]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/slab.c
mm, oom: fix use-after-free in oom_kill_process
[thirdparty/kernel/stable.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
b03a017b 254#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 255#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
03787301
JK
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
d31676df 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 368{
d31676df
JK
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
03787301 371
d31676df
JK
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
03787301 376
d31676df
JK
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
381}
382
383#else
d31676df 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
385
386#endif
387
1da177e4 388/*
3df1cccd
DR
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
1da177e4 391 */
543585cc
DR
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 395static bool slab_max_order_set __initdata;
1da177e4 396
6ed5eb22
PE
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
b49af68f 399 struct page *page = virt_to_head_page(obj);
35026088 400 return page->slab_cache;
6ed5eb22
PE
401}
402
8456a648 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
404 unsigned int idx)
405{
8456a648 406 return page->s_mem + cache->size * idx;
8fea4e96
PE
407}
408
6a2d7a95 409/*
3b0efdfa
CL
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
6a2d7a95
ED
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 416 const struct page *page, void *obj)
8fea4e96 417{
8456a648 418 u32 offset = (obj - page->s_mem);
6a2d7a95 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
420}
421
6fb92430 422#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 423/* internal cache of cache description objs */
9b030cb8 424static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
3b0efdfa 428 .size = sizeof(struct kmem_cache),
b28a02de 429 .name = "kmem_cache",
1da177e4
LT
430};
431
1871e52c 432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 433
343e0d7a 434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 435{
bf0dea23 436 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
437}
438
a737b3e2
AM
439/*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
70f75067
JK
442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 unsigned long flags, size_t *left_over)
fbaccacf 444{
70f75067 445 unsigned int num;
fbaccacf 446 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 447
fbaccacf
SR
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
fbaccacf 453 * - @buffer_size bytes for each object
2e6b3602
JK
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
fbaccacf
SR
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
b03a017b 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 466 num = slab_size / buffer_size;
2e6b3602 467 *left_over = slab_size % buffer_size;
fbaccacf 468 } else {
70f75067 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 472 }
70f75067
JK
473
474 return num;
1da177e4
LT
475}
476
f28510d3 477#if DEBUG
d40cee24 478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 479
a737b3e2
AM
480static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
1da177e4 482{
1170532b 483 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 484 function, cachep->name, msg);
1da177e4 485 dump_stack();
373d4d09 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 487}
f28510d3 488#endif
1da177e4 489
3395ee05
PM
490/*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498static int use_alien_caches __read_mostly = 1;
499static int __init noaliencache_setup(char *s)
500{
501 use_alien_caches = 0;
502 return 1;
503}
504__setup("noaliencache", noaliencache_setup);
505
3df1cccd
DR
506static int __init slab_max_order_setup(char *str)
507{
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514}
515__setup("slab_max_order=", slab_max_order_setup);
516
8fce4d8e
CL
517#ifdef CONFIG_NUMA
518/*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
1871e52c 524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
525
526static void init_reap_node(int cpu)
527{
0edaf86c
AM
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
8fce4d8e
CL
530}
531
532static void next_reap_node(void)
533{
909ea964 534 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 535
0edaf86c 536 node = next_node_in(node, node_online_map);
909ea964 537 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
538}
539
540#else
541#define init_reap_node(cpu) do { } while (0)
542#define next_reap_node(void) do { } while (0)
543#endif
544
1da177e4
LT
545/*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
0db0628d 552static void start_cpu_timer(int cpu)
1da177e4 553{
1871e52c 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 555
eac0337a 556 if (reap_work->work.func == NULL) {
8fce4d8e 557 init_reap_node(cpu);
203b42f7 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
561 }
562}
563
1fe00d50 564static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 565{
d5cff635
CM
566 /*
567 * The array_cache structures contain pointers to free object.
25985edc 568 * However, when such objects are allocated or transferred to another
d5cff635
CM
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
1fe00d50
JK
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
1da177e4 579 }
1fe00d50
JK
580}
581
582static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584{
5e804789 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
1da177e4
LT
591}
592
f68f8ddd
JK
593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
072bb0aa 595{
f68f8ddd
JK
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
072bb0aa 599
f68f8ddd
JK
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
381760ea 602
f68f8ddd
JK
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
381760ea 606
f68f8ddd 607 slabs_destroy(cachep, &list);
072bb0aa
MG
608}
609
3ded175a
CL
610/*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618{
619 /* Figure out how many entries to transfer */
732eacc0 620 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
3ded175a
CL
630 return nr;
631}
632
765c4507
CL
633#ifndef CONFIG_NUMA
634
635#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 636#define reap_alien(cachep, n) do { } while (0)
765c4507 637
c8522a3a
JK
638static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
765c4507 640{
8888177e 641 return NULL;
765c4507
CL
642}
643
c8522a3a 644static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
645{
646}
647
648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649{
650 return 0;
651}
652
653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655{
656 return NULL;
657}
658
8b98c169 659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
660 gfp_t flags, int nodeid)
661{
662 return NULL;
663}
664
4167e9b2
DR
665static inline gfp_t gfp_exact_node(gfp_t flags)
666{
444eb2a4 667 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
668}
669
765c4507
CL
670#else /* CONFIG_NUMA */
671
8b98c169 672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 674
c8522a3a
JK
675static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677{
5e804789 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
90bcbcfb
CL
682 if (alc) {
683 init_arraycache(&alc->ac, entries, batch);
684 spin_lock_init(&alc->lock);
685 }
c8522a3a
JK
686 return alc;
687}
688
689static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 690{
c8522a3a 691 struct alien_cache **alc_ptr;
5e804789 692 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
693 int i;
694
695 if (limit > 1)
696 limit = 12;
c8522a3a
JK
697 alc_ptr = kzalloc_node(memsize, gfp, node);
698 if (!alc_ptr)
699 return NULL;
700
701 for_each_node(i) {
702 if (i == node || !node_online(i))
703 continue;
704 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
705 if (!alc_ptr[i]) {
706 for (i--; i >= 0; i--)
707 kfree(alc_ptr[i]);
708 kfree(alc_ptr);
709 return NULL;
e498be7d
CL
710 }
711 }
c8522a3a 712 return alc_ptr;
e498be7d
CL
713}
714
c8522a3a 715static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
716{
717 int i;
718
c8522a3a 719 if (!alc_ptr)
e498be7d 720 return;
e498be7d 721 for_each_node(i)
c8522a3a
JK
722 kfree(alc_ptr[i]);
723 kfree(alc_ptr);
e498be7d
CL
724}
725
343e0d7a 726static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
727 struct array_cache *ac, int node,
728 struct list_head *list)
e498be7d 729{
18bf8541 730 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
731
732 if (ac->avail) {
ce8eb6c4 733 spin_lock(&n->list_lock);
e00946fe
CL
734 /*
735 * Stuff objects into the remote nodes shared array first.
736 * That way we could avoid the overhead of putting the objects
737 * into the free lists and getting them back later.
738 */
ce8eb6c4
CL
739 if (n->shared)
740 transfer_objects(n->shared, ac, ac->limit);
e00946fe 741
833b706c 742 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 743 ac->avail = 0;
ce8eb6c4 744 spin_unlock(&n->list_lock);
e498be7d
CL
745 }
746}
747
8fce4d8e
CL
748/*
749 * Called from cache_reap() to regularly drain alien caches round robin.
750 */
ce8eb6c4 751static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 752{
909ea964 753 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 754
ce8eb6c4 755 if (n->alien) {
c8522a3a
JK
756 struct alien_cache *alc = n->alien[node];
757 struct array_cache *ac;
758
759 if (alc) {
760 ac = &alc->ac;
49dfc304 761 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
762 LIST_HEAD(list);
763
764 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 765 spin_unlock_irq(&alc->lock);
833b706c 766 slabs_destroy(cachep, &list);
c8522a3a 767 }
8fce4d8e
CL
768 }
769 }
770}
771
a737b3e2 772static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 773 struct alien_cache **alien)
e498be7d 774{
b28a02de 775 int i = 0;
c8522a3a 776 struct alien_cache *alc;
e498be7d
CL
777 struct array_cache *ac;
778 unsigned long flags;
779
780 for_each_online_node(i) {
c8522a3a
JK
781 alc = alien[i];
782 if (alc) {
833b706c
JK
783 LIST_HEAD(list);
784
c8522a3a 785 ac = &alc->ac;
49dfc304 786 spin_lock_irqsave(&alc->lock, flags);
833b706c 787 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 788 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 789 slabs_destroy(cachep, &list);
e498be7d
CL
790 }
791 }
792}
729bd0b7 793
25c4f304
JK
794static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
795 int node, int page_node)
729bd0b7 796{
ce8eb6c4 797 struct kmem_cache_node *n;
c8522a3a
JK
798 struct alien_cache *alien = NULL;
799 struct array_cache *ac;
97654dfa 800 LIST_HEAD(list);
1ca4cb24 801
18bf8541 802 n = get_node(cachep, node);
729bd0b7 803 STATS_INC_NODEFREES(cachep);
25c4f304
JK
804 if (n->alien && n->alien[page_node]) {
805 alien = n->alien[page_node];
c8522a3a 806 ac = &alien->ac;
49dfc304 807 spin_lock(&alien->lock);
c8522a3a 808 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 809 STATS_INC_ACOVERFLOW(cachep);
25c4f304 810 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 811 }
f68f8ddd 812 ac->entry[ac->avail++] = objp;
49dfc304 813 spin_unlock(&alien->lock);
833b706c 814 slabs_destroy(cachep, &list);
729bd0b7 815 } else {
25c4f304 816 n = get_node(cachep, page_node);
18bf8541 817 spin_lock(&n->list_lock);
25c4f304 818 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 819 spin_unlock(&n->list_lock);
97654dfa 820 slabs_destroy(cachep, &list);
729bd0b7
PE
821 }
822 return 1;
823}
25c4f304
JK
824
825static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
826{
827 int page_node = page_to_nid(virt_to_page(objp));
828 int node = numa_mem_id();
829 /*
830 * Make sure we are not freeing a object from another node to the array
831 * cache on this cpu.
832 */
833 if (likely(node == page_node))
834 return 0;
835
836 return __cache_free_alien(cachep, objp, node, page_node);
837}
4167e9b2
DR
838
839/*
444eb2a4
MG
840 * Construct gfp mask to allocate from a specific node but do not reclaim or
841 * warn about failures.
4167e9b2
DR
842 */
843static inline gfp_t gfp_exact_node(gfp_t flags)
844{
444eb2a4 845 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 846}
e498be7d
CL
847#endif
848
ded0ecf6
JK
849static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
850{
851 struct kmem_cache_node *n;
852
853 /*
854 * Set up the kmem_cache_node for cpu before we can
855 * begin anything. Make sure some other cpu on this
856 * node has not already allocated this
857 */
858 n = get_node(cachep, node);
859 if (n) {
860 spin_lock_irq(&n->list_lock);
861 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
862 cachep->num;
863 spin_unlock_irq(&n->list_lock);
864
865 return 0;
866 }
867
868 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
869 if (!n)
870 return -ENOMEM;
871
872 kmem_cache_node_init(n);
873 n->next_reap = jiffies + REAPTIMEOUT_NODE +
874 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
875
876 n->free_limit =
877 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
878
879 /*
880 * The kmem_cache_nodes don't come and go as CPUs
881 * come and go. slab_mutex is sufficient
882 * protection here.
883 */
884 cachep->node[node] = n;
885
886 return 0;
887}
888
6731d4f1 889#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 890/*
6a67368c 891 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 892 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 893 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 894 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
895 * already in use.
896 *
18004c5d 897 * Must hold slab_mutex.
8f9f8d9e 898 */
6a67368c 899static int init_cache_node_node(int node)
8f9f8d9e 900{
ded0ecf6 901 int ret;
8f9f8d9e 902 struct kmem_cache *cachep;
8f9f8d9e 903
18004c5d 904 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
905 ret = init_cache_node(cachep, node, GFP_KERNEL);
906 if (ret)
907 return ret;
8f9f8d9e 908 }
ded0ecf6 909
8f9f8d9e
DR
910 return 0;
911}
6731d4f1 912#endif
8f9f8d9e 913
c3d332b6
JK
914static int setup_kmem_cache_node(struct kmem_cache *cachep,
915 int node, gfp_t gfp, bool force_change)
916{
917 int ret = -ENOMEM;
918 struct kmem_cache_node *n;
919 struct array_cache *old_shared = NULL;
920 struct array_cache *new_shared = NULL;
921 struct alien_cache **new_alien = NULL;
922 LIST_HEAD(list);
923
924 if (use_alien_caches) {
925 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
926 if (!new_alien)
927 goto fail;
928 }
929
930 if (cachep->shared) {
931 new_shared = alloc_arraycache(node,
932 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
933 if (!new_shared)
934 goto fail;
935 }
936
937 ret = init_cache_node(cachep, node, gfp);
938 if (ret)
939 goto fail;
940
941 n = get_node(cachep, node);
942 spin_lock_irq(&n->list_lock);
943 if (n->shared && force_change) {
944 free_block(cachep, n->shared->entry,
945 n->shared->avail, node, &list);
946 n->shared->avail = 0;
947 }
948
949 if (!n->shared || force_change) {
950 old_shared = n->shared;
951 n->shared = new_shared;
952 new_shared = NULL;
953 }
954
955 if (!n->alien) {
956 n->alien = new_alien;
957 new_alien = NULL;
958 }
959
960 spin_unlock_irq(&n->list_lock);
961 slabs_destroy(cachep, &list);
962
801faf0d
JK
963 /*
964 * To protect lockless access to n->shared during irq disabled context.
965 * If n->shared isn't NULL in irq disabled context, accessing to it is
966 * guaranteed to be valid until irq is re-enabled, because it will be
967 * freed after synchronize_sched().
968 */
86d9f485 969 if (old_shared && force_change)
801faf0d
JK
970 synchronize_sched();
971
c3d332b6
JK
972fail:
973 kfree(old_shared);
974 kfree(new_shared);
975 free_alien_cache(new_alien);
976
977 return ret;
978}
979
6731d4f1
SAS
980#ifdef CONFIG_SMP
981
0db0628d 982static void cpuup_canceled(long cpu)
fbf1e473
AM
983{
984 struct kmem_cache *cachep;
ce8eb6c4 985 struct kmem_cache_node *n = NULL;
7d6e6d09 986 int node = cpu_to_mem(cpu);
a70f7302 987 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 988
18004c5d 989 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
990 struct array_cache *nc;
991 struct array_cache *shared;
c8522a3a 992 struct alien_cache **alien;
97654dfa 993 LIST_HEAD(list);
fbf1e473 994
18bf8541 995 n = get_node(cachep, node);
ce8eb6c4 996 if (!n)
bf0dea23 997 continue;
fbf1e473 998
ce8eb6c4 999 spin_lock_irq(&n->list_lock);
fbf1e473 1000
ce8eb6c4
CL
1001 /* Free limit for this kmem_cache_node */
1002 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1003
1004 /* cpu is dead; no one can alloc from it. */
1005 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1006 if (nc) {
97654dfa 1007 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1008 nc->avail = 0;
1009 }
fbf1e473 1010
58463c1f 1011 if (!cpumask_empty(mask)) {
ce8eb6c4 1012 spin_unlock_irq(&n->list_lock);
bf0dea23 1013 goto free_slab;
fbf1e473
AM
1014 }
1015
ce8eb6c4 1016 shared = n->shared;
fbf1e473
AM
1017 if (shared) {
1018 free_block(cachep, shared->entry,
97654dfa 1019 shared->avail, node, &list);
ce8eb6c4 1020 n->shared = NULL;
fbf1e473
AM
1021 }
1022
ce8eb6c4
CL
1023 alien = n->alien;
1024 n->alien = NULL;
fbf1e473 1025
ce8eb6c4 1026 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1027
1028 kfree(shared);
1029 if (alien) {
1030 drain_alien_cache(cachep, alien);
1031 free_alien_cache(alien);
1032 }
bf0dea23
JK
1033
1034free_slab:
97654dfa 1035 slabs_destroy(cachep, &list);
fbf1e473
AM
1036 }
1037 /*
1038 * In the previous loop, all the objects were freed to
1039 * the respective cache's slabs, now we can go ahead and
1040 * shrink each nodelist to its limit.
