]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/shmem.c
cifs: Use min_t() when comparing "size_t" and "unsigned long"
[thirdparty/linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
a27bb332 34#include <linux/aio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
304dbdb7 69
1da177e4 70#include <asm/uaccess.h>
1da177e4
LT
71#include <asm/pgtable.h>
72
caefba17 73#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
74#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
1da177e4
LT
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
69f07ec9
HD
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
1aac1400
HD
82/*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87struct shmem_falloc {
88 pgoff_t start; /* start of range currently being fallocated */
89 pgoff_t next; /* the next page offset to be fallocated */
90 pgoff_t nr_falloced; /* how many new pages have been fallocated */
91 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
92};
93
285b2c4f 94/* Flag allocation requirements to shmem_getpage */
1da177e4 95enum sgp_type {
1da177e4
LT
96 SGP_READ, /* don't exceed i_size, don't allocate page */
97 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 98 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
99 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
100 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
101};
102
b76db735 103#ifdef CONFIG_TMPFS
680d794b
AM
104static unsigned long shmem_default_max_blocks(void)
105{
106 return totalram_pages / 2;
107}
108
109static unsigned long shmem_default_max_inodes(void)
110{
111 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112}
b76db735 113#endif
680d794b 114
bde05d1c
HD
115static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
118static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122 struct page **pagep, enum sgp_type sgp, int *fault_type)
123{
124 return shmem_getpage_gfp(inode, index, pagep, sgp,
125 mapping_gfp_mask(inode->i_mapping), fault_type);
126}
1da177e4 127
1da177e4
LT
128static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129{
130 return sb->s_fs_info;
131}
132
133/*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139static inline int shmem_acct_size(unsigned long flags, loff_t size)
140{
0b0a0806 141 return (flags & VM_NORESERVE) ?
191c5424 142 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
143}
144
145static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146{
0b0a0806 147 if (!(flags & VM_NORESERVE))
1da177e4
LT
148 vm_unacct_memory(VM_ACCT(size));
149}
150
151/*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157static inline int shmem_acct_block(unsigned long flags)
158{
0b0a0806 159 return (flags & VM_NORESERVE) ?
191c5424 160 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
161}
162
163static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164{
0b0a0806 165 if (flags & VM_NORESERVE)
1da177e4
LT
166 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167}
168
759b9775 169static const struct super_operations shmem_ops;
f5e54d6e 170static const struct address_space_operations shmem_aops;
15ad7cdc 171static const struct file_operations shmem_file_operations;
92e1d5be
AV
172static const struct inode_operations shmem_inode_operations;
173static const struct inode_operations shmem_dir_inode_operations;
174static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 175static const struct vm_operations_struct shmem_vm_ops;
1da177e4 176
6c231b7b 177static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 178 .ra_pages = 0, /* No readahead */
4f98a2fe 179 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
180};
181
182static LIST_HEAD(shmem_swaplist);
cb5f7b9a 183static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 184
5b04c689
PE
185static int shmem_reserve_inode(struct super_block *sb)
186{
187 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188 if (sbinfo->max_inodes) {
189 spin_lock(&sbinfo->stat_lock);
190 if (!sbinfo->free_inodes) {
191 spin_unlock(&sbinfo->stat_lock);
192 return -ENOSPC;
193 }
194 sbinfo->free_inodes--;
195 spin_unlock(&sbinfo->stat_lock);
196 }
197 return 0;
198}
199
200static void shmem_free_inode(struct super_block *sb)
201{
202 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203 if (sbinfo->max_inodes) {
204 spin_lock(&sbinfo->stat_lock);
205 sbinfo->free_inodes++;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208}
209
46711810 210/**
41ffe5d5 211 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222static void shmem_recalc_inode(struct inode *inode)
223{
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 long freed;
226
227 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228 if (freed > 0) {
54af6042
HD
229 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230 if (sbinfo->max_blocks)
231 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 232 info->alloced -= freed;
54af6042 233 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 234 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
235 }
236}
237
7a5d0fbb
HD
238/*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241static int shmem_radix_tree_replace(struct address_space *mapping,
242 pgoff_t index, void *expected, void *replacement)
243{
244 void **pslot;
6dbaf22c 245 void *item;
7a5d0fbb
HD
246
247 VM_BUG_ON(!expected);
6dbaf22c 248 VM_BUG_ON(!replacement);
7a5d0fbb 249 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
250 if (!pslot)
251 return -ENOENT;
252 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
253 if (item != expected)
254 return -ENOENT;
6dbaf22c 255 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
256 return 0;
257}
258
d1899228
HD
259/*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266static bool shmem_confirm_swap(struct address_space *mapping,
267 pgoff_t index, swp_entry_t swap)
268{
269 void *item;
270
271 rcu_read_lock();
272 item = radix_tree_lookup(&mapping->page_tree, index);
273 rcu_read_unlock();
274 return item == swp_to_radix_entry(swap);
275}
276
46f65ec1
HD
277/*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280static int shmem_add_to_page_cache(struct page *page,
281 struct address_space *mapping,
282 pgoff_t index, gfp_t gfp, void *expected)
283{
b065b432 284 int error;
46f65ec1 285
309381fe
SL
286 VM_BUG_ON_PAGE(!PageLocked(page), page);
287 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 288
b065b432
HD
289 page_cache_get(page);
290 page->mapping = mapping;
291 page->index = index;
292
293 spin_lock_irq(&mapping->tree_lock);
46f65ec1 294 if (!expected)
b065b432
HD
295 error = radix_tree_insert(&mapping->page_tree, index, page);
296 else
297 error = shmem_radix_tree_replace(mapping, index, expected,
298 page);
46f65ec1 299 if (!error) {
b065b432
HD
300 mapping->nrpages++;
301 __inc_zone_page_state(page, NR_FILE_PAGES);
302 __inc_zone_page_state(page, NR_SHMEM);
303 spin_unlock_irq(&mapping->tree_lock);
304 } else {
305 page->mapping = NULL;
306 spin_unlock_irq(&mapping->tree_lock);
307 page_cache_release(page);
46f65ec1 308 }
46f65ec1
HD
309 return error;
310}
311
6922c0c7
HD
312/*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316{
317 struct address_space *mapping = page->mapping;
318 int error;
319
320 spin_lock_irq(&mapping->tree_lock);
321 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322 page->mapping = NULL;
323 mapping->nrpages--;
324 __dec_zone_page_state(page, NR_FILE_PAGES);
325 __dec_zone_page_state(page, NR_SHMEM);
326 spin_unlock_irq(&mapping->tree_lock);
327 page_cache_release(page);
328 BUG_ON(error);
329}
330
7a5d0fbb
HD
331/*
332 * Remove swap entry from radix tree, free the swap and its page cache.
333 */
334static int shmem_free_swap(struct address_space *mapping,
335 pgoff_t index, void *radswap)
336{
6dbaf22c 337 void *old;
7a5d0fbb
HD
338
339 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 340 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 341 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
342 if (old != radswap)
343 return -ENOENT;
344 free_swap_and_cache(radix_to_swp_entry(radswap));
345 return 0;
7a5d0fbb
HD
346}
347
24513264
HD
348/*
349 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
350 */
351void shmem_unlock_mapping(struct address_space *mapping)
352{
353 struct pagevec pvec;
354 pgoff_t indices[PAGEVEC_SIZE];
355 pgoff_t index = 0;
356
357 pagevec_init(&pvec, 0);
358 /*
359 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
360 */
361 while (!mapping_unevictable(mapping)) {
362 /*
363 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
364 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
365 */
0cd6144a
JW
366 pvec.nr = find_get_entries(mapping, index,
367 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
368 if (!pvec.nr)
369 break;
370 index = indices[pvec.nr - 1] + 1;
0cd6144a 371 pagevec_remove_exceptionals(&pvec);
24513264
HD
372 check_move_unevictable_pages(pvec.pages, pvec.nr);
373 pagevec_release(&pvec);
374 cond_resched();
375 }
7a5d0fbb
HD
376}
377
378/*
379 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 380 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 381 */
1635f6a7
HD
382static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
383 bool unfalloc)
1da177e4 384{
285b2c4f 385 struct address_space *mapping = inode->i_mapping;
1da177e4 386 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 387 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
388 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
389 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
390 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 391 struct pagevec pvec;
7a5d0fbb
HD
392 pgoff_t indices[PAGEVEC_SIZE];
393 long nr_swaps_freed = 0;
285b2c4f 394 pgoff_t index;
bda97eab
HD
395 int i;
396
83e4fa9c
HD
397 if (lend == -1)
398 end = -1; /* unsigned, so actually very big */
bda97eab
HD
399
400 pagevec_init(&pvec, 0);
401 index = start;
83e4fa9c 402 while (index < end) {
0cd6144a
JW
403 pvec.nr = find_get_entries(mapping, index,
404 min(end - index, (pgoff_t)PAGEVEC_SIZE),
405 pvec.pages, indices);
7a5d0fbb
HD
406 if (!pvec.nr)
407 break;
bda97eab
HD
408 mem_cgroup_uncharge_start();
409 for (i = 0; i < pagevec_count(&pvec); i++) {
410 struct page *page = pvec.pages[i];
411
7a5d0fbb 412 index = indices[i];
83e4fa9c 413 if (index >= end)
bda97eab
HD
414 break;
415
7a5d0fbb 416 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
417 if (unfalloc)
418 continue;
7a5d0fbb
HD
419 nr_swaps_freed += !shmem_free_swap(mapping,
420 index, page);
bda97eab 421 continue;
7a5d0fbb
HD
422 }
423
424 if (!trylock_page(page))
bda97eab 425 continue;
1635f6a7
HD
426 if (!unfalloc || !PageUptodate(page)) {
427 if (page->mapping == mapping) {
309381fe 428 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
429 truncate_inode_page(mapping, page);
430 }
bda97eab 431 }
bda97eab
HD
432 unlock_page(page);
433 }
0cd6144a 434 pagevec_remove_exceptionals(&pvec);
24513264 435 pagevec_release(&pvec);
bda97eab
HD
436 mem_cgroup_uncharge_end();
437 cond_resched();
438 index++;
439 }
1da177e4 440
83e4fa9c 441 if (partial_start) {
bda97eab
HD
442 struct page *page = NULL;
443 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
444 if (page) {
83e4fa9c
HD
445 unsigned int top = PAGE_CACHE_SIZE;
446 if (start > end) {
447 top = partial_end;
448 partial_end = 0;
449 }
450 zero_user_segment(page, partial_start, top);
451 set_page_dirty(page);
452 unlock_page(page);
453 page_cache_release(page);
454 }
455 }
456 if (partial_end) {
457 struct page *page = NULL;
458 shmem_getpage(inode, end, &page, SGP_READ, NULL);
459 if (page) {
460 zero_user_segment(page, 0, partial_end);
bda97eab
HD
461 set_page_dirty(page);
462 unlock_page(page);
463 page_cache_release(page);
464 }
465 }
83e4fa9c
HD
466 if (start >= end)
467 return;
bda97eab
HD
468
469 index = start;
470 for ( ; ; ) {
471 cond_resched();
0cd6144a
JW
472
473 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 474 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 475 pvec.pages, indices);
7a5d0fbb 476 if (!pvec.nr) {
1635f6a7 477 if (index == start || unfalloc)
bda97eab
HD
478 break;
479 index = start;
480 continue;
481 }
1635f6a7 482 if ((index == start || unfalloc) && indices[0] >= end) {
0cd6144a 483 pagevec_remove_exceptionals(&pvec);
24513264 484 pagevec_release(&pvec);
bda97eab
HD
485 break;
486 }
487 mem_cgroup_uncharge_start();
488 for (i = 0; i < pagevec_count(&pvec); i++) {
489 struct page *page = pvec.pages[i];
490
7a5d0fbb 491 index = indices[i];
83e4fa9c 492 if (index >= end)
bda97eab
HD
493 break;
494
7a5d0fbb 495 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
496 if (unfalloc)
497 continue;
7a5d0fbb
HD
498 nr_swaps_freed += !shmem_free_swap(mapping,
499 index, page);
500 continue;
501 }
502
bda97eab 503 lock_page(page);
1635f6a7
HD
504 if (!unfalloc || !PageUptodate(page)) {
505 if (page->mapping == mapping) {
309381fe 506 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
507 truncate_inode_page(mapping, page);
508 }
7a5d0fbb 509 }
bda97eab
HD
510 unlock_page(page);
511 }
0cd6144a 512 pagevec_remove_exceptionals(&pvec);
24513264 513 pagevec_release(&pvec);
bda97eab
HD
514 mem_cgroup_uncharge_end();
515 index++;
516 }
94c1e62d 517
1da177e4 518 spin_lock(&info->lock);
7a5d0fbb 519 info->swapped -= nr_swaps_freed;
1da177e4
LT
520 shmem_recalc_inode(inode);
521 spin_unlock(&info->lock);
1635f6a7 522}
1da177e4 523
1635f6a7
HD
524void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
525{
526 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 527 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 528}
94c1e62d 529EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 530
94c1e62d 531static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
532{
533 struct inode *inode = dentry->d_inode;
1da177e4
LT
534 int error;
535
db78b877
CH
536 error = inode_change_ok(inode, attr);
537 if (error)
538 return error;
539
94c1e62d
HD
540 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
541 loff_t oldsize = inode->i_size;
542 loff_t newsize = attr->ia_size;
3889e6e7 543
94c1e62d
HD
544 if (newsize != oldsize) {
545 i_size_write(inode, newsize);
546 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547 }
548 if (newsize < oldsize) {
549 loff_t holebegin = round_up(newsize, PAGE_SIZE);
550 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
551 shmem_truncate_range(inode, newsize, (loff_t)-1);
552 /* unmap again to remove racily COWed private pages */
553 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
554 }
1da177e4
LT
555 }
556
db78b877 557 setattr_copy(inode, attr);
db78b877 558 if (attr->ia_valid & ATTR_MODE)
feda821e 559 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
560 return error;
561}
562
1f895f75 563static void shmem_evict_inode(struct inode *inode)
1da177e4 564{
1da177e4
LT
565 struct shmem_inode_info *info = SHMEM_I(inode);
566
3889e6e7 567 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
568 shmem_unacct_size(info->flags, inode->i_size);
569 inode->i_size = 0;
3889e6e7 570 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 571 if (!list_empty(&info->swaplist)) {
cb5f7b9a 572 mutex_lock(&shmem_swaplist_mutex);
1da177e4 573 list_del_init(&info->swaplist);
cb5f7b9a 574 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 575 }
69f07ec9
HD
576 } else
577 kfree(info->symlink);
b09e0fa4 578
38f38657 579 simple_xattrs_free(&info->xattrs);
0f3c42f5 580 WARN_ON(inode->i_blocks);
5b04c689 581 shmem_free_inode(inode->i_sb);
dbd5768f 582 clear_inode(inode);
1da177e4
LT
583}
584
46f65ec1
HD
585/*
586 * If swap found in inode, free it and move page from swapcache to filecache.
