]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/shmem.c
mm, proc: reduce cost of /proc/pid/smaps for shmem mappings
[thirdparty/linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
e2e40f2c 34#include <linux/uio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
9183df25 69#include <linux/syscalls.h>
40e041a2 70#include <linux/fcntl.h>
9183df25 71#include <uapi/linux/memfd.h>
304dbdb7 72
1da177e4 73#include <asm/uaccess.h>
1da177e4
LT
74#include <asm/pgtable.h>
75
dd56b046
MG
76#include "internal.h"
77
caefba17 78#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
79#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
1da177e4
LT
81/* Pretend that each entry is of this size in directory's i_size */
82#define BOGO_DIRENT_SIZE 20
83
69f07ec9
HD
84/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85#define SHORT_SYMLINK_LEN 128
86
1aac1400 87/*
f00cdc6d
HD
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
91 */
92struct shmem_falloc {
8e205f77 93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98};
99
285b2c4f 100/* Flag allocation requirements to shmem_getpage */
1da177e4 101enum sgp_type {
1da177e4
LT
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
107};
108
b76db735 109#ifdef CONFIG_TMPFS
680d794b
AM
110static unsigned long shmem_default_max_blocks(void)
111{
112 return totalram_pages / 2;
113}
114
115static unsigned long shmem_default_max_inodes(void)
116{
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118}
b76db735 119#endif
680d794b 120
bde05d1c
HD
121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
129{
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
132}
1da177e4 133
1da177e4
LT
134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135{
136 return sb->s_fs_info;
137}
138
139/*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145static inline int shmem_acct_size(unsigned long flags, loff_t size)
146{
0b0a0806 147 return (flags & VM_NORESERVE) ?
191c5424 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
149}
150
151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152{
0b0a0806 153 if (!(flags & VM_NORESERVE))
1da177e4
LT
154 vm_unacct_memory(VM_ACCT(size));
155}
156
77142517
KK
157static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159{
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168}
169
1da177e4
LT
170/*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176static inline int shmem_acct_block(unsigned long flags)
177{
0b0a0806 178 return (flags & VM_NORESERVE) ?
191c5424 179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
180}
181
182static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183{
0b0a0806 184 if (flags & VM_NORESERVE)
1da177e4
LT
185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186}
187
759b9775 188static const struct super_operations shmem_ops;
f5e54d6e 189static const struct address_space_operations shmem_aops;
15ad7cdc 190static const struct file_operations shmem_file_operations;
92e1d5be
AV
191static const struct inode_operations shmem_inode_operations;
192static const struct inode_operations shmem_dir_inode_operations;
193static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 194static const struct vm_operations_struct shmem_vm_ops;
1da177e4 195
1da177e4 196static LIST_HEAD(shmem_swaplist);
cb5f7b9a 197static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 198
5b04c689
PE
199static int shmem_reserve_inode(struct super_block *sb)
200{
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212}
213
214static void shmem_free_inode(struct super_block *sb)
215{
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222}
223
46711810 224/**
41ffe5d5 225 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236static void shmem_recalc_inode(struct inode *inode)
237{
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
54af6042
HD
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 246 info->alloced -= freed;
54af6042 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 248 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
249 }
250}
251
7a5d0fbb
HD
252/*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257{
258 void **pslot;
6dbaf22c 259 void *item;
7a5d0fbb
HD
260
261 VM_BUG_ON(!expected);
6dbaf22c 262 VM_BUG_ON(!replacement);
7a5d0fbb 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
267 if (item != expected)
268 return -ENOENT;
6dbaf22c 269 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
270 return 0;
271}
272
d1899228
HD
273/*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282{
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289}
290
46f65ec1
HD
291/*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
fed400a1 296 pgoff_t index, void *expected)
46f65ec1 297{
b065b432 298 int error;
46f65ec1 299
309381fe
SL
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 302
b065b432
HD
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
46f65ec1 308 if (!expected)
b065b432
HD
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
46f65ec1 313 if (!error) {
b065b432
HD
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
46f65ec1 322 }
46f65ec1
HD
323 return error;
324}
325
6922c0c7
HD
326/*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330{
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343}
344
7a5d0fbb
HD
345/*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350{
6dbaf22c 351 void *old;
7a5d0fbb
HD
352
353 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 355 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
7a5d0fbb
HD
360}
361
6a15a370
VB
362/*
363 * Determine (in bytes) how many of the shmem object's pages mapped by the
364 * given vma is swapped out.
365 *
366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367 * as long as the inode doesn't go away and racy results are not a problem.
368 */
369unsigned long shmem_swap_usage(struct vm_area_struct *vma)
370{
371 struct inode *inode = file_inode(vma->vm_file);
372 struct shmem_inode_info *info = SHMEM_I(inode);
373 struct address_space *mapping = inode->i_mapping;
374 unsigned long swapped;
375 pgoff_t start, end;
376 struct radix_tree_iter iter;
377 void **slot;
378 struct page *page;
379
380 /* Be careful as we don't hold info->lock */
381 swapped = READ_ONCE(info->swapped);
382
383 /*
384 * The easier cases are when the shmem object has nothing in swap, or
385 * the vma maps it whole. Then we can simply use the stats that we
386 * already track.
387 */
388 if (!swapped)
389 return 0;
390
391 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
392 return swapped << PAGE_SHIFT;
393
394 swapped = 0;
395
396 /* Here comes the more involved part */
397 start = linear_page_index(vma, vma->vm_start);
398 end = linear_page_index(vma, vma->vm_end);
399
400 rcu_read_lock();
401
402restart:
403 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
404 if (iter.index >= end)
405 break;
406
407 page = radix_tree_deref_slot(slot);
408
409 /*
410 * This should only be possible to happen at index 0, so we
411 * don't need to reset the counter, nor do we risk infinite
412 * restarts.
413 */
414 if (radix_tree_deref_retry(page))
415 goto restart;
416
417 if (radix_tree_exceptional_entry(page))
418 swapped++;
419
420 if (need_resched()) {
421 cond_resched_rcu();
422 start = iter.index + 1;
423 goto restart;
424 }
425 }
426
427 rcu_read_unlock();
428
429 return swapped << PAGE_SHIFT;
430}
431
24513264
HD
432/*
433 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
434 */
435void shmem_unlock_mapping(struct address_space *mapping)
436{
437 struct pagevec pvec;
438 pgoff_t indices[PAGEVEC_SIZE];
439 pgoff_t index = 0;
440
441 pagevec_init(&pvec, 0);
442 /*
443 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
444 */
445 while (!mapping_unevictable(mapping)) {
446 /*
447 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
448 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
449 */
0cd6144a
JW
450 pvec.nr = find_get_entries(mapping, index,
451 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
452 if (!pvec.nr)
453 break;
454 index = indices[pvec.nr - 1] + 1;
0cd6144a 455 pagevec_remove_exceptionals(&pvec);
24513264
HD
456 check_move_unevictable_pages(pvec.pages, pvec.nr);
457 pagevec_release(&pvec);
458 cond_resched();
459 }
7a5d0fbb
HD
460}
461
462/*
463 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 464 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 465 */
1635f6a7
HD
466static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
467 bool unfalloc)
1da177e4 468{
285b2c4f 469 struct address_space *mapping = inode->i_mapping;
1da177e4 470 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 471 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
472 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
473 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
474 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 475 struct pagevec pvec;
7a5d0fbb
HD
476 pgoff_t indices[PAGEVEC_SIZE];
477 long nr_swaps_freed = 0;
285b2c4f 478 pgoff_t index;
bda97eab
HD
479 int i;
480
83e4fa9c
HD
481 if (lend == -1)
482 end = -1; /* unsigned, so actually very big */
bda97eab
HD
483
484 pagevec_init(&pvec, 0);
485 index = start;
83e4fa9c 486 while (index < end) {
0cd6144a
JW
487 pvec.nr = find_get_entries(mapping, index,
488 min(end - index, (pgoff_t)PAGEVEC_SIZE),
489 pvec.pages, indices);
7a5d0fbb
HD
490 if (!pvec.nr)
491 break;
bda97eab
HD
492 for (i = 0; i < pagevec_count(&pvec); i++) {
493 struct page *page = pvec.pages[i];
494
7a5d0fbb 495 index = indices[i];
83e4fa9c 496 if (index >= end)
bda97eab
HD
497 break;
498
7a5d0fbb 499 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
500 if (unfalloc)
501 continue;
7a5d0fbb
HD
502 nr_swaps_freed += !shmem_free_swap(mapping,
503 index, page);
bda97eab 504 continue;
7a5d0fbb
HD
505 }
506
507 if (!trylock_page(page))
bda97eab 508 continue;
1635f6a7
HD
509 if (!unfalloc || !PageUptodate(page)) {
510 if (page->mapping == mapping) {
309381fe 511 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
512 truncate_inode_page(mapping, page);
513 }
bda97eab 514 }
bda97eab
HD
515 unlock_page(page);
516 }
0cd6144a 517 pagevec_remove_exceptionals(&pvec);
24513264 518 pagevec_release(&pvec);
bda97eab
HD
519 cond_resched();
520 index++;
521 }
1da177e4 522
83e4fa9c 523 if (partial_start) {
bda97eab
HD
524 struct page *page = NULL;
525 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
526 if (page) {
83e4fa9c
HD
527 unsigned int top = PAGE_CACHE_SIZE;
528 if (start > end) {
529 top = partial_end;
530 partial_end = 0;
531 }
532 zero_user_segment(page, partial_start, top);
533 set_page_dirty(page);
534 unlock_page(page);
535 page_cache_release(page);
536 }
537 }
538 if (partial_end) {
539 struct page *page = NULL;
540 shmem_getpage(inode, end, &page, SGP_READ, NULL);
541 if (page) {
542 zero_user_segment(page, 0, partial_end);
bda97eab
HD
543 set_page_dirty(page);
544 unlock_page(page);
545 page_cache_release(page);
546 }
547 }
83e4fa9c
HD
548 if (start >= end)
549 return;
bda97eab
HD
550
551 index = start;
b1a36650 552 while (index < end) {
bda97eab 553 cond_resched();
0cd6144a
JW
554
555 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 556 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 557 pvec.pages, indices);
7a5d0fbb 558 if (!pvec.nr) {
b1a36650
HD
559 /* If all gone or hole-punch or unfalloc, we're done */
560 if (index == start || end != -1)
bda97eab 561 break;
b1a36650 562 /* But if truncating, restart to make sure all gone */
bda97eab
HD
563 index = start;
564 continue;
565 }
bda97eab
HD
566 for (i = 0; i < pagevec_count(&pvec); i++) {
567 struct page *page = pvec.pages[i];
568
7a5d0fbb 569 index = indices[i];
83e4fa9c 570 if (index >= end)
bda97eab
HD
571 break;
572
7a5d0fbb 573 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
574 if (unfalloc)
575 continue;
b1a36650
HD
576 if (shmem_free_swap(mapping, index, page)) {
577 /* Swap was replaced by page: retry */
578 index--;
579 break;
580 }
581 nr_swaps_freed++;
7a5d0fbb
HD
582 continue;
583 }
584
bda97eab 585 lock_page(page);
1635f6a7
HD
586 if (!unfalloc || !PageUptodate(page)) {
587 if (page->mapping == mapping) {
309381fe 588 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 589 truncate_inode_page(mapping, page);
b1a36650
HD
590 } else {
591 /* Page was replaced by swap: retry */
592 unlock_page(page);
593 index--;
594 break;
1635f6a7 595 }
7a5d0fbb 596 }
bda97eab
HD
597 unlock_page(page);
598 }
0cd6144a 599 pagevec_remove_exceptionals(&pvec);
24513264 600 pagevec_release(&pvec);
bda97eab
HD
601 index++;
602 }
94c1e62d 603
1da177e4 604 spin_lock(&info->lock);
7a5d0fbb 605 info->swapped -= nr_swaps_freed;
1da177e4
LT
606 shmem_recalc_inode(inode);
607 spin_unlock(&info->lock);
1635f6a7 608}
1da177e4 609
1635f6a7
HD
610void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
611{
612 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 613 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 614}
94c1e62d 615EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 616
44a30220
YZ
617static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
618 struct kstat *stat)
619{
620 struct inode *inode = dentry->d_inode;
621 struct shmem_inode_info *info = SHMEM_I(inode);
622
d0424c42
HD
623 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
624 spin_lock(&info->lock);
625 shmem_recalc_inode(inode);
626 spin_unlock(&info->lock);
627 }
44a30220 628 generic_fillattr(inode, stat);
44a30220
YZ
629 return 0;
630}
631
94c1e62d 632static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 633{
75c3cfa8 634 struct inode *inode = d_inode(dentry);
40e041a2 635 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
636 int error;
637
db78b877
CH
638 error = inode_change_ok(inode, attr);
639 if (error)
640 return error;
641
94c1e62d
HD
642 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
643 loff_t oldsize = inode->i_size;
644 loff_t newsize = attr->ia_size;
3889e6e7 645
40e041a2
DR
646 /* protected by i_mutex */
647 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
648 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
649 return -EPERM;
650
94c1e62d 651 if (newsize != oldsize) {
77142517
KK
652 error = shmem_reacct_size(SHMEM_I(inode)->flags,
653 oldsize, newsize);
654 if (error)
655 return error;
94c1e62d
HD
656 i_size_write(inode, newsize);
657 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
658 }
afa2db2f 659 if (newsize <= oldsize) {
94c1e62d 660 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
661 if (oldsize > holebegin)
662 unmap_mapping_range(inode->i_mapping,
663 holebegin, 0, 1);
664 if (info->alloced)
665 shmem_truncate_range(inode,
666 newsize, (loff_t)-1);
94c1e62d 667 /* unmap again to remove racily COWed private pages */
d0424c42
HD
668 if (oldsize > holebegin)
669 unmap_mapping_range(inode->i_mapping,
670 holebegin, 0, 1);
94c1e62d 671 }
1da177e4
LT
672 }
673
db78b877 674 setattr_copy(inode, attr);
db78b877 675 if (attr->ia_valid & ATTR_MODE)
feda821e 676 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
677 return error;
678}
679
1f895f75 680static void shmem_evict_inode(struct inode *inode)
1da177e4 681{
1da177e4
LT
682 struct shmem_inode_info *info = SHMEM_I(inode);
683
3889e6e7 684 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
685 shmem_unacct_size(info->flags, inode->i_size);
686 inode->i_size = 0;
3889e6e7 687 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 688 if (!list_empty(&info->swaplist)) {
cb5f7b9a 689 mutex_lock(&shmem_swaplist_mutex);
1da177e4 690 list_del_init(&info->swaplist);
cb5f7b9a 691 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 692 }
69f07ec9
HD
693 } else
694 kfree(info->symlink);
b09e0fa4 695
38f38657 696 simple_xattrs_free(&info->xattrs);
0f3c42f5 697 WARN_ON(inode->i_blocks);
5b04c689 698 shmem_free_inode(inode->i_sb);
dbd5768f 699 clear_inode(inode);
1da177e4
LT
700}
701
46f65ec1
HD
702/*
703 * If swap found in inode, free it and move page from swapcache to filecache.