1041 */
18004c5d 1042 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1043 n = get_node(cachep, node);
ce8eb6c4 1044 if (!n)
fbf1e473 1045 continue;
a5aa63a5 1046 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1047 }
1048}
1049
0db0628d 1050static int cpuup_prepare(long cpu)
1da177e4 1051{
343e0d7a 1052 struct kmem_cache *cachep;
7d6e6d09 1053 int node = cpu_to_mem(cpu);
8f9f8d9e 1054 int err;
1da177e4 1055
fbf1e473
AM
1056 /*
1057 * We need to do this right in the beginning since
1058 * alloc_arraycache's are going to use this list.
1059 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1060 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1061 */
6a67368c 1062 err = init_cache_node_node(node);
8f9f8d9e
DR
1063 if (err < 0)
1064 goto bad;
fbf1e473
AM
1065
1066 /*
1067 * Now we can go ahead with allocating the shared arrays and
1068 * array caches
1069 */
18004c5d 1070 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1071 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1072 if (err)
1073 goto bad;
fbf1e473 1074 }
ce79ddc8 1075
fbf1e473
AM
1076 return 0;
1077bad:
12d00f6a 1078 cpuup_canceled(cpu);
fbf1e473
AM
1079 return -ENOMEM;
1080}
1081
6731d4f1 1082int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1083{
6731d4f1 1084 int err;
fbf1e473 1085
6731d4f1
SAS
1086 mutex_lock(&slab_mutex);
1087 err = cpuup_prepare(cpu);
1088 mutex_unlock(&slab_mutex);
1089 return err;
1090}
1091
1092/*
1093 * This is called for a failed online attempt and for a successful
1094 * offline.
1095 *
1096 * Even if all the cpus of a node are down, we don't free the
1097 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1098 * a kmalloc allocation from another cpu for memory from the node of
1099 * the cpu going down. The list3 structure is usually allocated from
1100 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1101 */
1102int slab_dead_cpu(unsigned int cpu)
1103{
1104 mutex_lock(&slab_mutex);
1105 cpuup_canceled(cpu);
1106 mutex_unlock(&slab_mutex);
1107 return 0;
1108}
8f5be20b 1109#endif
6731d4f1
SAS
1110
1111static int slab_online_cpu(unsigned int cpu)
1112{
1113 start_cpu_timer(cpu);
1114 return 0;
1da177e4
LT
1115}
1116
6731d4f1
SAS
1117static int slab_offline_cpu(unsigned int cpu)
1118{
1119 /*
1120 * Shutdown cache reaper. Note that the slab_mutex is held so
1121 * that if cache_reap() is invoked it cannot do anything
1122 * expensive but will only modify reap_work and reschedule the
1123 * timer.
1124 */
1125 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1126 /* Now the cache_reaper is guaranteed to be not running. */
1127 per_cpu(slab_reap_work, cpu).work.func = NULL;
1128 return 0;
1129}
1da177e4 1130
8f9f8d9e
DR
1131#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1132/*
1133 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1134 * Returns -EBUSY if all objects cannot be drained so that the node is not
1135 * removed.
1136 *
18004c5d 1137 * Must hold slab_mutex.
8f9f8d9e 1138 */
6a67368c 1139static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1140{
1141 struct kmem_cache *cachep;
1142 int ret = 0;
1143
18004c5d 1144 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1145 struct kmem_cache_node *n;
8f9f8d9e 1146
18bf8541 1147 n = get_node(cachep, node);
ce8eb6c4 1148 if (!n)
8f9f8d9e
DR
1149 continue;
1150
a5aa63a5 1151 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1152
ce8eb6c4
CL
1153 if (!list_empty(&n->slabs_full) ||
1154 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1155 ret = -EBUSY;
1156 break;
1157 }
1158 }
1159 return ret;
1160}
1161
1162static int __meminit slab_memory_callback(struct notifier_block *self,
1163 unsigned long action, void *arg)
1164{
1165 struct memory_notify *mnb = arg;
1166 int ret = 0;
1167 int nid;
1168
1169 nid = mnb->status_change_nid;
1170 if (nid < 0)
1171 goto out;
1172
1173 switch (action) {
1174 case MEM_GOING_ONLINE:
18004c5d 1175 mutex_lock(&slab_mutex);
6a67368c 1176 ret = init_cache_node_node(nid);
18004c5d 1177 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1178 break;
1179 case MEM_GOING_OFFLINE:
18004c5d 1180 mutex_lock(&slab_mutex);
6a67368c 1181 ret = drain_cache_node_node(nid);
18004c5d 1182 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1183 break;
1184 case MEM_ONLINE:
1185 case MEM_OFFLINE:
1186 case MEM_CANCEL_ONLINE:
1187 case MEM_CANCEL_OFFLINE:
1188 break;
1189 }
1190out:
5fda1bd5 1191 return notifier_from_errno(ret);
8f9f8d9e
DR
1192}
1193#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1194
e498be7d 1195/*
ce8eb6c4 1196 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1197 */
6744f087 1198static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1199 int nodeid)
e498be7d 1200{
6744f087 1201 struct kmem_cache_node *ptr;
e498be7d 1202
6744f087 1203 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1204 BUG_ON(!ptr);
1205
6744f087 1206 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1207 /*
1208 * Do not assume that spinlocks can be initialized via memcpy:
1209 */
1210 spin_lock_init(&ptr->list_lock);
1211
e498be7d 1212 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1213 cachep->node[nodeid] = ptr;
e498be7d
CL
1214}
1215
556a169d 1216/*
ce8eb6c4
CL
1217 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1218 * size of kmem_cache_node.
556a169d 1219 */
ce8eb6c4 1220static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1221{
1222 int node;
1223
1224 for_each_online_node(node) {
ce8eb6c4 1225 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1226 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1227 REAPTIMEOUT_NODE +
1228 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1229 }
1230}
1231
a737b3e2
AM
1232/*
1233 * Initialisation. Called after the page allocator have been initialised and
1234 * before smp_init().
1da177e4
LT
1235 */
1236void __init kmem_cache_init(void)
1237{
e498be7d
CL
1238 int i;
1239
68126702
JK
1240 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1241 sizeof(struct rcu_head));
9b030cb8
CL
1242 kmem_cache = &kmem_cache_boot;
1243
8888177e 1244 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1245 use_alien_caches = 0;
1246
3c583465 1247 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1248 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1249
1da177e4
LT
1250 /*
1251 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1252 * page orders on machines with more than 32MB of memory if
1253 * not overridden on the command line.
1da177e4 1254 */
3df1cccd 1255 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1256 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1257
1da177e4
LT
1258 /* Bootstrap is tricky, because several objects are allocated
1259 * from caches that do not exist yet:
9b030cb8
CL
1260 * 1) initialize the kmem_cache cache: it contains the struct
1261 * kmem_cache structures of all caches, except kmem_cache itself:
1262 * kmem_cache is statically allocated.
e498be7d 1263 * Initially an __init data area is used for the head array and the
ce8eb6c4 1264 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1265 * array at the end of the bootstrap.
1da177e4 1266 * 2) Create the first kmalloc cache.
343e0d7a 1267 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1268 * An __init data area is used for the head array.
1269 * 3) Create the remaining kmalloc caches, with minimally sized
1270 * head arrays.
9b030cb8 1271 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1272 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1273 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1274 * the other cache's with kmalloc allocated memory.
1275 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1276 */
1277
9b030cb8 1278 /* 1) create the kmem_cache */
1da177e4 1279
8da3430d 1280 /*
b56efcf0 1281 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1282 */
2f9baa9f 1283 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1284 offsetof(struct kmem_cache, node) +
6744f087 1285 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1286 SLAB_HWCACHE_ALIGN);
1287 list_add(&kmem_cache->list, &slab_caches);
da9ec481 1288 memcg_link_cache(kmem_cache);
bf0dea23 1289 slab_state = PARTIAL;
1da177e4 1290
a737b3e2 1291 /*
bf0dea23
JK
1292 * Initialize the caches that provide memory for the kmem_cache_node
1293 * structures first. Without this, further allocations will bug.
e498be7d 1294 */
af3b5f87
VB
1295 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1296 kmalloc_info[INDEX_NODE].name,
ce8eb6c4 1297 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1298 slab_state = PARTIAL_NODE;
34cc6990 1299 setup_kmalloc_cache_index_table();
e498be7d 1300
e0a42726
IM
1301 slab_early_init = 0;
1302
ce8eb6c4 1303 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1304 {
1ca4cb24
PE
1305 int nid;
1306
9c09a95c 1307 for_each_online_node(nid) {
ce8eb6c4 1308 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1309
bf0dea23 1310 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1311 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1312 }
1313 }
1da177e4 1314
f97d5f63 1315 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1316}
1317
1318void __init kmem_cache_init_late(void)
1319{
1320 struct kmem_cache *cachep;
1321
97d06609 1322 slab_state = UP;
52cef189 1323
8429db5c 1324 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1325 mutex_lock(&slab_mutex);
1326 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1327 if (enable_cpucache(cachep, GFP_NOWAIT))
1328 BUG();
18004c5d 1329 mutex_unlock(&slab_mutex);
056c6241 1330
97d06609
CL
1331 /* Done! */
1332 slab_state = FULL;
1333
8f9f8d9e
DR
1334#ifdef CONFIG_NUMA
1335 /*
1336 * Register a memory hotplug callback that initializes and frees
6a67368c 1337 * node.
8f9f8d9e
DR
1338 */
1339 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1340#endif
1341
a737b3e2
AM
1342 /*
1343 * The reap timers are started later, with a module init call: That part
1344 * of the kernel is not yet operational.
1da177e4
LT
1345 */
1346}
1347
1348static int __init cpucache_init(void)
1349{
6731d4f1 1350 int ret;
1da177e4 1351
a737b3e2
AM
1352 /*
1353 * Register the timers that return unneeded pages to the page allocator
1da177e4 1354 */
6731d4f1
SAS
1355 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1356 slab_online_cpu, slab_offline_cpu);
1357 WARN_ON(ret < 0);
a164f896
GC
1358
1359 /* Done! */
97d06609 1360 slab_state = FULL;
1da177e4
LT
1361 return 0;
1362}
1da177e4
LT
1363__initcall(cpucache_init);
1364
8bdec192
RA
1365static noinline void
1366slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1367{
9a02d699 1368#if DEBUG
ce8eb6c4 1369 struct kmem_cache_node *n;
8bdec192
RA
1370 unsigned long flags;
1371 int node;
9a02d699
DR
1372 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1373 DEFAULT_RATELIMIT_BURST);
1374
1375 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1376 return;
8bdec192 1377
5b3810e5
VB
1378 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1379 nodeid, gfpflags, &gfpflags);
1380 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1381 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1382
18bf8541 1383 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1384 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1385
ce8eb6c4 1386 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1387 total_slabs = n->total_slabs;
1388 free_slabs = n->free_slabs;
1389 free_objs = n->free_objects;
ce8eb6c4 1390 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1391
bf00bd34
DR
1392 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1393 node, total_slabs - free_slabs, total_slabs,
1394 (total_slabs * cachep->num) - free_objs,
1395 total_slabs * cachep->num);
8bdec192 1396 }
9a02d699 1397#endif
8bdec192
RA
1398}
1399
1da177e4 1400/*
8a7d9b43
WSH
1401 * Interface to system's page allocator. No need to hold the
1402 * kmem_cache_node ->list_lock.
1da177e4
LT
1403 *
1404 * If we requested dmaable memory, we will get it. Even if we
1405 * did not request dmaable memory, we might get it, but that
1406 * would be relatively rare and ignorable.
1407 */
0c3aa83e
JK
1408static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1409 int nodeid)
1da177e4
LT
1410{
1411 struct page *page;
e1b6aa6f 1412 int nr_pages;
765c4507 1413
a618e89f 1414 flags |= cachep->allocflags;
e12ba74d
MG
1415 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1416 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1417
ae63fd26 1418 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1419 if (!page) {
9a02d699 1420 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1421 return NULL;
8bdec192 1422 }
1da177e4 1423
f3ccb2c4
VD
1424 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1425 __free_pages(page, cachep->gfporder);
1426 return NULL;
1427 }
1428
e1b6aa6f 1429 nr_pages = (1 << cachep->gfporder);
1da177e4 1430 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1431 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1432 else
7779f212 1433 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1434
a57a4988 1435 __SetPageSlab(page);
f68f8ddd
JK
1436 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1437 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1438 SetPageSlabPfmemalloc(page);
072bb0aa 1439
0c3aa83e 1440 return page;
1da177e4
LT
1441}
1442
1443/*
1444 * Interface to system's page release.