587 */
41ffe5d5 588static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 589 swp_entry_t swap, struct page **pagep)
1da177e4 590{
285b2c4f 591 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 592 void *radswap;
41ffe5d5 593 pgoff_t index;
bde05d1c
HD
594 gfp_t gfp;
595 int error = 0;
1da177e4 596
46f65ec1 597 radswap = swp_to_radix_entry(swap);
e504f3fd 598 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 599 if (index == -1)
285b2c4f 600 return 0;
2e0e26c7 601
1b1b32f2
HD
602 /*
603 * Move _head_ to start search for next from here.
1f895f75 604 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 605 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 606 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
607 */
608 if (shmem_swaplist.next != &info->swaplist)
609 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 610
bde05d1c
HD
611 gfp = mapping_gfp_mask(mapping);
612 if (shmem_should_replace_page(*pagep, gfp)) {
613 mutex_unlock(&shmem_swaplist_mutex);
614 error = shmem_replace_page(pagep, gfp, info, index);
615 mutex_lock(&shmem_swaplist_mutex);
616 /*
617 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
618 * allocation, but the inode might have been freed while we
619 * dropped it: although a racing shmem_evict_inode() cannot
620 * complete without emptying the radix_tree, our page lock
621 * on this swapcache page is not enough to prevent that -
622 * free_swap_and_cache() of our swap entry will only
623 * trylock_page(), removing swap from radix_tree whatever.
624 *
625 * We must not proceed to shmem_add_to_page_cache() if the
626 * inode has been freed, but of course we cannot rely on
627 * inode or mapping or info to check that. However, we can
628 * safely check if our swap entry is still in use (and here
629 * it can't have got reused for another page): if it's still
630 * in use, then the inode cannot have been freed yet, and we
631 * can safely proceed (if it's no longer in use, that tells
632 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
633 */
634 if (!page_swapcount(*pagep))
635 error = -ENOENT;
636 }
637
d13d1443 638 /*
778dd893
HD
639 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
640 * but also to hold up shmem_evict_inode(): so inode cannot be freed
641 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 642 */
bde05d1c
HD
643 if (!error)
644 error = shmem_add_to_page_cache(*pagep, mapping, index,
46f65ec1 645 GFP_NOWAIT, radswap);
48f170fb 646 if (error != -ENOMEM) {
46f65ec1
HD
647 /*
648 * Truncation and eviction use free_swap_and_cache(), which
649 * only does trylock page: if we raced, best clean up here.
650 */
bde05d1c
HD
651 delete_from_swap_cache(*pagep);
652 set_page_dirty(*pagep);
46f65ec1
HD
653 if (!error) {
654 spin_lock(&info->lock);
655 info->swapped--;
656 spin_unlock(&info->lock);
657 swap_free(swap);
658 }
2e0e26c7 659 error = 1; /* not an error, but entry was found */
1da177e4 660 }
2e0e26c7 661 return error;
1da177e4
LT
662}
663
664/*
46f65ec1 665 * Search through swapped inodes to find and replace swap by page.
1da177e4 666 */
41ffe5d5 667int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 668{
41ffe5d5 669 struct list_head *this, *next;
1da177e4
LT
670 struct shmem_inode_info *info;
671 int found = 0;
bde05d1c
HD
672 int error = 0;
673
674 /*
675 * There's a faint possibility that swap page was replaced before
0142ef6c 676 * caller locked it: caller will come back later with the right page.
bde05d1c 677 */
0142ef6c 678 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 679 goto out;
778dd893
HD
680
681 /*
682 * Charge page using GFP_KERNEL while we can wait, before taking
683 * the shmem_swaplist_mutex which might hold up shmem_writepage().
684 * Charged back to the user (not to caller) when swap account is used.
778dd893 685 */
d715ae08 686 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
778dd893
HD
687 if (error)
688 goto out;
46f65ec1 689 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1da177e4 690
cb5f7b9a 691 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
692 list_for_each_safe(this, next, &shmem_swaplist) {
693 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 694 if (info->swapped)
bde05d1c 695 found = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
696 else
697 list_del_init(&info->swaplist);
cb5f7b9a 698 cond_resched();
2e0e26c7 699 if (found)
778dd893 700 break;
1da177e4 701 }
cb5f7b9a 702 mutex_unlock(&shmem_swaplist_mutex);
778dd893 703
778dd893
HD
704 if (found < 0)
705 error = found;
706out:
aaa46865
HD
707 unlock_page(page);
708 page_cache_release(page);
778dd893 709 return error;
1da177e4
LT
710}
711
712/*
713 * Move the page from the page cache to the swap cache.
714 */
715static int shmem_writepage(struct page *page, struct writeback_control *wbc)
716{
717 struct shmem_inode_info *info;
1da177e4 718 struct address_space *mapping;
1da177e4 719 struct inode *inode;
6922c0c7
HD
720 swp_entry_t swap;
721 pgoff_t index;
1da177e4
LT
722
723 BUG_ON(!PageLocked(page));
1da177e4
LT
724 mapping = page->mapping;
725 index = page->index;
726 inode = mapping->host;
727 info = SHMEM_I(inode);
728 if (info->flags & VM_LOCKED)
729 goto redirty;
d9fe526a 730 if (!total_swap_pages)
1da177e4
LT
731 goto redirty;
732
d9fe526a
HD
733 /*
734 * shmem_backing_dev_info's capabilities prevent regular writeback or
735 * sync from ever calling shmem_writepage; but a stacking filesystem
48f170fb 736 * might use ->writepage of its underlying filesystem, in which case
d9fe526a 737 * tmpfs should write out to swap only in response to memory pressure,
48f170fb 738 * and not for the writeback threads or sync.
d9fe526a 739 */
48f170fb
HD
740 if (!wbc->for_reclaim) {
741 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
742 goto redirty;
743 }
1635f6a7
HD
744
745 /*
746 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
747 * value into swapfile.c, the only way we can correctly account for a
748 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
749 *
750 * That's okay for a page already fallocated earlier, but if we have
751 * not yet completed the fallocation, then (a) we want to keep track
752 * of this page in case we have to undo it, and (b) it may not be a
753 * good idea to continue anyway, once we're pushing into swap. So
754 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
755 */
756 if (!PageUptodate(page)) {
1aac1400
HD
757 if (inode->i_private) {
758 struct shmem_falloc *shmem_falloc;
759 spin_lock(&inode->i_lock);
760 shmem_falloc = inode->i_private;
761 if (shmem_falloc &&
762 index >= shmem_falloc->start &&
763 index < shmem_falloc->next)
764 shmem_falloc->nr_unswapped++;
765 else
766 shmem_falloc = NULL;
767 spin_unlock(&inode->i_lock);
768 if (shmem_falloc)
769 goto redirty;
770 }
1635f6a7
HD
771 clear_highpage(page);
772 flush_dcache_page(page);
773 SetPageUptodate(page);
774 }
775
48f170fb
HD
776 swap = get_swap_page();
777 if (!swap.val)
778 goto redirty;
d9fe526a 779
b1dea800
HD
780 /*
781 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
782 * if it's not already there. Do it now before the page is
783 * moved to swap cache, when its pagelock no longer protects
b1dea800 784 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
785 * we've incremented swapped, because shmem_unuse_inode() will
786 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 787 */
48f170fb
HD
788 mutex_lock(&shmem_swaplist_mutex);
789 if (list_empty(&info->swaplist))
790 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 791
48f170fb 792 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 793 swap_shmem_alloc(swap);
6922c0c7
HD
794 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
795
796 spin_lock(&info->lock);
797 info->swapped++;
798 shmem_recalc_inode(inode);
826267cf 799 spin_unlock(&info->lock);
6922c0c7
HD
800
801 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 802 BUG_ON(page_mapped(page));
9fab5619 803 swap_writepage(page, wbc);
1da177e4
LT
804 return 0;
805 }
806
6922c0c7 807 mutex_unlock(&shmem_swaplist_mutex);
cb4b86ba 808 swapcache_free(swap, NULL);
1da177e4
LT
809redirty:
810 set_page_dirty(page);
d9fe526a
HD
811 if (wbc->for_reclaim)
812 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
813 unlock_page(page);
814 return 0;
1da177e4
LT
815}
816
817#ifdef CONFIG_NUMA
680d794b 818#ifdef CONFIG_TMPFS
71fe804b 819static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 820{
095f1fc4 821 char buffer[64];
680d794b 822
71fe804b 823 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 824 return; /* show nothing */
680d794b 825
a7a88b23 826 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
827
828 seq_printf(seq, ",mpol=%s", buffer);
680d794b 829}
71fe804b
LS
830
831static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
832{
833 struct mempolicy *mpol = NULL;
834 if (sbinfo->mpol) {
835 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
836 mpol = sbinfo->mpol;
837 mpol_get(mpol);
838 spin_unlock(&sbinfo->stat_lock);
839 }
840 return mpol;
841}
680d794b
AM
842#endif /* CONFIG_TMPFS */
843
41ffe5d5
HD
844static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
845 struct shmem_inode_info *info, pgoff_t index)
1da177e4 846{
1da177e4 847 struct vm_area_struct pvma;
18a2f371 848 struct page *page;
52cd3b07 849
1da177e4 850 /* Create a pseudo vma that just contains the policy */
c4cc6d07 851 pvma.vm_start = 0;
09c231cb
NZ
852 /* Bias interleave by inode number to distribute better across nodes */
853 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 854 pvma.vm_ops = NULL;
18a2f371
MG
855 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
856
857 page = swapin_readahead(swap, gfp, &pvma, 0);
858
859 /* Drop reference taken by mpol_shared_policy_lookup() */
860 mpol_cond_put(pvma.vm_policy);
861
862 return page;
1da177e4
LT
863}
864
02098fea 865static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 866 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
867{
868 struct vm_area_struct pvma;
18a2f371 869 struct page *page;
1da177e4 870
c4cc6d07
HD
871 /* Create a pseudo vma that just contains the policy */
872 pvma.vm_start = 0;
09c231cb
NZ
873 /* Bias interleave by inode number to distribute better across nodes */
874 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 875 pvma.vm_ops = NULL;
41ffe5d5 876 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 877
18a2f371
MG
878 page = alloc_page_vma(gfp, &pvma, 0);
879
880 /* Drop reference taken by mpol_shared_policy_lookup() */
881 mpol_cond_put(pvma.vm_policy);
882
883 return page;
1da177e4 884}
680d794b
AM
885#else /* !CONFIG_NUMA */
886#ifdef CONFIG_TMPFS
41ffe5d5 887static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b
AM
888{
889}
890#endif /* CONFIG_TMPFS */
891
41ffe5d5
HD
892static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
893 struct shmem_inode_info *info, pgoff_t index)
1da177e4 894{
41ffe5d5 895 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
896}
897
02098fea 898static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 899 struct shmem_inode_info *info, pgoff_t index)
1da177e4 900{
e84e2e13 901 return alloc_page(gfp);
1da177e4 902}
680d794b 903#endif /* CONFIG_NUMA */
1da177e4 904
71fe804b
LS
905#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
906static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
907{
908 return NULL;
909}
910#endif
911
bde05d1c
HD
912/*
913 * When a page is moved from swapcache to shmem filecache (either by the
914 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
915 * shmem_unuse_inode()), it may have been read in earlier from swap, in
916 * ignorance of the mapping it belongs to. If that mapping has special
917 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
918 * we may need to copy to a suitable page before moving to filecache.