704 */
41ffe5d5 705static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 706 swp_entry_t swap, struct page **pagep)
1da177e4 707{
285b2c4f 708 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 709 void *radswap;
41ffe5d5 710 pgoff_t index;
bde05d1c
HD
711 gfp_t gfp;
712 int error = 0;
1da177e4 713
46f65ec1 714 radswap = swp_to_radix_entry(swap);
e504f3fd 715 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 716 if (index == -1)
00501b53 717 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 718
1b1b32f2
HD
719 /*
720 * Move _head_ to start search for next from here.
1f895f75 721 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 722 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 723 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
724 */
725 if (shmem_swaplist.next != &info->swaplist)
726 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 727
bde05d1c
HD
728 gfp = mapping_gfp_mask(mapping);
729 if (shmem_should_replace_page(*pagep, gfp)) {
730 mutex_unlock(&shmem_swaplist_mutex);
731 error = shmem_replace_page(pagep, gfp, info, index);
732 mutex_lock(&shmem_swaplist_mutex);
733 /*
734 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
735 * allocation, but the inode might have been freed while we
736 * dropped it: although a racing shmem_evict_inode() cannot
737 * complete without emptying the radix_tree, our page lock
738 * on this swapcache page is not enough to prevent that -
739 * free_swap_and_cache() of our swap entry will only
740 * trylock_page(), removing swap from radix_tree whatever.
741 *
742 * We must not proceed to shmem_add_to_page_cache() if the
743 * inode has been freed, but of course we cannot rely on
744 * inode or mapping or info to check that. However, we can
745 * safely check if our swap entry is still in use (and here
746 * it can't have got reused for another page): if it's still
747 * in use, then the inode cannot have been freed yet, and we
748 * can safely proceed (if it's no longer in use, that tells
749 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
750 */
751 if (!page_swapcount(*pagep))
752 error = -ENOENT;
753 }
754
d13d1443 755 /*
778dd893
HD
756 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
757 * but also to hold up shmem_evict_inode(): so inode cannot be freed
758 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 759 */
bde05d1c
HD
760 if (!error)
761 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 762 radswap);
48f170fb 763 if (error != -ENOMEM) {
46f65ec1
HD
764 /*
765 * Truncation and eviction use free_swap_and_cache(), which
766 * only does trylock page: if we raced, best clean up here.
767 */
bde05d1c
HD
768 delete_from_swap_cache(*pagep);
769 set_page_dirty(*pagep);
46f65ec1
HD
770 if (!error) {
771 spin_lock(&info->lock);
772 info->swapped--;
773 spin_unlock(&info->lock);
774 swap_free(swap);
775 }
1da177e4 776 }
2e0e26c7 777 return error;
1da177e4
LT
778}
779
780/*
46f65ec1 781 * Search through swapped inodes to find and replace swap by page.
1da177e4 782 */
41ffe5d5 783int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 784{
41ffe5d5 785 struct list_head *this, *next;
1da177e4 786 struct shmem_inode_info *info;
00501b53 787 struct mem_cgroup *memcg;
bde05d1c
HD
788 int error = 0;
789
790 /*
791 * There's a faint possibility that swap page was replaced before
0142ef6c 792 * caller locked it: caller will come back later with the right page.
bde05d1c 793 */
0142ef6c 794 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 795 goto out;
778dd893
HD
796
797 /*
798 * Charge page using GFP_KERNEL while we can wait, before taking
799 * the shmem_swaplist_mutex which might hold up shmem_writepage().
800 * Charged back to the user (not to caller) when swap account is used.
778dd893 801 */
00501b53 802 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
778dd893
HD
803 if (error)
804 goto out;
46f65ec1 805 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 806 error = -EAGAIN;
1da177e4 807
cb5f7b9a 808 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
809 list_for_each_safe(this, next, &shmem_swaplist) {
810 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 811 if (info->swapped)
00501b53 812 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
813 else
814 list_del_init(&info->swaplist);
cb5f7b9a 815 cond_resched();
00501b53 816 if (error != -EAGAIN)
778dd893 817 break;
00501b53 818 /* found nothing in this: move on to search the next */
1da177e4 819 }
cb5f7b9a 820 mutex_unlock(&shmem_swaplist_mutex);
778dd893 821
00501b53
JW
822 if (error) {
823 if (error != -ENOMEM)
824 error = 0;
825 mem_cgroup_cancel_charge(page, memcg);
826 } else
827 mem_cgroup_commit_charge(page, memcg, true);
778dd893 828out:
aaa46865
HD
829 unlock_page(page);
830 page_cache_release(page);
778dd893 831 return error;
1da177e4
LT
832}
833
834/*
835 * Move the page from the page cache to the swap cache.
836 */
837static int shmem_writepage(struct page *page, struct writeback_control *wbc)
838{
839 struct shmem_inode_info *info;
1da177e4 840 struct address_space *mapping;
1da177e4 841 struct inode *inode;
6922c0c7
HD
842 swp_entry_t swap;
843 pgoff_t index;
1da177e4
LT
844
845 BUG_ON(!PageLocked(page));
1da177e4
LT
846 mapping = page->mapping;
847 index = page->index;
848 inode = mapping->host;
849 info = SHMEM_I(inode);
850 if (info->flags & VM_LOCKED)
851 goto redirty;
d9fe526a 852 if (!total_swap_pages)
1da177e4
LT
853 goto redirty;
854
d9fe526a 855 /*
97b713ba
CH
856 * Our capabilities prevent regular writeback or sync from ever calling
857 * shmem_writepage; but a stacking filesystem might use ->writepage of
858 * its underlying filesystem, in which case tmpfs should write out to
859 * swap only in response to memory pressure, and not for the writeback
860 * threads or sync.
d9fe526a 861 */
48f170fb
HD
862 if (!wbc->for_reclaim) {
863 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
864 goto redirty;
865 }
1635f6a7
HD
866
867 /*
868 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
869 * value into swapfile.c, the only way we can correctly account for a
870 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
871 *
872 * That's okay for a page already fallocated earlier, but if we have
873 * not yet completed the fallocation, then (a) we want to keep track
874 * of this page in case we have to undo it, and (b) it may not be a
875 * good idea to continue anyway, once we're pushing into swap. So
876 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
877 */
878 if (!PageUptodate(page)) {
1aac1400
HD
879 if (inode->i_private) {
880 struct shmem_falloc *shmem_falloc;
881 spin_lock(&inode->i_lock);
882 shmem_falloc = inode->i_private;
883 if (shmem_falloc &&
8e205f77 884 !shmem_falloc->waitq &&
1aac1400
HD
885 index >= shmem_falloc->start &&
886 index < shmem_falloc->next)
887 shmem_falloc->nr_unswapped++;
888 else
889 shmem_falloc = NULL;
890 spin_unlock(&inode->i_lock);
891 if (shmem_falloc)
892 goto redirty;
893 }
1635f6a7
HD
894 clear_highpage(page);
895 flush_dcache_page(page);
896 SetPageUptodate(page);
897 }
898
48f170fb
HD
899 swap = get_swap_page();
900 if (!swap.val)
901 goto redirty;
d9fe526a 902
b1dea800
HD
903 /*
904 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
905 * if it's not already there. Do it now before the page is
906 * moved to swap cache, when its pagelock no longer protects
b1dea800 907 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
908 * we've incremented swapped, because shmem_unuse_inode() will
909 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 910 */
48f170fb
HD
911 mutex_lock(&shmem_swaplist_mutex);
912 if (list_empty(&info->swaplist))
913 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 914
48f170fb 915 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
6922c0c7 916 spin_lock(&info->lock);
6922c0c7 917 shmem_recalc_inode(inode);
267a4c76 918 info->swapped++;
826267cf 919 spin_unlock(&info->lock);
6922c0c7 920
267a4c76
HD
921 swap_shmem_alloc(swap);
922 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
923
6922c0c7 924 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 925 BUG_ON(page_mapped(page));
9fab5619 926 swap_writepage(page, wbc);
1da177e4
LT
927 return 0;
928 }
929
6922c0c7 930 mutex_unlock(&shmem_swaplist_mutex);
0a31bc97 931 swapcache_free(swap);
1da177e4
LT
932redirty:
933 set_page_dirty(page);
d9fe526a
HD
934 if (wbc->for_reclaim)
935 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
936 unlock_page(page);
937 return 0;
1da177e4
LT
938}
939
940#ifdef CONFIG_NUMA
680d794b 941#ifdef CONFIG_TMPFS
71fe804b 942static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 943{
095f1fc4 944 char buffer[64];
680d794b 945
71fe804b 946 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 947 return; /* show nothing */
680d794b 948
a7a88b23 949 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
950
951 seq_printf(seq, ",mpol=%s", buffer);
680d794b 952}
71fe804b
LS
953
954static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
955{
956 struct mempolicy *mpol = NULL;
957 if (sbinfo->mpol) {
958 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
959 mpol = sbinfo->mpol;
960 mpol_get(mpol);
961 spin_unlock(&sbinfo->stat_lock);
962 }
963 return mpol;
964}
680d794b
AM
965#endif /* CONFIG_TMPFS */
966
41ffe5d5
HD
967static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
968 struct shmem_inode_info *info, pgoff_t index)
1da177e4 969{
1da177e4 970 struct vm_area_struct pvma;
18a2f371 971 struct page *page;
52cd3b07 972
1da177e4 973 /* Create a pseudo vma that just contains the policy */
c4cc6d07 974 pvma.vm_start = 0;
09c231cb
NZ
975 /* Bias interleave by inode number to distribute better across nodes */
976 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 977 pvma.vm_ops = NULL;
18a2f371
MG
978 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
979
980 page = swapin_readahead(swap, gfp, &pvma, 0);
981
982 /* Drop reference taken by mpol_shared_policy_lookup() */
983 mpol_cond_put(pvma.vm_policy);
984
985 return page;
1da177e4
LT
986}
987
02098fea 988static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 989 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
990{
991 struct vm_area_struct pvma;
18a2f371 992 struct page *page;
1da177e4 993
c4cc6d07
HD
994 /* Create a pseudo vma that just contains the policy */
995 pvma.vm_start = 0;
09c231cb
NZ
996 /* Bias interleave by inode number to distribute better across nodes */
997 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 998 pvma.vm_ops = NULL;
41ffe5d5 999 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 1000
18a2f371
MG
1001 page = alloc_page_vma(gfp, &pvma, 0);
1002
1003 /* Drop reference taken by mpol_shared_policy_lookup() */
1004 mpol_cond_put(pvma.vm_policy);
1005
1006 return page;
1da177e4 1007}
680d794b
AM
1008#else /* !CONFIG_NUMA */
1009#ifdef CONFIG_TMPFS
41ffe5d5 1010static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b
AM
1011{
1012}
1013#endif /* CONFIG_TMPFS */
1014
41ffe5d5
HD
1015static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1016 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1017{
41ffe5d5 1018 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
1019}
1020
02098fea 1021static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1022 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1023{
e84e2e13 1024 return alloc_page(gfp);
1da177e4 1025}
680d794b 1026#endif /* CONFIG_NUMA */
1da177e4 1027
71fe804b
LS
1028#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1029static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1030{
1031 return NULL;
1032}
1033#endif
1034
bde05d1c
HD
1035/*
1036 * When a page is moved from swapcache to shmem filecache (either by the
1037 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1038 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1039 * ignorance of the mapping it belongs to. If that mapping has special
1040 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1041 * we may need to copy to a suitable page before moving to filecache.
1042 *
1043 * In a future release, this may well be extended to respect cpuset and
1044 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1045 * but for now it is a simple matter of zone.
1046 */
1047static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1048{
1049 return page_zonenum(page) > gfp_zone(gfp);
1050}
1051
1052static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1053 struct shmem_inode_info *info, pgoff_t index)
1054{
1055 struct page *oldpage, *newpage;
1056 struct address_space *swap_mapping;
1057 pgoff_t swap_index;
1058 int error;
1059
1060 oldpage = *pagep;
1061 swap_index = page_private(oldpage);
1062 swap_mapping = page_mapping(oldpage);
1063
1064 /*
1065 * We have arrived here because our zones are constrained, so don't
1066 * limit chance of success by further cpuset and node constraints.
