->lock);
d0424c42 1000 shmem_recalc_inode(inode);
4595ef88 1001 spin_unlock_irq(&info->lock);
d0424c42 1002 }
44a30220 1003 generic_fillattr(inode, stat);
89fdcd26
YS
1004
1005 if (is_huge_enabled(sb_info))
1006 stat->blksize = HPAGE_PMD_SIZE;
1007
44a30220
YZ
1008 return 0;
1009}
1010
94c1e62d 1011static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1012{
75c3cfa8 1013 struct inode *inode = d_inode(dentry);
40e041a2 1014 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1015 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1016 int error;
1017
31051c85 1018 error = setattr_prepare(dentry, attr);
db78b877
CH
1019 if (error)
1020 return error;
1021
94c1e62d
HD
1022 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1023 loff_t oldsize = inode->i_size;
1024 loff_t newsize = attr->ia_size;
3889e6e7 1025
40e041a2
DR
1026 /* protected by i_mutex */
1027 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1028 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1029 return -EPERM;
1030
94c1e62d 1031 if (newsize != oldsize) {
77142517
KK
1032 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1033 oldsize, newsize);
1034 if (error)
1035 return error;
94c1e62d 1036 i_size_write(inode, newsize);
078cd827 1037 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1038 }
afa2db2f 1039 if (newsize <= oldsize) {
94c1e62d 1040 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1041 if (oldsize > holebegin)
1042 unmap_mapping_range(inode->i_mapping,
1043 holebegin, 0, 1);
1044 if (info->alloced)
1045 shmem_truncate_range(inode,
1046 newsize, (loff_t)-1);
94c1e62d 1047 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1048 if (oldsize > holebegin)
1049 unmap_mapping_range(inode->i_mapping,
1050 holebegin, 0, 1);
779750d2
KS
1051
1052 /*
1053 * Part of the huge page can be beyond i_size: subject
1054 * to shrink under memory pressure.
1055 */
1056 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1057 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1058 /*
1059 * _careful to defend against unlocked access to
1060 * ->shrink_list in shmem_unused_huge_shrink()
1061 */
1062 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1063 list_add_tail(&info->shrinklist,
1064 &sbinfo->shrinklist);
1065 sbinfo->shrinklist_len++;
1066 }
1067 spin_unlock(&sbinfo->shrinklist_lock);
1068 }
94c1e62d 1069 }
1da177e4
LT
1070 }
1071
db78b877 1072 setattr_copy(inode, attr);
db78b877 1073 if (attr->ia_valid & ATTR_MODE)
feda821e 1074 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1075 return error;
1076}
1077
1f895f75 1078static void shmem_evict_inode(struct inode *inode)
1da177e4 1079{
1da177e4 1080 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1081 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1082
3889e6e7 1083 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1084 shmem_unacct_size(info->flags, inode->i_size);
1085 inode->i_size = 0;
3889e6e7 1086 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1087 if (!list_empty(&info->shrinklist)) {
1088 spin_lock(&sbinfo->shrinklist_lock);
1089 if (!list_empty(&info->shrinklist)) {
1090 list_del_init(&info->shrinklist);
1091 sbinfo->shrinklist_len--;
1092 }
1093 spin_unlock(&sbinfo->shrinklist_lock);
1094 }
1da177e4 1095 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1096 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1097 list_del_init(&info->swaplist);
cb5f7b9a 1098 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1099 }
3ed47db3 1100 }
b09e0fa4 1101
38f38657 1102 simple_xattrs_free(&info->xattrs);
0f3c42f5 1103 WARN_ON(inode->i_blocks);
5b04c689 1104 shmem_free_inode(inode->i_sb);
dbd5768f 1105 clear_inode(inode);
1da177e4
LT
1106}
1107
478922e2
MW
1108static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1109{
1110 struct radix_tree_iter iter;
5b9c98f3 1111 void __rcu **slot;
478922e2
MW
1112 unsigned long found = -1;
1113 unsigned int checked = 0;
1114
1115 rcu_read_lock();
1116 radix_tree_for_each_slot(slot, root, &iter, 0) {
5b9c98f3
MK
1117 void *entry = radix_tree_deref_slot(slot);
1118
1119 if (radix_tree_deref_retry(entry)) {
1120 slot = radix_tree_iter_retry(&iter);
1121 continue;
1122 }
1123 if (entry == item) {
478922e2
MW
1124 found = iter.index;
1125 break;
1126 }
1127 checked++;
1128 if ((checked % 4096) != 0)
1129 continue;
1130 slot = radix_tree_iter_resume(slot, &iter);
1131 cond_resched_rcu();
1132 }
1133
1134 rcu_read_unlock();
1135 return found;
1136}
1137
46f65ec1
HD
1138/*
1139 * If swap found in inode, free it and move page from swapcache to filecache.
1140 */
41ffe5d5 1141static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1142 swp_entry_t swap, struct page **pagep)
1da177e4 1143{
285b2c4f 1144 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1145 void *radswap;
41ffe5d5 1146 pgoff_t index;
bde05d1c
HD
1147 gfp_t gfp;
1148 int error = 0;
1da177e4 1149
46f65ec1 1150 radswap = swp_to_radix_entry(swap);
b93b0163 1151 index = find_swap_entry(&mapping->i_pages, radswap);
46f65ec1 1152 if (index == -1)
00501b53 1153 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1154
1b1b32f2
HD
1155 /*
1156 * Move _head_ to start search for next from here.
1f895f75 1157 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1158 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1159 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1160 */
1161 if (shmem_swaplist.next != &info->swaplist)
1162 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1163
bde05d1c
HD
1164 gfp = mapping_gfp_mask(mapping);
1165 if (shmem_should_replace_page(*pagep, gfp)) {
1166 mutex_unlock(&shmem_swaplist_mutex);
1167 error = shmem_replace_page(pagep, gfp, info, index);
1168 mutex_lock(&shmem_swaplist_mutex);
1169 /*
1170 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1171 * allocation, but the inode might have been freed while we
1172 * dropped it: although a racing shmem_evict_inode() cannot
1173 * complete without emptying the radix_tree, our page lock
1174 * on this swapcache page is not enough to prevent that -
1175 * free_swap_and_cache() of our swap entry will only
1176 * trylock_page(), removing swap from radix_tree whatever.
1177 *
1178 * We must not proceed to shmem_add_to_page_cache() if the
1179 * inode has been freed, but of course we cannot rely on
1180 * inode or mapping or info to check that. However, we can
1181 * safely check if our swap entry is still in use (and here
1182 * it can't have got reused for another page): if it's still
1183 * in use, then the inode cannot have been freed yet, and we
1184 * can safely proceed (if it's no longer in use, that tells
1185 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1186 */
1187 if (!page_swapcount(*pagep))
1188 error = -ENOENT;
1189 }
1190
d13d1443 1191 /*
778dd893
HD
1192 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1193 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1194 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1195 */
bde05d1c
HD
1196 if (!error)
1197 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1198 radswap);
48f170fb 1199 if (error != -ENOMEM) {
46f65ec1
HD
1200 /*
1201 * Truncation and eviction use free_swap_and_cache(), which
1202 * only does trylock page: if we raced, best clean up here.
1203 */
bde05d1c
HD
1204 delete_from_swap_cache(*pagep);
1205 set_page_dirty(*pagep);
46f65ec1 1206 if (!error) {
4595ef88 1207 spin_lock_irq(&info->lock);
46f65ec1 1208 info->swapped--;
4595ef88 1209 spin_unlock_irq(&info->lock);
46f65ec1
HD
1210 swap_free(swap);
1211 }
1da177e4 1212 }
2e0e26c7 1213 return error;
1da177e4
LT
1214}
1215
1216/*
46f65ec1 1217 * Search through swapped inodes to find and replace swap by page.
1da177e4 1218 */
41ffe5d5 1219int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1220{
41ffe5d5 1221 struct list_head *this, *next;
1da177e4 1222 struct shmem_inode_info *info;
00501b53 1223 struct mem_cgroup *memcg;
bde05d1c
HD
1224 int error = 0;
1225
1226 /*
1227 * There's a faint possibility that swap page was replaced before
0142ef6c 1228 * caller locked it: caller will come back later with the right page.
bde05d1c 1229 */
0142ef6c 1230 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1231 goto out;
778dd893
HD
1232
1233 /*
1234 * Charge page using GFP_KERNEL while we can wait, before taking
1235 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1236 * Charged back to the user (not to caller) when swap account is used.
778dd893 1237 */
2cf85583
TH
1238 error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1239 &memcg, false);
778dd893
HD
1240 if (error)
1241 goto out;
46f65ec1 1242 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1243 error = -EAGAIN;
1da177e4 1244
cb5f7b9a 1245 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1246 list_for_each_safe(this, next, &shmem_swaplist) {
1247 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1248 if (info->swapped)
00501b53 1249 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1250 else
1251 list_del_init(&info->swaplist);
cb5f7b9a 1252 cond_resched();
00501b53 1253 if (error != -EAGAIN)
778dd893 1254 break;
00501b53 1255 /* found nothing in this: move on to search the next */
1da177e4 1256 }
cb5f7b9a 1257 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1258
00501b53
JW
1259 if (error) {
1260 if (error != -ENOMEM)
1261 error = 0;
f627c2f5 1262 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1263 } else
f627c2f5 1264 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1265out:
aaa46865 1266 unlock_page(page);
09cbfeaf 1267 put_page(page);
778dd893 1268 return error;
1da177e4
LT
1269}
1270
1271/*
1272 * Move the page from the page cache to the swap cache.
1273 */
1274static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1275{
1276 struct shmem_inode_info *info;
1da177e4 1277 struct address_space *mapping;
1da177e4 1278 struct inode *inode;
6922c0c7
HD
1279 swp_entry_t swap;
1280 pgoff_t index;
1da177e4 1281
800d8c63 1282 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1283 BUG_ON(!PageLocked(page));
1da177e4
LT
1284 mapping = page->mapping;
1285 index = page->index;
1286 inode = mapping->host;
1287 info = SHMEM_I(inode);
1288 if (info->flags & VM_LOCKED)
1289 goto redirty;
d9fe526a 1290 if (!total_swap_pages)
1da177e4
LT
1291 goto redirty;
1292
d9fe526a 1293 /*
97b713ba
CH
1294 * Our capabilities prevent regular writeback or sync from ever calling
1295 * shmem_writepage; but a stacking filesystem might use ->writepage of
1296 * its underlying filesystem, in which case tmpfs should write out to
1297 * swap only in response to memory pressure, and not for the writeback
1298 * threads or sync.