919 *
920 * In a future release, this may well be extended to respect cpuset and
921 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
922 * but for now it is a simple matter of zone.
923 */
924static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
925{
926 return page_zonenum(page) > gfp_zone(gfp);
927}
928
929static int shmem_replace_page(struct page **pagep, gfp_t gfp,
930 struct shmem_inode_info *info, pgoff_t index)
931{
932 struct page *oldpage, *newpage;
933 struct address_space *swap_mapping;
934 pgoff_t swap_index;
935 int error;
936
937 oldpage = *pagep;
938 swap_index = page_private(oldpage);
939 swap_mapping = page_mapping(oldpage);
940
941 /*
942 * We have arrived here because our zones are constrained, so don't
943 * limit chance of success by further cpuset and node constraints.
944 */
945 gfp &= ~GFP_CONSTRAINT_MASK;
946 newpage = shmem_alloc_page(gfp, info, index);
947 if (!newpage)
948 return -ENOMEM;
bde05d1c 949
bde05d1c
HD
950 page_cache_get(newpage);
951 copy_highpage(newpage, oldpage);
0142ef6c 952 flush_dcache_page(newpage);
bde05d1c 953
bde05d1c 954 __set_page_locked(newpage);
bde05d1c 955 SetPageUptodate(newpage);
bde05d1c 956 SetPageSwapBacked(newpage);
bde05d1c 957 set_page_private(newpage, swap_index);
bde05d1c
HD
958 SetPageSwapCache(newpage);
959
960 /*
961 * Our caller will very soon move newpage out of swapcache, but it's
962 * a nice clean interface for us to replace oldpage by newpage there.
963 */
964 spin_lock_irq(&swap_mapping->tree_lock);
965 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
966 newpage);
0142ef6c
HD
967 if (!error) {
968 __inc_zone_page_state(newpage, NR_FILE_PAGES);
969 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
970 }
bde05d1c 971 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 972
0142ef6c
HD
973 if (unlikely(error)) {
974 /*
975 * Is this possible? I think not, now that our callers check
976 * both PageSwapCache and page_private after getting page lock;
977 * but be defensive. Reverse old to newpage for clear and free.
978 */
979 oldpage = newpage;
980 } else {
981 mem_cgroup_replace_page_cache(oldpage, newpage);
982 lru_cache_add_anon(newpage);
983 *pagep = newpage;
984 }
bde05d1c
HD
985
986 ClearPageSwapCache(oldpage);
987 set_page_private(oldpage, 0);
988
989 unlock_page(oldpage);
990 page_cache_release(oldpage);
991 page_cache_release(oldpage);
0142ef6c 992 return error;
bde05d1c
HD
993}
994
1da177e4 995/*
68da9f05 996 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
997 *
998 * If we allocate a new one we do not mark it dirty. That's up to the
999 * vm. If we swap it in we mark it dirty since we also free the swap
1000 * entry since a page cannot live in both the swap and page cache
1001 */
41ffe5d5 1002static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1003 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1004{
1005 struct address_space *mapping = inode->i_mapping;
54af6042 1006 struct shmem_inode_info *info;
1da177e4 1007 struct shmem_sb_info *sbinfo;
27ab7006 1008 struct page *page;
1da177e4
LT
1009 swp_entry_t swap;
1010 int error;
54af6042 1011 int once = 0;
1635f6a7 1012 int alloced = 0;
1da177e4 1013
41ffe5d5 1014 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1015 return -EFBIG;
1da177e4 1016repeat:
54af6042 1017 swap.val = 0;
0cd6144a 1018 page = find_lock_entry(mapping, index);
54af6042
HD
1019 if (radix_tree_exceptional_entry(page)) {
1020 swap = radix_to_swp_entry(page);
1021 page = NULL;
1022 }
1023
1635f6a7 1024 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1025 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1026 error = -EINVAL;
1027 goto failed;
1028 }
1029
1635f6a7
HD
1030 /* fallocated page? */
1031 if (page && !PageUptodate(page)) {
1032 if (sgp != SGP_READ)
1033 goto clear;
1034 unlock_page(page);
1035 page_cache_release(page);
1036 page = NULL;
1037 }
54af6042 1038 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1039 *pagep = page;
1040 return 0;
27ab7006
HD
1041 }
1042
1043 /*
54af6042
HD
1044 * Fast cache lookup did not find it:
1045 * bring it back from swap or allocate.
27ab7006 1046 */
54af6042
HD
1047 info = SHMEM_I(inode);
1048 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1049
1da177e4
LT
1050 if (swap.val) {
1051 /* Look it up and read it in.. */
27ab7006
HD
1052 page = lookup_swap_cache(swap);
1053 if (!page) {
1da177e4 1054 /* here we actually do the io */
68da9f05
HD
1055 if (fault_type)
1056 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1057 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1058 if (!page) {
54af6042
HD
1059 error = -ENOMEM;
1060 goto failed;
1da177e4 1061 }
1da177e4
LT
1062 }
1063
1064 /* We have to do this with page locked to prevent races */
54af6042 1065 lock_page(page);
0142ef6c 1066 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1067 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1068 error = -EEXIST; /* try again */
d1899228 1069 goto unlock;
bde05d1c 1070 }
27ab7006 1071 if (!PageUptodate(page)) {
1da177e4 1072 error = -EIO;
54af6042 1073 goto failed;
1da177e4 1074 }
54af6042
HD
1075 wait_on_page_writeback(page);
1076
bde05d1c
HD
1077 if (shmem_should_replace_page(page, gfp)) {
1078 error = shmem_replace_page(&page, gfp, info, index);
1079 if (error)
1080 goto failed;
1da177e4 1081 }
27ab7006 1082
d715ae08 1083 error = mem_cgroup_charge_file(page, current->mm,
aa3b1895 1084 gfp & GFP_RECLAIM_MASK);
d1899228 1085 if (!error) {
aa3b1895
HD
1086 error = shmem_add_to_page_cache(page, mapping, index,
1087 gfp, swp_to_radix_entry(swap));
215c02bc
HD
1088 /*
1089 * We already confirmed swap under page lock, and make
1090 * no memory allocation here, so usually no possibility
1091 * of error; but free_swap_and_cache() only trylocks a
1092 * page, so it is just possible that the entry has been
1093 * truncated or holepunched since swap was confirmed.
1094 * shmem_undo_range() will have done some of the
1095 * unaccounting, now delete_from_swap_cache() will do
1096 * the rest (including mem_cgroup_uncharge_swapcache).
1097 * Reset swap.val? No, leave it so "failed" goes back to
1098 * "repeat": reading a hole and writing should succeed.
1099 */
1100 if (error)
1101 delete_from_swap_cache(page);
d1899228 1102 }
54af6042
HD
1103 if (error)
1104 goto failed;
1105
1106 spin_lock(&info->lock);
285b2c4f 1107 info->swapped--;
54af6042 1108 shmem_recalc_inode(inode);
27ab7006 1109 spin_unlock(&info->lock);
54af6042
HD
1110
1111 delete_from_swap_cache(page);
27ab7006
HD
1112 set_page_dirty(page);
1113 swap_free(swap);
1114
54af6042
HD
1115 } else {
1116 if (shmem_acct_block(info->flags)) {
1117 error = -ENOSPC;
1118 goto failed;
1da177e4 1119 }
0edd73b3 1120 if (sbinfo->max_blocks) {
fc5da22a 1121 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1122 sbinfo->max_blocks) >= 0) {
1123 error = -ENOSPC;
1124 goto unacct;
1125 }
7e496299 1126 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1127 }
1da177e4 1128
54af6042
HD
1129 page = shmem_alloc_page(gfp, info, index);
1130 if (!page) {
1131 error = -ENOMEM;
1132 goto decused;
1da177e4
LT
1133 }
1134
54af6042
HD
1135 SetPageSwapBacked(page);
1136 __set_page_locked(page);
d715ae08 1137 error = mem_cgroup_charge_file(page, current->mm,
aa3b1895 1138 gfp & GFP_RECLAIM_MASK);
54af6042
HD
1139 if (error)
1140 goto decused;
5e4c0d97 1141 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1142 if (!error) {
1143 error = shmem_add_to_page_cache(page, mapping, index,
1144 gfp, NULL);
1145 radix_tree_preload_end();
1146 }
1147 if (error) {
1148 mem_cgroup_uncharge_cache_page(page);
1149 goto decused;
1150 }
54af6042
HD
1151 lru_cache_add_anon(page);
1152
1153 spin_lock(&info->lock);
1da177e4 1154 info->alloced++;
54af6042
HD
1155 inode->i_blocks += BLOCKS_PER_PAGE;
1156 shmem_recalc_inode(inode);
1da177e4 1157 spin_unlock(&info->lock);
1635f6a7 1158 alloced = true;
54af6042 1159
ec9516fb 1160 /*
1635f6a7
HD
1161 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1162 */
1163 if (sgp == SGP_FALLOC)
1164 sgp = SGP_WRITE;
1165clear:
1166 /*
1167 * Let SGP_WRITE caller clear ends if write does not fill page;
1168 * but SGP_FALLOC on a page fallocated earlier must initialize
1169 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1170 */
1171 if (sgp != SGP_WRITE) {
1172 clear_highpage(page);
1173 flush_dcache_page(page);
1174 SetPageUptodate(page);
1175 }
a0ee5ec5 1176 if (sgp == SGP_DIRTY)
27ab7006 1177 set_page_dirty(page);
1da177e4 1178 }
bde05d1c 1179
54af6042 1180 /* Perhaps the file has been truncated since we checked */
1635f6a7 1181 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1182 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1183 error = -EINVAL;
1635f6a7
HD
1184 if (alloced)
1185 goto trunc;
1186 else
1187 goto failed;
e83c32e8 1188 }
54af6042
HD
1189 *pagep = page;
1190 return 0;
1da177e4 1191
59a16ead 1192 /*
54af6042 1193 * Error recovery.