1067 */
1068 gfp &= ~GFP_CONSTRAINT_MASK;
1069 newpage = shmem_alloc_page(gfp, info, index);
1070 if (!newpage)
1071 return -ENOMEM;
bde05d1c 1072
bde05d1c
HD
1073 page_cache_get(newpage);
1074 copy_highpage(newpage, oldpage);
0142ef6c 1075 flush_dcache_page(newpage);
bde05d1c 1076
bde05d1c 1077 __set_page_locked(newpage);
bde05d1c 1078 SetPageUptodate(newpage);
bde05d1c 1079 SetPageSwapBacked(newpage);
bde05d1c 1080 set_page_private(newpage, swap_index);
bde05d1c
HD
1081 SetPageSwapCache(newpage);
1082
1083 /*
1084 * Our caller will very soon move newpage out of swapcache, but it's
1085 * a nice clean interface for us to replace oldpage by newpage there.
1086 */
1087 spin_lock_irq(&swap_mapping->tree_lock);
1088 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1089 newpage);
0142ef6c
HD
1090 if (!error) {
1091 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1092 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1093 }
bde05d1c 1094 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1095
0142ef6c
HD
1096 if (unlikely(error)) {
1097 /*
1098 * Is this possible? I think not, now that our callers check
1099 * both PageSwapCache and page_private after getting page lock;
1100 * but be defensive. Reverse old to newpage for clear and free.
1101 */
1102 oldpage = newpage;
1103 } else {
45637bab 1104 mem_cgroup_replace_page(oldpage, newpage);
0142ef6c
HD
1105 lru_cache_add_anon(newpage);
1106 *pagep = newpage;
1107 }
bde05d1c
HD
1108
1109 ClearPageSwapCache(oldpage);
1110 set_page_private(oldpage, 0);
1111
1112 unlock_page(oldpage);
1113 page_cache_release(oldpage);
1114 page_cache_release(oldpage);
0142ef6c 1115 return error;
bde05d1c
HD
1116}
1117
1da177e4 1118/*
68da9f05 1119 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1120 *
1121 * If we allocate a new one we do not mark it dirty. That's up to the
1122 * vm. If we swap it in we mark it dirty since we also free the swap
1123 * entry since a page cannot live in both the swap and page cache
1124 */
41ffe5d5 1125static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1126 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1127{
1128 struct address_space *mapping = inode->i_mapping;
54af6042 1129 struct shmem_inode_info *info;
1da177e4 1130 struct shmem_sb_info *sbinfo;
00501b53 1131 struct mem_cgroup *memcg;
27ab7006 1132 struct page *page;
1da177e4
LT
1133 swp_entry_t swap;
1134 int error;
54af6042 1135 int once = 0;
1635f6a7 1136 int alloced = 0;
1da177e4 1137
41ffe5d5 1138 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1139 return -EFBIG;
1da177e4 1140repeat:
54af6042 1141 swap.val = 0;
0cd6144a 1142 page = find_lock_entry(mapping, index);
54af6042
HD
1143 if (radix_tree_exceptional_entry(page)) {
1144 swap = radix_to_swp_entry(page);
1145 page = NULL;
1146 }
1147
1635f6a7 1148 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1149 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1150 error = -EINVAL;
267a4c76 1151 goto unlock;
54af6042
HD
1152 }
1153
66d2f4d2
HD
1154 if (page && sgp == SGP_WRITE)
1155 mark_page_accessed(page);
1156
1635f6a7
HD
1157 /* fallocated page? */
1158 if (page && !PageUptodate(page)) {
1159 if (sgp != SGP_READ)
1160 goto clear;
1161 unlock_page(page);
1162 page_cache_release(page);
1163 page = NULL;
1164 }
54af6042 1165 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1166 *pagep = page;
1167 return 0;
27ab7006
HD
1168 }
1169
1170 /*
54af6042
HD
1171 * Fast cache lookup did not find it:
1172 * bring it back from swap or allocate.
27ab7006 1173 */
54af6042
HD
1174 info = SHMEM_I(inode);
1175 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1176
1da177e4
LT
1177 if (swap.val) {
1178 /* Look it up and read it in.. */
27ab7006
HD
1179 page = lookup_swap_cache(swap);
1180 if (!page) {
1da177e4 1181 /* here we actually do the io */
68da9f05
HD
1182 if (fault_type)
1183 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1184 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1185 if (!page) {
54af6042
HD
1186 error = -ENOMEM;
1187 goto failed;
1da177e4 1188 }
1da177e4
LT
1189 }
1190
1191 /* We have to do this with page locked to prevent races */
54af6042 1192 lock_page(page);
0142ef6c 1193 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1194 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1195 error = -EEXIST; /* try again */
d1899228 1196 goto unlock;
bde05d1c 1197 }
27ab7006 1198 if (!PageUptodate(page)) {
1da177e4 1199 error = -EIO;
54af6042 1200 goto failed;
1da177e4 1201 }
54af6042
HD
1202 wait_on_page_writeback(page);
1203
bde05d1c
HD
1204 if (shmem_should_replace_page(page, gfp)) {
1205 error = shmem_replace_page(&page, gfp, info, index);
1206 if (error)
1207 goto failed;
1da177e4 1208 }
27ab7006 1209
00501b53 1210 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
d1899228 1211 if (!error) {
aa3b1895 1212 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1213 swp_to_radix_entry(swap));
215c02bc
HD
1214 /*
1215 * We already confirmed swap under page lock, and make
1216 * no memory allocation here, so usually no possibility
1217 * of error; but free_swap_and_cache() only trylocks a
1218 * page, so it is just possible that the entry has been
1219 * truncated or holepunched since swap was confirmed.
1220 * shmem_undo_range() will have done some of the
1221 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1222 * the rest.
215c02bc
HD
1223 * Reset swap.val? No, leave it so "failed" goes back to
1224 * "repeat": reading a hole and writing should succeed.
1225 */
00501b53
JW
1226 if (error) {
1227 mem_cgroup_cancel_charge(page, memcg);
215c02bc 1228 delete_from_swap_cache(page);
00501b53 1229 }
d1899228 1230 }
54af6042
HD
1231 if (error)
1232 goto failed;
1233
00501b53
JW
1234 mem_cgroup_commit_charge(page, memcg, true);
1235
54af6042 1236 spin_lock(&info->lock);
285b2c4f 1237 info->swapped--;
54af6042 1238 shmem_recalc_inode(inode);
27ab7006 1239 spin_unlock(&info->lock);
54af6042 1240
66d2f4d2
HD
1241 if (sgp == SGP_WRITE)
1242 mark_page_accessed(page);
1243
54af6042 1244 delete_from_swap_cache(page);
27ab7006
HD
1245 set_page_dirty(page);
1246 swap_free(swap);
1247
54af6042
HD
1248 } else {
1249 if (shmem_acct_block(info->flags)) {
1250 error = -ENOSPC;
1251 goto failed;
1da177e4 1252 }
0edd73b3 1253 if (sbinfo->max_blocks) {
fc5da22a 1254 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1255 sbinfo->max_blocks) >= 0) {
1256 error = -ENOSPC;
1257 goto unacct;
1258 }
7e496299 1259 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1260 }
1da177e4 1261
54af6042
HD
1262 page = shmem_alloc_page(gfp, info, index);
1263 if (!page) {
1264 error = -ENOMEM;
1265 goto decused;
1da177e4
LT
1266 }
1267
07a42788 1268 __SetPageSwapBacked(page);
54af6042 1269 __set_page_locked(page);
66d2f4d2 1270 if (sgp == SGP_WRITE)
eb39d618 1271 __SetPageReferenced(page);
66d2f4d2 1272
00501b53 1273 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
54af6042
HD
1274 if (error)
1275 goto decused;
5e4c0d97 1276 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1277 if (!error) {
1278 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1279 NULL);
b065b432
HD
1280 radix_tree_preload_end();
1281 }
1282 if (error) {
00501b53 1283 mem_cgroup_cancel_charge(page, memcg);
b065b432
HD
1284 goto decused;
1285 }
00501b53 1286 mem_cgroup_commit_charge(page, memcg, false);
54af6042
HD
1287 lru_cache_add_anon(page);
1288
1289 spin_lock(&info->lock);
1da177e4 1290 info->alloced++;
54af6042
HD
1291 inode->i_blocks += BLOCKS_PER_PAGE;
1292 shmem_recalc_inode(inode);
1da177e4 1293 spin_unlock(&info->lock);
1635f6a7 1294 alloced = true;
54af6042 1295
ec9516fb 1296 /*
1635f6a7
HD
1297 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1298 */
1299 if (sgp == SGP_FALLOC)
1300 sgp = SGP_WRITE;
1301clear:
1302 /*
1303 * Let SGP_WRITE caller clear ends if write does not fill page;
1304 * but SGP_FALLOC on a page fallocated earlier must initialize
1305 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1306 */
1307 if (sgp != SGP_WRITE) {
1308 clear_highpage(page);
1309 flush_dcache_page(page);
1310 SetPageUptodate(page);
1311 }
a0ee5ec5 1312 if (sgp == SGP_DIRTY)
27ab7006 1313 set_page_dirty(page);
1da177e4 1314 }
bde05d1c 1315
54af6042 1316 /* Perhaps the file has been truncated since we checked */
1635f6a7 1317 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042 1318 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1319 if (alloced) {
1320 ClearPageDirty(page);
1321 delete_from_page_cache(page);
1322 spin_lock(&info->lock);
1323 shmem_recalc_inode(inode);
1324 spin_unlock(&info->lock);
1325 }
54af6042 1326 error = -EINVAL;
267a4c76 1327 goto unlock;
e83c32e8 1328 }
54af6042
HD
1329 *pagep = page;
1330 return 0;
1da177e4 1331
59a16ead 1332 /*
54af6042 1333 * Error recovery.
59a16ead 1334 */
54af6042
HD
1335decused:
1336 if (sbinfo->max_blocks)
1337 percpu_counter_add(&sbinfo->used_blocks, -1);
1338unacct:
1339 shmem_unacct_blocks(info->flags, 1);
1340failed:
267a4c76 1341 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1342 error = -EEXIST;
1343unlock:
27ab7006 1344 if (page) {
54af6042 1345 unlock_page(page);
27ab7006 1346 page_cache_release(page);
54af6042
HD
1347 }
1348 if (error == -ENOSPC && !once++) {
1349 info = SHMEM_I(inode);
1350 spin_lock(&info->lock);
1351 shmem_recalc_inode(inode);
1352 spin_unlock(&info->lock);
27ab7006 1353 goto repeat;
ff36b801 1354 }
d1899228 1355 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1356 goto repeat;
1357 return error;
1da177e4
LT
1358}
1359
d0217ac0 1360static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1361{
496ad9aa 1362 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1363 int error;
68da9f05 1364 int ret = VM_FAULT_LOCKED;
1da177e4 1365
f00cdc6d
HD
1366 /*
1367 * Trinity finds that probing a hole which tmpfs is punching can
1368 * prevent the hole-punch from ever completing: which in turn
1369 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1370 * faulting pages into the hole while it's being punched. Although
1371 * shmem_undo_range() does remove the additions, it may be unable to
1372 * keep up, as each new page needs its own unmap_mapping_range() call,
1373 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1374 *
1375 * It does not matter if we sometimes reach this check just before the
1376 * hole-punch begins, so that one fault then races with the punch:
1377 * we just need to make racing faults a rare case.
1378 *
1379 * The implementation below would be much simpler if we just used a
1380 * standard mutex or completion: but we cannot take i_mutex in fault,
1381 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1382 */
1383 if (unlikely(inode->i_private)) {
1384 struct shmem_falloc *shmem_falloc;
1385
1386 spin_lock(&inode->i_lock);
1387 shmem_falloc = inode->i_private;
8e205f77
HD
1388 if (shmem_falloc &&
1389 shmem_falloc->waitq &&
1390 vmf->pgoff >= shmem_falloc->start &&
1391 vmf->pgoff < shmem_falloc->next) {
1392 wait_queue_head_t *shmem_falloc_waitq;
1393 DEFINE_WAIT(shmem_fault_wait);
1394
1395 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1396 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1397 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1398 /* It's polite to up mmap_sem if we can */
f00cdc6d 1399 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1400 ret = VM_FAULT_RETRY;
f00cdc6d 1401 }
8e205f77
HD
1402
1403 shmem_falloc_waitq = shmem_falloc->waitq;
1404 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1405 TASK_UNINTERRUPTIBLE);
1406 spin_unlock(&inode->i_lock);
1407 schedule();
1408
1409 /*
1410 * shmem_falloc_waitq points into the shmem_fallocate()
1411 * stack of the hole-punching task: shmem_falloc_waitq
1412 * is usually invalid by the time we reach here, but
1413 * finish_wait() does not dereference it in that case;
1414 * though i_lock needed lest racing with wake_up_all().