d9fe526a 1299 */
48f170fb
HD
1300 if (!wbc->for_reclaim) {
1301 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1302 goto redirty;
1303 }
1635f6a7
HD
1304
1305 /*
1306 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1307 * value into swapfile.c, the only way we can correctly account for a
1308 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1309 *
1310 * That's okay for a page already fallocated earlier, but if we have
1311 * not yet completed the fallocation, then (a) we want to keep track
1312 * of this page in case we have to undo it, and (b) it may not be a
1313 * good idea to continue anyway, once we're pushing into swap. So
1314 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1315 */
1316 if (!PageUptodate(page)) {
1aac1400
HD
1317 if (inode->i_private) {
1318 struct shmem_falloc *shmem_falloc;
1319 spin_lock(&inode->i_lock);
1320 shmem_falloc = inode->i_private;
1321 if (shmem_falloc &&
8e205f77 1322 !shmem_falloc->waitq &&
1aac1400
HD
1323 index >= shmem_falloc->start &&
1324 index < shmem_falloc->next)
1325 shmem_falloc->nr_unswapped++;
1326 else
1327 shmem_falloc = NULL;
1328 spin_unlock(&inode->i_lock);
1329 if (shmem_falloc)
1330 goto redirty;
1331 }
1635f6a7
HD
1332 clear_highpage(page);
1333 flush_dcache_page(page);
1334 SetPageUptodate(page);
1335 }
1336
38d8b4e6 1337 swap = get_swap_page(page);
48f170fb
HD
1338 if (!swap.val)
1339 goto redirty;
d9fe526a 1340
b1dea800
HD
1341 /*
1342 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1343 * if it's not already there. Do it now before the page is
1344 * moved to swap cache, when its pagelock no longer protects
b1dea800 1345 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1346 * we've incremented swapped, because shmem_unuse_inode() will
1347 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1348 */
48f170fb
HD
1349 mutex_lock(&shmem_swaplist_mutex);
1350 if (list_empty(&info->swaplist))
1351 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1352
48f170fb 1353 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1354 spin_lock_irq(&info->lock);
6922c0c7 1355 shmem_recalc_inode(inode);
267a4c76 1356 info->swapped++;
4595ef88 1357 spin_unlock_irq(&info->lock);
6922c0c7 1358
267a4c76
HD
1359 swap_shmem_alloc(swap);
1360 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1361
6922c0c7 1362 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1363 BUG_ON(page_mapped(page));
9fab5619 1364 swap_writepage(page, wbc);
1da177e4
LT
1365 return 0;
1366 }
1367
6922c0c7 1368 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1369 put_swap_page(page, swap);
1da177e4
LT
1370redirty:
1371 set_page_dirty(page);
d9fe526a
HD
1372 if (wbc->for_reclaim)
1373 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1374 unlock_page(page);
1375 return 0;
1da177e4
LT
1376}
1377
75edd345 1378#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1379static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1380{
095f1fc4 1381 char buffer[64];
680d794b 1382
71fe804b 1383 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1384 return; /* show nothing */
680d794b 1385
a7a88b23 1386 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1387
1388 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1389}
71fe804b
LS
1390
1391static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1392{
1393 struct mempolicy *mpol = NULL;
1394 if (sbinfo->mpol) {
1395 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1396 mpol = sbinfo->mpol;
1397 mpol_get(mpol);
1398 spin_unlock(&sbinfo->stat_lock);
1399 }
1400 return mpol;
1401}
75edd345
HD
1402#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1403static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1404{
1405}
1406static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1407{
1408 return NULL;
1409}
1410#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1411#ifndef CONFIG_NUMA
1412#define vm_policy vm_private_data
1413#endif
680d794b 1414
800d8c63
KS
1415static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1416 struct shmem_inode_info *info, pgoff_t index)
1417{
1418 /* Create a pseudo vma that just contains the policy */
2c4541e2 1419 vma_init(vma, NULL);
800d8c63
KS
1420 /* Bias interleave by inode number to distribute better across nodes */
1421 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1422 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1423}
1424
1425static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1426{
1427 /* Drop reference taken by mpol_shared_policy_lookup() */
1428 mpol_cond_put(vma->vm_policy);
1429}
1430
41ffe5d5
HD
1431static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1432 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1433{
1da177e4 1434 struct vm_area_struct pvma;
18a2f371 1435 struct page *page;
e9e9b7ec 1436 struct vm_fault vmf;
52cd3b07 1437
800d8c63 1438 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec
MK
1439 vmf.vma = &pvma;
1440 vmf.address = 0;
1441 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1442 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1443
800d8c63
KS
1444 return page;
1445}
1446
1447static struct page *shmem_alloc_hugepage(gfp_t gfp,
1448 struct shmem_inode_info *info, pgoff_t index)
1449{
1450 struct vm_area_struct pvma;
1451 struct inode *inode = &info->vfs_inode;
1452 struct address_space *mapping = inode->i_mapping;
4620a06e 1453 pgoff_t idx, hindex;
800d8c63
KS
1454 void __rcu **results;
1455 struct page *page;
1456
e496cf3d 1457 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1458 return NULL;
1459
4620a06e 1460 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63 1461 rcu_read_lock();
b93b0163 1462 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
800d8c63
KS
1463 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1464 rcu_read_unlock();
1465 return NULL;
1466 }
1467 rcu_read_unlock();
18a2f371 1468
800d8c63
KS
1469 shmem_pseudo_vma_init(&pvma, info, hindex);
1470 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1471 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1472 shmem_pseudo_vma_destroy(&pvma);
1473 if (page)
1474 prep_transhuge_page(page);
18a2f371 1475 return page;
1da177e4
LT
1476}
1477
02098fea 1478static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1479 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1480{
1481 struct vm_area_struct pvma;
18a2f371 1482 struct page *page;
1da177e4 1483
800d8c63
KS
1484 shmem_pseudo_vma_init(&pvma, info, index);
1485 page = alloc_page_vma(gfp, &pvma, 0);
1486 shmem_pseudo_vma_destroy(&pvma);
1487
1488 return page;
1489}
1490
1491static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1492 struct inode *inode,
800d8c63
KS
1493 pgoff_t index, bool huge)
1494{
0f079694 1495 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1496 struct page *page;
1497 int nr;
1498 int err = -ENOSPC;
52cd3b07 1499
e496cf3d 1500 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1501 huge = false;
1502 nr = huge ? HPAGE_PMD_NR : 1;
1503
0f079694 1504 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1505 goto failed;
800d8c63
KS
1506
1507 if (huge)
1508 page = shmem_alloc_hugepage(gfp, info, index);
1509 else
1510 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1511 if (page) {
1512 __SetPageLocked(page);
1513 __SetPageSwapBacked(page);
800d8c63 1514 return page;
75edd345 1515 }
18a2f371 1516
800d8c63 1517 err = -ENOMEM;
0f079694 1518 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1519failed:
1520 return ERR_PTR(err);
1da177e4 1521}
71fe804b 1522
bde05d1c
HD
1523/*
1524 * When a page is moved from swapcache to shmem filecache (either by the
1525 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1526 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1527 * ignorance of the mapping it belongs to. If that mapping has special
1528 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1529 * we may need to copy to a suitable page before moving to filecache.
1530 *
1531 * In a future release, this may well be extended to respect cpuset and
1532 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1533 * but for now it is a simple matter of zone.
1534 */
1535static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1536{
1537 return page_zonenum(page) > gfp_zone(gfp);
1538}
1539
1540static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1541 struct shmem_inode_info *info, pgoff_t index)
1542{
1543 struct page *oldpage, *newpage;
1544 struct address_space *swap_mapping;
1545 pgoff_t swap_index;
1546 int error;
1547
1548 oldpage = *pagep;
1549 swap_index = page_private(oldpage);
1550 swap_mapping = page_mapping(oldpage);
1551
1552 /*
1553 * We have arrived here because our zones are constrained, so don't
1554 * limit chance of success by further cpuset and node constraints.
1555 */
1556 gfp &= ~GFP_CONSTRAINT_MASK;
1557 newpage = shmem_alloc_page(gfp, info, index);
1558 if (!newpage)
1559 return -ENOMEM;
bde05d1c 1560
09cbfeaf 1561 get_page(newpage);
bde05d1c 1562 copy_highpage(newpage, oldpage);
0142ef6c 1563 flush_dcache_page(newpage);
bde05d1c 1564
9956edf3
HD
1565 __SetPageLocked(newpage);
1566 __SetPageSwapBacked(newpage);
bde05d1c 1567 SetPageUptodate(newpage);
bde05d1c 1568 set_page_private(newpage, swap_index);
bde05d1c
HD
1569 SetPageSwapCache(newpage);
1570
1571 /*
1572 * Our caller will very soon move newpage out of swapcache, but it's
1573 * a nice clean interface for us to replace oldpage by newpage there.
1574 */
b93b0163 1575 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1576 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1577 if (!error) {
11fb9989
MG
1578 __inc_node_page_state(newpage, NR_FILE_PAGES);
1579 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1580 }
b93b0163 1581 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1582
0142ef6c
HD
1583 if (unlikely(error)) {
1584 /*
1585 * Is this possible? I think not, now that our callers check
1586 * both PageSwapCache and page_private after getting page lock;
1587 * but be defensive. Reverse old to newpage for clear and free.
1588 */
1589 oldpage = newpage;
1590 } else {
6a93ca8f 1591 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1592 lru_cache_add_anon(newpage);
1593 *pagep = newpage;
1594 }
bde05d1c
HD
1595
1596 ClearPageSwapCache(oldpage);
1597 set_page_private(oldpage, 0);
1598
1599 unlock_page(oldpage);
09cbfeaf
KS
1600 put_page(oldpage);
1601 put_page(oldpage);
0142ef6c 1602 return error;
bde05d1c
HD
1603}
1604
1da177e4 1605/*
68da9f05 1606 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1607 *
1608 * If we allocate a new one we do not mark it dirty. That's up to the
1609 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1610 * entry since a page cannot live in both the swap and page cache.
1611 *
1612 * fault_mm and fault_type are only supplied by shmem_fault:
1613 * otherwise they are NULL.
1da177e4 1614 */
41ffe5d5 1615static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1616 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1617 struct vm_area_struct *vma, struct vm_fault *vmf,
1618 vm_fault_t *fault_type)
1da177e4
LT
1619{
1620 struct address_space *mapping = inode->i_mapping;
23f919d4 1621 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1622 struct shmem_sb_info *sbinfo;
9e18eb29 1623 struct mm_struct *charge_mm;
00501b53 1624 struct mem_cgroup *memcg;
27ab7006 1625 struct page *page;
1da177e4 1626 swp_entry_t swap;
657e3038 1627 enum sgp_type sgp_huge = sgp;
800d8c63 1628 pgoff_t hindex = index;
1da177e4 1629 int error;
54af6042 1630 int once = 0;
1635f6a7 1631 int alloced = 0;
1da177e4 1632
09cbfeaf 1633 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1634 return -EFBIG;
657e3038
KS
1635 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1636 sgp = SGP_CACHE;
1da177e4 1637repeat:
54af6042 1638 swap.val = 0;
0cd6144a 1639 page = find_lock_entry(mapping, index);
3159f943 1640 if (xa_is_value(page)) {
54af6042
HD
1641 swap = radix_to_swp_entry(page);
1642 page = NULL;
1643 }
1644
75edd345 1645 if (sgp <= SGP_CACHE &&
09cbfeaf 1646 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1647 error = -EINVAL;
267a4c76 1648 goto unlock;
54af6042
HD
1649 }
1650
66d2f4d2
HD
1651 if (page && sgp == SGP_WRITE)
1652 mark_page_accessed(page);
1653
1635f6a7
HD
1654 /* fallocated page? */
1655 if (page && !PageUptodate(page)) {
1656 if (sgp != SGP_READ)
1657 goto clear;
1658 unlock_page(page);
09cbfeaf 1659 put_page(page);
1635f6a7
HD
1660 page = NULL;
1661 }
54af6042 1662 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1663 *pagep = page;
1664 return 0;
27ab7006
HD
1665 }
1666
1667 /*
54af6042
HD
1668 * Fast cache lookup did not find it:
1669 * bring it back from swap or allocate.
27ab7006 1670 */
54af6042 1671 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1672 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1673
1da177e4
LT
1674 if (swap.val) {
1675 /* Look it up and read it in.. */
ec560175 1676 page = lookup_swap_cache(swap, NULL, 0);
27ab7006 1677 if (!page) {
9e18eb29
ALC
1678 /* Or update major stats only when swapin succeeds?? */
1679 if (fault_type) {
68da9f05 1680 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1681 count_vm_event(PGMAJFAULT);
2262185c 1682 count_memcg_event_mm(charge_mm, PGMAJFAULT);
9e18eb29
ALC
1683 }
1684 /* Here we actually start the io */
41ffe5d5 1685 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1686 if (!page) {
54af6042
HD
1687 error = -ENOMEM;
1688 goto failed;
1da177e4 1689 }
1da177e4
LT
1690 }
1691
1692 /* We have to do this with page locked to prevent races */
54af6042 1693 lock_page(page);
0142ef6c 1694 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1695 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1696 error = -EEXIST; /* try again */
d1899228 1697 goto unlock;
bde05d1c 1698 }
27ab7006 1699 if (!PageUptodate(page)) {
1da177e4 1700 error = -EIO;
54af6042 1701 goto failed;
1da177e4 1702 }
54af6042
HD
1703 wait_on_page_writeback(page);
1704
bde05d1c
HD
1705 if (shmem_should_replace_page(page, gfp)) {
1706 error = shmem_replace_page(&page, gfp, info, index);
1707 if (error)
1708 goto failed;
1da177e4 1709 }
27ab7006 1710
2cf85583 1711 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
f627c2f5 1712 false);
d1899228 1713 if (!error) {
aa3b1895 1714 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1715 swp_to_radix_entry(swap));
215c02bc
HD
1716 /*
1717 * We already confirmed swap under page lock, and make
1718 * no memory allocation here, so usually no possibility
1719 * of error; but free_swap_and_cache() only trylocks a
1720 * page, so it is just possible that the entry has been
1721 * truncated or holepunched since swap was confirmed.
1722 * shmem_undo_range() will have done some of the
1723 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1724 * the rest.
215c02bc
HD
1725 * Reset swap.val? No, leave it so "failed" goes back to
1726 * "repeat": reading a hole and writing should succeed.