59a16ead 1194 */
54af6042 1195trunc:
1635f6a7 1196 info = SHMEM_I(inode);
54af6042
HD
1197 ClearPageDirty(page);
1198 delete_from_page_cache(page);
1199 spin_lock(&info->lock);
1200 info->alloced--;
1201 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1202 spin_unlock(&info->lock);
54af6042 1203decused:
1635f6a7 1204 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1205 if (sbinfo->max_blocks)
1206 percpu_counter_add(&sbinfo->used_blocks, -1);
1207unacct:
1208 shmem_unacct_blocks(info->flags, 1);
1209failed:
d1899228
HD
1210 if (swap.val && error != -EINVAL &&
1211 !shmem_confirm_swap(mapping, index, swap))
1212 error = -EEXIST;
1213unlock:
27ab7006 1214 if (page) {
54af6042 1215 unlock_page(page);
27ab7006 1216 page_cache_release(page);
54af6042
HD
1217 }
1218 if (error == -ENOSPC && !once++) {
1219 info = SHMEM_I(inode);
1220 spin_lock(&info->lock);
1221 shmem_recalc_inode(inode);
1222 spin_unlock(&info->lock);
27ab7006 1223 goto repeat;
ff36b801 1224 }
d1899228 1225 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1226 goto repeat;
1227 return error;
1da177e4
LT
1228}
1229
d0217ac0 1230static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1231{
496ad9aa 1232 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1233 int error;
68da9f05 1234 int ret = VM_FAULT_LOCKED;
1da177e4 1235
27d54b39 1236 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1237 if (error)
1238 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1239
456f998e
YH
1240 if (ret & VM_FAULT_MAJOR) {
1241 count_vm_event(PGMAJFAULT);
1242 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1243 }
68da9f05 1244 return ret;
1da177e4
LT
1245}
1246
1da177e4 1247#ifdef CONFIG_NUMA
41ffe5d5 1248static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1249{
496ad9aa 1250 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1251 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1252}
1253
d8dc74f2
AB
1254static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1255 unsigned long addr)
1da177e4 1256{
496ad9aa 1257 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1258 pgoff_t index;
1da177e4 1259
41ffe5d5
HD
1260 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1261 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1262}
1263#endif
1264
1265int shmem_lock(struct file *file, int lock, struct user_struct *user)
1266{
496ad9aa 1267 struct inode *inode = file_inode(file);
1da177e4
LT
1268 struct shmem_inode_info *info = SHMEM_I(inode);
1269 int retval = -ENOMEM;
1270
1271 spin_lock(&info->lock);
1272 if (lock && !(info->flags & VM_LOCKED)) {
1273 if (!user_shm_lock(inode->i_size, user))
1274 goto out_nomem;
1275 info->flags |= VM_LOCKED;
89e004ea 1276 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1277 }
1278 if (!lock && (info->flags & VM_LOCKED) && user) {
1279 user_shm_unlock(inode->i_size, user);
1280 info->flags &= ~VM_LOCKED;
89e004ea 1281 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1282 }
1283 retval = 0;
89e004ea 1284
1da177e4
LT
1285out_nomem:
1286 spin_unlock(&info->lock);
1287 return retval;
1288}
1289
9b83a6a8 1290static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1291{
1292 file_accessed(file);
1293 vma->vm_ops = &shmem_vm_ops;
1294 return 0;
1295}
1296
454abafe 1297static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1298 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1299{
1300 struct inode *inode;
1301 struct shmem_inode_info *info;
1302 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1303
5b04c689
PE
1304 if (shmem_reserve_inode(sb))
1305 return NULL;
1da177e4
LT
1306
1307 inode = new_inode(sb);
1308 if (inode) {
85fe4025 1309 inode->i_ino = get_next_ino();
454abafe 1310 inode_init_owner(inode, dir, mode);
1da177e4 1311 inode->i_blocks = 0;
1da177e4
LT
1312 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1313 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1314 inode->i_generation = get_seconds();
1da177e4
LT
1315 info = SHMEM_I(inode);
1316 memset(info, 0, (char *)inode - (char *)info);
1317 spin_lock_init(&info->lock);
0b0a0806 1318 info->flags = flags & VM_NORESERVE;
1da177e4 1319 INIT_LIST_HEAD(&info->swaplist);
38f38657 1320 simple_xattrs_init(&info->xattrs);
72c04902 1321 cache_no_acl(inode);
1da177e4
LT
1322
1323 switch (mode & S_IFMT) {
1324 default:
39f0247d 1325 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1326 init_special_inode(inode, mode, dev);
1327 break;
1328 case S_IFREG:
14fcc23f 1329 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1330 inode->i_op = &shmem_inode_operations;
1331 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1332 mpol_shared_policy_init(&info->policy,
1333 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1334 break;
1335 case S_IFDIR:
d8c76e6f 1336 inc_nlink(inode);
1da177e4
LT
1337 /* Some things misbehave if size == 0 on a directory */
1338 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1339 inode->i_op = &shmem_dir_inode_operations;
1340 inode->i_fop = &simple_dir_operations;
1341 break;
1342 case S_IFLNK:
1343 /*
1344 * Must not load anything in the rbtree,
1345 * mpol_free_shared_policy will not be called.
1346 */
71fe804b 1347 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1348 break;
1349 }
5b04c689
PE
1350 } else
1351 shmem_free_inode(sb);
1da177e4
LT
1352 return inode;
1353}
1354
0cd6144a
JW
1355bool shmem_mapping(struct address_space *mapping)
1356{
1357 return mapping->backing_dev_info == &shmem_backing_dev_info;
1358}
1359
1da177e4 1360#ifdef CONFIG_TMPFS
92e1d5be 1361static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1362static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1363
6d9d88d0
JS
1364#ifdef CONFIG_TMPFS_XATTR
1365static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1366#else
1367#define shmem_initxattrs NULL
1368#endif
1369
1da177e4 1370static int
800d15a5
NP
1371shmem_write_begin(struct file *file, struct address_space *mapping,
1372 loff_t pos, unsigned len, unsigned flags,
1373 struct page **pagep, void **fsdata)
1da177e4 1374{
800d15a5
NP
1375 struct inode *inode = mapping->host;
1376 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
800d15a5
NP
1377 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1378}
1379
1380static int
1381shmem_write_end(struct file *file, struct address_space *mapping,
1382 loff_t pos, unsigned len, unsigned copied,
1383 struct page *page, void *fsdata)
1384{
1385 struct inode *inode = mapping->host;
1386
d3602444
HD
1387 if (pos + copied > inode->i_size)
1388 i_size_write(inode, pos + copied);
1389
ec9516fb
HD
1390 if (!PageUptodate(page)) {
1391 if (copied < PAGE_CACHE_SIZE) {
1392 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1393 zero_user_segments(page, 0, from,
1394 from + copied, PAGE_CACHE_SIZE);
1395 }
1396 SetPageUptodate(page);
1397 }
800d15a5 1398 set_page_dirty(page);
6746aff7 1399 unlock_page(page);
800d15a5
NP
1400 page_cache_release(page);
1401
800d15a5 1402 return copied;
1da177e4
LT
1403}
1404
6e58e79d
AV
1405static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1406 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1da177e4 1407{
6e58e79d
AV
1408 struct file *file = iocb->ki_filp;
1409 struct inode *inode = file_inode(file);
1da177e4 1410 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1411 pgoff_t index;
1412 unsigned long offset;
a0ee5ec5 1413 enum sgp_type sgp = SGP_READ;
6e58e79d
AV
1414 int error;
1415 ssize_t retval;
1416 size_t count;
1417 loff_t *ppos = &iocb->ki_pos;
1418 struct iov_iter iter;
1419
1420 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1421 if (retval)
1422 return retval;
1423 iov_iter_init(&iter, iov, nr_segs, count, 0);
a0ee5ec5
HD
1424
1425 /*
1426 * Might this read be for a stacking filesystem? Then when reading
1427 * holes of a sparse file, we actually need to allocate those pages,
1428 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1429 */
1430 if (segment_eq(get_fs(), KERNEL_DS))
1431 sgp = SGP_DIRTY;
1da177e4
LT
1432
1433 index = *ppos >> PAGE_CACHE_SHIFT;
1434 offset = *ppos & ~PAGE_CACHE_MASK;
1435
1436 for (;;) {
1437 struct page *page = NULL;
41ffe5d5
HD
1438 pgoff_t end_index;
1439 unsigned long nr, ret;
1da177e4
LT
1440 loff_t i_size = i_size_read(inode);
1441
1442 end_index = i_size >> PAGE_CACHE_SHIFT;
1443 if (index > end_index)
1444 break;
1445 if (index == end_index) {
1446 nr = i_size & ~PAGE_CACHE_MASK;
1447 if (nr <= offset)
1448 break;
1449 }
1450
6e58e79d
AV
1451 error = shmem_getpage(inode, index, &page, sgp, NULL);
1452 if (error) {
1453 if (error == -EINVAL)
1454 error = 0;
1da177e4
LT
1455 break;
1456 }
d3602444
HD
1457 if (page)
1458 unlock_page(page);
1da177e4
LT
1459
1460 /*
1461 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1462 * are called without i_mutex protection against truncate
1da177e4
LT
1463 */
1464 nr = PAGE_CACHE_SIZE;
1465 i_size = i_size_read(inode);
1466 end_index = i_size >> PAGE_CACHE_SHIFT;
1467 if (index == end_index) {
1468 nr = i_size & ~PAGE_CACHE_MASK;
1469 if (nr <= offset) {
1470 if (page)
1471 page_cache_release(page);
1472 break;
1473 }
1474 }
1475 nr -= offset;
1476
1477 if (page) {
1478 /*
1479 * If users can be writing to this page using arbitrary
1480 * virtual addresses, take care about potential aliasing
1481 * before reading the page on the kernel side.
1482 */
1483 if (mapping_writably_mapped(mapping))
1484 flush_dcache_page(page);
1485 /*
1486 * Mark the page accessed if we read the beginning.
1487 */
1488 if (!offset)
1489 mark_page_accessed(page);
b5810039 1490 } else {
1da177e4 1491 page = ZERO_PAGE(0);
b5810039
NP
1492 page_cache_get(page);
1493 }
1da177e4
LT
1494
1495 /*
1496 * Ok, we have the page, and it's up-to-date, so
1497 * now we can copy it to user space...