1445 */
0c3aa83e 1446static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1447{
27ee57c9
VD
1448 int order = cachep->gfporder;
1449 unsigned long nr_freed = (1 << order);
1da177e4 1450
972d1a7b 1451 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1452 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1453 else
7779f212 1454 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1455
a57a4988 1456 BUG_ON(!PageSlab(page));
73293c2f 1457 __ClearPageSlabPfmemalloc(page);
a57a4988 1458 __ClearPageSlab(page);
8456a648
JK
1459 page_mapcount_reset(page);
1460 page->mapping = NULL;
1f458cbf 1461
1da177e4
LT
1462 if (current->reclaim_state)
1463 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1464 memcg_uncharge_slab(page, order, cachep);
1465 __free_pages(page, order);
1da177e4
LT
1466}
1467
1468static void kmem_rcu_free(struct rcu_head *head)
1469{
68126702
JK
1470 struct kmem_cache *cachep;
1471 struct page *page;
1da177e4 1472
68126702
JK
1473 page = container_of(head, struct page, rcu_head);
1474 cachep = page->slab_cache;
1475
1476 kmem_freepages(cachep, page);
1da177e4
LT
1477}
1478
1479#if DEBUG
40b44137
JK
1480static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1481{
1482 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1483 (cachep->size % PAGE_SIZE) == 0)
1484 return true;
1485
1486 return false;
1487}
1da177e4
LT
1488
1489#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1490static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1491 unsigned long caller)
1da177e4 1492{
8c138bc0 1493 int size = cachep->object_size;
1da177e4 1494
3dafccf2 1495 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1496
b28a02de 1497 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1498 return;
1499
b28a02de
PE
1500 *addr++ = 0x12345678;
1501 *addr++ = caller;
1502 *addr++ = smp_processor_id();
1503 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1504 {
1505 unsigned long *sptr = &caller;
1506 unsigned long svalue;
1507
1508 while (!kstack_end(sptr)) {
1509 svalue = *sptr++;
1510 if (kernel_text_address(svalue)) {
b28a02de 1511 *addr++ = svalue;
1da177e4
LT
1512 size -= sizeof(unsigned long);
1513 if (size <= sizeof(unsigned long))
1514 break;
1515 }
1516 }
1517
1518 }
b28a02de 1519 *addr++ = 0x87654321;
1da177e4 1520}
40b44137
JK
1521
1522static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1523 int map, unsigned long caller)
1524{
1525 if (!is_debug_pagealloc_cache(cachep))
1526 return;
1527
1528 if (caller)
1529 store_stackinfo(cachep, objp, caller);
1530
1531 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1532}
1533
1534#else
1535static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1536 int map, unsigned long caller) {}
1537
1da177e4
LT
1538#endif
1539
343e0d7a 1540static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1541{
8c138bc0 1542 int size = cachep->object_size;
3dafccf2 1543 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1544
1545 memset(addr, val, size);
b28a02de 1546 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1547}
1548
1549static void dump_line(char *data, int offset, int limit)
1550{
1551 int i;
aa83aa40
DJ
1552 unsigned char error = 0;
1553 int bad_count = 0;
1554
1170532b 1555 pr_err("%03x: ", offset);
aa83aa40
DJ
1556 for (i = 0; i < limit; i++) {
1557 if (data[offset + i] != POISON_FREE) {
1558 error = data[offset + i];
1559 bad_count++;
1560 }
aa83aa40 1561 }
fdde6abb
SAS
1562 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1563 &data[offset], limit, 1);
aa83aa40
DJ
1564
1565 if (bad_count == 1) {
1566 error ^= POISON_FREE;
1567 if (!(error & (error - 1))) {
1170532b 1568 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1569#ifdef CONFIG_X86
1170532b 1570 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1571#else
1170532b 1572 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1573#endif
1574 }
1575 }
1da177e4
LT
1576}
1577#endif
1578
1579#if DEBUG
1580
343e0d7a 1581static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1582{
1583 int i, size;
1584 char *realobj;
1585
1586 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1587 pr_err("Redzone: 0x%llx/0x%llx\n",
1588 *dbg_redzone1(cachep, objp),
1589 *dbg_redzone2(cachep, objp));
1da177e4
LT
1590 }
1591
1592 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1593 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1594 *dbg_userword(cachep, objp),
1595 *dbg_userword(cachep, objp));
1da177e4 1596 }
3dafccf2 1597 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1598 size = cachep->object_size;
b28a02de 1599 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1600 int limit;
1601 limit = 16;
b28a02de
PE
1602 if (i + limit > size)
1603 limit = size - i;
1da177e4
LT
1604 dump_line(realobj, i, limit);
1605 }
1606}
1607
343e0d7a 1608static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1609{
1610 char *realobj;
1611 int size, i;
1612 int lines = 0;
1613
40b44137
JK
1614 if (is_debug_pagealloc_cache(cachep))
1615 return;
1616
3dafccf2 1617 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1618 size = cachep->object_size;
1da177e4 1619
b28a02de 1620 for (i = 0; i < size; i++) {
1da177e4 1621 char exp = POISON_FREE;
b28a02de 1622 if (i == size - 1)
1da177e4
LT
1623 exp = POISON_END;
1624 if (realobj[i] != exp) {
1625 int limit;
1626 /* Mismatch ! */
1627 /* Print header */
1628 if (lines == 0) {
1170532b
JP
1629 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1630 print_tainted(), cachep->name,
1631 realobj, size);
1da177e4
LT
1632 print_objinfo(cachep, objp, 0);
1633 }
1634 /* Hexdump the affected line */
b28a02de 1635 i = (i / 16) * 16;
1da177e4 1636 limit = 16;
b28a02de
PE
1637 if (i + limit > size)
1638 limit = size - i;
1da177e4
LT
1639 dump_line(realobj, i, limit);
1640 i += 16;
1641 lines++;
1642 /* Limit to 5 lines */
1643 if (lines > 5)
1644 break;
1645 }
1646 }
1647 if (lines != 0) {
1648 /* Print some data about the neighboring objects, if they
1649 * exist:
1650 */
8456a648 1651 struct page *page = virt_to_head_page(objp);
8fea4e96 1652 unsigned int objnr;
1da177e4 1653
8456a648 1654 objnr = obj_to_index(cachep, page, objp);
1da177e4 1655 if (objnr) {
8456a648 1656 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1657 realobj = (char *)objp + obj_offset(cachep);
1170532b 1658 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1659 print_objinfo(cachep, objp, 2);
1660 }
b28a02de 1661 if (objnr + 1 < cachep->num) {
8456a648 1662 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1663 realobj = (char *)objp + obj_offset(cachep);
1170532b 1664 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1665 print_objinfo(cachep, objp, 2);
1666 }
1667 }
1668}
1669#endif
1670
12dd36fa 1671#if DEBUG
8456a648
JK
1672static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1673 struct page *page)
1da177e4 1674{
1da177e4 1675 int i;
b03a017b
JK
1676
1677 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1678 poison_obj(cachep, page->freelist - obj_offset(cachep),
1679 POISON_FREE);
1680 }
1681
1da177e4 1682 for (i = 0; i < cachep->num; i++) {
8456a648 1683 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1684
1685 if (cachep->flags & SLAB_POISON) {
1da177e4 1686 check_poison_obj(cachep, objp);
40b44137 1687 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1688 }
1689 if (cachep->flags & SLAB_RED_ZONE) {
1690 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1691 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1692 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1693 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1694 }
1da177e4 1695 }
12dd36fa 1696}
1da177e4 1697#else
8456a648
JK
1698static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1699 struct page *page)
12dd36fa 1700{
12dd36fa 1701}
1da177e4
LT
1702#endif
1703
911851e6
RD
1704/**
1705 * slab_destroy - destroy and release all objects in a slab
1706 * @cachep: cache pointer being destroyed
cb8ee1a3 1707 * @page: page pointer being destroyed
911851e6 1708 *
8a7d9b43
WSH
1709 * Destroy all the objs in a slab page, and release the mem back to the system.
1710 * Before calling the slab page must have been unlinked from the cache. The
1711 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1712 */
8456a648 1713static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1714{
7e007355 1715 void *freelist;
12dd36fa 1716
8456a648
JK
1717 freelist = page->freelist;
1718 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1719 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1720 call_rcu(&page->rcu_head, kmem_rcu_free);
1721 else
0c3aa83e 1722 kmem_freepages(cachep, page);
68126702
JK
1723
1724 /*
8456a648 1725 * From now on, we don't use freelist
68126702
JK
1726 * although actual page can be freed in rcu context
1727 */
1728 if (OFF_SLAB(cachep))
8456a648 1729 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1730}
1731
97654dfa
JK
1732static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1733{
1734 struct page *page, *n;
1735
1736 list_for_each_entry_safe(page, n, list, lru) {
1737 list_del(&page->lru);
1738 slab_destroy(cachep, page);
1739 }
1740}
1741
4d268eba 1742/**
a70773dd
RD
1743 * calculate_slab_order - calculate size (page order) of slabs
1744 * @cachep: pointer to the cache that is being created
1745 * @size: size of objects to be created in this cache.
a70773dd
RD
1746 * @flags: slab allocation flags
1747 *
1748 * Also calculates the number of objects per slab.
4d268eba
PE
1749 *
1750 * This could be made much more intelligent. For now, try to avoid using
1751 * high order pages for slabs. When the gfp() functions are more friendly
1752 * towards high-order requests, this should be changed.
1753 */
a737b3e2 1754static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1755 size_t size, unsigned long flags)
4d268eba
PE
1756{
1757 size_t left_over = 0;
9888e6fa 1758 int gfporder;
4d268eba 1759
0aa817f0 1760 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1761 unsigned int num;
1762 size_t remainder;
1763
70f75067 1764 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1765 if (!num)
1766 continue;
9888e6fa 1767
f315e3fa
JK
1768 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1769 if (num > SLAB_OBJ_MAX_NUM)
1770 break;
1771
b1ab41c4 1772 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1773 struct kmem_cache *freelist_cache;
1774 size_t freelist_size;
1775
1776 freelist_size = num * sizeof(freelist_idx_t);
1777 freelist_cache = kmalloc_slab(freelist_size, 0u);
1778 if (!freelist_cache)
1779 continue;
1780
b1ab41c4 1781 /*
3217fd9b 1782 * Needed to avoid possible looping condition
76b342bd 1783 * in cache_grow_begin()
b1ab41c4 1784 */
3217fd9b
JK
1785 if (OFF_SLAB(freelist_cache))
1786 continue;
b1ab41c4 1787
3217fd9b
JK
1788 /* check if off slab has enough benefit */
1789 if (freelist_cache->size > cachep->size / 2)
1790 continue;
b1ab41c4 1791 }
4d268eba 1792
9888e6fa 1793 /* Found something acceptable - save it away */
4d268eba 1794 cachep->num = num;
9888e6fa 1795 cachep->gfporder = gfporder;
4d268eba
PE
1796 left_over = remainder;
1797
f78bb8ad
LT
1798 /*
1799 * A VFS-reclaimable slab tends to have most allocations
1800 * as GFP_NOFS and we really don't want to have to be allocating
1801 * higher-order pages when we are unable to shrink dcache.
1802 */
1803 if (flags & SLAB_RECLAIM_ACCOUNT)
1804 break;
1805
4d268eba
PE
1806 /*
1807 * Large number of objects is good, but very large slabs are
1808 * currently bad for the gfp()s.
1809 */
543585cc 1810 if (gfporder >= slab_max_order)
4d268eba
PE
1811 break;
1812
9888e6fa
LT
1813 /*
1814 * Acceptable internal fragmentation?
1815 */
a737b3e2 1816 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1817 break;
1818 }
1819 return left_over;
1820}
1821
bf0dea23
JK
1822static struct array_cache __percpu *alloc_kmem_cache_cpus(
1823 struct kmem_cache *cachep, int entries, int batchcount)
1824{
1825 int cpu;
1826 size_t size;
1827 struct array_cache __percpu *cpu_cache;
1828
1829 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1830 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1831
1832 if (!cpu_cache)
1833 return NULL;
1834
1835 for_each_possible_cpu(cpu) {
1836 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1837 entries, batchcount);
1838 }
1839
1840 return cpu_cache;
1841}
1842
bd721ea7 1843static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1844{
97d06609 1845 if (slab_state >= FULL)
83b519e8 1846 return enable_cpucache(cachep, gfp);
2ed3a4ef 1847
bf0dea23
JK
1848 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1849 if (!cachep->cpu_cache)
1850 return 1;
1851
97d06609 1852 if (slab_state == DOWN) {
bf0dea23
JK
1853 /* Creation of first cache (kmem_cache). */
1854 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1855 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1856 /* For kmem_cache_node */
1857 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1858 } else {
bf0dea23 1859 int node;
f30cf7d1 1860
bf0dea23
JK
1861 for_each_online_node(node) {
1862 cachep->node[node] = kmalloc_node(
1863 sizeof(struct kmem_cache_node), gfp, node);
1864 BUG_ON(!cachep->node[node]);
1865 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1866 }
1867 }
bf0dea23 1868
6a67368c 1869 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1870 jiffies + REAPTIMEOUT_NODE +
1871 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1872
1873 cpu_cache_get(cachep)->avail = 0;
1874 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1875 cpu_cache_get(cachep)->batchcount = 1;
1876 cpu_cache_get(cachep)->touched = 0;
1877 cachep->batchcount = 1;
1878 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1879 return 0;
f30cf7d1
PE
1880}
1881
12220dea
JK
1882unsigned long kmem_cache_flags(unsigned long object_size,
1883 unsigned long flags, const char *name,
1884 void (*ctor)(void *))
1885{
1886 return flags;
1887}
1888
1889struct kmem_cache *
1890__kmem_cache_alias(const char *name, size_t size, size_t align,
1891 unsigned long flags, void (*ctor)(void *))
1892{
1893 struct kmem_cache *cachep;
1894
1895 cachep = find_mergeable(size, align, flags, name, ctor);
1896 if (cachep) {
1897 cachep->refcount++;
1898
1899 /*
1900 * Adjust the object sizes so that we clear
1901 * the complete object on kzalloc.
1902 */
1903 cachep->object_size = max_t(int, cachep->object_size, size);
1904 }
1905 return cachep;
1906}
1907
b03a017b
JK
1908static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1909 size_t size, unsigned long flags)
1910{
1911 size_t left;
1912
1913 cachep->num = 0;
1914
5f0d5a3a 1915 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1916 return false;
1917
1918 left = calculate_slab_order(cachep, size,
1919 flags | CFLGS_OBJFREELIST_SLAB);
1920 if (!cachep->num)
1921 return false;
1922
1923 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1924 return false;
1925
1926 cachep->colour = left / cachep->colour_off;
1927
1928 return true;
1929}
1930
158e319b
JK
1931static bool set_off_slab_cache(struct kmem_cache *cachep,
1932 size_t size, unsigned long flags)
1933{
1934 size_t left;
1935
1936 cachep->num = 0;
1937
1938 /*
3217fd9b
JK
1939 * Always use on-slab management when SLAB_NOLEAKTRACE
1940 * to avoid recursive calls into kmemleak.
158e319b 1941 */
158e319b
JK
1942 if (flags & SLAB_NOLEAKTRACE)
1943 return false;
1944
1945 /*
1946 * Size is large, assume best to place the slab management obj
1947 * off-slab (should allow better packing of objs).
1948 */
1949 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1950 if (!cachep->num)
1951 return false;
1952
1953 /*
1954 * If the slab has been placed off-slab, and we have enough space then
1955 * move it on-slab. This is at the expense of any extra colouring.
1956 */
1957 if (left >= cachep->num * sizeof(freelist_idx_t))
1958 return false;
1959
1960 cachep->colour = left / cachep->colour_off;
1961
1962 return true;
1963}
1964
1965static bool set_on_slab_cache(struct kmem_cache *cachep,
1966 size_t size, unsigned long flags)
1967{
1968 size_t left;
1969
1970 cachep->num = 0;
1971
1972 left = calculate_slab_order(cachep, size, flags);
1973 if (!cachep->num)
1974 return false;
1975
1976 cachep->colour = left / cachep->colour_off;
1977
1978 return true;
1979}
1980
1da177e4 1981/**
039363f3 1982 * __kmem_cache_create - Create a cache.
a755b76a 1983 * @cachep: cache management descriptor
1da177e4 1984 * @flags: SLAB flags
1da177e4
LT
1985 *
1986 * Returns a ptr to the cache on success, NULL on failure.
1987 * Cannot be called within a int, but can be interrupted.
20c2df83 1988 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1989 *
1da177e4
LT
1990 * The flags are
1991 *
1992 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1993 * to catch references to uninitialised memory.
1994 *
1995 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1996 * for buffer overruns.
1997 *
1da177e4
LT
1998 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1999 * cacheline. This can be beneficial if you're counting cycles as closely
2000 * as davem.
2001 */
278b1bb1 2002int
8a13a4cc 2003__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2004{
d4a5fca5 2005 size_t ralign = BYTES_PER_WORD;
83b519e8 2006 gfp_t gfp;
278b1bb1 2007 int err;
8a13a4cc 2008 size_t size = cachep->size;
1da177e4 2009
1da177e4 2010#if DEBUG
1da177e4
LT
2011#if FORCED_DEBUG
2012 /*
2013 * Enable redzoning and last user accounting, except for caches with
2014 * large objects, if the increased size would increase the object size
2015 * above the next power of two: caches with object sizes just above a
2016 * power of two have a significant amount of internal fragmentation.
2017 */
87a927c7
DW
2018 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2019 2 * sizeof(unsigned long long)))
b28a02de 2020 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 2021 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
2022 flags |= SLAB_POISON;
2023#endif
1da177e4 2024#endif
1da177e4 2025
a737b3e2
AM
2026 /*
2027 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2028 * unaligned accesses for some archs when redzoning is used, and makes
2029 * sure any on-slab bufctl's are also correctly aligned.
2030 */
e0771950 2031 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 2032
87a927c7
DW
2033 if (flags & SLAB_RED_ZONE) {
2034 ralign = REDZONE_ALIGN;
2035 /* If redzoning, ensure that the second redzone is suitably
2036 * aligned, by adjusting the object size accordingly. */
e0771950 2037 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 2038 }
ca5f9703 2039
a44b56d3 2040 /* 3) caller mandated alignment */
8a13a4cc
CL
2041 if (ralign < cachep->align) {
2042 ralign = cachep->align;
1da177e4 2043 }
3ff84a7f
PE
2044 /* disable debug if necessary */
2045 if (ralign > __alignof__(unsigned long long))
a44b56d3 2046 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2047 /*
ca5f9703 2048 * 4) Store it.