1415 */
1416 spin_lock(&inode->i_lock);
1417 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1418 spin_unlock(&inode->i_lock);
1419 return ret;
f00cdc6d 1420 }
8e205f77 1421 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1422 }
1423
27d54b39 1424 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1425 if (error)
1426 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1427
456f998e
YH
1428 if (ret & VM_FAULT_MAJOR) {
1429 count_vm_event(PGMAJFAULT);
1430 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1431 }
68da9f05 1432 return ret;
1da177e4
LT
1433}
1434
1da177e4 1435#ifdef CONFIG_NUMA
41ffe5d5 1436static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1437{
496ad9aa 1438 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1439 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1440}
1441
d8dc74f2
AB
1442static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1443 unsigned long addr)
1da177e4 1444{
496ad9aa 1445 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1446 pgoff_t index;
1da177e4 1447
41ffe5d5
HD
1448 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1449 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1450}
1451#endif
1452
1453int shmem_lock(struct file *file, int lock, struct user_struct *user)
1454{
496ad9aa 1455 struct inode *inode = file_inode(file);
1da177e4
LT
1456 struct shmem_inode_info *info = SHMEM_I(inode);
1457 int retval = -ENOMEM;
1458
1459 spin_lock(&info->lock);
1460 if (lock && !(info->flags & VM_LOCKED)) {
1461 if (!user_shm_lock(inode->i_size, user))
1462 goto out_nomem;
1463 info->flags |= VM_LOCKED;
89e004ea 1464 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1465 }
1466 if (!lock && (info->flags & VM_LOCKED) && user) {
1467 user_shm_unlock(inode->i_size, user);
1468 info->flags &= ~VM_LOCKED;
89e004ea 1469 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1470 }
1471 retval = 0;
89e004ea 1472
1da177e4
LT
1473out_nomem:
1474 spin_unlock(&info->lock);
1475 return retval;
1476}
1477
9b83a6a8 1478static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1479{
1480 file_accessed(file);
1481 vma->vm_ops = &shmem_vm_ops;
1482 return 0;
1483}
1484
454abafe 1485static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1486 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1487{
1488 struct inode *inode;
1489 struct shmem_inode_info *info;
1490 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1491
5b04c689
PE
1492 if (shmem_reserve_inode(sb))
1493 return NULL;
1da177e4
LT
1494
1495 inode = new_inode(sb);
1496 if (inode) {
85fe4025 1497 inode->i_ino = get_next_ino();
454abafe 1498 inode_init_owner(inode, dir, mode);
1da177e4 1499 inode->i_blocks = 0;
1da177e4 1500 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1501 inode->i_generation = get_seconds();
1da177e4
LT
1502 info = SHMEM_I(inode);
1503 memset(info, 0, (char *)inode - (char *)info);
1504 spin_lock_init(&info->lock);
40e041a2 1505 info->seals = F_SEAL_SEAL;
0b0a0806 1506 info->flags = flags & VM_NORESERVE;
1da177e4 1507 INIT_LIST_HEAD(&info->swaplist);
38f38657 1508 simple_xattrs_init(&info->xattrs);
72c04902 1509 cache_no_acl(inode);
1da177e4
LT
1510
1511 switch (mode & S_IFMT) {
1512 default:
39f0247d 1513 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1514 init_special_inode(inode, mode, dev);
1515 break;
1516 case S_IFREG:
14fcc23f 1517 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1518 inode->i_op = &shmem_inode_operations;
1519 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1520 mpol_shared_policy_init(&info->policy,
1521 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1522 break;
1523 case S_IFDIR:
d8c76e6f 1524 inc_nlink(inode);
1da177e4
LT
1525 /* Some things misbehave if size == 0 on a directory */
1526 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1527 inode->i_op = &shmem_dir_inode_operations;
1528 inode->i_fop = &simple_dir_operations;
1529 break;
1530 case S_IFLNK:
1531 /*
1532 * Must not load anything in the rbtree,
1533 * mpol_free_shared_policy will not be called.
1534 */
71fe804b 1535 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1536 break;
1537 }
5b04c689
PE
1538 } else
1539 shmem_free_inode(sb);
1da177e4
LT
1540 return inode;
1541}
1542
0cd6144a
JW
1543bool shmem_mapping(struct address_space *mapping)
1544{
f0774d88
SL
1545 if (!mapping->host)
1546 return false;
1547
97b713ba 1548 return mapping->host->i_sb->s_op == &shmem_ops;
0cd6144a
JW
1549}
1550
1da177e4 1551#ifdef CONFIG_TMPFS
92e1d5be 1552static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1553static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1554
6d9d88d0
JS
1555#ifdef CONFIG_TMPFS_XATTR
1556static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1557#else
1558#define shmem_initxattrs NULL
1559#endif
1560
1da177e4 1561static int
800d15a5
NP
1562shmem_write_begin(struct file *file, struct address_space *mapping,
1563 loff_t pos, unsigned len, unsigned flags,
1564 struct page **pagep, void **fsdata)
1da177e4 1565{
800d15a5 1566 struct inode *inode = mapping->host;
40e041a2 1567 struct shmem_inode_info *info = SHMEM_I(inode);
800d15a5 1568 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
40e041a2
DR
1569
1570 /* i_mutex is held by caller */
1571 if (unlikely(info->seals)) {
1572 if (info->seals & F_SEAL_WRITE)
1573 return -EPERM;
1574 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1575 return -EPERM;
1576 }
1577
66d2f4d2 1578 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
800d15a5
NP
1579}
1580
1581static int
1582shmem_write_end(struct file *file, struct address_space *mapping,
1583 loff_t pos, unsigned len, unsigned copied,
1584 struct page *page, void *fsdata)
1585{
1586 struct inode *inode = mapping->host;
1587
d3602444
HD
1588 if (pos + copied > inode->i_size)
1589 i_size_write(inode, pos + copied);
1590
ec9516fb
HD
1591 if (!PageUptodate(page)) {
1592 if (copied < PAGE_CACHE_SIZE) {
1593 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1594 zero_user_segments(page, 0, from,
1595 from + copied, PAGE_CACHE_SIZE);
1596 }
1597 SetPageUptodate(page);
1598 }
800d15a5 1599 set_page_dirty(page);
6746aff7 1600 unlock_page(page);
800d15a5
NP
1601 page_cache_release(page);
1602
800d15a5 1603 return copied;
1da177e4
LT
1604}
1605
2ba5bbed 1606static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 1607{
6e58e79d
AV
1608 struct file *file = iocb->ki_filp;
1609 struct inode *inode = file_inode(file);
1da177e4 1610 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1611 pgoff_t index;
1612 unsigned long offset;
a0ee5ec5 1613 enum sgp_type sgp = SGP_READ;
f7c1d074 1614 int error = 0;
cb66a7a1 1615 ssize_t retval = 0;
6e58e79d 1616 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
1617
1618 /*
1619 * Might this read be for a stacking filesystem? Then when reading
1620 * holes of a sparse file, we actually need to allocate those pages,
1621 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1622 */
777eda2c 1623 if (!iter_is_iovec(to))
a0ee5ec5 1624 sgp = SGP_DIRTY;
1da177e4
LT
1625
1626 index = *ppos >> PAGE_CACHE_SHIFT;
1627 offset = *ppos & ~PAGE_CACHE_MASK;
1628
1629 for (;;) {
1630 struct page *page = NULL;
41ffe5d5
HD
1631 pgoff_t end_index;
1632 unsigned long nr, ret;
1da177e4
LT
1633 loff_t i_size = i_size_read(inode);
1634
1635 end_index = i_size >> PAGE_CACHE_SHIFT;
1636 if (index > end_index)
1637 break;
1638 if (index == end_index) {
1639 nr = i_size & ~PAGE_CACHE_MASK;
1640 if (nr <= offset)
1641 break;
1642 }
1643
6e58e79d
AV
1644 error = shmem_getpage(inode, index, &page, sgp, NULL);
1645 if (error) {
1646 if (error == -EINVAL)
1647 error = 0;
1da177e4
LT
1648 break;
1649 }
d3602444
HD
1650 if (page)
1651 unlock_page(page);
1da177e4
LT
1652
1653 /*
1654 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1655 * are called without i_mutex protection against truncate
1da177e4
LT
1656 */
1657 nr = PAGE_CACHE_SIZE;
1658 i_size = i_size_read(inode);
1659 end_index = i_size >> PAGE_CACHE_SHIFT;
1660 if (index == end_index) {
1661 nr = i_size & ~PAGE_CACHE_MASK;
1662 if (nr <= offset) {
1663 if (page)
1664 page_cache_release(page);
1665 break;
1666 }
1667 }
1668 nr -= offset;
1669
1670 if (page) {
1671 /*
1672 * If users can be writing to this page using arbitrary
1673 * virtual addresses, take care about potential aliasing
1674 * before reading the page on the kernel side.
1675 */
1676 if (mapping_writably_mapped(mapping))
1677 flush_dcache_page(page);
1678 /*
1679 * Mark the page accessed if we read the beginning.
1680 */
1681 if (!offset)
1682 mark_page_accessed(page);
b5810039 1683 } else {
1da177e4 1684 page = ZERO_PAGE(0);
b5810039
NP
1685 page_cache_get(page);
1686 }
1da177e4
LT
1687
1688 /*
1689 * Ok, we have the page, and it's up-to-date, so
1690 * now we can copy it to user space...
1da177e4 1691 */
2ba5bbed 1692 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 1693 retval += ret;
1da177e4
LT
1694 offset += ret;
1695 index += offset >> PAGE_CACHE_SHIFT;
1696 offset &= ~PAGE_CACHE_MASK;
1697
1698 page_cache_release(page);
2ba5bbed 1699 if (!iov_iter_count(to))
1da177e4 1700 break;
6e58e79d
AV
1701 if (ret < nr) {
1702 error = -EFAULT;
1703 break;
1704 }
1da177e4
LT
1705 cond_resched();
1706 }
1707
1708 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
6e58e79d
AV
1709 file_accessed(file);
1710 return retval ? retval : error;
1da177e4
LT
1711}
1712
708e3508
HD
1713static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1714 struct pipe_inode_info *pipe, size_t len,
1715 unsigned int flags)
1716{
1717 struct address_space *mapping = in->f_mapping;
71f0e07a 1718 struct inode *inode = mapping->host;
708e3508
HD
1719 unsigned int loff, nr_pages, req_pages;
1720 struct page *pages[PIPE_DEF_BUFFERS];
1721 struct partial_page partial[PIPE_DEF_BUFFERS];
1722 struct page *page;
1723 pgoff_t index, end_index;
1724 loff_t isize, left;
1725 int error, page_nr;
1726 struct splice_pipe_desc spd = {
1727 .pages = pages,
1728 .partial = partial,
047fe360 1729 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1730 .flags = flags,
1731 .ops = &page_cache_pipe_buf_ops,
1732 .spd_release = spd_release_page,
1733 };
1734
71f0e07a 1735 isize = i_size_read(inode);
708e3508
HD
1736 if (unlikely(*ppos >= isize))
1737 return 0;
1738
1739 left = isize - *ppos;
1740 if (unlikely(left < len))
1741 len = left;
1742
1743 if (splice_grow_spd(pipe, &spd))
1744 return -ENOMEM;
1745
1746 index = *ppos >> PAGE_CACHE_SHIFT;
1747 loff = *ppos & ~PAGE_CACHE_MASK;
1748 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
a786c06d 1749 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1750
708e3508
HD
1751 spd.nr_pages = find_get_pages_contig(mapping, index,
1752 nr_pages, spd.pages);
1753 index += spd.nr_pages;
708e3508 1754 error = 0;
708e3508 1755
71f0e07a 1756 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1757 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1758 if (error)
1759 break;
1760 unlock_page(page);
708e3508
HD
1761 spd.pages[spd.nr_pages++] = page;
1762 index++;
1763 }
1764
708e3508
HD
1765 index = *ppos >> PAGE_CACHE_SHIFT;
1766 nr_pages = spd.nr_pages;
1767 spd.nr_pages = 0;
71f0e07a 1768
708e3508
HD
1769 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1770 unsigned int this_len;
1771
1772 if (!len)
1773 break;
1774
708e3508
HD
1775 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1776 page = spd.pages[page_nr];
1777
71f0e07a 1778 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1779 error = shmem_getpage(inode, index, &page,
1780 SGP_CACHE, NULL);
1781 if (error)
708e3508 1782 break;
71f0e07a
HD
1783 unlock_page(page);
1784 page_cache_release(spd.pages[page_nr]);
1785 spd.pages[page_nr] = page;
708e3508 1786 }
71f0e07a
HD
1787
1788 isize = i_size_read(inode);
708e3508
HD
1789 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1790 if (unlikely(!isize || index > end_index))
1791 break;
1792
708e3508
HD
1793 if (end_index == index) {
1794 unsigned int plen;
1795
708e3508
HD
1796 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1797 if (plen <= loff)
1798 break;
1799
708e3508
HD
1800 this_len = min(this_len, plen - loff);
1801 len = this_len;
1802 }
1803
1804 spd.partial[page_nr].offset = loff;
1805 spd.partial[page_nr].len = this_len;
1806 len -= this_len;
1807 loff = 0;
1808 spd.nr_pages++;
1809 index++;
1810 }
1811
708e3508
HD
1812 while (page_nr < nr_pages)
1813 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1814
1815 if (spd.nr_pages)
1816 error = splice_to_pipe(pipe, &spd);
1817
047fe360 1818 splice_shrink_spd(&spd);
708e3508
HD
1819
1820 if (error > 0) {
1821 *ppos += error;
1822 file_accessed(in);
1823 }
1824 return error;
1825}
1826
220f2ac9
HD
1827/*
1828 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1829 */
1830static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1831 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1832{
1833 struct page *page;
1834 struct pagevec pvec;
1835 pgoff_t indices[PAGEVEC_SIZE];
1836 bool done = false;
1837 int i;
1838
1839 pagevec_init(&pvec, 0);
1840 pvec.nr = 1; /* start small: we may be there already */
1841 while (!done) {
0cd6144a 1842 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1843 pvec.nr, pvec.pages, indices);
1844 if (!pvec.nr) {
965c8e59 1845 if (whence == SEEK_DATA)
220f2ac9
HD
1846 index = end;
1847 break;
1848 }
1849 for (i = 0; i < pvec.nr; i++, index++) {
1850 if (index < indices[i]) {
965c8e59 1851 if (whence == SEEK_HOLE) {
220f2ac9
HD
1852 done = true;
1853 break;
1854 }
1855 index = indices[i];
1856 }
1857 page = pvec.pages[i];
1858 if (page && !radix_tree_exceptional_entry(page)) {
1859 if (!PageUptodate(page))
1860 page = NULL;
1861 }
1862 if (index >= end ||
965c8e59
AM
1863 (page && whence == SEEK_DATA) ||
1864 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1865 done = true;
1866 break;
1867 }
1868 }
0cd6144a 1869 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1870 pagevec_release(&pvec);
1871 pvec.nr = PAGEVEC_SIZE;
1872 cond_resched();
1873 }
1874 return index;
1875}
1876
965c8e59 1877static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1878{
1879 struct address_space *mapping = file->f_mapping;
1880 struct inode *inode = mapping->host;
1881 pgoff_t start, end;
1882 loff_t new_offset;
1883
965c8e59
AM
1884 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1885 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1886 MAX_LFS_FILESIZE, i_size_read(inode));
1887 mutex_lock(&inode->i_mutex);
1888 /* We're holding i_mutex so we can access i_size directly */
1889
1890 if (offset < 0)
1891 offset = -EINVAL;
1892 else if (offset >= inode->i_size)
1893 offset = -ENXIO;
1894 else {
1895 start = offset >> PAGE_CACHE_SHIFT;
1896 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1897 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1898 new_offset <<= PAGE_CACHE_SHIFT;
1899 if (new_offset > offset) {
1900 if (new_offset < inode->i_size)
1901 offset = new_offset;
965c8e59 1902 else if (whence == SEEK_DATA)
220f2ac9
HD
1903 offset = -ENXIO;
1904 else
1905 offset = inode->i_size;
1906 }
1907 }
1908
387aae6f
HD
1909 if (offset >= 0)
1910 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
220f2ac9
HD
1911 mutex_unlock(&inode->i_mutex);
1912 return offset;
1913}
1914
05f65b5c
DR
1915/*
1916 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1917 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1918 */
1919#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1920#define LAST_SCAN 4 /* about 150ms max */
1921
1922static void shmem_tag_pins(struct address_space *mapping)
1923{
1924 struct radix_tree_iter iter;
1925 void **slot;
1926 pgoff_t start;
1927 struct page *page;
1928
1929 lru_add_drain();
1930 start = 0;
1931 rcu_read_lock();
1932
1933restart:
1934 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1935 page = radix_tree_deref_slot(slot);
1936 if (!page || radix_tree_exception(page)) {
1937 if (radix_tree_deref_retry(page))
1938 goto restart;
1939 } else if (page_count(page) - page_mapcount(page) > 1) {
1940 spin_lock_irq(&mapping->tree_lock);
1941 radix_tree_tag_set(&mapping->page_tree, iter.index,
1942 SHMEM_TAG_PINNED);
1943 spin_unlock_irq(&mapping->tree_lock);
1944 }
1945
1946 if (need_resched()) {
1947 cond_resched_rcu();
1948 start = iter.index + 1;
1949 goto restart;
1950 }
1951 }
1952 rcu_read_unlock();
1953}
1954
1955/*
1956 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1957 * via get_user_pages(), drivers might have some pending I/O without any active
1958 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1959 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1960 * them to be dropped.