1da177e4 1498 */
6e58e79d
AV
1499 ret = copy_page_to_iter(page, offset, nr, &iter);
1500 retval += ret;
1da177e4
LT
1501 offset += ret;
1502 index += offset >> PAGE_CACHE_SHIFT;
1503 offset &= ~PAGE_CACHE_MASK;
1504
1505 page_cache_release(page);
6e58e79d 1506 if (!iov_iter_count(&iter))
1da177e4 1507 break;
6e58e79d
AV
1508 if (ret < nr) {
1509 error = -EFAULT;
1510 break;
1511 }
1da177e4
LT
1512 cond_resched();
1513 }
1514
1515 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
6e58e79d
AV
1516 file_accessed(file);
1517 return retval ? retval : error;
1da177e4
LT
1518}
1519
708e3508
HD
1520static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1521 struct pipe_inode_info *pipe, size_t len,
1522 unsigned int flags)
1523{
1524 struct address_space *mapping = in->f_mapping;
71f0e07a 1525 struct inode *inode = mapping->host;
708e3508
HD
1526 unsigned int loff, nr_pages, req_pages;
1527 struct page *pages[PIPE_DEF_BUFFERS];
1528 struct partial_page partial[PIPE_DEF_BUFFERS];
1529 struct page *page;
1530 pgoff_t index, end_index;
1531 loff_t isize, left;
1532 int error, page_nr;
1533 struct splice_pipe_desc spd = {
1534 .pages = pages,
1535 .partial = partial,
047fe360 1536 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1537 .flags = flags,
1538 .ops = &page_cache_pipe_buf_ops,
1539 .spd_release = spd_release_page,
1540 };
1541
71f0e07a 1542 isize = i_size_read(inode);
708e3508
HD
1543 if (unlikely(*ppos >= isize))
1544 return 0;
1545
1546 left = isize - *ppos;
1547 if (unlikely(left < len))
1548 len = left;
1549
1550 if (splice_grow_spd(pipe, &spd))
1551 return -ENOMEM;
1552
1553 index = *ppos >> PAGE_CACHE_SHIFT;
1554 loff = *ppos & ~PAGE_CACHE_MASK;
1555 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
a786c06d 1556 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1557
708e3508
HD
1558 spd.nr_pages = find_get_pages_contig(mapping, index,
1559 nr_pages, spd.pages);
1560 index += spd.nr_pages;
708e3508 1561 error = 0;
708e3508 1562
71f0e07a 1563 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1564 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1565 if (error)
1566 break;
1567 unlock_page(page);
708e3508
HD
1568 spd.pages[spd.nr_pages++] = page;
1569 index++;
1570 }
1571
708e3508
HD
1572 index = *ppos >> PAGE_CACHE_SHIFT;
1573 nr_pages = spd.nr_pages;
1574 spd.nr_pages = 0;
71f0e07a 1575
708e3508
HD
1576 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1577 unsigned int this_len;
1578
1579 if (!len)
1580 break;
1581
708e3508
HD
1582 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1583 page = spd.pages[page_nr];
1584
71f0e07a 1585 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1586 error = shmem_getpage(inode, index, &page,
1587 SGP_CACHE, NULL);
1588 if (error)
708e3508 1589 break;
71f0e07a
HD
1590 unlock_page(page);
1591 page_cache_release(spd.pages[page_nr]);
1592 spd.pages[page_nr] = page;
708e3508 1593 }
71f0e07a
HD
1594
1595 isize = i_size_read(inode);
708e3508
HD
1596 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1597 if (unlikely(!isize || index > end_index))
1598 break;
1599
708e3508
HD
1600 if (end_index == index) {
1601 unsigned int plen;
1602
708e3508
HD
1603 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1604 if (plen <= loff)
1605 break;
1606
708e3508
HD
1607 this_len = min(this_len, plen - loff);
1608 len = this_len;
1609 }
1610
1611 spd.partial[page_nr].offset = loff;
1612 spd.partial[page_nr].len = this_len;
1613 len -= this_len;
1614 loff = 0;
1615 spd.nr_pages++;
1616 index++;
1617 }
1618
708e3508
HD
1619 while (page_nr < nr_pages)
1620 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1621
1622 if (spd.nr_pages)
1623 error = splice_to_pipe(pipe, &spd);
1624
047fe360 1625 splice_shrink_spd(&spd);
708e3508
HD
1626
1627 if (error > 0) {
1628 *ppos += error;
1629 file_accessed(in);
1630 }
1631 return error;
1632}
1633
220f2ac9
HD
1634/*
1635 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1636 */
1637static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1638 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1639{
1640 struct page *page;
1641 struct pagevec pvec;
1642 pgoff_t indices[PAGEVEC_SIZE];
1643 bool done = false;
1644 int i;
1645
1646 pagevec_init(&pvec, 0);
1647 pvec.nr = 1; /* start small: we may be there already */
1648 while (!done) {
0cd6144a 1649 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1650 pvec.nr, pvec.pages, indices);
1651 if (!pvec.nr) {
965c8e59 1652 if (whence == SEEK_DATA)
220f2ac9
HD
1653 index = end;
1654 break;
1655 }
1656 for (i = 0; i < pvec.nr; i++, index++) {
1657 if (index < indices[i]) {
965c8e59 1658 if (whence == SEEK_HOLE) {
220f2ac9
HD
1659 done = true;
1660 break;
1661 }
1662 index = indices[i];
1663 }
1664 page = pvec.pages[i];
1665 if (page && !radix_tree_exceptional_entry(page)) {
1666 if (!PageUptodate(page))
1667 page = NULL;
1668 }
1669 if (index >= end ||
965c8e59
AM
1670 (page && whence == SEEK_DATA) ||
1671 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1672 done = true;
1673 break;
1674 }
1675 }
0cd6144a 1676 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1677 pagevec_release(&pvec);
1678 pvec.nr = PAGEVEC_SIZE;
1679 cond_resched();
1680 }
1681 return index;
1682}
1683
965c8e59 1684static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1685{
1686 struct address_space *mapping = file->f_mapping;
1687 struct inode *inode = mapping->host;
1688 pgoff_t start, end;
1689 loff_t new_offset;
1690
965c8e59
AM
1691 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1692 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1693 MAX_LFS_FILESIZE, i_size_read(inode));
1694 mutex_lock(&inode->i_mutex);
1695 /* We're holding i_mutex so we can access i_size directly */
1696
1697 if (offset < 0)
1698 offset = -EINVAL;
1699 else if (offset >= inode->i_size)
1700 offset = -ENXIO;
1701 else {
1702 start = offset >> PAGE_CACHE_SHIFT;
1703 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1704 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1705 new_offset <<= PAGE_CACHE_SHIFT;
1706 if (new_offset > offset) {
1707 if (new_offset < inode->i_size)
1708 offset = new_offset;
965c8e59 1709 else if (whence == SEEK_DATA)
220f2ac9
HD
1710 offset = -ENXIO;
1711 else
1712 offset = inode->i_size;
1713 }
1714 }
1715
387aae6f
HD
1716 if (offset >= 0)
1717 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
220f2ac9
HD
1718 mutex_unlock(&inode->i_mutex);
1719 return offset;
1720}
1721
83e4fa9c
HD
1722static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1723 loff_t len)
1724{
496ad9aa 1725 struct inode *inode = file_inode(file);
e2d12e22 1726 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1aac1400 1727 struct shmem_falloc shmem_falloc;
e2d12e22
HD
1728 pgoff_t start, index, end;
1729 int error;
83e4fa9c
HD
1730
1731 mutex_lock(&inode->i_mutex);
1732
1733 if (mode & FALLOC_FL_PUNCH_HOLE) {
1734 struct address_space *mapping = file->f_mapping;
1735 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1736 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1737
1738 if ((u64)unmap_end > (u64)unmap_start)
1739 unmap_mapping_range(mapping, unmap_start,
1740 1 + unmap_end - unmap_start, 0);
1741 shmem_truncate_range(inode, offset, offset + len - 1);
1742 /* No need to unmap again: hole-punching leaves COWed pages */
1743 error = 0;
e2d12e22
HD
1744 goto out;
1745 }
1746
1747 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1748 error = inode_newsize_ok(inode, offset + len);
1749 if (error)
1750 goto out;
1751
1752 start = offset >> PAGE_CACHE_SHIFT;
1753 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1754 /* Try to avoid a swapstorm if len is impossible to satisfy */
1755 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1756 error = -ENOSPC;
1757 goto out;
83e4fa9c
HD
1758 }
1759
1aac1400
HD
1760 shmem_falloc.start = start;
1761 shmem_falloc.next = start;
1762 shmem_falloc.nr_falloced = 0;
1763 shmem_falloc.nr_unswapped = 0;
1764 spin_lock(&inode->i_lock);
1765 inode->i_private = &shmem_falloc;
1766 spin_unlock(&inode->i_lock);
1767
e2d12e22
HD
1768 for (index = start; index < end; index++) {
1769 struct page *page;
1770
1771 /*
1772 * Good, the fallocate(2) manpage permits EINTR: we may have
1773 * been interrupted because we are using up too much memory.
1774 */
1775 if (signal_pending(current))
1776 error = -EINTR;
1aac1400
HD
1777 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1778 error = -ENOMEM;
e2d12e22 1779 else
1635f6a7 1780 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
1781 NULL);
1782 if (error) {
1635f6a7
HD
1783 /* Remove the !PageUptodate pages we added */
1784 shmem_undo_range(inode,
1785 (loff_t)start << PAGE_CACHE_SHIFT,
1786 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 1787 goto undone;
e2d12e22
HD
1788 }
1789
1aac1400
HD
1790 /*
1791 * Inform shmem_writepage() how far we have reached.
1792 * No need for lock or barrier: we have the page lock.
1793 */
1794 shmem_falloc.next++;
1795 if (!PageUptodate(page))
1796 shmem_falloc.nr_falloced++;
1797
e2d12e22 1798 /*
1635f6a7
HD
1799 * If !PageUptodate, leave it that way so that freeable pages
1800 * can be recognized if we need to rollback on error later.
1801 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
1802 * than free the pages we are allocating (and SGP_CACHE pages
1803 * might still be clean: we now need to mark those dirty too).
1804 */
1805 set_page_dirty(page);
1806 unlock_page(page);
1807 page_cache_release(page);
1808 cond_resched();
1809 }
1810
1811 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1812 i_size_write(inode, offset + len);
e2d12e22 1813 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
1814undone:
1815 spin_lock(&inode->i_lock);
1816 inode->i_private = NULL;
1817 spin_unlock(&inode->i_lock);
e2d12e22 1818out:
83e4fa9c
HD
1819 mutex_unlock(&inode->i_mutex);
1820 return error;
1821}
1822
726c3342 1823static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1824{
726c3342 1825 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1826
1827 buf->f_type = TMPFS_MAGIC;
1828 buf->f_bsize = PAGE_CACHE_SIZE;
1829 buf->f_namelen = NAME_MAX;
0edd73b3 1830 if (sbinfo->max_blocks) {
1da177e4 1831 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
1832 buf->f_bavail =
1833 buf->f_bfree = sbinfo->max_blocks -
1834 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
1835 }
1836 if (sbinfo->max_inodes) {
1da177e4
LT
1837 buf->f_files = sbinfo->max_inodes;
1838 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1839 }
1840 /* else leave those fields 0 like simple_statfs */
1841 return 0;
1842}
1843
1844/*
1845 * File creation. Allocate an inode, and we're done..
1846 */
1847static int
1a67aafb 1848shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 1849{
0b0a0806 1850 struct inode *inode;
1da177e4
LT
1851 int error = -ENOSPC;
1852
454abafe 1853 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1854 if (inode) {
feda821e
CH
1855 error = simple_acl_create(dir, inode);
1856 if (error)
1857 goto out_iput;
2a7dba39 1858 error = security_inode_init_security(inode, dir,
9d8f13ba 1859 &dentry->d_name,
6d9d88d0 1860 shmem_initxattrs, NULL);
feda821e
CH
1861 if (error && error != -EOPNOTSUPP)
1862 goto out_iput;
37ec43cd 1863
718deb6b 1864 error = 0;
1da177e4
LT
1865 dir->i_size += BOGO_DIRENT_SIZE;
1866 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1867 d_instantiate(dentry, inode);
1868 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1869 }
1870 return error;
feda821e
CH
1871out_iput:
1872 iput(inode);
1873 return error;
1da177e4
LT
1874}
1875
60545d0d
AV
1876static int
1877shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1878{
1879 struct inode *inode;
1880 int error = -ENOSPC;
1881
1882 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1883 if (inode) {
1884 error = security_inode_init_security(inode, dir,
1885 NULL,
1886 shmem_initxattrs, NULL);
feda821e
CH
1887 if (error && error != -EOPNOTSUPP)
1888 goto out_iput;
1889 error = simple_acl_create(dir, inode);
1890 if (error)
1891 goto out_iput;
60545d0d
AV
1892 d_tmpfile(dentry, inode);
1893 }
1894 return error;
feda821e
CH
1895out_iput:
1896 iput(inode);
1897 return error;
60545d0d
AV
1898}
1899
18bb1db3 1900static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
1901{
1902 int error;
1903
1904 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1905 return error;
d8c76e6f 1906 inc_nlink(dir);
1da177e4
LT
1907 return 0;
1908}
1909
4acdaf27 1910static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 1911 bool excl)
1da177e4
LT
1912{
1913 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1914}
1915
1916/*
1917 * Link a file..