1da177e4 2049 */
8a13a4cc 2050 cachep->align = ralign;
158e319b
JK
2051 cachep->colour_off = cache_line_size();
2052 /* Offset must be a multiple of the alignment. */
2053 if (cachep->colour_off < cachep->align)
2054 cachep->colour_off = cachep->align;
1da177e4 2055
83b519e8
PE
2056 if (slab_is_available())
2057 gfp = GFP_KERNEL;
2058 else
2059 gfp = GFP_NOWAIT;
2060
1da177e4 2061#if DEBUG
1da177e4 2062
ca5f9703
PE
2063 /*
2064 * Both debugging options require word-alignment which is calculated
2065 * into align above.
2066 */
1da177e4 2067 if (flags & SLAB_RED_ZONE) {
1da177e4 2068 /* add space for red zone words */
3ff84a7f
PE
2069 cachep->obj_offset += sizeof(unsigned long long);
2070 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2071 }
2072 if (flags & SLAB_STORE_USER) {
ca5f9703 2073 /* user store requires one word storage behind the end of
87a927c7
DW
2074 * the real object. But if the second red zone needs to be
2075 * aligned to 64 bits, we must allow that much space.
1da177e4 2076 */
87a927c7
DW
2077 if (flags & SLAB_RED_ZONE)
2078 size += REDZONE_ALIGN;
2079 else
2080 size += BYTES_PER_WORD;
1da177e4 2081 }
832a15d2
JK
2082#endif
2083
7ed2f9e6
AP
2084 kasan_cache_create(cachep, &size, &flags);
2085
832a15d2
JK
2086 size = ALIGN(size, cachep->align);
2087 /*
2088 * We should restrict the number of objects in a slab to implement
2089 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2090 */
2091 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2092 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2093
2094#if DEBUG
03a2d2a3
JK
2095 /*
2096 * To activate debug pagealloc, off-slab management is necessary
2097 * requirement. In early phase of initialization, small sized slab
2098 * doesn't get initialized so it would not be possible. So, we need
2099 * to check size >= 256. It guarantees that all necessary small
2100 * sized slab is initialized in current slab initialization sequence.
2101 */
40323278 2102 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2103 size >= 256 && cachep->object_size > cache_line_size()) {
2104 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2105 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2106
2107 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2108 flags |= CFLGS_OFF_SLAB;
2109 cachep->obj_offset += tmp_size - size;
2110 size = tmp_size;
2111 goto done;
2112 }
2113 }
1da177e4 2114 }
1da177e4
LT
2115#endif
2116
b03a017b
JK
2117 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2118 flags |= CFLGS_OBJFREELIST_SLAB;
2119 goto done;
2120 }
2121
158e319b 2122 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2123 flags |= CFLGS_OFF_SLAB;
158e319b 2124 goto done;
832a15d2 2125 }
1da177e4 2126
158e319b
JK
2127 if (set_on_slab_cache(cachep, size, flags))
2128 goto done;
1da177e4 2129
158e319b 2130 return -E2BIG;
1da177e4 2131
158e319b
JK
2132done:
2133 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2134 cachep->flags = flags;
a57a4988 2135 cachep->allocflags = __GFP_COMP;
a3187e43 2136 if (flags & SLAB_CACHE_DMA)
a618e89f 2137 cachep->allocflags |= GFP_DMA;
3b0efdfa 2138 cachep->size = size;
6a2d7a95 2139 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2140
40b44137
JK
2141#if DEBUG
2142 /*
2143 * If we're going to use the generic kernel_map_pages()
2144 * poisoning, then it's going to smash the contents of
2145 * the redzone and userword anyhow, so switch them off.
2146 */
2147 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2148 (cachep->flags & SLAB_POISON) &&
2149 is_debug_pagealloc_cache(cachep))
2150 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2151#endif
2152
2153 if (OFF_SLAB(cachep)) {
158e319b
JK
2154 cachep->freelist_cache =
2155 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2156 }
1da177e4 2157
278b1bb1
CL
2158 err = setup_cpu_cache(cachep, gfp);
2159 if (err) {
52b4b950 2160 __kmem_cache_release(cachep);
278b1bb1 2161 return err;
2ed3a4ef 2162 }
1da177e4 2163
278b1bb1 2164 return 0;
1da177e4 2165}
1da177e4
LT
2166
2167#if DEBUG
2168static void check_irq_off(void)
2169{
2170 BUG_ON(!irqs_disabled());
2171}
2172
2173static void check_irq_on(void)
2174{
2175 BUG_ON(irqs_disabled());
2176}
2177
18726ca8
JK
2178static void check_mutex_acquired(void)
2179{
2180 BUG_ON(!mutex_is_locked(&slab_mutex));
2181}
2182
343e0d7a 2183static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2184{
2185#ifdef CONFIG_SMP
2186 check_irq_off();
18bf8541 2187 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2188#endif
2189}
e498be7d 2190
343e0d7a 2191static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2192{
2193#ifdef CONFIG_SMP
2194 check_irq_off();
18bf8541 2195 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2196#endif
2197}
2198
1da177e4
LT
2199#else
2200#define check_irq_off() do { } while(0)
2201#define check_irq_on() do { } while(0)
18726ca8 2202#define check_mutex_acquired() do { } while(0)
1da177e4 2203#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2204#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2205#endif
2206
18726ca8
JK
2207static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2208 int node, bool free_all, struct list_head *list)
2209{
2210 int tofree;
2211
2212 if (!ac || !ac->avail)
2213 return;
2214
2215 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2216 if (tofree > ac->avail)
2217 tofree = (ac->avail + 1) / 2;
2218
2219 free_block(cachep, ac->entry, tofree, node, list);
2220 ac->avail -= tofree;
2221 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2222}
aab2207c 2223
1da177e4
LT
2224static void do_drain(void *arg)
2225{
a737b3e2 2226 struct kmem_cache *cachep = arg;
1da177e4 2227 struct array_cache *ac;
7d6e6d09 2228 int node = numa_mem_id();
18bf8541 2229 struct kmem_cache_node *n;
97654dfa 2230 LIST_HEAD(list);
1da177e4
LT
2231
2232 check_irq_off();
9a2dba4b 2233 ac = cpu_cache_get(cachep);
18bf8541
CL
2234 n = get_node(cachep, node);
2235 spin_lock(&n->list_lock);
97654dfa 2236 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2237 spin_unlock(&n->list_lock);
97654dfa 2238 slabs_destroy(cachep, &list);
1da177e4
LT
2239 ac->avail = 0;
2240}
2241
343e0d7a 2242static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2243{
ce8eb6c4 2244 struct kmem_cache_node *n;
e498be7d 2245 int node;
18726ca8 2246 LIST_HEAD(list);
e498be7d 2247
15c8b6c1 2248 on_each_cpu(do_drain, cachep, 1);
1da177e4 2249 check_irq_on();
18bf8541
CL
2250 for_each_kmem_cache_node(cachep, node, n)
2251 if (n->alien)
ce8eb6c4 2252 drain_alien_cache(cachep, n->alien);
a4523a8b 2253
18726ca8
JK
2254 for_each_kmem_cache_node(cachep, node, n) {
2255 spin_lock_irq(&n->list_lock);
2256 drain_array_locked(cachep, n->shared, node, true, &list);
2257 spin_unlock_irq(&n->list_lock);
2258
2259 slabs_destroy(cachep, &list);
2260 }
1da177e4
LT
2261}
2262
ed11d9eb
CL
2263/*
2264 * Remove slabs from the list of free slabs.
2265 * Specify the number of slabs to drain in tofree.
2266 *
2267 * Returns the actual number of slabs released.
2268 */
2269static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2270 struct kmem_cache_node *n, int tofree)
1da177e4 2271{
ed11d9eb
CL
2272 struct list_head *p;
2273 int nr_freed;
8456a648 2274 struct page *page;
1da177e4 2275
ed11d9eb 2276 nr_freed = 0;
ce8eb6c4 2277 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2278
ce8eb6c4
CL
2279 spin_lock_irq(&n->list_lock);
2280 p = n->slabs_free.prev;
2281 if (p == &n->slabs_free) {
2282 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2283 goto out;
2284 }
1da177e4 2285
8456a648 2286 page = list_entry(p, struct page, lru);
8456a648 2287 list_del(&page->lru);
f728b0a5 2288 n->free_slabs--;
bf00bd34 2289 n->total_slabs--;
ed11d9eb
CL
2290 /*
2291 * Safe to drop the lock. The slab is no longer linked
2292 * to the cache.
2293 */
ce8eb6c4
CL
2294 n->free_objects -= cache->num;
2295 spin_unlock_irq(&n->list_lock);
8456a648 2296 slab_destroy(cache, page);
ed11d9eb 2297 nr_freed++;
1da177e4 2298 }
ed11d9eb
CL
2299out:
2300 return nr_freed;
1da177e4
LT
2301}
2302
c9fc5864 2303int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2304{
18bf8541
CL
2305 int ret = 0;
2306 int node;
ce8eb6c4 2307 struct kmem_cache_node *n;
e498be7d
CL
2308
2309 drain_cpu_caches(cachep);
2310
2311 check_irq_on();
18bf8541 2312 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2313 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2314
ce8eb6c4
CL
2315 ret += !list_empty(&n->slabs_full) ||
2316 !list_empty(&n->slabs_partial);
e498be7d
CL
2317 }
2318 return (ret ? 1 : 0);
2319}
2320
c9fc5864
TH
2321#ifdef CONFIG_MEMCG
2322void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2323{
2324 __kmem_cache_shrink(cachep);
2325}
2326#endif
2327
945cf2b6 2328int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2329{
c9fc5864 2330 return __kmem_cache_shrink(cachep);
52b4b950
DS
2331}
2332
2333void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2334{
12c3667f 2335 int i;
ce8eb6c4 2336 struct kmem_cache_node *n;
1da177e4 2337
c7ce4f60
TG
2338 cache_random_seq_destroy(cachep);
2339
bf0dea23 2340 free_percpu(cachep->cpu_cache);
1da177e4 2341
ce8eb6c4 2342 /* NUMA: free the node structures */
18bf8541
CL
2343 for_each_kmem_cache_node(cachep, i, n) {
2344 kfree(n->shared);
2345 free_alien_cache(n->alien);
2346 kfree(n);
2347 cachep->node[i] = NULL;
12c3667f 2348 }
1da177e4 2349}
1da177e4 2350
e5ac9c5a
RT
2351/*
2352 * Get the memory for a slab management obj.
5f0985bb
JZ
2353 *
2354 * For a slab cache when the slab descriptor is off-slab, the
2355 * slab descriptor can't come from the same cache which is being created,
2356 * Because if it is the case, that means we defer the creation of
2357 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2358 * And we eventually call down to __kmem_cache_create(), which
2359 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2360 * This is a "chicken-and-egg" problem.
2361 *
2362 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2363 * which are all initialized during kmem_cache_init().
e5ac9c5a 2364 */
7e007355 2365static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2366 struct page *page, int colour_off,
2367 gfp_t local_flags, int nodeid)
1da177e4 2368{
7e007355 2369 void *freelist;
0c3aa83e 2370 void *addr = page_address(page);
b28a02de 2371
2e6b3602
JK
2372 page->s_mem = addr + colour_off;
2373 page->active = 0;
2374
b03a017b
JK
2375 if (OBJFREELIST_SLAB(cachep))
2376 freelist = NULL;
2377 else if (OFF_SLAB(cachep)) {
1da177e4 2378 /* Slab management obj is off-slab. */
8456a648 2379 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2380 local_flags, nodeid);
8456a648 2381 if (!freelist)
1da177e4
LT
2382 return NULL;
2383 } else {
2e6b3602
JK
2384 /* We will use last bytes at the slab for freelist */
2385 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2386 cachep->freelist_size;
1da177e4 2387 }
2e6b3602 2388
8456a648 2389 return freelist;
1da177e4
LT
2390}
2391
7cc68973 2392static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2393{
a41adfaa 2394 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2395}
2396
2397static inline void set_free_obj(struct page *page,
7cc68973 2398 unsigned int idx, freelist_idx_t val)
e5c58dfd 2399{
a41adfaa 2400 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2401}
2402
10b2e9e8 2403static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2404{
10b2e9e8 2405#if DEBUG
1da177e4
LT
2406 int i;
2407
2408 for (i = 0; i < cachep->num; i++) {
8456a648 2409 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2410
1da177e4
LT
2411 if (cachep->flags & SLAB_STORE_USER)
2412 *dbg_userword(cachep, objp) = NULL;
2413
2414 if (cachep->flags & SLAB_RED_ZONE) {
2415 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2416 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2417 }
2418 /*
a737b3e2
AM
2419 * Constructors are not allowed to allocate memory from the same
2420 * cache which they are a constructor for. Otherwise, deadlock.
2421 * They must also be threaded.
1da177e4 2422 */
7ed2f9e6
AP
2423 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2424 kasan_unpoison_object_data(cachep,
2425 objp + obj_offset(cachep));
51cc5068 2426 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2427 kasan_poison_object_data(
2428 cachep, objp + obj_offset(cachep));
2429 }
1da177e4
LT
2430
2431 if (cachep->flags & SLAB_RED_ZONE) {
2432 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2433 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2434 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2435 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2436 }
40b44137
JK
2437 /* need to poison the objs? */
2438 if (cachep->flags & SLAB_POISON) {
2439 poison_obj(cachep, objp, POISON_FREE);
2440 slab_kernel_map(cachep, objp, 0, 0);
2441 }
10b2e9e8 2442 }
1da177e4 2443#endif
10b2e9e8
JK
2444}
2445
c7ce4f60
TG
2446#ifdef CONFIG_SLAB_FREELIST_RANDOM
2447/* Hold information during a freelist initialization */
2448union freelist_init_state {
2449 struct {
2450 unsigned int pos;
7c00fce9 2451 unsigned int *list;
c7ce4f60 2452 unsigned int count;
c7ce4f60
TG
2453 };
2454 struct rnd_state rnd_state;
2455};
2456
2457/*
2458 * Initialize the state based on the randomization methode available.
2459 * return true if the pre-computed list is available, false otherwize.
2460 */
2461static bool freelist_state_initialize(union freelist_init_state *state,
2462 struct kmem_cache *cachep,
2463 unsigned int count)
2464{
2465 bool ret;
2466 unsigned int rand;
2467
2468 /* Use best entropy available to define a random shift */
7c00fce9 2469 rand = get_random_int();
c7ce4f60
TG
2470
2471 /* Use a random state if the pre-computed list is not available */
2472 if (!cachep->random_seq) {
2473 prandom_seed_state(&state->rnd_state, rand);
2474 ret = false;
2475 } else {
2476 state->list = cachep->random_seq;
2477 state->count = count;
c4e490cf 2478 state->pos = rand % count;
c7ce4f60
TG
2479 ret = true;
2480 }
2481 return ret;
2482}
2483
2484/* Get the next entry on the list and randomize it using a random shift */
2485static freelist_idx_t next_random_slot(union freelist_init_state *state)
2486{
c4e490cf
JS
2487 if (state->pos >= state->count)
2488 state->pos = 0;
2489 return state->list[state->pos++];
c7ce4f60
TG
2490}
2491
7c00fce9
TG
2492/* Swap two freelist entries */
2493static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2494{
2495 swap(((freelist_idx_t *)page->freelist)[a],
2496 ((freelist_idx_t *)page->freelist)[b]);
2497}
2498
c7ce4f60
TG
2499/*
2500 * Shuffle the freelist initialization state based on pre-computed lists.
2501 * return true if the list was successfully shuffled, false otherwise.
2502 */
2503static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2504{
7c00fce9 2505 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2506 union freelist_init_state state;
2507 bool precomputed;
2508
2509 if (count < 2)
2510 return false;
2511
2512 precomputed = freelist_state_initialize(&state, cachep, count);
2513
2514 /* Take a random entry as the objfreelist */
2515 if (OBJFREELIST_SLAB(cachep)) {
2516 if (!precomputed)
2517 objfreelist = count - 1;
2518 else
2519 objfreelist = next_random_slot(&state);
2520 page->freelist = index_to_obj(cachep, page, objfreelist) +
2521 obj_offset(cachep);
2522 count--;
2523 }
2524
2525 /*
2526 * On early boot, generate the list dynamically.