1961 * The caller must guarantee that no new user will acquire writable references
1962 * to those pages to avoid races.
1963 */
40e041a2
DR
1964static int shmem_wait_for_pins(struct address_space *mapping)
1965{
05f65b5c
DR
1966 struct radix_tree_iter iter;
1967 void **slot;
1968 pgoff_t start;
1969 struct page *page;
1970 int error, scan;
1971
1972 shmem_tag_pins(mapping);
1973
1974 error = 0;
1975 for (scan = 0; scan <= LAST_SCAN; scan++) {
1976 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1977 break;
1978
1979 if (!scan)
1980 lru_add_drain_all();
1981 else if (schedule_timeout_killable((HZ << scan) / 200))
1982 scan = LAST_SCAN;
1983
1984 start = 0;
1985 rcu_read_lock();
1986restart:
1987 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1988 start, SHMEM_TAG_PINNED) {
1989
1990 page = radix_tree_deref_slot(slot);
1991 if (radix_tree_exception(page)) {
1992 if (radix_tree_deref_retry(page))
1993 goto restart;
1994
1995 page = NULL;
1996 }
1997
1998 if (page &&
1999 page_count(page) - page_mapcount(page) != 1) {
2000 if (scan < LAST_SCAN)
2001 goto continue_resched;
2002
2003 /*
2004 * On the last scan, we clean up all those tags
2005 * we inserted; but make a note that we still
2006 * found pages pinned.
2007 */
2008 error = -EBUSY;
2009 }
2010
2011 spin_lock_irq(&mapping->tree_lock);
2012 radix_tree_tag_clear(&mapping->page_tree,
2013 iter.index, SHMEM_TAG_PINNED);
2014 spin_unlock_irq(&mapping->tree_lock);
2015continue_resched:
2016 if (need_resched()) {
2017 cond_resched_rcu();
2018 start = iter.index + 1;
2019 goto restart;
2020 }
2021 }
2022 rcu_read_unlock();
2023 }
2024
2025 return error;
40e041a2
DR
2026}
2027
2028#define F_ALL_SEALS (F_SEAL_SEAL | \
2029 F_SEAL_SHRINK | \
2030 F_SEAL_GROW | \
2031 F_SEAL_WRITE)
2032
2033int shmem_add_seals(struct file *file, unsigned int seals)
2034{
2035 struct inode *inode = file_inode(file);
2036 struct shmem_inode_info *info = SHMEM_I(inode);
2037 int error;
2038
2039 /*
2040 * SEALING
2041 * Sealing allows multiple parties to share a shmem-file but restrict
2042 * access to a specific subset of file operations. Seals can only be
2043 * added, but never removed. This way, mutually untrusted parties can
2044 * share common memory regions with a well-defined policy. A malicious
2045 * peer can thus never perform unwanted operations on a shared object.
2046 *
2047 * Seals are only supported on special shmem-files and always affect
2048 * the whole underlying inode. Once a seal is set, it may prevent some
2049 * kinds of access to the file. Currently, the following seals are
2050 * defined:
2051 * SEAL_SEAL: Prevent further seals from being set on this file
2052 * SEAL_SHRINK: Prevent the file from shrinking
2053 * SEAL_GROW: Prevent the file from growing
2054 * SEAL_WRITE: Prevent write access to the file
2055 *
2056 * As we don't require any trust relationship between two parties, we
2057 * must prevent seals from being removed. Therefore, sealing a file
2058 * only adds a given set of seals to the file, it never touches
2059 * existing seals. Furthermore, the "setting seals"-operation can be
2060 * sealed itself, which basically prevents any further seal from being
2061 * added.
2062 *
2063 * Semantics of sealing are only defined on volatile files. Only
2064 * anonymous shmem files support sealing. More importantly, seals are
2065 * never written to disk. Therefore, there's no plan to support it on
2066 * other file types.
2067 */
2068
2069 if (file->f_op != &shmem_file_operations)
2070 return -EINVAL;
2071 if (!(file->f_mode & FMODE_WRITE))
2072 return -EPERM;
2073 if (seals & ~(unsigned int)F_ALL_SEALS)
2074 return -EINVAL;
2075
2076 mutex_lock(&inode->i_mutex);
2077
2078 if (info->seals & F_SEAL_SEAL) {
2079 error = -EPERM;
2080 goto unlock;
2081 }
2082
2083 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2084 error = mapping_deny_writable(file->f_mapping);
2085 if (error)
2086 goto unlock;
2087
2088 error = shmem_wait_for_pins(file->f_mapping);
2089 if (error) {
2090 mapping_allow_writable(file->f_mapping);
2091 goto unlock;
2092 }
2093 }
2094
2095 info->seals |= seals;
2096 error = 0;
2097
2098unlock:
2099 mutex_unlock(&inode->i_mutex);
2100 return error;
2101}
2102EXPORT_SYMBOL_GPL(shmem_add_seals);
2103
2104int shmem_get_seals(struct file *file)
2105{
2106 if (file->f_op != &shmem_file_operations)
2107 return -EINVAL;
2108
2109 return SHMEM_I(file_inode(file))->seals;
2110}
2111EXPORT_SYMBOL_GPL(shmem_get_seals);
2112
2113long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2114{
2115 long error;
2116
2117 switch (cmd) {
2118 case F_ADD_SEALS:
2119 /* disallow upper 32bit */
2120 if (arg > UINT_MAX)
2121 return -EINVAL;
2122
2123 error = shmem_add_seals(file, arg);
2124 break;
2125 case F_GET_SEALS:
2126 error = shmem_get_seals(file);
2127 break;
2128 default:
2129 error = -EINVAL;
2130 break;
2131 }
2132
2133 return error;
2134}
2135
83e4fa9c
HD
2136static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2137 loff_t len)
2138{
496ad9aa 2139 struct inode *inode = file_inode(file);
e2d12e22 2140 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2141 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2142 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2143 pgoff_t start, index, end;
2144 int error;
83e4fa9c 2145
13ace4d0
HD
2146 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2147 return -EOPNOTSUPP;
2148
83e4fa9c
HD
2149 mutex_lock(&inode->i_mutex);
2150
2151 if (mode & FALLOC_FL_PUNCH_HOLE) {
2152 struct address_space *mapping = file->f_mapping;
2153 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2154 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2155 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2156
40e041a2
DR
2157 /* protected by i_mutex */
2158 if (info->seals & F_SEAL_WRITE) {
2159 error = -EPERM;
2160 goto out;
2161 }
2162
8e205f77 2163 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2164 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2165 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2166 spin_lock(&inode->i_lock);
2167 inode->i_private = &shmem_falloc;
2168 spin_unlock(&inode->i_lock);
2169
83e4fa9c
HD
2170 if ((u64)unmap_end > (u64)unmap_start)
2171 unmap_mapping_range(mapping, unmap_start,
2172 1 + unmap_end - unmap_start, 0);
2173 shmem_truncate_range(inode, offset, offset + len - 1);
2174 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2175
2176 spin_lock(&inode->i_lock);
2177 inode->i_private = NULL;
2178 wake_up_all(&shmem_falloc_waitq);
2179 spin_unlock(&inode->i_lock);
83e4fa9c 2180 error = 0;
8e205f77 2181 goto out;
e2d12e22
HD
2182 }
2183
2184 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2185 error = inode_newsize_ok(inode, offset + len);
2186 if (error)
2187 goto out;
2188
40e041a2
DR
2189 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2190 error = -EPERM;
2191 goto out;
2192 }
2193
e2d12e22
HD
2194 start = offset >> PAGE_CACHE_SHIFT;
2195 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2196 /* Try to avoid a swapstorm if len is impossible to satisfy */
2197 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2198 error = -ENOSPC;
2199 goto out;
83e4fa9c
HD
2200 }
2201
8e205f77 2202 shmem_falloc.waitq = NULL;
1aac1400
HD
2203 shmem_falloc.start = start;
2204 shmem_falloc.next = start;
2205 shmem_falloc.nr_falloced = 0;
2206 shmem_falloc.nr_unswapped = 0;
2207 spin_lock(&inode->i_lock);
2208 inode->i_private = &shmem_falloc;
2209 spin_unlock(&inode->i_lock);
2210
e2d12e22
HD
2211 for (index = start; index < end; index++) {
2212 struct page *page;
2213
2214 /*
2215 * Good, the fallocate(2) manpage permits EINTR: we may have
2216 * been interrupted because we are using up too much memory.
2217 */
2218 if (signal_pending(current))
2219 error = -EINTR;
1aac1400
HD
2220 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2221 error = -ENOMEM;
e2d12e22 2222 else
1635f6a7 2223 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
2224 NULL);
2225 if (error) {
1635f6a7
HD
2226 /* Remove the !PageUptodate pages we added */
2227 shmem_undo_range(inode,
2228 (loff_t)start << PAGE_CACHE_SHIFT,
2229 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 2230 goto undone;
e2d12e22
HD
2231 }
2232
1aac1400
HD
2233 /*
2234 * Inform shmem_writepage() how far we have reached.
2235 * No need for lock or barrier: we have the page lock.
2236 */
2237 shmem_falloc.next++;
2238 if (!PageUptodate(page))
2239 shmem_falloc.nr_falloced++;
2240
e2d12e22 2241 /*
1635f6a7
HD
2242 * If !PageUptodate, leave it that way so that freeable pages
2243 * can be recognized if we need to rollback on error later.
2244 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2245 * than free the pages we are allocating (and SGP_CACHE pages
2246 * might still be clean: we now need to mark those dirty too).