1918 */
1919static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1920{
1921 struct inode *inode = old_dentry->d_inode;
5b04c689 1922 int ret;
1da177e4
LT
1923
1924 /*
1925 * No ordinary (disk based) filesystem counts links as inodes;
1926 * but each new link needs a new dentry, pinning lowmem, and
1927 * tmpfs dentries cannot be pruned until they are unlinked.
1928 */
5b04c689
PE
1929 ret = shmem_reserve_inode(inode->i_sb);
1930 if (ret)
1931 goto out;
1da177e4
LT
1932
1933 dir->i_size += BOGO_DIRENT_SIZE;
1934 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 1935 inc_nlink(inode);
7de9c6ee 1936 ihold(inode); /* New dentry reference */
1da177e4
LT
1937 dget(dentry); /* Extra pinning count for the created dentry */
1938 d_instantiate(dentry, inode);
5b04c689
PE
1939out:
1940 return ret;
1da177e4
LT
1941}
1942
1943static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1944{
1945 struct inode *inode = dentry->d_inode;
1946
5b04c689
PE
1947 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1948 shmem_free_inode(inode->i_sb);
1da177e4
LT
1949
1950 dir->i_size -= BOGO_DIRENT_SIZE;
1951 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 1952 drop_nlink(inode);
1da177e4
LT
1953 dput(dentry); /* Undo the count from "create" - this does all the work */
1954 return 0;
1955}
1956
1957static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1958{
1959 if (!simple_empty(dentry))
1960 return -ENOTEMPTY;
1961
9a53c3a7
DH
1962 drop_nlink(dentry->d_inode);
1963 drop_nlink(dir);
1da177e4
LT
1964 return shmem_unlink(dir, dentry);
1965}
1966
1967/*
1968 * The VFS layer already does all the dentry stuff for rename,
1969 * we just have to decrement the usage count for the target if
1970 * it exists so that the VFS layer correctly free's it when it
1971 * gets overwritten.
1972 */
1973static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1974{
1975 struct inode *inode = old_dentry->d_inode;
1976 int they_are_dirs = S_ISDIR(inode->i_mode);
1977
1978 if (!simple_empty(new_dentry))
1979 return -ENOTEMPTY;
1980
1981 if (new_dentry->d_inode) {
1982 (void) shmem_unlink(new_dir, new_dentry);
1983 if (they_are_dirs)
9a53c3a7 1984 drop_nlink(old_dir);
1da177e4 1985 } else if (they_are_dirs) {
9a53c3a7 1986 drop_nlink(old_dir);
d8c76e6f 1987 inc_nlink(new_dir);
1da177e4
LT
1988 }
1989
1990 old_dir->i_size -= BOGO_DIRENT_SIZE;
1991 new_dir->i_size += BOGO_DIRENT_SIZE;
1992 old_dir->i_ctime = old_dir->i_mtime =
1993 new_dir->i_ctime = new_dir->i_mtime =
1994 inode->i_ctime = CURRENT_TIME;
1995 return 0;
1996}
1997
1998static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1999{
2000 int error;
2001 int len;
2002 struct inode *inode;
9276aad6 2003 struct page *page;
1da177e4
LT
2004 char *kaddr;
2005 struct shmem_inode_info *info;
2006
2007 len = strlen(symname) + 1;
2008 if (len > PAGE_CACHE_SIZE)
2009 return -ENAMETOOLONG;
2010
454abafe 2011 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2012 if (!inode)
2013 return -ENOSPC;
2014
9d8f13ba 2015 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2016 shmem_initxattrs, NULL);
570bc1c2
SS
2017 if (error) {
2018 if (error != -EOPNOTSUPP) {
2019 iput(inode);
2020 return error;
2021 }
2022 error = 0;
2023 }
2024
1da177e4
LT
2025 info = SHMEM_I(inode);
2026 inode->i_size = len-1;
69f07ec9
HD
2027 if (len <= SHORT_SYMLINK_LEN) {
2028 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2029 if (!info->symlink) {
2030 iput(inode);
2031 return -ENOMEM;
2032 }
2033 inode->i_op = &shmem_short_symlink_operations;
1da177e4
LT
2034 } else {
2035 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2036 if (error) {
2037 iput(inode);
2038 return error;
2039 }
14fcc23f 2040 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2041 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 2042 kaddr = kmap_atomic(page);
1da177e4 2043 memcpy(kaddr, symname, len);
9b04c5fe 2044 kunmap_atomic(kaddr);
ec9516fb 2045 SetPageUptodate(page);
1da177e4 2046 set_page_dirty(page);
6746aff7 2047 unlock_page(page);
1da177e4
LT
2048 page_cache_release(page);
2049 }
1da177e4
LT
2050 dir->i_size += BOGO_DIRENT_SIZE;
2051 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2052 d_instantiate(dentry, inode);
2053 dget(dentry);
2054 return 0;
2055}
2056
69f07ec9 2057static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1da177e4 2058{
69f07ec9 2059 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
cc314eef 2060 return NULL;
1da177e4
LT
2061}
2062
cc314eef 2063static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2064{
2065 struct page *page = NULL;
41ffe5d5
HD
2066 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2067 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
d3602444
HD
2068 if (page)
2069 unlock_page(page);
cc314eef 2070 return page;
1da177e4
LT
2071}
2072
cc314eef 2073static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2074{
2075 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2076 struct page *page = cookie;
1da177e4
LT
2077 kunmap(page);
2078 mark_page_accessed(page);
2079 page_cache_release(page);
1da177e4
LT
2080 }
2081}
2082
b09e0fa4 2083#ifdef CONFIG_TMPFS_XATTR
46711810 2084/*
b09e0fa4
EP
2085 * Superblocks without xattr inode operations may get some security.* xattr
2086 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2087 * like ACLs, we also need to implement the security.* handlers at
2088 * filesystem level, though.
2089 */
2090
6d9d88d0
JS
2091/*
2092 * Callback for security_inode_init_security() for acquiring xattrs.
2093 */
2094static int shmem_initxattrs(struct inode *inode,
2095 const struct xattr *xattr_array,
2096 void *fs_info)
2097{
2098 struct shmem_inode_info *info = SHMEM_I(inode);
2099 const struct xattr *xattr;
38f38657 2100 struct simple_xattr *new_xattr;
6d9d88d0
JS
2101 size_t len;
2102
2103 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2104 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2105 if (!new_xattr)
2106 return -ENOMEM;
2107
2108 len = strlen(xattr->name) + 1;
2109 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2110 GFP_KERNEL);
2111 if (!new_xattr->name) {
2112 kfree(new_xattr);
2113 return -ENOMEM;
2114 }
2115
2116 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2117 XATTR_SECURITY_PREFIX_LEN);
2118 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2119 xattr->name, len);
2120
38f38657 2121 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2122 }
2123
2124 return 0;
2125}
2126
bb435453 2127static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2128#ifdef CONFIG_TMPFS_POSIX_ACL
feda821e
CH
2129 &posix_acl_access_xattr_handler,
2130 &posix_acl_default_xattr_handler,
b09e0fa4 2131#endif
39f0247d
AG
2132 NULL
2133};
b09e0fa4
EP
2134
2135static int shmem_xattr_validate(const char *name)
2136{
2137 struct { const char *prefix; size_t len; } arr[] = {
2138 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2139 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2140 };
2141 int i;
2142
2143 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2144 size_t preflen = arr[i].len;
2145 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2146 if (!name[preflen])
2147 return -EINVAL;
2148 return 0;
2149 }
2150 }
2151 return -EOPNOTSUPP;
2152}
2153
2154static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2155 void *buffer, size_t size)
2156{
38f38657 2157 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2158 int err;
2159
2160 /*
2161 * If this is a request for a synthetic attribute in the system.*
2162 * namespace use the generic infrastructure to resolve a handler
2163 * for it via sb->s_xattr.
2164 */
2165 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2166 return generic_getxattr(dentry, name, buffer, size);
2167
2168 err = shmem_xattr_validate(name);
2169 if (err)
2170 return err;
2171
38f38657 2172 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2173}
2174
2175static int shmem_setxattr(struct dentry *dentry, const char *name,
2176 const void *value, size_t size, int flags)
2177{
38f38657 2178 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2179 int err;
2180
2181 /*
2182 * If this is a request for a synthetic attribute in the system.*
2183 * namespace use the generic infrastructure to resolve a handler
2184 * for it via sb->s_xattr.
2185 */
2186 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2187 return generic_setxattr(dentry, name, value, size, flags);
2188
2189 err = shmem_xattr_validate(name);
2190 if (err)
2191 return err;
2192
38f38657 2193 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2194}
2195
2196static int shmem_removexattr(struct dentry *dentry, const char *name)
2197{
38f38657 2198 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2199 int err;
2200
2201 /*
2202 * If this is a request for a synthetic attribute in the system.*
2203 * namespace use the generic infrastructure to resolve a handler
2204 * for it via sb->s_xattr.
2205 */
2206 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2207 return generic_removexattr(dentry, name);
2208
2209 err = shmem_xattr_validate(name);
2210 if (err)
2211 return err;
2212
38f38657 2213 return simple_xattr_remove(&info->xattrs, name);
b09e0fa4
EP
2214}
2215
2216static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2217{
38f38657
AR
2218 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2219 return simple_xattr_list(&info->xattrs, buffer, size);
b09e0fa4
EP
2220}
2221#endif /* CONFIG_TMPFS_XATTR */
2222
69f07ec9 2223static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2224 .readlink = generic_readlink,
69f07ec9 2225 .follow_link = shmem_follow_short_symlink,
b09e0fa4
EP
2226#ifdef CONFIG_TMPFS_XATTR
2227 .setxattr = shmem_setxattr,
2228 .getxattr = shmem_getxattr,
2229 .listxattr = shmem_listxattr,
2230 .removexattr = shmem_removexattr,
2231#endif
2232};
2233
2234static const struct inode_operations shmem_symlink_inode_operations = {
2235 .readlink = generic_readlink,
2236 .follow_link = shmem_follow_link,
2237 .put_link = shmem_put_link,
2238#ifdef CONFIG_TMPFS_XATTR
2239 .setxattr = shmem_setxattr,
2240 .getxattr = shmem_getxattr,
2241 .listxattr = shmem_listxattr,
2242 .removexattr = shmem_removexattr,
39f0247d 2243#endif
b09e0fa4 2244};
39f0247d 2245
91828a40
DG
2246static struct dentry *shmem_get_parent(struct dentry *child)
2247{
2248 return ERR_PTR(-ESTALE);
2249}
2250
2251static int shmem_match(struct inode *ino, void *vfh)
2252{
2253 __u32 *fh = vfh;
2254 __u64 inum = fh[2];
2255 inum = (inum << 32) | fh[1];
2256 return ino->i_ino == inum && fh[0] == ino->i_generation;
2257}
2258
480b116c
CH
2259static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2260 struct fid *fid, int fh_len, int fh_type)
91828a40 2261{
91828a40 2262 struct inode *inode;
480b116c 2263 struct dentry *dentry = NULL;
35c2a7f4 2264 u64 inum;
480b116c
CH
2265
2266 if (fh_len < 3)
2267 return NULL;
91828a40 2268
35c2a7f4
HD
2269 inum = fid->raw[2];
2270 inum = (inum << 32) | fid->raw[1];
2271
480b116c
CH
2272 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2273 shmem_match, fid->raw);
91828a40 2274 if (inode) {
480b116c 2275 dentry = d_find_alias(inode);
91828a40
DG
2276 iput(inode);
2277 }
2278
480b116c 2279 return dentry;
91828a40
DG
2280}
2281
b0b0382b
AV
2282static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2283 struct inode *parent)
91828a40 2284{
5fe0c237
AK
2285 if (*len < 3) {
2286 *len = 3;
94e07a75 2287 return FILEID_INVALID;
5fe0c237 2288 }
91828a40 2289
1d3382cb 2290 if (inode_unhashed(inode)) {
91828a40
DG
2291 /* Unfortunately insert_inode_hash is not idempotent,
2292 * so as we hash inodes here rather than at creation
2293 * time, we need a lock to ensure we only try
2294 * to do it once
2295 */
2296 static DEFINE_SPINLOCK(lock);
2297 spin_lock(&lock);
1d3382cb 2298 if (inode_unhashed(inode))
91828a40
DG
2299 __insert_inode_hash(inode,
2300 inode->i_ino + inode->i_generation);
2301 spin_unlock(&lock);
2302 }
2303
2304 fh[0] = inode->i_generation;
2305 fh[1] = inode->i_ino;
2306 fh[2] = ((__u64)inode->i_ino) >> 32;
2307
2308 *len = 3;
2309 return 1;
2310}
2311
39655164 2312static const struct export_operations shmem_export_ops = {
91828a40 2313 .get_parent = shmem_get_parent,
91828a40 2314 .encode_fh = shmem_encode_fh,
480b116c 2315 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2316};
2317
680d794b
AM
2318static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2319 bool remount)
1da177e4
LT
2320{
2321 char *this_char, *value, *rest;
49cd0a5c 2322 struct mempolicy *mpol = NULL;
8751e039
EB
2323 uid_t uid;
2324 gid_t gid;
1da177e4 2325
b00dc3ad
HD
2326 while (options != NULL) {
2327 this_char = options;
2328 for (;;) {
2329 /*
2330 * NUL-terminate this option: unfortunately,
2331 * mount options form a comma-separated list,
2332 * but mpol's nodelist may also contain commas.