2527 * Later use a pre-computed list for speed.
2528 */
2529 if (!precomputed) {
7c00fce9
TG
2530 for (i = 0; i < count; i++)
2531 set_free_obj(page, i, i);
2532
2533 /* Fisher-Yates shuffle */
2534 for (i = count - 1; i > 0; i--) {
2535 rand = prandom_u32_state(&state.rnd_state);
2536 rand %= (i + 1);
2537 swap_free_obj(page, i, rand);
2538 }
c7ce4f60
TG
2539 } else {
2540 for (i = 0; i < count; i++)
2541 set_free_obj(page, i, next_random_slot(&state));
2542 }
2543
2544 if (OBJFREELIST_SLAB(cachep))
2545 set_free_obj(page, cachep->num - 1, objfreelist);
2546
2547 return true;
2548}
2549#else
2550static inline bool shuffle_freelist(struct kmem_cache *cachep,
2551 struct page *page)
2552{
2553 return false;
2554}
2555#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2556
10b2e9e8
JK
2557static void cache_init_objs(struct kmem_cache *cachep,
2558 struct page *page)
2559{
2560 int i;
7ed2f9e6 2561 void *objp;
c7ce4f60 2562 bool shuffled;
10b2e9e8
JK
2563
2564 cache_init_objs_debug(cachep, page);
2565
c7ce4f60
TG
2566 /* Try to randomize the freelist if enabled */
2567 shuffled = shuffle_freelist(cachep, page);
2568
2569 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2570 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2571 obj_offset(cachep);
2572 }
2573
10b2e9e8 2574 for (i = 0; i < cachep->num; i++) {
b3cbd9bf
AR
2575 objp = index_to_obj(cachep, page, i);
2576 kasan_init_slab_obj(cachep, objp);
2577
10b2e9e8 2578 /* constructor could break poison info */
7ed2f9e6 2579 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2580 kasan_unpoison_object_data(cachep, objp);
2581 cachep->ctor(objp);
2582 kasan_poison_object_data(cachep, objp);
2583 }
10b2e9e8 2584
c7ce4f60
TG
2585 if (!shuffled)
2586 set_free_obj(page, i, i);
1da177e4 2587 }
1da177e4
LT
2588}
2589
260b61dd 2590static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2591{
b1cb0982 2592 void *objp;
78d382d7 2593
e5c58dfd 2594 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2595 page->active++;
78d382d7 2596
d31676df
JK
2597#if DEBUG
2598 if (cachep->flags & SLAB_STORE_USER)
2599 set_store_user_dirty(cachep);
2600#endif
2601
78d382d7
MD
2602 return objp;
2603}
2604
260b61dd
JK
2605static void slab_put_obj(struct kmem_cache *cachep,
2606 struct page *page, void *objp)
78d382d7 2607{
8456a648 2608 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2609#if DEBUG
16025177 2610 unsigned int i;
b1cb0982 2611
b1cb0982 2612 /* Verify double free bug */
8456a648 2613 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2614 if (get_free_obj(page, i) == objnr) {
1170532b 2615 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2616 cachep->name, objp);
b1cb0982
JK
2617 BUG();
2618 }
78d382d7
MD
2619 }
2620#endif
8456a648 2621 page->active--;
b03a017b
JK
2622 if (!page->freelist)
2623 page->freelist = objp + obj_offset(cachep);
2624
e5c58dfd 2625 set_free_obj(page, page->active, objnr);
78d382d7
MD
2626}
2627
4776874f
PE
2628/*
2629 * Map pages beginning at addr to the given cache and slab. This is required
2630 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2631 * virtual address for kfree, ksize, and slab debugging.
4776874f 2632 */
8456a648 2633static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2634 void *freelist)
1da177e4 2635{
a57a4988 2636 page->slab_cache = cache;
8456a648 2637 page->freelist = freelist;
1da177e4
LT
2638}
2639
2640/*
2641 * Grow (by 1) the number of slabs within a cache. This is called by
2642 * kmem_cache_alloc() when there are no active objs left in a cache.
2643 */
76b342bd
JK
2644static struct page *cache_grow_begin(struct kmem_cache *cachep,
2645 gfp_t flags, int nodeid)
1da177e4 2646{
7e007355 2647 void *freelist;
b28a02de
PE
2648 size_t offset;
2649 gfp_t local_flags;
511e3a05 2650 int page_node;
ce8eb6c4 2651 struct kmem_cache_node *n;
511e3a05 2652 struct page *page;
1da177e4 2653
a737b3e2
AM
2654 /*
2655 * Be lazy and only check for valid flags here, keeping it out of the
2656 * critical path in kmem_cache_alloc().
1da177e4 2657 */
c871ac4e 2658 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2659 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2660 flags &= ~GFP_SLAB_BUG_MASK;
2661 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2662 invalid_mask, &invalid_mask, flags, &flags);
2663 dump_stack();
c871ac4e 2664 }
6cb06229 2665 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2666
1da177e4 2667 check_irq_off();
d0164adc 2668 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2669 local_irq_enable();
2670
a737b3e2
AM
2671 /*
2672 * Get mem for the objs. Attempt to allocate a physical page from
2673 * 'nodeid'.
e498be7d 2674 */
511e3a05 2675 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2676 if (!page)
1da177e4
LT
2677 goto failed;
2678
511e3a05
JK
2679 page_node = page_to_nid(page);
2680 n = get_node(cachep, page_node);
03d1d43a
JK
2681
2682 /* Get colour for the slab, and cal the next value. */
2683 n->colour_next++;
2684 if (n->colour_next >= cachep->colour)
2685 n->colour_next = 0;
2686
2687 offset = n->colour_next;
2688 if (offset >= cachep->colour)
2689 offset = 0;
2690
2691 offset *= cachep->colour_off;
2692
1da177e4 2693 /* Get slab management. */
8456a648 2694 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2695 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2696 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2697 goto opps1;
2698
8456a648 2699 slab_map_pages(cachep, page, freelist);
1da177e4 2700
7ed2f9e6 2701 kasan_poison_slab(page);
8456a648 2702 cache_init_objs(cachep, page);
1da177e4 2703
d0164adc 2704 if (gfpflags_allow_blocking(local_flags))
1da177e4 2705 local_irq_disable();
1da177e4 2706
76b342bd
JK
2707 return page;
2708
a737b3e2 2709opps1:
0c3aa83e 2710 kmem_freepages(cachep, page);
a737b3e2 2711failed:
d0164adc 2712 if (gfpflags_allow_blocking(local_flags))
1da177e4 2713 local_irq_disable();
76b342bd
JK
2714 return NULL;
2715}
2716
2717static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2718{
2719 struct kmem_cache_node *n;
2720 void *list = NULL;
2721
2722 check_irq_off();
2723
2724 if (!page)
2725 return;
2726
2727 INIT_LIST_HEAD(&page->lru);
2728 n = get_node(cachep, page_to_nid(page));
2729
2730 spin_lock(&n->list_lock);
bf00bd34 2731 n->total_slabs++;
f728b0a5 2732 if (!page->active) {
76b342bd 2733 list_add_tail(&page->lru, &(n->slabs_free));
f728b0a5 2734 n->free_slabs++;
bf00bd34 2735 } else
76b342bd 2736 fixup_slab_list(cachep, n, page, &list);
07a63c41 2737
76b342bd
JK
2738 STATS_INC_GROWN(cachep);
2739 n->free_objects += cachep->num - page->active;
2740 spin_unlock(&n->list_lock);
2741
2742 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2743}
2744
2745#if DEBUG
2746
2747/*
2748 * Perform extra freeing checks:
2749 * - detect bad pointers.
2750 * - POISON/RED_ZONE checking
1da177e4
LT
2751 */
2752static void kfree_debugcheck(const void *objp)
2753{
1da177e4 2754 if (!virt_addr_valid(objp)) {
1170532b 2755 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2756 (unsigned long)objp);
2757 BUG();
1da177e4 2758 }
1da177e4
LT
2759}
2760
58ce1fd5
PE
2761static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2762{
b46b8f19 2763 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2764
2765 redzone1 = *dbg_redzone1(cache, obj);
2766 redzone2 = *dbg_redzone2(cache, obj);
2767
2768 /*
2769 * Redzone is ok.
2770 */
2771 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2772 return;
2773
2774 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2775 slab_error(cache, "double free detected");
2776 else
2777 slab_error(cache, "memory outside object was overwritten");
2778
1170532b
JP
2779 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2780 obj, redzone1, redzone2);
58ce1fd5
PE
2781}
2782
343e0d7a 2783static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2784 unsigned long caller)
1da177e4 2785{
1da177e4 2786 unsigned int objnr;
8456a648 2787 struct page *page;
1da177e4 2788
80cbd911
MW
2789 BUG_ON(virt_to_cache(objp) != cachep);
2790
3dafccf2 2791 objp -= obj_offset(cachep);
1da177e4 2792 kfree_debugcheck(objp);
b49af68f 2793 page = virt_to_head_page(objp);
1da177e4 2794
1da177e4 2795 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2796 verify_redzone_free(cachep, objp);
1da177e4
LT
2797 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2798 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2799 }
d31676df
JK
2800 if (cachep->flags & SLAB_STORE_USER) {
2801 set_store_user_dirty(cachep);
7c0cb9c6 2802 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2803 }
1da177e4 2804
8456a648 2805 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2806
2807 BUG_ON(objnr >= cachep->num);
8456a648 2808 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2809
1da177e4 2810 if (cachep->flags & SLAB_POISON) {
1da177e4 2811 poison_obj(cachep, objp, POISON_FREE);
40b44137 2812 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2813 }
2814 return objp;
2815}
2816
1da177e4
LT
2817#else
2818#define kfree_debugcheck(x) do { } while(0)
2819#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2820#endif
2821
b03a017b
JK
2822static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2823 void **list)
2824{
2825#if DEBUG
2826 void *next = *list;
2827 void *objp;
2828
2829 while (next) {
2830 objp = next - obj_offset(cachep);
2831 next = *(void **)next;
2832 poison_obj(cachep, objp, POISON_FREE);
2833 }
2834#endif
2835}
2836
d8410234 2837static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2838 struct kmem_cache_node *n, struct page *page,
2839 void **list)
d8410234
JK
2840{
2841 /* move slabp to correct slabp list: */
2842 list_del(&page->lru);
b03a017b 2843 if (page->active == cachep->num) {
d8410234 2844 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2845 if (OBJFREELIST_SLAB(cachep)) {
2846#if DEBUG
2847 /* Poisoning will be done without holding the lock */
2848 if (cachep->flags & SLAB_POISON) {
2849 void **objp = page->freelist;
2850
2851 *objp = *list;
2852 *list = objp;
2853 }
2854#endif
2855 page->freelist = NULL;
2856 }
2857 } else
d8410234
JK
2858 list_add(&page->lru, &n->slabs_partial);
2859}
2860
f68f8ddd
JK
2861/* Try to find non-pfmemalloc slab if needed */
2862static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2863 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2864{
2865 if (!page)
2866 return NULL;
2867
2868 if (pfmemalloc)
2869 return page;
2870
2871 if (!PageSlabPfmemalloc(page))
2872 return page;
2873
2874 /* No need to keep pfmemalloc slab if we have enough free objects */
2875 if (n->free_objects > n->free_limit) {
2876 ClearPageSlabPfmemalloc(page);
2877 return page;
2878 }
2879
2880 /* Move pfmemalloc slab to the end of list to speed up next search */
2881 list_del(&page->lru);
bf00bd34 2882 if (!page->active) {
f68f8ddd 2883 list_add_tail(&page->lru, &n->slabs_free);
bf00bd34 2884 n->free_slabs++;
f728b0a5 2885 } else
f68f8ddd
JK
2886 list_add_tail(&page->lru, &n->slabs_partial);
2887
2888 list_for_each_entry(page, &n->slabs_partial, lru) {
2889 if (!PageSlabPfmemalloc(page))
2890 return page;
2891 }
2892
f728b0a5 2893 n->free_touched = 1;
f68f8ddd 2894 list_for_each_entry(page, &n->slabs_free, lru) {
f728b0a5 2895 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2896 n->free_slabs--;
f68f8ddd 2897 return page;
f728b0a5 2898 }
f68f8ddd
JK
2899 }
2900
2901 return NULL;
2902}
2903
2904static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2905{
2906 struct page *page;
2907
f728b0a5 2908 assert_spin_locked(&n->list_lock);
bf00bd34 2909 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
7aa0d227
GT
2910 if (!page) {
2911 n->free_touched = 1;
bf00bd34
DR
2912 page = list_first_entry_or_null(&n->slabs_free, struct page,
2913 lru);
f728b0a5 2914 if (page)
bf00bd34 2915 n->free_slabs--;
7aa0d227
GT
2916 }
2917
f68f8ddd 2918 if (sk_memalloc_socks())
bf00bd34 2919 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2920
7aa0d227
GT
2921 return page;
2922}
2923
f68f8ddd
JK
2924static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2925 struct kmem_cache_node *n, gfp_t flags)
2926{
2927 struct page *page;
2928 void *obj;
2929 void *list = NULL;
2930
2931 if (!gfp_pfmemalloc_allowed(flags))
2932 return NULL;
2933
2934 spin_lock(&n->list_lock);
2935 page = get_first_slab(n, true);
2936 if (!page) {
2937 spin_unlock(&n->list_lock);
2938 return NULL;
2939 }
2940
2941 obj = slab_get_obj(cachep, page);
2942 n->free_objects--;
2943
2944 fixup_slab_list(cachep, n, page, &list);
2945
2946 spin_unlock(&n->list_lock);
2947 fixup_objfreelist_debug(cachep, &list);
2948
2949 return obj;
2950}
2951
213b4695
JK
2952/*
2953 * Slab list should be fixed up by fixup_slab_list() for existing slab
2954 * or cache_grow_end() for new slab
2955 */
2956static __always_inline int alloc_block(struct kmem_cache *cachep,
2957 struct array_cache *ac, struct page *page, int batchcount)
2958{
2959 /*
2960 * There must be at least one object available for
2961 * allocation.
2962 */
2963 BUG_ON(page->active >= cachep->num);
2964
2965 while (page->active < cachep->num && batchcount--) {
2966 STATS_INC_ALLOCED(cachep);
2967 STATS_INC_ACTIVE(cachep);
2968 STATS_SET_HIGH(cachep);
2969
2970 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2971 }
2972
2973 return batchcount;
2974}
2975
f68f8ddd 2976static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2977{
2978 int batchcount;
ce8eb6c4 2979 struct kmem_cache_node *n;
801faf0d 2980 struct array_cache *ac, *shared;
1ca4cb24 2981 int node;
b03a017b 2982 void *list = NULL;
76b342bd 2983 struct page *page;
1ca4cb24 2984
1da177e4 2985 check_irq_off();
7d6e6d09 2986 node = numa_mem_id();
f68f8ddd 2987
9a2dba4b 2988 ac = cpu_cache_get(cachep);
1da177e4
LT
2989 batchcount = ac->batchcount;
2990 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2991 /*
2992 * If there was little recent activity on this cache, then
2993 * perform only a partial refill. Otherwise we could generate
2994 * refill bouncing.