2247 */
2248 set_page_dirty(page);
2249 unlock_page(page);
2250 page_cache_release(page);
2251 cond_resched();
2252 }
2253
2254 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2255 i_size_write(inode, offset + len);
e2d12e22 2256 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
2257undone:
2258 spin_lock(&inode->i_lock);
2259 inode->i_private = NULL;
2260 spin_unlock(&inode->i_lock);
e2d12e22 2261out:
83e4fa9c
HD
2262 mutex_unlock(&inode->i_mutex);
2263 return error;
2264}
2265
726c3342 2266static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2267{
726c3342 2268 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2269
2270 buf->f_type = TMPFS_MAGIC;
2271 buf->f_bsize = PAGE_CACHE_SIZE;
2272 buf->f_namelen = NAME_MAX;
0edd73b3 2273 if (sbinfo->max_blocks) {
1da177e4 2274 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2275 buf->f_bavail =
2276 buf->f_bfree = sbinfo->max_blocks -
2277 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2278 }
2279 if (sbinfo->max_inodes) {
1da177e4
LT
2280 buf->f_files = sbinfo->max_inodes;
2281 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2282 }
2283 /* else leave those fields 0 like simple_statfs */
2284 return 0;
2285}
2286
2287/*
2288 * File creation. Allocate an inode, and we're done..
2289 */
2290static int
1a67aafb 2291shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2292{
0b0a0806 2293 struct inode *inode;
1da177e4
LT
2294 int error = -ENOSPC;
2295
454abafe 2296 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2297 if (inode) {
feda821e
CH
2298 error = simple_acl_create(dir, inode);
2299 if (error)
2300 goto out_iput;
2a7dba39 2301 error = security_inode_init_security(inode, dir,
9d8f13ba 2302 &dentry->d_name,
6d9d88d0 2303 shmem_initxattrs, NULL);
feda821e
CH
2304 if (error && error != -EOPNOTSUPP)
2305 goto out_iput;
37ec43cd 2306
718deb6b 2307 error = 0;
1da177e4
LT
2308 dir->i_size += BOGO_DIRENT_SIZE;
2309 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2310 d_instantiate(dentry, inode);
2311 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2312 }
2313 return error;
feda821e
CH
2314out_iput:
2315 iput(inode);
2316 return error;
1da177e4
LT
2317}
2318
60545d0d
AV
2319static int
2320shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2321{
2322 struct inode *inode;
2323 int error = -ENOSPC;
2324
2325 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2326 if (inode) {
2327 error = security_inode_init_security(inode, dir,
2328 NULL,
2329 shmem_initxattrs, NULL);
feda821e
CH
2330 if (error && error != -EOPNOTSUPP)
2331 goto out_iput;
2332 error = simple_acl_create(dir, inode);
2333 if (error)
2334 goto out_iput;
60545d0d
AV
2335 d_tmpfile(dentry, inode);
2336 }
2337 return error;
feda821e
CH
2338out_iput:
2339 iput(inode);
2340 return error;
60545d0d
AV
2341}
2342
18bb1db3 2343static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2344{
2345 int error;
2346
2347 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2348 return error;
d8c76e6f 2349 inc_nlink(dir);
1da177e4
LT
2350 return 0;
2351}
2352
4acdaf27 2353static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2354 bool excl)
1da177e4
LT
2355{
2356 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2357}
2358
2359/*
2360 * Link a file..
2361 */
2362static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2363{
75c3cfa8 2364 struct inode *inode = d_inode(old_dentry);
5b04c689 2365 int ret;
1da177e4
LT
2366
2367 /*
2368 * No ordinary (disk based) filesystem counts links as inodes;
2369 * but each new link needs a new dentry, pinning lowmem, and
2370 * tmpfs dentries cannot be pruned until they are unlinked.
2371 */
5b04c689
PE
2372 ret = shmem_reserve_inode(inode->i_sb);
2373 if (ret)
2374 goto out;
1da177e4
LT
2375
2376 dir->i_size += BOGO_DIRENT_SIZE;
2377 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2378 inc_nlink(inode);
7de9c6ee 2379 ihold(inode); /* New dentry reference */
1da177e4
LT
2380 dget(dentry); /* Extra pinning count for the created dentry */
2381 d_instantiate(dentry, inode);
5b04c689
PE
2382out:
2383 return ret;
1da177e4
LT
2384}
2385
2386static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2387{
75c3cfa8 2388 struct inode *inode = d_inode(dentry);
1da177e4 2389
5b04c689
PE
2390 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2391 shmem_free_inode(inode->i_sb);
1da177e4
LT
2392
2393 dir->i_size -= BOGO_DIRENT_SIZE;
2394 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2395 drop_nlink(inode);
1da177e4
LT
2396 dput(dentry); /* Undo the count from "create" - this does all the work */
2397 return 0;
2398}
2399
2400static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2401{
2402 if (!simple_empty(dentry))
2403 return -ENOTEMPTY;
2404
75c3cfa8 2405 drop_nlink(d_inode(dentry));
9a53c3a7 2406 drop_nlink(dir);
1da177e4
LT
2407 return shmem_unlink(dir, dentry);
2408}
2409
37456771
MS
2410static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2411{
e36cb0b8
DH
2412 bool old_is_dir = d_is_dir(old_dentry);
2413 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2414
2415 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2416 if (old_is_dir) {
2417 drop_nlink(old_dir);
2418 inc_nlink(new_dir);
2419 } else {
2420 drop_nlink(new_dir);
2421 inc_nlink(old_dir);
2422 }
2423 }
2424 old_dir->i_ctime = old_dir->i_mtime =
2425 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8
DH
2426 d_inode(old_dentry)->i_ctime =
2427 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
37456771
MS
2428
2429 return 0;
2430}
2431
46fdb794
MS
2432static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2433{
2434 struct dentry *whiteout;
2435 int error;
2436
2437 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2438 if (!whiteout)
2439 return -ENOMEM;
2440
2441 error = shmem_mknod(old_dir, whiteout,
2442 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2443 dput(whiteout);
2444 if (error)
2445 return error;
2446
2447 /*
2448 * Cheat and hash the whiteout while the old dentry is still in
2449 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2450 *
2451 * d_lookup() will consistently find one of them at this point,
2452 * not sure which one, but that isn't even important.
2453 */
2454 d_rehash(whiteout);
2455 return 0;
2456}
2457
1da177e4
LT
2458/*
2459 * The VFS layer already does all the dentry stuff for rename,
2460 * we just have to decrement the usage count for the target if
2461 * it exists so that the VFS layer correctly free's it when it
2462 * gets overwritten.
2463 */
3b69ff51 2464static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 2465{
75c3cfa8 2466 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2467 int they_are_dirs = S_ISDIR(inode->i_mode);
2468
46fdb794 2469 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2470 return -EINVAL;
2471
37456771
MS
2472 if (flags & RENAME_EXCHANGE)
2473 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2474
1da177e4
LT
2475 if (!simple_empty(new_dentry))
2476 return -ENOTEMPTY;
2477
46fdb794
MS
2478 if (flags & RENAME_WHITEOUT) {
2479 int error;
2480
2481 error = shmem_whiteout(old_dir, old_dentry);
2482 if (error)
2483 return error;
2484 }
2485
75c3cfa8 2486 if (d_really_is_positive(new_dentry)) {
1da177e4 2487 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2488 if (they_are_dirs) {
75c3cfa8 2489 drop_nlink(d_inode(new_dentry));
9a53c3a7 2490 drop_nlink(old_dir);
b928095b 2491 }
1da177e4 2492 } else if (they_are_dirs) {
9a53c3a7 2493 drop_nlink(old_dir);
d8c76e6f 2494 inc_nlink(new_dir);
1da177e4
LT
2495 }
2496
2497 old_dir->i_size -= BOGO_DIRENT_SIZE;
2498 new_dir->i_size += BOGO_DIRENT_SIZE;
2499 old_dir->i_ctime = old_dir->i_mtime =
2500 new_dir->i_ctime = new_dir->i_mtime =
2501 inode->i_ctime = CURRENT_TIME;
2502 return 0;
2503}
2504
2505static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2506{
2507 int error;
2508 int len;
2509 struct inode *inode;
9276aad6 2510 struct page *page;
1da177e4
LT
2511 struct shmem_inode_info *info;
2512
2513 len = strlen(symname) + 1;
2514 if (len > PAGE_CACHE_SIZE)
2515 return -ENAMETOOLONG;
2516
454abafe 2517 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2518 if (!inode)
2519 return -ENOSPC;
2520
9d8f13ba 2521 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2522 shmem_initxattrs, NULL);
570bc1c2
SS
2523 if (error) {
2524 if (error != -EOPNOTSUPP) {
2525 iput(inode);
2526 return error;
2527 }
2528 error = 0;
2529 }
2530
1da177e4
LT
2531 info = SHMEM_I(inode);
2532 inode->i_size = len-1;
69f07ec9
HD
2533 if (len <= SHORT_SYMLINK_LEN) {
2534 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2535 if (!info->symlink) {
2536 iput(inode);
2537 return -ENOMEM;
2538 }
2539 inode->i_op = &shmem_short_symlink_operations;
60380f19 2540 inode->i_link = info->symlink;
1da177e4
LT
2541 } else {
2542 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2543 if (error) {
2544 iput(inode);
2545 return error;
2546 }
14fcc23f 2547 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2548 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7
AV
2549 inode_nohighmem(inode);
2550 memcpy(page_address(page), symname, len);
ec9516fb 2551 SetPageUptodate(page);
1da177e4 2552 set_page_dirty(page);
6746aff7 2553 unlock_page(page);
1da177e4
LT
2554 page_cache_release(page);
2555 }
1da177e4
LT
2556 dir->i_size += BOGO_DIRENT_SIZE;
2557 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2558 d_instantiate(dentry, inode);
2559 dget(dentry);
2560 return 0;
2561}
2562
fceef393 2563static void shmem_put_link(void *arg)
1da177e4 2564{
fceef393
AV
2565 mark_page_accessed(arg);
2566 put_page(arg);
1da177e4
LT
2567}
2568
6b255391 2569static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
2570 struct inode *inode,
2571 struct delayed_call *done)
1da177e4 2572{
1da177e4 2573 struct page *page = NULL;
6b255391 2574 int error;
6a6c9904
AV
2575 if (!dentry) {
2576 page = find_get_page(inode->i_mapping, 0);
2577 if (!page)
2578 return ERR_PTR(-ECHILD);
2579 if (!PageUptodate(page)) {
2580 put_page(page);
2581 return ERR_PTR(-ECHILD);
2582 }
2583 } else {
2584 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2585 if (error)
2586 return ERR_PTR(error);
2587 unlock_page(page);
2588 }
fceef393 2589 set_delayed_call(done, shmem_put_link, page);
21fc61c7 2590 return page_address(page);
1da177e4
LT
2591}
2592
b09e0fa4 2593#ifdef CONFIG_TMPFS_XATTR
46711810 2594/*
b09e0fa4
EP
2595 * Superblocks without xattr inode operations may get some security.* xattr
2596 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2597 * like ACLs, we also need to implement the security.* handlers at
2598 * filesystem level, though.
2599 */
2600
6d9d88d0
JS
2601/*
2602 * Callback for security_inode_init_security() for acquiring xattrs.