1727 */
00501b53 1728 if (error) {
f627c2f5 1729 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1730 delete_from_swap_cache(page);
00501b53 1731 }
d1899228 1732 }
54af6042
HD
1733 if (error)
1734 goto failed;
1735
f627c2f5 1736 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1737
4595ef88 1738 spin_lock_irq(&info->lock);
285b2c4f 1739 info->swapped--;
54af6042 1740 shmem_recalc_inode(inode);
4595ef88 1741 spin_unlock_irq(&info->lock);
54af6042 1742
66d2f4d2
HD
1743 if (sgp == SGP_WRITE)
1744 mark_page_accessed(page);
1745
54af6042 1746 delete_from_swap_cache(page);
27ab7006
HD
1747 set_page_dirty(page);
1748 swap_free(swap);
1749
54af6042 1750 } else {
cfda0526
MR
1751 if (vma && userfaultfd_missing(vma)) {
1752 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1753 return 0;
1754 }
1755
800d8c63
KS
1756 /* shmem_symlink() */
1757 if (mapping->a_ops != &shmem_aops)
1758 goto alloc_nohuge;
657e3038 1759 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1760 goto alloc_nohuge;
1761 if (shmem_huge == SHMEM_HUGE_FORCE)
1762 goto alloc_huge;
1763 switch (sbinfo->huge) {
1764 loff_t i_size;
1765 pgoff_t off;
1766 case SHMEM_HUGE_NEVER:
1767 goto alloc_nohuge;
1768 case SHMEM_HUGE_WITHIN_SIZE:
1769 off = round_up(index, HPAGE_PMD_NR);
1770 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1771 if (i_size >= HPAGE_PMD_SIZE &&
1772 i_size >> PAGE_SHIFT >= off)
1773 goto alloc_huge;
1774 /* fallthrough */
1775 case SHMEM_HUGE_ADVISE:
657e3038
KS
1776 if (sgp_huge == SGP_HUGE)
1777 goto alloc_huge;
1778 /* TODO: implement fadvise() hints */
800d8c63 1779 goto alloc_nohuge;
54af6042 1780 }
1da177e4 1781
800d8c63 1782alloc_huge:
0f079694 1783 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
800d8c63 1784 if (IS_ERR(page)) {
0f079694 1785alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
800d8c63 1786 index, false);
1da177e4 1787 }
800d8c63 1788 if (IS_ERR(page)) {
779750d2 1789 int retry = 5;
800d8c63
KS
1790 error = PTR_ERR(page);
1791 page = NULL;
779750d2
KS
1792 if (error != -ENOSPC)
1793 goto failed;
1794 /*
1795 * Try to reclaim some spece by splitting a huge page
1796 * beyond i_size on the filesystem.
1797 */
1798 while (retry--) {
1799 int ret;
1800 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1801 if (ret == SHRINK_STOP)
1802 break;
1803 if (ret)
1804 goto alloc_nohuge;
1805 }
800d8c63
KS
1806 goto failed;
1807 }
1808
1809 if (PageTransHuge(page))
1810 hindex = round_down(index, HPAGE_PMD_NR);
1811 else
1812 hindex = index;
1813
66d2f4d2 1814 if (sgp == SGP_WRITE)
eb39d618 1815 __SetPageReferenced(page);
66d2f4d2 1816
2cf85583 1817 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
800d8c63 1818 PageTransHuge(page));
54af6042 1819 if (error)
800d8c63
KS
1820 goto unacct;
1821 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1822 compound_order(page));
b065b432 1823 if (!error) {
800d8c63 1824 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1825 NULL);
b065b432
HD
1826 radix_tree_preload_end();
1827 }
1828 if (error) {
800d8c63
KS
1829 mem_cgroup_cancel_charge(page, memcg,
1830 PageTransHuge(page));
1831 goto unacct;
b065b432 1832 }
800d8c63
KS
1833 mem_cgroup_commit_charge(page, memcg, false,
1834 PageTransHuge(page));
54af6042
HD
1835 lru_cache_add_anon(page);
1836
4595ef88 1837 spin_lock_irq(&info->lock);
800d8c63
KS
1838 info->alloced += 1 << compound_order(page);
1839 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1840 shmem_recalc_inode(inode);
4595ef88 1841 spin_unlock_irq(&info->lock);
1635f6a7 1842 alloced = true;
54af6042 1843
779750d2
KS
1844 if (PageTransHuge(page) &&
1845 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1846 hindex + HPAGE_PMD_NR - 1) {
1847 /*
1848 * Part of the huge page is beyond i_size: subject
1849 * to shrink under memory pressure.
1850 */
1851 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1852 /*
1853 * _careful to defend against unlocked access to
1854 * ->shrink_list in shmem_unused_huge_shrink()
1855 */
1856 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1857 list_add_tail(&info->shrinklist,
1858 &sbinfo->shrinklist);
1859 sbinfo->shrinklist_len++;
1860 }
1861 spin_unlock(&sbinfo->shrinklist_lock);
1862 }
1863
ec9516fb 1864 /*
1635f6a7
HD
1865 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1866 */
1867 if (sgp == SGP_FALLOC)
1868 sgp = SGP_WRITE;
1869clear:
1870 /*
1871 * Let SGP_WRITE caller clear ends if write does not fill page;
1872 * but SGP_FALLOC on a page fallocated earlier must initialize
1873 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1874 */
800d8c63
KS
1875 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1876 struct page *head = compound_head(page);
1877 int i;
1878
1879 for (i = 0; i < (1 << compound_order(head)); i++) {
1880 clear_highpage(head + i);
1881 flush_dcache_page(head + i);
1882 }
1883 SetPageUptodate(head);
ec9516fb 1884 }
1da177e4 1885 }
bde05d1c 1886
54af6042 1887 /* Perhaps the file has been truncated since we checked */
75edd345 1888 if (sgp <= SGP_CACHE &&
09cbfeaf 1889 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1890 if (alloced) {
1891 ClearPageDirty(page);
1892 delete_from_page_cache(page);
4595ef88 1893 spin_lock_irq(&info->lock);
267a4c76 1894 shmem_recalc_inode(inode);
4595ef88 1895 spin_unlock_irq(&info->lock);
267a4c76 1896 }
54af6042 1897 error = -EINVAL;
267a4c76 1898 goto unlock;
e83c32e8 1899 }
800d8c63 1900 *pagep = page + index - hindex;
54af6042 1901 return 0;
1da177e4 1902
59a16ead 1903 /*
54af6042 1904 * Error recovery.
59a16ead 1905 */
54af6042 1906unacct:
0f079694 1907 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
800d8c63
KS
1908
1909 if (PageTransHuge(page)) {
1910 unlock_page(page);
1911 put_page(page);
1912 goto alloc_nohuge;
1913 }
54af6042 1914failed:
267a4c76 1915 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1916 error = -EEXIST;
1917unlock:
27ab7006 1918 if (page) {
54af6042 1919 unlock_page(page);
09cbfeaf 1920 put_page(page);
54af6042
HD
1921 }
1922 if (error == -ENOSPC && !once++) {
4595ef88 1923 spin_lock_irq(&info->lock);
54af6042 1924 shmem_recalc_inode(inode);
4595ef88 1925 spin_unlock_irq(&info->lock);
27ab7006 1926 goto repeat;
ff36b801 1927 }
d1899228 1928 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1929 goto repeat;
1930 return error;
1da177e4
LT
1931}
1932
10d20bd2
LT
1933/*
1934 * This is like autoremove_wake_function, but it removes the wait queue
1935 * entry unconditionally - even if something else had already woken the
1936 * target.
1937 */
ac6424b9 1938static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1939{
1940 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1941 list_del_init(&wait->entry);
10d20bd2
LT
1942 return ret;
1943}
1944
20acce67 1945static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 1946{
11bac800 1947 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1948 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1949 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1950 enum sgp_type sgp;
20acce67
SJ
1951 int err;
1952 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 1953
f00cdc6d
HD
1954 /*
1955 * Trinity finds that probing a hole which tmpfs is punching can
1956 * prevent the hole-punch from ever completing: which in turn
1957 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1958 * faulting pages into the hole while it's being punched. Although
1959 * shmem_undo_range() does remove the additions, it may be unable to
1960 * keep up, as each new page needs its own unmap_mapping_range() call,
1961 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1962 *
1963 * It does not matter if we sometimes reach this check just before the
1964 * hole-punch begins, so that one fault then races with the punch:
1965 * we just need to make racing faults a rare case.
1966 *
1967 * The implementation below would be much simpler if we just used a
1968 * standard mutex or completion: but we cannot take i_mutex in fault,
1969 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1970 */
1971 if (unlikely(inode->i_private)) {
1972 struct shmem_falloc *shmem_falloc;
1973
1974 spin_lock(&inode->i_lock);
1975 shmem_falloc = inode->i_private;
8e205f77
HD
1976 if (shmem_falloc &&
1977 shmem_falloc->waitq &&
1978 vmf->pgoff >= shmem_falloc->start &&
1979 vmf->pgoff < shmem_falloc->next) {
1980 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1981 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1982
1983 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1984 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1985 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1986 /* It's polite to up mmap_sem if we can */
f00cdc6d 1987 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1988 ret = VM_FAULT_RETRY;
f00cdc6d 1989 }
8e205f77
HD
1990
1991 shmem_falloc_waitq = shmem_falloc->waitq;
1992 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1993 TASK_UNINTERRUPTIBLE);
1994 spin_unlock(&inode->i_lock);
1995 schedule();
1996
1997 /*
1998 * shmem_falloc_waitq points into the shmem_fallocate()
1999 * stack of the hole-punching task: shmem_falloc_waitq
2000 * is usually invalid by the time we reach here, but
2001 * finish_wait() does not dereference it in that case;
2002 * though i_lock needed lest racing with wake_up_all().
2003 */
2004 spin_lock(&inode->i_lock);
2005 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2006 spin_unlock(&inode->i_lock);
2007 return ret;
f00cdc6d 2008 }
8e205f77 2009 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2010 }
2011
657e3038 2012 sgp = SGP_CACHE;
18600332
MH
2013
2014 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2015 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2016 sgp = SGP_NOHUGE;
18600332
MH
2017 else if (vma->vm_flags & VM_HUGEPAGE)
2018 sgp = SGP_HUGE;
657e3038 2019
20acce67 2020 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2021 gfp, vma, vmf, &ret);
20acce67
SJ
2022 if (err)
2023 return vmf_error(err);
68da9f05 2024 return ret;
1da177e4
LT
2025}
2026
c01d5b30
HD
2027unsigned long shmem_get_unmapped_area(struct file *file,
2028 unsigned long uaddr, unsigned long len,
2029 unsigned long pgoff, unsigned long flags)
2030{
2031 unsigned long (*get_area)(struct file *,
2032 unsigned long, unsigned long, unsigned long, unsigned long);
2033 unsigned long addr;
2034 unsigned long offset;
2035 unsigned long inflated_len;
2036 unsigned long inflated_addr;
2037 unsigned long inflated_offset;
2038
2039 if (len > TASK_SIZE)
2040 return -ENOMEM;
2041
2042 get_area = current->mm->get_unmapped_area;
2043 addr = get_area(file, uaddr, len, pgoff, flags);
2044
e496cf3d 2045 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2046 return addr;
2047 if (IS_ERR_VALUE(addr))
2048 return addr;
2049 if (addr & ~PAGE_MASK)
2050 return addr;
2051 if (addr > TASK_SIZE - len)
2052 return addr;
2053
2054 if (shmem_huge == SHMEM_HUGE_DENY)
2055 return addr;
2056 if (len < HPAGE_PMD_SIZE)
2057 return addr;
2058 if (flags & MAP_FIXED)
2059 return addr;
2060 /*
2061 * Our priority is to support MAP_SHARED mapped hugely;
2062 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2063 * But if caller specified an address hint, respect that as before.
2064 */
2065 if (uaddr)
2066 return addr;
2067
2068 if (shmem_huge != SHMEM_HUGE_FORCE) {
2069 struct super_block *sb;
2070
2071 if (file) {
2072 VM_BUG_ON(file->f_op != &shmem_file_operations);
2073 sb = file_inode(file)->i_sb;
2074 } else {
2075 /*
2076 * Called directly from mm/mmap.c, or drivers/char/mem.c
2077 * for "/dev/zero", to create a shared anonymous object.