1da177e4
LT
2995 */
2996 batchcount = BATCHREFILL_LIMIT;
2997 }
18bf8541 2998 n = get_node(cachep, node);
e498be7d 2999
ce8eb6c4 3000 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
3001 shared = READ_ONCE(n->shared);
3002 if (!n->free_objects && (!shared || !shared->avail))
3003 goto direct_grow;
3004
ce8eb6c4 3005 spin_lock(&n->list_lock);
801faf0d 3006 shared = READ_ONCE(n->shared);
1da177e4 3007
3ded175a 3008 /* See if we can refill from the shared array */
801faf0d
JK
3009 if (shared && transfer_objects(ac, shared, batchcount)) {
3010 shared->touched = 1;
3ded175a 3011 goto alloc_done;
44b57f1c 3012 }
3ded175a 3013
1da177e4 3014 while (batchcount > 0) {
1da177e4 3015 /* Get slab alloc is to come from. */
f68f8ddd 3016 page = get_first_slab(n, false);
7aa0d227
GT
3017 if (!page)
3018 goto must_grow;
1da177e4 3019
1da177e4 3020 check_spinlock_acquired(cachep);
714b8171 3021
213b4695 3022 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3023 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3024 }
3025
a737b3e2 3026must_grow:
ce8eb6c4 3027 n->free_objects -= ac->avail;
a737b3e2 3028alloc_done:
ce8eb6c4 3029 spin_unlock(&n->list_lock);
b03a017b 3030 fixup_objfreelist_debug(cachep, &list);
1da177e4 3031
801faf0d 3032direct_grow:
1da177e4 3033 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3034 /* Check if we can use obj in pfmemalloc slab */
3035 if (sk_memalloc_socks()) {
3036 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3037
3038 if (obj)
3039 return obj;
3040 }
3041
76b342bd 3042 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3043
76b342bd
JK
3044 /*
3045 * cache_grow_begin() can reenable interrupts,
3046 * then ac could change.
3047 */
9a2dba4b 3048 ac = cpu_cache_get(cachep);
213b4695
JK
3049 if (!ac->avail && page)
3050 alloc_block(cachep, ac, page, batchcount);
3051 cache_grow_end(cachep, page);
072bb0aa 3052
213b4695 3053 if (!ac->avail)
1da177e4 3054 return NULL;
1da177e4
LT
3055 }
3056 ac->touched = 1;
072bb0aa 3057
f68f8ddd 3058 return ac->entry[--ac->avail];
1da177e4
LT
3059}
3060
a737b3e2
AM
3061static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3062 gfp_t flags)
1da177e4 3063{
d0164adc 3064 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3065}
3066
3067#if DEBUG
a737b3e2 3068static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3069 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3070{
b28a02de 3071 if (!objp)
1da177e4 3072 return objp;
b28a02de 3073 if (cachep->flags & SLAB_POISON) {
1da177e4 3074 check_poison_obj(cachep, objp);
40b44137 3075 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3076 poison_obj(cachep, objp, POISON_INUSE);
3077 }
3078 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3079 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3080
3081 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3082 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3083 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3084 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
3085 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3086 objp, *dbg_redzone1(cachep, objp),
3087 *dbg_redzone2(cachep, objp));
1da177e4
LT
3088 }
3089 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3090 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3091 }
03787301 3092
3dafccf2 3093 objp += obj_offset(cachep);
4f104934 3094 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3095 cachep->ctor(objp);
7ea466f2
TH
3096 if (ARCH_SLAB_MINALIGN &&
3097 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 3098 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3099 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3100 }
1da177e4
LT
3101 return objp;
3102}
3103#else
3104#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3105#endif
3106
343e0d7a 3107static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3108{
b28a02de 3109 void *objp;
1da177e4
LT
3110 struct array_cache *ac;
3111
5c382300 3112 check_irq_off();
8a8b6502 3113
9a2dba4b 3114 ac = cpu_cache_get(cachep);
1da177e4 3115 if (likely(ac->avail)) {
1da177e4 3116 ac->touched = 1;
f68f8ddd 3117 objp = ac->entry[--ac->avail];
072bb0aa 3118
f68f8ddd
JK
3119 STATS_INC_ALLOCHIT(cachep);
3120 goto out;
1da177e4 3121 }
072bb0aa
MG
3122
3123 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3124 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3125 /*
3126 * the 'ac' may be updated by cache_alloc_refill(),
3127 * and kmemleak_erase() requires its correct value.
3128 */
3129 ac = cpu_cache_get(cachep);
3130
3131out:
d5cff635
CM
3132 /*
3133 * To avoid a false negative, if an object that is in one of the
3134 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3135 * treat the array pointers as a reference to the object.
3136 */
f3d8b53a
O
3137 if (objp)
3138 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3139 return objp;
3140}
3141
e498be7d 3142#ifdef CONFIG_NUMA
c61afb18 3143/*
2ad654bc 3144 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3145 *
3146 * If we are in_interrupt, then process context, including cpusets and
3147 * mempolicy, may not apply and should not be used for allocation policy.
3148 */
3149static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3150{
3151 int nid_alloc, nid_here;
3152
765c4507 3153 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3154 return NULL;
7d6e6d09 3155 nid_alloc = nid_here = numa_mem_id();
c61afb18 3156 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3157 nid_alloc = cpuset_slab_spread_node();
c61afb18 3158 else if (current->mempolicy)
2a389610 3159 nid_alloc = mempolicy_slab_node();
c61afb18 3160 if (nid_alloc != nid_here)
8b98c169 3161 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3162 return NULL;
3163}
3164
765c4507
CL
3165/*
3166 * Fallback function if there was no memory available and no objects on a
3c517a61 3167 * certain node and fall back is permitted. First we scan all the
6a67368c 3168 * available node for available objects. If that fails then we
3c517a61
CL
3169 * perform an allocation without specifying a node. This allows the page
3170 * allocator to do its reclaim / fallback magic. We then insert the
3171 * slab into the proper nodelist and then allocate from it.
765c4507 3172 */
8c8cc2c1 3173static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3174{
8c8cc2c1 3175 struct zonelist *zonelist;
dd1a239f 3176 struct zoneref *z;
54a6eb5c
MG
3177 struct zone *zone;
3178 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3179 void *obj = NULL;
76b342bd 3180 struct page *page;
3c517a61 3181 int nid;
cc9a6c87 3182 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3183
3184 if (flags & __GFP_THISNODE)
3185 return NULL;
3186
cc9a6c87 3187retry_cpuset:
d26914d1 3188 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3189 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3190
3c517a61
CL
3191retry:
3192 /*
3193 * Look through allowed nodes for objects available
3194 * from existing per node queues.
3195 */
54a6eb5c
MG
3196 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3197 nid = zone_to_nid(zone);
aedb0eb1 3198
061d7074 3199 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3200 get_node(cache, nid) &&
3201 get_node(cache, nid)->free_objects) {
3c517a61 3202 obj = ____cache_alloc_node(cache,
4167e9b2 3203 gfp_exact_node(flags), nid);
481c5346
CL
3204 if (obj)
3205 break;
3206 }
3c517a61
CL
3207 }
3208
cfce6604 3209 if (!obj) {
3c517a61
CL
3210 /*
3211 * This allocation will be performed within the constraints
3212 * of the current cpuset / memory policy requirements.
3213 * We may trigger various forms of reclaim on the allowed
3214 * set and go into memory reserves if necessary.
3215 */
76b342bd
JK
3216 page = cache_grow_begin(cache, flags, numa_mem_id());
3217 cache_grow_end(cache, page);
3218 if (page) {
3219 nid = page_to_nid(page);
511e3a05
JK
3220 obj = ____cache_alloc_node(cache,
3221 gfp_exact_node(flags), nid);
0c3aa83e 3222
3c517a61 3223 /*
511e3a05
JK
3224 * Another processor may allocate the objects in
3225 * the slab since we are not holding any locks.
3c517a61 3226 */
511e3a05
JK
3227 if (!obj)
3228 goto retry;
3c517a61 3229 }
aedb0eb1 3230 }
cc9a6c87 3231
d26914d1 3232 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3233 goto retry_cpuset;
765c4507
CL
3234 return obj;
3235}
3236
e498be7d
CL
3237/*
3238 * A interface to enable slab creation on nodeid
1da177e4 3239 */
8b98c169 3240static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3241 int nodeid)
e498be7d 3242{
8456a648 3243 struct page *page;
ce8eb6c4 3244 struct kmem_cache_node *n;
213b4695 3245 void *obj = NULL;
b03a017b 3246 void *list = NULL;
b28a02de 3247
7c3fbbdd 3248 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3249 n = get_node(cachep, nodeid);
ce8eb6c4 3250 BUG_ON(!n);
b28a02de 3251
ca3b9b91 3252 check_irq_off();
ce8eb6c4 3253 spin_lock(&n->list_lock);
f68f8ddd 3254 page = get_first_slab(n, false);
7aa0d227
GT
3255 if (!page)
3256 goto must_grow;
b28a02de 3257
b28a02de 3258 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3259
3260 STATS_INC_NODEALLOCS(cachep);
3261 STATS_INC_ACTIVE(cachep);
3262 STATS_SET_HIGH(cachep);
3263
8456a648 3264 BUG_ON(page->active == cachep->num);
b28a02de 3265
260b61dd 3266 obj = slab_get_obj(cachep, page);
ce8eb6c4 3267 n->free_objects--;
b28a02de 3268
b03a017b 3269 fixup_slab_list(cachep, n, page, &list);
e498be7d 3270
ce8eb6c4 3271 spin_unlock(&n->list_lock);
b03a017b 3272 fixup_objfreelist_debug(cachep, &list);
213b4695 3273 return obj;
e498be7d 3274
a737b3e2 3275must_grow:
ce8eb6c4 3276 spin_unlock(&n->list_lock);
76b342bd 3277 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3278 if (page) {
3279 /* This slab isn't counted yet so don't update free_objects */
3280 obj = slab_get_obj(cachep, page);
3281 }
76b342bd 3282 cache_grow_end(cachep, page);
1da177e4 3283
213b4695 3284 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3285}
8c8cc2c1 3286
8c8cc2c1 3287static __always_inline void *
48356303 3288slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3289 unsigned long caller)
8c8cc2c1
PE
3290{
3291 unsigned long save_flags;
3292 void *ptr;
7d6e6d09 3293 int slab_node = numa_mem_id();
8c8cc2c1 3294
dcce284a 3295 flags &= gfp_allowed_mask;
011eceaf
JDB
3296 cachep = slab_pre_alloc_hook(cachep, flags);
3297 if (unlikely(!cachep))
824ebef1
AM
3298 return NULL;
3299
8c8cc2c1
PE
3300 cache_alloc_debugcheck_before(cachep, flags);
3301 local_irq_save(save_flags);
3302
eacbbae3 3303 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3304 nodeid = slab_node;
8c8cc2c1 3305
18bf8541 3306 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3307 /* Node not bootstrapped yet */
3308 ptr = fallback_alloc(cachep, flags);
3309 goto out;
3310 }
3311
7d6e6d09 3312 if (nodeid == slab_node) {
8c8cc2c1
PE
3313 /*
3314 * Use the locally cached objects if possible.
3315 * However ____cache_alloc does not allow fallback
3316 * to other nodes. It may fail while we still have
3317 * objects on other nodes available.
3318 */
3319 ptr = ____cache_alloc(cachep, flags);
3320 if (ptr)
3321 goto out;
3322 }
3323 /* ___cache_alloc_node can fall back to other nodes */
3324 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3325 out:
3326 local_irq_restore(save_flags);
3327 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3328
d5e3ed66
JDB
3329 if (unlikely(flags & __GFP_ZERO) && ptr)
3330 memset(ptr, 0, cachep->object_size);
d07dbea4 3331
d5e3ed66 3332 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3333 return ptr;
3334}
3335
3336static __always_inline void *
3337__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3338{
3339 void *objp;
3340
2ad654bc 3341 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3342 objp = alternate_node_alloc(cache, flags);
3343 if (objp)
3344 goto out;
3345 }
3346 objp = ____cache_alloc(cache, flags);
3347
3348 /*
3349 * We may just have run out of memory on the local node.
3350 * ____cache_alloc_node() knows how to locate memory on other nodes
3351 */
7d6e6d09
LS
3352 if (!objp)
3353 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3354
3355 out:
3356 return objp;
3357}
3358#else
3359
3360static __always_inline void *
3361__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3362{
3363 return ____cache_alloc(cachep, flags);
3364}
3365
3366#endif /* CONFIG_NUMA */
3367
3368static __always_inline void *
48356303 3369slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3370{
3371 unsigned long save_flags;
3372 void *objp;
3373
dcce284a 3374 flags &= gfp_allowed_mask;
011eceaf
JDB
3375 cachep = slab_pre_alloc_hook(cachep, flags);
3376 if (unlikely(!cachep))
824ebef1
AM
3377 return NULL;
3378
8c8cc2c1
PE
3379 cache_alloc_debugcheck_before(cachep, flags);
3380 local_irq_save(save_flags);
3381 objp = __do_cache_alloc(cachep, flags);
3382 local_irq_restore(save_flags);
3383 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3384 prefetchw(objp);
3385
d5e3ed66
JDB
3386 if (unlikely(flags & __GFP_ZERO) && objp)
3387 memset(objp, 0, cachep->object_size);
d07dbea4 3388
d5e3ed66 3389 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3390 return objp;
3391}
e498be7d
CL
3392
3393/*
5f0985bb 3394 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3395 * @list: List of detached free slabs should be freed by caller
e498be7d 3396 */
97654dfa
JK
3397static void free_block(struct kmem_cache *cachep, void **objpp,
3398 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3399{
3400 int i;
25c063fb 3401 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3402 struct page *page;
3403
3404 n->free_objects += nr_objects;
1da177e4
LT
3405
3406 for (i = 0; i < nr_objects; i++) {
072bb0aa 3407 void *objp;
8456a648 3408 struct page *page;
1da177e4 3409
072bb0aa
MG
3410 objp = objpp[i];
3411
8456a648 3412 page = virt_to_head_page(objp);
8456a648 3413 list_del(&page->lru);
ff69416e 3414 check_spinlock_acquired_node(cachep, node);
260b61dd 3415 slab_put_obj(cachep, page, objp);
1da177e4 3416 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3417
3418 /* fixup slab chains */
f728b0a5 3419 if (page->active == 0) {
6052b788 3420 list_add(&page->lru, &n->slabs_free);
f728b0a5 3421 n->free_slabs++;
f728b0a5 3422 } else {
1da177e4
LT
3423 /* Unconditionally move a slab to the end of the
3424 * partial list on free - maximum time for the
3425 * other objects to be freed, too.
3426 */
8456a648 3427 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3428 }
3429 }
6052b788
JK
3430
3431 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3432 n->free_objects -= cachep->num;
3433
3434 page = list_last_entry(&n->slabs_free, struct page, lru);
de24baec 3435 list_move(&page->lru, list);
f728b0a5 3436 n->free_slabs--;
bf00bd34 3437 n->total_slabs--;
6052b788 3438 }
1da177e4
LT
3439}
3440
343e0d7a 3441static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3442{
3443 int batchcount;
ce8eb6c4 3444 struct kmem_cache_node *n;
7d6e6d09 3445 int node = numa_mem_id();
97654dfa 3446 LIST_HEAD(list);
1da177e4
LT
3447
3448 batchcount = ac->batchcount;
260b61dd 3449
1da177e4 3450 check_irq_off();
18bf8541 3451 n = get_node(cachep, node);
ce8eb6c4
CL
3452 spin_lock(&n->list_lock);
3453 if (n->shared) {
3454 struct array_cache *shared_array = n->shared;
b28a02de 3455 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3456 if (max) {
3457 if (batchcount > max)
3458 batchcount = max;
e498be7d 3459 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3460 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3461 shared_array->avail += batchcount;
3462 goto free_done;
3463 }
3464 }
3465
97654dfa 3466 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3467free_done:
1da177e4
LT
3468#if STATS
3469 {
3470 int i = 0;
73c0219d 3471 struct page *page;
1da177e4 3472
73c0219d 3473 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3474 BUG_ON(page->active);
1da177e4
LT
3475
3476 i++;
1da177e4
LT
3477 }
3478 STATS_SET_FREEABLE(cachep, i);
3479 }
3480#endif
ce8eb6c4 3481 spin_unlock(&n->list_lock);
97654dfa 3482 slabs_destroy(cachep, &list);
1da177e4 3483 ac->avail -= batchcount;
a737b3e2 3484 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3485}
3486
3487/*
a737b3e2
AM
3488 * Release an obj back to its cache. If the obj has a constructed state, it must
3489 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3490 */
a947eb95 3491static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3492 unsigned long caller)
1da177e4 3493{
55834c59
AP
3494 /* Put the object into the quarantine, don't touch it for now. */
3495 if (kasan_slab_free(cachep, objp))
3496 return;
3497
3498 ___cache_free(cachep, objp, caller);
3499}
1da177e4 3500
55834c59
AP
3501void ___cache_free(struct kmem_cache *cachep, void *objp,
3502 unsigned long caller)
3503{
3504 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3505
1da177e4 3506 check_irq_off();
d5cff635 3507 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3508 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3509
1807a1aa
SS
3510 /*
3511 * Skip calling cache_free_alien() when the platform is not numa.