2603 */
2604static int shmem_initxattrs(struct inode *inode,
2605 const struct xattr *xattr_array,
2606 void *fs_info)
2607{
2608 struct shmem_inode_info *info = SHMEM_I(inode);
2609 const struct xattr *xattr;
38f38657 2610 struct simple_xattr *new_xattr;
6d9d88d0
JS
2611 size_t len;
2612
2613 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2614 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2615 if (!new_xattr)
2616 return -ENOMEM;
2617
2618 len = strlen(xattr->name) + 1;
2619 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2620 GFP_KERNEL);
2621 if (!new_xattr->name) {
2622 kfree(new_xattr);
2623 return -ENOMEM;
2624 }
2625
2626 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2627 XATTR_SECURITY_PREFIX_LEN);
2628 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2629 xattr->name, len);
2630
38f38657 2631 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2632 }
2633
2634 return 0;
2635}
2636
aa7c5241
AG
2637static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2638 struct dentry *dentry, const char *name,
2639 void *buffer, size_t size)
b09e0fa4 2640{
75c3cfa8 2641 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4 2642
aa7c5241 2643 name = xattr_full_name(handler, name);
38f38657 2644 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2645}
2646
aa7c5241
AG
2647static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2648 struct dentry *dentry, const char *name,
2649 const void *value, size_t size, int flags)
b09e0fa4 2650{
75c3cfa8 2651 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4 2652
aa7c5241 2653 name = xattr_full_name(handler, name);
38f38657 2654 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2655}
2656
aa7c5241
AG
2657static const struct xattr_handler shmem_security_xattr_handler = {
2658 .prefix = XATTR_SECURITY_PREFIX,
2659 .get = shmem_xattr_handler_get,
2660 .set = shmem_xattr_handler_set,
2661};
b09e0fa4 2662
aa7c5241
AG
2663static const struct xattr_handler shmem_trusted_xattr_handler = {
2664 .prefix = XATTR_TRUSTED_PREFIX,
2665 .get = shmem_xattr_handler_get,
2666 .set = shmem_xattr_handler_set,
2667};
b09e0fa4 2668
aa7c5241
AG
2669static const struct xattr_handler *shmem_xattr_handlers[] = {
2670#ifdef CONFIG_TMPFS_POSIX_ACL
2671 &posix_acl_access_xattr_handler,
2672 &posix_acl_default_xattr_handler,
2673#endif
2674 &shmem_security_xattr_handler,
2675 &shmem_trusted_xattr_handler,
2676 NULL
2677};
b09e0fa4
EP
2678
2679static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2680{
75c3cfa8 2681 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 2682 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
2683}
2684#endif /* CONFIG_TMPFS_XATTR */
2685
69f07ec9 2686static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2687 .readlink = generic_readlink,
6b255391 2688 .get_link = simple_get_link,
b09e0fa4 2689#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
2690 .setxattr = generic_setxattr,
2691 .getxattr = generic_getxattr,
b09e0fa4 2692 .listxattr = shmem_listxattr,
aa7c5241 2693 .removexattr = generic_removexattr,
b09e0fa4
EP
2694#endif
2695};
2696
2697static const struct inode_operations shmem_symlink_inode_operations = {
2698 .readlink = generic_readlink,
6b255391 2699 .get_link = shmem_get_link,
b09e0fa4 2700#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
2701 .setxattr = generic_setxattr,
2702 .getxattr = generic_getxattr,
b09e0fa4 2703 .listxattr = shmem_listxattr,
aa7c5241 2704 .removexattr = generic_removexattr,
39f0247d 2705#endif
b09e0fa4 2706};
39f0247d 2707
91828a40
DG
2708static struct dentry *shmem_get_parent(struct dentry *child)
2709{
2710 return ERR_PTR(-ESTALE);
2711}
2712
2713static int shmem_match(struct inode *ino, void *vfh)
2714{
2715 __u32 *fh = vfh;
2716 __u64 inum = fh[2];
2717 inum = (inum << 32) | fh[1];
2718 return ino->i_ino == inum && fh[0] == ino->i_generation;
2719}
2720
480b116c
CH
2721static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2722 struct fid *fid, int fh_len, int fh_type)
91828a40 2723{
91828a40 2724 struct inode *inode;
480b116c 2725 struct dentry *dentry = NULL;
35c2a7f4 2726 u64 inum;
480b116c
CH
2727
2728 if (fh_len < 3)
2729 return NULL;
91828a40 2730
35c2a7f4
HD
2731 inum = fid->raw[2];
2732 inum = (inum << 32) | fid->raw[1];
2733
480b116c
CH
2734 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2735 shmem_match, fid->raw);
91828a40 2736 if (inode) {
480b116c 2737 dentry = d_find_alias(inode);
91828a40
DG
2738 iput(inode);
2739 }
2740
480b116c 2741 return dentry;
91828a40
DG
2742}
2743
b0b0382b
AV
2744static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2745 struct inode *parent)
91828a40 2746{
5fe0c237
AK
2747 if (*len < 3) {
2748 *len = 3;
94e07a75 2749 return FILEID_INVALID;
5fe0c237 2750 }
91828a40 2751
1d3382cb 2752 if (inode_unhashed(inode)) {
91828a40
DG
2753 /* Unfortunately insert_inode_hash is not idempotent,
2754 * so as we hash inodes here rather than at creation
2755 * time, we need a lock to ensure we only try
2756 * to do it once
2757 */
2758 static DEFINE_SPINLOCK(lock);
2759 spin_lock(&lock);
1d3382cb 2760 if (inode_unhashed(inode))
91828a40
DG
2761 __insert_inode_hash(inode,
2762 inode->i_ino + inode->i_generation);
2763 spin_unlock(&lock);
2764 }
2765
2766 fh[0] = inode->i_generation;
2767 fh[1] = inode->i_ino;
2768 fh[2] = ((__u64)inode->i_ino) >> 32;
2769
2770 *len = 3;
2771 return 1;
2772}
2773
39655164 2774static const struct export_operations shmem_export_ops = {
91828a40 2775 .get_parent = shmem_get_parent,
91828a40 2776 .encode_fh = shmem_encode_fh,
480b116c 2777 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2778};
2779
680d794b
AM
2780static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2781 bool remount)
1da177e4
LT
2782{
2783 char *this_char, *value, *rest;
49cd0a5c 2784 struct mempolicy *mpol = NULL;
8751e039
EB
2785 uid_t uid;
2786 gid_t gid;
1da177e4 2787
b00dc3ad
HD
2788 while (options != NULL) {
2789 this_char = options;
2790 for (;;) {
2791 /*
2792 * NUL-terminate this option: unfortunately,
2793 * mount options form a comma-separated list,
2794 * but mpol's nodelist may also contain commas.
2795 */
2796 options = strchr(options, ',');
2797 if (options == NULL)
2798 break;
2799 options++;
2800 if (!isdigit(*options)) {
2801 options[-1] = '\0';
2802 break;
2803 }
2804 }
1da177e4
LT
2805 if (!*this_char)
2806 continue;
2807 if ((value = strchr(this_char,'=')) != NULL) {
2808 *value++ = 0;
2809 } else {
2810 printk(KERN_ERR
2811 "tmpfs: No value for mount option '%s'\n",
2812 this_char);
49cd0a5c 2813 goto error;
1da177e4
LT
2814 }
2815
2816 if (!strcmp(this_char,"size")) {
2817 unsigned long long size;
2818 size = memparse(value,&rest);
2819 if (*rest == '%') {
2820 size <<= PAGE_SHIFT;
2821 size *= totalram_pages;
2822 do_div(size, 100);
2823 rest++;
2824 }
2825 if (*rest)
2826 goto bad_val;
680d794b
AM
2827 sbinfo->max_blocks =
2828 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2829 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2830 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2831 if (*rest)
2832 goto bad_val;
2833 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2834 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2835 if (*rest)
2836 goto bad_val;
2837 } else if (!strcmp(this_char,"mode")) {
680d794b 2838 if (remount)
1da177e4 2839 continue;
680d794b 2840 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2841 if (*rest)
2842 goto bad_val;
2843 } else if (!strcmp(this_char,"uid")) {
680d794b 2844 if (remount)
1da177e4 2845 continue;
8751e039 2846 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2847 if (*rest)
2848 goto bad_val;
8751e039
EB
2849 sbinfo->uid = make_kuid(current_user_ns(), uid);
2850 if (!uid_valid(sbinfo->uid))
2851 goto bad_val;
1da177e4 2852 } else if (!strcmp(this_char,"gid")) {
680d794b 2853 if (remount)
1da177e4 2854 continue;
8751e039 2855 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2856 if (*rest)
2857 goto bad_val;
8751e039
EB
2858 sbinfo->gid = make_kgid(current_user_ns(), gid);
2859 if (!gid_valid(sbinfo->gid))
2860 goto bad_val;
7339ff83 2861 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2862 mpol_put(mpol);
2863 mpol = NULL;
2864 if (mpol_parse_str(value, &mpol))
7339ff83 2865 goto bad_val;
1da177e4
LT
2866 } else {
2867 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2868 this_char);
49cd0a5c 2869 goto error;
1da177e4
LT
2870 }
2871 }
49cd0a5c 2872 sbinfo->mpol = mpol;
1da177e4
LT
2873 return 0;
2874
2875bad_val:
2876 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2877 value, this_char);
49cd0a5c
GT
2878error:
2879 mpol_put(mpol);
1da177e4
LT
2880 return 1;
2881
2882}
2883
2884static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2885{
2886 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2887 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2888 unsigned long inodes;
2889 int error = -EINVAL;
2890
5f00110f 2891 config.mpol = NULL;
680d794b 2892 if (shmem_parse_options(data, &config, true))
0edd73b3 2893 return error;
1da177e4 2894
0edd73b3 2895 spin_lock(&sbinfo->stat_lock);
0edd73b3 2896 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2897 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2898 goto out;
680d794b 2899 if (config.max_inodes < inodes)
0edd73b3
HD
2900 goto out;
2901 /*
54af6042 2902 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2903 * but we must separately disallow unlimited->limited, because
2904 * in that case we have no record of how much is already in use.
2905 */
680d794b 2906 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2907 goto out;
680d794b 2908 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2909 goto out;
2910
2911 error = 0;
680d794b 2912 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
2913 sbinfo->max_inodes = config.max_inodes;
2914 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2915
5f00110f
GT
2916 /*
2917 * Preserve previous mempolicy unless mpol remount option was specified.
2918 */
2919 if (config.mpol) {
2920 mpol_put(sbinfo->mpol);
2921 sbinfo->mpol = config.mpol; /* transfers initial ref */
2922 }
0edd73b3
HD
2923out:
2924 spin_unlock(&sbinfo->stat_lock);
2925 return error;
1da177e4 2926}
680d794b 2927
34c80b1d 2928static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2929{
34c80b1d 2930 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
2931
2932 if (sbinfo->max_blocks != shmem_default_max_blocks())
2933 seq_printf(seq, ",size=%luk",
2934 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2935 if (sbinfo->max_inodes != shmem_default_max_inodes())
2936 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2937 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2938 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2939 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2940 seq_printf(seq, ",uid=%u",
2941 from_kuid_munged(&init_user_ns, sbinfo->uid));
2942 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2943 seq_printf(seq, ",gid=%u",
2944 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2945 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2946 return 0;
2947}
9183df25
DR
2948
2949#define MFD_NAME_PREFIX "memfd:"
2950#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2951#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2952
2953#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2954
2955SYSCALL_DEFINE2(memfd_create,
2956 const char __user *, uname,
2957 unsigned int, flags)
2958{
2959 struct shmem_inode_info *info;
2960 struct file *file;
2961 int fd, error;
2962 char *name;
2963 long len;
2964
2965 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2966 return -EINVAL;
2967
2968 /* length includes terminating zero */
2969 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2970 if (len <= 0)
2971 return -EFAULT;
2972 if (len > MFD_NAME_MAX_LEN + 1)
2973 return -EINVAL;
2974
2975 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2976 if (!name)
2977 return -ENOMEM;
2978
2979 strcpy(name, MFD_NAME_PREFIX);
2980 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2981 error = -EFAULT;
2982 goto err_name;
2983 }
2984
2985 /* terminating-zero may have changed after strnlen_user() returned */
2986 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2987 error = -EFAULT;
2988 goto err_name;
2989 }
2990
2991 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2992 if (fd < 0) {
2993 error = fd;
2994 goto err_name;
2995 }
2996
2997 file = shmem_file_setup(name, 0, VM_NORESERVE);
2998 if (IS_ERR(file)) {
2999 error = PTR_ERR(file);
3000 goto err_fd;
3001 }
3002 info = SHMEM_I(file_inode(file));
3003 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3004 file->f_flags |= O_RDWR | O_LARGEFILE;
3005 if (flags & MFD_ALLOW_SEALING)
3006 info->seals &= ~F_SEAL_SEAL;
3007
3008 fd_install(fd, file);
3009 kfree(name);
3010 return fd;
3011
3012err_fd:
3013 put_unused_fd(fd);
3014err_name:
3015 kfree(name);
3016 return error;
3017}
3018
680d794b 3019#endif /* CONFIG_TMPFS */
1da177e4
LT
3020
3021static void shmem_put_super(struct super_block *sb)
3022{
602586a8
HD
3023 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3024
3025 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3026 mpol_put(sbinfo->mpol);
602586a8 3027 kfree(sbinfo);
1da177e4
LT
3028 sb->s_fs_info = NULL;
3029}
3030
2b2af54a 3031int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3032{
3033 struct inode *inode;
0edd73b3 3034 struct shmem_sb_info *sbinfo;
680d794b
AM
3035 int err = -ENOMEM;
3036
3037 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3038 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3039 L1_CACHE_BYTES), GFP_KERNEL);
3040 if (!sbinfo)
3041 return -ENOMEM;
3042
680d794b 3043 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3044 sbinfo->uid = current_fsuid();
3045 sbinfo->gid = current_fsgid();
680d794b 3046 sb->s_fs_info = sbinfo;
1da177e4 3047
0edd73b3 3048#ifdef CONFIG_TMPFS
1da177e4
LT
3049 /*
3050 * Per default we only allow half of the physical ram per
3051 * tmpfs instance, limiting inodes to one per page of lowmem;
3052 * but the internal instance is left unlimited.