2078 */
2079 if (IS_ERR(shm_mnt))
2080 return addr;
2081 sb = shm_mnt->mnt_sb;
2082 }
3089bf61 2083 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2084 return addr;
2085 }
2086
2087 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2088 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2089 return addr;
2090 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2091 return addr;
2092
2093 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2094 if (inflated_len > TASK_SIZE)
2095 return addr;
2096 if (inflated_len < len)
2097 return addr;
2098
2099 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2100 if (IS_ERR_VALUE(inflated_addr))
2101 return addr;
2102 if (inflated_addr & ~PAGE_MASK)
2103 return addr;
2104
2105 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2106 inflated_addr += offset - inflated_offset;
2107 if (inflated_offset > offset)
2108 inflated_addr += HPAGE_PMD_SIZE;
2109
2110 if (inflated_addr > TASK_SIZE - len)
2111 return addr;
2112 return inflated_addr;
2113}
2114
1da177e4 2115#ifdef CONFIG_NUMA
41ffe5d5 2116static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2117{
496ad9aa 2118 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2119 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2120}
2121
d8dc74f2
AB
2122static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2123 unsigned long addr)
1da177e4 2124{
496ad9aa 2125 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2126 pgoff_t index;
1da177e4 2127
41ffe5d5
HD
2128 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2129 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2130}
2131#endif
2132
2133int shmem_lock(struct file *file, int lock, struct user_struct *user)
2134{
496ad9aa 2135 struct inode *inode = file_inode(file);
1da177e4
LT
2136 struct shmem_inode_info *info = SHMEM_I(inode);
2137 int retval = -ENOMEM;
2138
4595ef88 2139 spin_lock_irq(&info->lock);
1da177e4
LT
2140 if (lock && !(info->flags & VM_LOCKED)) {
2141 if (!user_shm_lock(inode->i_size, user))
2142 goto out_nomem;
2143 info->flags |= VM_LOCKED;
89e004ea 2144 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2145 }
2146 if (!lock && (info->flags & VM_LOCKED) && user) {
2147 user_shm_unlock(inode->i_size, user);
2148 info->flags &= ~VM_LOCKED;
89e004ea 2149 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2150 }
2151 retval = 0;
89e004ea 2152
1da177e4 2153out_nomem:
4595ef88 2154 spin_unlock_irq(&info->lock);
1da177e4
LT
2155 return retval;
2156}
2157
9b83a6a8 2158static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2159{
2160 file_accessed(file);
2161 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2162 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2163 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2164 (vma->vm_end & HPAGE_PMD_MASK)) {
2165 khugepaged_enter(vma, vma->vm_flags);
2166 }
1da177e4
LT
2167 return 0;
2168}
2169
454abafe 2170static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2171 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2172{
2173 struct inode *inode;
2174 struct shmem_inode_info *info;
2175 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2176
5b04c689
PE
2177 if (shmem_reserve_inode(sb))
2178 return NULL;
1da177e4
LT
2179
2180 inode = new_inode(sb);
2181 if (inode) {
85fe4025 2182 inode->i_ino = get_next_ino();
454abafe 2183 inode_init_owner(inode, dir, mode);
1da177e4 2184 inode->i_blocks = 0;
078cd827 2185 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2186 inode->i_generation = prandom_u32();
1da177e4
LT
2187 info = SHMEM_I(inode);
2188 memset(info, 0, (char *)inode - (char *)info);
2189 spin_lock_init(&info->lock);
40e041a2 2190 info->seals = F_SEAL_SEAL;
0b0a0806 2191 info->flags = flags & VM_NORESERVE;
779750d2 2192 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2193 INIT_LIST_HEAD(&info->swaplist);
38f38657 2194 simple_xattrs_init(&info->xattrs);
72c04902 2195 cache_no_acl(inode);
1da177e4
LT
2196
2197 switch (mode & S_IFMT) {
2198 default:
39f0247d 2199 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2200 init_special_inode(inode, mode, dev);
2201 break;
2202 case S_IFREG:
14fcc23f 2203 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2204 inode->i_op = &shmem_inode_operations;
2205 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2206 mpol_shared_policy_init(&info->policy,
2207 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2208 break;
2209 case S_IFDIR:
d8c76e6f 2210 inc_nlink(inode);
1da177e4
LT
2211 /* Some things misbehave if size == 0 on a directory */
2212 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2213 inode->i_op = &shmem_dir_inode_operations;
2214 inode->i_fop = &simple_dir_operations;
2215 break;
2216 case S_IFLNK:
2217 /*
2218 * Must not load anything in the rbtree,
2219 * mpol_free_shared_policy will not be called.
2220 */
71fe804b 2221 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2222 break;
2223 }
b45d71fb
JFG
2224
2225 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2226 } else
2227 shmem_free_inode(sb);
1da177e4
LT
2228 return inode;
2229}
2230
0cd6144a
JW
2231bool shmem_mapping(struct address_space *mapping)
2232{
f8005451 2233 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2234}
2235
8d103963
MR
2236static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2237 pmd_t *dst_pmd,
2238 struct vm_area_struct *dst_vma,
2239 unsigned long dst_addr,
2240 unsigned long src_addr,
2241 bool zeropage,
2242 struct page **pagep)
4c27fe4c
MR
2243{
2244 struct inode *inode = file_inode(dst_vma->vm_file);
2245 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2246 struct address_space *mapping = inode->i_mapping;
2247 gfp_t gfp = mapping_gfp_mask(mapping);
2248 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2249 struct mem_cgroup *memcg;
2250 spinlock_t *ptl;
2251 void *page_kaddr;
2252 struct page *page;
2253 pte_t _dst_pte, *dst_pte;
2254 int ret;
2255
cb658a45 2256 ret = -ENOMEM;
0f079694 2257 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2258 goto out;
4c27fe4c 2259
cb658a45 2260 if (!*pagep) {
4c27fe4c
MR
2261 page = shmem_alloc_page(gfp, info, pgoff);
2262 if (!page)
0f079694 2263 goto out_unacct_blocks;
4c27fe4c 2264
8d103963
MR
2265 if (!zeropage) { /* mcopy_atomic */
2266 page_kaddr = kmap_atomic(page);
2267 ret = copy_from_user(page_kaddr,
2268 (const void __user *)src_addr,
2269 PAGE_SIZE);
2270 kunmap_atomic(page_kaddr);
2271
2272 /* fallback to copy_from_user outside mmap_sem */
2273 if (unlikely(ret)) {
2274 *pagep = page;
2275 shmem_inode_unacct_blocks(inode, 1);
2276 /* don't free the page */
2277 return -EFAULT;
2278 }
2279 } else { /* mfill_zeropage_atomic */
2280 clear_highpage(page);
4c27fe4c
MR
2281 }
2282 } else {
2283 page = *pagep;
2284 *pagep = NULL;
2285 }
2286
9cc90c66
AA
2287 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2288 __SetPageLocked(page);
2289 __SetPageSwapBacked(page);
a425d358 2290 __SetPageUptodate(page);
9cc90c66 2291
2cf85583 2292 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
4c27fe4c
MR
2293 if (ret)
2294 goto out_release;
2295
2296 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2297 if (!ret) {
2298 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2299 radix_tree_preload_end();
2300 }
2301 if (ret)
2302 goto out_release_uncharge;
2303
2304 mem_cgroup_commit_charge(page, memcg, false, false);
2305
2306 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2307 if (dst_vma->vm_flags & VM_WRITE)
2308 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2309
2310 ret = -EEXIST;
2311 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2312 if (!pte_none(*dst_pte))
2313 goto out_release_uncharge_unlock;
2314
4c27fe4c
MR
2315 lru_cache_add_anon(page);
2316
2317 spin_lock(&info->lock);
2318 info->alloced++;
2319 inode->i_blocks += BLOCKS_PER_PAGE;
2320 shmem_recalc_inode(inode);
2321 spin_unlock(&info->lock);
2322
2323 inc_mm_counter(dst_mm, mm_counter_file(page));
2324 page_add_file_rmap(page, false);
2325 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2326
2327 /* No need to invalidate - it was non-present before */
2328 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2329 unlock_page(page);
2330 pte_unmap_unlock(dst_pte, ptl);
2331 ret = 0;
2332out:
2333 return ret;
2334out_release_uncharge_unlock:
2335 pte_unmap_unlock(dst_pte, ptl);
2336out_release_uncharge:
2337 mem_cgroup_cancel_charge(page, memcg, false);
2338out_release:
9cc90c66 2339 unlock_page(page);
4c27fe4c 2340 put_page(page);
4c27fe4c 2341out_unacct_blocks:
0f079694 2342 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2343 goto out;
2344}
2345
8d103963
MR
2346int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2347 pmd_t *dst_pmd,
2348 struct vm_area_struct *dst_vma,
2349 unsigned long dst_addr,
2350 unsigned long src_addr,
2351 struct page **pagep)
2352{
2353 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2354 dst_addr, src_addr, false, pagep);
2355}
2356
2357int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2358 pmd_t *dst_pmd,
2359 struct vm_area_struct *dst_vma,
2360 unsigned long dst_addr)
2361{
2362 struct page *page = NULL;
2363
2364 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2365 dst_addr, 0, true, &page);
2366}
2367
1da177e4 2368#ifdef CONFIG_TMPFS
92e1d5be 2369static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2370static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2371
6d9d88d0
JS
2372#ifdef CONFIG_TMPFS_XATTR
2373static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2374#else
2375#define shmem_initxattrs NULL
2376#endif
2377
1da177e4 2378static int
800d15a5
NP
2379shmem_write_begin(struct file *file, struct address_space *mapping,
2380 loff_t pos, unsigned len, unsigned flags,
2381 struct page **pagep, void **fsdata)
1da177e4 2382{
800d15a5 2383 struct inode *inode = mapping->host;
40e041a2 2384 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2385 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DR
2386
2387 /* i_mutex is held by caller */
3f472cc9 2388 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DR
2389 if (info->seals & F_SEAL_WRITE)
2390 return -EPERM;
2391 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2392 return -EPERM;
2393 }
2394
9e18eb29 2395 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2396}
2397
2398static int
2399shmem_write_end(struct file *file, struct address_space *mapping,
2400 loff_t pos, unsigned len, unsigned copied,
2401 struct page *page, void *fsdata)
2402{
2403 struct inode *inode = mapping->host;
2404
d3602444
HD
2405 if (pos + copied > inode->i_size)
2406 i_size_write(inode, pos + copied);
2407
ec9516fb 2408 if (!PageUptodate(page)) {
800d8c63
KS
2409 struct page *head = compound_head(page);
2410 if (PageTransCompound(page)) {
2411 int i;
2412
2413 for (i = 0; i < HPAGE_PMD_NR; i++) {
2414 if (head + i == page)
2415 continue;
2416 clear_highpage(head + i);
2417 flush_dcache_page(head + i);
2418 }
2419 }
09cbfeaf
KS
2420 if (copied < PAGE_SIZE) {
2421 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2422 zero_user_segments(page, 0, from,
09cbfeaf 2423 from + copied, PAGE_SIZE);
ec9516fb 2424 }
800d8c63 2425 SetPageUptodate(head);
ec9516fb 2426 }
800d15a5 2427 set_page_dirty(page);
6746aff7 2428 unlock_page(page);
09cbfeaf 2429 put_page(page);
800d15a5 2430
800d15a5 2431 return copied;
1da177e4
LT
2432}
2433
2ba5bbed 2434static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2435{
6e58e79d
AV
2436 struct file *file = iocb->ki_filp;
2437 struct inode *inode = file_inode(file);
1da177e4 2438 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2439 pgoff_t index;
2440 unsigned long offset;
a0ee5ec5 2441 enum sgp_type sgp = SGP_READ;
f7c1d074 2442 int error = 0;
cb66a7a1 2443 ssize_t retval = 0;
6e58e79d 2444 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2445
2446 /*
2447 * Might this read be for a stacking filesystem? Then when reading
2448 * holes of a sparse file, we actually need to allocate those pages,
2449 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2450 */
777eda2c 2451 if (!iter_is_iovec(to))
75edd345 2452 sgp = SGP_CACHE;
1da177e4 2453
09cbfeaf
KS
2454 index = *ppos >> PAGE_SHIFT;
2455 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2456
2457 for (;;) {
2458 struct page *page = NULL;
41ffe5d5
HD
2459 pgoff_t end_index;
2460 unsigned long nr, ret;
1da177e4
LT
2461 loff_t i_size = i_size_read(inode);
2462
09cbfeaf 2463 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2464 if (index > end_index)
2465 break;
2466 if (index == end_index) {
09cbfeaf 2467 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2468 if (nr <= offset)
2469 break;
2470 }
2471
9e18eb29 2472 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2473 if (error) {
2474 if (error == -EINVAL)
2475 error = 0;
1da177e4
LT
2476 break;
2477 }
75edd345
HD
2478 if (page) {
2479 if (sgp == SGP_CACHE)
2480 set_page_dirty(page);
d3602444 2481 unlock_page(page);
75edd345 2482 }
1da177e4
LT
2483
2484 /*
2485 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2486 * are called without i_mutex protection against truncate
1da177e4 2487 */
09cbfeaf 2488 nr = PAGE_SIZE;
1da177e4 2489 i_size = i_size_read(inode);
09cbfeaf 2490 end_index = i_size >> PAGE_SHIFT;
1da177e4 2491 if (index == end_index) {
09cbfeaf 2492 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2493 if (nr <= offset) {
2494 if (page)
09cbfeaf 2495 put_page(page);
1da177e4
LT
2496 break;
2497 }
2498 }
2499 nr -= offset;
2500
2501 if (page) {
2502 /*
2503 * If users can be writing to this page using arbitrary
2504 * virtual addresses, take care about potential aliasing
2505 * before reading the page on the kernel side.