3512 * This will avoid cache misses that happen while accessing slabp (which
3513 * is per page memory reference) to get nodeid. Instead use a global
3514 * variable to skip the call, which is mostly likely to be present in
3515 * the cache.
3516 */
b6e68bc1 3517 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3518 return;
3519
3d880194 3520 if (ac->avail < ac->limit) {
1da177e4 3521 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3522 } else {
3523 STATS_INC_FREEMISS(cachep);
3524 cache_flusharray(cachep, ac);
1da177e4 3525 }
42c8c99c 3526
f68f8ddd
JK
3527 if (sk_memalloc_socks()) {
3528 struct page *page = virt_to_head_page(objp);
3529
3530 if (unlikely(PageSlabPfmemalloc(page))) {
3531 cache_free_pfmemalloc(cachep, page, objp);
3532 return;
3533 }
3534 }
3535
3536 ac->entry[ac->avail++] = objp;
1da177e4
LT
3537}
3538
3539/**
3540 * kmem_cache_alloc - Allocate an object
3541 * @cachep: The cache to allocate from.
3542 * @flags: See kmalloc().
3543 *
3544 * Allocate an object from this cache. The flags are only relevant
3545 * if the cache has no available objects.
3546 */
343e0d7a 3547void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3548{
48356303 3549 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3550
505f5dcb 3551 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3552 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3553 cachep->object_size, cachep->size, flags);
36555751
EGM
3554
3555 return ret;
1da177e4
LT
3556}
3557EXPORT_SYMBOL(kmem_cache_alloc);
3558
7b0501dd
JDB
3559static __always_inline void
3560cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3561 size_t size, void **p, unsigned long caller)
3562{
3563 size_t i;
3564
3565 for (i = 0; i < size; i++)
3566 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3567}
3568
865762a8 3569int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3570 void **p)
484748f0 3571{
2a777eac
JDB
3572 size_t i;
3573
3574 s = slab_pre_alloc_hook(s, flags);
3575 if (!s)
3576 return 0;
3577
3578 cache_alloc_debugcheck_before(s, flags);
3579
3580 local_irq_disable();
3581 for (i = 0; i < size; i++) {
3582 void *objp = __do_cache_alloc(s, flags);
3583
2a777eac
JDB
3584 if (unlikely(!objp))
3585 goto error;
3586 p[i] = objp;
3587 }
3588 local_irq_enable();
3589
7b0501dd
JDB
3590 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3591
2a777eac
JDB
3592 /* Clear memory outside IRQ disabled section */
3593 if (unlikely(flags & __GFP_ZERO))
3594 for (i = 0; i < size; i++)
3595 memset(p[i], 0, s->object_size);
3596
3597 slab_post_alloc_hook(s, flags, size, p);
3598 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3599 return size;
3600error:
3601 local_irq_enable();
7b0501dd 3602 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3603 slab_post_alloc_hook(s, flags, i, p);
3604 __kmem_cache_free_bulk(s, i, p);
3605 return 0;
484748f0
CL
3606}
3607EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3608
0f24f128 3609#ifdef CONFIG_TRACING
85beb586 3610void *
4052147c 3611kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3612{
85beb586
SR
3613 void *ret;
3614
48356303 3615 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3616
505f5dcb 3617 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3618 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3619 size, cachep->size, flags);
85beb586 3620 return ret;
36555751 3621}
85beb586 3622EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3623#endif
3624
1da177e4 3625#ifdef CONFIG_NUMA
d0d04b78
ZL
3626/**
3627 * kmem_cache_alloc_node - Allocate an object on the specified node
3628 * @cachep: The cache to allocate from.
3629 * @flags: See kmalloc().
3630 * @nodeid: node number of the target node.
3631 *
3632 * Identical to kmem_cache_alloc but it will allocate memory on the given
3633 * node, which can improve the performance for cpu bound structures.
3634 *
3635 * Fallback to other node is possible if __GFP_THISNODE is not set.
3636 */
8b98c169
CH
3637void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3638{
48356303 3639 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3640
505f5dcb 3641 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3642 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3643 cachep->object_size, cachep->size,
ca2b84cb 3644 flags, nodeid);
36555751
EGM
3645
3646 return ret;
8b98c169 3647}
1da177e4
LT
3648EXPORT_SYMBOL(kmem_cache_alloc_node);
3649
0f24f128 3650#ifdef CONFIG_TRACING
4052147c 3651void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3652 gfp_t flags,
4052147c
EG
3653 int nodeid,
3654 size_t size)
36555751 3655{
85beb586
SR
3656 void *ret;
3657
592f4145 3658 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3659
3660 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3661 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3662 size, cachep->size,
85beb586
SR
3663 flags, nodeid);
3664 return ret;
36555751 3665}
85beb586 3666EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3667#endif
3668
8b98c169 3669static __always_inline void *
7c0cb9c6 3670__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3671{
343e0d7a 3672 struct kmem_cache *cachep;
7ed2f9e6 3673 void *ret;
97e2bde4 3674
97764043
DV
3675 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3676 return NULL;
2c59dd65 3677 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3678 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3679 return cachep;
7ed2f9e6 3680 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3681 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3682
3683 return ret;
97e2bde4 3684}
8b98c169 3685
8b98c169
CH
3686void *__kmalloc_node(size_t size, gfp_t flags, int node)
3687{
7c0cb9c6 3688 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3689}
dbe5e69d 3690EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3691
3692void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3693 int node, unsigned long caller)
8b98c169 3694{
7c0cb9c6 3695 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3696}
3697EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3698#endif /* CONFIG_NUMA */
1da177e4
LT
3699
3700/**
800590f5 3701 * __do_kmalloc - allocate memory
1da177e4 3702 * @size: how many bytes of memory are required.
800590f5 3703 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3704 * @caller: function caller for debug tracking of the caller
1da177e4 3705 */
7fd6b141 3706static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3707 unsigned long caller)
1da177e4 3708{
343e0d7a 3709 struct kmem_cache *cachep;
36555751 3710 void *ret;
1da177e4 3711
97764043
DV
3712 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3713 return NULL;
2c59dd65 3714 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3715 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3716 return cachep;
48356303 3717 ret = slab_alloc(cachep, flags, caller);
36555751 3718
505f5dcb 3719 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3720 trace_kmalloc(caller, ret,
3b0efdfa 3721 size, cachep->size, flags);
36555751
EGM
3722
3723 return ret;
7fd6b141
PE
3724}
3725
7fd6b141
PE
3726void *__kmalloc(size_t size, gfp_t flags)
3727{
7c0cb9c6 3728 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3729}
3730EXPORT_SYMBOL(__kmalloc);
3731
ce71e27c 3732void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3733{
7c0cb9c6 3734 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3735}
3736EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3737
1da177e4
LT
3738/**
3739 * kmem_cache_free - Deallocate an object
3740 * @cachep: The cache the allocation was from.
3741 * @objp: The previously allocated object.
3742 *
3743 * Free an object which was previously allocated from this
3744 * cache.
3745 */
343e0d7a 3746void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3747{
3748 unsigned long flags;
b9ce5ef4
GC
3749 cachep = cache_from_obj(cachep, objp);
3750 if (!cachep)
3751 return;
1da177e4
LT
3752
3753 local_irq_save(flags);
d97d476b 3754 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3755 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3756 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3757 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3758 local_irq_restore(flags);
36555751 3759
ca2b84cb 3760 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3761}
3762EXPORT_SYMBOL(kmem_cache_free);
3763
e6cdb58d
JDB
3764void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3765{
3766 struct kmem_cache *s;
3767 size_t i;
3768
3769 local_irq_disable();
3770 for (i = 0; i < size; i++) {
3771 void *objp = p[i];
3772
ca257195
JDB
3773 if (!orig_s) /* called via kfree_bulk */
3774 s = virt_to_cache(objp);
3775 else
3776 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3777
3778 debug_check_no_locks_freed(objp, s->object_size);
3779 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3780 debug_check_no_obj_freed(objp, s->object_size);
3781
3782 __cache_free(s, objp, _RET_IP_);
3783 }
3784 local_irq_enable();
3785
3786 /* FIXME: add tracing */
3787}
3788EXPORT_SYMBOL(kmem_cache_free_bulk);
3789
1da177e4
LT
3790/**
3791 * kfree - free previously allocated memory
3792 * @objp: pointer returned by kmalloc.
3793 *
80e93eff
PE
3794 * If @objp is NULL, no operation is performed.
3795 *
1da177e4
LT
3796 * Don't free memory not originally allocated by kmalloc()
3797 * or you will run into trouble.
3798 */
3799void kfree(const void *objp)
3800{
343e0d7a 3801 struct kmem_cache *c;
1da177e4
LT
3802 unsigned long flags;
3803
2121db74
PE
3804 trace_kfree(_RET_IP_, objp);
3805
6cb8f913 3806 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3807 return;
3808 local_irq_save(flags);
3809 kfree_debugcheck(objp);
6ed5eb22 3810 c = virt_to_cache(objp);
8c138bc0
CL
3811 debug_check_no_locks_freed(objp, c->object_size);
3812
3813 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3814 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3815 local_irq_restore(flags);
3816}
3817EXPORT_SYMBOL(kfree);
3818
e498be7d 3819/*
ce8eb6c4 3820 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3821 */
c3d332b6 3822static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3823{
c3d332b6 3824 int ret;
e498be7d 3825 int node;
ce8eb6c4 3826 struct kmem_cache_node *n;
e498be7d 3827
9c09a95c 3828 for_each_online_node(node) {
c3d332b6
JK
3829 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3830 if (ret)
e498be7d
CL
3831 goto fail;
3832
e498be7d 3833 }
c3d332b6 3834
cafeb02e 3835 return 0;
0718dc2a 3836
a737b3e2 3837fail:
3b0efdfa 3838 if (!cachep->list.next) {
0718dc2a
CL
3839 /* Cache is not active yet. Roll back what we did */
3840 node--;
3841 while (node >= 0) {
18bf8541
CL
3842 n = get_node(cachep, node);
3843 if (n) {
ce8eb6c4
CL
3844 kfree(n->shared);
3845 free_alien_cache(n->alien);
3846 kfree(n);
6a67368c 3847 cachep->node[node] = NULL;
0718dc2a
CL
3848 }
3849 node--;
3850 }
3851 }
cafeb02e 3852 return -ENOMEM;
e498be7d
CL
3853}
3854
18004c5d 3855/* Always called with the slab_mutex held */
943a451a 3856static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3857 int batchcount, int shared, gfp_t gfp)
1da177e4 3858{
bf0dea23
JK
3859 struct array_cache __percpu *cpu_cache, *prev;
3860 int cpu;
1da177e4 3861
bf0dea23
JK
3862 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3863 if (!cpu_cache)
d2e7b7d0
SS
3864 return -ENOMEM;
3865
bf0dea23
JK
3866 prev = cachep->cpu_cache;
3867 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3868 /*
3869 * Without a previous cpu_cache there's no need to synchronize remote
3870 * cpus, so skip the IPIs.
3871 */
3872 if (prev)
3873 kick_all_cpus_sync();
e498be7d 3874
1da177e4 3875 check_irq_on();
1da177e4
LT
3876 cachep->batchcount = batchcount;
3877 cachep->limit = limit;
e498be7d 3878 cachep->shared = shared;
1da177e4 3879
bf0dea23 3880 if (!prev)
c3d332b6 3881 goto setup_node;
bf0dea23
JK
3882
3883 for_each_online_cpu(cpu) {
97654dfa 3884 LIST_HEAD(list);
18bf8541
CL
3885 int node;
3886 struct kmem_cache_node *n;
bf0dea23 3887 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3888
bf0dea23 3889 node = cpu_to_mem(cpu);
18bf8541
CL
3890 n = get_node(cachep, node);
3891 spin_lock_irq(&n->list_lock);
bf0dea23 3892 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3893 spin_unlock_irq(&n->list_lock);
97654dfa 3894 slabs_destroy(cachep, &list);
1da177e4 3895 }
bf0dea23
JK
3896 free_percpu(prev);
3897
c3d332b6
JK
3898setup_node:
3899 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3900}
3901
943a451a
GC
3902static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3903 int batchcount, int shared, gfp_t gfp)
3904{
3905 int ret;
426589f5 3906 struct kmem_cache *c;
943a451a
GC
3907
3908 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3909
3910 if (slab_state < FULL)
3911 return ret;
3912
3913 if ((ret < 0) || !is_root_cache(cachep))
3914 return ret;
3915
426589f5
VD
3916 lockdep_assert_held(&slab_mutex);
3917 for_each_memcg_cache(c, cachep) {
3918 /* return value determined by the root cache only */
3919 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3920 }
3921
3922 return ret;
3923}
3924
18004c5d 3925/* Called with slab_mutex held always */
83b519e8 3926static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3927{
3928 int err;
943a451a
GC
3929 int limit = 0;
3930 int shared = 0;
3931 int batchcount = 0;
3932
7c00fce9 3933 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3934 if (err)
3935 goto end;
3936
943a451a
GC
3937 if (!is_root_cache(cachep)) {
3938 struct kmem_cache *root = memcg_root_cache(cachep);
3939 limit = root->limit;
3940 shared = root->shared;
3941 batchcount = root->batchcount;
3942 }
1da177e4 3943
943a451a
GC
3944 if (limit && shared && batchcount)
3945 goto skip_setup;
a737b3e2
AM
3946 /*
3947 * The head array serves three purposes:
1da177e4
LT
3948 * - create a LIFO ordering, i.e. return objects that are cache-warm
3949 * - reduce the number of spinlock operations.
a737b3e2 3950 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3951 * bufctl chains: array operations are cheaper.
3952 * The numbers are guessed, we should auto-tune as described by
3953 * Bonwick.
3954 */
3b0efdfa 3955 if (cachep->size > 131072)
1da177e4 3956 limit = 1;
3b0efdfa 3957 else if (cachep->size > PAGE_SIZE)
1da177e4 3958 limit = 8;
3b0efdfa 3959 else if (cachep->size > 1024)
1da177e4 3960 limit = 24;
3b0efdfa 3961 else if (cachep->size > 256)
1da177e4
LT
3962 limit = 54;
3963 else
3964 limit = 120;
3965
a737b3e2
AM
3966 /*
3967 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3968 * allocation behaviour: Most allocs on one cpu, most free operations
3969 * on another cpu. For these cases, an efficient object passing between
3970 * cpus is necessary. This is provided by a shared array. The array
3971 * replaces Bonwick's magazine layer.
3972 * On uniprocessor, it's functionally equivalent (but less efficient)
3973 * to a larger limit. Thus disabled by default.
3974 */
3975 shared = 0;
3b0efdfa 3976 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3977 shared = 8;
1da177e4
LT
3978
3979#if DEBUG
a737b3e2
AM
3980 /*
3981 * With debugging enabled, large batchcount lead to excessively long
3982 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3983 */
3984 if (limit > 32)
3985 limit = 32;
3986#endif
943a451a
GC
3987 batchcount = (limit + 1) / 2;
3988skip_setup:
3989 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3990end:
1da177e4 3991 if (err)
1170532b 3992 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3993 cachep->name, -err);
2ed3a4ef 3994 return err;
1da177e4
LT
3995}
3996
1b55253a 3997/*
ce8eb6c4
CL
3998 * Drain an array if it contains any elements taking the node lock only if
3999 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4000 * if drain_array() is used on the shared array.