3053 */
ca4e0519 3054 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
3055 sbinfo->max_blocks = shmem_default_max_blocks();
3056 sbinfo->max_inodes = shmem_default_max_inodes();
3057 if (shmem_parse_options(data, sbinfo, false)) {
3058 err = -EINVAL;
3059 goto failed;
3060 }
ca4e0519
AV
3061 } else {
3062 sb->s_flags |= MS_NOUSER;
1da177e4 3063 }
91828a40 3064 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3065 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3066#else
3067 sb->s_flags |= MS_NOUSER;
3068#endif
3069
0edd73b3 3070 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3071 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3072 goto failed;
680d794b 3073 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 3074
285b2c4f 3075 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
3076 sb->s_blocksize = PAGE_CACHE_SIZE;
3077 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3078 sb->s_magic = TMPFS_MAGIC;
3079 sb->s_op = &shmem_ops;
cfd95a9c 3080 sb->s_time_gran = 1;
b09e0fa4 3081#ifdef CONFIG_TMPFS_XATTR
39f0247d 3082 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3083#endif
3084#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3085 sb->s_flags |= MS_POSIXACL;
3086#endif
0edd73b3 3087
454abafe 3088 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3089 if (!inode)
3090 goto failed;
680d794b
AM
3091 inode->i_uid = sbinfo->uid;
3092 inode->i_gid = sbinfo->gid;
318ceed0
AV
3093 sb->s_root = d_make_root(inode);
3094 if (!sb->s_root)
48fde701 3095 goto failed;
1da177e4
LT
3096 return 0;
3097
1da177e4
LT
3098failed:
3099 shmem_put_super(sb);
3100 return err;
3101}
3102
fcc234f8 3103static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3104
3105static struct inode *shmem_alloc_inode(struct super_block *sb)
3106{
41ffe5d5
HD
3107 struct shmem_inode_info *info;
3108 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3109 if (!info)
1da177e4 3110 return NULL;
41ffe5d5 3111 return &info->vfs_inode;
1da177e4
LT
3112}
3113
41ffe5d5 3114static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3115{
3116 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
3117 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3118}
3119
1da177e4
LT
3120static void shmem_destroy_inode(struct inode *inode)
3121{
09208d15 3122 if (S_ISREG(inode->i_mode))
1da177e4 3123 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3124 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3125}
3126
41ffe5d5 3127static void shmem_init_inode(void *foo)
1da177e4 3128{
41ffe5d5
HD
3129 struct shmem_inode_info *info = foo;
3130 inode_init_once(&info->vfs_inode);
1da177e4
LT
3131}
3132
41ffe5d5 3133static int shmem_init_inodecache(void)
1da177e4
LT
3134{
3135 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3136 sizeof(struct shmem_inode_info),
5d097056 3137 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3138 return 0;
3139}
3140
41ffe5d5 3141static void shmem_destroy_inodecache(void)
1da177e4 3142{
1a1d92c1 3143 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3144}
3145
f5e54d6e 3146static const struct address_space_operations shmem_aops = {
1da177e4 3147 .writepage = shmem_writepage,
76719325 3148 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3149#ifdef CONFIG_TMPFS
800d15a5
NP
3150 .write_begin = shmem_write_begin,
3151 .write_end = shmem_write_end,
1da177e4 3152#endif
1c93923c 3153#ifdef CONFIG_MIGRATION
304dbdb7 3154 .migratepage = migrate_page,
1c93923c 3155#endif
aa261f54 3156 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3157};
3158
15ad7cdc 3159static const struct file_operations shmem_file_operations = {
1da177e4
LT
3160 .mmap = shmem_mmap,
3161#ifdef CONFIG_TMPFS
220f2ac9 3162 .llseek = shmem_file_llseek,
2ba5bbed 3163 .read_iter = shmem_file_read_iter,
8174202b 3164 .write_iter = generic_file_write_iter,
1b061d92 3165 .fsync = noop_fsync,
708e3508 3166 .splice_read = shmem_file_splice_read,
f6cb85d0 3167 .splice_write = iter_file_splice_write,
83e4fa9c 3168 .fallocate = shmem_fallocate,
1da177e4
LT
3169#endif
3170};
3171
92e1d5be 3172static const struct inode_operations shmem_inode_operations = {
44a30220 3173 .getattr = shmem_getattr,
94c1e62d 3174 .setattr = shmem_setattr,
b09e0fa4 3175#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3176 .setxattr = generic_setxattr,
3177 .getxattr = generic_getxattr,
b09e0fa4 3178 .listxattr = shmem_listxattr,
aa7c5241 3179 .removexattr = generic_removexattr,
feda821e 3180 .set_acl = simple_set_acl,
b09e0fa4 3181#endif
1da177e4
LT
3182};
3183
92e1d5be 3184static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3185#ifdef CONFIG_TMPFS
3186 .create = shmem_create,
3187 .lookup = simple_lookup,
3188 .link = shmem_link,
3189 .unlink = shmem_unlink,
3190 .symlink = shmem_symlink,
3191 .mkdir = shmem_mkdir,
3192 .rmdir = shmem_rmdir,
3193 .mknod = shmem_mknod,
3b69ff51 3194 .rename2 = shmem_rename2,
60545d0d 3195 .tmpfile = shmem_tmpfile,
1da177e4 3196#endif
b09e0fa4 3197#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3198 .setxattr = generic_setxattr,
3199 .getxattr = generic_getxattr,
b09e0fa4 3200 .listxattr = shmem_listxattr,
aa7c5241 3201 .removexattr = generic_removexattr,
b09e0fa4 3202#endif
39f0247d 3203#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3204 .setattr = shmem_setattr,
feda821e 3205 .set_acl = simple_set_acl,
39f0247d
AG
3206#endif
3207};
3208
92e1d5be 3209static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3210#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3211 .setxattr = generic_setxattr,
3212 .getxattr = generic_getxattr,
b09e0fa4 3213 .listxattr = shmem_listxattr,
aa7c5241 3214 .removexattr = generic_removexattr,
b09e0fa4 3215#endif
39f0247d 3216#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3217 .setattr = shmem_setattr,
feda821e 3218 .set_acl = simple_set_acl,
39f0247d 3219#endif
1da177e4
LT
3220};
3221
759b9775 3222static const struct super_operations shmem_ops = {
1da177e4
LT
3223 .alloc_inode = shmem_alloc_inode,
3224 .destroy_inode = shmem_destroy_inode,
3225#ifdef CONFIG_TMPFS
3226 .statfs = shmem_statfs,
3227 .remount_fs = shmem_remount_fs,
680d794b 3228 .show_options = shmem_show_options,
1da177e4 3229#endif
1f895f75 3230 .evict_inode = shmem_evict_inode,
1da177e4
LT
3231 .drop_inode = generic_delete_inode,
3232 .put_super = shmem_put_super,
3233};
3234
f0f37e2f 3235static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3236 .fault = shmem_fault,
d7c17551 3237 .map_pages = filemap_map_pages,
1da177e4
LT
3238#ifdef CONFIG_NUMA
3239 .set_policy = shmem_set_policy,
3240 .get_policy = shmem_get_policy,
3241#endif
3242};
3243
3c26ff6e
AV
3244static struct dentry *shmem_mount(struct file_system_type *fs_type,
3245 int flags, const char *dev_name, void *data)
1da177e4 3246{
3c26ff6e 3247 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3248}
3249
41ffe5d5 3250static struct file_system_type shmem_fs_type = {
1da177e4
LT
3251 .owner = THIS_MODULE,
3252 .name = "tmpfs",
3c26ff6e 3253 .mount = shmem_mount,
1da177e4 3254 .kill_sb = kill_litter_super,
2b8576cb 3255 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3256};
1da177e4 3257
41ffe5d5 3258int __init shmem_init(void)
1da177e4
LT
3259{
3260 int error;
3261
16203a7a
RL
3262 /* If rootfs called this, don't re-init */
3263 if (shmem_inode_cachep)
3264 return 0;
3265
41ffe5d5 3266 error = shmem_init_inodecache();
1da177e4
LT
3267 if (error)
3268 goto out3;
3269
41ffe5d5 3270 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
3271 if (error) {
3272 printk(KERN_ERR "Could not register tmpfs\n");
3273 goto out2;
3274 }
95dc112a 3275
ca4e0519 3276 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3277 if (IS_ERR(shm_mnt)) {
3278 error = PTR_ERR(shm_mnt);
3279 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3280 goto out1;
3281 }
3282 return 0;
3283
3284out1:
41ffe5d5 3285 unregister_filesystem(&shmem_fs_type);
1da177e4 3286out2:
41ffe5d5 3287 shmem_destroy_inodecache();
1da177e4
LT
3288out3:
3289 shm_mnt = ERR_PTR(error);
3290 return error;
3291}
853ac43a
MM
3292
3293#else /* !CONFIG_SHMEM */
3294
3295/*
3296 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3297 *
3298 * This is intended for small system where the benefits of the full
3299 * shmem code (swap-backed and resource-limited) are outweighed by
3300 * their complexity. On systems without swap this code should be
3301 * effectively equivalent, but much lighter weight.
3302 */
3303
41ffe5d5 3304static struct file_system_type shmem_fs_type = {
853ac43a 3305 .name = "tmpfs",
3c26ff6e 3306 .mount = ramfs_mount,
853ac43a 3307 .kill_sb = kill_litter_super,
2b8576cb 3308 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3309};
3310
41ffe5d5 3311int __init shmem_init(void)
853ac43a 3312{
41ffe5d5 3313 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3314
41ffe5d5 3315 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3316 BUG_ON(IS_ERR(shm_mnt));
3317
3318 return 0;
3319}
3320
41ffe5d5 3321int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3322{
3323 return 0;
3324}
3325
3f96b79a
HD
3326int shmem_lock(struct file *file, int lock, struct user_struct *user)
3327{
3328 return 0;
3329}
3330
24513264
HD
3331void shmem_unlock_mapping(struct address_space *mapping)
3332{
3333}
3334
41ffe5d5 3335void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3336{
41ffe5d5 3337 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3338}
3339EXPORT_SYMBOL_GPL(shmem_truncate_range);
3340
0b0a0806
HD
3341#define shmem_vm_ops generic_file_vm_ops
3342#define shmem_file_operations ramfs_file_operations
454abafe 3343#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3344#define shmem_acct_size(flags, size) 0
3345#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3346
3347#endif /* CONFIG_SHMEM */
3348
3349/* common code */
1da177e4 3350
3451538a 3351static struct dentry_operations anon_ops = {
118b2302 3352 .d_dname = simple_dname
3451538a
AV
3353};
3354
c7277090
EP
3355static struct file *__shmem_file_setup(const char *name, loff_t size,
3356 unsigned long flags, unsigned int i_flags)
1da177e4 3357{
6b4d0b27 3358 struct file *res;
1da177e4 3359 struct inode *inode;
2c48b9c4 3360 struct path path;
3451538a 3361 struct super_block *sb;
1da177e4
LT
3362 struct qstr this;
3363
3364 if (IS_ERR(shm_mnt))
6b4d0b27 3365 return ERR_CAST(shm_mnt);
1da177e4 3366
285b2c4f 3367 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3368 return ERR_PTR(-EINVAL);
3369
3370 if (shmem_acct_size(flags, size))
3371 return ERR_PTR(-ENOMEM);
3372
6b4d0b27 3373 res = ERR_PTR(-ENOMEM);
1da177e4
LT
3374 this.name = name;
3375 this.len = strlen(name);
3376 this.hash = 0; /* will go */
3451538a 3377 sb = shm_mnt->mnt_sb;
66ee4b88 3378 path.mnt = mntget(shm_mnt);
3451538a 3379 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 3380 if (!path.dentry)
1da177e4 3381 goto put_memory;
3451538a 3382 d_set_d_op(path.dentry, &anon_ops);
1da177e4 3383
6b4d0b27 3384 res = ERR_PTR(-ENOSPC);
3451538a 3385 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 3386 if (!inode)
66ee4b88 3387 goto put_memory;
1da177e4 3388
c7277090 3389 inode->i_flags |= i_flags;
2c48b9c4 3390 d_instantiate(path.dentry, inode);
1da177e4 3391 inode->i_size = size;
6d6b77f1 3392 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
3393 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3394 if (IS_ERR(res))
66ee4b88 3395 goto put_path;
4b42af81 3396
6b4d0b27 3397 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 3398 &shmem_file_operations);
6b4d0b27 3399 if (IS_ERR(res))
66ee4b88 3400 goto put_path;
4b42af81 3401
6b4d0b27 3402 return res;
1da177e4 3403
1da177e4
LT
3404put_memory:
3405 shmem_unacct_size(flags, size);
66ee4b88
KK
3406put_path:
3407 path_put(&path);
6b4d0b27 3408 return res;
1da177e4 3409}
c7277090
EP
3410
3411/**
3412 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3413 * kernel internal. There will be NO LSM permission checks against the
3414 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
3415 * higher layer. The users are the big_key and shm implementations. LSM
3416 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
3417 * @name: name for dentry (to be seen in /proc/<pid>/maps
3418 * @size: size to be set for the file
3419 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3420 */
3421struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3422{
3423 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3424}
3425
3426/**
3427 * shmem_file_setup - get an unlinked file living in tmpfs
3428 * @name: name for dentry (to be seen in /proc/<pid>/maps
3429 * @size: size to be set for the file
3430 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3431 */
3432struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3433{
3434 return __shmem_file_setup(name, size, flags, 0);
3435}
395e0ddc 3436EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3437
46711810 3438/**
1da177e4 3439 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3440 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3441 */
3442int shmem_zero_setup(struct vm_area_struct *vma)
3443{
3444 struct file *file;
3445 loff_t size = vma->vm_end - vma->vm_start;
3446
66fc1303
HD
3447 /*
3448 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3449 * between XFS directory reading and selinux: since this file is only
3450 * accessible to the user through its mapping, use S_PRIVATE flag to
3451 * bypass file security, in the same way as shmem_kernel_file_setup().
3452 */
3453 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
3454 if (IS_ERR(file))
3455 return PTR_ERR(file);
3456
3457 if (vma->vm_file)
3458 fput(vma->vm_file);
3459 vma->vm_file = file;
3460 vma->vm_ops = &shmem_vm_ops;
3461 return 0;
3462}
d9d90e5e
HD
3463
3464/**
3465 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3466 * @mapping: the page's address_space
3467 * @index: the page index
3468 * @gfp: the page allocator flags to use if allocating
3469 *
3470 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3471 * with any new page allocations done using the specified allocation flags.
3472 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3473 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3474 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3475 *
68da9f05
HD
3476 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3477 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3478 */
3479struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3480 pgoff_t index, gfp_t gfp)
3481{
68da9f05
HD
3482#ifdef CONFIG_SHMEM
3483 struct inode *inode = mapping->host;
9276aad6 3484 struct page *page;
68da9f05
HD
3485 int error;
3486
3487 BUG_ON(mapping->a_ops != &shmem_aops);
3488 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3489 if (error)
3490 page = ERR_PTR(error);
3491 else
3492 unlock_page(page);
3493 return page;
3494#else
3495 /*
3496 * The tiny !SHMEM case uses ramfs without swap
3497 */
d9d90e5e 3498 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3499#endif
d9d90e5e
HD
3500}
3501EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);