2506 */
2507 if (mapping_writably_mapped(mapping))
2508 flush_dcache_page(page);
2509 /*
2510 * Mark the page accessed if we read the beginning.
2511 */
2512 if (!offset)
2513 mark_page_accessed(page);
b5810039 2514 } else {
1da177e4 2515 page = ZERO_PAGE(0);
09cbfeaf 2516 get_page(page);
b5810039 2517 }
1da177e4
LT
2518
2519 /*
2520 * Ok, we have the page, and it's up-to-date, so
2521 * now we can copy it to user space...
1da177e4 2522 */
2ba5bbed 2523 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2524 retval += ret;
1da177e4 2525 offset += ret;
09cbfeaf
KS
2526 index += offset >> PAGE_SHIFT;
2527 offset &= ~PAGE_MASK;
1da177e4 2528
09cbfeaf 2529 put_page(page);
2ba5bbed 2530 if (!iov_iter_count(to))
1da177e4 2531 break;
6e58e79d
AV
2532 if (ret < nr) {
2533 error = -EFAULT;
2534 break;
2535 }
1da177e4
LT
2536 cond_resched();
2537 }
2538
09cbfeaf 2539 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2540 file_accessed(file);
2541 return retval ? retval : error;
1da177e4
LT
2542}
2543
220f2ac9
HD
2544/*
2545 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2546 */
2547static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2548 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2549{
2550 struct page *page;
2551 struct pagevec pvec;
2552 pgoff_t indices[PAGEVEC_SIZE];
2553 bool done = false;
2554 int i;
2555
86679820 2556 pagevec_init(&pvec);
220f2ac9
HD
2557 pvec.nr = 1; /* start small: we may be there already */
2558 while (!done) {
0cd6144a 2559 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2560 pvec.nr, pvec.pages, indices);
2561 if (!pvec.nr) {
965c8e59 2562 if (whence == SEEK_DATA)
220f2ac9
HD
2563 index = end;
2564 break;
2565 }
2566 for (i = 0; i < pvec.nr; i++, index++) {
2567 if (index < indices[i]) {
965c8e59 2568 if (whence == SEEK_HOLE) {
220f2ac9
HD
2569 done = true;
2570 break;
2571 }
2572 index = indices[i];
2573 }
2574 page = pvec.pages[i];
3159f943 2575 if (page && !xa_is_value(page)) {
220f2ac9
HD
2576 if (!PageUptodate(page))
2577 page = NULL;
2578 }
2579 if (index >= end ||
965c8e59
AM
2580 (page && whence == SEEK_DATA) ||
2581 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2582 done = true;
2583 break;
2584 }
2585 }
0cd6144a 2586 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2587 pagevec_release(&pvec);
2588 pvec.nr = PAGEVEC_SIZE;
2589 cond_resched();
2590 }
2591 return index;
2592}
2593
965c8e59 2594static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2595{
2596 struct address_space *mapping = file->f_mapping;
2597 struct inode *inode = mapping->host;
2598 pgoff_t start, end;
2599 loff_t new_offset;
2600
965c8e59
AM
2601 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2602 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2603 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2604 inode_lock(inode);
220f2ac9
HD
2605 /* We're holding i_mutex so we can access i_size directly */
2606
2607 if (offset < 0)
2608 offset = -EINVAL;
2609 else if (offset >= inode->i_size)
2610 offset = -ENXIO;
2611 else {
09cbfeaf
KS
2612 start = offset >> PAGE_SHIFT;
2613 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2614 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2615 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2616 if (new_offset > offset) {
2617 if (new_offset < inode->i_size)
2618 offset = new_offset;
965c8e59 2619 else if (whence == SEEK_DATA)
220f2ac9
HD
2620 offset = -ENXIO;
2621 else
2622 offset = inode->i_size;
2623 }
2624 }
2625
387aae6f
HD
2626 if (offset >= 0)
2627 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2628 inode_unlock(inode);
220f2ac9
HD
2629 return offset;
2630}
2631
83e4fa9c
HD
2632static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2633 loff_t len)
2634{
496ad9aa 2635 struct inode *inode = file_inode(file);
e2d12e22 2636 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2637 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2638 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2639 pgoff_t start, index, end;
2640 int error;
83e4fa9c 2641
13ace4d0
HD
2642 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2643 return -EOPNOTSUPP;
2644
5955102c 2645 inode_lock(inode);
83e4fa9c
HD
2646
2647 if (mode & FALLOC_FL_PUNCH_HOLE) {
2648 struct address_space *mapping = file->f_mapping;
2649 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2650 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2651 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2652
40e041a2
DR
2653 /* protected by i_mutex */
2654 if (info->seals & F_SEAL_WRITE) {
2655 error = -EPERM;
2656 goto out;
2657 }
2658
8e205f77 2659 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2660 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2661 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2662 spin_lock(&inode->i_lock);
2663 inode->i_private = &shmem_falloc;
2664 spin_unlock(&inode->i_lock);
2665
83e4fa9c
HD
2666 if ((u64)unmap_end > (u64)unmap_start)
2667 unmap_mapping_range(mapping, unmap_start,
2668 1 + unmap_end - unmap_start, 0);
2669 shmem_truncate_range(inode, offset, offset + len - 1);
2670 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2671
2672 spin_lock(&inode->i_lock);
2673 inode->i_private = NULL;
2674 wake_up_all(&shmem_falloc_waitq);
2055da97 2675 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2676 spin_unlock(&inode->i_lock);
83e4fa9c 2677 error = 0;
8e205f77 2678 goto out;
e2d12e22
HD
2679 }
2680
2681 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2682 error = inode_newsize_ok(inode, offset + len);
2683 if (error)
2684 goto out;
2685
40e041a2
DR
2686 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2687 error = -EPERM;
2688 goto out;
2689 }
2690
09cbfeaf
KS
2691 start = offset >> PAGE_SHIFT;
2692 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2693 /* Try to avoid a swapstorm if len is impossible to satisfy */
2694 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2695 error = -ENOSPC;
2696 goto out;
83e4fa9c
HD
2697 }
2698
8e205f77 2699 shmem_falloc.waitq = NULL;
1aac1400
HD
2700 shmem_falloc.start = start;
2701 shmem_falloc.next = start;
2702 shmem_falloc.nr_falloced = 0;
2703 shmem_falloc.nr_unswapped = 0;
2704 spin_lock(&inode->i_lock);
2705 inode->i_private = &shmem_falloc;
2706 spin_unlock(&inode->i_lock);
2707
e2d12e22
HD
2708 for (index = start; index < end; index++) {
2709 struct page *page;
2710
2711 /*
2712 * Good, the fallocate(2) manpage permits EINTR: we may have
2713 * been interrupted because we are using up too much memory.
2714 */
2715 if (signal_pending(current))
2716 error = -EINTR;
1aac1400
HD
2717 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2718 error = -ENOMEM;
e2d12e22 2719 else
9e18eb29 2720 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2721 if (error) {
1635f6a7 2722 /* Remove the !PageUptodate pages we added */
7f556567
HD
2723 if (index > start) {
2724 shmem_undo_range(inode,
2725 (loff_t)start << PAGE_SHIFT,
2726 ((loff_t)index << PAGE_SHIFT) - 1, true);
2727 }
1aac1400 2728 goto undone;
e2d12e22
HD
2729 }
2730
1aac1400
HD
2731 /*
2732 * Inform shmem_writepage() how far we have reached.
2733 * No need for lock or barrier: we have the page lock.
2734 */
2735 shmem_falloc.next++;
2736 if (!PageUptodate(page))
2737 shmem_falloc.nr_falloced++;
2738
e2d12e22 2739 /*
1635f6a7
HD
2740 * If !PageUptodate, leave it that way so that freeable pages
2741 * can be recognized if we need to rollback on error later.
2742 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2743 * than free the pages we are allocating (and SGP_CACHE pages
2744 * might still be clean: we now need to mark those dirty too).
2745 */
2746 set_page_dirty(page);
2747 unlock_page(page);
09cbfeaf 2748 put_page(page);
e2d12e22
HD
2749 cond_resched();
2750 }
2751
2752 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2753 i_size_write(inode, offset + len);
078cd827 2754 inode->i_ctime = current_time(inode);
1aac1400
HD
2755undone:
2756 spin_lock(&inode->i_lock);
2757 inode->i_private = NULL;
2758 spin_unlock(&inode->i_lock);
e2d12e22 2759out:
5955102c 2760 inode_unlock(inode);
83e4fa9c
HD
2761 return error;
2762}
2763
726c3342 2764static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2765{
726c3342 2766 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2767
2768 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2769 buf->f_bsize = PAGE_SIZE;
1da177e4 2770 buf->f_namelen = NAME_MAX;
0edd73b3 2771 if (sbinfo->max_blocks) {
1da177e4 2772 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2773 buf->f_bavail =
2774 buf->f_bfree = sbinfo->max_blocks -
2775 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2776 }
2777 if (sbinfo->max_inodes) {
1da177e4
LT
2778 buf->f_files = sbinfo->max_inodes;
2779 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2780 }
2781 /* else leave those fields 0 like simple_statfs */
2782 return 0;
2783}
2784
2785/*
2786 * File creation. Allocate an inode, and we're done..
2787 */
2788static int
1a67aafb 2789shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2790{
0b0a0806 2791 struct inode *inode;
1da177e4
LT
2792 int error = -ENOSPC;
2793
454abafe 2794 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2795 if (inode) {
feda821e
CH
2796 error = simple_acl_create(dir, inode);
2797 if (error)
2798 goto out_iput;
2a7dba39 2799 error = security_inode_init_security(inode, dir,
9d8f13ba 2800 &dentry->d_name,
6d9d88d0 2801 shmem_initxattrs, NULL);
feda821e
CH
2802 if (error && error != -EOPNOTSUPP)
2803 goto out_iput;
37ec43cd 2804
718deb6b 2805 error = 0;
1da177e4 2806 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2807 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2808 d_instantiate(dentry, inode);
2809 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2810 }
2811 return error;
feda821e
CH
2812out_iput:
2813 iput(inode);
2814 return error;
1da177e4
LT
2815}
2816
60545d0d
AV
2817static int
2818shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2819{
2820 struct inode *inode;
2821 int error = -ENOSPC;
2822
2823 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2824 if (inode) {
2825 error = security_inode_init_security(inode, dir,
2826 NULL,
2827 shmem_initxattrs, NULL);
feda821e
CH
2828 if (error && error != -EOPNOTSUPP)
2829 goto out_iput;
2830 error = simple_acl_create(dir, inode);
2831 if (error)
2832 goto out_iput;
60545d0d
AV
2833 d_tmpfile(dentry, inode);
2834 }
2835 return error;
feda821e
CH
2836out_iput:
2837 iput(inode);
2838 return error;
60545d0d
AV
2839}
2840
18bb1db3 2841static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2842{
2843 int error;
2844
2845 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2846 return error;
d8c76e6f 2847 inc_nlink(dir);
1da177e4
LT
2848 return 0;
2849}
2850
4acdaf27 2851static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2852 bool excl)
1da177e4
LT
2853{
2854 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2855}
2856
2857/*
2858 * Link a file..
2859 */
2860static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2861{
75c3cfa8 2862 struct inode *inode = d_inode(old_dentry);
5b04c689 2863 int ret;
1da177e4
LT
2864
2865 /*
2866 * No ordinary (disk based) filesystem counts links as inodes;
2867 * but each new link needs a new dentry, pinning lowmem, and
2868 * tmpfs dentries cannot be pruned until they are unlinked.