1b55253a 4001 */
ce8eb6c4 4002static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 4003 struct array_cache *ac, int node)
1da177e4 4004{
97654dfa 4005 LIST_HEAD(list);
18726ca8
JK
4006
4007 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4008 check_mutex_acquired();
1da177e4 4009
1b55253a
CL
4010 if (!ac || !ac->avail)
4011 return;
18726ca8
JK
4012
4013 if (ac->touched) {
1da177e4 4014 ac->touched = 0;
18726ca8 4015 return;
1da177e4 4016 }
18726ca8
JK
4017
4018 spin_lock_irq(&n->list_lock);
4019 drain_array_locked(cachep, ac, node, false, &list);
4020 spin_unlock_irq(&n->list_lock);
4021
4022 slabs_destroy(cachep, &list);
1da177e4
LT
4023}
4024
4025/**
4026 * cache_reap - Reclaim memory from caches.
05fb6bf0 4027 * @w: work descriptor
1da177e4
LT
4028 *
4029 * Called from workqueue/eventd every few seconds.
4030 * Purpose:
4031 * - clear the per-cpu caches for this CPU.
4032 * - return freeable pages to the main free memory pool.
4033 *
a737b3e2
AM
4034 * If we cannot acquire the cache chain mutex then just give up - we'll try
4035 * again on the next iteration.
1da177e4 4036 */
7c5cae36 4037static void cache_reap(struct work_struct *w)
1da177e4 4038{
7a7c381d 4039 struct kmem_cache *searchp;
ce8eb6c4 4040 struct kmem_cache_node *n;
7d6e6d09 4041 int node = numa_mem_id();
bf6aede7 4042 struct delayed_work *work = to_delayed_work(w);
1da177e4 4043
18004c5d 4044 if (!mutex_trylock(&slab_mutex))
1da177e4 4045 /* Give up. Setup the next iteration. */
7c5cae36 4046 goto out;
1da177e4 4047
18004c5d 4048 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4049 check_irq_on();
4050
35386e3b 4051 /*
ce8eb6c4 4052 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4053 * have established with reasonable certainty that
4054 * we can do some work if the lock was obtained.
4055 */
18bf8541 4056 n = get_node(searchp, node);
35386e3b 4057
ce8eb6c4 4058 reap_alien(searchp, n);
1da177e4 4059
18726ca8 4060 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4061
35386e3b
CL
4062 /*
4063 * These are racy checks but it does not matter
4064 * if we skip one check or scan twice.
4065 */
ce8eb6c4 4066 if (time_after(n->next_reap, jiffies))
35386e3b 4067 goto next;
1da177e4 4068
5f0985bb 4069 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4070
18726ca8 4071 drain_array(searchp, n, n->shared, node);
1da177e4 4072
ce8eb6c4
CL
4073 if (n->free_touched)
4074 n->free_touched = 0;
ed11d9eb
CL
4075 else {
4076 int freed;
1da177e4 4077
ce8eb6c4 4078 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4079 5 * searchp->num - 1) / (5 * searchp->num));
4080 STATS_ADD_REAPED(searchp, freed);
4081 }
35386e3b 4082next:
1da177e4
LT
4083 cond_resched();
4084 }
4085 check_irq_on();
18004c5d 4086 mutex_unlock(&slab_mutex);
8fce4d8e 4087 next_reap_node();
7c5cae36 4088out:
a737b3e2 4089 /* Set up the next iteration */
20eaa393
VB
4090 schedule_delayed_work_on(smp_processor_id(), work,
4091 round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4092}
4093
158a9624 4094#ifdef CONFIG_SLABINFO
0d7561c6 4095void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4096{
f728b0a5 4097 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4098 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4099 unsigned long free_slabs = 0;
e498be7d 4100 int node;
ce8eb6c4 4101 struct kmem_cache_node *n;
1da177e4 4102
18bf8541 4103 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4104 check_irq_on();
ce8eb6c4 4105 spin_lock_irq(&n->list_lock);
e498be7d 4106
bf00bd34
DR
4107 total_slabs += n->total_slabs;
4108 free_slabs += n->free_slabs;
f728b0a5 4109 free_objs += n->free_objects;
07a63c41 4110
ce8eb6c4
CL
4111 if (n->shared)
4112 shared_avail += n->shared->avail;
e498be7d 4113
ce8eb6c4 4114 spin_unlock_irq(&n->list_lock);
1da177e4 4115 }
bf00bd34
DR
4116 num_objs = total_slabs * cachep->num;
4117 active_slabs = total_slabs - free_slabs;
f728b0a5 4118 active_objs = num_objs - free_objs;
1da177e4 4119
0d7561c6
GC
4120 sinfo->active_objs = active_objs;
4121 sinfo->num_objs = num_objs;
4122 sinfo->active_slabs = active_slabs;
bf00bd34 4123 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4124 sinfo->shared_avail = shared_avail;
4125 sinfo->limit = cachep->limit;
4126 sinfo->batchcount = cachep->batchcount;
4127 sinfo->shared = cachep->shared;
4128 sinfo->objects_per_slab = cachep->num;
4129 sinfo->cache_order = cachep->gfporder;
4130}
4131
4132void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4133{
1da177e4 4134#if STATS
ce8eb6c4 4135 { /* node stats */
1da177e4
LT
4136 unsigned long high = cachep->high_mark;
4137 unsigned long allocs = cachep->num_allocations;
4138 unsigned long grown = cachep->grown;
4139 unsigned long reaped = cachep->reaped;
4140 unsigned long errors = cachep->errors;
4141 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4142 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4143 unsigned long node_frees = cachep->node_frees;
fb7faf33 4144 unsigned long overflows = cachep->node_overflow;
1da177e4 4145
756a025f 4146 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4147 allocs, high, grown,
4148 reaped, errors, max_freeable, node_allocs,
4149 node_frees, overflows);
1da177e4
LT
4150 }
4151 /* cpu stats */
4152 {
4153 unsigned long allochit = atomic_read(&cachep->allochit);
4154 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4155 unsigned long freehit = atomic_read(&cachep->freehit);
4156 unsigned long freemiss = atomic_read(&cachep->freemiss);
4157
4158 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4159 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4160 }
4161#endif
1da177e4
LT
4162}
4163
1da177e4
LT
4164#define MAX_SLABINFO_WRITE 128
4165/**
4166 * slabinfo_write - Tuning for the slab allocator
4167 * @file: unused
4168 * @buffer: user buffer
4169 * @count: data length
4170 * @ppos: unused
4171 */
b7454ad3 4172ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4173 size_t count, loff_t *ppos)
1da177e4 4174{
b28a02de 4175 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4176 int limit, batchcount, shared, res;
7a7c381d 4177 struct kmem_cache *cachep;
b28a02de 4178
1da177e4
LT
4179 if (count > MAX_SLABINFO_WRITE)
4180 return -EINVAL;
4181 if (copy_from_user(&kbuf, buffer, count))
4182 return -EFAULT;
b28a02de 4183 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4184
4185 tmp = strchr(kbuf, ' ');
4186 if (!tmp)
4187 return -EINVAL;
4188 *tmp = '\0';
4189 tmp++;
4190 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4191 return -EINVAL;
4192
4193 /* Find the cache in the chain of caches. */
18004c5d 4194 mutex_lock(&slab_mutex);
1da177e4 4195 res = -EINVAL;
18004c5d 4196 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4197 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4198 if (limit < 1 || batchcount < 1 ||
4199 batchcount > limit || shared < 0) {
e498be7d 4200 res = 0;
1da177e4 4201 } else {
e498be7d 4202 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4203 batchcount, shared,
4204 GFP_KERNEL);
1da177e4
LT
4205 }
4206 break;
4207 }
4208 }
18004c5d 4209 mutex_unlock(&slab_mutex);
1da177e4
LT
4210 if (res >= 0)
4211 res = count;
4212 return res;
4213}
871751e2
AV
4214
4215#ifdef CONFIG_DEBUG_SLAB_LEAK
4216
871751e2
AV
4217static inline int add_caller(unsigned long *n, unsigned long v)
4218{
4219 unsigned long *p;
4220 int l;
4221 if (!v)
4222 return 1;
4223 l = n[1];
4224 p = n + 2;
4225 while (l) {
4226 int i = l/2;
4227 unsigned long *q = p + 2 * i;
4228 if (*q == v) {
4229 q[1]++;
4230 return 1;
4231 }
4232 if (*q > v) {
4233 l = i;
4234 } else {
4235 p = q + 2;
4236 l -= i + 1;
4237 }
4238 }
4239 if (++n[1] == n[0])
4240 return 0;
4241 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4242 p[0] = v;
4243 p[1] = 1;
4244 return 1;
4245}
4246
8456a648
JK
4247static void handle_slab(unsigned long *n, struct kmem_cache *c,
4248 struct page *page)
871751e2
AV
4249{
4250 void *p;
d31676df
JK
4251 int i, j;
4252 unsigned long v;
b1cb0982 4253
871751e2
AV
4254 if (n[0] == n[1])
4255 return;
8456a648 4256 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4257 bool active = true;
4258
4259 for (j = page->active; j < c->num; j++) {
4260 if (get_free_obj(page, j) == i) {
4261 active = false;
4262 break;
4263 }
4264 }
4265
4266 if (!active)
871751e2 4267 continue;
b1cb0982 4268
d31676df
JK
4269 /*
4270 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4271 * mapping is established when actual object allocation and
4272 * we could mistakenly access the unmapped object in the cpu
4273 * cache.
4274 */
4275 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4276 continue;
4277
4278 if (!add_caller(n, v))
871751e2
AV
4279 return;
4280 }
4281}
4282
4283static void show_symbol(struct seq_file *m, unsigned long address)
4284{
4285#ifdef CONFIG_KALLSYMS
871751e2 4286 unsigned long offset, size;
9281acea 4287 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4288
a5c43dae 4289 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4290 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4291 if (modname[0])
871751e2
AV
4292 seq_printf(m, " [%s]", modname);
4293 return;
4294 }
4295#endif
4296 seq_printf(m, "%p", (void *)address);
4297}
4298
4299static int leaks_show(struct seq_file *m, void *p)
4300{
0672aa7c 4301 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4302 struct page *page;
ce8eb6c4 4303 struct kmem_cache_node *n;
871751e2 4304 const char *name;
db845067 4305 unsigned long *x = m->private;
871751e2
AV
4306 int node;
4307 int i;
4308
4309 if (!(cachep->flags & SLAB_STORE_USER))
4310 return 0;
4311 if (!(cachep->flags & SLAB_RED_ZONE))
4312 return 0;
4313
d31676df
JK
4314 /*
4315 * Set store_user_clean and start to grab stored user information
4316 * for all objects on this cache. If some alloc/free requests comes
4317 * during the processing, information would be wrong so restart
4318 * whole processing.
4319 */
4320 do {
4321 set_store_user_clean(cachep);
4322 drain_cpu_caches(cachep);
4323
4324 x[1] = 0;
871751e2 4325
d31676df 4326 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4327
d31676df
JK
4328 check_irq_on();
4329 spin_lock_irq(&n->list_lock);
871751e2 4330
d31676df
JK
4331 list_for_each_entry(page, &n->slabs_full, lru)
4332 handle_slab(x, cachep, page);
4333 list_for_each_entry(page, &n->slabs_partial, lru)
4334 handle_slab(x, cachep, page);
4335 spin_unlock_irq(&n->list_lock);
4336 }
4337 } while (!is_store_user_clean(cachep));
871751e2 4338
871751e2 4339 name = cachep->name;
db845067 4340 if (x[0] == x[1]) {
871751e2 4341 /* Increase the buffer size */
18004c5d 4342 mutex_unlock(&slab_mutex);
db845067 4343 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4344 if (!m->private) {
4345 /* Too bad, we are really out */
db845067 4346 m->private = x;
18004c5d 4347 mutex_lock(&slab_mutex);
871751e2
AV
4348 return -ENOMEM;
4349 }
db845067
CL
4350 *(unsigned long *)m->private = x[0] * 2;
4351 kfree(x);
18004c5d 4352 mutex_lock(&slab_mutex);
871751e2
AV
4353 /* Now make sure this entry will be retried */
4354 m->count = m->size;
4355 return 0;
4356 }
db845067
CL
4357 for (i = 0; i < x[1]; i++) {
4358 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4359 show_symbol(m, x[2*i+2]);
871751e2
AV
4360 seq_putc(m, '\n');
4361 }
d2e7b7d0 4362
871751e2
AV
4363 return 0;
4364}
4365
a0ec95a8 4366static const struct seq_operations slabstats_op = {
1df3b26f 4367 .start = slab_start,
276a2439
WL
4368 .next = slab_next,
4369 .stop = slab_stop,
871751e2
AV
4370 .show = leaks_show,
4371};
a0ec95a8
AD
4372
4373static int slabstats_open(struct inode *inode, struct file *file)
4374{
b208ce32
RJ
4375 unsigned long *n;
4376
4377 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4378 if (!n)
4379 return -ENOMEM;
4380
4381 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4382
4383 return 0;
a0ec95a8
AD
4384}
4385
4386static const struct file_operations proc_slabstats_operations = {
4387 .open = slabstats_open,
4388 .read = seq_read,
4389 .llseek = seq_lseek,
4390 .release = seq_release_private,
4391};
4392#endif
4393
4394static int __init slab_proc_init(void)
4395{
4396#ifdef CONFIG_DEBUG_SLAB_LEAK
4397 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4398#endif
a0ec95a8
AD
4399 return 0;
4400}
4401module_init(slab_proc_init);
1da177e4
LT
4402#endif
4403
04385fc5
KC
4404#ifdef CONFIG_HARDENED_USERCOPY
4405/*
4406 * Rejects objects that are incorrectly sized.
4407 *
4408 * Returns NULL if check passes, otherwise const char * to name of cache
4409 * to indicate an error.
4410 */
4411const char *__check_heap_object(const void *ptr, unsigned long n,
4412 struct page *page)
4413{
4414 struct kmem_cache *cachep;
4415 unsigned int objnr;
4416 unsigned long offset;
4417
4418 /* Find and validate object. */
4419 cachep = page->slab_cache;
4420 objnr = obj_to_index(cachep, page, (void *)ptr);
4421 BUG_ON(objnr >= cachep->num);
4422
4423 /* Find offset within object. */
4424 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4425
4426 /* Allow address range falling entirely within object size. */
4427 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4428 return NULL;
4429
4430 return cachep->name;
4431}
4432#endif /* CONFIG_HARDENED_USERCOPY */
4433
00e145b6
MS
4434/**
4435 * ksize - get the actual amount of memory allocated for a given object
4436 * @objp: Pointer to the object
4437 *
4438 * kmalloc may internally round up allocations and return more memory
4439 * than requested. ksize() can be used to determine the actual amount of
4440 * memory allocated. The caller may use this additional memory, even though
4441 * a smaller amount of memory was initially specified with the kmalloc call.
4442 * The caller must guarantee that objp points to a valid object previously
4443 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4444 * must not be freed during the duration of the call.
4445 */
fd76bab2 4446size_t ksize(const void *objp)
1da177e4 4447{
7ed2f9e6
AP
4448 size_t size;
4449
ef8b4520
CL
4450 BUG_ON(!objp);
4451 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4452 return 0;
1da177e4 4453
7ed2f9e6
AP
4454 size = virt_to_cache(objp)->object_size;
4455 /* We assume that ksize callers could use the whole allocated area,
4456 * so we need to unpoison this area.
4457 */
4ebb31a4 4458 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4459
4460 return size;
1da177e4 4461}
b1aabecd 4462EXPORT_SYMBOL(ksize);