2333 */
2334 options = strchr(options, ',');
2335 if (options == NULL)
2336 break;
2337 options++;
2338 if (!isdigit(*options)) {
2339 options[-1] = '\0';
2340 break;
2341 }
2342 }
1da177e4
LT
2343 if (!*this_char)
2344 continue;
2345 if ((value = strchr(this_char,'=')) != NULL) {
2346 *value++ = 0;
2347 } else {
2348 printk(KERN_ERR
2349 "tmpfs: No value for mount option '%s'\n",
2350 this_char);
49cd0a5c 2351 goto error;
1da177e4
LT
2352 }
2353
2354 if (!strcmp(this_char,"size")) {
2355 unsigned long long size;
2356 size = memparse(value,&rest);
2357 if (*rest == '%') {
2358 size <<= PAGE_SHIFT;
2359 size *= totalram_pages;
2360 do_div(size, 100);
2361 rest++;
2362 }
2363 if (*rest)
2364 goto bad_val;
680d794b
AM
2365 sbinfo->max_blocks =
2366 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2367 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2368 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2369 if (*rest)
2370 goto bad_val;
2371 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2372 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2373 if (*rest)
2374 goto bad_val;
2375 } else if (!strcmp(this_char,"mode")) {
680d794b 2376 if (remount)
1da177e4 2377 continue;
680d794b 2378 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2379 if (*rest)
2380 goto bad_val;
2381 } else if (!strcmp(this_char,"uid")) {
680d794b 2382 if (remount)
1da177e4 2383 continue;
8751e039 2384 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2385 if (*rest)
2386 goto bad_val;
8751e039
EB
2387 sbinfo->uid = make_kuid(current_user_ns(), uid);
2388 if (!uid_valid(sbinfo->uid))
2389 goto bad_val;
1da177e4 2390 } else if (!strcmp(this_char,"gid")) {
680d794b 2391 if (remount)
1da177e4 2392 continue;
8751e039 2393 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2394 if (*rest)
2395 goto bad_val;
8751e039
EB
2396 sbinfo->gid = make_kgid(current_user_ns(), gid);
2397 if (!gid_valid(sbinfo->gid))
2398 goto bad_val;
7339ff83 2399 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2400 mpol_put(mpol);
2401 mpol = NULL;
2402 if (mpol_parse_str(value, &mpol))
7339ff83 2403 goto bad_val;
1da177e4
LT
2404 } else {
2405 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2406 this_char);
49cd0a5c 2407 goto error;
1da177e4
LT
2408 }
2409 }
49cd0a5c 2410 sbinfo->mpol = mpol;
1da177e4
LT
2411 return 0;
2412
2413bad_val:
2414 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2415 value, this_char);
49cd0a5c
GT
2416error:
2417 mpol_put(mpol);
1da177e4
LT
2418 return 1;
2419
2420}
2421
2422static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2423{
2424 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2425 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2426 unsigned long inodes;
2427 int error = -EINVAL;
2428
5f00110f 2429 config.mpol = NULL;
680d794b 2430 if (shmem_parse_options(data, &config, true))
0edd73b3 2431 return error;
1da177e4 2432
0edd73b3 2433 spin_lock(&sbinfo->stat_lock);
0edd73b3 2434 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2435 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2436 goto out;
680d794b 2437 if (config.max_inodes < inodes)
0edd73b3
HD
2438 goto out;
2439 /*
54af6042 2440 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2441 * but we must separately disallow unlimited->limited, because
2442 * in that case we have no record of how much is already in use.
2443 */
680d794b 2444 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2445 goto out;
680d794b 2446 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2447 goto out;
2448
2449 error = 0;
680d794b 2450 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
2451 sbinfo->max_inodes = config.max_inodes;
2452 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2453
5f00110f
GT
2454 /*
2455 * Preserve previous mempolicy unless mpol remount option was specified.
2456 */
2457 if (config.mpol) {
2458 mpol_put(sbinfo->mpol);
2459 sbinfo->mpol = config.mpol; /* transfers initial ref */
2460 }
0edd73b3
HD
2461out:
2462 spin_unlock(&sbinfo->stat_lock);
2463 return error;
1da177e4 2464}
680d794b 2465
34c80b1d 2466static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2467{
34c80b1d 2468 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
2469
2470 if (sbinfo->max_blocks != shmem_default_max_blocks())
2471 seq_printf(seq, ",size=%luk",
2472 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2473 if (sbinfo->max_inodes != shmem_default_max_inodes())
2474 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2475 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2476 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2477 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2478 seq_printf(seq, ",uid=%u",
2479 from_kuid_munged(&init_user_ns, sbinfo->uid));
2480 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2481 seq_printf(seq, ",gid=%u",
2482 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2483 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2484 return 0;
2485}
2486#endif /* CONFIG_TMPFS */
1da177e4
LT
2487
2488static void shmem_put_super(struct super_block *sb)
2489{
602586a8
HD
2490 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2491
2492 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 2493 mpol_put(sbinfo->mpol);
602586a8 2494 kfree(sbinfo);
1da177e4
LT
2495 sb->s_fs_info = NULL;
2496}
2497
2b2af54a 2498int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2499{
2500 struct inode *inode;
0edd73b3 2501 struct shmem_sb_info *sbinfo;
680d794b
AM
2502 int err = -ENOMEM;
2503
2504 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2505 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
2506 L1_CACHE_BYTES), GFP_KERNEL);
2507 if (!sbinfo)
2508 return -ENOMEM;
2509
680d794b 2510 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2511 sbinfo->uid = current_fsuid();
2512 sbinfo->gid = current_fsgid();
680d794b 2513 sb->s_fs_info = sbinfo;
1da177e4 2514
0edd73b3 2515#ifdef CONFIG_TMPFS
1da177e4
LT
2516 /*
2517 * Per default we only allow half of the physical ram per
2518 * tmpfs instance, limiting inodes to one per page of lowmem;
2519 * but the internal instance is left unlimited.
2520 */
ca4e0519 2521 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
2522 sbinfo->max_blocks = shmem_default_max_blocks();
2523 sbinfo->max_inodes = shmem_default_max_inodes();
2524 if (shmem_parse_options(data, sbinfo, false)) {
2525 err = -EINVAL;
2526 goto failed;
2527 }
ca4e0519
AV
2528 } else {
2529 sb->s_flags |= MS_NOUSER;
1da177e4 2530 }
91828a40 2531 sb->s_export_op = &shmem_export_ops;
2f6e38f3 2532 sb->s_flags |= MS_NOSEC;
1da177e4
LT
2533#else
2534 sb->s_flags |= MS_NOUSER;
2535#endif
2536
0edd73b3 2537 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2538 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2539 goto failed;
680d794b 2540 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2541
285b2c4f 2542 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
2543 sb->s_blocksize = PAGE_CACHE_SIZE;
2544 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2545 sb->s_magic = TMPFS_MAGIC;
2546 sb->s_op = &shmem_ops;
cfd95a9c 2547 sb->s_time_gran = 1;
b09e0fa4 2548#ifdef CONFIG_TMPFS_XATTR
39f0247d 2549 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2550#endif
2551#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2552 sb->s_flags |= MS_POSIXACL;
2553#endif
0edd73b3 2554
454abafe 2555 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2556 if (!inode)
2557 goto failed;
680d794b
AM
2558 inode->i_uid = sbinfo->uid;
2559 inode->i_gid = sbinfo->gid;
318ceed0
AV
2560 sb->s_root = d_make_root(inode);
2561 if (!sb->s_root)
48fde701 2562 goto failed;
1da177e4
LT
2563 return 0;
2564
1da177e4
LT
2565failed:
2566 shmem_put_super(sb);
2567 return err;
2568}
2569
fcc234f8 2570static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2571
2572static struct inode *shmem_alloc_inode(struct super_block *sb)
2573{
41ffe5d5
HD
2574 struct shmem_inode_info *info;
2575 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2576 if (!info)
1da177e4 2577 return NULL;
41ffe5d5 2578 return &info->vfs_inode;
1da177e4
LT
2579}
2580
41ffe5d5 2581static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
2582{
2583 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
2584 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2585}
2586
1da177e4
LT
2587static void shmem_destroy_inode(struct inode *inode)
2588{
09208d15 2589 if (S_ISREG(inode->i_mode))
1da177e4 2590 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 2591 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
2592}
2593
41ffe5d5 2594static void shmem_init_inode(void *foo)
1da177e4 2595{
41ffe5d5
HD
2596 struct shmem_inode_info *info = foo;
2597 inode_init_once(&info->vfs_inode);
1da177e4
LT
2598}
2599
41ffe5d5 2600static int shmem_init_inodecache(void)
1da177e4
LT
2601{
2602 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2603 sizeof(struct shmem_inode_info),
41ffe5d5 2604 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
2605 return 0;
2606}
2607
41ffe5d5 2608static void shmem_destroy_inodecache(void)
1da177e4 2609{
1a1d92c1 2610 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2611}
2612
f5e54d6e 2613static const struct address_space_operations shmem_aops = {
1da177e4 2614 .writepage = shmem_writepage,
76719325 2615 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2616#ifdef CONFIG_TMPFS
800d15a5
NP
2617 .write_begin = shmem_write_begin,
2618 .write_end = shmem_write_end,
1da177e4 2619#endif
304dbdb7 2620 .migratepage = migrate_page,
aa261f54 2621 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2622};
2623
15ad7cdc 2624static const struct file_operations shmem_file_operations = {
1da177e4
LT
2625 .mmap = shmem_mmap,
2626#ifdef CONFIG_TMPFS
220f2ac9 2627 .llseek = shmem_file_llseek,
bcd78e49 2628 .read = do_sync_read,
5402b976 2629 .write = do_sync_write,
bcd78e49 2630 .aio_read = shmem_file_aio_read,
5402b976 2631 .aio_write = generic_file_aio_write,
1b061d92 2632 .fsync = noop_fsync,
708e3508 2633 .splice_read = shmem_file_splice_read,
ae976416 2634 .splice_write = generic_file_splice_write,
83e4fa9c 2635 .fallocate = shmem_fallocate,
1da177e4
LT
2636#endif
2637};
2638
92e1d5be 2639static const struct inode_operations shmem_inode_operations = {
94c1e62d 2640 .setattr = shmem_setattr,
b09e0fa4
EP
2641#ifdef CONFIG_TMPFS_XATTR
2642 .setxattr = shmem_setxattr,
2643 .getxattr = shmem_getxattr,
2644 .listxattr = shmem_listxattr,