2869 */
5b04c689
PE
2870 ret = shmem_reserve_inode(inode->i_sb);
2871 if (ret)
2872 goto out;
1da177e4
LT
2873
2874 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2875 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2876 inc_nlink(inode);
7de9c6ee 2877 ihold(inode); /* New dentry reference */
1da177e4
LT
2878 dget(dentry); /* Extra pinning count for the created dentry */
2879 d_instantiate(dentry, inode);
5b04c689
PE
2880out:
2881 return ret;
1da177e4
LT
2882}
2883
2884static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2885{
75c3cfa8 2886 struct inode *inode = d_inode(dentry);
1da177e4 2887
5b04c689
PE
2888 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2889 shmem_free_inode(inode->i_sb);
1da177e4
LT
2890
2891 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2892 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2893 drop_nlink(inode);
1da177e4
LT
2894 dput(dentry); /* Undo the count from "create" - this does all the work */
2895 return 0;
2896}
2897
2898static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2899{
2900 if (!simple_empty(dentry))
2901 return -ENOTEMPTY;
2902
75c3cfa8 2903 drop_nlink(d_inode(dentry));
9a53c3a7 2904 drop_nlink(dir);
1da177e4
LT
2905 return shmem_unlink(dir, dentry);
2906}
2907
37456771
MS
2908static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2909{
e36cb0b8
DH
2910 bool old_is_dir = d_is_dir(old_dentry);
2911 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2912
2913 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2914 if (old_is_dir) {
2915 drop_nlink(old_dir);
2916 inc_nlink(new_dir);
2917 } else {
2918 drop_nlink(new_dir);
2919 inc_nlink(old_dir);
2920 }
2921 }
2922 old_dir->i_ctime = old_dir->i_mtime =
2923 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2924 d_inode(old_dentry)->i_ctime =
078cd827 2925 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
2926
2927 return 0;
2928}
2929
46fdb794
MS
2930static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2931{
2932 struct dentry *whiteout;
2933 int error;
2934
2935 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2936 if (!whiteout)
2937 return -ENOMEM;
2938
2939 error = shmem_mknod(old_dir, whiteout,
2940 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2941 dput(whiteout);
2942 if (error)
2943 return error;
2944
2945 /*
2946 * Cheat and hash the whiteout while the old dentry is still in
2947 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2948 *
2949 * d_lookup() will consistently find one of them at this point,
2950 * not sure which one, but that isn't even important.
2951 */
2952 d_rehash(whiteout);
2953 return 0;
2954}
2955
1da177e4
LT
2956/*
2957 * The VFS layer already does all the dentry stuff for rename,
2958 * we just have to decrement the usage count for the target if
2959 * it exists so that the VFS layer correctly free's it when it
2960 * gets overwritten.
2961 */
3b69ff51 2962static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 2963{
75c3cfa8 2964 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2965 int they_are_dirs = S_ISDIR(inode->i_mode);
2966
46fdb794 2967 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2968 return -EINVAL;
2969
37456771
MS
2970 if (flags & RENAME_EXCHANGE)
2971 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2972
1da177e4
LT
2973 if (!simple_empty(new_dentry))
2974 return -ENOTEMPTY;
2975
46fdb794
MS
2976 if (flags & RENAME_WHITEOUT) {
2977 int error;
2978
2979 error = shmem_whiteout(old_dir, old_dentry);
2980 if (error)
2981 return error;
2982 }
2983
75c3cfa8 2984 if (d_really_is_positive(new_dentry)) {
1da177e4 2985 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2986 if (they_are_dirs) {
75c3cfa8 2987 drop_nlink(d_inode(new_dentry));
9a53c3a7 2988 drop_nlink(old_dir);
b928095b 2989 }
1da177e4 2990 } else if (they_are_dirs) {
9a53c3a7 2991 drop_nlink(old_dir);
d8c76e6f 2992 inc_nlink(new_dir);
1da177e4
LT
2993 }
2994
2995 old_dir->i_size -= BOGO_DIRENT_SIZE;
2996 new_dir->i_size += BOGO_DIRENT_SIZE;
2997 old_dir->i_ctime = old_dir->i_mtime =
2998 new_dir->i_ctime = new_dir->i_mtime =
078cd827 2999 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3000 return 0;
3001}
3002
3003static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3004{
3005 int error;
3006 int len;
3007 struct inode *inode;
9276aad6 3008 struct page *page;
1da177e4
LT
3009
3010 len = strlen(symname) + 1;
09cbfeaf 3011 if (len > PAGE_SIZE)
1da177e4
LT
3012 return -ENAMETOOLONG;
3013
0825a6f9
JP
3014 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3015 VM_NORESERVE);
1da177e4
LT
3016 if (!inode)
3017 return -ENOSPC;
3018
9d8f13ba 3019 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3020 shmem_initxattrs, NULL);
570bc1c2
SS
3021 if (error) {
3022 if (error != -EOPNOTSUPP) {
3023 iput(inode);
3024 return error;
3025 }
3026 error = 0;
3027 }
3028
1da177e4 3029 inode->i_size = len-1;
69f07ec9 3030 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3031 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3032 if (!inode->i_link) {
69f07ec9
HD
3033 iput(inode);
3034 return -ENOMEM;
3035 }
3036 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3037 } else {
e8ecde25 3038 inode_nohighmem(inode);
9e18eb29 3039 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3040 if (error) {
3041 iput(inode);
3042 return error;
3043 }
14fcc23f 3044 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3045 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3046 memcpy(page_address(page), symname, len);
ec9516fb 3047 SetPageUptodate(page);
1da177e4 3048 set_page_dirty(page);
6746aff7 3049 unlock_page(page);
09cbfeaf 3050 put_page(page);
1da177e4 3051 }
1da177e4 3052 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3053 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3054 d_instantiate(dentry, inode);
3055 dget(dentry);
3056 return 0;
3057}
3058
fceef393 3059static void shmem_put_link(void *arg)
1da177e4 3060{
fceef393
AV
3061 mark_page_accessed(arg);
3062 put_page(arg);
1da177e4
LT
3063}
3064
6b255391 3065static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3066 struct inode *inode,
3067 struct delayed_call *done)
1da177e4 3068{
1da177e4 3069 struct page *page = NULL;
6b255391 3070 int error;
6a6c9904
AV
3071 if (!dentry) {
3072 page = find_get_page(inode->i_mapping, 0);
3073 if (!page)
3074 return ERR_PTR(-ECHILD);
3075 if (!PageUptodate(page)) {
3076 put_page(page);
3077 return ERR_PTR(-ECHILD);
3078 }
3079 } else {
9e18eb29 3080 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3081 if (error)
3082 return ERR_PTR(error);
3083 unlock_page(page);
3084 }
fceef393 3085 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3086 return page_address(page);
1da177e4
LT
3087}
3088
b09e0fa4 3089#ifdef CONFIG_TMPFS_XATTR
46711810 3090/*
b09e0fa4
EP
3091 * Superblocks without xattr inode operations may get some security.* xattr
3092 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3093 * like ACLs, we also need to implement the security.* handlers at
3094 * filesystem level, though.
3095 */
3096
6d9d88d0
JS
3097/*
3098 * Callback for security_inode_init_security() for acquiring xattrs.
3099 */
3100static int shmem_initxattrs(struct inode *inode,
3101 const struct xattr *xattr_array,
3102 void *fs_info)
3103{
3104 struct shmem_inode_info *info = SHMEM_I(inode);
3105 const struct xattr *xattr;
38f38657 3106 struct simple_xattr *new_xattr;
6d9d88d0
JS
3107 size_t len;
3108
3109 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3110 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3111 if (!new_xattr)
3112 return -ENOMEM;
3113
3114 len = strlen(xattr->name) + 1;
3115 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3116 GFP_KERNEL);
3117 if (!new_xattr->name) {
3118 kfree(new_xattr);
3119 return -ENOMEM;
3120 }
3121
3122 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3123 XATTR_SECURITY_PREFIX_LEN);
3124 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3125 xattr->name, len);
3126
38f38657 3127 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3128 }
3129
3130 return 0;
3131}
3132
aa7c5241 3133static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3134 struct dentry *unused, struct inode *inode,
3135 const char *name, void *buffer, size_t size)
b09e0fa4 3136{
b296821a 3137 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3138
aa7c5241 3139 name = xattr_full_name(handler, name);
38f38657 3140 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3141}
3142
aa7c5241 3143static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3144 struct dentry *unused, struct inode *inode,
3145 const char *name, const void *value,
3146 size_t size, int flags)
b09e0fa4 3147{
59301226 3148 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3149
aa7c5241 3150 name = xattr_full_name(handler, name);
38f38657 3151 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3152}
3153
aa7c5241
AG
3154static const struct xattr_handler shmem_security_xattr_handler = {
3155 .prefix = XATTR_SECURITY_PREFIX,
3156 .get = shmem_xattr_handler_get,
3157 .set = shmem_xattr_handler_set,
3158};
b09e0fa4 3159
aa7c5241
AG
3160static const struct xattr_handler shmem_trusted_xattr_handler = {
3161 .prefix = XATTR_TRUSTED_PREFIX,
3162 .get = shmem_xattr_handler_get,
3163 .set = shmem_xattr_handler_set,
3164};
b09e0fa4 3165
aa7c5241
AG
3166static const struct xattr_handler *shmem_xattr_handlers[] = {
3167#ifdef CONFIG_TMPFS_POSIX_ACL
3168 &posix_acl_access_xattr_handler,
3169 &posix_acl_default_xattr_handler,
3170#endif
3171 &shmem_security_xattr_handler,
3172 &shmem_trusted_xattr_handler,
3173 NULL
3174};
b09e0fa4
EP
3175
3176static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3177{
75c3cfa8 3178 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3179 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3180}
3181#endif /* CONFIG_TMPFS_XATTR */
3182
69f07ec9 3183static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3184 .get_link = simple_get_link,
b09e0fa4 3185#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3186 .listxattr = shmem_listxattr,
b09e0fa4
EP
3187#endif
3188};
3189
3190static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3191 .get_link = shmem_get_link,
b09e0fa4 3192#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3193 .listxattr = shmem_listxattr,
39f0247d 3194#endif
b09e0fa4 3195};
39f0247d 3196
91828a40
DG
3197static struct dentry *shmem_get_parent(struct dentry *child)
3198{
3199 return ERR_PTR(-ESTALE);
3200}
3201
3202static int shmem_match(struct inode *ino, void *vfh)
3203{
3204 __u32 *fh = vfh;
3205 __u64 inum = fh[2];
3206 inum = (inum << 32) | fh[1];
3207 return ino->i_ino == inum && fh[0] == ino->i_generation;
3208}
3209
12ba780d
AG
3210/* Find any alias of inode, but prefer a hashed alias */
3211static struct dentry *shmem_find_alias(struct inode *inode)
3212{
3213 struct dentry *alias = d_find_alias(inode);
3214
3215 return alias ?: d_find_any_alias(inode);
3216}
3217
3218
480b116c
CH
3219static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3220 struct fid *fid, int fh_len, int fh_type)
91828a40 3221{
91828a40 3222 struct inode *inode;
480b116c 3223 struct dentry *dentry = NULL;
35c2a7f4 3224 u64 inum;
480b116c
CH
3225
3226 if (fh_len < 3)
3227 return NULL;
91828a40 3228
35c2a7f4
HD
3229 inum = fid->raw[2];
3230 inum = (inum << 32) | fid->raw[1];
3231
480b116c
CH
3232 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3233 shmem_match, fid->raw);
91828a40 3234 if (inode) {
12ba780d 3235 dentry = shmem_find_alias(inode);
91828a40
DG
3236 iput(inode);
3237 }
3238
480b116c 3239 return dentry;
91828a40
DG
3240}
3241
b0b0382b
AV
3242static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3243 struct inode *parent)
91828a40 3244{
5fe0c237
AK
3245 if (*len < 3) {
3246 *len = 3;
94e07a75 3247 return FILEID_INVALID;
5fe0c237 3248 }
91828a40 3249
1d3382cb 3250 if (inode_unhashed(inode)) {
91828a40
DG
3251 /* Unfortunately insert_inode_hash is not idempotent,
3252 * so as we hash inodes here rather than at creation
3253 * time, we need a lock to ensure we only try
3254 * to do it once
3255 */
3256 static DEFINE_SPINLOCK(lock);
3257 spin_lock(&lock);
1d3382cb 3258 if (inode_unhashed(inode))
91828a40
DG
3259 __insert_inode_hash(inode,
3260 inode->i_ino + inode->i_generation);
3261 spin_unlock(&lock);
3262 }
3263
3264 fh[0] = inode->i_generation;
3265 fh[1] = inode->i_ino;
3266 fh[2] = ((__u64)inode->i_ino) >> 32;
3267
3268 *len = 3;
3269 return 1;
3270}
3271
39655164 3272static const struct export_operations shmem_export_ops = {
91828a40 3273 .get_parent = shmem_get_parent,
91828a40 3274 .encode_fh = shmem_encode_fh,
480b116c 3275 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3276};
3277
680d794b
AM
3278static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3279 bool remount)
1da177e4
LT
3280{
3281 char *this_char, *value, *rest;
49cd0a5c 3282 struct mempolicy *mpol = NULL;
8751e039
EB
3283 uid_t uid;
3284 gid_t gid;
1da177e4 3285
b00dc3ad
HD
3286 while (options != NULL) {
3287 this_char = options;
3288 for (;;) {
3289 /*
3290 * NUL-terminate this option: unfortunately,
3291 * mount options form a comma-separated list,
3292 * but mpol's nodelist may also contain commas.
3293 */
3294 options = strchr(options, ',');
3295 if (options == NULL)
3296 break;
3297 options++;
3298 if (!isdigit(*options)) {
3299 options[-1] = '\0';
3300 break;
3301 }
3302 }
1da177e4
LT
3303 if (!*this_char)
3304 continue;
3305 if ((value = strchr(this_char,'=')) != NULL) {
3306 *value++ = 0;
3307 } else {
1170532b
JP
3308 pr_err("tmpfs: No value for mount option '%s'\n",
3309 this_char);
49cd0a5c 3310 goto error;
1da177e4
LT
3311 }
3312
3313 if (!strcmp(this_char,"size")) {
3314 unsigned long long size;
3315 size = memparse(value,&rest);
3316 if (*rest == '%') {
3317 size <<= PAGE_SHIFT;
3318 size *= totalram_pages;
3319 do_div(size, 100);
3320 rest++;
3321 }
3322 if (*rest)
3323 goto bad_val;
680d794b 3324 sbinfo->max_blocks =
09cbfeaf 3325 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3326 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3327 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3328 if (*rest)
3329 goto bad_val;
3330 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3331 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3332 if (*rest)
3333 goto bad_val;
3334 } else if (!strcmp(this_char,"mode")) {
680d794b 3335 if (remount)
1da177e4 3336 continue;
680d794b 3337 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3338 if (*rest)
3339 goto bad_val;
3340 } else if (!strcmp(this_char,"uid")) {
680d794b 3341 if (remount)
1da177e4 3342 continue;
8751e039 3343 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3344 if (*rest)
3345 goto bad_val;
8751e039
EB
3346 sbinfo->uid = make_kuid(current_user_ns(), uid);
3347 if (!uid_valid(sbinfo->uid))
3348 goto bad_val;
1da177e4 3349 } else if (!strcmp(this_char,"gid")) {
680d794b 3350 if (remount)
1da177e4 3351 continue;
8751e039 3352 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3353 if (*rest)
3354 goto bad_val;
8751e039
EB
3355 sbinfo->gid = make_kgid(current_user_ns(), gid);
3356 if (!gid_valid(sbinfo->gid))
3357 goto bad_val;
e496cf3d 3358#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3359 } else if (!strcmp(this_char, "huge")) {
3360 int huge;
3361 huge = shmem_parse_huge(value);
3362 if (huge < 0)
3363 goto bad_val;
3364 if (!has_transparent_hugepage() &&
3365 huge != SHMEM_HUGE_NEVER)
3366 goto bad_val;
3367 sbinfo->huge = huge;
3368#endif
3369#ifdef CONFIG_NUMA
7339ff83 3370 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3371 mpol_put(mpol);
3372 mpol = NULL;
3373 if (mpol_parse_str(value, &mpol))
7339ff83 3374 goto bad_val;
5a6e75f8 3375#endif
1da177e4 3376 } else {
1170532b 3377 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3378 goto error;
1da177e4
LT
3379 }
3380 }
49cd0a5c 3381 sbinfo->mpol = mpol;
1da177e4
LT
3382 return 0;
3383
3384bad_val:
1170532b 3385 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3386 value, this_char);
49cd0a5c
GT
3387error:
3388 mpol_put(mpol);
1da177e4
LT
3389 return 1;
3390
3391}
3392
3393static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3394{
3395 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3396 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3397 unsigned long inodes;
3398 int error = -EINVAL;
3399
5f00110f 3400 config.mpol = NULL;
680d794b 3401 if (shmem_parse_options(data, &config, true))
0edd73b3 3402 return error;
1da177e4 3403
0edd73b3 3404 spin_lock(&sbinfo->stat_lock);
0edd73b3 3405 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3406 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3407 goto out;
680d794b 3408 if (config.max_inodes < inodes)
0edd73b3
HD
3409 goto out;
3410 /*
54af6042 3411 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3412 * but we must separately disallow unlimited->limited, because
3413 * in that case we have no record of how much is already in use.
3414 */
680d794b 3415 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3416 goto out;
680d794b 3417 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3418 goto out;
3419
3420 error = 0;
5a6e75f8 3421 sbinfo->huge = config.huge;
680d794b 3422 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
3423 sbinfo->max_inodes = config.max_inodes;
3424 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3425
5f00110f
GT
3426 /*
3427 * Preserve previous mempolicy unless mpol remount option was specified.
3428 */
3429 if (config.mpol) {
3430 mpol_put(sbinfo->mpol);
3431 sbinfo->mpol = config.mpol; /* transfers initial ref */
3432 }
0edd73b3
HD
3433out:
3434 spin_unlock(&sbinfo->stat_lock);
3435 return error;
1da177e4 3436}
680d794b 3437
34c80b1d 3438static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3439{
34c80b1d 3440 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3441
3442 if (sbinfo->max_blocks != shmem_default_max_blocks())
3443 seq_printf(seq, ",size=%luk",
09cbfeaf 3444 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3445 if (sbinfo->max_inodes != shmem_default_max_inodes())
3446 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3447 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3448 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3449 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3450 seq_printf(seq, ",uid=%u",
3451 from_kuid_munged(&init_user_ns, sbinfo->uid));
3452 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3453 seq_printf(seq, ",gid=%u",
3454 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3455#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3456 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3457 if (sbinfo->huge)
3458 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3459#endif
71fe804b 3460 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3461 return 0;
3462}
9183df25 3463
680d794b 3464#endif /* CONFIG_TMPFS */
1da177e4
LT
3465
3466static void shmem_put_super(struct super_block *sb)
3467{
602586a8
HD
3468 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3469
3470 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3471 mpol_put(sbinfo->mpol);
602586a8 3472 kfree(sbinfo);
1da177e4
LT
3473 sb->s_fs_info = NULL;
3474}
3475
2b2af54a 3476int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3477{
3478 struct inode *inode;
0edd73b3 3479 struct shmem_sb_info *sbinfo;
680d794b
AM
3480 int err = -ENOMEM;
3481
3482 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3483 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3484 L1_CACHE_BYTES), GFP_KERNEL);
3485 if (!sbinfo)
3486 return -ENOMEM;
3487
0825a6f9 3488 sbinfo->mode = 0777 | S_ISVTX;
76aac0e9
DH
3489 sbinfo->uid = current_fsuid();
3490 sbinfo->gid = current_fsgid();
680d794b 3491 sb->s_fs_info = sbinfo;
1da177e4 3492
0edd73b3 3493#ifdef CONFIG_TMPFS
1da177e4
LT
3494 /*
3495 * Per default we only allow half of the physical ram per
3496 * tmpfs instance, limiting inodes to one per page of lowmem;
3497 * but the internal instance is left unlimited.
3498 */
1751e8a6 3499 if (!(sb->s_flags & SB_KERNMOUNT)) {
680d794b
AM
3500 sbinfo->max_blocks = shmem_default_max_blocks();
3501 sbinfo->max_inodes = shmem_default_max_inodes();
3502 if (shmem_parse_options(data, sbinfo, false)) {
3503 err = -EINVAL;
3504 goto failed;
3505 }
ca4e0519 3506 } else {
1751e8a6 3507 sb->s_flags |= SB_NOUSER;
1da177e4 3508 }
91828a40 3509 sb->s_export_op = &shmem_export_ops;
1751e8a6 3510 sb->s_flags |= SB_NOSEC;
1da177e4 3511#else
1751e8a6 3512 sb->s_flags |= SB_NOUSER;
1da177e4
LT
3513#endif
3514
0edd73b3 3515 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3516 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3517 goto failed;
680d794b 3518 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3519 spin_lock_init(&sbinfo->shrinklist_lock);
3520 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3521
285b2c4f 3522 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3523 sb->s_blocksize = PAGE_SIZE;
3524 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3525 sb->s_magic = TMPFS_MAGIC;
3526 sb->s_op = &shmem_ops;
cfd95a9c 3527 sb->s_time_gran = 1;
b09e0fa4 3528#ifdef CONFIG_TMPFS_XATTR
39f0247d 3529 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3530#endif
3531#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3532 sb->s_flags |= SB_POSIXACL;
39f0247d 3533#endif
2b4db796 3534 uuid_gen(&sb->s_uuid);
0edd73b3 3535
454abafe 3536 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3537 if (!inode)
3538 goto failed;
680d794b
AM
3539 inode->i_uid = sbinfo->uid;
3540 inode->i_gid = sbinfo->gid;
318ceed0
AV
3541 sb->s_root = d_make_root(inode);
3542 if (!sb->s_root)
48fde701 3543 goto failed;
1da177e4
LT
3544 return 0;
3545
1da177e4
LT
3546failed:
3547 shmem_put_super(sb);
3548 return err;
3549}
3550
fcc234f8 3551static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3552
3553static struct inode *shmem_alloc_inode(struct super_block *sb)
3554{
41ffe5d5
HD
3555 struct shmem_inode_info *info;
3556 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3557 if (!info)
1da177e4 3558 return NULL;
41ffe5d5 3559 return &info->vfs_inode;
1da177e4
LT
3560}
3561
41ffe5d5 3562static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3563{
3564 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3565 if (S_ISLNK(inode->i_mode))
3566 kfree(inode->i_link);
fa0d7e3d
NP
3567 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3568}
3569
1da177e4
LT
3570static void shmem_destroy_inode(struct inode *inode)
3571{
09208d15 3572 if (S_ISREG(inode->i_mode))
1da177e4 3573 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3574 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3575}
3576
41ffe5d5 3577static void shmem_init_inode(void *foo)
1da177e4 3578{
41ffe5d5
HD
3579 struct shmem_inode_info *info = foo;
3580 inode_init_once(&info->vfs_inode);
1da177e4
LT
3581}
3582
9a8ec03e 3583static void shmem_init_inodecache(void)
1da177e4
LT
3584{
3585 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3586 sizeof(struct shmem_inode_info),
5d097056 3587 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3588}
3589
41ffe5d5 3590static void shmem_destroy_inodecache(void)
1da177e4 3591{
1a1d92c1 3592 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3593}
3594
f5e54d6e 3595static const struct address_space_operations shmem_aops = {
1da177e4 3596 .writepage = shmem_writepage,
76719325 3597 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3598#ifdef CONFIG_TMPFS
800d15a5
NP
3599 .write_begin = shmem_write_begin,
3600 .write_end = shmem_write_end,
1da177e4 3601#endif
1c93923c 3602#ifdef CONFIG_MIGRATION
304dbdb7 3603 .migratepage = migrate_page,
1c93923c 3604#endif
aa261f54 3605 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3606};
3607
15ad7cdc 3608static const struct file_operations shmem_file_operations = {
1da177e4 3609 .mmap = shmem_mmap,
c01d5b30 3610 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3611#ifdef CONFIG_TMPFS
220f2ac9 3612 .llseek = shmem_file_llseek,
2ba5bbed 3613 .read_iter = shmem_file_read_iter,
8174202b 3614 .write_iter = generic_file_write_iter,
1b061d92 3615 .fsync = noop_fsync,
82c156f8 3616 .splice_read = generic_file_splice_read,
f6cb85d0 3617 .splice_write = iter_file_splice_write,
83e4fa9c 3618 .fallocate = shmem_fallocate,
1da177e4
LT
3619#endif
3620};
3621
92e1d5be 3622static const struct inode_operations shmem_inode_operations = {
44a30220 3623 .getattr = shmem_getattr,
94c1e62d 3624 .setattr = shmem_setattr,
b09e0fa4 3625#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3626 .listxattr = shmem_listxattr,
feda821e 3627 .set_acl = simple_set_acl,
b09e0fa4 3628#endif
1da177e4
LT
3629};
3630
92e1d5be 3631static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3632#ifdef CONFIG_TMPFS
3633 .create = shmem_create,
3634 .lookup = simple_lookup,
3635 .link = shmem_link,
3636 .unlink = shmem_unlink,
3637 .symlink = shmem_symlink,
3638 .mkdir = shmem_mkdir,
3639 .rmdir = shmem_rmdir,
3640 .mknod = shmem_mknod,
2773bf00 3641 .rename = shmem_rename2,
60545d0d 3642 .tmpfile = shmem_tmpfile,
1da177e4 3643#endif
b09e0fa4 3644#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3645 .listxattr = shmem_listxattr,
b09e0fa4 3646#endif
39f0247d 3647#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3648 .setattr = shmem_setattr,
feda821e 3649 .set_acl = simple_set_acl,
39f0247d
AG
3650#endif
3651};
3652
92e1d5be 3653static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3654#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3655 .listxattr = shmem_listxattr,
b09e0fa4 3656#endif
39f0247d 3657#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3658 .setattr = shmem_setattr,
feda821e 3659 .set_acl = simple_set_acl,
39f0247d 3660#endif
1da177e4
LT
3661};
3662