2645 .removexattr = shmem_removexattr,
feda821e 2646 .set_acl = simple_set_acl,
b09e0fa4 2647#endif
1da177e4
LT
2648};
2649
92e1d5be 2650static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2651#ifdef CONFIG_TMPFS
2652 .create = shmem_create,
2653 .lookup = simple_lookup,
2654 .link = shmem_link,
2655 .unlink = shmem_unlink,
2656 .symlink = shmem_symlink,
2657 .mkdir = shmem_mkdir,
2658 .rmdir = shmem_rmdir,
2659 .mknod = shmem_mknod,
2660 .rename = shmem_rename,
60545d0d 2661 .tmpfile = shmem_tmpfile,
1da177e4 2662#endif
b09e0fa4
EP
2663#ifdef CONFIG_TMPFS_XATTR
2664 .setxattr = shmem_setxattr,
2665 .getxattr = shmem_getxattr,
2666 .listxattr = shmem_listxattr,
2667 .removexattr = shmem_removexattr,
2668#endif
39f0247d 2669#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2670 .setattr = shmem_setattr,
feda821e 2671 .set_acl = simple_set_acl,
39f0247d
AG
2672#endif
2673};
2674
92e1d5be 2675static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2676#ifdef CONFIG_TMPFS_XATTR
2677 .setxattr = shmem_setxattr,
2678 .getxattr = shmem_getxattr,
2679 .listxattr = shmem_listxattr,
2680 .removexattr = shmem_removexattr,
2681#endif
39f0247d 2682#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2683 .setattr = shmem_setattr,
feda821e 2684 .set_acl = simple_set_acl,
39f0247d 2685#endif
1da177e4
LT
2686};
2687
759b9775 2688static const struct super_operations shmem_ops = {
1da177e4
LT
2689 .alloc_inode = shmem_alloc_inode,
2690 .destroy_inode = shmem_destroy_inode,
2691#ifdef CONFIG_TMPFS
2692 .statfs = shmem_statfs,
2693 .remount_fs = shmem_remount_fs,
680d794b 2694 .show_options = shmem_show_options,
1da177e4 2695#endif
1f895f75 2696 .evict_inode = shmem_evict_inode,
1da177e4
LT
2697 .drop_inode = generic_delete_inode,
2698 .put_super = shmem_put_super,
2699};
2700
f0f37e2f 2701static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2702 .fault = shmem_fault,
d7c17551 2703 .map_pages = filemap_map_pages,
1da177e4
LT
2704#ifdef CONFIG_NUMA
2705 .set_policy = shmem_set_policy,
2706 .get_policy = shmem_get_policy,
2707#endif
0b173bc4 2708 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2709};
2710
3c26ff6e
AV
2711static struct dentry *shmem_mount(struct file_system_type *fs_type,
2712 int flags, const char *dev_name, void *data)
1da177e4 2713{
3c26ff6e 2714 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2715}
2716
41ffe5d5 2717static struct file_system_type shmem_fs_type = {
1da177e4
LT
2718 .owner = THIS_MODULE,
2719 .name = "tmpfs",
3c26ff6e 2720 .mount = shmem_mount,
1da177e4 2721 .kill_sb = kill_litter_super,
2b8576cb 2722 .fs_flags = FS_USERNS_MOUNT,
1da177e4 2723};
1da177e4 2724
41ffe5d5 2725int __init shmem_init(void)
1da177e4
LT
2726{
2727 int error;
2728
16203a7a
RL
2729 /* If rootfs called this, don't re-init */
2730 if (shmem_inode_cachep)
2731 return 0;
2732
e0bf68dd
PZ
2733 error = bdi_init(&shmem_backing_dev_info);
2734 if (error)
2735 goto out4;
2736
41ffe5d5 2737 error = shmem_init_inodecache();
1da177e4
LT
2738 if (error)
2739 goto out3;
2740
41ffe5d5 2741 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
2742 if (error) {
2743 printk(KERN_ERR "Could not register tmpfs\n");
2744 goto out2;
2745 }
95dc112a 2746
ca4e0519 2747 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
2748 if (IS_ERR(shm_mnt)) {
2749 error = PTR_ERR(shm_mnt);
2750 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2751 goto out1;
2752 }
2753 return 0;
2754
2755out1:
41ffe5d5 2756 unregister_filesystem(&shmem_fs_type);
1da177e4 2757out2:
41ffe5d5 2758 shmem_destroy_inodecache();
1da177e4 2759out3:
e0bf68dd
PZ
2760 bdi_destroy(&shmem_backing_dev_info);
2761out4:
1da177e4
LT
2762 shm_mnt = ERR_PTR(error);
2763 return error;
2764}
853ac43a
MM
2765
2766#else /* !CONFIG_SHMEM */
2767
2768/*
2769 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2770 *
2771 * This is intended for small system where the benefits of the full
2772 * shmem code (swap-backed and resource-limited) are outweighed by
2773 * their complexity. On systems without swap this code should be
2774 * effectively equivalent, but much lighter weight.
2775 */
2776
41ffe5d5 2777static struct file_system_type shmem_fs_type = {
853ac43a 2778 .name = "tmpfs",
3c26ff6e 2779 .mount = ramfs_mount,
853ac43a 2780 .kill_sb = kill_litter_super,
2b8576cb 2781 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
2782};
2783
41ffe5d5 2784int __init shmem_init(void)
853ac43a 2785{
41ffe5d5 2786 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 2787
41ffe5d5 2788 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
2789 BUG_ON(IS_ERR(shm_mnt));
2790
2791 return 0;
2792}
2793
41ffe5d5 2794int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
2795{
2796 return 0;
2797}
2798
3f96b79a
HD
2799int shmem_lock(struct file *file, int lock, struct user_struct *user)
2800{
2801 return 0;
2802}
2803
24513264
HD
2804void shmem_unlock_mapping(struct address_space *mapping)
2805{
2806}
2807
41ffe5d5 2808void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 2809{
41ffe5d5 2810 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
2811}
2812EXPORT_SYMBOL_GPL(shmem_truncate_range);
2813
0b0a0806
HD
2814#define shmem_vm_ops generic_file_vm_ops
2815#define shmem_file_operations ramfs_file_operations
454abafe 2816#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2817#define shmem_acct_size(flags, size) 0
2818#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
2819
2820#endif /* CONFIG_SHMEM */
2821
2822/* common code */
1da177e4 2823
3451538a 2824static struct dentry_operations anon_ops = {
118b2302 2825 .d_dname = simple_dname
3451538a
AV
2826};
2827
c7277090
EP
2828static struct file *__shmem_file_setup(const char *name, loff_t size,
2829 unsigned long flags, unsigned int i_flags)
1da177e4 2830{
6b4d0b27 2831 struct file *res;
1da177e4 2832 struct inode *inode;
2c48b9c4 2833 struct path path;
3451538a 2834 struct super_block *sb;
1da177e4
LT
2835 struct qstr this;
2836
2837 if (IS_ERR(shm_mnt))
6b4d0b27 2838 return ERR_CAST(shm_mnt);
1da177e4 2839
285b2c4f 2840 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
2841 return ERR_PTR(-EINVAL);
2842
2843 if (shmem_acct_size(flags, size))
2844 return ERR_PTR(-ENOMEM);
2845
6b4d0b27 2846 res = ERR_PTR(-ENOMEM);
1da177e4
LT
2847 this.name = name;
2848 this.len = strlen(name);
2849 this.hash = 0; /* will go */
3451538a
AV
2850 sb = shm_mnt->mnt_sb;
2851 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 2852 if (!path.dentry)
1da177e4 2853 goto put_memory;
3451538a 2854 d_set_d_op(path.dentry, &anon_ops);
2c48b9c4 2855 path.mnt = mntget(shm_mnt);
1da177e4 2856
6b4d0b27 2857 res = ERR_PTR(-ENOSPC);
3451538a 2858 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 2859 if (!inode)
4b42af81 2860 goto put_dentry;
1da177e4 2861
c7277090 2862 inode->i_flags |= i_flags;
2c48b9c4 2863 d_instantiate(path.dentry, inode);
1da177e4 2864 inode->i_size = size;
6d6b77f1 2865 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
2866 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2867 if (IS_ERR(res))
4b42af81 2868 goto put_dentry;
4b42af81 2869
6b4d0b27 2870 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 2871 &shmem_file_operations);
6b4d0b27 2872 if (IS_ERR(res))
4b42af81
AV
2873 goto put_dentry;
2874
6b4d0b27 2875 return res;
1da177e4 2876
1da177e4 2877put_dentry:
2c48b9c4 2878 path_put(&path);
1da177e4
LT
2879put_memory:
2880 shmem_unacct_size(flags, size);
6b4d0b27 2881 return res;
1da177e4 2882}
c7277090
EP
2883
2884/**
2885 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2886 * kernel internal. There will be NO LSM permission checks against the
2887 * underlying inode. So users of this interface must do LSM checks at a
2888 * higher layer. The one user is the big_key implementation. LSM checks
2889 * are provided at the key level rather than the inode level.
2890 * @name: name for dentry (to be seen in /proc/<pid>/maps
2891 * @size: size to be set for the file
2892 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2893 */
2894struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2895{
2896 return __shmem_file_setup(name, size, flags, S_PRIVATE);
2897}
2898
2899/**
2900 * shmem_file_setup - get an unlinked file living in tmpfs
2901 * @name: name for dentry (to be seen in /proc/<pid>/maps
2902 * @size: size to be set for the file
2903 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2904 */
2905struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2906{
2907 return __shmem_file_setup(name, size, flags, 0);
2908}
395e0ddc 2909EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 2910
46711810 2911/**
1da177e4 2912 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
2913 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2914 */
2915int shmem_zero_setup(struct vm_area_struct *vma)
2916{
2917 struct file *file;
2918 loff_t size = vma->vm_end - vma->vm_start;
2919
2920 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2921 if (IS_ERR(file))
2922 return PTR_ERR(file);
2923
2924 if (vma->vm_file)
2925 fput(vma->vm_file);
2926 vma->vm_file = file;
2927 vma->vm_ops = &shmem_vm_ops;
2928 return 0;
2929}
d9d90e5e
HD
2930
2931/**
2932 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2933 * @mapping: the page's address_space
2934 * @index: the page index
2935 * @gfp: the page allocator flags to use if allocating
2936 *
2937 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2938 * with any new page allocations done using the specified allocation flags.
2939 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2940 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2941 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2942 *
68da9f05
HD
2943 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2944 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
2945 */
2946struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2947 pgoff_t index, gfp_t gfp)
2948{
68da9f05
HD
2949#ifdef CONFIG_SHMEM
2950 struct inode *inode = mapping->host;
9276aad6 2951 struct page *page;
68da9f05
HD
2952 int error;
2953
2954 BUG_ON(mapping->a_ops != &shmem_aops);
2955 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2956 if (error)
2957 page = ERR_PTR(error);
2958 else
2959 unlock_page(page);
2960 return page;
2961#else
2962 /*
2963 * The tiny !SHMEM case uses ramfs without swap
2964 */
d9d90e5e 2965 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 2966#endif
d9d90e5e
HD
2967}
2968EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);