759b9775 3663static const struct super_operations shmem_ops = {
1da177e4
LT
3664 .alloc_inode = shmem_alloc_inode,
3665 .destroy_inode = shmem_destroy_inode,
3666#ifdef CONFIG_TMPFS
3667 .statfs = shmem_statfs,
3668 .remount_fs = shmem_remount_fs,
680d794b 3669 .show_options = shmem_show_options,
1da177e4 3670#endif
1f895f75 3671 .evict_inode = shmem_evict_inode,
1da177e4
LT
3672 .drop_inode = generic_delete_inode,
3673 .put_super = shmem_put_super,
779750d2
KS
3674#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3675 .nr_cached_objects = shmem_unused_huge_count,
3676 .free_cached_objects = shmem_unused_huge_scan,
3677#endif
1da177e4
LT
3678};
3679
f0f37e2f 3680static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3681 .fault = shmem_fault,
d7c17551 3682 .map_pages = filemap_map_pages,
1da177e4
LT
3683#ifdef CONFIG_NUMA
3684 .set_policy = shmem_set_policy,
3685 .get_policy = shmem_get_policy,
3686#endif
3687};
3688
3c26ff6e
AV
3689static struct dentry *shmem_mount(struct file_system_type *fs_type,
3690 int flags, const char *dev_name, void *data)
1da177e4 3691{
3c26ff6e 3692 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3693}
3694
41ffe5d5 3695static struct file_system_type shmem_fs_type = {
1da177e4
LT
3696 .owner = THIS_MODULE,
3697 .name = "tmpfs",
3c26ff6e 3698 .mount = shmem_mount,
1da177e4 3699 .kill_sb = kill_litter_super,
2b8576cb 3700 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3701};
1da177e4 3702
41ffe5d5 3703int __init shmem_init(void)
1da177e4
LT
3704{
3705 int error;
3706
16203a7a
RL
3707 /* If rootfs called this, don't re-init */
3708 if (shmem_inode_cachep)
3709 return 0;
3710
9a8ec03e 3711 shmem_init_inodecache();
1da177e4 3712
41ffe5d5 3713 error = register_filesystem(&shmem_fs_type);
1da177e4 3714 if (error) {
1170532b 3715 pr_err("Could not register tmpfs\n");
1da177e4
LT
3716 goto out2;
3717 }
95dc112a 3718
ca4e0519 3719 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3720 if (IS_ERR(shm_mnt)) {
3721 error = PTR_ERR(shm_mnt);
1170532b 3722 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3723 goto out1;
3724 }
5a6e75f8 3725
e496cf3d 3726#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 3727 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3728 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3729 else
3730 shmem_huge = 0; /* just in case it was patched */
3731#endif
1da177e4
LT
3732 return 0;
3733
3734out1:
41ffe5d5 3735 unregister_filesystem(&shmem_fs_type);
1da177e4 3736out2:
41ffe5d5 3737 shmem_destroy_inodecache();
1da177e4
LT
3738 shm_mnt = ERR_PTR(error);
3739 return error;
3740}
853ac43a 3741
e496cf3d 3742#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3743static ssize_t shmem_enabled_show(struct kobject *kobj,
3744 struct kobj_attribute *attr, char *buf)
3745{
3746 int values[] = {
3747 SHMEM_HUGE_ALWAYS,
3748 SHMEM_HUGE_WITHIN_SIZE,
3749 SHMEM_HUGE_ADVISE,
3750 SHMEM_HUGE_NEVER,
3751 SHMEM_HUGE_DENY,
3752 SHMEM_HUGE_FORCE,
3753 };
3754 int i, count;
3755
3756 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3757 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3758
3759 count += sprintf(buf + count, fmt,
3760 shmem_format_huge(values[i]));
3761 }
3762 buf[count - 1] = '\n';
3763 return count;
3764}
3765
3766static ssize_t shmem_enabled_store(struct kobject *kobj,
3767 struct kobj_attribute *attr, const char *buf, size_t count)
3768{
3769 char tmp[16];
3770 int huge;
3771
3772 if (count + 1 > sizeof(tmp))
3773 return -EINVAL;
3774 memcpy(tmp, buf, count);
3775 tmp[count] = '\0';
3776 if (count && tmp[count - 1] == '\n')
3777 tmp[count - 1] = '\0';
3778
3779 huge = shmem_parse_huge(tmp);
3780 if (huge == -EINVAL)
3781 return -EINVAL;
3782 if (!has_transparent_hugepage() &&
3783 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3784 return -EINVAL;
3785
3786 shmem_huge = huge;
435c0b87 3787 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3788 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3789 return count;
3790}
3791
3792struct kobj_attribute shmem_enabled_attr =
3793 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 3794#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 3795
3b33719c 3796#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
3797bool shmem_huge_enabled(struct vm_area_struct *vma)
3798{
3799 struct inode *inode = file_inode(vma->vm_file);
3800 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3801 loff_t i_size;
3802 pgoff_t off;
3803
3804 if (shmem_huge == SHMEM_HUGE_FORCE)
3805 return true;
3806 if (shmem_huge == SHMEM_HUGE_DENY)
3807 return false;
3808 switch (sbinfo->huge) {
3809 case SHMEM_HUGE_NEVER:
3810 return false;
3811 case SHMEM_HUGE_ALWAYS:
3812 return true;
3813 case SHMEM_HUGE_WITHIN_SIZE:
3814 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3815 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3816 if (i_size >= HPAGE_PMD_SIZE &&
3817 i_size >> PAGE_SHIFT >= off)
3818 return true;
c8402871 3819 /* fall through */
f3f0e1d2
KS
3820 case SHMEM_HUGE_ADVISE:
3821 /* TODO: implement fadvise() hints */
3822 return (vma->vm_flags & VM_HUGEPAGE);
3823 default:
3824 VM_BUG_ON(1);
3825 return false;
3826 }
3827}
3b33719c 3828#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 3829
853ac43a
MM
3830#else /* !CONFIG_SHMEM */
3831
3832/*
3833 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3834 *
3835 * This is intended for small system where the benefits of the full
3836 * shmem code (swap-backed and resource-limited) are outweighed by
3837 * their complexity. On systems without swap this code should be
3838 * effectively equivalent, but much lighter weight.
3839 */
3840
41ffe5d5 3841static struct file_system_type shmem_fs_type = {
853ac43a 3842 .name = "tmpfs",
3c26ff6e 3843 .mount = ramfs_mount,
853ac43a 3844 .kill_sb = kill_litter_super,
2b8576cb 3845 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3846};
3847
41ffe5d5 3848int __init shmem_init(void)
853ac43a 3849{
41ffe5d5 3850 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3851
41ffe5d5 3852 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3853 BUG_ON(IS_ERR(shm_mnt));
3854
3855 return 0;
3856}
3857
41ffe5d5 3858int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3859{
3860 return 0;
3861}
3862
3f96b79a
HD
3863int shmem_lock(struct file *file, int lock, struct user_struct *user)
3864{
3865 return 0;
3866}
3867
24513264
HD
3868void shmem_unlock_mapping(struct address_space *mapping)
3869{
3870}
3871
c01d5b30
HD
3872#ifdef CONFIG_MMU
3873unsigned long shmem_get_unmapped_area(struct file *file,
3874 unsigned long addr, unsigned long len,
3875 unsigned long pgoff, unsigned long flags)
3876{
3877 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3878}
3879#endif
3880
41ffe5d5 3881void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3882{
41ffe5d5 3883 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3884}
3885EXPORT_SYMBOL_GPL(shmem_truncate_range);
3886
0b0a0806
HD
3887#define shmem_vm_ops generic_file_vm_ops
3888#define shmem_file_operations ramfs_file_operations
454abafe 3889#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3890#define shmem_acct_size(flags, size) 0
3891#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3892
3893#endif /* CONFIG_SHMEM */
3894
3895/* common code */
1da177e4 3896
703321b6 3897static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 3898 unsigned long flags, unsigned int i_flags)
1da177e4 3899{
1da177e4 3900 struct inode *inode;
93dec2da 3901 struct file *res;
1da177e4 3902
703321b6
MA
3903 if (IS_ERR(mnt))
3904 return ERR_CAST(mnt);
1da177e4 3905
285b2c4f 3906 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3907 return ERR_PTR(-EINVAL);
3908
3909 if (shmem_acct_size(flags, size))
3910 return ERR_PTR(-ENOMEM);
3911
93dec2da
AV
3912 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3913 flags);
dac2d1f6
AV
3914 if (unlikely(!inode)) {
3915 shmem_unacct_size(flags, size);
3916 return ERR_PTR(-ENOSPC);
3917 }
c7277090 3918 inode->i_flags |= i_flags;
1da177e4 3919 inode->i_size = size;
6d6b77f1 3920 clear_nlink(inode); /* It is unlinked */
26567cdb 3921 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
3922 if (!IS_ERR(res))
3923 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3924 &shmem_file_operations);
26567cdb 3925 if (IS_ERR(res))
93dec2da 3926 iput(inode);
6b4d0b27 3927 return res;
1da177e4 3928}
c7277090
EP
3929
3930/**
3931 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3932 * kernel internal. There will be NO LSM permission checks against the
3933 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
3934 * higher layer. The users are the big_key and shm implementations. LSM
3935 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
3936 * @name: name for dentry (to be seen in /proc/<pid>/maps
3937 * @size: size to be set for the file
3938 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3939 */
3940struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3941{
703321b6 3942 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
3943}
3944
3945/**
3946 * shmem_file_setup - get an unlinked file living in tmpfs
3947 * @name: name for dentry (to be seen in /proc/<pid>/maps
3948 * @size: size to be set for the file
3949 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3950 */
3951struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3952{
703321b6 3953 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 3954}
395e0ddc 3955EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3956
703321b6
MA
3957/**
3958 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3959 * @mnt: the tmpfs mount where the file will be created
3960 * @name: name for dentry (to be seen in /proc/<pid>/maps
3961 * @size: size to be set for the file
3962 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3963 */
3964struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3965 loff_t size, unsigned long flags)
3966{
3967 return __shmem_file_setup(mnt, name, size, flags, 0);
3968}
3969EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3970
46711810 3971/**
1da177e4 3972 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3973 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3974 */
3975int shmem_zero_setup(struct vm_area_struct *vma)
3976{
3977 struct file *file;
3978 loff_t size = vma->vm_end - vma->vm_start;
3979
66fc1303
HD
3980 /*
3981 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3982 * between XFS directory reading and selinux: since this file is only
3983 * accessible to the user through its mapping, use S_PRIVATE flag to
3984 * bypass file security, in the same way as shmem_kernel_file_setup().
3985 */
703321b6 3986 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
3987 if (IS_ERR(file))
3988 return PTR_ERR(file);
3989
3990 if (vma->vm_file)
3991 fput(vma->vm_file);
3992 vma->vm_file = file;
3993 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 3994
e496cf3d 3995 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
3996 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
3997 (vma->vm_end & HPAGE_PMD_MASK)) {
3998 khugepaged_enter(vma, vma->vm_flags);
3999 }
4000
1da177e4
LT
4001 return 0;
4002}
d9d90e5e
HD
4003
4004/**
4005 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4006 * @mapping: the page's address_space
4007 * @index: the page index
4008 * @gfp: the page allocator flags to use if allocating
4009 *
4010 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4011 * with any new page allocations done using the specified allocation flags.
4012 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4013 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4014 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4015 *
68da9f05
HD
4016 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4017 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4018 */
4019struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4020 pgoff_t index, gfp_t gfp)
4021{
68da9f05
HD
4022#ifdef CONFIG_SHMEM
4023 struct inode *inode = mapping->host;
9276aad6 4024 struct page *page;
68da9f05
HD
4025 int error;
4026
4027 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4028 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4029 gfp, NULL, NULL, NULL);
68da9f05
HD
4030 if (error)
4031 page = ERR_PTR(error);
4032 else
4033 unlock_page(page);
4034 return page;
4035#else
4036 /*
4037 * The tiny !SHMEM case uses ramfs without swap
4038 */
d9d90e5e 4039 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4040#endif
d9d90e5e
HD
4041}
4042EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);